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De keuze van snelheidsrandvoorwaarden aan het vrije oppervlak is cruciaal
voor de robuustheid van de code, de nauwkeurigheid van golfsimulaties en
het ontstaan van pieken in het druksignaal. Helaas is er geen methode die
voor bovenstaande drie effecten tegelijkertijd positief werkt, daarom moet
gekozen worden voor een 'engineering mix’.

IL.

Het idee om een methode te gebruiken met een Navier-Stokes domein
ingebed in een domein met een meer eenvoudige methode om golfimpact
problemen te simuleren, brengt het mogelijke gebruik van een Navier-Stokes
code in praktisch ontwerp een stap dichterbij.

III.
Een goede simulatiemethode dient op alle aspecten waarvoor deze wordt
gebruikt, gevalideerd te zijn met behulp van (full-scale) metingen.

Iv.
Dat maar een klein deel van het publiek bij een wiskundecolloquium
begrijpt waar het over gaat, lijkt zowel spreker als publiek niet te deren.

V.
Onderzoek naar golfkrachten op een winderige en beweeglijke planeet (die
voor meer dan de helft met water is bedekt) lijkt geen overbodige luxe.




VI.
Een belangrijke aanwijzing voor het bestaan van God is het detail waarop
je kunt promoveren.

VIL
De eerste simulatie van een nieuwe serie gaat altijd goed, de problemen
komen bij de tweede.

VIII.
Katten drinken geen vers water dat je in hun bakje hebt gedaan, alleen het
water uit gieter, sloot of plas is goed genoeg.

IX.
Hoe duurder het restaurant, hoe meer mannelijke obers.

X.
Het aantrekkelijkste speelgoed voor een klein kind is datgene waarvoor het
net een speelverbod heeft gekregen.
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Chapter 1

Introduction

1.1 Problem definition

In the offshore industry a structure for the production and storage of oil or gas is placed
at one location for many years, often for over twenty years. These structures must survive
all weather types, including heavy storms. The photograph in Figure 1.1 shows a Floating
Production, Storage and Offloading vessel (FPSO) in a heavy storm at the North Sea.

Figure 1.1: Floating Production Storage and Offloading vessel (FPSO) in heavy storm

In rough seas large masses of water can invade the ship’s deck when the freeboard
is exceeded by high waves. This is called green water after the solid water mass that is
coloured green, in contrast to white water that consists of spray and foam mainly. Green
water can oceur at the ship’s bow or at the side of the ship damaging equipment on
the deck or living quarters of personnel. Especially on FPSO’s, where a lot of sensitive
equipment is present at the deck, green water causes a lot of damage. Ersdal et al. [21]
and Morris et al. [66] report on green water events at production ships in the North Sea.
Figure 1.2 shows two photos with damage caused by green water [7].
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Figure 1.2: Damage to the fire fighting platform of the Emerald FSU (Floating Storage
Unit, left) and the damage and first repair of a window after a green water incident on

the Varg FPSO (right)

In seas with steep fronted waves offshore structures also face the problem of wave
impact on their bow or bottom. One reported case is the Schiehallion FPSO where a
rather steep wave had damaged the bow, which finally resulted in an evacuation of all
personnel [34]. The photo in Figure 1.3 shows the damage to the front of the bow.

Figure 1.3: Wave impact damage causing dents to the bow of the Schiehallion FPSO

For the design of offshore structures these issues have to be taken into account to
prevent economic loss due to damage to the equipment and guarantee as safe conditions
as possible for the personnel. Very important in the design phase of a structure are model
tests to calculate the loads on different parts of the structure. Model testing is expensive
and it would be convenient to replace a part of the model testing by numerical simulation,
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or in any case focus model tests on critical events only. Therefore, there is a great need for
calculation methods that can take into account the highly nonlinear situations that occur
in heavy seas. Until recently, most caleulation methods have been based upon potential
theory and have not been able to calculate local How phenomena like green water on the
deck of a ship or slamming caused by (near-)breaking waves.

This thesis presents a simulation method based on the Navier-Stokes equations that
is developed (and is still in development) for the simulation of water loading on offshore
structures. The objective of the research presented in this thesis can be phrased by:

To develop a robust and validated numerical method
for the prediction of local wave impact loads on floaters.

This research builds on the work of Gerrits [26] and Fekken [23], who developed a
method for local flow phenomena with the presence of a free liquid surface and moving
objects. At the boundaries and at the object no-slip or free-slip conditions can be used.
With their method sloshing problems, water-entry problems and problems with simple
in- and outflow conditions can be handled (like channel flow with a prescribed uniform
inflow). The emphasis of the current work has been on validation and further robustness
improvement of the existing method and the extension of the method with complex in-
and outflow conditions, such that wave impact simulations can be performed. To reach
our goal, the following items need to be modelled, implemented and investigated:

¢ The design and implementation of wave generation options.

e The design and implementation of a zonal modelling method, where the outer do-
main provides the wave kinematics and vessel motions for the local domain calcu-
lation.

e The modelling of wave damping, due to the discretisation.

® The modelling and investigation of outflow conditions to prevent wave reflections.

e The investigation of the handling of the free surface (boundary conditions and
displacement) for robust and accurate simulations.

o Generation of pressure output, to analyse impact results.

e The validation of the method on the different stages in impact problems, as there are
wave propagation, water entry of a structure, and impact of water on the structure.

Throughout this thesis, all these items will get attention in the description of the model
and the results of validation. After all the individual elements are visited a simulation
can be performed containing all the elements, like green water on the deck of a moving
vessel.
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1.1.1 Focus on green water events

Some more attention will be paid to the green water phenomenon as an important ap-
plication of the simulation method described in this thesis. Buchner [7] has conducted a
thorough investigation to the characteristics of green water flow, and the effect of bow
shape using model tests. Also some different structures were put on the deck to measure
the effect of the shape of the structure (for example a deck house as shown in Figure 1.4).

Figure 1.4: Experiment of a green water event on the bow of an FPSO

Green water loading is a highly complex and nonlinear process. Buchner [7] showed
that the following phases can be distinguished in the process of green water on the
foredeck, see Figure 1.5:

A. The combination of a high wave and the pitch motion of a vessel results in nonlinear
swell-up around the bow.

B. The water is almost at rest around the bow, after which it starts to flow onto the
deck in a ’”dam breaking’-type of flow.

C. This results in a "Hydraulic jump’-type shallow water flow on the moving deck,
focussing into a high velocity water “jet” when the water fronts from the sides meet.

D. Water impact and water run-up occur in front of the structure, and eventually the
water is turning over.

When attempting to use a numerical method to describe these phenomena, the method
should be able to deal with complex nonlinear flows. If the focus of the investigation is
limited to the local flow around the bow, specifically it should be able to handle:

1. Water entry of a flared bow structure.

2. Complex flow onto the deck, including the discontinuity at the deck edge.

3. "Hydraulic jump’-type shallow water flow on a moving ship deck.
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1.2 Description of the simulation method

Figure 1.5: The main phases of the green water problem schematically in side view (left)
and top view (right): from the nonlinear relative wave motions in front of the bow, via
the complex flow onto and on the deck to the impact on deck structures

4. Meeting water flows on the deck.
5. Short duration water impact on a structure.
6. Overturning flow after run-up of the water in front of the structure.

Initial numerical investigations of green water loading focussed on the shallow water flow
on the deck, using Glimm's method, see for instance Mizoguchi [63, 64], Zhou et al. [102].
and Stansberg et al. [85]. Also (nonlinear) dambreaking theory is used for the simulation
of the green water flow on the deck, e.g. Yilmaz et al. [97]. With this type of method
only the 'hydraulic jump’-type shallow water flow on the moving deck can be simulated
(Phase C). The computational domain can consequently be limited to the area on the
deck. The freeboard exceedance around the deck and the related velocities were used as
boundary conditions.

Greco et al. [35] use a two-dimensional fixed structure to represent the ship’s deck.
Waves are overtopping the freeboard of the ship resulting in green water on the deck.
The calculations are performed with a Boundary Element Method and the resulting water
motion at the deck is compared with experiments. Nielsen et al. [68] take into account
all the phases of the green water phenomenon by using a Navier-Stokes solver with the
Volume-of-Fluid method for the displacement of the free surface. Waves are generated
at the inflow boundary. The ship is fixed, but the relative wave motion is modelled by
velocity boundary conditions at the bottom of the domain. The results are compared
with experiments of Buchner (7). Gomez-Gesteira et al. [33] use the Smoothed Particle
Hydrodynamics (SPH) method for the simulation of waves overtopping a fixed deck. The
SPH method is a purely Lagrangian method, so no mesh is needed. The resulting wave
profile is compared with experiments.

1.2 Description of the simulation method

In this thesis a method is described that in principle can handle all six points needed
for the simulation of the green water phenomenon. The method, incorporated in the




0 Chapter 1. Introduction

computer program COMFLOW, is based on the Navier-Stokes equations, which describe
the motion of an incompressible, viscous fluid. Originally, the method was developed to
simulate liquid sloshing on board spacecraft [29]. In this application the surface tension
is the driving force in absence of gravity. Also an accurate description of the free surface
is essential. Another application has been found in medical science, where blood flow
through elastic arteries has been studied [57, 58, 59].

In the maritime application area sloshing in anti-roll tanks was simulated [17, 18].
Also, a pilot study on the simulation of green water has been performed by Fekken [24].
An approach was used that deals with water impact and water run-up in front of the
deck structure. Using the simulation method Fekken was able to simulate the flow on the
deck and resulting impact accurately. However, the computational domain was limited
to the area on the deck. In the left of Figure 1.6 the initial configuration is shown. The
(measured) freeboard exceedance around the deck was used as boundary condition for
a breaking-dam type flow. The right picture in Figure 1.6 shows the run-up and falling
down of the water from the structure on the deck. The deck was not moving in this
approach.

Figure 1.6: Initial configuration and run-up on a deck structure in the approach of Fekken
et al. [24] for green water simulation

New applications in the marine field are sloshing in LNG-tankers [94] and wave loads
caleulation on subsea structures in the splash zone [9]. Also wave-in-deck calculations
have been performed, which is an important issue on, for example, the Norwegian Ekofisk

oil field [47].

1.2.1 Grid and discretisation

The simulation method described in this thesis numerically solves the Navier-Stokes equa-
tions. Thereto, the computational domain is covered by a fixed Cartesian grid. The ge-
ometry, which is in general not rectilinear of form, cuts through the Cartesian grid cells,
resulting in cut cells. A Cartesian grid is very suitable when simulations are performed
including highly distorted fluid interfaces. Then it is not an option to align the grid with
the moving interface. Further, the Cartesian grid is a structured grid, which means that
all the grid cells have the same number of cell faces per grid cell and the number of cells
surrounding each grid point is constant. Another option is to use a boundary fitted un-
structured grid. The advantage is that no cut cells are present in this method. But in our
method and applications a structured grid is preferable above an unstructured grid, be-
cause the fluid interface needs to be kept sharp to correctly predict pressure impact peaks.
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When using unstructured grids a diffusive interface method is commonly used, where the
interface is smeared over a few cells. Certainly, the Volume-of-Fluid method adopted
in our method is not suitable for unstructured grids for bookkeeping reasons. Another
disadvantage of an unstructured boundary fitted grid is that when complex geometries
are involved, as in simulations of offshore structures, the generation of a boundary fitted
grid is very difficult. For moving structures, the grid has to be regenerated every time
step, which is very time consuming. For these reasons, a fixed Cartesian grid has been
chosen.

Another method that is sometimes used in hydrodynamic applications is the Smoothed
Particle Hydrodynamics (SPH) method [65], which is a meshless method. Particles are
put in the flow and every particle has a mass and velocity. A particle is influenced by
other particles that are within a certain distance from the particle. The method can
handle large deformations of the fluid interface automatically. The method has also been
used in green water applications [33].

In the current method, the variables are staggered on the Cartesian grid as in the
original Marker-and-Cell method [39], which means that the pressure is defined in cell
centers and the velocities on cell faces. The advantage of a staggered grid is that mass
conservation can be applied easily in a cell, without the need of interpolations. The
finite volume method is used for the spatial discretisation of the Navier-Stokes equations.
In control volumes conservation of mass and momentum is applied derived from the
conservative form of the Navier-Stokes equations. This discretisation is performed in such
a way, that the underlying symmetry properties of the continuous operators also hold for
the discrete operators. This leads to a stable method where the kinetic energy is only
dissipated (due to diffusion) [92]. For the time discretisation the first order Forward-Euler
method is adopted. A Poisson equation for the pressure results, which is solved using
Successive Over-Relaxation (SOR) with an automatically adapted relaxation parameter

(5]-

1.2.2 Free surface displacement

A very important aspect of the applications is the presence of a free liquid surface.
Many methods for the treatment of the free surface are described in the literature: often
the methods for flow calculations with a free surface are classed by the method for the
interface treatment. An overview of the various methods available can be found in [80].
The most popular ones are the level-set method and the Volume-of-Fluid method, which
is adopted in the current method.

In the level-set formulation a distance function ¢(z,t) is introduced denoting the
distance from z to the initial interface location at + = 0. The interface corresponds to
the contour ¢ = 0 at any instant [72]. In this method highly distorted interfaces can be
treated and also topology changes are incorporated automatically. Although the interface
is of finite thickness, the physical properties such as surface tension can be applied easily.
A major problem of the level-set method is the lack of mass conservation (see e.g. [54]).
Several strategies have been studied to overcome this problem, e.g. a combination with a
VOF method has been used [87] or a re-distancing algorithm [86]. In our application area
lafrati et al. used the level-set technique for unsteady free-surface flows, where results
of flow over a jump and flow inside a tank have been shown [45]. The level set method
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is an interface tracking method, where the interface is tracked explicitly. In interface
capturing methods, the interface is resolved implicitly, no tracking function is used. Only
conservation laws are used, see e.g. [6, 93].

In the Volume-of-Fluid (VOF) method, a VOF function F is introduced with values
between zero and one, indicating the fractional volume of a cell that is filled with a cer-
tain fluid. Based on this volumetric data, the free surface is reconstructed and displaced,
wherefore the method is termed a volume tracking method. The VOF method is ex-
tremely suitable in fixed grid simulation methods, where the free surface should be able
to have an arbitrary complex topology. For example, in wave simulations the waves are
sometimes overturning, such that the interface intersects itself and merges. The VOF-
method automatically takes this into account. The earliest volume tracking methods were
developed by Noh and Woodward [69], Hirt and Nichols [44] and Youngs [98]. Reviews
of the different VOF-methods can be found in [78, 79].

The evolution of the VOF function is given by

DF oF

=i s

Dt ot
with w = (u,v,w) the velocity vector, t the time and V the gradient operator. This
equation states that the interface is moving with the liquid velocity. Every time step
the interface is first reconstructed from the VOF data, after which it is advected using
BEquation 1.1. The different VOF methods are often classed by the features of the inter-
face reconstruction algorithm and the advection of the interface. For the reconstruction
step, three different methods can be distinguished: (1) a simple line interface calculation
(SLIC), where the interface is said to be parallel to one of the coordinate axes, e.g. (69];
(2) SLIC with the possibility of a stair stepped interface within a cell, e.g. [44, 55]; and
(3) piecewise linear interface calculation (PLIC), e.g. [40, 81, 98]. The PLIC method has
become very popular in the last decade, because it results in a more accurate interface
reconstruction.

In this thesis, both the SLIC method of Hirt and Nichols [44] and the PLIC method of
Youngs [98] are used for the displacement of the free surface. To overcome problems in the
original Hirt-Nichols’ method., which are mass conservation problems and the occurrence
of flotsam and jetsam (small droplets disconnecting from the free surface), a local height
function is introduced. Both Hirt-Nichols’ and Youngs’' method with and without a local
height function are used in standard kinematic tests and in a dambreak simulation to
compare the performance of the different methods.

u-V)F =0, (1.1)

1.2.3 Moving objects

Moving objects in the domain can be accounted for in different ways. Commonly known in
the fixed-grid field of methods are the immersed boundary method, the fictitious domain
method and the cut-cell method. The first two methods are treating the boundaries of the
object as a special region in a single phase. So, the whole domain is filled with liquid, and
body forces (in cells containing the moving object boundaries) account for the presence
of the moving objects. In the cut-cell method the object is solid and the sharp object
boundary is cutting through the grid cells.

In the fictitious domain method, introduced by Glowinski [31], the flow computation
is done on a fixed space region, which contains the moving objects, using a finite element
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method. Lagrange multipliers are defined on the regions occupied by the rigid bodies
to match the fluid flow and rigid body motion velocities over the interface between the
regions. A variational formulation is derived involving Lagrange multipliers to force the
rigid body motion inside the moving objects.

The immersed boundary method was originally developed by Peskin [73] for the cal-
culation of blood flow through the heart. The heart is embedded in a larger periodic
box that is completely filled with fluid. The interface between the fluid and non-fluid
regions is defined using polynomial fitting through markers on the interface. To describe
the extra forces in the non-fluid regions, a force is introduced that differs from zero only
in these non-fluid regions. The interface force is spread to the nearby grid points us-
ing a discrete d-function. This d-function typically influences a band of four cells. The
material properties are smoothened over the interface in a transition zone with a size of
approximately two times the cell size.

The cut-cell method differs from the other methods in that the interface stays sharp
and is not smeared over a few cell widths. A sharp interface method is needed in the
applications studied in this thesis, since the peak of the water impact pressure should not
be flattened due to smearing the interface over a few cell widths. In the current method
the initial geometry is filled with markers with accompanying small rectangular volumes,
such that the unity of all the volumes equals the object geometry. Then the markers are
moved every time step according to the motion of the object. In a cut-cell method the
cells can become arbitrary small when a large part of the cell is occupied by geometry.
In case of fixed objects, due to the choices in the discretisation of the current method the
small cells induce no extra limitations on the time step for stability [20, 92]. In the case
of moving objects, a modification in the governing equations is needed to return to the
same stability criterion for the time step [23].

A disadvantage of the cut-cell method is that the sudden changes of the nature of
cells, from fluid to body cell and vice versa, introduce discontinuities. But by avoiding the
smearing of the interface, the velocity of the fluid along moving objects, that is important
in the applications at hand, is not smoothened over the object interface. Udaykumar et
al. [91] use a cut-cell method for the simulation of flow with complex moving boundaries.
To account for the changing nature of a cell from solid to fluid, in their method such a cell
is merged with a neighbouring cell during that time step, such that the fluid kinematics
in that cell are known.

1.3 Generation and propagation of waves

For the calculation of loads on offshore structures a wave generation option in the sim-
ulation method is essential. Some parts of the loads calculation can be done without
the presence of waves. Part of the calculation of loads due to green water can be done
without waves by modelling the water around the bow using a breaking dam model. This
has been used in the early stage of the development of this simulation method [24] and
also by e.g. [74, 97, 100]. Water entry simulation can be used to model the early stage
of the green water phenomenon when the bow of the vessel enters the water [8]. When
waves are present in the domain the phenomenon can be studied entirely. Also for the
calculation of, for example, bow slamming, waves (especially steep waves) are essential.
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There are three different possibilities to model wave generation in a simulation method
like COMFLOW. First, the waves can be generated using a wave maker as is also done
in a wave tank. The wave maker is modelled by a moving flap that can move horizontally
and/or rotate about different axes. In general, this option is not very convenient in a
numerical wave tank, except when exactly the same conditions need to be generated as
in an experiment, of which the flap motions are known. The second option is to generate
waves at an inflow boundary by prescribing velocities and water height. The velocities
and wave height can be calculated using description methods of waves. The third option
is to use another efficient simulation method that calculates the wave field, and prescribe
velocities calculated by this efficient method at the open boundaries of the CoMFLOW
domain. The second and third option are elaborated below.

1.3.1 Generation of waves using wave description theory

A wave description theory is used to generate the waves at the inflow boundary of the
domain. Note that at the inflow boundary positive and negative velocities can occur,
so fluid can flow in and out. The term is used to indicate a boundary where the wave
is generated. The wave is generated by prescribing velocities at the inflow boundary.
Different kind of wave descriptions can be used to determine the velocities at the inflow
boundary. The easiest is a linear wave description (Airy wave). But according to Le
Méhauté [61], the range of suitability of linear theory in deep water is H/\ < 0.0062, with
H the wave height and A the wavelength. This means that only waves with a very small
amplitude can be generated using linear theory accurately. In the application area of our
interest the waves are nonlinear. To prescribe nonlinear waves, 5th order Stokes theory
has been implemented [83]. Irregular waves can be generated by making a superposition
of linear wave components. The superposition principle only holds for linear waves, so
the accuracy can be insufficient when using this in nonlinear circumstances.

In head waves the wave is only generated at one boundary of the domain. At the other
open boundaries a condition should be used, such that the wave can leave the domain
undisturbedly. This is a difficult problem, because no information is present about the
wave near the outflow boundaries. There are different options to prevent the wave from
reflecting against the open boundaries into the domain. Givoli [30] gives an overview
of the different outflow boundary conditions. First, a dissipation zone can be used, in
which the wave is damped. Second. a non-reflecting boundary condition based on the
wave equation can be used that determines the velocities at the outflow boundary. An
example is the Sommerfeld boundary condition, where the wave velocity, which occurs in
the wave equation, has to be chosen on forehand [84]. Both methods for letting the wave
flow out of the domain undisturbedly are investigated in the current simulation program.

1.3.2 Wave field calculation by an external program

Waves can be generated using a calculated wave field by an external program. For ex-
ample, the initial flow field can be calculated by means of a linear diffraction calculation
and a conversion to the time domain. The linearised motion of the object is then known
in advance as well. During the simulation, the incoming, diffracted and radiated fluid
velocities are imposed on all the open boundaries. There are several advantages in using
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this method. First, the simulation with CoMFLOW can be limited to the close sur-
roundings of the structure. The far wave field is caleulated using the external code and
imposed on the boundaries of the COMFLOW domain. Second, a long duration run
can be performed with the fast external program, of which a time trace can be selected
that is expected to give a critical event. This long duration run (typically three hours)
cannot be performed with the COMFLOW program for calculation time reasons. Third,
the simulation can be started with a fully developed wave field that is calculated by the
external code. Also the motion of the structure is known in advance. Fourth, during
the time domain simulation a good prediction of the velocities at the open boundaries of
CoMFLOW is given by the external code caleulation.

This zonal modelling, where the domain is decomposed in a small CoMFLOW do-
main and a large external domain is first developed using a linear diffraction code. An
investigation should reveal how far this method can be stretched. The next step could be
to prescribe the velocities from the incoming contribution using a higher order method.
The radiated and diffracted velocity contributions and the vessel motion still follow from
the linear code.

1.3.3 Wave generation for validation using an experiment

When an experiment where a wave is involved is used for validation of the simulation
program, the exact wave conditions need to be generated. If the wave is not the same
in simulation and experiment, the results in loading will be different and the validation
results will be less valuable. There are different ways to imitate the conditions in a wave

basin. First, the flap motions, with which the wave was generated in the experiment, can

be used to preseribe the motion of flaps in the numerical wave tank. This seems to be a
rather good option, but a large problem arises in practice. The distance from the wave
maker to the structure in the wave is mostly several wave lengths. In a computational

intensive program like CoMFLOW this distance is too large to be able to accurately |

calculate the loads on the structure, since not enough computational cells can be put in |

the neighbourhood of the structure.

The second option is to generate the wave at the inflow boundary of the numerical
wave tank using a wave description of linear or 5th order Stokes theory. The advantage
is that the exact same wave can be prescribed as used in the experiment and that the
inflow boundary can be put at any distance from the structure. The disadvantage is that
the disturbance in the wave that is present due to the structure is not taken into account
at the inflow boundary.

The third option is to use measurements of the wave elevation in front of the structure
to prescribe the wave at the inflow boundary at the same distance from the structure.
The measured wave elevation can be decomposed using Fourier analysis and the different
components can be superposed at the inflow boundary. This is only valid in linear
circumstances, so the error in the wave elevation should be investigated carefully. Another
disadvantage is that the position of the inflow boundary is fixed at the position of the
measured wave elevation,
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1.3.4 Wave propagation

After the wave is generated at the inflow boundary of the computational domain, it
propagates through the domain. The propagation of waves needs to be studied carefully,
since the steepness and height of the waves determine the loads on the structures in the
waves. A thorough wave propagation study with the current simulation program has been
performed by Meskers [62]. He investigated the influence of grid sizes and time step and
identified some issues that need to be taken into account for proper wave propagation.
The influence of the boundary conditions at the free surface on the wave propagation
is very large as was also concluded by Chan et al. [13]. So, valid boundary conditions
need to be chosen that take care of accurate wave simulations. The accuracy of wave
simulations is also influenced by the method for the displacement of the free surface. As
described before, the method of Hirt and Nichols [44] and the method of Youngs [98],
which are both Volume-of-Fluid methods, are used. Also a combination of these methods
with a local height function is established; this combination ensures almost exact mass
conservation. Further, attention has to be paid to the dissipation due to the artificial
viscosity that could cause damping of the waves. The artificial viscosity is present due
to the upwind discretisation of the convective term in the Navier-Stokes equations. The
influence can be investigated by performing a simulation over a large number of periods
in a large computational domain. The damping of the waves should be small, such that
the loads on the structures in the waves are not underestimated.

1.4 Outline

In this thesis simulation of waves resulting in loading on offshore structures is presented.
To describe the method to accomplish this task the thesis is outlined as follows. The first
chapter is an introduction to the problem and the computational method. In the second
chapter the simulation method is described without the presence of waves. Clmpter 3
deals with the numerical aspects of wave simulation. In Chapter 4 the first steps in the
development of a domain decomposition method for the generation of waves is presented.
The last chapter, Chapter 5, contains a summary of the results. Conclusions are drawn
and recommendations are made for future research.

Chapter 2 describes the method for fluid-flow simulation in a closed domain, so with-
out the presence of waves. First, the mathematical model is described in Section 2.2. The
governing equations are the continuity equation and the Navier-Stokes equations, which
describe conservation of mass and momentum, respectively. The boundary conditions at
the objects and the free surface arve described. In Section 2.3 the spatial and temporal
discretisation of the governing equations are discussed, and the stability of the resulting
discretised equations is examined. Also the method for the determination of the discrete
boundary conditions at the free surface is given.

The displacement of the free surface is discussed in Section 2.4. Two methods are
described and compared using standard kinematic tests. The first method is the standard
VOF method of Hirt and Nichols [44]. This SLIC method, which is efficient and easy
to implement, has the drawback that flotsam and jetsam occur. To prevent this, a local
height function is introduced. The second method that is discussed is Youngs’ algorithm,
which is a PLIC method. Besides the standard kinematic tests, where the velocity field
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is prescribed, also a case study of a two-dimensional dambreak is presented. Section
2.5 shows that our treatment of the moving objects, using a cut-cell method, introduces
numerical pressure spikes. A method to minimise the amount of spikes is discussed.

The simulation method is validated in Section 2.6 and Section 2.7. First, a dambreak
simulation is performed, where the loading on a box in the domain is calculated. The
computed pressures and water heights are compared with measurements. In Section 2.7
some water entry cases are studied and resulting free surface profiles and pressure time
traces are compared with experimental results and theoretical predictions.

In Chapter 3 the numerical issues regarding the simulation of waves are discussed. In
Section 3.2 the mathematical description of linear waves is given and the implementation
of 5th order Stokes waves is shortly described. The theoretical values for velocities and
wave height are used at the inflow boundary of the computational domain to generate
waves, The issues at the open domain boundaries, which also include the outflow bound-
aries where waves should leave the domain undisturbed, are discussed in Section 3.3. The
influence of the free surface velocity conditions and the displacement algorithm on the
accuracy of wave propagation is shown in Section 3.4 and Section 3.5, respectively.

The validation of wave propagation is performed in Section 3.6. First, the waves
are propagating without an object in the flow. The waves are two-dimensional of form.
Regular waves are used and irregular wave events, where the waves are quite steep and /or
high. Second, a fixed spar platform has been put into the waves, and the resulting wave
loading is calculated and compared to experimental results. Finally, a floating FPSQ is
put into a high wave field resulting in green water on the deck. The water height on
the deck and pressure time traces at the deck and the deck house are compared with
measurements.

In Chapter 4 the waves are not generated within our simulation program, but the
wave field is calculated by an external program that also provides the motion time traces
of the object. Section 4.2 describes this domain decomposition and the interface between
our simulation method and the external program. In Section 4.3 this method is used to
simulate the propagation of an irregular wave. The same experimental results shown in
Chapter 3 are used in Section 4.4 to compare this new method for wave generation with.
Finally, green water loading on a floating FPSO is caleulated using this method, so also
the motion of the FPSO is prescribed from the external program, and again compared
with experiments as in Chapter 3. In Section 4.5 the results are discussed and some
recommendations for future research are given.



Chapter 2

Fluid Flow in a Closed Domain

2.1 Introduction

Wave impact physics and green water shipping on the bow of a vessel can be divided into
several aspects. In the first stage of the research, the waves are left out of the problem,
which gives the possibility to focus on local impact phenomena. To study this, impact
simulations have been performed of dambreaking problems with and without an object
in the flow. The advantage of studying a dambreak problem is that the simulations can
be performed in a closed domain. The flow in the domain cannot be disturbed by issues
at the inflow and outflow boundaries. To validate the method for moving objects, drop
test simulations have been performed. The shape of the free surface and impact forces
on the dropped objects have been compared with available theory and experiments. In
this chapter, the mathematical and numerical model used in closed domain simulations
are deseribed.

The governing equations of fluid flow are the continuity and Navier-Stokes equations
describing conservation of mass and momentum respectively. At the domain walls and at
the objects in the domain no-slip boundary conditions are prescribed. At the free surface
continuity of tangential and normal stresses is demanded. Also the capillary effects are
taken into account (although not always necessary from a physical point of view).

To solve the mathematical equations, the domain is covered with a fixed Cartesian
grid. The geometry is described by linear components, resulting in so-called cut cells
where the geometry cuts through the grid cells. A labelling system has been used to
distinguish between cells of different character, for example cells filled with fluid, empty
cells or cells containing the free surface. The continuity and Navier-Stokes equations are
being solved using a finite volume discretisation in space and a forward Euler method
in time. This discretisation leads to an energy conserving method. For the free surface
treatment two methods are described based on the Volume of Fluid (VOF) method as
introduced by Hirt and Nichols [44] and Youngs [98]. To prevent jetsam and flotsam that
occur in the original VOF method and to take care of full mass conservation, the method
has been improved using a local height function.
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2.2 Mathematical Model

The flow of a homogeneous incompressible viscous fluid can be described using the con-
servation laws of mass and momentum. Here, the resulting equations will be given in
conservation form.

2.2.1 Governing Equations

Consider an arbitrary volume V' with boundary S = 9V, including part of a moving
object as shown in Figure 2.1. The shaded area denotes the part of the moving object V3,
while Vj is the fluid part of the volume. The boundary of volume V' can be divided in a
solid geometry part S, = dV;NIV and a fluid part Sy = dV;NdV. The boundary between
the fluid and solid part is called S,y = 9V, N dV}. For a homogeneous incompressible
viscous fluid, conservation of mass in this domain over the boundary of V; results in the
equation

fun;ddl’} =]u-n;d5;+/u,,-n;d5‘bf=0. (2.1)

avy Sy Sy

Here, w = (u,v,w) is the velocity vector with w,v and w the velocities in the three
coordinate directions x, y and z, respectively, and u, is the velocity of the moving object.
The normal vector of the fluid part of volume V is denoted by m;. Equation (2.1) is
referred to as the continuity equation.

Figure 2.1: Volume V where conservation of mass and momentum is applied

Applying conservation of momentum to a homogeneous incompressible viscous fluid
leads to the following equation (which can also be split into three equations, one for each
coordinate direction)

du 1 .

EdV‘f i [u(u " nf)de = —— ]([Jﬂf — p,V'u : nde_,- 1+ deVf (22)
Vi avy pm-'f Vi

In these equations, the successive terms have the following meaning. The first term of

the left-hand side describes the change of momentum in volume Vi, the second term

describes convection of fluid. In the first term of the right-hand-side, two parts can be

distinguished: a pressure term (given by p) and a diffusive term, where p denotes the
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dynamic viscosity. The terms are divided by the density p. The second term on the right-
hand-side represents external forces F, like gravity, or forces coming from the motion of
the coordinate system. In our case, the only external force present is gravity:

F =g = (9z, 9y, 9:) = (0,0,-9.81) m/SE'

The continuity and Navier-Stokes equations will be solved inside one fluid, which in
this thesis is water. In the simulations a second fluid, air, will be present, in which no
equations will be solved. Both fluids are separated from each other by a free surface. The
position of the free surface is not known in advance, so it has to be computed during the
simulation process. The evolution of the free surface is given by

Ds s
Dt~ ot

+(u-V)s=0

where s(x,t) = 0 gives the actual position of the free surface.

2.2.2 Boundary Conditions

To solve the governing equations, boundary conditions are needed at the solid walls and
the free surface. At the solid boundary the no-slip boundary condition for viscous fluids
is applied

U = Uy,

with u; = 0 for fixed objects and solid domain boundaries. For fixed objects, this means
that no fluid can go through the wall and also the velocity tangential to the solid boundary
is zero.

At the free surface, the forces are balanced, and the resulting equation is split in
the normal and tangential direction. When the fluid is incompressible and the curvature
of the free surface is neglected in the viscous stress terms, this results in the following
equations:

duy, .
—p+2,uz‘; = —py+ Ok, (2.3)
du, O

,u(al; +£) = 0 (2.4)

In the first equation, n denotes the normal of the free surface and ¢ is the tangential
direction. Further, u, and w, are the normal and tangential component of the velocity
respectively, and pg is the atmospheric pressure. The surface tension is given by o, and
# denotes the total curvature of the free surface.

2.3 Discretisation of the governing equations
In this section the numerical method adopted for the fluid flow simulations will be de-

scribed. The description will be in two dimensions. In most situations this can be
extended to three dimensions straightforwardly.
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2.3.1 Grid and geometry definition

The governing equations are discretised in space on a fixed Cartesian grid. This is in
contrast to a geometry-aligned grid, which is also widely used. The advantage of a
geometry-aligned grid is that the geometry does not cut through the grid cells as it will
in a Cartesian grid. But in the case of a moving object that can be as complicated as a
ship in the domain it is very difficult and time consuming to generate a new grid every
time step.

To be able to simulate fluid flow in an arbitrary complex geometry, the geometry is
defined using a finite element description. This finite element description is mapped to
the Cartesian grid, by checking for points in the grid if they are inside or outside the
union of elements. For the definition of the geometry on the Cartesian grid, volume
and edge apertures are introduced. Every cell has a volume aperture F' b and two edge
apertures (A% and AV, in three dimensions also A%) that define which part of the cell and
cell faces, respectively, are open to fluid. (So 1 — F? is the solid body proportion.) The
volume and edge apertures are calculated using a sub-grid of so-called integration points.
In Figure 2.2 an example of the calculation of apertures is given for two integration points
per direction. Using the 4 interior points, 1 — F b is calculated as the number of points
inside the geometry divided by the total number of points inside the cell. So in this case,
1— F? =025 and F" = 0.75. The same procedure is used for the edge apertures, which
results for the example in A* = 0.5 and AY = 0.5. The number of integration points
can be chosen freely. One integration point results in a ‘staircase’ geometry; increasing
the number of integration points gives smoother geomtries. The geometry and boundary
apertures are restricted by 0 < F b Az AV < 1.

Figure 2.2: Apertures calculation in a cut cell using integration points; dark grey denotes
solid body

Besides the volume aperture another function has been introduced to identify the
fraction of a cell that is filled with fluid: the Volume-Of-Fluid (VOF) function, denoted
by F*. For every cell, the VOF-function is defined. Because there can be no more fluid in
the cell than the open part of the cell, the VOF-function is limited by 0 < F* < F L

2.3.2 Motion of a rigid object
Displacement of the object

In the domain an object can be present that moves according to a prescribed or calculated
motion. Every time step the object is moved, so new geometry apertures for the cell
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volumes F* and the cell edges A%, A¥ have to be caleulated. This caleulation must be as
accurate as possible, because it has a large influence on the smoothness of the pressure
field. When the apertures are not caleulated exactly, the object seems to be 'breathing’
in time, which causes irregularities in the pressure time signal.

In two dimensions the apertures can be calculated in an exact manner. In [23] a
procedure to perform this calculation has been described. The object is defined as a
polygon, with the vertices of the polygon stored in an array. The vertices are displaced
every time step exactly, according to the motion of the object. Then, the cross-section
of a side of the polygon with a computational cell is calculated, from which the volume
and edge apertures of the cells are determined. In two dimensions this procedure is
not very complicated, and the resulting apertures are determined almost exactly. To
perform the same procedure in three dimensions, where polyhedrons instead of polvgons
are defined, is much more complicated. The calculation of cross-sections of polyhedrons
with a rectangular grid is not straightforward. Therefore, this accurate procedure is
not applied in three dimensions, but a more simple method has been adopted, which
approximates the three-dimensional body geometry.

The general procedure can be described in three steps. First, the starting geometry
is stored in a special way using markers. Then, every time step the volume apertures are
caleulated by moving the markers. Finally, the edge apertures are calculated, based on
the volume apertures. Below, the three steps are described in detail.

1. At the start of a simulation the geometry is built from the finite element description
given by the user. Integration points, forming a sub-grid, are used to calculate
volume and edge apertures as explained in Section 2.3.1. If a moving object is
present in the domain, the geometry of the object should be stored, such that it
can be moved every time step. Therefore, the integration points of each cell, forming
a set of markers, are stored in an array. Around each marker a small rectangular
volume is defined, such that the union of all the volumes forms the object. In case
of one marker per cell, these volumes are chosen exactly as one computational cell.
When more than one marker per cell is used as in the left of Figure 2.3, the union of
the volumes around the markers of one computational cell equals the volume of the
cell (in the case that the complete cell is object). When this procedure is followed

Figure 2.3: A circular cylinder with a sub-grid of markers and volumes; all markers (left):
markers that will be stored (right)

for all markers coming from the integration points, many points and volumes should
be stored. If ny is the number of integration points, the total number of points to
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be stored are n‘j Neelts, With nees the number of computational cells. To prevent
unnecessary storage, the markers in a computational cell that is completely solid
will be replaced by one marker with accompanying volume equal to the volume of
the computational cell. This significantly reduces the total number of markers. An
example of the markers and volumes that are stored in case of a two-dimensional
circular object is given in the right of Figure 2.3. The number of integration points
equals 4 in this case. When a cell is completely occupied by solid, the 16 markers
inside the cell are replaced by one marker.

. Every time step, the volume and edge apertures in the computational grid change.

In this step, the new volume apertures are calculated, with the use of the markers
and volumes defined in the previous step. First, the markers are moved according
to the motion of the rigid object. In case of a rotation of the object, also the
volumes belonging to the marker cells should be rotated. To calculate volume
apertures, the cross-sections of the marker volumes with the computational cells
have to be calculated. For a general rotated volume, this is very complicated in
three dimensions. To avoid the calculation of these difficult cross-sections, the
marker volumes are not rotated, but are staying grid aligned as in the right of
Figure 2.4. There are some errors introduced by keeping the volumes grid aligned.
Firstly, small holes can be created inside the object and secondly, small overlapping
regions can occur. This should be dealt with during the calculation of the volume
apertures. But the errors introduced this way are not very large. According to [23],
the errors in the calculation of the volume apertures F* usually are smaller than
0.01%.

Figure 2.4: Rotation of a square: starting situation (left); exact rotation (middle); rota-
tion where the marker volumes are kept grid aligned (right)

3. After the volume apertures have been calculated at the start of every time step,

the edge apertures must be determined. The edge apertures are calculated using a
piecewise linear reconstruction of the geometry. This method is often used for the
reconstruction of the interface between two fluids as explained in e.g. [78] and also
in Section 2.4.4 of this thesis. First, in every cell the normal of the body is calculated
based on the filling ratio’s of adjacent cells. Using this, a linear approximation of
the body geometry in the cell is created, given the filling ratio of the cell (see the
figures in Section 2.4.4 for a more detailed explanation of the procedure). The edge
apertures are determined by the fractions of the cell faces that are cut by the linear
approximation. In [23] it has been shown that the edge apertures calculated in this
way behave smoothly in time.
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The above described procedure for the calculation of volume and edge apertures is
not exact, but only approximates the original geometry. To investigate the influence
of the approximation, a simulation has been performed of a solid square moving to the
right with uniform velocity in a domain completely filled with fluid. In Figure 2.5, the
pressure signal in a cell left from the square has been shown. The pressure signal for the
exact apertures calculation is smoother than the approximate caleulation, but the overall
picture is the same. The regular jumps in the pressure signal of the exact apertures
calculation are due to the position of the pressure inside a cell in the discretisation of the
momentum equations (see [23]). These jumps can still be recognised in the approximate
apertures calculation.

pressure (Pa)

— exact apertures calculation
=== approximate apertures calculation
4°ol_ I A I 1 1 I I 1
(+] 1 2 3 4 5 6 7§ 8 10
time (s)

Figure 2.5: Pressure in the fluid containing a moving square: exact calculation of aper-
tures versus approximate calculation

Definition object motion

During the simulation an object can be displaced using prescribed motion time series.
Especially in the definition of the rotational motion of an object, it is very important
to have the coordinate system and the meaning of rotation angles clearly defined. In
our method the following convention has been adopted. The coordinate system is right
handed. When the bow of a ship is pointing towards the positive z-axis, the positive
angles are defined by:

e Positive roll means that the starboard side of the ship is going down.

e Positive pitch means that the bow of the ship is going down.
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e Positive vaw means that the bow of the ship is turning to port side.

This has been illustrated in Figure 2.6 where a grid-aligned box has been given 10 degrees
roll, pitch and yaw.

50 @ 5
B0 B0 0
bt b 5

50 50 A0

80 80 0

50 50 50
0 0 4 . 0 0 0
1-ade Gl xaxis s N 5 xS s % % xaxis

Figure 2.6: A box with 10 degrees roll (left), 10 degrees pitch (mid) and 10 degrees yaw
(right)

The matrix describing the complete rotation is given as a product of the three matrices
which describe rotation about the three coordinate axes. The general rotation matrices
for rotations about the z, y and z-axis are given by

1 0 0
R.(a)=| 0 cos(a) —sin(a)
0 sin(a) cos(a)

cos(3) 0 sin(3)
R(f#)= 0 1 0
—sin(d) 0 cos(d)

cos(y) —sin(y) 0
R.(y) = | sin(y) «cos(y) O
0 0 1

The general rotation has been done in the order yaw, pitch, roll, which gives for the
general rotation matrix

R(a, B,7) = R.(a) Ry(3) R:(7) =

cos(3) cos(7v) —cos(3) sin(7y) sin( /)
cos(7) sin(a)sin(3) + cos(a)sin(y) cos(a) cos(7y) — sin(a) sin(3) sin(y) —cos(3)sin(a) | .
— cos{a) cos(y) sin(3) + sin(a) sin(y) cos(y) sin(a) + cos(a) sin(3) sin(y)  cos(a) cos(3)
Any point & p in the object can than be rotated about the center of gravity of the object
(CG) using
Tp = CG + R(a, ﬁ,“‘)(mp,, - CGU).
with @p, the initial coordinates of point @p and C Gy the initial position of the center

of gravity. The three velocity components of a point xp in the object are given by
Ucom + w X Tp where wcom = (Ucon Yeom, Weo ur) contains the three linear velocity
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components and w is the angular velocity in three directions, When this is written out,
the following formulas give the velocity of the object in point zp:

Uonj = UcoOM 4t w‘z(:f’ - :mm) - WS(;UP - ycum)s
Vobi = UVecom + W.’i(IP . :Er:crm.) — W (3}" - :t'orn)~

Wb weom + wi (yp — .Ur:(mr) . ‘4-"‘2(1!’ =B o)l

with (Zeom. Yeom, Zcom) the coordinates of the center of mass.

2.3.3 Cell labelling

Based on the geometry definition and VOF-function (that defines for each cell which part
of it is occupied by fluid) the cells are labelled to distinguish between cells with a different
character. In Figure 2.7 an example of the cell labelling in the neighbourhood of a ship
has been given. First, the cells that are completely in the solid geometry are labelled as
B(oundary) cells. Then, the cells containing no fluid are labelled E(mpty) cells. The cells
containing fluid adjacent to empty cells are labelled S(urface) cells and always contain
part of the free surface. The remaining cells are labelled as F(luid). Note, that these cells
do not have to be completely filled with fluid, as the central F-cell in the example.

E|E|E|E|E

E|E
S';-S"F
F|F|F|F

O [ e AR B (N

Figure 2.7: Cell labelling: boundary, empty, surface, and full cells

On the Cartesian grid, the variables are staggered, which means the pressure is defined
in the cell centers, whereas the velocities are defined on the cell faces. Therefore, also the
cell faces are labelled. For example, the velocity on a cell face between a surface cell and
an empty cell is called an SE-velocity.

2.3.4 Discretisation of the continuity equation

For the spatial discretisation of the continuity and Navier-Stokes equations the finite
volume method is adopted. For the discretisation of the continuity equation, Equation
(2.1), consider a computational cell cut by a part of a moving geometry as shown in
Figure 2.8. Here, u, and w, are the horizontal velocities defined in the center of the open
part of the eastern and western cell face, respectively. The same definition holds for the
northern and southern vertical velocities v, and v,.
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Figure 2.8: Conservation cell for the continuity equation

When applying conservation of mass in this cell, which means that the sum of the
mass fluxes through the cell boundaries should vanish, the discretisation results in

u A6y + vy AYST — uy, AL 0y — v, AYox + 1y - n’) =0, (2.5)

where the notation is explained in Figure 2.8. The normal of the boundary is based on the
edge apertures and given by n’ = (8y(AX—AZ), dz( A} —AY))/||6y(A7 —AL). dz(AY—AY)||.
Recognising [ in the denominator of n", the discrete continuity equation can be written
as

u A0y + v, Aldr — u,A7dy — v AYdr +
up(AZ — AZ)oy + wvy(AY — AV)dx = 0. (2.6)

This equation can be applied in every computational cell, regardless the configuration of
the geometry.

2.3.5 Spatial discretisation of the Navier-Stokes equations

The discretisation of the Navier-Stokes equations, Equation (2.2), is only discussed for
the equation in z-direction, the other directions follow a similar approach. The control
volumes in which the conservation law of momentum is applied, are chosen around ve-
locities which are defined at cell faces. For uncut cells the control volumes consist of the
left half of the cell right of the velocity and the right half of the cell left of the velocity
(see Figure 2.9).

When the cells are cut by an object, the control volumes are defined by bisecting
the adjacent computational cells. In Figure 2.10 two examples of control volumes in the
neighbourhood of cut cells are given.

Time derivative

The time derivative term in the Navier-Stokes equation is discretised in space using the

midpoint rule. 5
du i,
—dV; =
J o T o
Vi

F'8z,.6y.
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Figure 2.9: Control volume for the momentum equation in z-direction (indicated with
dashed line) in case of uncut cells
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Figure 2.10: Control volumes for the momentum equation in z-direction (indicated with
dashed line) in case of cut cells

Here, V; is the control volume belonging to the horizontal central velocity u.. The size
of the control volume is computed as Fdz.6y where F? = (Fb4x,6y + F*5x.0y)/2. The
subscripts ¢ and w stand for eastern and western cell respectively (see Figure 2.11 for an
explanation of the notation).

Convective term

The convective term of the Navier-Stokes equation in z-direction is given by

/ u(w - mp)dS;.
vy

This term represents the advection of momentum through the boundaries of volume V, ¥
To distinguish between the velocity in the horizontal momentum u that is advected,
and the z-component of the velocity w in the mass fluxes . - nydSy, the velocity in
the horizontal momentum u will be replaced by the symbol ¢ in the remainder of this
paragraph. First, an example of the convection in a control volume in the neighbourhood
of a moving object will be considered. After that, the general formula for the convective
terms will be given.

In Figure 2.11 an example of a control volume in the neighbourhood of a moving body
is given. The grey area denotes the body geometry which is moving with velocity w,.
The object velocity up, holds for the complete part of the object in the left cell, whereas
in the right cell the object velocity is given by

The momentum velocities ¢ on the different boundaries of the control volume are
calculated as a simple average of the velocities at the cell faces. The simple average is
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Figure 2.11: Control volume for the discretisation of convective terms

chosen every time an average is needed, because weighted averages would influence the
symmetry of the discretisations [92]. Using this average, the momentum velocities on the
left (), right (¢,), upper (¢,). and lower (¢4) boundaries of the control volumes are
given by

o= 3w+ )y O = 3(de + bc),
‘jd . ‘1‘4(0-: i ¢'c}- Pu = %(f:'n ¥ djc‘}w

where ¢, ¢, e, ¢y and ¢, are the horizontal velocities ue, un, te, Uy and wu,,.

The convective discretisation can be written in terms of mass fluxes through the
boundaries of the control volume multiplied by the velocities ¢r, ¢y, ¢ and @g

f d(u - ny)dSy = mpdp — Mapa — MuPr + MyPu.
avy

In the example control volume of Figure 2.11 where the boundaries are divided into
seven segments, m, consists of the sum of the horizontal mass fluxes through segments
1. 2 and 4. Mass flux m; is formed by the horizontal mass flux through segment 5, m,,
by the (vertical) mass fluxes through segments 6 and 7, and mq by the vertical mass
fluxes through segments 2, 3, 4 and 5. In general, the mass fluxes through the different
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boundaries are given by

My = % (Afuby + AZudy + (A7 — AL )wy, dy),

my =73 (A% Um0z, +max(0, (AY, — AY )y, )0z, + AY, V00T, +
max(0, (A%, — A% vy, )ézy),

my =3 (Abuwdy + Afudy + (AT — AL Juy,by),

my = .'Iz (AY veebz, + max(0, (AY, — AY Yy, )z + AY 0,00z +

ln&\( ( 4%111 = AMH)“‘I)'S‘FU»)
(2.7)

Here AY and AY are the boundary apertures belonging to the cell face where w, and v,
are defined. The mass fluxes through the right and left boundary consist of a part from
the mass flux which is an average of the mass flux through the right and left cell face
(the first two terms) and a part from the moving body (the third term). The mass flux
due to the moving body is positive when the body is moving out of the cell. This results
for the mass flux through the right boundary m, in the term (A* — A%)u,, where wuy, is
the velocity of the body in the eastern cell.

The fluxes through the upper and lower cell contain the fluxes due to the fluid veloe-
ities, where half of the left cell and half of the right cell have been taken. The fluxes due
to the moving object contain a max-function, which distinguishes between the situation
that the body is moving into or out of the cell. When in the example in Figure 2.11 the
body is moving downwards, the resulting mass flux in the eastern cell should be positive.

In this case, max(0, (A% — A¥ )u,,) is a positive number, so this will give a contribution
in m,. Then the part max(0, (A%, — A% Juy,) in my oquu]b zero. So the vertical mass flux

in the eastern cell due to the moving body only gives a contribution in m,, which results
in a positive contribution in Equation (2.7).

Now the discretisation of the convective terms can be written down by substituting
the mass fluxes and the momentum velocities in Equation (2.7), resulting in

/ o(u - nyp)dSy = meg, — mathg — My + My iy, =
v
|

i | fo iy 1, 1 1 1 1
3T Pe — 3MaGs — MGy + 5MyBp + (5"”" — 3Mg — 3Ty + 5Ty )P, =

HATu by + ATu by + (AZ — A, dy) ¢ +
—%(—Hrqe.nérr + max(0, (A%, — A¥ Yu, )0z +
AY vapdxy, + max(0, {Af," AY oy, )ozy) @ +
_'( A0y + AZudy + (AJ: = 'zi;)ubréy) Gw +
(Amu,m() e +max(0, (A¥, — AY Vv, )0z, +
AL VnubTy + max(0, (A2, — AY vy )é2y) On +
1 (A%uody — ALu,0y + AY vpedze + AL 00Ty — AV vz, — AL 04000+
(Ag — AQ)up, 0y — (A7 — A up, Oy + (AL, — AY Yoy bz, + (A — AY Yoy 62,) e
(2.3)

In the central coefficient (which is the coefficient in front of ¢,) the max-functions have
disappeared. To explain that, look at the term max(0, (A%, — AY ), ) — max(0, (A% —

ne
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AV Yy ). If AY, — A¥ is positive, the first term gives a positive contribution and the
second term is zero; if AY, — A¥_is negative, the first term is zero, whereas the second
term gives a positive contribution (without the minus sign). So the complete term can
be replaced by (AY, — AY )y,

When examining the (.entral coefficient further, the discrete continnity equations
(Equation (2.6)) for the eastern and western cell are recognised. Since both are zero,
the total central coefficient is zero. When also looking at the coefficients in front of
be, Pu »Pn, and ¢, it can be clearly seen that the resulting matrix with the convective
coefficients is skew symmetric. So the skew-symmetric property of the continuous convec-
tive operator is conserved using this discretisation. This results in favourable numerical
properties, which will be used later in Section 2.3.7.

Diffusive term

The discretisation of the diffusive term of the Navier-Stokes equation

s ?{Vu -ndS (2.9)
av
is not so straightforward. The discretisation can not be performed independent of the
exact location of the solid boundary, because derivatives of the horizontal velocity are
needed at the boundary of the control volumes, which do not need to be zero. In the
discretisation of the convective term only velocities at the boundaries are needed, which
are zero at solid boundaries, giving rise to a discretisation independent of the exact
boundary.
When writing the integrand in Equation (2.9) as ?ﬁ a straightforward discretisation
of the diffusive terms in case of Figure 2.11 would be

% Up — Ug
Vu-n= /rJfS.
.% Z || J

The length of the normal on segment k& can be approximated by

|| = L—* with Ay = [dS.
Ay |
k
where Vj, is a volume corresponding to segment k of the control volume and Ay is the
area of segment k. In [26] the precise choice for Vj is explained. A problem with this
formulation is the division by volume Vj, which can become arbitrarily small in cut cells.
This introduces instabilities in the discretisation. To prevent these instabilities another
discretisation is adopted, in which the geometry is handled in a 'staircase’ way. This
pretty inaccurate way of discretising the diffusive term does not influence the caleulations
in this thesis, since these simulations are convection driven. And on the relatively coarse
grids, without much stretching towards the boundary of the bodies, the boundary layer
cannot be resolved. The diffusive term is rewritten to a volume integral as

ﬁjfvu-nds:ﬁ[v-vudu
PB\' pl'
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Now, the midpoint rule has been used, which is also adopted for the spatial discretisation
of the time derivative. In two dimensions the integrand can be written as the sum of
the second order horizontal and vertical derivatives of the horizontal velocity. Using
Figure 2.12, first the first order derivatives are calculated at the boundaries of the control

— Uy r

I,

T

dys

oy, 0z,

Figure 2.12: Control volume for the discretisation of diffusive terms

volume. Using the first order derivatives, the second order derivative is calculated at the
position of u.. But to prevent division by short distances, the first order derivatives are
not positioned at the boundaries of the control volume, but in the center of the cells, thus
treating the cells as uncut. This results in

Lotte — e e — Uy Ity — e e —

V' = e — (% ~
= {T'Tt'( o, 0Ty OYe O T

with dz, = %(513,3 + dzy) and dy, = %(éyﬂ + dy,). Now, the discretised diffusive term can
be written as

i Mo 1 1 1 1
~oVu-n = =F'dz.0y. Up + —— A — 1y ——— 1
f}f p - b (5£c:615ut l'r'o-'rwu +6yrdyn o Y0y !
av
( 1 + 1 + 1 + 1 )
— (=—— — —— ), | .
dz.bz, bz dzy  dydy,  Oy.dy,

From this expression it is clear that the matrix containing the diffusive coefficients is
symmetric. Furthermore, the diagonal entries (obtained by the coefficient of u.) are
negative, whereas the off-diagonal entries are positive. The sum of the off-diagonal entries
equals the diagonal entry, apart from a minus sign. So the resulting discrete diffusive
operator is a symmetric negative-definite matrix like the underlying difference operator
20, 92].
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Upwind discretisation for convection: artificial viscosity

In the above derivation of the discretisation of the convective term a central discretisation
is used. To prevent wiggles that can occur in a central discretisation an upwind discreti-
sation is adopted. The upwind discretisation can be seen as a central discretisation with
an extra diffusion term that increases the diffusion with an amount of uh/2 with A the
mesh size. In the implementation of the upwind discretisation this interpretation is used,
s0 the diffusion coefficients have been altered by increasing the viscosity coefficient y/p.
For example, when looking at the convective term in the z-direction, the convective co-
efficients in front of the eastern and western cell velocities are given by (using a central
discretisation, see Equation (2.8))

Ce = %(A'fue + ATu. + (AL — AZ)up, )by,
—1(AZu, + Alu, + (AF — AL )up, )0y

Cii

In case of a positive horizontal velocity no contribution from the eastern velocity is present
in the upwind discretisation. So this contribution has to be cancelled by the extra term in
the diffusion coefficient. In general, the diffusion coefficients for the western and eastern
cell velocity with the artificial viscosity term are given by

- 1
d. = EFE(SI[.Oy.«— + ;1 AZue + Afu, + (A7 — A7)us, |0y,
p

dxdx,
1 -
dy = EFSzby—r— + L) AT, + AT, + (A2 — AZ)us, |0y,
p - x0Ty i

where the first part originates from Equation (2.10). Clearly, the second part of the
eastern diffusive coefficient d. cancels the eastern convective coefficient ¢, when the hor-
izontal velocity is positive, since ¢, and d, appear in front of the eastern velocity in the
momentum equation as (*c‘.3 i de_)ue.

The extra contribution in the diffusive terms due to the upwind discretisation is always
positive, resulting in dissipation of energy. In the problems studied in this thesis the
artificial viscosity is much larger than the kinematic viscosity p/p. In the convection and
gravity dominated simulations studied in this chapter, the extra energy dissipation is not
important. However, when studying wave simulations in a large domain for a simulation
time of many periods, the artificial viscosity induces unphysical wave damping as shown
in Section 3.6.1.

Pressure term

The discretisation of the pressure term in xz-direction given by

fpnrds.

av

is done in the same manner as the convective terms: the integrand is evaluated over the
different segments of the control volume. Using the situation in Figure 2.13, where p, is
the pressure in the eastern cell and p,, the pressure in the western cell (the pressure has
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Figure 2.13: Control volume for discretisation of the pressure term

a constant value throughout the cell), the pressure term is written as

fpnrds = Zpk f n,dsS,
k=1

av k
where the summation is over the seven segments of the control volume with 7, the first
component of the normal vector and p, the pressure along segment k. For segments
1, 2, 3. 4, and 7 the pressure is equal to p, and for segments 5 and 6 the pressure is
equal to p,,. Since n, is zero along segments 3, 6, and 7, these segments do not contribute
to the sum. Then, for the other segments

f ngdS = s / cos apdS.

k k
where ay, is the angle between segment k and the vertical (0 < oy < 3) and s; = 1 for
segment 1 and 2 and s, = —1 for segment 4 and 5. The integral in the right-hand side
of this equation is equal to the vertical length of segment k. Then, for the example in
Figure 2.13 the pressure term is discretised as

j{pn.zds = PeAy0y + pe(l — A7)0y — pe(1 — AZ)6y — puAZdy.
av

The contributions of segments 2 and 4 cancel each other, since these segments lie in the
same computational cell. This results in a general formulation that is independent of the
exact location of the solid boundary

}1{ prpdS = (pe — pu) A% dy. (2.10)

av

When examining the coefficients that appear in the pressure matrix in the discrete mo-
mentum equation, it is seen that the same geometrical information is present as in the
discrete divergence matrix. In fact, the coefficient A* of p, also appears in the continuity
equation of the left cell and —A? of p,, in the right cell's continuity equation. This shows
that the analytic property V = —(V-)" is also present in the properties of the matrices
for the discrete divergence and gradient operators.
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External force: gravity

Since gravity is the only external force present in this study, the discretisation of external
forces will only be shown for that case given by

/F:dvf. (2.11)

Vi

When all velocities are equal to zero and gravity is the only external force, the pressure
term should cancel the gravity term since all other terms are equal to zero, and should
result in a hydrostatic pressure field. Therefore, the discretisation of the gravity term has
to be similar to the discretisation of the pressure term. When using Gauss' divergence
theorem for the vector (0,0, —gz) Equation (2.11) can be written as a boundary integral

0 0
/F..rﬂ/‘ = /V- 0 dVy = % 0 -ndS; = % —gz n, dSy.
v 7 —gz ov, \ 92 avy

Evaluating this boundary integral of the hydrostatic pressure potential in the zz-plane
leads to the correct discretisation for the gravity force given by

- f gz n, dS; = —Aidz(gz, — gz,) = —AZdzgiz,

avy

where z, and z, are the coordinates of the northern and southern cell centers respectively.

2.3.6 Temporal discretisation and solution method

After the continuity and Navier-Stokes equations have been discretised in space, they can
be written as

M wy, = —M"uy, (2.12)
auf 1 G
QT}'J = -C{uh.uh)u;. = ;{D'u.h s Gph) -+ F,u,. (2.13)
Here, ), is the vector containing all discrete velocities and p,, contains all discrete pres-
sures. In the continuity equation the discrete divergence operator has been split into a
contribution M° working on the interior velocities w, and a contribution M® working on
boundary velocities u,. Then the property that the discrete divergence equals minus the
transpose of the discrete gradient can be written as

M° = —G"

since the discrete gradient operator only works on pressures inside the fluid.

In the spatially discretised momentum equation, Equation (2.13), which consists of
three equations for every cell (in three dimensions), the matrix Q is a diagonal ma-
trix containing the momentum control volumes. The matrix C' contains the convective
coefficients, which are dependent on the interior and boundary velocities, and is skew
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symmetric. Matrix D contains the diffusive coeflicients and is symmetric and negative
definite. The vector F'j, contains the gravitational force.

For the time discretisation the explicit forward Euler method is adopted. Using a
superscript to indicate the time level this results in

MR = Mo, (2.14)
u;:*l - u;: sl W n l n 1 0\T . .n+1 n 215
Q_-_—tjf_ - C(uh‘ ufl)u’h * p(ﬂDuh + (‘ 1 ) Py, ) =3 Fh' {2 '))

The continuity equation is discretised at the new time level to ensure a divergence free
velocity field at this time level.
To solve this system of equations, the terms in Equation (2.15) are rearranged to

- 1
uptt = A — ot (M) (2.16)
£
where )
@y = ujp — 6t (Cup, up)uj — =Dujl — F7). (2.17)
,()

First, an auxiliary vector field @) is calculated using Equation (2.17). Next, Equation
(2.16) is substituted in Equation (2.14), which results in

M@} — st L M%) = —MPul*t,
h p h b

This can be rewritten to

A0 =1 ¢ pp0yT -H_p 70~ Arh 1
MQU (M) TPt = E(AI ay + M uy ™), (2.18)
where a Poisson equation for the pressure is recognised. From this equation the pressure is
solved using the SOR (Successive Over Relaxation) method where the optimal relaxation
parameter is determined during the iterations [5]. Once the pressure field is known, the
new velocity field is calculated from @} using the pressure gradient.

2.3.7 Stability

In this section, the stability of the adopted method is investigated. Thereto, first the
spatial discretisation is examined by evaluating the evolution of kinetic energy. The
temporal discretisation induces limits on the time step for the convective as well as the
diffusive terms.

Evolution of kinetic energy

For the stability of the spatial discretisation, the evolution of kinetic energy is interesting
to examine, Using the properties of the spatial discretisation matrices derived abave, it
can be shown that in the absence of moving objects and external forces, the energy is
only dissipated due to diffusion. To see that, the kinetic energy is discretised in space as

%J'p\uzldl' = 3{un, pQuy) = E),
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where (-, -) denotes the standard inner product for a finite-dimensional vector space. The
evolution of the discrete kinetic energy is then given by

rlE;,

= 1 (Sup, pQup) + 3(u, 2 pQuy,)
1
E

dt

(P88 ) + L (uy, p%et),

Using the discretised momentum equation as given in Equation (2.13) and omitting the
external force, the last expression can be written as

% = %((—p("uh.uh) + (Dup, wp) + (—Gpy, up)) +
%((uh- —pCup, ) + (wn, Dup) + (wy, —Gpy)
= S((=p(C + CTYun, ) + (D + D" Yeun,un)) = (G, ).
Since the diffusive matrix is a symmetric matrix (D = D7), the convective matrix is skew
symmetric (C' 4+ CT = 0), and G = —M", the last expression can be written as
o

= (Dup, up) + (py, Mus).

dt
In the absence of moving objects (u, = 0), it follows from Equation (2.12) that M Oay, = Q.
So the kinetic energy is only dissipated, since the discrete diffusive matrix D is negative
definite.

In the case that moving objects are present, the kinetic energy is affected by the
pressure, since from Equation (2.12) it follows that (p,, M w,) = (py,, —Mbu,). When
also the gravity force is taken into account, the evolution of the kinetic energy is given
by

dEh

dt
Since the discretisation of the external force due to gravity is performed consistent with
the pressure discretisation, the external force contribution can be written as

= <Duh- u‘h) + (ph- ‘Mﬂuh) + (thruh)

(pF, un) = (—Gpgz.ur) = (M) pgz,un) = (pgz, M°uy).
Thus, in the presence of gravity and moving objects, the energy evolution is given by
dEh
dt

The first term only gives dissipation of energy, since D is a negative definite matrix.
Further change of energy due to pressure is completely controlled by the motion of the
object. So the spatial discretisation will not cause uncontrolled energy increase.

= (Duy, wp) + (py, + pgz. — M ).

Convection

In the case of uncut cells with fixed objects the stability of the equation containing the
time integration term and the convective term is given by the CFL-restriction [16], which
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in one dimension reads dt|u|/h < 1 (h is the size of the uncut cell). When cut cells
are present, for the chosen convective discretisation this criterion is not changed. This
result is not directly straightforward when looking at the equation containing the time
derivative and the convective term

—a,ﬁ = —Q07'C(u, up)u. (2.19)
ot

The matrix 2 is a diagonal matrix containing volumes of the cells, so these entries can
become arbitrarily small for cut cells, hence the elements in Q7! can hecome arbitrarily
large. To examine stability, the eigenvalues of the convective matrix ', generated by
Equation (2.8), have to be determined. These eigenvalues can be estimated as being of
order O(Qu/h). The € in this estimation cancels the contribution of 2! in Q'C, leaving
the stability criterion for cut cells the same as for uncut cells [23], The proof of this result
(described in [19]) uses Gerschgorin circles and is not straightforward. To get a feeling
that the uncut CFL-criterion indeed is enough for stability, consider the cell shown in
Figure 2.14 that is partly blocked by fixed geometry. The CFL-number belonging to the
horizontal velocity CFL, = u.6t/h, has a division by h,, which is a small number. To
see that the order of the CFL-number is in the uneut cell size, estimate the horizontal
velocity u, in terms of the vertical velocities using the continuity equation for this cell:

(".a - '”n}h.r

Bt + Uty — gty = Oi=p Uy = 7
y

This is inserted into the CFL-number resulting in

L& o (Vs — v ) haBt - (Vs — v,)dt

B, w = ~ =
Wik hy hyhg hy

where the division by h, has disappeared. So, in the case of Figure 2.14, the CFL-number
can be approximated by a number that is only dependent on an uncut cell size.

i

g1

e U,

.

Figure 2.14: The stability criterion for a cut cell is the same as for an uncut cell

When moving objects are present, the story becomes somewhat different. A distinc-
tion can be made between the object moving normal to its boundary and tangential to its
boundary (as shown in the left and right of Figure 2.15 respectively). When the object is
moving tangential to its boundary, the eigenvalues of the matrix C'(w, u)) can again be es-
timated by O(Qu/h), which means that stability is guaranteed when the CFL-restriction
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is used. But when the object is moving normal to itself, the eigenvalues of C(u,u;) are
O(huy). Now stability is not guaranteed anymore, with eigenvalues of Q~'C/(u,u;) in
Equation (2.19) of order O(£2 'hwy). They can become arbitrarily large due to the factor
o=,

To cancel the effect of 27!, a formulation based on a weighted average of the fluid
velocity and the boundary velocity is applied in the cells cut by the moving object.
To avoid smearing of the interface in cases where it is not necessary to stabilise the
convective term (namely when the object is moving tangentially to its boundary). the
following discretisation is used

un.H _ A(un _ 5t(Qn+1)—lcﬂun) i (] " A)uL"H. (220)

with weight factor A = Q" Q™! + |AQ|)™!, where AQ = Q"' — Q" is the difference
between cell volumes at two different time steps. The weight factor A has been chosen such
that the stabilising term is only used when the body is moving; note that it equals unity
for fixed objects. Furthermore, maximum stabilisation is established when the object
is moving normal to its boundary, whereas no stabilisation is used when the object is
moving tangential to its boundary (as AQ = 0 then).

Figure 2.15: Left: boundary moving normal to itself: maximum stabilisation is required;
right: boundary moving tangential to itself: no stabilisation is required

Diffusion

Also from the diffusive term, a stability criterion follows with a restriction on the time
step. In the case of uncut cells, this criterion is given by 6t < h?/2v, where v denotes
kinematic viscosity. Since the diffusive term is discretised as if all cells were uncut (’stair-
case’ approach) as explained before, the above criterion is also valid in the cut-cell model.
In most cases studied in this thesis, the diffusive time step limit is much less restrictive
than the limit on the time step following from the CFL-criterion.

2.3.8 Solid wall boundary conditions

At solid walls and inside fixed or moving objects boundary conditions for the velocity are
needed. Therefore, the no-slip boundary condition u = u, is used. Velocities between
two B-cells and between a B- and F-cell are set equal to the velocity of the object. So in
fixed objects and walls u = 0 is adopted, so the BB- and FB-velocities are set equal to
ZEr0.
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2.3.9 Pressure at the free surface

A boundary condition for the pressure is needed in surface cells. The pressure in surface
cells can be calculated from interpolation between the pressure at the free surface and
the pressure in an adjacent fluid cell. The boundary condition that defines the pressure
at the free surface is given by Equation (2.3), which describes the continuity of normal
stresses at the free surface. The term containing the viscosity is neglected, which leaves

P =py— OK, (2:21)

with pg the atmospheric pressure, o the surface tension and k the total curvature of the
free surface. Although surface tension is not the driving force in the simulations studied
in this thesis, it can not always be neglected. To calculate the contribution of the surface
tension in the pressure at the free surface, the total curvature of the free surface has to
be determined in every S-cell.

If the free surface is given by a level-set function s(z, y,t) = 0, the total curvature is
given by £ = V- n, where n = Vs/|Vs| is the normal at the free surface. In this study,
a local height function is introduced to calculate the total curvature. The local height
function is defined based on the orientation of the free surface. If the orientation of the
free surface is more vertical than horizontal, the local height function is defined parallel
with the r-axis, otherwise it is defined parallel to the y-axis (in 2D). The values of the
local height function are calculated using VOF-[ractions of three adjacent computational
cells (see Figure 2.31 for a visual explanation). If for example the orientation of the free
surface is vertical as in Figure 2.16, the local height function is defined by h(y,t) = z. In

Ay +——
by
Sy
U =
||
iy i
i o
"

Figure 2.16: Local height function to calculate the total curvature &

terms of the level set function this corresponds to s(x,y,t) = x — h(y,t). In this case the
curvature of the free surface is given by

. i dh /oy
Ay \ 1+ (Oh]oy)? )
The derivative of the local height function needed at positions Y1 and Yj-) are discre-
tised using standard finite differences. Then the discrete curvature in the centre S-cell of
Figure 2.16 is given by

- 1 h, k.,
Oye \W/1+h2Z J1+h2)°
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with
Yo h,j+| o h} ].‘.‘J = hj_]

. R R ' I
w = %(éyn + 8ye) and = %(5.9: + 6'.9‘3).

In three dimensions the procedure for the calculation of the curvature is a bit more

complicated, but follows the same approach. Details can be found in [26].

At the intersection of the free surface and the solid body a boundary condition is
needed for computing the total curvature. This is given by a static contact angle, which
is the angle between the normal of the free surface and the normal of the solid body. The
discretisation of the contact angle will not be explained in this thesis, but is described in
[26].

Once the total curvature has been caleulated, the pressure at the free surface py, is
determined using Equation (2.21). The pressure in surface cells pg is now calculated
from the pressure at the free surface and the pressure in an adjacent fluid cell pp [44].
The fluid cell that is used for the interpolation is chosen based on the orientation of the
free surface. If for example the orientation of the free surface is mainly horizontal (as in
Figure 2.17) with the fluid below the free surface, the fluid cell below the surface cell is
used for the interpolation. The pressure in the centre of the surface cell is calculated by
linear interpolation as

ps = npgs + (1 = n)pr
using the notation in Figure 2.17 and n = h/d. If no fluid cell is found as neighbour of
the surface cell, the pressure in the surface cell is set equal to the atmospheric pressure,
corrected with a hydrostatic pressure contribution based on the local height of the fluid.

Ps

Figure 2.17: Pressure interpolation in surface cells

2.3.10 Velocities at the free surface: SE-velocities

Velocities in the neighbourhood of the free surface can be grouped in different classes,
based on the velocity labels (see Figure 2.18). Recalling that the velocities are defined at
the cell faces. there are 5 different labels of the velocities in the neighbourhood of the free
surface (without the presence of solid boundaries): FF, FS, S5, SE and EE-velocities.
The first class of velocities that all have the same numerical treatment consists of the
velocities between two F-cells, between two S-cells and between an S- and F-cell. These
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velocities are determined by solving the momentum equation and are called momentum
velocities. The second class consists of the velocities between an S and an E-cell. The
choice for these SE-velocities has a very large impact on the robustness and accuracy of
the method. The last class consists of velocities between two E-cells that are sometimes
needed to solve the momentum equation. These are determined using the tangential
free surface condition. In this section, the SE and EE-velocity boundary conditions are
discussed.

E E | E S FF, F'S, SS: momentum equation
S SezlESA SR SE: extrapolation
F F F F EE: tangential free surface condition

Figure 2.18: Different classes of velocities near the free surface

For the calculation of momentum velocities, velocities at the faces between surface and
empty cells are needed. In the original Marker and Cell method [39], mass conservation
is demanded in surface cells to determine the SE-velocity or velocities in the surface
cell. This method has been widely used since. In [14] a thorough description of the free
surface boundary conditions is given. In that paper also conservation of mass in surface
cells is demanded, where obstacle cells are taken into account. In [13], the SUMMAC
method is described, based on the MAC-method. It turned out that for simulation of
waves the conservation-of-mass method to determine SE-velocities is not very accurate.
An extrapolation of the velocity field has been used instead.

In the method deseribed in this thesis, the advantages and disadvantages of both mass
conservation and extrapolation have been combined in a new method. In this section,
first the mass conservation method and the extrapolation method are described, after
which the choice for the adopted new method is motivated. Some results are shown to
illustrate the behaviour of the different methods.

Method 1: mass conservation in S-cells

The first method to determine velocities on faces between surface and empty cells is
to demand mass conservation in a surface cell. This means that the total flux through
the boundaries of a surface cell equals zero. Thereto, apertures have to be taken into
account, as in the discretised continuity equation, Equation (2.6). In two dimensions,
three different configurations of empty cells around a surface cell can be distinguished, as
shown in Figure 2.19. In the left configuration, only one SE-velocity is present around the
central S-cell. Conservation of mass can be applied immediately, where the SE-velocity
follows from the other three velocities, taking into account the geometry apertures. In
the second configuration, two SE-velocities are present that are not positioned opposite
each other. In this case the net-flux through both SS-faces is divided over the two SE-
faces. To divide this flux over the two SE-faces, first the SE-velocities are set equal to
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Figure 2.19: Three configurations of SE-velocities at the faces of a surface cell

the opposite SS-velocity, then the rest-flux is equally divided over the two SE-velocities.
This way, the characteristics of the main direction of the flow are taken into account (in
the first step), as well as the mass conservation in the S-cell (in the second step). The
central S-cell in the right configuration also has two E-cell neighbours, but positioned
opposite each other in this case. Now, the SE-velocities are determined by dividing the
net flux through the SS-faces equally over both SE-faces.

There are two disadvantages of this method. First, instabilities can occur in the case
of small cut cells which can even result in divergence of the computation. For example,
in the configuration shown in Figure 2.20, the SE-velocity of the lower central S-cell is
getting very large when applying conservation of mass in this cell. The SE-velocity is
calculated using the flux over the other faces as

1 . i
Ugp = ;—r(‘;l"gg'tt.'gg = -A%SHFS i 0) (222)
“L8E

Because of division through the small aperture A%, the resulting SE-velocity gets very
large. If this configuration stays the same for several time steps, the velocity is enlarged
every time step with the factor 1/A%g. Due to the CFL-criterion for stability this increase
in velocity results in a decrease of the time step, until infinitely small time steps. At the
end, this causes the simulation to break down. Another disadvantage of this method is

Figure 2.20: Configuration with small SE-face resulting in large SE-velocity; the dark-
grey area is solid wall, the light-grey area fluid

the observed inaccuracy in wave simulations. This will be explained in the next chapter
in Section 3.4
Method 2: extrapolation from interior velocity field

To prevent the instabilities and inaccuracy in the first method described above, the
principle of demanding mass conservation in surface cells is dropped. This does not violate
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mass conservation in the whole domain because in surface cells, which are only partly
filled with fluid, no mass conservation is present. Instead it is proposed to determine
the SE-velocities nsing extrapolation from the interior velocity field. Therefore, for every
surface cell the direction in which the main body of the fluid is positioned is determined.
Then, the SE-velocities of the surface cell are extrapolated from this direction. The
direction of the main body of the fluid is found by examining the VOF-values of a 3 x 3
block of cells (in three dimensions a 3 x 3 x 3 block) as explained in Section 2.4.3. In
Figure 2.21, an example is shown where the main direction of the fiuid is in the negative
z-direction (as is the case in most simulations with gravity). Then the horizontal SE-
velocity ugg is found by extrapolation using (at least) upg, and the vertical SE-velocities
vsg, and vsp, are extrapolated using (at least) vrg, and vpg, respectively.

E E E
4 ‘1)551 ’ v y
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Figure 2.21: Determination of SE-velocities using extrapolation

The extrapolation can be done with different degrees of accuracy. In the current
method a constant or linear extrapolation is used. In case of a wave that is propagating
without disturbances linear extrapolation gives the best estimate for SE-velocities (as will
be shown in Section 3.4). A disadvantage of linear extrapolation is that it can lead to
instabilities when the velocity field is not smooth. In Figure 2.22 part of a velocity field
is shown, where the SF and FF-velocities have opposite signs. When the SE-velocity is
now caleulated using linear extrapolation

Usp = 2Ups — Upp

the velocity becomes unphysically large with an amplification factor of approximately
three. If this configuration stays the same for several consecutive time steps, the velocity
will "blow up’, leading to very small time steps due to the CFL-criterion for stability. In
the end, this can cause the simulation to break down. To avoid this, constant extrapola-
tion, where the SE-velocity is just copied from its lower neighbour ugg = upg. should be
chosen. Another disadvantage of the extrapolation method is the occurrence of numerical
spikes in the pressure time series, as explained in the next paragraph.

Influence of SE-velocities on numerical spikes in the pressure

When looking at the pressure or force time series resulting from computations, often
pressure spikes can be observed. An example is shown in the left of Figure 2.25, where
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Figure 2.22: Very large SE-velocity due to linear extrapolation using upg and wpp

the force signal of water smashing against a structure is plotted. In this simulation green
water flow on the deck of a vessel is modelled by releasing a dam of water around the
bow of the vessel. The vessel is fixed, and the water flows over the deck due to gravity.
In Figure 2.23 a snapshot is shown of this simulation, three seconds after the water dam
has been released. On the deck of the vessel a cylinder is placed, at which forces are
calculated during the simulation. This force signal is shown in Figure 2.25.

Figure 2.23: Snapshot of a simulation of green water flow on the deck of a fixed vessel

In this fixed-object case, the pressure spikes are originating from the free surface
boundary conditions, especially the SE-velocities, The spikes occur because of changing
cell labels: a surface cell changes to a fluid cell or an empty cell changes to a fluid cell. In
Figure 2.24 an example of a configuration is shown, where a surface cell changes to a fuid
cell, because the fluid has flowed to the right. The spike occurs when the velocity field is
not divergence free in the S-cell, which means that the SE-velocities have not been chosen
such that conservation of mass is applied in the S-cell. When such an S-cell becomes an
F-cell, the pressure has to respond actively to create a divergence free velocity field in the
F-cell. This response of the pressure is visible in a (numerical) pressure spike in this F-
cell. As pressure pulses are travelling with infinite speed because of the incompressibility
of the fluid, the pressure spike is noticed throughout the computational domain. So, these
spikes will also be visible in the force, which is an integral of the pressure over the object
surface.
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Figure 2.24: Label of the lower S-cell changes to an F-cell

The problem of pressure spikes due to changing labels is not present when using
method 1 (conservation of mass) for SE-velocities. But the price to be paid when using
this method, instabilities resulting in divergence of the simulations and inaccuracies in
wave simulations, is very high. Nevertheless, the only way to suppress the pressure spikes
is to demand conservation of mass in S-cells. When using method 2 (extrapolation) for
SE-velocities, no conservation of mass is applied in S-cells, resulting in pressure spikes.
This method has been used in the left of Figure 2.25, where the spikes in the pressure
are clearly visible.
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Figure 2.25: Horizontal force on the cylinder on the deck of a fixed vessel without (left)
and with (right) changing former SE-velocities such that mass conservation is applied in
the former S-cell

To avoid the pressure spikes without demanding conservation of mass in every S-cell,
the following method is used. When the free surface velocities are calculated, all SE-
velocities are determined using extrapolation. Then, at the start of the next time step,
situations are identified where a surface cell has changed to a fluid cell at the end of the
previous time step. Then, the velocities that were SE-velocity in the previous time step
(they have changed to FS-velocities at the end of the time step) are changed, such that
conservation of mass is applied in the former S-cell. Sometimes, also an E-cell changes
to an F-cell in one time step. This can happen in the neighbourhood of the object, since
the CFL-criterion is based on the uncut mesh size, implying that fluid can maximally
travel one (uncut) cell in one time step. In those cases, the former E-cell will be made
divergence free. Due to the change of the former SE-velocities at the start of the time
step, the pressure sees an F-cell that already had conservation of mass in the previous
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time step. This results in a much smoother pressure time series. This method has been
adopted in the simulation shown in the right of Figure 2.25: SE-velocities are calculated
using extrapolation, but when an S- or E-cell changes to an F-cell, mass conservation is
restored in that former S- or E-cell.

Unfortunately, conservation of mass can not be applied afterwards in all configura-
tions. When, for example, an empty cell is completely surrounded by S- and F-cells and
fluid enters the empty cell (as in Figure 2.26), the E-cell cannot be made divergence free
afterwards. Since making the surrounding S-cells divergence free fixes all the velocities at
the faces of the E-cell. This is for example the case in a simulation of a dambreak, from
which pressure time series are shown in Figure 2.58. The large spikes at about 1.3 seconds
are due to an E-cell that changes to an F-cell and was already surrounded completely by
S- and F-cells.
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Figure 2.26: E-cell changes to an F-cell; mass conservation can not be applied to the
E-cell. resulting in a pressure spike

Using the idea of mass conservation to calculate SE-velocities when an S-cell changes
to an F-cell, still a very large SE-velocity can be introduced due to small edge apertures
(as in Figure 2.20). Fortunately, this very large velocity will only be present in the time
step when the repair has been established, but it can become so large that it still initiates
an instability. To prevent the occurrence of these very large velocities a limiter has been
introduced. There are two options for such a limiter: limit the size of the velocity or
limit the size of the aperture such that the apertures will not become too small. Both
options are a bit arbitrary, some threshold for the limiter should be chosen. To be on the
safe side, thus to prevent instabilities that could lead to divergence of the method which
is much worse than some pressure spikes, both limiters are used in the determination of
SE-velocities. The limiter for the apertures is global, all apertures smaller than a certain
threshold. in the order of 0.01, are closed. The error introduced by this limiter is very
small and does not increase in time, since the geometry is moved every time step from
its original position at time ¢ = 0.

Adopted method for SE-velocities

To recapitulate the above discussion about SE-velocities, in this section a summary will
be given of the chosen method. In principle method 2 is used, which means that SE-
velocities are extrapolated from the interior velocity field. Therefore, first the direction of
the main body of the fluid is determined, after which the velocities are extrapolated from
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that direction. At the start of a new time step it is checked if there are F-cells that were
E- or S-cell in the previous time step. In that case, the former SE-velocities, as caleulated
at the end of the previons time step, are changed such that mass conservation holds in
the former S- or E-cell. This procedure has been added to prevent pressure spikes. In
Section 3.4 some more remarks are made about using linear or constant extrapolation
and the influence of this choice on the accuracy of wave simulations.

Finally, for robustness, one more configuration of S- and E-cells should be noted that
could lead to instabilities. This concerns a droplet that sticks to a sloping wall as in Figure
2.27. Using the above procedure for the SE-velocity, the SE-velocity is simply copied from
the FS-velocity (constant extrapolation). In terms of mass fluxes, the mass flux through
the SE-boundary is much larger than the mass flux through the FS-boundary. This leads
to a larger FS-velocity in the next time step to compensate for the large mass flux that
enters the cell through the SE-boundary. But this larger FS-velocity is copied again
to the SE-velocity the next time step. If this configuration stays the same for several
consecutive time steps, the FS-velocity will "blow up’, which finally results in divergence
of the method. This problem only occurs when the aperture belonging to the velocity

Figure 2.27: Configuration with small FS-face, adding energy when the aperture of the
FS-face is not accounted for in the calculation of the SE-velocity

used for the extrapolation is smaller that the aperture of the SE-velocity. To prevent this
problem. the aperture of the FS-cell should be taken into account. So, calculating the
SE-velocity cannot simply be done by copying the FS-velocity, but by using

At

o
A%y

Usg = ups.

Then, the SE-velocity will not give rise to an increase of the FS-velocity. This has been
incorporated in the method by accounting for apertures if the aperture belonging to the
velocity used for extrapolation is smaller than the aperture of the SE-velocity. Note that
accounting for apertures in the case that the factor A%¢/A%. is larger than one, can
cause instabilities as explained in the description of method 1 (Equation (2.22)). Using
the above described method ensures a very robust treatment of the free surface boundary
condition for SE-velocities.

2.3.11 Velocities at the free surface: EE-velocities

Between two surface cells a momentum equation is solved, which means that EE-velocities
are needed as boundary condition (see Figure 2.28). The EE-velocities are determined
using the tangential free surface condition given by Equation (2.4). Instead of discretising
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Figure 2.28: Calculation of EE-velocity boundary conditions

Ou, /Ot and Au,/On in arbitrary directions, two Cartesian directions are chosen depending
on the orientation of the EE-velocity. In the example of Figure 2.28, where the SS- and
EE-velocity are in z-direction and the SE-velocities in y-direction, the normal direction
is chosen to be the y-direction and the tangential direction is the z-direction. This leads

to the following equation
, Au " vy 0
“\oy "oz)

which is discretised using a central discretisation, giving for the required upp
oy
U = Uss — 2o — a).
dx
In three dimensions, dependent on the direction of the EE-velocity and the SE-velocities,
one of the following equations is chosen for the calculation of the EE-velocity:
du v v Ow dw Odu

,—+,——{]. ‘,—+—=0, — e =i

dy  Or dz  dy or 0z

In the case that an EE-velocity is surrounded by more than one SS-velocity, the EE-
velocity is calculated as an average using the SS-velocities. Exact details about which

procedure is used in the different configurations can be found in [26].

2.4 Free surface displacement

Once the pressure and velocity field have been calculated, the free surface will be displaced
using a method based on the Volume-of-Fluid (VOF) function. The VOF function is a
discrete function with values between zero and one in each cell, indicating the fraction of
the cell that is filled with fluid. When the VOF function F* = 1, the cell is completely
filled with fluid. whereas when F* = 0, the cell is empty. When taking into account the
geometry apertures of a cell, the following holds: 0 < F* < < L

Every time step the free surface is displaced using the advection Equation (1.1). In
this thesis, two different methods are discussed: the original Hirt-Nichols method [44] and
the method of Youngs [98]. Both methods are described, together with an enhancement:
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| Ref. Reconstruction | Advection 2/3D |
Biausser [4] PLIC segment-Lagrangian VOF 3D
Cerne [12] PLIC (LVIRA) direction split 2D
Guythier [38] PLIC direction split 3D
Harvie [40 PLIC stream scheme 2D
Harvie [41 PLIC defined donating region (DDR) 2D
Hirt [44] SLIC stair stepped | multidimensional (min/max limiters) | 2D
Kothe [55] SLIC stair stepped | Hirt-Nichols VOF 2D
Kothe [56] PLIC dir. split and multidimensional 3D
Muzaferija [67] | no reconstruction | high resolution interface capturing 2/3D
(HRIC)
Noh [69] SLIC direction split 2D
Pilliod [75] PLIC (ELVIRA) dir. split and multidimensional 2D
Rider (78] PLIC dir. split and multidimensional 2D
Rudman |79 no reconstruction | FCT-VOF (flux corrected transport) | 2D
Scardovelli [81] | PLIC direction split EI-LE 2D
(Eulerian implicit-Lagrangian explicit)
Tank [88] PLIC direction split 2/3D
Youngs [98] PLIC direction split 2D

Table 2.1: Users of different VOF methods in literature

the introduction of a local height function. Results of some standard tests are shown:
advection of a square and circle, rotation of a slotted disk, three-dimensional rotation of
a notched brick and the deformation of a circle in a single vortex velocity field. Finally,
the methods have been tested on a real case: a breaking dam in two dimensions. But
first, an overview of the various VOF methods found in the literature is given.

2.4.1 Overview of VOF methods

Since the first introduction of VOF methods in the seventies and eighties of the last
century, they have become very popular, In this overview a selection of the literature
is made, which gives an overview of recent developments in VOF methods. The VOF
methods are often classed by two features: the way the interface is reconstructed and the
method for advecting the interface. Table 2.1 presents the reconstruction and advection
features of some published volume tracking methods. A column has been added with
information about the spatial dimension in which the methods are employed.

For the interface reconstruction two main methods are in use. Firstly, the simple line
interface calculation (SLIC) by Noh and Woodward [69], where the interface is said to
be parallel with one of the coordinate axes (see the left of Figure 2.29). Hirt and Nichols
[44] also use a SLIC kind of reconstruction, which is not performed explicitly, but in this
method within a cell a stair stepped interface form can be created. The second method
was first used by Youngs [98], where a piecewise linear interface calculation (PLIC) is
done (see the right of Figure 2.29). The piecewise linear reconstruction is much more
accurate than piecewise constant, which is why it is used in most of the recent VOF
publications (see Table 2.1). The disadvantage of the PLIC method is that it is more
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Figure 2.29: Reconstruction of a circular arc using SLIC (left) and PLIC (right)

complicated than SLIC, especially in three dimensions it is not easy to find a method for
a piecewise planar reconstruction of the interface that is accurate and efficient. In the
PLIC method the interface in a cell is represented by a plane (in two dimensions a line)
given by

M T + Nyy +n.z2=¢

To find the linear approximation of the interface in a cell, two steps are taken: first, the
normal to the interface (ng,m,,n.) is calculated using VOF data in surrounding cells;
second, the plane constant ¢ is determined, using the calculated normal and the VOF-
value in a cell. The calculation of the normal has a large influence on the accuracy of the
method. Several methods are in use, from which two are shortly described here.

¢ Youngs [98] calculates the normal in the four vertices of the cell (in 2D) using finite
differences of the VOF-values (n = VF/|VF|). Then the normal in the cell is taken
as the mean of the normals in the four vertices. Also used by e.g. [4, 38, 40, 41, 56].

o Puckett [76] uses a least squares error minimisation technique (LVIRA). In a 3 x 3
black of cells a linear approximation of the interface is found with slope m by min-
imising the error between the VOF-values calculated using the linear approximation
and the actual VOF-values in the 3 x 3 block of cells. The error is minimised by
rotating the line under the constraint that the line exactly reproduces the volume
fraction in the central S-cell. Pilliod [75] uses a same approach, but chooses the
slope with minimal error from six candidate slopes (ELVIRA). The six candidates
slopes are calculated using the backward, central and forward differences of the
VOF-values in z- and y-direction. The error minimisation methods are also used
by e.g. [2, 12, 40, 41].

In his paper Pilliod [75] determines the order of convergence of the different reconstruction
methods. He concludes that only LVIRA and ELVIRA are truly second order methods
(a line is reconstructed exactly), whereas Youngs' method and Hirt-Nichols VOF are first
order,

After the interface has been reconstructed, it is advected. The advection can be
done direction split or multidimensional. In the direction split approach the interface is
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reconstructed after which it is advected in the first coordinate direction. Then, a new
reconstruction is made and the advection in the second coordinate direction is done based
on the new reconstruction (e.g. [12, 38, 69, 98]). For symmetry, the order of the directions
should be alternated. In multidimensional methods, there is only one reconstruction after
which the advection is done in all directions simultaneously (e.g. [44, 78, 79]). In Table
2.1 it is indicated for some publications whether a direction split or a multidimensional
method is used. Rudman [79] remarks that direction split gives more accurate results.
However, Rider [78] states that the results are similar and argues that multidimensional
advection could be a better choice for efficiency and symmetry considerations, In three
dimensional computations direction split is mostly used, because it is very difficult to
construct a multidimensional method for a proper flux calculation in three dimensions.

For the calculation of fluxes, many different methods are in use. Some are Lagrangian
methods in the sense that markers are placed on the reconstructed interface (as in [4]).
Most methods use a flux calculation, where the amount of fluid that should be fluxed
is calculated geometrically by defining a region for every cell boundary from which the
present fluid will be fluxed through the boundary. In many of the methods fluid can
be fluxed twice or not fluxed at all, in which cases redistribution algorithms are used
to conserve mass e.g. [40, 78]. In some two-dimensional methods, mass is rigorously
conserved and no redistribution is necessary, e.g. [41, 60], but these methods can not be
extended to three dimensions in a straightforward manner.

2.4.2 Hirt-Nichols VOF

In the original VOF method introduced by Hirt and Nichols [44] no explicit reconstruction
of the interface is performed. To compute the VOF function at the new time level, fluxes
are calculated over every cell face using a donor-acceptor method. Generally, the direction
of the velocity defines whether a cell becomes a donor or acceptor cell. The flux through
a cell face is calculated as the velocity times the area of the cell face A and the time step

0F* = Fu - nAdt. (2.23)

In the case of Figure 2.30, the flux through the cell face belonging to u, becomes 6F* =
uc0tAgdy. After all fluxes have been calculated (in two dimensions §F?, 62, 6F¢ and
dF;) the VOF function is updated from time level n to n + 1 using the explicit time
integration
OF; +8F) — 0FS — 0F?

dxdy '

Away from the free surface this leads to a net flux of zero. In the neighbourhood of
the free surface the calculation of the fluxes is somewhat more complicated. If the above
procedure is used for fluxes at the free surface the newly calculated F* may become larger
than F* or smaller than 0. This occurs becanse the cells near the free surface are not
completely filled with fluid, such that the flux may exceed the amount of fluid present
in the donor cell. Hence, in the original VOF method the flux near the free surface is
computed as

(B = (o) +

F.-c
F;:f |AZu.dt| + CF, Fpdzp}, (2.24)
AD

A

6F = min{
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Figure 2,30: Displacement of the free surface using the donor-acceptor method

where
Fip = Fip .1 b _ s

CF= mmc{Tm—Mr-u.,ﬁﬂ — (Fp — Fp)dzp,0}. (2.25)
In these equations, F and F§ are the values of the VOF-function in the donor and accep-
tor cell respectively. The subscript AD stands for the donor or acceptor cell, depending
on the orientation of the free surface. If the free surface is more or less advected normal
to itself, or if either the acceptor cell or the cell upstream of the donor cell is empty,
the acceptor cell is used, otherwise the donor cell is used. The min-operator in Equation
(2.24) is present to avoid fluxing of more fluid to the acceptor cell than the donor cell
contains. The max-operator in Equation (2.25) accounts for an additional flux CF' if the
amount of void in the donor cell exceeds the amount available. Despite these min- and
max-limiters. the VOPF-value can still exceed its ranges. In the original VOF-method, F*
is rounded off: when F* exceeds F" after fluxing the fluid, it is reset to F*, when F* is
smaller than 0, it is reset to 0.

2.4.3 Local height function

The most well-known drawback of the VOF-method is the appearance of flotsam and
jetsam, which are small droplets of fluid disconnecting from the free surface [40, 78]. In
the left of Figure 2.32, a snapshot is shown of the free surface of a breaking dam flow at
the end of the calculation (the water has gone through the domain back and forth). There
are many small droplets, close to the free surface, which are due to the reconstruction
and displacement of the free surface. Another drawback of the method is that mass is
not conserved in the domain. Due to rounding off the VOF-values at the end of the
displacement algorithm, water can be lost or gained. In the example of the dambreak
about 7% of the water was lost. To prevent these problems of the original VOF-method,
the displacement of the fluid in the neighbourhood of the free surface has been adapted.
A local height function, which was already introduced for the calculation of the curvature
in Section 2.3.9, is used to displace the fluid in surface cells. First, the direction of the
local height function (horizontal or vertical) is determined using a 3 x 3 block of cells
(in three dimensions a 3 x 3 x 3 block). Looking at the fluid distribution in the left
of Figure 2.31, the local height function of the central S-cell is found by comparing the
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difference in VOF-values between the eastern and western cell with the difference between
the northern and southern cell. In this case the vertical direction is chosen for the local
height function, because the difference in vertical direction is larger (namely 0.9 compared
to 0.7 in horizontal direction). Now, the local height function is defined by adding the

0.0 0.0 0.0
=17
0.0 0.2 0.7
fig = 1.1
Ty = 0.6 |
0.6 0.9 1.0 | I |

Figure 2.31: Definition of local height function for central S-cell

VOF-values in a column of three cells, leading to h. = 1.1 for the central S-cell (see
Figure 2.31).

After calculating the fluxes across the cell boundaries of all three cells (the dashed-line
region in Figure 2.31) as in classical VOF, not the individual VOF values of the three
column cells are updated, but the height function is updated. The individual VOF values
of the three cells are then calculated from the height of the fluid in the column.

When combining the original Hirt-Nichols VOF method with the local height function,
the method is strictly mass conserving and almost no flotsam and jetsam appear. This
combined method has been used in the dambreak simulation resulting in the snapshot
in the right of Figure 2.32. The number of droplets is much smaller than in the original
VOF-method. In Figure 2.33, the change of the total water volume during the dambreak
simulations is shown. The loss of water using standard VOF is considerable, about 7 %
after 6 seconds. In the adapted VOF method, the loss of water is only 0.02 %, so mass
is almost perfectly conserved. Both methods will also be compared with each other in
other tests, later in this section.

2.4.4 Youngs VOF

Another way to improve the accuracy of the VOF method, especially to get rid of the
flotsam and jetsam, is a piecewise linear reconstruction of the interface. In the PLIC
method in every cell the interface is represented by a plane, where the planes do not
necessarily connect at a cell boundary between two cells. The plane is represented by

N + NylY +Ny2 = C.

Basically, Youngs’ method [98] is nsed for the reconstruction and advection of the in-
terface, with some adjustments to simplify the calculations. First, the reconstruction is
explained by describing the calculation of the normal and the plane constant. Then the
advection is described. The adopted procedure has been explained in great detail in [26].
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Figure 2.32: Snapshots at the end of dambreak flow simulations with different algorithms
for the displacement of the free surface: original VOF (left) and VOF combined with a
local height function (right)
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Figure 2.33: Change in water volume during a dambreak simulation using original VOF
and VOF combined with a local height function

Calculation of the interface normal

Analytically, the unit normal is given by n = VF*/|VF*|. The normal is calculated using
finite differences after the idea of Rider and Kothe [78]. The equation for the (not yet
normalised) normal 7o = VF* is discretised with respect to all neighbours, which results
in two dimensions in 8 equations that can be written as

T — Ty 0 Fr— K
LTe—Te Yn — Ye Frfe . F‘:’

0 Yn — Ve Rf . Fto
Tw — Lo Yn— Ye Ty e, — P
Tw—T, 0 ( iy ) - fﬁ ~F | 22
T — Lo Ys — Yo B2, =

0 Ys — Ye F;_ch

Te—Te Ys — Yo F:e = F:
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Figure 2.34: Explanation of the notation used in the computation of the interface normal

where the notation is explained in Figure 2.34 and (#,, 7,) is the non-normalised normal.
In this system of equations, the first equation simply originates from a discretisation
with respect to the eastern neighbour: f, = (F. — F.)/(z, — z.). The second equation
originates from a discretisation with respect to the north-eastern neighbour. Therefore,
four equations are formed:

(T = @) By = F2=F°
(Te — z) iz = Fne—F,
(e — we) '.ty = F: = F;
(Yn — ¥e) y, = F) —F?

These four equations are summed and divided by 2, which results in the second equation
in the system (2.26). The other equations are found in a similar way. This system of
equations is written in matrix form as An = b. The left and right hand side of this
equation are multiplied by A" giving a 2 x 2 (in three dimensions a 3 x 3) system of
equations for 7. From this system 7 is solved using Gaussian elimination, after which 7
is normalised to find n.

Calculation of the plane constant

After the normal is determined, the plane constant ¢ is calculated using the constraint
that the fractional volume of the cell for which n,z + n,y + nz, > ¢, equals the VOF
value in that cell. The correct value for ¢ is found using the bisection method. The
upper and lower bounds of the first bisection iteration are found by calculating the VOF
values belonging to lines through the four vertices of the cell parallel to the interface (for
an example, see Figure 2.35). The calculated VOF values are compared with the actual
VOF value, after which an upper and lower bound are chosen. Then, in every iteration,
the bisection domain is halved such that the actual VOF value is still contained in the
bisection domain. Therefore, in every iteration, the VOF value belonging to the upper or
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lower bound value ¢ has to be determined. The calculation of this VOF value is explained
in the next paragraph. It is recommended to approximate the actual VOF value up to
machine precision when determining the plane constant. Otherwise, when displacing the
fluid using the calculated plane constant, small holes can occur in the fluid, causing loss
of fluid.

n ¢
Ngp® + Nyl = Cra 1

Ne& + Tyl = Cow
1l L

111 Wil I Ny Y = Cse

Na® + Tyl = Cne /

Ys =

b — T
B Te

Figure 2.35: Determining an upper and lower bound in the bisection method used to find
the plane constant ¢

Calculation of the VOF value for given normal and plane constant

In the bisection method used to find the plane constant ¢, the VOF value for a given
normal and plane constant is needed. In [26, 56] a very elegant way of determining the
VOF value in a cell, given the linear reconstruction of the interface, is described. The
VOF value is determined by calculating the volume of the fluid present in that cell. In
two dimensions the fluid volume in a cell (see Figure 2.36, where the shaded area is fluid)
can be written as

Nyl + Ny Y = ¢

Figure 2.36: The VOF value of a cell with given interface reconstruction can be computed
using a boundary integral over I'y, 'y, I's and Ty
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where the term cn can be subtracted because it is a constant. Using the divergence
theorem, this integral can be written as a boundary integral

1 T — cn. )
V=c f( ol ) - 7dS,
2 T —cny

av

where 7 is the outward pointing normal at V. The boundary OV consists of four parts,
I'y, T'y, I'y and 'y, so the boundary integral can be written as

Vo= _J w (H_; / dlj B Us (”q / l.? + /dJ il ez /(I”:I';T' i ”yy o C)dr,q.

The integral over the last boundary I'; vanishes, because on the interface n,a +n,y —
¢ = (. The remaining integrals are rewritten as integrals over the cell faces
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The last integral, which is zero in the case of Figure 2.36, is added to obtain a formula
that is valid in all mixed cells. The integrals in Equation (2.27) are easily computed.

In three dimensions the same procedure is followed, resulting in a boundary integral
over the six cell faces. Each of these six integrals can be calculated using the two-
dimensional method described above, resulting in six equations that are similar to Equa-
tion (2.27). The method described in this section is very elegant, because a case-by-case
study is not needed (as used in [98]). The method can be applied in every mixed cell.

Advection of the fluid interface

After the interface is reconstructed using the method described above, the interface is
advected. Therefore, fluxes must be calculated over the cell faces. In three dimensions,
it is very difficult to develop a multidimensional advection method. Most authors use a
direction split method. The problem with a multidimensional method is that in a naive
approach some fluid can be fluxed twice [78]. This is explained in Figure 2.37 where four
grid cells are shown with a reconstructed interface (dotted line). The fluid contained
in the medinm-grey rectangles is fluxed, resulting in overlapping areas (the dark-grey
regions). The fluid in these areas is fluxed twice giving problems with mass conservation.

In a direction split method also first a reconstruction of the interface is made. Then the
fluid in the flux areas belonging to the horizontal velocity is advected. Then the interface
is reconstructed again, after which the fluid is fluxed in vertical direction. And the same
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J+1

Figure 2.37: Problem when using a multidimensional advection scheme together with the
flux caleulation: the fluid in the dark shaded areas (if present) will be fluxed twice

procedure is repeated in the third direction. The fluxes are calculated in a straightforward
manner. For the z-direction this is shown in Figure 2.38. The amount that is fluxed over
the cell face is determined by the volume of the fluid inside the rectangle defined by u.6t
times 6y (in two dimensions). This amount is calculated using the procedure explained
in the previous paragraph.

et NeT + Myl = C
-

= U

donor cell acceptor cell

{5,1-‘]} 5.’?',1

Figure 2.38: Computation of the flux for advection in z-direction: the light grey area is
the amount of fluid to be Auxed over the cell face belonging to u,.

After the fluxes in 2-direction are calculated (for cell i, j, k the fluxes dF; and 0F}),
the VOF function F* is updated. The direction split method that is used is taken from
Youngs [98]. First the complete cell is moved in a Lagrangian manner. The volume of
the cell changes from V° to V¥ in the following way

% dx oy 0z,
VE = VO — 4§V, 48V, — 8Vj_y + 6V + 8Viy + 8V

Here, 6V,_y, ... ,0V; are the volume fluxes of the cell, which are calculated as the area of
each cell face of which the fluid will be fluxed (so 6V; is the area of the region within the
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dashed line in Figure 2.38):

Vi = ATy jpttiajk 8t 8y 8z, 8V, = AZ w6t 8y oz,
(5‘/_;,‘_1_ = A?j—lkv”—'lk ot dx 62. (“/_—} = A;t{fk‘llijk ot oz (52‘
§Vk_1 = A-:jk—lwijk—'l ot oz 6y (5‘/;‘- = Azﬂ.wﬁk ot o O.‘U

The VOF function is unaltered during this step. In the advection of the VOF function
the moved volume V' is re-mapped to its original volume V° as described by the next
Equations (2.28), (2.30) and (2.32). This is needed because the net flux in one direction,
which is considered in a direction split method, does not equal zero. When taking into
account the change in volume, the net flux will be zero and no problems with mass
conservation occur. For the advection in z-direction the cell volume and VOF function
are changed according to

Ve o= VE4 Vi -8V, (2.28)
Fee VLI(Fa.n.VL +6F, — OFF). (2.29)

Here, 0F; ; and 0F} are the fluid volumes to be fluxed calculated earlier (for example
0F} is the light grey area in Figure 2.38) and F*" is the VOF value at the beginning
of the advection procedure. After the new VOF function is calculated based on the
horizontal advection, a new reconstruction of the interface is made. Then the advection
in y-direction is done using

V¥V = V%4 6Vio — 8V, (2.30)
P .
P9 = L (FRVE O, - 6F)), (231)

Then, the interface is reconstructed again and, finally, for the z-direction the following
steps are taken

VE = VY4 Vi, — Vi, (2.32)
1
I — F(F'B-HV'F-‘ + 6}:‘;‘_1 — 5}'}:“) (233}

Now, F** is the new VOF value on time level n+ 1 and V* = V°. Combining Equations
(2.28) to (2.33), effectively the following advection equation is solved
Fsntl — pen g(Femy)  Q(F*e)  Q(F*w)
+ + 4
ot dx dy dz

= (V- u)F*". (2.34)

which is the standard advection equation DF*/Dt = 0 with a correction term (V -u)F*"
added on both sides of the equation. This correction term in the right-hand-side of the
equation is needed because a direction split method is used. Otherwise, fluid will be lost
or gained in the procedure. In the combined Equation (2.34), this term vanishes, because
mass is conserved in the computational cells.

Of course, this correction procedure can only be applied in cells where mass conserva-
tion holds. When this is not the case, as in the surface cells in our method, the correction
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term V - wF*" can not be applied. In the current method no correction is made in the
surface cells, so the equation

8,4l Fan i 8,1, 83 3,2,
F 3 A(F*"u) & I(Fey) & 8(F w)

ot dr dy 0z =0

is solved in surface cells in a direction split manner. This can lead to problems in mass
conservation. To solve that, the local height function can be applied in mixed cells as
explained in Section 2.4.3.

The direction split method can cause problems with symmetry. To prevent that, the
sweep order is changed every time step: in the odd time cycles, the x —y— 2 order is used
and in the even time cycles the order is reversed to z —y —z. Another disadvantage of the
direction split method compared to the multidimensional method is the calculation time.
Every time step three reconstructions have to be performed. However, the calculation
time for the displacement of the free surface does not increase with a factor 3, because
in three dimensions the reconstruction of the interface is only done in a two-dimensional
subset (only in cells with F* < F?).

2.4.5 Test of simple translation

The VOF methods of Hirt and Nichols and of Youngs are tested on various cases. First
the performance of the methods is tested using standard kinematic tests. In these tests
the velocity field in the whole domain is prescribed and only the free surface calculations
are performed. So only the influence of the errors made in the free surface calculation
is present. As a first test certain two-dimensional bodies of fluid formed as a circle or
square are translated through a prescribed velocity field. The characteristics of this test
are taken from [79] and it has also been performed by [40, 41]. Three fluid configurations
are used: a hollow square, a hollow square with an angle of 26.57 degrees (arctan(1/2)) to
the z-axis and a hollow circle. The fluid is translated in a velocity field of (u,v) = (1,0)
and (u,v) = (2,1) for 500 time steps with a CFL-number of 0.25. This results in a
translation of approximately 3 times the diameter of the fluid. The mesh size is 200
x 200 grid cells. The diameter of the body of fluid is covered by 40 grid cells and the
distance between the outer and inner interface is 10 grid cells.

In Figure 2.39, the results for the translation in z-direction are shown. Four different
methods are used for the reconstruction and advection: the standard Hirt-Nichols VOF
method, Hirt-Nichols VOF with a local height function (as described in Section 2.4.3),
Youngs' method (as described in Section 2.4.4), and Youngs' method combined with a
local height function. In all figures the contour lines of 0.025, 0.5 and 0.975 are shown.
For the translation of (u,v) = (1,0) the results are pretty good. No severe deformations
are observed and all methods qualitatively give the same results.

Figure 2.40 shows the translation according to (u,v) = (2, 1). Youngs' PLIC method
clearly gives superior results compared to Hirt-Nichols VOF. The fluid bodies advected
using Hirt-Nichols show some small holes in the fluid. Besides that, small droplets have
been observed in the trace of the translation, which are not visible in this zoomed picture.
The results improve considerably when using a local height function. Also the small
droplets, which were observed in the results using the original Hirt-Nichols” method, are
not present. In both results of Hirt-Nichols (with and without a local height function) the
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initial condition HN HN with |h Youngs Youngs with |h

Figure 2.39: Translation of a square, rotated square and circle in a velocity field of
(u,v) = (1,0): initial condition, Hirt-Nichols VOF, Hirt-Nichols VOF with a local height
function, Youngs' method, and Youngs' method with a local height function

interface is distorted, a stairstepped interface is created. This originates from the interface
reconstruction that is aligned with one of the coordinate axes. This same behaviour is
observed by Rudman [79] who also shows results using original Hirt-Nichols. The PLIC
method of Youngs shows good results, the shape of the fluid remains intact. The use of
the local height function does not have much effect. The circle is a bit deformed when
using the local height function together with Youngs’ method, whereas in the case of the
square adding the local height function gives slightly better results.

2.4.6 Rotation of a slotted disk

Zalesak [99] introduced the rotation of a slotted disk as a good validation case for interface
advection algorithms. It has been used by many authors since, e.g. [1, 40, 41, 60, 75, 79,
81, 96]. In a domain of 4 by 4 meter a disk of fluid is initially placed at position (2,2.75).
In the domain a rotation velocity field is prescribed, whereby the disk is rotated. The
diameter of the disk is 1 meter. From the disk a slot has been removed with a width of 12
cm and the top of the slot is at the disk center. On a grid of 200 x 200 grid cells this results
in 50 mesh cells in the diameter of the disk and 6 mesh cells in the slot width. The time
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initial condition HN HN with Ih Youngs Youngs with Ih

Figure 2.40: Tramslation of a square, rotated square and circle in a velocity field of
(u,v) = (2,1): initial condition, Hirt-Nichols VOF, Hirt-Nichols VOF with a local height
function, Youngs' method, and Youngs' method with a local height function

step is 0.0048 s and one rotation corresponds to approximately 2600 time cycles. Figure
2.41 shows the free surface profile of the slotted disk after one rotation using Hirt-Nichols’
method with a local height function (left) and Youngs' method (right). The simulation
has been performed on four different grids: 50, 100, 200 and 400 cells per direction. In
the figure only the results of 100, 200 and 400 cells are shown. Hirt-Nichols combined
with a local height function gives irregularities in the circular shape and the corners at
the slot are rounded. The results improve on finer grids. Youngs' method is superior,
but still has a rounding at the corners of the slot. Also, finer grids give better results.

To investigate the convergence of the methods, the error after one rotation has been
computed using the formula

Zi,_}' | (2, ) — Fo0(i, 5)]

Zi‘j Joi

Fi=

where F* is the initial solution. Also a quantification of the gain or loss of fluid is given
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Figure 2.41: Slotted disk after one rotation using Hirt-Nichols VOF with local height
function (left) and Youngs VOF (right); dotted line - exact solution, dashed line 100 x 100
grid cells, dashed-dotted line 200 x 200 grid cells; solid line 400 x 400 grid cells

using the formula

i PO g) = X F0, 5)

Erﬂ ==

Es.,j Fabid, 5)

The error is positive when the amount of fluid is increased and negative otherwise. In
Table 2.2 the error in the interface reconstruction and advection, and the mass error are
given for the four methods that are used on four different grids. In the upper part the

N HN- rate | HN+ rate Y- rate | Y+  rate
50 | 1.3851 13377 0.1046 0.1264

100 | 0.1467 3.2 | 0.0971 3.8 | 0.0337 1.6 | 0.0586 1.1
200 | 0.1254 0.2 | 0.0458 1.1 | 0.0143 1.2 |0.0204 1.0
400 | 0.1222 0.0 | 0.0285 0.7 [0.0103 0.5 | 0.0169 0.8

Gain or loss in fluid mass

50 +0.49 -0.48e-4 -0.17e-2 -0.24e-4
100 +0.36e-1 -0.77e-4 -0.66e-3 -0.16e-4
200 +0.39e-1 -0.11e-3 -0.56e-3 -0.65e-5
400 -+0.45e-1 -0.88e-4 -0.20e-3 -0.24e-4

Table 2.2: Top: error E and convergence rate of the slotted disk rotation using four
different methods: Hirt-Nichols and Youngs, without and with a local height function
(HN-, HN+, Youngs- and Youngs+); bottom: error in mass £, using the same methods

error after one rotation is given together with the convergence rate under grid refinement.
The errors in all methods decrease under grid refinement. Youngs' method without local
height function gives the smallest error. Not a clear conclusion can be drawn about the
order of the methods. As stated by Pilliod [75] none of the methods is second order, all
are first order. But the refinement from 200 to 400 grid cells per direction shows an order
smaller than one. In the lower part of the table the mass error is shown. Hirt-Nichols’
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method shows a large increase of mass, even by 50% on the coarsest grid. The mass error
in both Youngs and Hirt-Nichols combined with the local height function is very small.

For mass conservation in Youngs’ method on the finest grid of 400x400 grid cells
double precision (i.e. 64 bit) computations are necessary. On a single precision 32 bit
machine the amount of fluid using Youngs’ method is decreased with 3%. It is not clear
at the moment, why double precision is needed in computations on fine grids.

2.4.7 Rotation of a three-dimensional notched brick

To test the performance of the method in three dimensions, a notched brick is rotated as
suggested by [56, 77). The rotation vector is given by w = (i, j, k)wo, with wy a constant,
thus the rotation is about the diagonal of a unit cube from corner (0,0,0) to (1,1,1).
This results in a velocity field given by w = 1/4/3 (1 x &) that is prescribed in the whole
domain, where one full rotation is established in 27 seconds. The domain of 4 by 4 meter
is covered with grids of 40 x 40 x 40 and 80 x 80 x 80 grid cells. The dimensions of the
brick are 25 x 20 x 15 grid cells on the coarse grid and 50 x 40 x 30 cells on the fine grid.
The center of the brick is positioned in the center of the domain, such that the axis of
rotation points diagonally through the brick. From the right side of the brick (with largest
z-value) 4 smaller cubes are removed with dimension of 5 and 10 grid cells on the coarse
and fine grid, respectively. (See the left of Figure 2.42 where the initial condition on the
coarse and fine grid are shown.) The time step is 0.0025 s resulting in a CFL-number of
approximately 0.25 on the fine grid (based on velocities in the whole domain). Figure 2.42
shows the results of the VOF field after one rotation using two methods: Hirt-Nichols
VOF with local height function (central column) and Youngs' method (right column).
The notches in the brick are not very well resolved on the coarse grid. 5 cells per notch
is clearly not enough. On the fine grid, the notches stay much sharper, especially using
Youngs' method gives a quite good result. Furthermore, the resulting interface using
Youngs' method is much smoother than when using Hirt-Nichols’ method on both grids.
Although the resulting interface using Hirt-Nichols” method is pretty much deformed, the
brick is still recognisable in contrast to the SLIC method used in [77].

2.4.8 Single vortex

The translation and rotation tests shown so far are relatively simple in the sense that
the fluid topology does not change. A more demanding test was developed by Rider and
Kothe [78], where the body of fluid is deformed and thus the volume tracking method
is tested more severely. Initially a circle of fluid with radius 0.15 is positioned in a unit
square domain with its center at (0.5,0.75). The fluid body is stretched out by a single
vortex velocity field given by the stream function

U(r,y) = %sixﬁ(mr) sin®(7y),

from which fluid velocities are deduced using (u,v) = (—8¥/dy, OV /0z). The circular
body stretches and spirals about the center of the domain when put in the single-vortex
field. To be able to quantify the results, the velocity field is reversed after t = T'/2
seconds, with 7" the maximum simulation time. Then, in case of a perfect volume tracking



2.4 Free surface displacement 63

Figure 2.42: Rotation of a notched brick on a 40 x 40 x 40 grid (upper row) and a
80 x 80 x 80 grid (lower row); the first column is the initial condition, the second column
Hirt-Nichols with a local height function and the third column Youngs' method

algorithm, the fluid will return to its initial state at the end of the computation. In
this thesis results of four different computations are shown using the four displacement
methods as before. The first computations are performed on a 64x64 grid with T=2
and T=8 respectively. The same computations are repeated at a 128x128 grid. Some of
the results are shown in Figure 2.43. It is clear that Youngs' method performs best in
all cases. Hirt-Nichols VOF shows a lot of small droplets and is not able to resolve the
circle after the velocity field is reversed. Also with local height function the results do
not improve much, although the number of droplets is decreased significantly. From the
result with T=8 seconds on the fine grid using Youngs (in the last two rows and columns)
it can be seen that a problem occurs when the fluid does not stick together, but chunks
are being formed. In that case, the advection method is not able to reverse these chunks
towards the circle, but small 'tails’ are formed at the circle. This is also noticed by Cerne
[12], who uses adaptive grid refinement to prevent the fluid from breaking up in chunks,
which gives much better results.

2.4.9 Two-dimensional dambreak simulation

In this section the interface displacement methods are tested in a computation of a
dambreak flow. So now also the velocity and pressure field are calculated using the
methods described in Section 2.3. The configuration of the dambreak is chosen the same
as in an experiment performed at MARIN, such that the results can be compared with
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Figure 2.43: Single vortex computations with T=2 (row 1 and 3) and T=8 seconds (row
2, 4 and 5) on a grid of 64% cells (row 1 and 2) and 128 cells (row 3, 4 and 5); four
different methods are nsed, from left to right: Hirt-Nichols without and with local height
function, Youngs without and with local height function
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measurements. In Section 2.6 the same configuration has been used, but there three-
dimensional flow is studied with an object in the container. The container has a length
of 3.23 m and is 1 m high with an open roof. In the right part of the tank, from & = 2
m to x = 3.23 m water of .55 m high is waiting to flow into the empty part of the
tank. The domain is covered with a grid of 118 x 34 grid cells. As interface advection
methods Hirt-Nichols’ and Youngs’ method are used, both with and without a local height
function. To investigate the extra calculation time needed for Youngs' method in a real
calculation, the calculation times of Hirt-Nichols' and Youngs' methods are measured
and compared. It turned out that Hirt-Nichols’ method needs 2 minutes and 20 seconds,
whereas Youngs' method needs 3 minutes and 6 seconds to complete the simulation.
So, the calculation time increases a bit, but not too much. In the left of Figure 2.44 a
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Figure 2.44: Left: snapshot showing the free surface at the left wall of the container in
a dambreak simulation after 0.8 seconds using four different interface advection methods
(Hirt-Nichols and Youngs with (+) and without (-) local height function); right: time
history of the amount of liquid in the container

snapshot of the simulation has been shown after a simulation time of 0.8 seconds. From
this snapshot it can be seen that the moment the water hits the left wall of the container
is different for the four interface tracking methods. This is due to the amount of liquid
in the container, which is not constant in all simulations. The right plot in Figure 2.44
shows a time history of the amount of ligquid in the four simulations. Both Youngs' and
Hirt-Nichols’ methods loose fluid, especially in the early stage of the simulation, when
the fluid jet is moving over the bottom of the container. The reason for the loss of water
can be found when looking at the left of Figure 2.45, where a zoomed snapshot of the
Jet flowing over the bottom of the container is given in case of Youngs' method. The
tongue of the jet consists of a surface cell with an empty cell at the left and above it.
Both the SE-velocities, determined from extrapolation (see Section 2.3.10), are equal to
0, whereas the FS-velocity is quite large and pointing inwards the cell. Therefore, only
fluid will be fluxed into the cell and nothing out, which can result in a VOF value larger
than 1. At the end of the displacement algorithm, the VOF value is rounded to 1 if
it is larger than 1, causing loss of fluid. To see the effect of the NON-Mass-conserving
method for SE-velocities, a mass conserving way of determining SE-velocities is adopted
(method 1 in Section 2.3.10). The amount of fluid in the container using both methods for
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Figure 2.45: Left: zoomed snapshot showing velocities in the water jet over the bottom of
the container; right: time history of the amount of liquid in the container using Youngs’
method with the standard way and a mass conserving way of determining SE-velocities

SE-velocities is shown in the right of Figure 2.45. Using the mass conserving method for
SE-velocities shows much less loss of water, and the loss is more gradually. Unfortunately,
the mass conserving method for SE-velocities can not always be used (for robustness and
accuracy of the method, see Section 2.3.10). Therefore, to conserve mass when using
Youngs’ method the local height function should be added, which solves the problem.

In the experiments the water height has been measured at different positions in the
container. The top row in Figure 2.46 shows the water height in the reservoir that is
initially filled with water, at # = 2.66 m. The bottom row shows the water height close
to the left wall at z = 0.5 m. The four different methods for the interface calculation are
shown in the different columns. From the results it can be seen that the methods without
the local height function (first and third column) are a bit lagging behind in time. The
best agreement between the calculation and experiment can be found when using Youngs’
method in combination with a local height function (last column). The first bump in the
top row and even the second bump in the bottom row are very well predicted.

2.4.10 Concluding remarks

Concluding this section about the different methods for free surface displacement, the
following remarks can be made. First, when doing simulations with a prescribed velocity
field as translation, rotation and the single vortex simulation, Youngs’ method is most
accurate in all cases. Combining Youngs' method with a local height function does not
violate the results a lot and still gives very acceptable results. Hirt-Nichols’ method per-
forms less good in these kind of simulations, especially when no extra measures are taken
to prevent flotsam and jetsam. The introduction of a local height function significantly
improves the results.

Second, when doing a simulation of real fluid flow, like the dambreak shown in this
section, the conclusions are not that clear any more. Youngs' method results in a smoother
free surface profile than Hirt-Nichols’ method. But when examining water heights in the
tank for the dambreak simulations Hirt-Nichols and Youngs give comparable results, a
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Figure 2.46: Water heights in the container of the dambreak simulation simulation (solid
line) compared with measurements (dashed line); measurement position in reservoir (top
row) and close to left wall (bottom row); four different methods are used, from left to
right: Hirt-Nichols without and with local height function and Youngs without and with
local height function

bit in favour of Youngs. In both methods mass is not conserved in the domain when the
methods are not combined with a local height function.

So, in a simulation with real physical conditions Youngs' method with local height
function seems to produce the best results. Hirt-Nichols’ method combined with local
height function also produces satisfying results. More different situations should be stud-
ied to confirm this conclusion. In the next chapter wave simulations will be performed
where also attention will be paid to the free surface displacement algorithm.

2.4.11 Free surface displacement and moving objects

The displacement of fluid in the neighbourhood of a moving object is not straightforward.
Problems with mass conservation occur when, for example, a cell is partly open for fluid
at one time step, but the object is covering the complete cell after moving (as in Figure
2.47). Then, in one time step, the open edge of a cell is closed and a fluid cell has changed
into a boundary cell. If the fluid is then moved according to the donor-acceptor method
using fluxes as calculated in Equation (2.23), no fluid will be moved because the area of
the cell face A equals zero. But there is still fluid inside the cell, which will be lost if
nothing special will be done. Also, small holes can be created near the moving object
when the object is moving, and the available space is not filled by fluid.

There are two ways to prevent the loss of mass. First, the local height function,
introduced earlier to diminish flotsam and jetsam and to take care of mass conservation
(see Section 2.4.3), can also be used to prevent loss of mass in this case. The extra fluid
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Figure 2.47: A fluid cell becomes a boundary cell, giving mass conservation problems
when the fluid is displaced in a straightforward manner

in cells that have F* larger than F" is redistributed over the neighbours. This option
is to be used with care, since the local height function is not designed to be used away
from the free surface. The ‘redistribution’ of fluid can cause other neighbouring cells to
become too full.
Another way is to displace the fluid by not using the calculated velocity field, but using
a slightly different velocity field. To determine this velocity field, a Poisson equation is
solved, that is modified from the standard pressure Poisson equation, resulting in an
auxiliary pressure field ). In the right-hand-side of this Poisson equation an extra term
is added, which is the difference between the geometry apertures on the old and new time
level. By adding this extra divergence term, a pressure field is created that forces the
fluid to respond on the motion of the object. When the object is entering the cell, extra
space is created, whereas space is filled when the object is leaving the cell. The velocity
field based on the gradient of this auxiliary pressure field ug is used for the displacement
of the free surface (and only for that). Further, some apertures are modified indicated by
A, such that apertures of cells that have become boundary cells, but are not yet empty,
are not closed and permit fluid to flow out. The fluxes used in the VOF-method are now
calculated using
SF* = ug - nA?6t. (2.35)

This method has been adopted in the simulation of a small moving box, completely
submerged by water in a closed domain. In Figure 2.48 a time series of the total amount of
fluid in the domain is plotted. In the simulation indicated with a solid line, the standard
method of Hirt-Nichols is used without local height function or adaption of the velocity
field. A gradual loss of fluid occurs. When using the local height function, the result is
much improved and the amount of liquid in the domain is almost constant (except for
a drop of the fluid level in the first time step). The same accounts for the simulation
with the adaption in the velocity field using the auxiliary pressure field: the fluid level is
almost constant.

2.5 Pressure spikes due to moving objects

In Section 2.3.10 the occurrence of spikes in the pressure signal due to the determination
of SE-velocities at the free surface has been discussed. Such numerical pressure spikes do
also occur as a consequence of the motion of an object. Because a cut cell method is used
on a fixed Cartesian grid, the objects are moving through the grid, resulting in changing
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Figure 2.48: The total amount of liquid in the domain when moving a small box, with
and without an adapted procedure for moving objects in the free surface displacement

geometry apertures and labels. Fekken describes in [23] some possible causes for pressure
spikes due to moving objects. The first reason for spikes originates from the fact that the
moving object possesses sharp corners. These pressure spikes can be prevented as will

be described below. The second important reason Fekken mentions is the position of the |

pressure in a cut cell.

Objects with sharp corners

The first reason for pressure spikes due to moving objects mentioned by Fekken (23]
is that the moving object possesses sharp corners. A test case has been designed to
investigate this problem. A square is moved orthogonally to one of its sides through the
grid without the presence of a free surface as shown in Figure 2.49. The geometry and
edge apertures are calculated exactly to eliminate any possible influence of an inaccurate
apertures calculation. At a position below the box, the pressure has been monitored (in
point P). In the left of Figure 2.50, the resulting pressure signal at this point is shown.
A very spiky behaviour can be observed: each time the square is entering a new cell and
the edge aperture changes from one time step to another, the pressure produces a spike.
This spike has a direct relation with the time step: if the time step is twice as large, the
spike becomes twice as small.

In [23] a one-dimensional analysis is performed to discover the origin of the pressure
spikes. Consider an object with a sharp corner that is moving through a channel where
only one cell is used in vertical direction (see Figure 2.51). The object is moving with
velocity wy, = 2, while the fluid in the channel is moving with a constant flow rate with
u = 1. Because of mass conservation in the computational cell, the velocity w,, in the left
of Figure 2.51 that is a velocity at a wall half covered by the object equals zero. When
omitting convection, diffusion and external forces, the pressure gradient Gp;, equals zero
when the front of the moving body does not cross a cell face, because all velocities keep
the same value:

un+| = gy — (St Gm+l n+l‘
Qﬂ-rlp
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Figure 2.49: Simulation of a moving square without a free surface to investigate the
oceurrence of numerical spikes due to sharp corners
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Figure 2.50: Pressure signal of point P in the moving box simulation: without (left) and
with (right) a splitting procedure for the pressure to prevent spikes

When the front of the body crosses a cell face from time step n to n+ 1 as in Figure 2.51,
the pressure gradient across cell face ¢ is given by

Grlu‘*-]pn-l—l — SZ”:H{"

ot
since u" = 1 and ' = 0. According to the discretisation of the pressure gradient,
Equation (2.10), the difference between the pressure in the eastern and western cell is
computed as
—— S‘ln-i—llfJ B QQH+IP

T Acoyst  dyot

A pressure spike is created, caused by the jump in the edge aperture A7 from time step n
to n+ 1. From the above equation it can be seen that decreasing the time step enlarges
the spike: when the time step is halved, the magnitude of the spike is doubled. The spikes
are purely numerically created as a consequence of the aperture jump’ in combination

(Pe - pu-)
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Figure 2.51: Illustration of a sharp corner crossing a cell face from time step n to n 4+ 1

with the no-slip condition at the object that forces the fluid to move according to the
moving body.

To prevent the occurrence of these spikes, the computed pressure will be split into
two parts: the physical pressure and a non-physical part of the pressure

[)(.E, U, :) = pﬂhys(-r- Y, ‘:) + f,')[-!?, Y, :)

The idea is that the spike is contained in the non-physical part of the pressure ¢(x, y, z),
such that only the physical pressure part is used in the computations. This idea is
related to the use of Lagrange multipliers in the fictitious domain method [32]. There
the moving bodies are filled with the surrounding fluid, and Lagrange multipliers are
defined over the moving body to force the rigid body motion inside the moving bodies.
The potential ¢ has to be calculated such that the velocity field at the new time level
can be made divergence free. To accomplish the split of the computed pressure, first
the crossing of the sharp corner of the square with a cell has to he detected. Second,
a temporary velocity and pressure field are calculated based on the new apertures as
usual, but using old apertures in cells where the sharp corners have been detected. The
aperture ‘jump’ has now been prevented and thus no pressure spikes are present in the
temporary pressure field. Now, the velocity field has to be made divergence free by
calculating the total pressure, including the peaks in the potential ¢. To accomplish
this, a second Poisson equation is solved based on the temporary velocity field and new
apertures everywhere. This splitting procedure for the pressure has been adopted in the
test case of a moving square, where the geometry apertures are calculated exactly again.
The resulting pressure signal has been plot in the right of Figure 2.50. The signal does
not contain spikes any more.

When the geometry apertures are not calculated exactly, but approximated as in
the computations shown in this thesis (see Section 2.3.2), the resulting pressure signal
does not show very large spikes. In Figure 2,52 the pressure signal of point P in Figure
2.49 is shown for the cases with and without the splitting procedure of the pressure.
Already in the case without the splitting procedure (the left plot) the large spikes are not
present, because the aperture jumps are much more gradually: due to the approximate
aperture calculations, the apertures change more smoothly from one time step to another,
preventing the large pressure spikes that are present in Figure 2.50. So in this case, the
splitting procedure for the pressure does not have a very large influence any more.

To examine the influence of the splitting procedure in the case of a realistic situation
with a free surface, a cylinder entry case has been studied. The eylinder with a diameter
of 1 m is positioned above the free surface at the start and then entering the free surface
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Figure 2.52: Pressure signal of point P in the moving box simulation where apertures are
calculated approximately: without (left) and with (right) a splitting procedure for the
pressure to prevent spikes

with a constant velocity of -1 m/s. Only the initial stage of impact is simulated. A
uniform grid of 400 x 400 grid cells is used. The resulting vertical slamming force on
the cylinder is shown in Figure 2.53. Although the force is an integral over the pressure
that should smoothen a pressure spike occurring in one cell, the spikes are also present
in the force signal. This is caused by the incompressibility of the fluid, which forces a
pressure pulse to travel over the whole domain in infinitely small time. So a pressure spike
originating from one cell in the domain is visible in all cells in the domain. From Figure
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Figure 2.53: Vertical force on a cylinder entering the free surface; simulation without
(left) and with (right) a splitting procedure for the pressure to prevent spikes

2.53 it can be concluded that the spikes are not that large in such a simulation. Also, the
splitting procedure for the pressure does decrease the number of spikes somewhat, but
the influence is not very large. No clear conclusion can be drawn about which method
gives best results. One of the spikes, occurring in the initial stage of impact, is even
larger when using the splitting procedure. There are several causes for the relatively
small influence. First, the edge apertures are not calculated exactly, which takes care
of a more smooth change in the apertures from one time step to another. Second, the
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jumps in the edge apertures are not that large, because no corner is present that is
parallel with the coordinate axes as is the case in the moving box. So, in this case the
splitting procedure for the pressure does not improve the results much, whereas it is costly
in computational time. Every time a simulation is set up, a trade off should be made
between the oceurrence of the spikes and the computational time it takes to determine ¢
by solving a second Poisson equation.

2.6 Validation: flow of a breaking dam

At the Maritime Research Institute Netherlands (MARIN) experiments have been per-
formed for breaking dam flows. These experiments can be seen as a simple model of
green water flow on the deck of a ship. The dambreak is a very popular validation case,
because the set-up is easy: no special in- or outflow conditions are needed. A large tank
of 3.22 by 1 by 1 meter is used with an open roof. The right part of the tank. from
r = 2m, is first closed by a door. Behind the door, 0.55 meter of water is waiting to flow
into the tank when the door is opened. This is done by releasing a weight, which almost
instantaneously pulls the door up. In the tank a box has been placed that represents a
scale model of a container on the deck of a ship. The box is 16 cm long, 40 cm wide and
16 em high, with the left side of the box positioned at & = 0.67 (see the left of Figure
2.54).
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Figure 2.54: Measurement positions for water heights and pressures in the dambreak
experiment

During the experiment measurements have been performed of water heights, pressures,
and forces. In Figure 2.54, the positions of the measured quantities are shown. Four
vertical height probes have been used; one in the reservoir and the other three in the
tank at positions z = 0.5, 1.0, 1.5 and 2.66. The box was covered by eight pressure
sensors. four on the front of the box at height z = 0.025. 0.063. 0.099 and 0.136, and
four on the top of the box at = 0.806, 0.769, 0.733 and 0.696. The sensors on the front
of the box are positioned 0.026 m left of the center line y = 0 and the sensors on the top
of the box 0.026 m right of the center line. The forces on the box were also measured.
To determine the velocity of the water when entering the tank, a horizontal wave probe
1s used near the side wall of the tank.

As initial configuration of the simulation, the water in the right part of the domain is
at rest. When the simulation is started, due to gravity the water starts to flow into the
empty part of the tank. A fine grid of 236 x 76 x 68 grid cells has been used with some
stretching towards the bottom of the tank. The simulation is continued for 6 seconds
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with an automatically adapted time step using maximum CFL-numbers around 0.75,
resulting in a time step of the order of 0.001 seconds. In Figure 2.55 two snapshots of
the early stages of the simulation are shown together with some images of the video from
the experiment (at the same instants of time). The smaller pictures inside the snapshots

Figure 2.55: Snapshots of a dambreak simulation with a box in the flow compared with
experiment at time 0.4 and 0.56 seconds

show the water in the reservoir. There is a very good agreement between the snapshots
of simulation and experiment. The time instant when the water is first hitting the box
is the same. The shape of the free surface, bending a bit forward in the second picture,
is seen in both experiment and simulation. In the simulation, the free surface has some
ripples, which can be suppressed by using a piecewise linear reconstruction of the free
surface [98] instead of the reconstruction aligned with the coordinate axes used in this
simulation.

In Figure 2.56 the time history of the horizontal wave probe is shown, compared with
the simulation. The velocity with which the water is flowing into the tank is predicted very
well by the simulation. From the measurement it seems that the probe is not completely
covered with water from time 0.5 to 2 seconds, but this is not observed in the video.

In Figure 2.57 time histories of the water height at two locations are shown: in the
reservoir, and in the tank just in front of the box. The agreement in both pictures is very
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Figure 2.56: Horizontal wave probe along the side of the tank

good until the water has returned from the back wall (after about 1.8 seconds). After
that some differences occur, but the global behaviour is still the same. After the water
has retwrned from the wall, the fluid height at probe H2 is the largest. The water flows
back to the reservoir, where it turns over again after about 4 seconds. The moment that
this second wave meets the height probe at H2 again (after about 5 seconds) is almost
exactly the same in simulation and experiment.
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Figure 2.57: Vertical water heights in the reservoir H4 (left) and the tank H2 (right)

The instant when the wave hits the box is perfectly captured by the simulation as can
be seen from Figure 2.58. Here the pressure at point P1 and P3 at the front of the box
and at the top of the box, P5 and P7 (see Figure 2.54), are shown. The magnitude of
the impact pressure is the same for simulation and experiment at pressure point P1 (the
lowest on the box), but is underpredicted by the simulation at point P3. The moment the
return wave hits the box again (at about 4.7 seconds) is again visible in the graphs. In
the bottom graphs of Figure 2.58, where the time history of pressure transducers at the
top of the box are shown, a difference is observed between simulation and experiment.
After about 1.3 seconds, there is a wiggle in the simulation with a duration of 0.5 seconds,
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Figure 2.58: Pressure time histories at P1 (picture upper left), P3 (upper right), P5
(lower left), and P7 (lower right)

which is not present in the experiment. Before this point the water hits the top of the
box when the wave coming back from the wall is overturning.

Several spikes appear in the pressure signals that are visible in all graphs at the same
moment (for example at 1.3 seconds). These spikes occur, because some water enters an
empty cell that is completely surrounded by cells with fluid. When the water enters the
E-cell, there is no empty cell left in the neighbourhood, so this cell changes to a fluid cell
in one time step without being a surface cell in between. This discontinuous change in
label and the corresponding restoration of ¥V - u = 0, results in a pressure peak over the
whole pressure field.

In Figure 2.59 a grid refinement study of the dambreak simulation is shown. Three
different grids have been used with in increasing order 59x19x 17 grid points, 118 x 38 x34
grid points and 236x 76x 68 grid points. The finest grid has also been used in the previous
figures. In the figure the pressure along the lower part of the front side of the box is shown.
The overall flow of the water is pretty much the same in all three grids, but when zooming
in on the pressure peak (in the right of the figure) differences occur. The coarsest grid is
clearly not good enough. The pressure peak is overpredicted and the water reaches the
box too late. Although the water reaches the box earlier in the finer grids, there is still
a small difference between simulation and experiment. The magnitude of the impact is
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better predicted on the finer grids.
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Figure 2.59: Grid refinement in the dambreak simulation: pressure at the lower part of
the box, with on the right a zoomed picture

The results of the dambreak simulation are in good agreement with the experiment.
The global behaviour of the fluid is the same and the impact peak of the pressure agrees
well, especially at the lower part of the box.

2.7 Validation: water entry

In this section, results are presented from water entry of two-dimensional wedges, circular
cylinders and of a three-dimensional cone. In [23] already some cases of water entry have
been shown, also with free falling objects. The tests in this thesis have been performed
with prescribed constant entry velocities.

2.7.1 Wedge entry

Figure 2.60 presents free surface profiles for the entry of two wedges. The wedges have
deadrise angles of 30 and 45 degrees, respectively. The simulation results are compared
with photographs of experiments by Greenhow and Lin [37]. The visual comparison
between experiments and simulations is relatively good. However, not all the droplets
and small details are resolved by the simulation, because of the displacement algorithm
and the grid resolution. The simulations have been performed on a grid of 300x280
computational cells. Using such a fine grid, the simulation method is able to resolve the
jets at the side of the wedges. The angle under which the jets are formed and bend away
is well predicted in the simulation. However, these jets do not have a large influence
on the impact loads during the penetration [36]. The flow is not perfectly symmetric,
because the numerical algorithm is not symmetric (for example the marching direction
in the iteration process of the Poisson equation has some influence on the symmetry).

In Fig. 2.61 the results of a grid refinement have been shown. Three different grids
have been used: 75x70, 150x140 and 300x280 grid cells. The large difference between
the results of the free surface profiles is in the formation of the jets: the finer the grid,
the better the jets are resolved.
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Figure 2.60: Snapshots of wedge entry with deadrise angles 30 degrees (up) and 45 degrees
(down), experimental photographs of Greenhow and Lin, 1983

2.7.2 Cone entry

As the three-dimensional equivalent of the wedge, the entry of a cone has also been
studied. The cone has a deadrise angle of 3 = 30 degrees. The slamming coefficient, as a
non-dimensional measure of the total hydrodynamic force, has been compared with the
theoretical prediction by Schiffman and Spencer made in 1951 [82]:

- 3k(8) tan®(Z — AVE2,
P 2
where # = 0 is the moment the cone hits the free surface first. The non-dimensional
parameter parameter k() is considered most accurate at value 1.6 (see [3]). In the top
of Figure 2.62 the slamming coefficient as calculated in the simulation has been plotted
against the penetration depth Vt. Three different entry velocities have been chosen,
leading to the same results in a suitable set of scaled variables.

The results of the slamming coefficients for the impact during the entry of a cone are
in very good agreement with the theory of Schiffman and Spencer [82]. In the bottom of
Figure 2.62 a cross-section is shown of the free surface profile during the cone entry. From
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Figure 2.61: Free-surface profile of a falling wedge simulation with dead-rise angle 45
degrees using three different grids

this it can be seen that the jets at the side of the cone, which are clearly present in the
entry of a wedge (see Figure 2.60) are not well resolved. This is caused by the difference
in two and three dimensions and due to the much coarser grid used in the cross-section of
the cone entry. However, it does not have a large influence on the total slamming force,
because pressures in the jets are very small and do not contribute much.

2.7.3 Entry of a circular cylinder

The entry of a two-dimensional circular cylinder has also been studied. Snapshots of two
different instants in time are shown in Figure 2.63 and are compared with photographs of
experiments by Greenhow and Lin [37]. The free-surface shape observed in the experiment
is very well resolved by the simulation method. Not all the details of the droplets of the
splash are captured by the simulation, but the jets that appear at the sides of the cylinder
are well predicted.

The total vertical hydrodynamic force on the cylinder during the first stage of the
impact has been calculated and compared with experimental results of Campbell and
Weynberg [10]. also reported in [3]. In Figure 2.64 the slamming coefficients of the
cylinder entry with different entry velocities have been plotted versus the non-dimensional
penetration depth. The slamming coefficient is given by C's = F/pRV?, with F the
total vertical hydrodynamic force, R the radius of the circular cylinder and V the entry
velocity. Besides the experimental result of Campbell and Weynberg, also the theory
of Von Karman (1929), reported by Faltinsen in [22], has been included. This theory
is based on potential flow theory. For the very initial state of the entry of a circular
cylinder, the hydrodynamic slamming force can be estimated by

' . T ,
F=V pE(QL' R—2V*%),
where ¢ denotes time with ¢ = 0 the moment of first impact.

The comparison between the experiments of Campbell and Weynberg and the simu-
lations is relatively good. It can be seen that the initial impact is a bit underpredicted in
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Figure 2.62: Left: slamming coefficient for the impact of a cone, simulation compared
with theory of Schiffman and Spencer (1951); right: cross-section during the entry of a
cone showing the free surface profile

the simulations for all entry velocities. The initial impact is more in agreement with the
theory of Von Karman. In a later stage the results are in very good agreement with the
experiments of Campbell and Weynberg. The simulation results are similar for different
entry velocities, confirming near-perfect scaling with V2.

To investigate convergence of the method under grid refinement, the circular cylinder
entry simulations have also been run with different grids. The results are presented in
Figure 2.65. It can be seen that the coarseness of the grid has a very large influence on
the formation of the jets aside the cylinder. This was also concluded from the simulation
of the cone entry. A very fine grid is needed to capture the jets. However, the formation
of the jets does not have a large influence on the total hydrodynamic force. The force
can be predicted quite accurately on the coarsest grid.
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Figure 2.63: Snapshots of cylinder entry, experimental photographs of Greenhow and
Lin, 1983
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Chapter 3

Wave generation and propagation

3.1 Introduction

To perform realistic simulations of green water and bow impact loading, the method has
to be extended with wave generation options. There are different ways to create a wave
field in a computational program:

o Prescribe a wave at the inflow boundary using theory, for example Stokes theory or
a superposition of linear waves.

e Use a wave maker, which can be modelled as a moving object.

¢ Use another calculation method, which caleulates kinematics away from an object
that will be prescribed at the domain boundaries.

In this chapter the implementation and validation of the first option will be described,
whereas the third option is used in the next chapter. The waves considered are long
crested waves, so the incoming wave is two-dimensional of shape. Of course, when an
object is present, the wave will be disturbed and three-dimensional aspects become im-
portant. At the boundary of the domains appropriate conditions are needed to let the
wave travel in and out of the domain in an undisturbed way. Therefore, at the inflow
boundary fluid wave kinematics will be prescribed according to wave description theories.
The undisturbed wave will be prescribed, so the disturbance due to wave diffraction on an
object is not taken into account. At the outflow boundary conditions should be imposed,
such that the wave can leave the domain undisturbedly. Determining these conditions is
difficult, because no information about the wave is present near the outflow boundary.
After describing the wave theories and conditions at the outfow boundary, attention
will be paid to possible energy dissipation due to the upwind discretisation of the convec-
tive terms. Also the influence of the treatment of the free surface on wave propagation,

like the choice for free surface velocities and the displacement algorithm, is investigated. /

To validate the numerical model, simulations have been performed, which can be
checked against theory or experiments. First, results will be shown of two-dimensional
wave simulations without the presence of an object. Further, a spar platform has been
put into the How. Forces and wave heights have been caleulated, which can be compared
with experimental results. Finally, as the most demanding test case, green water on the
bow of a moving FPSO is simulated.
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3.2 Wave definition

At the inflow boundary the wave will be initiated using a theoretical wave description. In
this thesis the wave is usually travelling in positive z-direction, making the left domain
wall the inflow boundary (see Figure 3.1). The wave is prescribed as head wave, but of
course by rotating the body in the domain every wave direction can be achieved. For the
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Figure 3.1: Coordinate system used in the simulation: the wave travels in positive -
direction

simulation of a wave in the domain, the velocities and wave height given by wave theory
are prescribed. The waves that can be formed in COMFLOW are based on Airy wave
theory describing linear waves, and 5th order Stokes theory describing nonlinear waves.
Also a superposition of linear wave components can be used to generate an irregular wave.

3.2.1 Airy wave theory

The theory for the generation of a linear wave can be derived in the following way.
Mass conservation in a volume filled with an incompressible fluid leads to the continuity

equation

V. u=0,

with w = (w, w) the velocity vector in two dimensions. The velocity potential ® is defined

by the equations 5
P i}
—=u, — =, !
dr A (38)




3.2 Wave definition 85

with z and z the horizontal and vertical coordinate, respectively. Substituting ® into the
continuity equation leads to a Laplace equation for the velocity potential:

F o 90 0

a9z = 9zt
When assuming the water surface slope very small, the potential is written as a sine with
an amplitude depending on the water depth

Pz, 2,t) = P(z)sin(wt — kz + @), (3.2)

where ¢ is the time, & the wave number, and ¢ the phase angle. P(z) can be determined
by substituting Equation (3.2) into the Laplace equation and solving the differential
equation for P(z), which finally results in

®(z, 2,t) = (Cre* + Cae™) sin(wt — kz + ). (3.3)

The constants Cy and Cy can be determined using the boundary conditions at the sea
bed and the free surface. At the sea bed a no-leak condition holds, which is given by

P
- 0 at z = —h.
Substituting this boundary condition into Equation (3.3) reduces the two unknowns to
one:

®(x, z,t) = Coosh(k(z + h)) sin(wt — kx + ¢). (34)

The unknown constant C' can be determined by using the free surface dynamic boundary
condition that is deduced from the Bernoulli equation, taking into account the small
wave steepness. The condition at the free surface is linearised around the calm water
level (z = 0), which leads to

oA
%—f—f—g(:() for 2 =0,

The free surface elevation ¢ can be derived from this equation after substitution of the
velocity potential, resulting in

C(z,1) = Cueos(wt — kx)  with ¢, = et cosh(kh).
)

Rewriting the expression for ¢,, the constant C' can be determined as ¢ = _%ﬂm

Substituting this into Equation (3.4) leads to the final expression for the velocity potential

Cag cosh(k(z +h))

®(z,2,t) =
k&) w  cosh(kh)

sin(wt — kx + ¢). (3.5)

The linearised free surface kinematic boundary condition given by

2 " EOQ(D
dat g ot?

=0 forz=I0
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leads to the dispersion relation, which connects the wave number and frequency in the
following way:
il
ktanh(kh) = —.
For deep water, the dispersion relation reduces to k = w?/g.
The velocity vector w = (u,w) can now be determined using the definition of the
velocity potential given in Equation (3.1)

Cu.qk ) COSh(’\‘?(Z‘ - h))
t,r,z) = s(wt — kr + ) ————— i
u(t, r, z) = cos(wt — kz + o) <oah (] (3.6)
Cath . sinh(k(z+ h)) 5
't,#'.: = ——13 wt — kxz e o, o WL L ) | :
w(t, z, z) - sin(wt — kx + @) sosh{h) (3.7)

As stated before, linear theory can only be applied to very low waves. According to Le
Méhauté [61], the range of suitability of linear theory in deep water is H /A < 0.0062,
with H the wave height and A the wavelength.

Linear wave theory can also be used to generate irregular seas, because the superpo-
sition principle can be applied. Given vectors of frequencies, amplitudes and phases, a
linear wave can be built as the sum of the individual components.

3.2.2 Wave kinematics above the calm water level

Since linear wave theory is only valid up to the calm water level and velocities are needed
up to the free surface, some kind of stretching technique has to be used above the calm
water level. In this method Wheeler stretching has been used as a commonly accepted
method, which is easy to implement. In the Wheeler stretching technique the negative
z-axis has been extended from the actual instantaneous free surface elevation to the sea
bed. This has been done by replacing z in the right-hand-side of Equations (3.6) and
(3.7) by

h h & > /o

~RRE g b

']

where
e 2 is the computational vertical coordinate —h < g <

e 2 is the actual vertical coordinate —h < z < (.

3.2.3 5th order Stokes theory

For steeper waves, where in general the crests become higher and the troughs flatter,
linear theory does no longer hold. To describe nonlinear waves, a solution to potential
theory is used. The solution is represented by Fourier series, and the coefficients in these
series can be written as perturbation expansions with parameter Ak. Here, k is the
wave number. which can be written in terms of the wave length k = 27/A, and A is the
amplitude of the wave at lowest order. The terms in the perturbation expansion can be
found by satisfying boundary conditions on the free surface, and solving the resulting set




3.3 Treatment of open boundaries 87

of ordered equations. The expansion of the series can be done, in theory, infinitely far,
but in practice, the 5th order solution is already very complicated.

Details about how to implement the 5th order Stokes solution can be found in [83),
where the sign correction described by [25] should be taken into account.

3.3 Treatment of open boundaries

Domain walls in wave simulations at open sea need to permit fluid flow in and out.
Therefore, as pictured in Figure 3.1, at least an inflow boundary is needed where the
wave is generated, and an outflow boundary opposite to the inflow boundary where
the wave leaves the domain. In the current method the waves, which are long crested,
usually travel in the positive z-direction. Because of the two-dimensional shape, the side
boundaries can often be closed walls; when positioned far enough from the structure they
do not influence the wave field in the close surroundings of the structure. When the waves
are highly distorted, such that side walls are severely influencing the flow, also outflow
boundary conditions can be used at the side walls.

In Figure 3.2 a cross-section of one row of cells is shown with the positions of the
velocities at the inflow and outflow boundaries. At the inflow boundary the velocities and
VOF function in the column of cells directly left of the domain boundary are prescribed
(a Dirichlet boundary condition). This way, the horizontal inflow velocity is positioned
at the domain boundary, and no pressure is needed in the inflow cells. For the outflow
boundary the horizontal velocity is shifted to one cell width away of the actual domain
boundary. Therefore, also a pressure is needed in the outflow cells, so velocities, pressure
and VOF function need to be determined at the outflow boundary (using a Neumann-
type outflow condition). In the previous section the wave descriptions have been given,
from which velocities and wave height at the inflow boundary are derived. The remainder
of this section deals with the outflow boundary.
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Figure 3.2: Position of velocities at the inflow boundary, and velocities and pressure at
the outflow boundary

3.3.1 Overview outflow boundary conditions

A very important aspect of wave simulation is to determine the conditions at the outflow
boundaries. If the wave is developing inside the domain, it should flow out of the domain
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as if there was no boundary. Otherwise, the wave will reflect from the boundaries into
the domain, which disturbs the simulation.

An overview of outflow boundary conditions that prevent wave reflections is given by
Givoli [30]. He describes three classes of outflow boundary conditions.

e The first class consists of special procedures for the numerical solution of wave prob-
lems in unbounded domains, that involve an artificial boundary but not the direct
use of a non-reflecting boundary condition. Cerjan et al. [11] and others presented
what can be termed a ’filtering scheme’. In this scheme, the amplitudes of the
displacements are gradually reduced in a strip of nodes adjacent to the boundary.
Thus. the solution is artificially damped in the vicinity of the boundary. Another
kind of dissipation zone was used by [95], where an extra damping pressure was
added to the free surface, which opposes the vertical wave velocity. A disadvantage
of such damping zones is the increase of computational cells out of which the damp-
ing zone exists. Especially, in three dimensions many computational cells have to
be added outside the real computational domain,

e In the second class, which is the largest one, local non-reflecting boundary conditions

(NRBCs) based on the scalar wave equation are used. There exist many variations
in local NRBCs, every problem in different types of fields (acoustics, gas dynamics,
hydrodynamics, ...) uses NRBCs that works best for that particular problem. A
comparison of different boundary conditions derived from the discretisation of the
multi-dimensional wave equation is given by [42].
The widely used NRBC of Sommerfeld [84] is a discretisation of the one-dimensional
scalar wave equation with an a priori chosen wave velocity. A variation hereof was
introduced by Orlanski [71], who calculated the wave velocity for every grid point
and used that velocity in the discretised wave equation. The advantage of this
method is that no information is needed of the flow beforehand.

e Finally, non-reflecting boundary conditions are considered that are non-local in
time or space or both. These NRBCs have the disadvantage that many time levels
should be stored in memory.

In the following sections a diseussion of the Sommerfeld and Orlanski boundary conditions
is given. The implementation of a general non-reflecting boundary condition is deseribed,
and the damping zone used by [95] is introduced.

3.3.2 Non-reflecting boundary conditions
Boundary conditions based on the wave equation

One way to prevent waves reflecting from the outflow boundary is to use a non-reflecting
boundary condition. In case of waves most of the existing boundary conditions are based
on the wave equation [42]
do c_)::z B
ot e
where ¢ is any quantity that travels wave-like as velocity or pressure, and c the wave ve-
locity. In Equation (3.8) the direction of the wave is in the z-direction. In the Sommerfeld

0, (3.8)
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boundary condition [84] the wave velocity is chosen a priori, which is easy when regular
waves are simulated. In that case, the Sommerfeld condition gives very g,ood results as
will be shown later. When irregular waves are considered, or when the regular waves
are deformed due to the presence of an object, the method does not give very accurate
results, since only one wave velocity can be chosen. For those situations, Orlanski [71]
developed a method where the wave velocity is not chosen a priori, but is caleulated every
time. step-based-on the local wave kinematics near the outflow boundary. The problem
with this method is to determine the wave velocity accurately. To calculate ¢, first the
wave equation is discretised using finite differences in cells close to the outflow boundary
where the condition will be imposed. The wave equation is discretised for the horizontal
velocity in every level of cells in the water depth. The c is then calculated as the mean of
the approximated wave velocities in every level in the water depth. In Figure 3.3 the cal-
culated wave velocity is shown for a regular wave with an actual wave velocity of 22.6 m/s
during one wave period. The calculated wave velocity is not constant at all, but oscillates
around the theoretical value. The j jump that occurs around 7.2 s is present because there
the crest of the wave travels through the outflow boundary resulting in du/dz = 0. This
can cause the wave velocity to jump from minus infinity to plus infinity. In this region,
the wave velocity is adapted, such that these extreme values are not used in the outflow
boundary conditions. In an investigation of wave propagation using Orlanski's method
at the outflow boundary, it turned out that the results were not very accurate, so this
method is not used in the simulations shown in this thesis.

wave velocity ¢ (m/s)

10! —
i/ 2 4 6 8 10 12 14
time (s)

Figure 3.3: Calculated wave velocity using a finite difference approximation of the wave
equation

The implementation of a non-reflecting boundary condition

At the outflow boundary conditions for pressure and velocity are needed. When using

a Sommerfeld boundary condition, for the velocities at the outflow boundary, the wave
equation Bquation (3. 8) is discretised using finite differences in the following way

+1 : LTy
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where the notation is explained in Figure 3.4 and ¢ is used for the velocity components.
From this equation the velocities at the outflow boundary u*, v2*! and w?*' follow.
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Figure 3.4: Configuration of cells near the outflow boundary

For the calculation of the pressure in the outflow cell the procedure is somewhat more
complicated. since the pressure appears in the Poisson equation that is solved using an
iterative method. To avoid an iteration in the outflow cell, the boundary condition is
substituted in the equation for the interior pressure cell p,, such that the equation for
the pressure in the outflow cell is not needed. At the end of the iterations the pressure
in the outflow cell is updated using the pressure in the interior cell. This procedure is
elaborated for a general outflow boundary condition

a; .
G o Bp = oA + Bpo.
Oz
Here, the Neumann condition can be recognised for (a,d) = (1,0) and the Dirichlet
condition for (a, 3) = (0,1). The Sommerfeld condition is obtained when taking a = c,
B =1/6t, A= 0 and py = p/'. This equation is discretised using finite differences
a:pe—__& + Bp. = oA + Opo,
0y

with 8z = (6z. + dz.)/2. From this equation the pressure in the outflow cell p, can be
solved )

o aAbxye + FpodTpe
= —p + ’

o + B0xp. @+ 30Ty,

The discretised Poisson equation for the interior pressure p, can be written as (for notation
see Figure 3.4)

Pe (39)

CCpL' + C“U.'p’((‘ + Cl"pﬁ + CYI. mn + C.‘!ps = RHS‘

The coefficients C, to C, contain squared grid sizes and the right-hand-side RHS con-
tains the divergence of the contributions from convection, diffusion and external forces
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(Equation (2.18)). In this equation the outflow pressure given by Equation (3.9) can be

substituted resulting in

aAdxye + Bpodap.
a + G062y,

o

*‘—‘Cf- Pe Cu' w Crr n +‘C'.w s = RHS —
o+ B )pe + Cupu + Crp P

(Ce + e
The matrix containing the coefficients remains diagonal dominant when a, 5 > 0. After
the pressure in the interior of the domain is solved from the Poisson equation, the pressure
in the outflow cell is updated using Equation (3.9).

3.3.3 Dissipation zone: pressure damping at the free surface

Instead of using a non-reflecting boundary condition, a dissipation zone can be used
where the wave is damped. In the current method, for the damping inside the dissipation
zone a pressure term has been added to the free surface pressure. Physically, this can
be interpreted as the air acting like a damper on the wave. The pressure added to
the atmospheric pressure term at the free surface is chosen as a function of the vertical
velocity at the free surface:

pdmnp(tamn() = [',1’(.'17) T.U{f...’]“,C)_

The damping function «(x) should be chosen such that the wave is damped completely,
and the wave should not reflect at the start of the damping zone. A polynomial form for
the function a(z) is used by [95], and [62] concludes in his report that a linear function is
suitable for the purposes of wave simulation. If a linear damping function a(z) = ar + b
is used, two constants a and b have to be chosen. Here, a is the slope of the damping
function, which determines the rate of the damping. The constant b has to be chosen such
that the damping function is zero at the start of the dissipation zone. The slope of the
damping function is determined hy the characteristics of the wave that is to be damped.
Meskers [62] shows in his report how the slope and the length of the dissipation zone can
be determined after choosing the total reflection that is allowed. In Figure 3.5 the result is
shown. For a number of allowed reflection factors the slope and length of the dissipation
zone are plotted. For regular waves, the following steps have to be taken to determine
the slope and length of the dissipation zone. First, choose the amount of reflection (r4y)
that can be permitted. This amount of reflection is calculated theoretically, and is only
valid for a perfectly regular wave [62]. Then, given the wave frequency and reflection
coefficient, determine the length of the numerical beach using the curved lines. At the
left coordinate axis, the accompanying values are placed. Finally, determine the slope of
the numerical beach, using the straight lines with the values of the right coordinate axis.

Besides the choice of the function a(z), there also are some different possibilities
for the closing wall of the domain, by which we mean the wall opposite of the inflow
boundary.

e In the first option the wave is damped completely, the closing wall of the domain
is a solid wall, no water is flowing out.

e In the second option the wave is damped towards its analytical form. So a 'perfect’
wave is formed at the end of the domain. The closing wall is an outflow boundary.
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Figure 3.5: Combination of required length and slope of the dissipation zone for a certain
allowed amount of reflection (from [62])

at which the analytical velocities are preseribed. This works very nicely in the case
of wave propagation simulations without an object that disturbs the wave.

/1 @ In [95] and [62] a combination of the dissipation zone with a Sommerfeld boundary
condition is used. In this case, the closing wall is an outflow boundary where
a Sommerfeld boundary condition has been applied. The Sommerfeld boundary
condition is tuned for the smallest frequencies of the wave in the domain, whereas
the dissipation function is tuned for the larger frequencies.

In the current model we aim for the most general solution, so damping towards zero (the
first option) is used. The wave is only damped in the travelling direction, whereas the
tangential sides of the domain are solid walls, which have been placed at such a distance
that the simulation results are not influenced by them.

When applying this to a rather high wave, some problems arise. The water level in
the domain increases linearly in time, which is due to the fact that the net amount of
water flowing into the domain at the inflow boundary is positive over one period and not
zero, the so-called Stokes drift [22]. This is shown in Figure 3.6, where the results of a
wave simulation are shown with a period of 14.44 s, a wave height of 32.6 m, a wavelength
of 325 m and the water depth is 600 m. In the left of the figure the amount of water
flowing into the domain is shown. Clearly, the integral over one period is not zero but
positive. Because there is a solid wall at the end of the domain, the total amount of water
is determined by the in- and outlet at the inflow boundary only, which causes the water
level to increase linearly in time as is shown in the right of the figure. Because the wave
is quite high, there is a very large increase of the water level, which is directly reflected
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Figure 3.6: Left: Amount of water flowing into the domain; right: total amount of water
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Figure 3.7: Wave elevation (top) and difference in wave elevation between theory and
simulation (bottom) without outflow boundary (left) and with an outflow boundary where
hydrostatic pressure is prescribed (right)

in the mean of the wave elevation as can be seen in the left of Figure 3.7. There are
also some problems near the inflow boundary, where the wave is disturbed. Due to the
reflections from the outflow boundary and the rise of the water level, the velocities and
water height in the interior of the computational domain do not fit to the analytically
prescribed velocities at the inflow boundary any more.

There are several ways to solve this increase of water problem. One way is to determine
the net inflow and add an outflow boundary where this amount of fluid is forced out of
the domain. A disadvantage of this method is, that it can only be applied to regular
waves in a nice way, in which case it is known how much fluid should flow out of the
domain at what time, due to the regularity.

A more flexible method has been found by changing the solid wall at the end of the
domain into an outflow boundary, where hydrostatic pressure is prescribed. In a perfect
situation, the water height at the end of the domain always equals the calm water level
because of the damping of the wave. The fluid simulation will always try to maintain
that level when the hydrostatic pressure for a water level equal to the water depth is
prescribed at the outflow boundary. This method has been adopted in the dashed line
in the right of Figure 3.6 and in the right of Figure 3.7. Instead of the linear increase
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of water, a fluctuation of the water volume around the initial amount of water can be
observed. The fluctuation is due to some reflections, which can be concluded from the
fact that the period of the fluctuation is 8 wave periods, which means that the reflected
wave travels 8 wavelengths before it reaches the starting position, the outflow boundary,
again. In a domain consisting of 4 wavelengths, this is exactly 8 wavelengths (back and
forth in the domain). The increase and decrease of the total water level during 8 periods
is less than 0.5%.

3.4 Free surface velocities

In Section 2.3.10 the treatment of the velocities in the neighbourhood of the free surface
is explained. It was concluded that special care has to be taken for the determination of
SE-velocities, which are velocities at the cell face between a surface cell and an empty
cell. In Section 2.3.10 two methods are described, of which a combination is used in
CoMFLOW. In the first method SE-velocities are defined by demanding conservation
of mass in an S-cell. This means that the total flux through the cell faces of the S-cell
should be zero. One problem of this method, which is the origin of instabilities, has
already been described in Section 2.3.10.

Another disadvantage of this method is the inaccuracy in wave simulations as will be
shown here. This was already noticed by Chan et al. [13], who used an extrapolation of
the velocity field instead. The inaccurate prediction of an SE-velocity in case of a wave
simulation can be understood from Figure 3.8. In the right of the figure the horizontal
velocity has been shown as function of the vertical coordinate. The theoretical values
of the horizontal velocity in the neighbourhood of the free surface are indicated by the
solid line. To satisfy div(u) = 0 in the central S-cell, the SE-velocity usg is copied from
the left neighbour velocity (and the vertical velocity of this S-cell vsg is copied from the
lower cell face). Due to the coarseness of the grid, this neighbour velocity is about one or
more meters left of the SE-velocity resulting in an inaccurate prediction of usg sketched
by the dashed arrow in Figure 3.8.

theoretical ugp

S 8 Tugg B -
: 2 o incorrect usg
F | F I S = UFS
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Figure 3.8: Inaccurate prediction of ugp in a wave simulation when method 1 is used

In the second method for SE-velocities it is proposed to determine the velocities by
choosing a direction, from which all SE-velocities in an S-cell are extrapolated. This di-
rection is chosen as the direction where most fluid is present, so the coordinate direction
that is 'most normal’ to the free surface. In the case of waves, this is mostly the negative
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z-direction. As stated before, constant and linear extrapolation can be used. In wave
simulations linear extrapolation gives superior results, since then the velocities are esti-
mated very accurately. The impact of the different methods for SE-velocities in a wave
simulation can be seen in Figure 3.9. Here, an irregular steep wave propagates through
an empty domain. In the figure a snapshot of the wave elevation is shown at the time
point that the wave is most steep. The asterisks show measurements of this wave. The
mass conservation method does not predict the wave elevation accurately for this steep
wave. Both constant and linear extrapolation produce a much better resemblance with
the measurements. The simulation using linear extrapolation is most accurate. Based on
the simulation of waves in this section, the extrapolation method should be chosen for
determining the SE-velocities. However, in Section 2.3.10 it was concluded that linear
extrapolation cannot always be used for stability reasons. The method that is adopted
here is a combination of linear and constant extrapolation as explained in Section 2.3.10.

time is 375 s
25
- - SE-velocities: div{u)=0
- = SE-velocities: constant extrapolation
EOT SE-velocities: linear extrapolation
‘ * model test
15+
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2
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Figure 3.9: Wave elevation of an irregular wave where different SE-velocity treatments
have been compared: mass conservation in S-cells, constant extrapolation and linear
extrapolation

3.5 Wave propagation using different VOF methods

In Section 2.4 a few different VOF methods have been described and their performance
has been tested using standard kinematic tests and a dambreak simulation. Four different
methods have been used. First, the original Hirt-Nichols method has been used. where the
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interface is implicitly reconstructed in a piecewise constant manner. To avoid flotsam and
jetsam and to take care of mass conservation, a local height function has been introduced.
A more sophisticated method for the displacement of the free surface is the method of
Youngs [98]. The free surface is reconstructed using piecewise linear elements and the
displacement is based on this reconstruction. Youngs' method has also been used in
combination with the local height function to ensure perfect mass conservation. In all
simulations in this section, the extrapolation method for free surface velocities has been
used.

First, the different VOF methods are tested on the propagation of a regular wave. The
wave has a period of 14.44 seconds and a length of 325 meter. The wave height is 10.14
meter and the water has a depth of 600 meter. At the outflow boundary a Sommerfeld
condition is used. Figure 3.10 shows the resulting free surface profile after a simulation
time of four wave periods. Also the error in the calculated free surface profile compared
to the theoretical solution is shown, calculated by

Ew(-r) = M(J“) — mn(z)|/H,

where 7 is the calculated wave elevation, 7, the theoretical wave elevation, and H the
wave height. From the resulting error E,,, plotted in the bottom of Figure 3.10, it can be
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Figure 3.10: Wave elevation (up) and difference in wave elevation between Stokes 5th
order theory and simulation (down) for different VOF methods: Hirt-Nichols and Youngs
without and with a local height function

concluded that Youngs’ method gives more accurate results in a regular wave simulation
than Hirt-Nichols’ method. Youngs without a local height function is best in the interior
of the domain, but has a larger error at the outflow boundary than Youngs with a local
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height function. No reason has been found for this behaviour. In all four simulations
relatively little mass was lost. When examining the total amount of water in an area
of 30 m high around the calm water level, all four methods have mass loss within 0.5%
of the amount of water in that area. The calculation times of the four simulations are
comparable. The factor between the calculation times of Youngs and Hirt-Nichols is 1.2.
Youngs method does not take much extra calculation time in this simulation, since the
interface reconstruction is only performed in a small percentage of the total number of
cells (in average in 130 of the 6000 cells a reconstruction is made).

The four different VOF methods are also used in the propagation of a steep wave event.
The wave event is taken from an experiment at MARIN, to be more precise experiment
114002, which is deseribed in Section 3.6.2. The wave is generated at the inflow boundary
by prescribing a superposition of linear wave components derived from Fourier analysis of
the measured wave elevation in the experiment. Figure 3.11 shows the wave elevation at
the position and time point where the wave is high and steep. Youngs’ method without

..... HN-
15¢ " HN+
Ja — Youngs-
‘. -==-Youngs+
10 A ~ * experiment

wave elevation (m)

\
< i 1 L —
800 550 800 650 700 750 800 850 900
X-axis (m)

Figure 3.11: Wave elevation of a steep wave event using the four different VOF methods:
Hirt-Nichols” VOF and Youngs' VOF with and without a local height function

a local height function results in the highest wave and gives the best agreement with the
measurement. Hirt-Nichols with and without local height function give similar results,
both are pretty good, but the wave crest is a bit flattened compared to the experiment.
Youngs with a local height function performs worst, which is remarkable considering the
good performance of this method in Section 2.4. The explanation for this result has not
yet been discovered.

To conclude, Youngs’ method performs best in wave simulations, its results are most
accurate. A problem arises when combining Youngs' method with a local height function
in the steep wave event shown in this section. So, this combination should only be used
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with care until this problem is solved. Unfortunately, due to the choice of free surface
velocities that are extrapolated, Youngs' method without local height function can cause
loss of mass as shown in the dambreak simulation in Section 2.4.9. But in a simulation
with a very smooth free surface as in the wave simulations, only a very small amount of
water is lost using Youngs’ method. So, for wave simulations, Youngs' method without
local height function can be used without problem. But when performing a more violent
simulation with a much distorted free surface, mass can be lost as shown in the section just
mentioned. Mass can be perfectly conserved using Youngs’ method, when it is combined
with div(u) = 0 in surface cells. But using div(u) = 0 for the determination of free
surface velocities results in inaccurate wave simulations as shown in Section 3.4 and can
cause instabilities in the computations. Therefore, this option should not be used. The
safest way is to use Hirt-Nichols’ method with local height function, but this can be a
bit less accurate.

In the remainder of this chapter Hirt-Nichols’ method combined with the local height
function is used for the displacement of the free surface.

3.6 Validation of wave propagation

For the validation of wave propagation in CoMFLOW several tests have been performed.
Firstly, two-dimensional wave propagation without an object in the flow has been inves-
tigated. Attention has been paid to reflections at the outflow boundary, the influence of
the artificial viscosity present due to the upwind discretisation and the size of the grid
and time step necessary for an accurate simulation of waves. Especially, steep and high
waves, which are the most important waves in green water and wave impact calculations,
have been studied.

Secondly, simulations have been performed of wave loading on a spar platform. The
waves are regular, very long and quite low. The simulation results have been compared
with experimental results that have been provided by the Maritime Research Institute
Netherlands (MARIN).

3.6.1 Two-dimensional wave propagation: regular waves

A very extensive study of two-dimensional wave propagation without an object in the
flow has been performed by Meskers [62]. Some of the most important results will be
shown here also. In this section attention will be paid to the number of cells and the time
step that are needed for an accurate description of the wave. The simulations have been
performed and compared with both the linear and the 5th order Stokes theory. Also, the
influence of the artificial viscosity has been studied by performing a simulation of many
wavelengths during many periods. The next section is devoted to higher and steeper
waves, These waves have been studied by simulating a design wave, which is a kind of
mean shape of a wave in a linear random sea-state of which the power spectrum is given.

In this section a study of the necessary number of grid points and time steps for an
accurate wave simulation is presented. Also a comparison of the use of a Sommerfeld
boundary condition with a damping zone is made. The simulations have been performed
for one example of a wave, which is one of the characteristic waves in an FPSO field with
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Fig. | H (m) | # cells/)\ | # cells/H | # dt/T theory outflow
3.12 ] 20.28 | 60 250 Airy/Stokes5 | damping
3.13 | 10.14 |60 250 Stokesd Sommerfeld
3.14 | 10.14 | 60 65/125/250/500 | Stokes5 damping
3.15 | 10.14 | 30/60/90 250 Stokes5 damping
3.16 | 10.14 | 60 3/6/9 250 Stokesh damping

Table 3.1: Characteristics of simulations run to investigate the propagation of two-
dimensional regular waves

a water depth of 600 meter. This wave has a period of 14.44 seconds, resulting in a wave
length of 325 meter. The wave height is varied between 10.14 and 20,28 meter. From
the conclusions of Meskers in [62] we see that the characteristic parameter settings that
have shown to give an accurate simulation of this example wave can also be used for deep
water waves with different periods and wavelengths.

In the simulations of the wave shown in this thesis, a few numerical parameters have
been varied, namely the number of time steps per period, the number of cells per wave-
length, and the number of cells in the wave height. The results have been presented as
the resulting wave elevation after a simulation time of four periods. The domain consists
of four wavelengths in case of using a damping zone, of which two wavelengths are used as
damping zone. The domain consists of two wavelengths when the Sommerfeld boundary
condition is used.

In Table 3.1 an overview is given of the simulation characteristics, of which the results
are shown in Figures 3.12 to 3.16.

In Figure 3.12 Airy wave theory and 5th order Stokes theory have been used for the
initial condition and the inflow boundary condition. In the lower picture the difference
between the simulation and linear theory and Stokes 5th order theory, respectively, has
been shown. Clearly, the 5th order Stokes results are much better than the linear Airy
wave results, which is consistent with the fact that H/A equals 0.06, outside the validity
region of linear theory [61].

Figure 3.13 shows results of two simulations with different outflow methods. First,
the Sommerfeld outflow boundary condition is used that is based on the wave equation.
Second, a damping zone is added as in the other simulations in this section. Both methods
give similar results. The Sommerfeld boundary condition lets the wave flow out of the
domain properly without much disturbance in the domain. The advantage of using the
Sommerfeld condition over a damping zone is the number of grid cells that need to be
used. In this simulation, the number of grid cells in the simulation using a damping zone
is twice as large as the number of grid cells in the Sommerfeld simulation. On the other
hand, the Sommerfeld condition can only be used in case of regular waves that are not
too much disturbed. Further, the wave velocity should be given a priori, which is only
possible when the wave characteristics are known.

In Figure 3.14 the number of time steps per period has been altered. From the figure
it can be seen that more time steps per period results in a more accurate wave simulation.
The difference between 250 and 500 time steps per period is not very large. From this it
is concluded that 250 time steps per period is enough for an accurate simulation result.
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Wave elevation with use of different wave theories
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Figure 3.12: Wave elevation (top) and difference in wave elevation between theory and
simulation (bottom) with initialisation using linear or Stokes 5th order theory
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Figure 3.13: Wave elevation (top) and difference in wave elevation between theory and
simulation (bottom) with initialisation using linear or Stokes 5th order theory
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An investigation of the number of cells per wavelength has been summarised in Figure
3.15. The accuracy of the wave simulation increases with a larger number of cells per
wavelength. There is no difference between 60 and 90 cells per wavelength, so 60 cells
per wavelength is enough to capture the wave.

Figure 3.16 shows the results of altering the number of cells in the wave height.
The grid was equally stretched towards the calm water surface in the three different
simulations. There is not a large difference between the results. For all three simulations,
the difference between computation and theory is about 5% of the wave height. In the
case of 9 cells in the wave height, the simulation shows some small peaks, especially in
the crest and trough of the wave. This is due to the ratio between dr and dz, which are
the distances between two grid lines in z and 2 direction, respectively. Meskers gives in
his report an estimate for the minimum required aspect ratio to prevent these wiggles,
based on a series of simulations. In the future, this point should be investigated further
to understand the nature of the wiggles.

Dissipation of energy in wave simulations

For the discretisation of the convective terms in the Navier-Stokes equations a first order
upwind scheme has been used as explained in Section 2.3.5. Compared to a central
discretisation the upwind discretisation can be interpreted as a central discretisation plus
an extra diffusive term. This term adds extra viscosity to the physical viscosity p/p. The
amount of extra viscosity is equal to uh/2 where u is the velocity and h the mesh size.
So this term is dependent on the position in space.

When simulating waves, we have to investigate the influence of the artificial diffusion
on the wave propagation. From the results in the previous section it can be seen that the
influence is definitely not very large over a few periods, because no real damping is visible
after the four periods that have been simulated. To get a better idea of the influence
of the artificial viscosity, a wave has been simulated for many periods in a domain of 25
wavelengths. The wave has a period of 1.9 seconds and a wave height of 0.16 meter.

In Figure 3.17 the wave elevation as function of time and as function of distance to
the inflow boundary are shown. In the left of this figure the wave elevation as function
of time at a position 14 wavelengths from the inflow boundary is shown. The simulation
is started with an undisturbed (and thus undamped) wave field. During the simulation
the amplitude of the wave decreases, until the stationary damping is reached after about
58 seconds. At this position, 14 wavelengths from the inflow boundary, the wave height
has decreased from 0.16 meter to 0.125 meter, which is a decrease of 22% of the wave
height. From the right picture it can be seen that the wave height has decreased 28% at
20 wavelengths behind the inflow boundary after a simulation time of 100 periods. An
estimate of the maximum artificial viscosity that is added due to the upwind discretisation
can be found by calculating uh /2. For the velocity u the maximum of the mean velocity
over one period is taken, which according to linear theory is equal to u = gAk/w = 0.26
m/s. So the approximate maximum artificial viscosity is given by

Kare = wh/2 2 0.26 % 140/1500 / 2 = 0.012 m?/s,

whereas the physical kinematic viscosity » is equal to 107® m?/s. To check whether
the damping in Figure 3.17 is really caused by the artificial viscosity, simulations have




102

Chapter 3. Wave generation and propagation

Wave elevation for different number of time steps per period
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Figure 3.14: Wave elevation (top) and difference in wave elevation between theory and
simulation (bottom) varying the number of time steps per period

Wave elevation for different number of cells per wave length
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Figure 3.15: Wave elevation (top) and difference in wave elevation between Stokes 5th
order theory and simulation (bottom) for different number of cells per wavelength
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Wave elevation for different number of cells in the wave haight
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Figure 3.16: Wave elevation (top) and difference in wave elevation between Stokes 5th
order theory and simulation (bottom) for different number of cells in the wave height

been performed with less artificial viscosity (only 10% of the artificial viscosity is added)
and with a central discretisation. The simulation with the central discretisation has
been performed for 58 periods in a domain of 12 wavelengths, which is because the grid
sizes and time step have to be very small in a calculation with a central discretisation.
In the left part of Figure 3.18 the wave elevation at 9 wavelengths behind the inflow
boundary has been given for the different amounts of added viscosity. It can be clearly
seen, that the amplitude of the wave is decreasing more in time when the added viscosity
becomes larger. This is also shown in the right part of Figure 3.18, where the wave height
decrease is shown after 100 periods of simulation at the different locations behind the
inflow boundary. We can conclude from this figure that there is a large influence of the
artificial viscosity, which has a damping effect on the wave. But clearly, this is not the
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Figure 3.17: Wave elevation as function of time 14 wavelengths behind the inflow bound-
ary (left) and as function of place after a simulation time of 100 periods (right )
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only reason for dissipation of energy in the wave simulations. Although in the central
diseretisation no artificial viscosity is present, the wave has been damped much more
than it should be according to the physics. This is due to the boundary conditions and
the displacement of the free surface that sometimes are chosen to be a bit dissipative to
get a stable solution.

Summarising, for wave simulation in a_very Jlong domain, where many periods are
simulated, a clear damping is visible. This dissipation of energy is for a great deal due
to the artificial viscosity that is added when using an upwind discretisation. But another
part of the energy dissipation is coming from the treatment of the boundaries and the
free surface. Although an energy preserving discretisation is used (see [26]), some energy
is lost in other parts of the algorithm. The loss of energy is only a few percent in a
small domain when not that many periods are simulated. So for the applications of wave
loading on ships, the influence will not be very significant.
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Figure 3.18: Left: wave elevation at 10 wavelengths behind the inflow boundary; right:
decrease of wave height after a simulation time of 100 periods at different distances from
the inflow boundary

3.6.2 Two-dimensional wave propagation: steep wave events

For the validation of irregular steep or high waves, waves generated on basis of Newwave
theory have been used [90]. Such a wave event has been developed as a mean wave shape
of a high wave in a given linear random sea-state. The wave is modelled by a superposition
of linear waves, and thus is a linear wave. Of course high waves are not linear of form,
and therefore, mostly some nonlinear corrections are being made to the waves. The waves
are sometimes used as a design wave, because they have the nice feature that the position
and time of the largest impact can be predicted beforehand.

At MARIN these design waves have been used in the experimental program of the
SafeFLOW project to get a better understanding of wave slamming. Before the experi-
ments with a vessel in the waves is performed, the waves have been calibrated in the basin
without the presence of a vessel. The measurements of this undisturbed wave elevation
have been used to compare our numerical method with. The characteristics of the wave
events are described in Table 3.2 with H,,, the significant wave height and Tj the peak
period.
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Test no. | single wave event description

112003 | 1/14 steep wave in sea state steepness for 100 year return period

113001 | mean highest wave for 100 year return period

114002 | 1/16 steep wave In sea state steepness for 100 year return period

119001 | 1/18 steep wave in sea state steepness for 100 year return period

120001 | highest wave in design wave spectrum with F,,, = 12m, Ty = 125 ,v = 2.5

121001 | steepest wave in design wave spectrum with H,,, = 12m, Ty = 125 ,v = 2.5

Table 3.2: Characteristics of the wave events, for which the simulations are compared
with measurements

The waves have been generated at the inflow boundary of the numerical wave tank by
using a Fourier transform of the time trace of a measured wave height. The calculated
wave elevation in the domain is compared to the measurements at positions of 240, 480,
720, and 960 m behind the inflow boundary. Detailed measurements, using 19 wave
probes, have been performed at the position where the wave is expected to be highest
between 666 and 774 m behind the inflow boundary. In the left of Figure 3.19 the
calculated wave height of test 112003 at 720 m behind the inflow boundary, where the
wave is expected to be highest, is compared to theory and experiment.

The comparison with the experiment is very good. The amplitude of the simulation
is a bit smaller than in the experiment, which has been observed before as a consequence
of using Hirt-Nichols’ method for the free surface displacement. Also the dissipation
of energy due to the upwind discretisation could have an influence on the wave height.
The simulation has been performed on two different grids, using 600 x 50 grid cells and
1200 x 100 grid cells. The grid refinement does not have a large influence, almost no
difference can be observed between the two grids. In the left of Figure 3.19 also the wave
elevation predicted from linear theory, extrapolated from the FFT of the measured wave
elevation, is shown, which is very different from the calculations and measurement. This
means that COMFLOW has correctly dealt with the nonlinearities that are present in
reality. The simulations of the other events have all been performed with the fine grid of
1200x100 grid points. The results of tests 113001, 114002, and 119001, which are shown
in Figures 3.20 to 3.22, are much the same as the results of the first test. From the left
of Figure 3.20 it can be noticed that the wave does not completely reach the height of
the experiment in the first peak. This is confirmed by the wave profile at 430 s, where
the wave has collapsed a little. In Figure 3.23 and 3.24 the results of tests 120001 and
121001 have been shown. Again, the simulations do not reproduce the exact height of
the first peak at about 395 seconds in both tests. Nevertheless, the other parts of the
simulation are fairly close to the experiment.

The simulations in this section show that using FFTs to initiate the wave could well
be used to reproduce a wave of the basin. To be sure that the wave is well reproduced in
the simulation the wave must be compared with the undisturbed wave in the basin first.
When it has been confirmed that the wave is the same as in the basin, it can be used
for a simulation of wave impact. Further, the results show that COMFLOW reproduces
nonlinearities from the experiment, but does not always reproduce the height of the wave
exactly.
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Figure 3.19: Test 112003: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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Figure 3.20: Test 113001: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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Figure 3.21: Test 114002: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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Figure 3.22: Test 119001: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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Figure 3.23: Test 120001: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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Figure 3.24: Test 121001: wave elevation at wave probe 4, 720 m behind the inflow
boundary (left) and wave elevation at two different time points (right)
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3.6.3 Regular wave loading on a spar platform

For the validation of wave loading, simulations have been performed of regular wave
loading on a spar platform. A spar platform is a floating structure for drilling and the
production of crude oil in the ocean. Typically, a spar is a long cylindrical steel structure
with 30-50 meters in diameter and 200 meters in length. In Figure 3.25 a schematic
picture and a photo of the Genesis spar platform are shown.

Figure 3.25: Left: schematic picture of a spar buoy, taken from http://www.ae.ic.ac.uk/;
right: photo of the Genesis platform, taken from http://www.offshore-technology.com /

At MARIN experiments with a spar have been performed, where the spar was fixed
while regular waves hit the structure. In full scale the spar has a total length of 220 m
and a diameter of 35 m, the draft is 200 m in a water depth of 290.35 m. The spar has
been divided into three horizontal segments, on which forces have been measured (see
Figure 3.26).

20m

12m | Tl Figure 3.26: Configuration of the spar
buoy, which is divided into 3 segments: the
part above the calm water surface, the part

188 m 12 meter below the calm water surface and
the remainder

The characteristics of the waves used in the simulations that have been performed
are given in Table 3.3. The spar buoy has been placed at a distance of one wavelength
behind the inflow boundary. About 100 m behind the cylinder, a dissipation zone of one
wavelength has been added to prevent the wave from reflecting into the domain.
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Test No. | frequency | period | wave height wavuleugm
101 0.26 rad/s | 24.17s | 10.77T m 866 m
201 0.26 rad/s | 24.17 s 23.62 m 866 m
001 0.48 rad/s | 13.09 s 10.91 m 274 m

€

Table 3.3: Wave characteristics of simulations of loading on a spar platform

The simulations of wave tests 101 and 102 have been performed on a grid with about
60 cells per wavelength, 15 cells in the transverse direction and 52 cells along the total
height of the domain. The grid is stretched in the z-direction towards the calm water
level. The wave in these tests is the same, except that the wave height in test 201 is
about two times as large. The results of test 101 are shown in Figure 3.27 to 3.29.
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Figure 3.27: Test 101: Wave height 300 meter in front

of the spar (left) and pressure
(middle) and wave height (right) at the left of the spar
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Figure 3.28: Test 101: Total force on the spar in the three coordinate directions: hari-
zontal (left), transverse (middle) and vertical (right)

The global impression of the results is that there is a good agreement between the
simulation and the model test. In the left of Figure 3.27 the wave height at about 300
meter in front of the spar has been shown. The comparison between the experiment and
the simulation is satisfying. No phase difference is present and the amplitude of the wave
is very much the same except for the trough of the wave, which is a bit flatter in the
simulation. In the other two pictures of Figure 3.27 the wave height and pressure at the
side of the spar is plotted. The results give the same impression as in the previous figure.
The wave is not disturbed by the spar, which is a logical result when comparing th(. very
large wavelength to the diameter of the spar. \
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Figure 3.29: Test 101: Horizontal force on the three different segments of the spar: upper
segment (left), mid segment (middle) and lower segment (right)

In Figure 3.28 the measured forces on the center of gravity of the spar platform
have been compared to the calculated forces. The horizontal force, which is the force in
the direction of the wave, has the largest amplitude and shows a very good agreement.
The force in the transverse direction is and should be very small because of symmetry
characteristics. Tn the vertical force a clear difference is observed between the measured
and calculated amplitude, which cannot be explained at the moment.

The calculated forces on the different segments, which are shown in Figure 3.29, are
in good agreement with the measurements. The force on the lower segment is almost
equal to the total force on the spar. The upper segment lies above the calm water level,
so this segment comes completely out of the water every period, where the force equals
zero. The non sinusoidal form of the force on the mid segment is also due to the fact that
the wetness of the segment is not constant throughout a period.
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Figure 3.30: Test 201: Wave height 300 meter in front of the spar (left) and horizontal
force on the upper segment (right)

The results of test 201 are much the same as the results presented for test 101. To
get a good idea of the agreement between this model test and the simulation, the wave
height 300 meter in front of the spar and the forces on the different segments are shown
in Figures 3.30 and 3.31. The wave is really flatter in the troughs, which is also reflected
in the horizontal force on the upper and mid segments where the simulation results show
a smaller amplitude of the force. The horizontal force on the lower segment is in good
agreement with the experimental data.

The third wave loading simulation that has been performed, deals with a much shorter
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Figure 3.31: Test 201: Horizontal force on the mid segment (left) and on the lower
segment (right)

(and more realistic) wave. In this case, the influence of the spar on the wave is not
negligible as it was in the previous cases. This is also shown in the results of the simulation
of this wave (with the same number of grid cells per wavelength), of which the wave height
at the front of the spar and the total horizontal force on the spar are shown in Figure
3.32 (coarse grid). Many more cells are needed around the spar, therefore also stretching
in z and y direction is applied in the mid and fine grid of Figure 3.32. The fine grid
has about 3.5 times more grid cells in the neighbourhood of the spar than the coarse
grid. From Figure 3.32 it can be concluded that the fine grid reproduces the model test
very well, whereas the other grids are not accurate enough. In Figure 3.33 time traces of
the horizontal forces on the upper and mid segment of the spar have been shown. Both
graphs show a rather good agreement with the experiment.

3.6.4 Green water on the deck of a moving FPSO

A very demanding test case for the current simulation method is the calculation of loads
due to green water on the deck of a moving FPSO (Floating Production Storage and
Offloading vessel). For validation, an experiment performed at MARIN has been used.
Measurements were done of the wave in front of the FPSO, relative wave heights in the
neighbourhood of the FPSO, water heights and pressures at the deck of the FPSO and
the pressure at some places at a deck structure. The FPSO has a total length of 260 meter
and is 47 meter wide. The draft is 16.5 meter, the total height of the deck at the fore
side of the FPSO is 25.6 meter. There is a bulwark extension of 1.4 meter. At the deck
a box-like structure has been placed, at which forces and pressures have been measured.
The bow has a fully elliptical shape without flare. The wave has a period of 12.9 seconds
and the wave length is 260 meter, equal to the length of the FPSO. The wave amplitude
is 6.76 meter. To be sure that the same wave has been used in the experiment and in
the simulation, the wave measurement 230 meter in front of the bow of the vessel has
been used to initiate the wave at the inflow boundary. The signal ﬁom the wave probe
has been decomposed in linear components that are prescribed at the inflow boundary.
The motion of the ship is prescribed using the measurements of the experiment. The
simulation has been performed with only half of the FPSO in a relatively small domain
around the bow of the vessel. A grid with 100 x 60 x 80 grid points has been used,
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Figure 3.32: Test 001: Comparison of different grids: wave height at the front of the spar
(left) and horizontal force on the total spar (right)
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Figure 3.33: Test 001: Horizontal force on the upper segment (left) and on the mid
segment (right) using the fine grid ~

resulting in a calculation time of about 4.5 hours. In Figure 3.34 some snapshots of the
simulation are shown during the first period of the simulation. The large wave is building
in front of the vessel, after which it starts to flow onto the deck. The water flows off the .
deck when the ship is straightening.

In Figure 3.35 the relative wave height in front of the vessel is shown. In both pictures
there is a good agreement, such that it can be concluded that the motion of the vessel
relative to the wave motion does not differ much in simulation and experiment. The
water height on the deck of the vessel has been compared in Figure 3.36. When the water
has just flowed onto the deck (left figure), the agreement between the experiment and
the simulation is reasonable. The moment in time the wave probe gets wet is almost the
same, But in the first periods, the water height is somewhat higher in the simulation,
whereas the total time the water hits the wave probe is shorter. Closer to the deck
structure, in the right of Figure 3.36, the total amount of water passing the wave probe
is much smaller in the simulation. This same behaviour can be seen from the pressure
on the deck and the deck structure. Whereas the pressure at the deck just behind the
fore point of the FPSO agrees reasonably well, the pressure at the deck structure is much
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Figure 3.34: Snapshots of half of an FPSO shipping green water

lower, indicating that in the simulation only a small amount of fluid reaches the deck
structure. The velocity of the water on the deck is quite well predicted by the simulation.
The moment in time the water reaches the deck structure is almost exactly the same in
experiment and simulation.

There can be several reasons for the differences between simulation and experiment.
Firstly, the grid may not be fine enough to simulate the flow on the deck correctly. The
vertical size of a cell at the deck is about 0.5 m, implying that there are at most 10 cells
in the water height. Further, there can still be a problem with the phase between the
wave and the motion of the vessel that are both prescribed, although this difference is
seen when examining Figure 3.35. To check that, a fully interactive simulation would
need to be performed, where the motion of the vessel is not prescribed, but caleulated
during the simulation. At the moment, this is not feasible, but in the future this option
will be available. A first attempt in this direction is presented in [51] and [23], where a
wedge and a box are falling into calm water. Another way of matching the vessel motion
and the incoming wave is to calculate the motion and wave kinematics using an external
code and prescribe the caleulated wave and vessel motions in the CoMFLOW simulation.
This method has been used in Chapter 4. A last reason for the differences between the
simulation and experiment could be the geometry of the ship, which is an approximation
of the ship used in the experiment, based on the given characteristics.
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Figure 3.35: Relative wave height 30 meter (left) and 5 meter (right) in front of the FPSO
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Figure 3.36: Water height on the deck of the FPSO: at the fore side of the bow (left) and
near the deck structure (right)
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Chapter 4

Generation of waves using zonal
modelling

4.1 Introduction

In order to initialise waves in a numerical wave tank like CoMFLOW, several methods
can be used. First, the waves can be generated using a wave maker, which is modelled by a
moving object. Second, the waves can be generated by prescribing velocities using known
wave theories, for example Airy wave theory or 5th order Stokes theory. This method has
been used in the previous chapter. The third method for the generation of waves uses
zonal modelling, where the domain is split into a domain focused on the object in the flow
and a far wave field domain. In the smaller domain CoMFLOW is used for the local flow
computation and the far wave field kinematics are calculated using an external code (see
Figure 4.1 for a schematic picture). The physics covered by the external code can and
will be more limited than in the local domain, where the full Navier-Stokes equations are
solved. Thus, zonal modelling is used to increase the efficiency of the simulations. The
water velocities caleulated by the external code are preseribed on the open boundaries of
the Navier-Stokes domain. Also the motion of the object is prescribed from the external
code. This method has been adopted in the current chapter.

4.2 Description of the zonal modelling method

The external code for the calculation of the outer domain is a linear diffraction code
based on potential theory. The diffraction code is able to calculate the wave kinematics
and vessel motions, but can not calculate the local flow phenomena close to the vessel
like wave impact and overturning waves. The local flow will be calculated by the Navier-
Stakes solver, which is able to produce arbitrary interface configurations and can predict
local wave impact. However, the use of the Navier-Stokes solver is limited to the close
surroundings of the vessel because of the required computational effort. So, as sketched
in Figure 4.2, first the diffraction code is used to calculate the far wave field and the
vessel motions and then the Navier-Stokes equations are solved in the local domain to
calculate the local wave dynamics. This is a one-way coupling, the Response Amplitude
Operator (RAO’s) calcnlated by the diffraction code in the frequency domain are used
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Figure 4.1: Zonal modelling: in small domain around the bow of the vessel local impact
calculations will be performed by CoMFLOW; the wave kinematics and vessel motion
follow from an efficient external method

to prescribe the initial flow in the complete Navier-Stokes domain and to prescribe the
velocities and the water height at the boundaries of the Navier-Stokes domain during
the time domain simulation. The advantages of using zonal modelling for wave impact
simulations are listed below.

e A diffraction code is very efficient and can easily calculate the fluid kinematics and
response of the vessel in a three-hour storm. From these results a critical event can
be chosen, which will be simulated with COMFLOW.,

e The motion of the ship is calculated by the external code, and is used to prescribe
the ship motion in the local domain calculation.

e The boundaries of the Navier-Stokes domain can be prescribed using the calcu-
lated wave kinematics by the diffraction code. The kinematics calculated by the
diffraction code already consist of a part of the incoming wave and a part of the
diffracted and radiated waves due to the moving object. This is a large advantage
above prescribing a wave on the open boundaries using a wave theory, because in
that case only the incoming wave components are prescribed.

To begin with, a linear code has been selected for the far wave field in order to gain
experience on how far this method can be stretched as a first step towards developing
an engineering tool. In this thesis only preliminary results are shown and problems that
were met during the investigation are indicated. The zonal modelling method for wave
generation will be investigated further in a future project.

An interface has been created, for coupling of the inner Navier-Stokes domain to the
outer diffraction domain. Input for the interface are the wave kinematics calculated by
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Figure 4.2: A diffraction code calculates the vessel motions and wave kinematics at a
grid of points; these are used to give the initial configuration in the smaller Navier-Stokes
domain and the velocities at the open domain boundaries

the diffraction code. In the interface, time series are created for specified wave conditions,
using the diffraction data. Based on the time series of wave height and vessel motions
(which can be for example a 3-hour storm), an event of a few wave periods is selected to
be calenlated by CoMFLOW. Output from the interface are the kinematics of the wave
field and the ship motion. The interface consists of the following steps:

—

. Read the output of the diffraction analysis program. The diffraction program has
been run for a specified geometry at a range of wave frequencies w,, and wave
directions 3, and has produced RAO’s (or transfer functions) for 6 degrees-of-
freedom vessel motions, and transfer functions for pressure and velocities in a grid
surrounding the vessel (the dots in Figure 4.2). The transfer functions are dependent
on the wave frequency and wave direction, and are given by U(wm. 3,), V(wim. )
W(wm, 8,) and P(wy, B,) for the velocity components and pressure, respectively.

2. Specify wave conditions, for which a simulation will be run. Several conditions can
be chosen, for example conditions based on the JONSWAP spectrum (a spectrum
based on a wave measurement program in the North Sea [22]). or a regular wave.

3. Generate time series belonging to the specified wave conditions using the transfer
functions of the diffraction analysis, For example, the time series for the horizontal
velocity in a point P is given by

'Up(t) = Z Z &‘711.12[1'}3(@",. If")‘”iw"'t.

m n
with @, the complex amplitude, which is given by
U = A(COS Oppypy + 18I0 Dy ).
Here, ¢y, is the phase angle belonging to wave component (m.,n).

4. Calculate time series of the vessel motion. Select from the time series of wave

elevation and vessel motions a wave event by specifying a start and end time for
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the COMFLOW simulation. This event is chosen such that a critical situation
oceurs with green water risk or bow slamming due to a steep wave. For example, a
high wave event can be chosen, where the deck level of the ship is expected to be
exceeded by a high wave based on examining the relative wave motion.

5. Interpolate the transfer functions to the grid used in COMFLOW and prepare the
data to be read by CoMFLOW. The data needed are the initial velocity and pres-
sure field and initial position of the vessel, and during the time domain simulation
the boundary conditions at the open domain boundaries and the vessel motion.

4.3 Simulation of an irregular wave

The first test case that has been run with the zonal modelling method is the simulation of
a two-dimensional linear irregular wave without an object in the flow. The wave has wave
height H, = 0.455 m, period T, = 12 s and the water depth is 400 m. The JONSWAP
wave spectrum has been used w1th 80 frequencies, The COMFLOW domain is 250 m

" long. The kinematics calculated by the diffraction code have been prescribed at the inflow

and outflow boundary. The kinematics above the mean sea level are calculated using
Wheeler stretching, because no theoretically correct linear wave kinematics exist there.
The result of COMFLOW perfectly agrees with the predicted linear wave (see the left
of Figure 4.3, where theory and simulation are on top of each other). This demonstrates
correct implementation of the interface, the assumption that these waves behave linearly,
and that CoMFLOW is run with sufficient resolution and does not introduce unphysical
nonlinearities for this wave train.

wave elevation (m)
wave elevation (m)

0 10 2 o 40 50 &0
time (s) time (s)

Figure 4.3: Time trace of an irregular linear wave (left) and nonlinear wave (right)
computed with prescribed velocities from linear diffraction theory; the time trace is taken
halfway the COMFLOW domain; note the difference in the vertical scale

When using the same wave, but ten times higher (H, = 4.55 m), the wave has become
nonlinear. There are differences now between COMFLOW and the predicted linear wave
(see the right of Figure 4.3). These differences have two origins. Firstly, the wave has
become nonlinear, so the predicted wave using linear theory is not correct any more.
Secondly, reflections from the outflow boundary occur, because the velocities prescribed
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at the outflow boundary using the linear diffraction code are not correct any more and do /
not fit to the interior of CoMFLOW. After some time, these reflections will also reach -
the inflow boundary, where the same problems will oceur. To prevent this problem of
reflections, another procedure than just prescribing velocities from the diffraction code
should be used on the outflow boundary. For example, a damping zone could be used. But
also more sophisticated methods can be implemented, because already a reasonable guess
for the velocities is present from the diffraction results. For example, a damping zone
that only damps the difference between the Navier-Stokes velocities and the diffraction
velocities could be used. At the inflow boundary an active wave generating-absorbing |
boundary condition could be used, as introduced by e.g. [89]. In this model, an extra term,
is added above the incoming wave term that neutralises the reflected wave from an object
for example. Options to minimise the differences between the prescribed boundaries and
the interior of the domain will be investigated further in a future project.

4.4 Wave loading on a spar platform

The second simulation that has been performed to test the initialisation using a diffraction
code consists of regular wave loading on a fixed spar. This case has already been validated
in Section 3.6.3 using a 5th order Stokes wave on the inflow boundary and a damping
zone at the outflow boundary. Now, the wave is initialised using results of a diffraction
code, where the same simulation has been performed. So both components, inflow and
diffraction, are included in the diffraction results. Two different simulations have been
performed. First, all the walls of the Navier-Stokes domain have been prescribed by the
diffraction results. Second, the inflow boundary has been prescribed by the diffraction
results and at the outflow boundary a damping zone has been added. The side walls are —
closed walls. The nonlinear wave that has been nsed has period 24.2 seconds and wave
height 10.8 meter. The water depth is 290 meter. The spar is modelled by a cylinder
with a diameter of 35 m and a draft of 200 m.
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Figure 4.4: Simulation of wave loading on a spar platform; left: total horizontal force on
the spar; right: pressure at the spar just below the water line

In Figure 4.4, the total horizontal force at the spar and the pressure at the spar 20
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meter below the water line are shown for the two simulations and the experiment. In
the total horizontal force there is not a very large difference between both simulations.
However, when looking at the pressure just below the water line, a large difference is
visible. The pressure in the simulation where four boundaries have been prescribed is
damping in time, whereas the pressure in the case that only the inflow boundary is
prescribed is a regular signal. The damping in the first simulation is cansed by reflections
from the side walls and outflow wall. The calculated velocity field in ComFLOW does
not fit to the boundaries. This can be prevented by using a damping zone at the outflow
boundary as can be seen in the second simulation. ' -

4.5 Simulation of green water loading

The goal of the coupling of COMFLOW to a diffraction code is to simulate realistic wave
events in an efficient way and calculate the accompanying forces on offshore structures.
To test the idea, a simulation of green water loading is performed using the same wave
field characteristics as in an experiment performed by Buchner [7]. In the experiment a
freely moving Floating Production Storage and Offloading vessel (FPSO) has been placed
in regular waves with period 12.9 seconds, wave height 13.52 meter and wavelength 260
meter. The total water depth is 150 meter. Measurements were done of the wave in front
of the FPSO., relative wave heights in the neighbourhood of the FPSO, water heights and
pressures at the deck of the FPSO (see Figure 4.9) and the pressure at some places in a
deck structure. The FPSO has a total length of 260 meter and is 47 meter wide. The
draft is 16.5 meter, the total height of the deck at the fore side of the FPSO is 25.6 meter.
There is a bulwark extension of 1.4 meter. At the deck, a box-like structure has been
placed at which forces and pressures have been measured. The bow has a fully elliptical
shape without flare.

Two simulations have been run. In the first simulation, the wave and vessel motions
are determined by the measurements of the experiment. In Section 3.6.4 of the previous
chapter (see also [33]) a study of the results of this simulation is given. The second
simulation is initiated using a diffraction calculation for the far field kinematics and the
vessel motions. The diffraction code that is used is a linear diffraction code, developed at
MARIN [70]. Although the circumstances are very nonlinear, the linear approximation
is thought to be a good start to investigate the possibilities of the method. The results of
the zonal modelling method are compared with the experiments and also with the first
simulation method.

4.5.1 Simulation using zonal modelling

First. the diffraction code has been run, from which the vessel motion RAO’s and the
kinematics at a grid of points around the vessel are written to a file. In Figure 4.5 the
predicted heave and pitch motion of the vessel (heave motion is measured at the center
of gravity) is compared with the measured motion. The heave and pitch motion are the
most important motions for the prediction of green water on the deck, which occurs when
the deck level is exceeded by the water level. As can be seen from the figure, the motions
are well predicted by the linear diffraction theory. Only a slight shift in the predicted
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heave motion is observed and a small reduction of the amplitude. This could be due

to the influence of the green water on the deck that is not taken into account in the il

diffraction calculations.
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Figure 4.5: Ship motion predicted by linear diffraction theory and measured during the
experiment: heave (left) and pitch (right).

The vessel motions predicted by the linear diffraction code are used to prescribe
the motion in the CoMFLOW simulation. Furthermore, the velocity field and wave
height are prescribed in the entire domain as initial conditio_n_ and at the open boundaries
during the simulation from the calculated kinematics using the diffraction code. The grid
on which the kinematics are calculated in the diffraction code consists of 61 x 21 x 13
grid points with a distance between the grid points of 13, 13 and 12.5 m in x, y and
z-direction, respectively. The CoMFLOW domain is focused on the bow of the ship,
and extends about half a wavelength up front and half the ship length aft of the bow.
The y-coordinate has values between —100 and 100 m, whereas in z-direction the domain
is cut off at =100 m. At the boundaries of the domain the three velocity components and
the water height are prescribed using the results of the diffraction code. Selecting a grid
for such computations is always a compromise between accuracy, computer memory and

computing time. Here, a grid of 150 x 70 x 100 grid points is used in the CoMFLOW |

simulation with stretching towards the bow of the ship. Using this grid, cells in the
neighbourhood of the bow have sizes in z. y and z-direction of 1 m, 2 m and 1 m
respectively. The simulation has been carried out for 15 seconds. The calculation time
for this simulation is 10 hours and 23 minutes on a 2.8 GHz PC with 1Gb memory.

To investigate the behaviour of the wave close to the bow, relative wave probes have
been positioned at 30 and 5 meter in front of the bow. In Figure 4.6 the relative wave
height calculated by CoMFLOW is compared with the experiment. The agreement
between measurement and calculation is good, indicating that the combined vessel motion
and wave is well predicted.

Figure 4.7 shows contours describing the propagation of the water front on the deck of
the FPSO. Buchner (7] describes the water flow on the deck in the following words: “First,
the horizontal velocity of the water front on the deck is almost zero. Then, the water front
starts to translate onto the deck with a similar velocity from all sides, perpendicular to

n

]

t’fuff o I

o J




122 Chapter 4. Generation of waves using zonal modelling

N T - ——————
——ComFLOW'
S N e expariment

=

o & 8

&
2

relative wave helight (m)
relative wave height {m)

5
time (s) time (s)

Figure 4.6: Relative wave height 30 meter (left) and 5 meter (right) in front of the bow
of the FPSO.

the local deck contour. Finally, the water contours from the front and sides meet at the
centerline of the ship and result in a high velocity 'jet’, which flows with a high velocity
aft along the middle of the deck. “These stages can be recognised in the contour plots in
Figure 4.7. In the experiment, the time interval between two contours is (.31 s, and in the
simulation the difference is 0.30 s. The agreement between the propagation of the water
front in experiment and simulation is rather good. The water jet is formed a bit earlier
in the simulation than in the experiment. In Figure 4.8 a snapshot of the simulation at
time 7.5 s is shown, where the high velocity jet is very well visible.

Figure 4.7: Contours of the water front propagating over the deck of the FPSO, model
test every 0.31 s (left) and COMFLOW every 0.30 s (right).

To make a further comparison of the behaviour of the water on the deck with the
experiment, the measurements of the water probes at the deck and the pressure panels
at the deck have been used. Figure 4.9 shows the measurement positions of the water
probes and pressure panels at the deck of the FPSO: at four positions the water height is
measured, with distance between two of them of 10 m; the distance between the pressure
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Figure 4.8: Snapshot of a simulation with green water on the bow of the FPSO.

panels that are positioned in between the water height probes is also 10 meter, with
P1 positioned 7 m left of Hl. Height probe H4 is positioned just in front of the deck
structure,

Figure 4.9: Positions of measured pressure and water height at the deck of the FPSO.

In Figure 4.10 the water height at the deck at positions H1 and H3 is shown. The
moment the water reaches the water probes is well predicted by CoMFLOW. In the first
stage of the water flow on the deck, the amount of water is larger than in the experiment.
Close to the deck edge (at H1) the water height is 2 meter higher than measured in the
experiment; note that this difference is only two grid cells. Further aft on the deck at H3,
the agreement of the water on the deck becomes better. The second hump in the right
of Figure 4.10 is predicted by CoMFLOW at the same moment as in the experiment.
This hump is present due to the overturning water, after the run-up against the deck
structure. In Figure 4.11 the pressure at the deck at positions P1 and P3 is shown.
The same conclusion can be drawn from this plot as from the plotted water heights: the
amount of water on the deck is too large, but further aft on the deck the agreement
becomes better. In both pictures of Figure 4.11 an oscillating behaviour of the pressure
can be observed. Every oscillation represents a switch of the monitor point fixed at the
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moving structure to another cell. The pressure value changes when such a switch of cell
happens, because the pressure is positioned in the cell center (no interpolation is applied).
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| Figure 4.10: Water height at the deck close to the bow H1 (left) and closer to the deck
structure H3 (right).
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Figure 4.11: Pressure at the deck close to the bow P1 (left) and close to the deck structure
P3 (right).

At the deck structure also pressure panels are positioned to measure the wave impact.
The lowest panel is positioned 2.4 m above the deck level. The time trace of the load on
that panel is shown in Figure 4.12, which shows a good agreement between simulation
and experiment. There is a peak in the simulation during the first impact that is too
high in the simulation, but it is not clear whether this peak is physical or whether it is
originating from the numerical calculation.

4.5.2 Comparison with simulation initialised using experimen-
tal data

As described above, two simulation methods for green water loading are used. In the
previous section zonal modelling is used, where the domain is split into a small domain
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Figure 4.12: Pressure at the center line of the deck structure, 2.4 m above the deck.

around the bow and a far field. In these different domains COMFLOW and a linear
diffraction code are used, respectively. In this section the results are compared with the
results of COMFLOW initiated using the experiment. In this simulation the motion of
the FPSO is prescribed from the measurements of the experiment. The wave is generated
at the inflow boundary by a superposition of linear components. The components are
deduced from the time signal of a wave probe at 230 m in front of the bow using Fourier
analysis, 'I;l_ne{sld(' walls are solid walls and at the outflow boundary a non-reflecting
condition is used. Results of this simulation have already been presented in the previous
chapter, Section 3.6.4. The upper part of Figure 4.13 shows the pressure and water height
at the deck (positions P1 and H3, see Figure 4.9). The results of the two simulations
have been compared with the measurements. At the forward part of the deck both
simulation methods predict too much water as can be seen from the pressure at Pl.
Further aft on the deck the water height is better predicted by the simulation method
using zonal modelling. The water height calculated using the measurements to initiate
CoMFLOW is too low. This results in smaller loads on the deck structure as can be
seen from the bottom of Figure 4.13. There the pressure at the deck structure, 2.4 m
above the deck level, is plotted. The picture is zoomed in to be able to compare the
results of the two methods with the experiment. Concluding. using the zonal modelling
method gives superior results above initiating COMFLOW with the experimental data.
“Two reasons are identified for this behaviour. First, the domain is smaller in the zonal-
modelling simulation, resulting in a finer grid. The domain is 280 m long, 200 m wide
and the water depth is cut off at 100 m, compared to 400 m length, 300 m width and
150 m depth in the other simulation. Also the number of grid points is higher in the
zonal modelling simulation. The second reason can be found in the prescription of the
boundary conditions at the open boundaries. Especially, reflections can occur at the side
walls and the outflow wall, where closed walls and a Sommerfeld condition, respectiv ely,
are used in the simulation initialised using the experiment. This probably influences the
results.
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Figure 4.13: Pressure at position P1 (left), water height at position H3 (right) and
pressure at deck structure (bottom): CoMFLOW driven by experimental results and by
the diffraction code compared.

4.5.3 Grid refinement

The simulation of green water on the deck has been run on three different grids to inves-
tigate the behaviour under grid refinement. The grid of points on which the diffraction
results are calculated is not changed, only the CoMFLOW grid is altered. The number
of grid points used is 75 x 35 x 50, 113 x 53 x 75, and 150 x 70 x 100. All three grids are
focused towards the bow of the FPSO.

Figure 4.14 shows the water height at position H3 at the deck of the ship (see Figure
4.9) and the pressure at the deck structure. The results on the finest grid are clearly
better than the coarse grid results. At position H3, where the water height on the deck
is measured and calculated, the difference in the first stage between the results on the
three grids is not very large. Only the prediction of the second hump, where the water
has overturned after run-up against the deck structure, gets clearly better on the finest
grid. The impact of the water on the deck structure is not predicted accurately on the
coarsest grid, but the two finer grids perform equally well.
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Figure 4.14: Water height H3 at the deck of the FPSO and the pressure at the deck
structure calculated on three different grids,

4.6 Discussion of the results

In this chapter the first results of a zonal modelling method for the generation of waves
have been presented. In this method waves are generated on the boundaries of the Navier-
Stokes domain using caleulated far field kinematics by a linear diffraction code. The aim
of this investigation is to determine possibilities and limitations of this method, which
are described in this section.

First, calculations have been performed of a two-dimensional irregular wave without
an object in the flow, resulting in zero contributions from diffracted and radiated waves.
At the open boundaries diffraction results are prescribed and inside the small Navier-
Stokes domain the wave profile is calculated. In the case of a linear wave, the resulting

ave elevation calculated by CoMFLOW compares perfectly with the wave elevation
calculated by the diffraction code. But when the wave is higher and becomes nonlinear
the results do not agree very well. Two reasons have been identified: the linear diffraction
code does not give correct answers for a nonlinear wave and the boundaries of the Navier-
Stokes domain do not fit any more with the interior nf thc domain. So, to improve the
reqnlts a nonlinear external code has to be used. ,b, Hlgper

~ Second, wave loading on a fixed spar platform has Imeu computed, where the waves
are regular and nonlinear. A few periods have been caleulated to investigate the ability of
the coupled method in a longer time simulation. First, all open boundaries of the Navier-
Stokes domain are prescribed from the diffraction code results. In that case, the wave is
damping during the periods because of the reflections from the walls of the domain that
do not fit very nicely to the interior anymore. When prescribing only the inflow boundary
using linear diffraction results and using a damping zone at the opposite wall the results
improve, because the reflections are diminished. So, a proper way of fitting the interior of
the Navier-Stokes domain to the boundaries where diffraction results are used is needed.
For example, a sophisticated damping procedure could be used, where the wave is not
damped completely, but only the components that do not fit to the diffraction results are
damped.

Finally, a moving FPSO in high waves is simulated resulting in green water on the bow
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of the vessel. Only one period is simulated to prevent problems with reflections from the
walls. The calculated results agree rather well with measurements that are available. The
zonal modelling method is better able to predict the green water loading than a wave
prescribed using Fourier analysis of the measured wave elevation. The results of this
simulation show the great potential of the zonal method indicating that it is worthwhile
to elaborate on this further.



Chapter 5

Conclusions and recommendations

In this thesis a numerical method has been presented for the simulation of free-surface
flow. The focus of this work has been on the simulation of wave impact loading on off-
shore structures. Especially, the event of high waves resulting in green water on the deck
of an FPSO has been an important application. The method has been incorporated in a
simulation program called CoMFLOW. At the start of this project, the method was able
to simulate fluid flow in complex geometries with the presence of a free liquid surface and
moving bodies. At the domain boundaries no-slip or free-slip conditions were imposed
and simple inflow and outflow conditions were implemented. To be able to perform wave
impact simulations as aimed for in this project, wave generation options have been imple-
mented. Also an investigation has been performed of outflow boundary conditions that
are needed to prevent waves from reflecting at the domain walls. It has been investigated
whether the waves are damped due to numerical choices, like the upwind discretisation
of the convective terms in the Navier-Stokes equations. Since the impact is measured by
pressure time traces, attention has been paid to the smoothness of the pressure signal.
Further, attention has been paid to the robustness of the method, especially in handling
the free surface that can be deformed severely in these kind of applications. Thereto,
and to get as accurate results as possible, the displacement algorithm and the boundary
conditions at the free surface have been reconsidered. The method has been validated
extensively; results of the most demanding test case of impact due to green water on a
moving vessel have been presented,

Discretisation method

For the simulation of fluid How, the Navier-Stokes equations have been discretised on
a fixed Cartesian grid using staggered variables. The moving object cuts through the
fixed grid, resulting in cut cells, of which the open part can be arbitrary small. A finite
volume method has been used for the discretisation of the equations with starting point
the conservative formulation of the Navier-Stokes equations.

The discretisation has been chosen such that the properties of the underlying analytic
operators are preserved in the discrete operators. This leads to a discretisation scheme
where the kinetic energy is only dissipated due to the diffusive term. and further energy
change is fully controlled by the motion of a moving object. So the discretisation does
not lead to uncontrolled energy increase. For the time discretisation the forward Euler
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method has been used. This method leads for uncut cells to the CFL-criterion |u|dt/h < 1,
with h the size of the uncut cell. For cut cells the criterion is not sharpened, even for the
smallest cells. When moving objects are present, this is not true any more. To prevent
the cut-cell size occurring in the stability criterion, a formulation based on a weighted
average of the fluid velocity and the object velocity has been applied in cut cells. Using
this formulation, fulfilling the CFL-criterion is again sufficient for stability.

Using the cut cell method for moving objects results in the occurrence of numerical
spikes in the pressure time series. This is largely due to the sudden change of a label,
when a cell changes from boundary cell to fluid cell and vice versa. To prevent these
spikes, the pressure has been decoupled in a physical pressure and a potential that con-
tains the spikes. This physical pressure part is calculated by putting back the moving
object to its former position, such that no change in labels occurs. When the geometry
apertures are calculated exactly, as can be done in two dimensions, the resulting pres-
sure signal is much smoother. However, in three dimensions, where geometry apertures
are calculated approximately, this decoupling procedure does not have much effect, since
the transition from boundary cell to fluid cell is much smoother due to the approximate
geometry apertures. Still many spikes are present in the pressure and force time traces,
which cannot be prevented in a straightforward manner. In the post-processing standard
filtering techniques can be used to get smooth signals.

Free surface displacement

For the displacement of the free surface a Volume-of-Fluid method has been adopted.
In the applications of the current thesis, where the free surface is deformed severely,
the VOF method is extremely suitable, since it can handle highly distorted interfaces,
such as overturning waves, merging and splitting. In literature VOF methods are often
classified by the method for the reconstruction of the interface. In this thesis the method
of Hirt and Nichols, with a constant reconstruction of the interface, and Youngs’ method,
with a piecewise linear interface reconstruction, have been described. The methods have
been combined with a local height function to establish perfect mass conservation and to
prevent flotsam and jetsam that appear in Hirt-Nichols’ original method. From standard
kinematic tests, it can be concluded that Youngs’ method gives the best results. In a real
case simulation of a breaking dam Hirt-Nichols’ and Youngs' methods both combined with
a local height function give similar satisfactory results, whereas both methods without
local height function do not conserve mass. For Youngs’ method, this lack of mass
conservation is due to the choices of free surface boundary conditions that have nonzero
divergence of the velocity in a surface cell. In a simulation of a steep wave event, the
conclusion about the performance of the methods is different: Youngs' method without
local height function performs best, whereas the combination with local height function
gives worst results.

At the moment no clear conclusion can be drawn about which method should be used.
The classification of methods in accuracy is not unambiguous for the different kinds of
simulations. Therefore, this should be investigated further. Especially, the bad result of
Youngs with local height function in the simulation of waves should be understood. This
investigation should be performed in combination with an evaluation of the method for
boundary conditions at the free surface. When a method for the free surface velocities is
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used with zero divergence in surface cells (method 1 in Section 2.3.10), Youngs' method
can be used without local height function, since mass conservation is then achieved. In
the present situation it is recommended to use Hirt-Nichols’ method in combination with
a local height function. Since Youngs’ method sometimes gives more accurate results,
simulations can also be performed with Youngs’ method, keeping in mind the problems
that could occur.

Boundary conditions at the free surface

It has been shown that the choice of the velocity boundary conditions at the free surface
has a large effect on the accuracy and robustness of the method. Using mass conservation
in surface cells results in a smooth pressure signal, but it is not robust and not accurate
in wave simulations. Using extrapolation of velocities gives accurate wave simulation
results, especially when using linear extrapolation, but results in numerical spikes in
the pressure. A combination of methods is used: when the velocity field is smooth,
the velocities are determined using linear extrapolation, whereas constant extrapolation
is used when the velocity field is not smooth. To prevent the occurrence of numerical
spikes, velocities at the free surface are determined using mass conservation when a cell
is changing from surface or empty cell to fluid cell. This robust and accurate method
is based on engineering decisions. A mathematically more elegant method is to perform
calculations in the whole domain, such that two-phase flow is simulated. Then the velocity
field is smooth in the whole domain, mass conservation automatically holds in every cell
(also the surface cells, so no problems with pressure spikes), and no velocity boundary
conditions at the free surface are needed. Currently, a two-phase method is implemented
in the simulation program [94].

To show the performance of the simulation method without inflow and outflow bound-
aries, results of a breaking dam and water entry tests have been presented. The dambreak
simulation has been performed with a box in the flow, on which pressures and forces have
been calculated. The comparison of the present method with experimental results is
very good. The method is well able to predict the impact loads resulting from a highly
complex flow. To validate the impact of a moving object, water entry tests have been
performed for wedges with different dead-rise angles, a cone and a circular cvlinder. The
visual agreement between snapshots of the simulations and photographs of experiments
by Greenhow and Lin [37] is very good. On a fine grid the thin jets at the sides of the
entering object are resolved fairly well. For the cone and the circular cylinder slamming
coefficients have been calculated and when compared with available experiments and
theoretical estimates, a satisfactory agreement was obtained.

Wave simulations: open boundaries

For the simulation of wave impact on offshore platforms, the simulation program has
been extended with wave generation options. Two methods are available: first, the
waves are generated at the inflow boundary using a wave description; second, an external
program is used for the calculation of the wave kinematics that are prescribed at the open
boundaries. In the first option, the waves can be initiated using linear wave theory or 5th
order Stokes theory. Velocities and wave height are calculated using the wave description
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and are prescribed at the inflow boundary. When using linear theory, the kinematics
above the calm water level has been caleulated using the Wheeler stretching method. An
irregular wave can be created by prescribing a superposition of linear components.

At the boundary opposite of the inflow boundary, conditions should be imposed that
prevent the waves from reflecting into the domain. In case of regular waves that are not
much deformed, a Sommerfeld boundary condition has been used. When the waves are
not re-gula.t or are distorted. a dissipation zone has been added at the end of the domain.
To damp the waves in the dissipation zone, a pressure term has been added at the free
surface, that counteracts the wave motion.

When damping the wave completely, the water level rises during the periods. This
is caused by the Stokes drift of the wave: the net mass flux at the inflow boundary is
positive. To overcome this problem, the solid wall in front of which the wave is damped
has been changed to an outflow boundary, where a hydrostatic pressure is prescribed
assuming the water height to be the initial calm water level. This way, the water is
forced to How out when the water level rises.

Validation of wave propagation

Wave propagation through the calculational domain has been validated by two-dimensional
simulations of regular waves and irregular wave events without object in the flow. The
results of the regular wave simulations have been compared with wave theories. The
number of time steps in a period and the number of grid cells per wave length and in
the wave height have been varied. Both have shown to be of large influence. When using
enough grid cells and small enough time steps. the error in the simulations is less than
5% after a simulation time of four wave periods.

Steep and high wave events have been simulated using measurements from the basin.
Linear components are prescribed at the inflow boundary calculated using Fourier analysis
of a measured time trace of the wave elevation. Several meters further in the flow,
the simulation has been compared to the experimental results. It shows a rather good
agreement. The high peaks are not always reproduced exactly. Using Youngs' method
for the displacement of the free surface improves the results.

Attention has been paid to the dissipation of energy during the wave simulation. Due
to the upwind discretisation of the convective terms, artificial viscosity has been added,
which is much larger than the physical viscosity of water. The influence of the artificial
viscosity has been measured by performing wave simulations with an upwind discretisa-
tion and a central discretisation (that needs very small grid sizes and time step). The
influence is clearly visible after a simulation of a regular wave during many periods in a
domain containing a large number of wave lengths. The central discretisation has less
damping than the upwind discretisation, but also the central discretisation simulation
suffers from energy loss. This energy dissipation is probably due to the boundary condi-
tions at the free surface and the displacement of the free surface. In a small domain with

' only a few periods of simulation the dissipation is so small, that the influence will not

be severe in the simulations of local wave impact on offshore platforms. To overcome the
problem of damping the waves due to the artificial viscosity, the amount of artificial vis-
cosity could be lessened by using a higher order upwind method. This can be investigated
further in the future.
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To validate the method for wave loading, a fixed spar in a regular wave field is simu-
lated and the calculated forces on the spar have been compared to experimental results.
It has been concluded that the method is able to reproduce results from those model tests
with a satisfying accuracy. When a long, low wave is hitting the spar, the wave is almost
not influenced by the spar. In that case a rather coarse grid can be used, to reproduce
the wave correctly. But when a shorter wave is considered, a much finer grid is necessary
to reproduce the details of the flow around the spar correctly. The grid choice is found
to be essential in these kind of simulations.

The concept is also validated for the impact of green water on a moving FPSO, as
the ultimate goal of this project. The regular waves are high, such that the water is
flowing over the deck. The motion of the FPSO and the wave at the inflow boundary
are prescribed from model tests. The calculated height of the water on the deck and
pressures at the deck and deck structure have been compared with measurements. A
reasonable agreement has been found at the start of the simulation. But when the water
is flowing onto the deck, the agreement becomes less. An explanation for the differences
could be the grid size, which probably should be smaller. Further improvement of the
results could be established by doing a fully coupled simulation of ship motion and fluid
flow. A first start of this coupling has already been shown in [51]. This can be elaborated
further in a future project.

Zonal modelling for wave generation

Another way of generating waves is to use zonal modelling. In a relatively small domain
the Navier-Stokes equations are solved, and thus the local impact on a structure is cal-
culated. At the open houndaries of the Navier-Stokes domain kinematics is prescribed
using an external program, which is a linear diffraction code. Also the motion of the
structure is prescribed by the diffraction results.

First, calculations have been performed of a two-dimensional irregular wave without
an object in the flow. In the case of a linear wave, the resulting wave elevation in
the Navier-Stokes domain perfectly agrees with the wave elevation calculated by the
diffraction results. But for a nonlinear wave the results do not agree very well. Two
reasons are, that the linear diffraction code does not give correct answers for a nonlinear
wave, and the boundaries of the Navier-Stokes domain do not fit any more with the
interior of the domain. So, a nonlinear external code should be used to improve the

Further, regular wave loading on a fixed spar platform has been simulated using
this method. The results of the simulation with all open boundaries prescribed from
diffraction results show problems with reflections on the boundaries. When only the
inflow boundary is preseribed from diffraction results and a damping zone is used for the
opposite boundary, the calculations agree much better with the experiment. In future
research attention has to be paid to the reflections at the boundaries. since the interior
results do not agree with the boundaries where diffraction results are preseribed.

Finally, a moving FPSO in high waves is simulated resulting in green water on the
bow of the vessel. Only one period is simulated to prevent problems with reflections from
the walls, The calculated results agree rather well with measurements that are available.
The zonal modelling method i better able to predict the green water loading than the
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method where the wave is prescribed from wave theory. The results of this simulation
show the great potential of this method indicating that it is worthwhile to elaborate on
this further.

Epilogue

The method described in this thesis has shown to be able to simulate complex flows
as wave loading and green water impact to a rather accurate degree. Therewith, the
objective as formulated in the introduction has been achieved. The method has been
shown very robust and able to predict local wave impact up to a rather satisfactory
level. Still much effort must be put in the improvement and further development of
the method. In a follow-up of the SafeFLOW project (the ComFLOW-2 Joint Industry
Project) the simulation method will be extended with new developments. First, the
possibility of calculating two-phase flow, where the air is compressible, a prerequisite
in case of modelling air-entrapment, will be established. Second, the zonal modelling
method for the generation of waves will be extended and improved. Besides these large-
scale functional developments, also continuous attention will be paid to the improvement
of the numerical aspects of the existing method.
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Samenvatting

Watergeweld bij offshore constructies

Een offshore constructie voor de productie of het opslaan van olie of gas ligt vaak op een
vaste plaats voor een aantal jaren. Zulke constructies staan vast op de bodem van de zee,
of het zijn drijvende constructies die bevestigd zijn aan de zeebodem met lijnen. Omdat
deze constructies niet eenvoudig verplaatst kunnen worden bij naderend slecht weer,
moeten ze ontworpen worden om alle soor-
ten weertypen te doorstaan. Speciaal
bij scheepsvormige constructies, zoals de
Floating Production, Storage and Offloa-
ding constructies (FPSO’s, zie de foto in
Figuur 5.1) kan water op het dek grote pro-
blemen veroorzaken. Die ontstaan doordat
golven zo hoog zijn dat ze over de boeg
van het schip heenslaan, zodat een grote
massa water over het dek stroomt. Deze
massa water wordt groen water genoemd,
naar de kleur van het zeewater dat groen is
door fytoplankton. De snelstromende wa- Figuur 5.1: FPSO in zwaar weer
termassa vormt een risico voor gevoelige apparatuur die zich op het dek bevindt en voor
de veiligheid van de bemanning.

Om dit risico te minimaliseren is er inzicht nodig in het fenomeen van groen wa-
ter. Daartoe worden experimenten uitgevoerd waarbij het gedrag van het water wordt
bestudeerd en waarbij berekend wordt hoe groot de krachten zijn die het water uitoefent
op dekconstructies. In de foto hiernaast is zo'n ex-
periment te zien waarbij het water op het dek tegen
een dekhuis botst. De sensoren op het dekhuis meten
de druk van het water waar de krachten op het dek-
huis vanaf geleid kunnen worden. Experimenten zijn
erg kostbaar en daarom is de wens om een deel van
het experimentele onderzoek te vervangen door bere-
keningen. Daarvoor is dan wel een goed simulatiepro-

gramma nodig, dat alle stadia van het groen water

probleem kan simuleren. De volgende stadia kunnen Figuur 5.2:  Experiment met
worden onderscheiden: (1) De combinatie van een ho- groen water op het dek

ge golf en het stampen van het schip leidt tot het opzwellen van water rond de boeg. (2)
De muur van water die zo is ontstaan, stroomt het dek op (in een soortgelijke stroming
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als bij het breken van een dam). (3) Het water stroomt met hoge snelheid over het dek
in de vorm van een tong door de samenkomende stromen van water van de zijkanten. (4)
Het water botst tegen een constructie op het dek en slaat uiteindelijk over.

Dit proefschrift beschrijft een methode die deze stadia kan simuleren en de methode
wordt gevalideerd door de resultaten te vergelijken met experimenten. In hoofdstuk
2 wordt een basis gelegd voor de complexe groen-water simulaties door waterstroming
te simuleren in eenvoudige configuraties. Eerst wordt een brekende dam gesimuleerd,
waarbij in een gesloten bak een grote hoeveelheid water met hoge snelheid tegen een object
botst. Verder wordt het vallen van verschillende objecten in een kalm wateroppervlak
gesimuleerd, als versimpeling van de beweging van het schip door de golven. In hoofdstuk
3 en 4 worden de generatie en voortplanting van golven besproken. De golven worden
enerzijds gegenereerd door golftheorieén te gebruiken die de kinematica van eenvoudige
golven geven (hoofdstuk 3). Anderzijds worden de golven gegenereerd door eerst een
golfveld te laten uitrekenen door een externe code (hoofdstuk 4) en dat golfveld voor
te schrijven op de randen van het rekendomein. Voor validatie worden er onder andere
resultaten van groen-water simulaties getoond, waarbij alle aspecten van het fenomeen
worden meegenomen, zoals ook de golven en de beweging van het schip.

Numerieke simulatie van vloeistofstroming

De beweging van vloeistof wordt beschreven door een stel wiskundige differentiaal ver-
gelijkingen. Deze vergelijkingen heten de Navier-Stokes vergelijkingen, genoemd naar
Navier en Stokes die ze in 1823 en 1845, respectievelijk, hebben gepubliceerd. De verge-
lijkingen zijn gebaseerd op behoud van massa en behoud van impuls. Voor het simuleren
van de beweging van een vloeistof, bij-
voorbeeld water, dat een onsamendrukba-
re, viskeuze vloeistof is, moeten de Navier-
Stokes vergelijkingen worden opgelost. Al-
leen in sterk vereenvoudigde vorm kan dat
met pen en papier (analytisch) worden ge-
daan. Daarom worden de vergelijkingen
benaderd door ze op een discrete, dat is
een stapsgewijze, manier op te lossen. Het
vloeistofdomein wordt daarvoor overdekt
met een Cartesisch (rechthoekig) reken-
rooster, zie Figuur 5.3. In elke cel van het rooster worden de druk en de snelheden
van de vloeistof berekend en zo wordt het gedrag van de vloeistof bepaald. Hoe meer cel-
len er gebruikt worden, hoe beter de simulatie de werkelijkheid benadert. In de methode
van dit proefschrift is het rooster vast in de tijd, dus het omstroomde object beweegt
door het rooster (dit in tegenstelling tot een 'boundary-fitted’ rooster dat aansluit aan
de geometrie en met de geometrie meebeweegt). Omdat de geometrie niet rechthoekig is
van vorm, snijdt hij door de roostercellen heen waardoor er doorsneden cellen ontstaan.

De vergelijkingen worden ook in de tijd op een discrete manier opgelost, door van
tijdstap naar tijdstap te gaan. Hiervoor wordt de expliciete voorwaarts-Euler methode
gebruikt. Voor de ruimtelijke discretisatie van de vergelijkingen (d.w.z. voor iedere cel
een vergelijking opstellen waarin de variabelen afhangen van de buurcellen) wordt de

Figuur 5.3: Cartesisch rekenrooster
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eindige volume methode gebruikt. De discretisatie wordt zo gedaan dat de onderliggende
eigenschappen van de analytische operatoren in de vergelijkingen behouden zijn in de ei-
genschappen van de discrete operatoren. Dit heeft voordelige gevolgen voor de stabiliteit
van de methode: de discrete kinetische energie blijft behouden (afgezien van viskeuze
demping) en de methode is stabiel. Alleen in de buurt van de bewegende randen van de
geometrie moet een extra stabiliserende term worden toegevoeg.

Verplaatsen van een vrij vioeistof opperviak

Een belangrijk onderdeel van de soort van simulaties die in dit proefschrift worden ge-
daan is het bijhouden van de positie van het vrije oppervlak (ofwel het wateropperviak).
Globaal zijn daarvoor twee manieren van aanpak. Bij de eerste aanpak wordt het op-
pervlak zelf gevolgd door er bijvoorbeeld deeltjes op te leggen en die deeltjes te volgen,
of door een hoogtefunctie te gebruiken. Bij de tweede aanpak wordt naar het vloeistof-
volume gekeken: voor elke cel van het rooster wordt bijgehouden hoeveel water erin zit
en deze waarde wordt elke tijdstap bijgewerkt. Het grote voordeel van de tweede ma-
nier is dat wilde vloeistofconfiguraties, zoals overslaande golven, zonder problemen kun-
nen worden gesimuleerd. In dit proefschrift wordt de VOF-methode (Volume of Fluid)
gebruikt die onder de tweede aanpak valt. In deze methode
wordt de VOF-functie geintroduceerd die voor elke cel een 0.0 00 0.0
waarde heeft tussen 0 en 1. Als de VOF-waarde 0 is, zit
er geen vloeistof in de cel; als de VOF-waarde 1 is, is de
cel helemaal gevuld met vloeistof; een waarde tussen 0 en
1 geeft een gedeeltelijk gevulde cel aan. Op basis van deze
waarden kan het vrije oppervlak worden gereconstrueerd. 0.6 09 1o
In de verschillende VOF-methodes die in de literatuur be-
schreven zijn, zijn daarvoor twee manieren. De eerste is
een constante reconstructie, die inhoudt dat het oppervlak
evenwijdig loopt met een van de coéirdinaatrichtingen (dus horizontaal of verticaal in twee
dimensies). Deze methode is ontwikkeld door Hirt en Nichols in 1981. De tweede metho-
de, ontwikkeld door Youngs (1987), is de lineaire reconstructie, waarbij het oppervlak ook
schuin door een cel heen kan lopen. Deze algemenere reconstructie maakt de methode
van Youngs lastiger te implementeren en duurder in rekentijd. Nadat het vrije oppervlak
is gereconstrueerd, wordt het verplaatst door nienwe waarden van de VOF-functie te be-
rekenen op basis van het snelheidsveld. De originele methode van Hirt en Nichols heeft
problemen met massabehoud en er ontstaan kleine druppels die los zijn geraakt van het
vrije oppervlak (de zogenaamde "flotsam’ en “jetsam’). Om dat te voorkomen wordt deze
methode in dit proefschrift gecombineerd met een lokale hoogtefunctie, wat ervoor zorgt
dat de vloeistof bij elkaar blijft en massa behouden is. Qok Youngs' methode kan worden
gecombineerd met de lokale hoogtefunctie.

0.0 0.2 0.7

Fignur 5.4: VOF-waarden

In dit proefschrift worden de methodes van Youngs en van Hirt-Nichols met elkaar
vergeleken. In testen waar het snelheidsveld wordt voorgeschreven (en niet berekend uit
de Navier-Stokes vergelijkingen) levert Youngs duidelijk nauwkeuriger resultaten. Bij
‘echte’ sommen, waar ook het snelheidsveld berekend wordt, zoals een brekende dam of
de simulatie van een golf, is Youngs iets nauwkeuriger, maar het maakt dan niet veel nit.
Beide methodes kunnen het best gecombineerd worden met de lokale hoogtefunctie om
de hoeveelheid massa te behouden.
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Randvoorwaarden op het vloeistofoppervlak

Op het vrije oppervlak moeten randvoorwaarden worden
gekozen. In Figuur 5.5 is een stukje van het rekendomein
te zien met de labels van de verschillende cellen: S(urface)-
cellen, E(mpty)-cellen en F(luid)-cellen. Snelheden zijn ge-
definieerd op celwandjes, en er zijn onder andere randvoor-
waarden nodig voor de snelheden tussen S en E-cellen. Het
is gebleken dat de keuze van deze SE-snelheden veel invloed § F F
heeft op verschillende aspecten van de simulatie, namelijk '
op de robuustheid van de code, op het wel of niet ontstaan
van numericke pieken in het drukveld en op de nauwkeu- Figuur 5.5: cel labels
righeid van de oplossing. In het proefschrift worden twee methodes beschreven voor het
definigren van de SE-snelheden. In de eerste wordt massabehoud geéist in de S-cel. Het
voordeel van deze methode is dat er geen drukpicken ontstaan, maar de nadelen zijn dat
het onnauwkeurige resultaten geeft wanneer er een golfstroming wordt berekend en de
methode is niet robuust doordat er rekening moet worden gehouden met doorsneden cel-
len. In de tweede methode worden de SE-snelheden geéxtrapoleerd van snelheden in het
inwendige van de vloeistof. Deze methode is robuust en nauwkeurig, maar veroorzaakt
pieken in de druk wanneer een S-cel verandert in een F-cel. Een combinatie van deze
beide methodes is gebruikt om de voordelen van beide methodes mee te nemen. In het
proefschrift wordt dit uitgelegd en worden de beweringen gestaafd met simulatieresulta-

ten.

Validatie

Het tweede hoofdstuk wordt afeesloten met een aantal validatiesimulaties om aan te tonen
dat onze methode geschikt is voor het soort simulaties waarvoor we het ontwikkelen (zie
Figuur 5.6). Eerst worden de resultaten gepresenteerd van een brekende dam, waar een
blokje in de stroming is geplaatst dat model staat voor een container op het dek van een
schip. De resultaten worden vergeleken met experimenten en tonen een goede overeen-
komst daarmee. Hierna wordt het gedrag van water gesimuleerd wanneer er een object
invalt. In twee dimensies laten we een cilinder en een wig vallen en in drie dimensies
een kegel. Het vrije oppervlak en de berekende krachten die op het vallende object wor-
den uitgeoefend, worden vergeleken met experimenten en analytische voorspellingen. De
overeenstemming van de resultaten van deze simulaties geven vertrouwen in de methode.

Numerieke simulatie van watergolven

Er zijn verschillende methodes om golven te genereren in een numerieke berekening, In de
eerste methode worden golven opgewekt door de kinematica die volgt uit een golftheorie
voor te schrijven op de instroomwand van het rekendomein (hoofdstuk 3). In de tweede
methode (die in hoofdstuk 4 wordt geintroduceerd) wordt een snel en efficiént extern pro-
gramma gebruikt om het golfveld te berekenen. Dit golfveld wordt dan voorgeschreven
op de randen van het rekendomein. Deze tweede methode is een voorbeeld van zonale
modellering, omdat het domein als het ware in twee zones wordt verdeeld: de buitenzone
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Figuur 5.6: Links: simulatie van een brekende dam met een modelcontainer in de stro-
ming; rechts: vallende cilinder

waar het golfveld wordt berekend en een binnenzone waar onze methode wordt toegepast.
Een derde methode om golven te genereren is om golfopwekkers te gebruiken zoals ook
in experimentele bassins, door de golfflappen als een bewegend object te modelleren.

Voortplanting van golven

In hoofdstuk 3 wordt de voorplanting van golven in het rekenprogramma hestudeerd door
regelmatige en steile onregelmatige golven door een twee-dimensionaal rekendomein te
laten lopen. De golven worden opgewekt door op de instroomwand van het rekendomein
watersnelheden en de waterhoogte voor te schrijven die volgen uit een golftheorie. In dit
proefschrift worden lineaire theorie (voor regelmatige en onregelmatige golven) en vijfde
orde Stokes theorie gebruikt. Aan de wand tegenover de instroomwand, moet de golf het
rekendomein verlaten zonder de golf in het domein te beinvloeden, dus alsof de golf geen
wand ziet. Het is lastig deze randvoorwaarden te bepalen, omdat er niet direct informatie
over de golf voorhanden is. Een bekende methode om een golf netjes het rekendomein te
laten nitgaan is de Sommerfeld conditie, waar de golfvergelijking wordt gediscretiseerd
om snelheden op de uitstroomwand te bepalen. In de Sommerfeld conditie moet de
golfsnelheid van te voren worden bepaald, waardoor dus vooraf kennis over de golf nodig
is. Deze methode werkt het best bij regelmatige golven die niet te erg zijn verstoord. Een
andere methode is het gebruik van een dissipatiezone: een verlenging van het rekendomein
waar de golf wordt gedempt. Deze methode kan ook bij onregelmatige golven gebruikt
worden. Het nadeel is dat er meer roostercellen nodig zijn door de verlenging van het
domein. Beide methodes worden in het proefschrift gebruikt.

In de studie naar de voorplanting van golven wordt ook gekeken naar het effect van
verlies van energie door keuzes in het numerieke model. Door het gebruik van de up-
wind methode voor de convectieve term in de Navier-Stokes vergelijkingen wordt extra
viscositeit toegevoegd die energie onttrekt aan de stroming en een dempend effect heeft
op de golven. Voor een kortdurende simulatie van een paar periodes in een klein domein
(het soort situaties dat is beoogd in dit proefschrift) is het dempend effect van de extra
viscositeit echter niet zo sterk.

Voor validatie van de methode worden regelmatige en onregelmatige golven door het
domein gestuurd en wordt de berekende golfhoogte vergeleken met een golftheorie of
experiment. In Figuur 5.7 is een plaatje te zien van de golfhoogte van een onregelmatige
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steile golf. De berekende golfhoogte wordt
vergeleken met gemeten waarden, aange-
geven met asterisken. De overeenkomst
is over het algemeen goed, alleen wordt
de golfhoogte bij steile golven niet he-
lemaal bereikt. Dit komt door de me-
thode die wordt gebruikt voor de wvrije-
oppervlak verplaatsing (Youngs' methode
geeft nog betere resultaten) en door dis-
sipatie van energie. Verder is de metho-
de gevalideerd door offshore constructies in

wave elevation

‘22
. 00 500 600 700 800 900 1000
een golfveld te plaatsen. De golfhoogtes in xaxis

de buurt van de constructies en de krach-

Figuur 5.7: Een momentopname van de bere-
kende vorm van een steile golf; de asterisken
geven de metingen weer

ten op de constructies zijn vergeleken met
metingen. Als constructies zijn een spar
platform (een cilindervormig platform) en
een FPSO gebruikt, waarbij er groen water optreedt op het dek. De overeenkomst met
de metingen is naar tevredenheid.

Zonale modellering

In hoofdstuk 4 is een begin gemaakt met het ontwikkelen van een methode, die zonale
modellering gebruikt voor de berekening van het golfveld. Bestaande methodes, zoals een
diffractie methode, zijn erg efficiént voor de berekening van het golfveld in combinatie met
de beweging van het schip, maar de meer extreme stroming van groen water of brekende
golven kunnen deze methodes niet berekenen. Daarvoor is de relatief dure methode uit
dit proefschrift beter geschikt. Bij zonale modellering gebruiken we de voordelen van
beide methodes door alleen in een klein domein rond (een gedeelte van) de constructie de
Navier-Stokes vergelijkingen op te lossen. De randen van dit lokale domein en het golfveld
aan het begin van de simulatie worden voorgeschreven vanuit een extern programma,
bijvoorbeeld een lineaire diffractie code. Een bijkomend voordeel is dat ook de beweging
van het schip door het externe programma wordt voorspeld. Deze voorspelling wordt dan
gebruikt in de Navier-Stokes berekening.

Deze gekoppelde methode (waarbij een lineaire diffractiecode is gebruikt voor de ex-
terne code) wordt toegepast op drie simulaties. Eerst wordt een onregelmatige golf gesi-
muleerd, zonder object in de stroming. Zolang de golf niet al te hoog is, komen de lineaire
theorie en de berekende golfhoogte nit onze methode perfect overeen. Voor hogere golven
ontstaan te verwachten verschillen met de lineaire theorie. Doordat de lineaire diffractie-
resultaten die aan de randen worden voorgeschreven niet meer goed overeenkomen met
het berekende golfveld, ontstaan er reflecties van de randen die de interne golf verstoren.
De invloed van zulke reflecties is ook zichtbaar in de tweede simulatie, waar krachten op
een spar platform worden berekend. In de derde simulatie wordt de gekoppelde methode
gebruikt voor een simulatie van groen water over de boeg van een F PSO (zie Figuur 5.8).
De berekende waterhoogte op het dek en de drukkrachten op het dek en een dekhuis zijn
vergeleken met metingen van experimenten. De overeenkomst tussen metingen en bere-
keningen is goed, wat vertrouwen geeft in een verdere ontwikkeling van de gekoppelde
methode.
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Fignur 5.8: Een simulatie met groen water op het dek van een FPSO; de golven en de
beweging van de FPSO zijn geinitieerd door een externe code

Epiloog

In dit proefschrift hebben we laten zien dat de ontwikkelde methode geschikt is voor de
simulatie van complexe stromingen met vrije wateroppervlakken, zoals groen water op
het dek van een schip. Toch is er nog veel te verbeteren aan de methode om nauwkeuriger
resultaten te behalen en de methode nog algemener te kunnen toepassen. Eén richting
/an verbetering is om niet alleen berekeningen te doen in het water, maar ook de stroming
in de lucht te berekenen (een twee-fase methode). Daarmee verdwijnt het probleem van
de randvoorwaarden voor de snelheid aan het vrije oppervlak en kan het fenomeen van
luchtinsluiting tijdens de impact van een golf worden meegenomen. Verder kan de zonale
modellering worden uitgebouwd, door niet-lineaire potentiaalmethodes te gaan gebruiken
en slimmere koppelingen te maken over de randen van het lokale (Navier-Stokes) domein.
Aan deze aspecten wordt aandacht besteed in een vervolgproject
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