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Summary

Perfectly Matched Layer (PML) has become a powerful tool in computational underwater acoustics and
elastodynamics. By employing complex coordinate stretching in the wavenumber–frequency domain,
PMLs effectively attenuate outgoing waves from the physical domain and thereby provide an efficient
means to truncate the computational domain. Although PMLs have been widely adopted in the finite
element and finite difference communities, their use in semi-analytical solutions remains limited. A
major challenge is that, when modal analysis is applied to the acousto-elastic domain with PML in a
semi-analytical framework, the found modes are not orthogonal. This challenge formulates the main
motivation of this research. On the other hand, the modes obtained from the discrete solution of the
elastic layerwith PML, based on the thin-layermethod, do preserve orthogonality. Therefore, this thesis
aims to understand the differences between the modal solutions of the semi-analytical and thin-layer
methods in the elastic domains with PMLs, whichmay provides insights into the reasons whymodes in
the semi-analytical solution are not orthogonal to each other.
Themain storyline of this thesis is developed through four cases with increasing system complexity. In
the first case, the modes of the elastic domain are computed using both the semi-analytical approach
and the thin-layer method (TLM), and the comparison demonstrates the equivalence of the two meth-
ods in the absence of PMLs. In the second case, the acoustic domain with PML is investigated using the
semi-analytical approach, with emphasis on the polynomial order of the complex-stretching function.
Mathematical derivations show that a zero-order polynomial induces discontinuities at the interface,
leading to uneliminated boundary terms and perturbing modal orthogonality, while numerical results
confirm that higher-order polynomials preserve the cross-orthogonality ofmodes, aswell as the contin-
uous slopes of the potential functions at the interface. In the third case, a quadratic complex-stretching
function is employed, and the elastic domain with PML is analyzed using both approaches. The com-
parison reveals differences in eigenvalues and eigenvectors; finer TLM discretization yields increased
matches between the two methods, but excessive discretization results in orthogonality violations. Fi-
nally, in the fourth case, the semi-analytical modes of the acousto-elastic domain with PML are stud-
ied. Propagating, evanescent, and Bérenger modes are identified, with cross-orthogonality preserved
given sufficient integration points. Bérengermodes consistently arise in PML formulations and exhibit
anomalous dispersion characteristics.
Themaincontributionof this thesis lies in revealing the influenceof thepolynomial orderof the complex-
stretching functionon themodesof theacousticdomainwithPML.Whenaquadratic complex-stretching
functions are employed, the numerical results suggest that the semi-analytical modes of the elastic or
acousto-elastic domains with PML are orthogonal. Therefore, it is suggested that a positive value of
polynomial order is recommended when computing normal modes of the acousto-elastic domain with
PML. However, in the future, a systematic study on the influence of the polynomial order should be
conducted for the elastic layer or acousto-elastic domain with PML.
Furthermore, the comparative study of modal solutions highlights the differences between the semi-
analytical approach and the thin-layermethod. The nature of modal solutions comes from the different
formulations of the eigenvalue problem, leading to different eigenvalues and eigenmodes. For TLM, the
over-discretization of the PML domain is not suggested due to the violated orthogonality, although the
reasons behind that require further investigations.
Overall, this thesis advances the fundamental understanding of themodal basis of acoustic, elastic, and
acousto-elastic layers with PML formulations, providing a foundation for future research in two main
directions: (i) the study on modes of the acoustic layers coupled with multiple elastic layers with PML,
which better represent realistic ocean environments with geological strata; and (ii) the computation of
forced responses of structures in acousto-elastic layers with PMLs to model the pile-water-soil interac-
tions using modal matching techniques.

iii
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1

Introduction

1.1 Motivation and research questions
A waveguide is a finite domain with parallel boundaries, where energy propagates via multiple reflec-
tions between the upper and lower surfaces [7, 20]. Elastic and acoustic waveguides are essential in
numerous engineering applications, such as underwater acoustics, seismic exploration, and structural
health monitoring, as they facilitate wave propagation over large distances [8]. Normal mode meth-
ods are one of the approaches for studying wave propagation in acoustic or elastic waveguides [11].
More specifically, their robustness and computational efficiency contribute to their preference over
wavenumber integration techniques [20]. Studies have also shown that normal mode solutions are
widely applied to wave propagation in bounded media without range dependency. However, existing
models of ocean environments include layered waveguides and a half-space [11]. Among existing lit-
erature, a combination of complex wavenumber integration and modal methods was found to provide
the exact solution [16]. However, purely adopting the standard mode solution for wave propagation in
infinite or semi-infinite media necessitates truncation.

In general, two approaches have been used in the existing research for domain truncation: (1) assuming
a non-reflecting boundary condition at the truncation interface; (2) defining an absorbing boundary layer. The
first approachminimizeswave reflection fromthe interfaceby applying anappropriate boundary condi-
tion at the interface between the computational domain and the truncated domain. The non-reflecting
boundary conditions can be either exact or local, where a comprehensive review of these two categories
was given in [25]. The exact method provides high accuracy but is computationally expensive, whereas
the local method is more efficient but introduces errors due to reflections [13]. In the second approach,
an absorbing layer is introduced to enforce the decay of wave motion within the region, thereby mini-
mizing waves reflected from the truncation interface. This approach is considered to be one of themost
successful techniques for numerical truncation, mainly due to the success of Perfectly Matched Layers
(PMLs).

Perfectly Matched Layer (PML) is one type of the aforementioned absorbing layer. PMLwas initially de-
veloped and implemented byBérenger [5] forMaxwell’s equations by introducing an additional flat layer
beneath the regular domain. This layer attenuates electromagnetic waves propagating in all directions.
Consequently, reflections at the interface of PMLs and the regular domain can be minimized. In [5],
Bérenger highlighted the mathematical superiority of the PML approach over existing absorbing layers
by achieving a significantly lower reflection rate, independent of their incident angles. Extending from
application in electromagnetics, extensive research suggests the successful application of PML formu-
lations in elastic wave propagation problems, and a comprehensive review of their applications can be
found in [13].

Although perfectly matched layers (PMLs) are widely utilized in the Finite Element (FE) community,
their application in semi-analytical solutions remains limited. Furthermore, the nonphysical nature
of PMLs also introduces leaky modes for some cases [9, 26], which corresponds to poles of the char-
acteristic equations located in the improper Riemann sheets. Leaky modes grow exponentially in the
vertical direction, indicating they violate the radiation conditions for exact and continuous solutions
of displacements in the lower half-space. Alongside normal and leaky modes, Bérenger modes are also

1



2 1. Introduction

identified in the eigenvalue problems of waveguides with PMLs. Those modes, with energy localized in
thePML regions, are sensitive to PMLparameters [17]. Moreover, they are considered to be purelymath-
ematical modes with anomalousmodal shapes [4]. Generally, educated guesses based on boundary and
interface conditions can be given for an arbitrary question, called continuous solutions. Alternatively, nu-
merical methods can be used to solve the same problem, leading to a discrete solution. These two types of
modal solutions consist of eigenvalues and eigenvectors. Throughout this thesis, the eigenvalues arising
in the continuous solution are sometimes referred to as roots, as they correspond to the solutions of the
dispersion relation. The associated eigenvectors, or modes, are continuous functions defined over the
modal coordinates. In contrast, in the discrete solution, the eigenvectors are represented as vectors of
modal values sampled at discrete points.

More specifically, the continuous modal solutions presented in this work are semi-analytical, since the
eigenvalues associated with the dispersion relations are computed using numerical root-finding algo-
rithms. In addition to these continuous solutions, this thesis also employs a discrete solution, theThin-
Layer Method (TLM). Originally developed in the early 1970s, TLM has been widely used for wave prop-
agation analysis. It discretizes the waveguide along the layering (typically transverse) direction, while
analytical expressions are retained in the remaining coordinates [4].

When the Thin-Layer Method (TLM) is applied to the eigenvalue problem in an elastic domain with a
perfectly matched layer (PML), the resulting discrete solution yields a set of normal modes whose asso-
ciated eigenvalues exhibit the expected orthogonality. In contrast, the semi-analytical formulation no
longer preserves orthogonality among different eigenvectors, despite describing the same physical sys-
tem. This discrepancy between the continuous and discrete treatments of the same problemmotivates
a deeper investigation into the underlying mathematical and physical mechanisms, ultimately leading
to themain research question of this thesis, which is:

Howandwhydo themodal characteristics differ between semi-analytical and thin-layermethod (TLM)
solutions in acoustic or elastic domainswith PMLs?

The following supplementary questions are proposed to support the investigation of the main research
question:

1. For a linear isotropic elastic layer, how do the eigenvalues and eigenmodes obtained from the semi-
analytical method differ from those produced by the thin-layer method (TLM)? What are the pri-
mary factors contributing to these differences?

2. In a fluid layer with a PML, how does the presence of the PML affect the semi-analytical modal so-
lutions? Specifically, how does varying the PML polynomial order𝑚PML influence the computed
eigenvalues, eigenvectors, and their orthogonality?

3. For a linear isotropic elastic layer with an adjacent PML, what are the differences in modal charac-
teristics (in particular, eigenvalues and eigenmodes) between the semi-analytical and thin-layer
methods? What mechanisms account for these differences?

1.2 Research aim
This research aims at investigating how and why the modal solution of an elastic domain with PMLs
differs between the following two computational methods: (1) the semi-analytical approach and (2) the
thin-layermethod. The comparison of results for the twomethodsmay give insights into the reasonwhy
modal orthogonality fails sometimes in the semi-analytical solution.



1. Introduction 3

1.3 Thesis objectives
The following four objectives of this thesis are given:

1. A comparative analysis between the Thin-Layer Method (TLM) and the semi-analytical solution
for a linear elastic layer is first conducted to identify their similarities and differences. This com-
parison serves as an essential preparatory step for understandingmore complex acoustic, elastic,
and acousto-elastic domains involving perfectly matched layers (PMLs).

2. Investigate themodal behavior of an acoustic layerwith a perfectlymatched layer (PML),with par-
ticular attention to the orthogonality of modes and their associated eigenvectors, as formulated
in [26]. While previous studies, such as [4], have frequently noted the emergence of nonphysical
Bérenger modes, their mathematical and physical origins remain insufficiently explored. Here,
a semi-analytical framework is employed to analyze the eigenvalue spectrum, modal structures,
and dispersion characteristics, with the aim of clarifying the nonphysical nature of these modes.
Furthermore, the impact of various complex-stretching functions on the modal properties is as-
sessed, with an emphasis on the role of the polynomial order𝑚PML.

3. Examine thedifferences inmodal solutionsbetween two formulations—discrete (thin-layermethod,
TLM) and continuous (semi-analytical)—for an elastic medium with a perfectly matched layer
(PML). Understanding the correspondence and divergence between these approaches is essential
for analyzing wave propagation in PML-coupled elastic waveguides. However, such a compara-
tive study remains largely absent in the existing PML literature, thusmotivating this key objective
of the thesis.

4. Provide a modal solution for an acousto-elastic layer with PML via the semi-analytical solution.

1.4 Scope of the research
The complete modal solutions of the acousto-elastic domain are a fundamental topic in the context of
underwater acoustics and elastodynamics, and their successful applications in solving complex pile-
water-soil interaction problems in offshore pile-driving activities can be found in existing research [16,
22, 24]. The focus of work in this thesis is limited to a few aspects:

1. Problems considered here are limited to unforced systems. For the unforced system, the starting
point of analysis is the eigenvalue problem after the separation of variables. In the next stage, the
eigenvalueproblemwill be solvedusing either the semi-analytical or thin-layermethod, including
the roots of the dispersion relations (eigenvalues) and their correspondingmodes (eigenvectors).
The study of this thesis will focus on the basic properties of modes when PML is presented.

2. Generally, themodal basis of the elastic domain contains P-wave type, SV-wave type, andSH-wave
typemodes. Among these, P-wave type and SV-wave type modes form Rayleighmodes propagat-
ing along the surface; the SH-wave type modes are associated with Love waves. The focus of the
study is on the P-SV wave type of modes in the elastic domain.

1.5 Thesis outline
This thesis presents a comparative study of continuous and discrete modal solutions of an elastic layer
incorporating a Perfectly Matched Layer (PML). It begins with a comparison of continuous and discrete
modal solutions for a single elastic layer, which provides Subsequently, the continuous modal solution
for a single acoustic layer with a PML is introduced. The comparative analysis is then extended to the
elastic layer with PML, focusing on main differences between the continuous and discrete solutions.
Based onprevious discussions, themodal solutions of an acousto-elastic domain via the semi-analytical
approach will eventually be provided. The thesis concludes with a summary of findings and offers rec-
ommendations for future research.



4 1. Introduction

The structure of this thesis is visualized in Figure 1.1. Chapter 2 provides a review of the necessary theo-
retical background for this thesis, introducingkey concepts and foundational principles that are relevant
to this thesis.

Chapter 3 presents a comparative study ofmodal solutions obtained via a semi-analytical and thin-layer
method for a single elastic layer. The chapter begins with the formulation of both solutionmethods, fol-
lowedby a detailed comparison of the roots and eigenvectors under various frequencies and attenuation
rate.

In Chapter 4, the semi-analytical approach is extended to a single acoustic waveguide with one PML.
The formulation of the semi-analytical solution in the presence of the PML is presented in detail. Addi-
tionally, the properties of the roots and modes are examined, with particular attention given to the or-
thogonality betweenmodes and their conjugate eigenvectors. Furthermore, this chapter also includes a
discussion on the influences of the order of the polynomial complex-stretch function𝑚PML on themodal
solutions.

Chapter 5 focuses on the modal analysis of an elastic layer with one PML. The formulations of the two
approaches are briefly introduced, followed by a comparison of the resulting eigenvalues and eigenvec-
tors. Finally, the orthogonality conditions of modes in the semi-analytical approach will be checked.
This comparative study highlights the similarities and differences between the twomethods, with a dis-
cussion on possible causes for any differences.

Chapter 6 presents themodal solutions of an acousto-elastic domain with a single PML, obtained using
the semi-analytical approach. Following the methodology presented in Chapter 4, the analysis covers
the eigenvalue, modes, and their cross-orthogonality properties.

Chapter 7 concludes the thesis by answering all research questions and providing recommendations for
future research directions.

Chapter 1: Introduction

Chapter 2: Theoretical Background

Chapter 3: Modal Solutions
of An Elastic Waveguide Sub-research Question 1

Chapter 4: Modal Solutions of
An Acoustic Waveguide with

PML via Semi-analytical Method
Sub-research Question 2

Chapter 5: Modal Solution of a
Single Elastic Domain with a PML Sub-research Question 3

Chapter 6: Modal Solution of An
Acousto-elastic Domain with a
PML via Semi-analytical Method

Chapter 7: Conclusions and Recommendations

Figure 1.1. A flowchart of the structure of the thesis
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Figure 2.1. A Flow Chart of the theoretical framework of this thesis

In this Chapter, the theoretical background of this thesis will be introduced, along with a review of ex-
isting research within the continuous and discrete modal solutions of acoustic and elastic layers with
and without PML formulations. As shown in the framework of all physical variables (See Figure 2.1),
this chapter mainly provides:

{2.1} Basic mathematical definitions and the coordinate system used in this research.

{2.2} Wave propagation in acoustic and elastic media.

{2.3} An explanation of normal-mode solutions, including both the continuous and discrete form.

{2.4} Wave-dispersion phenomena.

{2.5} PML techniques, with a focus on complex stretch.

{2.6} A review of theThin-layer method, including the formulation, orthogonality, and the application
with PML.

5



6 2. Theoretical Background

2.1 Definitions
First of all, all integration transforms are defined here:

Fourier transformwould be used for frequency domain analysis, which is given as below:

𝑓(x, 𝑡) =
∞


0

𝑓(x,𝜔)exp(i𝜔𝑡) d𝜔, 𝑓(x,𝜔) =
∞


0
𝑓(x, 𝑡)exp(−i𝜔𝑡) d𝑡. (2.1)

In addition, theHankel functions that are used in this thesis are as follows:

𝐻 (1)
0 (𝑥) = 𝐽0(𝑥)+ i𝑌0(𝑥), 𝐻 (2)

0 (𝑥) = 𝐽0(𝑥)− i𝑌0(𝑥). (2.2)

Two kinds of Bessel functions are plotted in Figure 2.2b, with the solid and dashed lines representing
the first and second kind, respectively. The corresponding Hankel functions are plotted in Figure 2.2b.

(a) Plot of Bessel Functions.
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(b) Plot of Hankel Function.

0 5 10 15 20

−1

0

1

𝑥

Ha
nk
el
Fu
nc
tio
n

Re𝐻 (2)
0 (𝑥) Im𝐻 (2)

0 (𝑥)

Figure 2.2. Indicative plots of Bessel and Hankel functions

Secondly, the following gradient operator∇ and Laplacian operator∇2 will be utilized in this thesis:

∇ = 𝜕𝑥 e𝑥+𝜕𝑦 e𝑦+𝜕𝑧 e𝑧, ∇2 = 𝜕2𝑥 e𝑥+𝜕2𝑦 e𝑦+𝜕2𝑧 e𝑧.

where e𝑥, e𝑦, and e𝑧 represent the unit vectors along the Cartesian coordinate axes 𝑥, 𝑦, and 𝑧, respec-
tively, indicating thedirectional componentsof thegradient andLaplacianoperators in three-dimensional
space.

Finally, Einstein’s summation convention was used for repeated indices. Besides, the Kronecker delta
notation 𝛿𝑖𝑗 is defined as

𝛿𝑖𝑗 =
⎧
⎨
⎩
1, 𝑖 = 𝑗,
0, 𝑖 ≠ 𝑗. (2.3)

2.2 Horizontally stratified waveguides
In the real ocean environment, the acoustic impedance varies continuously in the fluid layer, while it
jumps at the interfaces between geological strata. Therefore, the layered model in the following figure
could be applied in the analytical and numerical framework, aimed at reflecting two distinct types of
medium heterogeneity [11]. Themodel in Figure 2.3 is assumed to be horizontally stratified, which is con-
sidered to be a widely recognized canonical model in underwater acoustics. This assumption indicates
that waveguide properties are only dependent on 𝑧.
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Figure 2.4. Schematic of the Coordinate System

2.3 Cylindrical coordinate system
Thepropagation of conical waves considered in this thesis is formulated as an axisymmetric potential prob-
lem, in which both the geometry and the applied boundary conditions are symmetric about the axis of
revolution. A cylindrical coordinate system is adopted to express the analysis in the radial and axial
directions [3].

In cylindrical coordinates, thepositionvector is expressedas r= (𝑟,𝜃,𝑧),with the𝑧-axispassing through
the source (see Figure 2.4). Consequently, Equation (2.3) takes the form:

∇ = 𝜕𝑟 𝐞𝑟 +𝜕𝜃/𝑟 𝐞𝜃 +𝜕𝑧 𝐞𝑧 ∇2 = 𝜕𝑟 (𝑟𝜕𝑟)/𝑟 +𝜕2𝜃/𝑟2+𝜕2𝑧 . (2.4)

Given the assumption of axisymmetry in the cylindrical coordinate system, i.e., 𝜕𝜃 = 0, Equation (2.4)
should be simplified to:

∇ = 𝜕𝑟 𝐞𝑟 +𝜕𝑧 𝐞𝑧 ∇2 = 𝜕2𝑟 +𝜕𝑟/𝑟 +𝜕2𝑧 . (2.5)
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2.4 Wave propagation in an acoustic medium
Linear wave equation
Themotion of an inviscid, compressible fluid can be described by the scalar velocity potential𝜙f(𝑟,𝑧,𝑡),
which satisfies the acoustic wave equation:

∇2𝜙f−
1
𝑐2f
𝜙̈f = 0, (2.6)

where 𝑐f denotes the sound speed in the fluid, and ∇2 is the Laplacian operator as defined in Equa-
tion (2.5).

Helmholtz equation
Applying a Fourier transform to Equation (2.6) leads to the frequency-domain Helmholtz equation:

∇2𝜙f+
𝜔2

𝑐2f
𝜙f = 0, (2.7)

where 𝜙f(𝑟,𝑧,𝜔) denotes the velocity potential of the fluid layer in the frequency domain.

Constitutive relation
The velocity field ṽ(𝑟,𝑧,𝜔) and pressure field 𝑝f(𝑟,𝑧,𝜔) in the fluid layer are given by:

ṽ = ∇𝜙f, 𝑝f =−i𝜔𝜌f𝜙f. (2.8)

where 𝜌f represents the fluid density and∇ is the gradient operator defined in Equation (2.5).

2.5 Wave propagation in elastic medium
Navier-Cauchy equations
Themotion of an isotropic, linear elastic soil layer is governed by Navier–Cauchy equation:

𝜇s∇2𝐮s+(𝜆s+𝜇s)∇∇ ⋅𝐮s−𝜌s𝐮̈s = 0, (2.9)

where𝐮s(𝑟,𝑧,𝑡) = 𝑢s,𝑟(𝑟,𝑧,𝑡)𝐞𝑟+𝑢s,𝑧(𝑟,𝑧,𝑡)𝐞𝑧 denotes the displacement vector of the soil particles,∇
is the gradient operator defined inEquation (2.5),𝜆s and𝜇s are the Lamé constants, and𝜌s is the density
of the elastic medium.
Transforming Equation (2.9) into the frequency domain via the Fourier transform yields

𝜇s∇2 𝐮s+(𝜆s+𝜇s)∇∇ ⋅ 𝐮s+𝜌s𝜔2 𝐮s = 0, (2.10)

where 𝐮s(𝑟,𝑧,𝜔)denotes thedisplacementfield in the frequencydomainand𝜔 is theangular frequency.

Pontential relations
The displacement field of the soil layer 𝐮s can be expressed viaHelmholtz decomposition:

𝐮s = ∇𝜙s+∇× 𝚿s. (2.11)

where 𝜙s(𝑟,𝑧,𝜔) denotes the scalar potential that is associated with compressional (P wave) motion,
and 𝚿s(𝑟,𝑧,𝜔) stands for the vector potential describing transverse (S wave) motion, which is written
as

𝚿s = 𝜓s𝐞𝜃. (2.12)

where 𝜓s(𝑟,𝑧,𝜔) is a scalar potential of SV wave.
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Combining the contributions from∇𝜙s and∇× 𝚿s yields

𝐮s = ⒧𝜕𝑟𝜙s−𝜕𝑧𝜓s⒭𝐞𝑟 +⒧𝜕𝑧𝜙s+𝜕𝑟 𝜓s+ 𝜓s/𝑟⒭𝐞𝑧. (2.13)

Constitutive relations
The constitutive and compatibility laws in the soil layer are expressed as:

𝜎𝑖𝑗 = 𝜆s 𝜀𝑘𝑘𝛿𝑖𝑗 +2𝜇s 𝜀𝑖𝑗 , 𝜀𝑖𝑗 =
1
2⒧ 𝑢𝑖,𝑗 + 𝑢𝑗,𝑖⒭. (2.14)

Uncoupled equations
Substituting (2.11) into Equation (2.9) gives:

𝜇s∇2 ⒧∇𝜙s+∇× 𝚿s⒭+ (𝜆s+𝜇s)∇∇ ⋅ ⒧∇𝜙s+∇× 𝚿s⒭+𝜌s𝜔2⒧∇𝜙s+∇× 𝚿s⒭ = 0. (2.15)

The following properties of gradient and curl terms can be easily proved:

∇⋅∇𝜙s = ∇2𝜙s, ∇ ⋅∇× 𝚿s = 0. (2.16)

Substituting (2.16) into Equation (2.15) results in the following expression:

∇(𝜆s+2𝜇s)∇2𝜙s+𝜌s𝜔2𝜙s+∇×𝜇s∇2𝚿s+𝜌s𝜔2𝚿s = 0. (2.17)

The substitution of Equation (2.12) into (2.17) will give the following uncoupled Equations of Motions
(EoMs) for P-SV waves [20]:

∇2𝜙s+
𝜔2

𝑐2L
𝜙s = 0, (2.18)

∇2𝜓s−
𝜓s
𝑟2 +

𝜔2

𝑐2T
𝜓s = 0. (2.19)

Here, 𝑐L and 𝑐T (in m/s) represent the medium wave speeds of P waves and S waves, respectively, given
by:

𝑐2L =
𝜆s+2𝜇s

𝜌s
, 𝑐2T =

𝜇s
𝜌s
. (2.20)

2.6 Normal-mode method
Thenormal-modemethod has been extensively applied in both underwater acoustics and elastodynam-
ics. A comprehensive treatment of thismethod in the context of underwater acoustics is given in Chap-
ter 5 of [11], while its applications to elastic media are discussed in detail in [2]. In this work, only the
aspects directly relevant to the present study are outlined for brevity.

Continuous solution
By applying the separation of variables, Equation (2.7) can be projected onto the modal coordinates:

d2Φf,𝑝
d𝑧2 +⒧𝑘2f −𝑘2𝑟𝑝⒭Φf,𝑝 = 0, (2.21)

where Φf,𝑝(𝑧,𝜔) is the 𝑝-th mode of the velocity potential of the fluid layer.
The general solution to Equation (2.21) is given as below:

Φf,𝑝(𝑧,𝜔) = 𝐴1 exp(i𝛾f𝑧)+𝐴2 exp(−i𝛾f𝑧). (2.22)

where 𝛾f(𝜔) = 𝜔2/𝑐2f −𝑘2𝑟𝑝, respresenting the vertical wavenumber of the 𝑝-th mode.
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Similarly, the modal equations derived from Equations (2.18) and (2.19) are given by

d2Φs,𝑝
d𝑧2 +⒧𝑘2L −𝑘2𝑟𝑝⒭Φs,𝑝 = 0 (2.23)

d2Ψs,𝑝
d𝑧2 +⒧𝑘2T−𝑘2𝑟𝑝⒭ Ψs,𝑝 = 0 (2.24)

The general solutions to the equations above are given as:

Φs,𝑝(𝑧,𝜔) = 𝐴3 exp(i𝛾L𝑧)+𝐴4 exp(−i𝛾L𝑧) (2.25)
Ψs,𝑝(𝑧,𝜔) = 𝐴5 exp(i𝛾T𝑧)+𝐴6 exp(−i𝛾T𝑧) (2.26)

where 𝛾L(𝜔) = 𝜔2/𝑐2L −𝑘2𝑟𝑝 and 𝛾T(𝜔) = 𝜔2/𝑐2T −𝑘2𝑟𝑝 are the vertical wavenumbers of the P- and
S-waves, respectively.

Furthermore,Φs,𝑝(𝑧,𝜔) and Ψs,𝑝(𝑧,𝜔) denote the𝑝-thmodes of the scalar displacement potentials for
P- and S-waves in the soil layer.

In a domain composed of layered media, a system of algebraic equations can be formed by introducing
post-processed physical fields, namely, displacement, stress, and pressure, into interface and boundary
conditions, which reads

𝐌𝐀 = 𝐟 (2.27)

The dispersion relation is given by setting the determinant of𝐌 to zero:

det𝐌= 0 (2.28)

For each 𝜔, solving equations above gives infinite number of 𝑘𝑟𝑝(𝜔) with 𝑝 = 1,2,3,…,∞. Further-
more, the modes corresponding to each root could also be computed, which formulate the following
modal expansions of velocity and displacement potentials:

𝜙f(𝑟,𝑧,𝜔) =
∞

𝑝=1

𝐶𝑝𝐻 (2)
0 (𝑘𝑟𝑝𝑟)Φf,𝑝(𝑧,𝜔), (2.29)

𝜙s(𝑟,𝑧,𝜔) =
∞

𝑝=1

𝐶𝑝𝐻 (2)
0 (𝑘𝑟𝑝𝑟)Φs,𝑝(𝑧,𝜔), (2.30)

𝜓s(𝑟,𝑧,𝜔) =
∞

𝑝=1

𝐶𝑝𝐻 (2)
1 (𝑘𝑟𝑝𝑟)Ψs,𝑝(𝑧,𝜔). (2.31)

where Φf,𝑝(𝑧,𝜔), Φs,𝑝(𝑧,𝜔) and Ψs,𝑝(𝑧,𝜔) are knownmodes along 𝑧 direction, the unknown complex-
valued constants 𝐶𝑝 are determined by solving the forced response of the whole system. It should be
indicated that the solutions of 𝐶𝑝 are beyond the scope of this thesis.

Discretized solution
Foradiscretizedelasticmedium,normalmodes canbe foundby solving the followinggeneralizedeigen-
value problem:

⒧𝑘2𝑟𝐀s+𝑘𝑟𝐁s+𝐆s−𝜔2𝐌s⒭𝚽s = 𝟎 (2.32)

Where 𝑘𝑟 is the radial wavenumber of cylindrical modes;𝚽s is the displacement potential vector along
𝑧 direction; 𝐀s,𝐆s, and𝐌s can be derived from virtual work principle of a linear, isotropic elastic layer,
which have been discussed in [12] and [19]. We will also revisit this discretized solution in the review of
the thin layer method.
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Eigenmodes
For the single acoustic or elastic media with a rigid bottom, only discrete eigenvalues can be found,
as shown indicatively in Figures 2.5a and 2.5c. Modes whose eigenvalues lie close to the real axis are
referred to as trapped modes, as their energy remains confined within the waveguide due to repeated
reflections at the rigid boundary [20]. In contrast, modes near the imaginary axis are known as evanes-
cent modes, with energy localized near the source and rapidly decaying with range. Symbolically, the
modal content in such a closed waveguide can be expressed as:

Φ ≃
𝑀

𝑚=1

TrappedModes+
𝑀

𝑚=1

EvanescentModes. (2.33)

It should be noted, however, that in an elastic medium—whether lossless or lossy—the distribution of
eigenmodes differs significantly, as shown indicatively in Figure 2.5c and 2.5b. This difference has been
mentioned in [16] for the elastic halfspace: Dissipation is included in the form of complex-valued Lamé
constants, leading to complex-valued eigenvalues in the third and fourth quadrants in an asymmetric
way. However, for the lossless elastic medium, all modes are distributed symmetrically.

When the rigid boundary is removed, the complex contour integration must also account for the contribu-
tions of continuously radiated body waves. The physical interpretation of these contributions has been
discussed in [22]: Their radial wavenumbers 𝑘𝑟 are small and satisfy 0 < 𝑘2𝑟 < 𝑘2T. Such small values of
𝑘𝑟 correspond to steep angles of incidence, resulting in continuous radiation of energy into the lower
halfspace. Consequently, these conical wave types are so-called leaky modes, and they inherently vi-
olate the radiation condition. In this context, the total field is expressed as a combination of discrete
trapped modes and a continuous spectrum of radiated modes, represented by an integration along the
branch-cut contour (dashed line) in Figure 2.6:

Φ ≃
𝑀

𝑚=1

TrappedModes+ 
𝒞branch

RadiatedModes. (2.34)

(a) Fluid waveguide: single layer

Re(𝑘𝑟)

Im(𝑘𝑟)

𝑘f𝑘f

(b) Lossless single elastic waveguide

Re(𝑘𝑟)

Im(𝑘𝑟)

𝑘L 𝑘T−𝑘L−𝑘T

(c) Lossy single elastic waveguide

Re(𝑘𝑟)

Im(𝑘𝑟)

𝑘L 𝑘T

Figure 2.5. Indicative positions of eigenvalues for different bounded layeredmedia



12 2. Theoretical Background

Re(𝑘𝑟)

Im(𝑘𝑟)

𝒞∞
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𝑘L 𝑘T

trapped
mode

Figure 2.6. Complex contour integration of a lossless elastic halfspace

Modal dispersion
The founding of wave group phenomena by Russell (1844) marks the start of research on wave propaga-
tion indispersivemedia. He found that somewavesmovemorequickly than the groupofwaves. In 1876,
Stokes developed the analytical expression of group velocity, which was later refined by Rayleigh. Fol-
lowing the definition of stationary by Kelvin (1887), Lamb gave the visualization of wave group-related
concepts in 1990. The wave group is shown in Figure 2.7. It contains a modulation with a larger wave-
length, which propagates with 𝑐g and carrier waves propagating with 𝑐ph = 𝑐.
A more general wave composed of wave groups with a continuous wavenumber spectrum, as shown
in Figure 2.8a. A small variation ΔRe(𝑘) around Re(𝑘0), resulting in the Δ𝜔 around 𝜔0. This small
perturbation is considered to be related to a cluster of waves with the following group 𝑐g(𝑘0) and phase
velocity 𝑐ph(𝑘0):

𝑐g(𝑘0) = 𝜕Re(𝑘0)𝜔⒧Re(𝑘0)⒭, 𝑐ph(𝑘0) =
𝜔0

Re(𝑘0)
. (2.35)

Achenbach [1] showed that its averaged energy density propagates with velocity:

𝑐E = 𝑐g = 𝜕Re(𝑘)𝜔 (2.36)

Based on this derivation, Miklowitz [14] pointed out that for symmetrical and antisymmetric P waves
propagating in an infinite elastic plate, the aforementioned relationship is valid. Besides, the same
conclusion has been proved for harmonic wave propagation inwaveguideswith constant cross sections.

Forunderwateracousticwavepropagation,modaldispersion is closely linked toenergy transport. Jensen
[11] observed that near the cut-off frequency, the phase velocity 𝑐ph becomes large due to steep vertical
wave propagation, attributed to a small 𝑘𝑟. Conversely, the group velocity 𝑐g is nearly zero, reflecting a
minimal horizontal energy transport. At higher frequencies, horizontally propagatingwaves dominate,
causing 𝑐ph and 𝑐g to converge toward the medium’s wave velocity 𝑐f. As a result, 𝑐ph decreases while 𝑐g
increases with frequency, with both asymptotically approaching 𝑐f, as shown in Figure 2.8b.
Forphysicaldispersions, the energy travelswith themodulation inFigure2.7with𝑐g <𝑐ph. Inotherwords,
the energy travels more slowly than the phase of the waves. In contrast, anomalous dispersion occurs
when 𝑐g > 𝑐ph [14], Equation (2.35) yields:

𝜕Re(𝑘)𝑐ph =
𝜕Re(𝑘)𝜔Re(𝑘)−𝜔

Re2(𝑘) = 1
Re(𝑘)⒧𝑐g−𝑐ph⒭ > 0 (2.37)

That is to say, 𝜕Re(𝑘)𝑐ph > 0 for anomalous dispersions, suggesting their phase velocities 𝑐ph increase with
the real part of wavenumber Re(𝑘).
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Figure 2.8. Dispersion curve, wave and group velocity

Orthogonality Theorthogonality of𝑃−𝑆𝑉modes for a single-layered elasticmediumwith a thickness
of𝐻EL could be derived using reciprocity theorem of elastodynamics [6, 22], which could be found in as
below:

Γ𝑝𝑞 = Γ𝑝𝛿𝑝𝑞 =
𝐻EL


0
𝜁s𝑘𝑝 𝑢s,𝑟,𝑝(𝑧)

𝑢s,𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

+𝜂s⋅𝑢s,𝑟,𝑝(𝑧)
𝜎s,𝑧𝑧,𝑞(𝑧)
𝑘𝑟,𝑝

−𝑢s,𝑧,𝑝(𝑧)
𝜎s,𝑧𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

d𝑧,
(2.38)

where 𝜁s = 𝜌s ⋅ 𝑐4L−(𝑐2L −2 ⋅𝑐2T)2𝑐2L and 𝜂s = ⒧𝑐2L−2𝑐2T⒭𝑐2L .
𝑐L and 𝑐T are wave speeds of the compression and shear waves in the elastic waveguide, respectively.
𝑢s,𝑟(𝑧) and 𝑢s,𝑧(𝑧) define the displacement field of particles in the direction of 𝑟 and 𝑧. 𝜎s,𝑟(𝑧) and
𝜎s,𝑧(𝑧) are normal and shear stresses respectively. Finally, 𝑘𝑟 defines the radial wavenumbers.
What is more, the orthogonality of modes in an acoustic mediumwith a thickness of𝐻FL is given in [11]
regardingmodes of fluid potential 𝜙f(𝑧), which is:

Γ𝑝𝑞 = Γ𝑝𝛿𝑝𝑞 =
𝐻FL


0

𝜙f,𝑝(𝑧)𝜙f,𝑞(𝑧)
𝜌f

d𝑧, (2.39)

where 𝜌f is the fluid density.
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Figure 2.9. Schematic of A PML truncation boundary along coordinate 𝑧.

2.7 PML Technique
InitiallydevelopedbyBérenger [5] as anabsorbing layer for electromagneticwaves, thePerfectlyMatched
Layer (PML) has been extensively applied in elastodynamics [4, 13] and underwater acoustics [10, 11, 26].
By employing complex stretching in the wavenumber-frequency domain, PMLs effectively attenuate
waves in that layer, facilitating the truncation of numerical domains in semi-analytical and numerical
formulations of open waveguides. This section will review the complex stretch technique and examine
existing studies regarding its impact onmodal contributions.
In the PML layer of Figure 2.9, d𝑧 is transformed to a complex-valuedd𝑧̄ by complex stretching function
𝜀(𝑧,𝜔):

d𝑧̄ = 𝜀(𝑧′,𝜔)d𝑧 (2.40)

Therefore, the transformed vertical coordinate 𝑧̄ is

𝑧̄ =
𝑧


0
𝜀(𝑧′,𝜔)d𝑧′. (2.41)

The complex stretching function 𝜀(𝑧′,𝜔) in Equation (2.41) reads

𝜀(𝑧′,𝜔) = 𝛼(𝑧)+ 𝛽(𝑧)
i𝜔 , (2.42)

where𝛼s(𝑧) is called scaling function, and 𝛽s(𝑧) is the attenuation function.
Moreover, they have the following basic properties:

1. When 0 < 𝑧 < 𝑍1, 𝛼(𝑧) = 1 and 𝛽(𝑧) = 0.
2. When 𝑍1 < 𝑧 < 𝑍2, 𝛼(𝑧) and 𝛽(𝑧)monotonically increasewith respect to 𝑧,

Therefore, the real and imaginary part of 𝑧̄ are given as follow:

Re(𝑧̄) =
𝑧


0
𝛼(𝑧′)d𝑧′, Im(𝑧̄) = − 1

𝜔

𝑧


0
𝛽(𝑧′)d𝑧′. (2.43)

In the PML layer, the basic properties of the scaling and attenuation functions imply

Re(𝑧̄) > 1, Im(𝑧̄) < 0. (2.44)
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Equation (2.40) indicates the following definitions related to spatial derivatives is given:

d
d𝑧 → d

d𝑧̄ = 1
𝜀 ⋅

d
d𝑧 (2.45)

For aharmonicwavepropagatingwithinanone-dimensionalPML layer in Figure (2.9), where𝑧 is transformed
to 𝑧̄, the depth-separated part reads

exp(−i𝑘𝑧̄) = exp ⒧−iRe(𝑘)Re(𝑧̄)+ iIm(𝑘)Im(𝑧̄)⒭
Oscillatory part

⋅ exp ⒧Re(𝑘)Im(𝑧̄)+ Im(𝑘)Re(𝑧̄)⒭
Amplitude factor

. (2.46)

For a propagating wave, where Re(𝑘) > 0 and Im(𝑘) = 0, Equation (2.46) reads

exp(−i𝑘𝑧̄) = exp ⒧−i𝑘Re(𝑧̄)⒭
Oscillatory part

exp ⒧𝑘Im(𝑧̄)⒭
Amplitude factor

, (2.47)

As a result, the propagating harmonic wave in Equation (2.46) is transformed into an evanescent one
when 𝑘Im(𝑧̄) < 0, because under this condition the exponential amplitude factor in Equation (2.46)
decayswith increasing Im(𝑧̄). In thePML formulation, Im(𝑧̄) increasesmonotonicallywith thephysical
coordinate 𝑧; therefore, the damping becomes progressively stronger toward the lower regions of the
PML, ensuring effective absorption of outgoing waves.
For an evanescent wave, Im(𝑘) < 0 and Re(𝑘) = 0, hence Equation (2.46) is written as

exp(−i𝑘𝑧̄) = exp ⒧iIm(𝑘)Im(𝑧̄)⒭exp ⒧Im(𝑘)Re(𝑧̄)⒭. (2.48)

The attenuation term in Equation (2.48) is dominated by the scaling function. In both cases, the scaling
function 𝛼(𝑧) artificially increases the depth of the domain, which induces an accelerated amplitude
decay of the wave within the PML layer. The scaling function 𝛼(𝑧) reads

𝛼(𝑧) =
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 0 ≤ 𝑧 ≤ 𝑍1,

1+𝛼0 ⒧
𝑧−𝑍1
𝐻PML

⒭
𝑚PML

𝑍1 ≤ 𝑧 ≤ 𝑍2.
(2.49)

On the other hand, the attenuation function 𝛽(𝑧) is written as

𝛽(𝑧) =
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0 0 ≤ 𝑧 ≤ 𝑍1,

𝛽0 ⒧
𝑧−𝑍1
𝐻PML

⒭
𝑚PML

𝑍1 ≤ 𝑧 ≤ 𝑍2.
(2.50)

where 𝑍1 and𝐻PML are the thicknesses of the two layers, 𝛽0 and𝛼0 are tuning constants for scaling and
attenuation functions, and𝑚PML is the order of the polynomial attenuation inside the PML domain.
When considering the attenuation of propagating wave only, the following complex-valued coordinate
𝑧̄ can be given by neglecting the scaling tuning 𝛼0 [19]:

𝑧̄ = 𝑧− iH(𝑧−𝑍1)
𝛽0𝐻PML

𝜔(𝑚PML+1)
⒧𝑧−𝑍1𝐻PML

⒭
𝑚PML+1

(2.51)

whereH(⋅) is the Heaviside function.
Thepolynomial order𝑚PML determines theattenuation functionprofile. A larger𝑚PML createsa smoother
transition at the PML-regular domain interface, as well as a sharper attenuation near the fixed bound-
ary [13]. This allows incomingwaves to enter the PML smoothly before being attenuated. In the existing
research,𝑚PML = 2 is typically used for finite element and thin-layer methods [4, 13], as higher-order
functions, namely, quadratic or cubic 𝜀(𝑧), effectively minimize boundary reflections in discrete solu-
tions [18]. However, the influence of𝑚PML in continuous solutions remains unstudied.
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Re(𝑘𝑟)

Im(𝑘𝑟)

𝑘L
𝑘T

Trapped mode
Leaky mode

Bérenger mode

Figure 2.10. Indicativemodes of lossy elastic halfspace truncated by single-layer PML, the dashed line stands for the
𝒞branch in Equation (2.34) of the elastic halfspace and the solid lines are the new branches𝒞PML in [9]

When a finite PML is used to truncate the elastic halfspace, leakymodeswill appear to compensate for the
contribution of continuous radiated modes in Equation (2.34). Therefore, a new type of mathematical
model will appear [4], which is called Bérenger modes, which is

Φ ≃ Trapped Modes+Leaky Modes+Bérenger Modes (2.52)

Overall, for the elastic halfspace with PMLs, the eigenvalues will contain both trapped modes, evanes-
cent modes, and Bérenger modes. The characteristics of these three types of modes for the Pekiris
waveguides have been studied [26]. What is more, it has been pointed out that, except for discrete
points, a new branch cut𝒞PML would appear for the regular domain with an infinite PML [9]. Therefore,
the modal basis can be expressed as:

Φ ≃ Trapped Modes+Leaky Modes+ 
𝒞PML

Bérenger Modes (2.53)

The energy of all discrete modes is trapped inside the domain if a rigid boundary is applied [23]. There-
fore, the modal contribution for a single regular layer with a finite PML layer, the continuous radiation
modes in Equation (2.52) will be replaced by (2.52) These Bérenger modes should be distributed along
the hyperbolic branch𝒞PML[9], as illustrated in Figure 2.10.

Existing research on the orthogonality ofmodes for continuous solutions in acoustic or elastic domains
with PMLs remains limited: According to [4], these leaky modes represent non-physical solutions that
continuously radiate energy into the lower halfspace; therefore, the orthogonality property will not be
valid due to the infinite energy of the modes. [26] examined Pekeris waveguide systems with a PML.
While themodesdonot directly satisfy cross-orthogonality conditions, orthogonality canbe established
through the construction of conjugate (adjoint) eigenmodes, leveraging the special properties of the
boundary conditions and the Helmholtz equation operator.

For the same physical problem, it is reasonable to expect that discrete and continuous solutions would
exhibit similar modal characteristics. Discrete solutions obtained through the TLMmethod have been
demonstrated to satisfy orthogonality; thus, continuous solutions describing the same system should,
in principle, preserve this property. Moreover, for a finite PMLwith fixed boundaries, no energy leakage
occurs into the lower halfspace, suggesting that orthogonality between leakymodes and trappedmodes
should remain valid. However, the validity of these assumptions for continuous solutions has not been
systematically examined in the literature, therebymotivating the comparative analysis between contin-
uous and discrete formulations conducted in this thesis.
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2.8 Thin-Layer Method (TLM)
In this section, a brief introduction to theThin-LayerMethod (TLM) will be presented. The thin-layered
method is aneffective semi-discretenumerical approach forwavemotion in layeredmedia. As adiscrete
formof normalmode solution, TLMwas initially developed in the early 1970s, and it has been commonly
used in acoustic, elastic, and acousto-elastic problems since the 1990s [4]. Besides, TLM was limited
to bounded domains with rigid boundaries, and nowadays TLMs have been used in the simulation of
unbounded domains after the availability of PMLs and paraxial boundaries. A brief history of TLM can
be found in [15].
Generally, the key concept of TLM is the partial discretization of the domain along the layering direc-
tion. In a 2D problem, A finite element discretization will be implemented along a spatial direction,
while analytical solutions will be used in the remaining directions. For an axisymmetric linear elastic
isotropic halfspace without body force, the Equation of motion can be expressed in the matrix form in
the cylindrical coordinates (𝑟,𝜃,𝑧):

𝐋𝑇σ𝛔s−𝜌s𝐮̈s = 0, (2.54)

where 𝐮s is the displacement vector and𝛔s is the stress tensor.
Using virtualwork principle, thefinal elementary layermatrices𝐀ℓ,𝐆ℓ and𝐌ℓ can be derived as follows
[4]:

𝐀ℓ = ℎℓ
⎡
⎢
⎣

⋅
⋅

⋅

⎤
⎥
⎦
, 𝐆ℓ = ℎ−1

ℓ

⎡
⎢
⎣

⋅
⋅

⋅

⎤
⎥
⎦
, 𝐌ℓ = ℎℓ

⎡
⎢
⎣

⋅
⋅

⋅

⎤
⎥
⎦
. (2.55)

However, the 𝐁ℓ is not dependent on the element thickness ℎℓ. Finally, the following matrix equation
of the eigenvalue problemwill be derived after matrix assembly:

⒧𝑘2𝑟𝑝𝐀+𝑘𝑟𝑝𝐁+𝐆−𝜔2𝐌⒭𝛟𝑝 = 𝟎 (2.56)

where 𝐀,𝐌 and𝐆 are symmetric. However, 𝐁 is not symmetric, with the following structure:

𝐁 =
⎡
⎢
⎣

𝟎 𝟎 𝐁𝑟𝑧
𝟎 𝟎 𝟎
𝐁𝑧𝑟 𝟎 𝟎

⎤
⎥
⎦
. (2.57)

The quadratic eigenvalue problem indicated by Equation (2.56) can be linearized and transformed to
normal modes of Rayleigh and Love waves. On the one hand, for 𝑃−𝑆𝑉 modes, the following linear
non-symmetric eigenvalue problem in 𝑘2𝑟𝑚 has been derived in [19]:

⒧𝑘2𝑟𝑝𝐀+𝐂⒭
𝛟𝑟𝑝

𝑘𝑟𝑝𝛟𝑧𝑝
 =  𝟎

𝟎  (2.58)

where 𝐀 and 𝐂 have the following form:

𝐀 =
⎡
⎣
𝐀𝑟 𝟎
𝐁𝑧𝑟 𝐀𝑧

⎤
⎦
; 𝐂 =

⎡
⎣
𝐆𝑟 −𝜔2𝐌𝑟 𝐁𝑟𝑧

𝟎 𝐆𝑧−𝜔2𝐌𝑧

⎤
⎦

(2.59)

On the other hand, the 𝑆𝐻 modes have the following linear symmetric eigenvalue problem in 𝑘2:

⒧𝑘2𝑟𝑝𝐀𝜃+𝐆𝜃 −𝜔2𝐌𝜃⒭𝛟𝜃𝑝 = 0, (2.60)

Where𝛟𝑟𝑝, 𝛟𝜃𝑝 and 𝛟𝑧𝑝 are modal displacements at interfaces of thin layers in the radial, circumfer-
ential and vertical directions, evaluated at both the interfaces of each layer and the interpolation points
within each layer. In this study, quadratic interpolation polynomials are employed for TLM, resulting in
one interpolation point per layer.
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(a)Without PMLs
𝑟

𝑧

⋯

Thin layer 1

Thin layer ℓ

⋯

ℎℓ 𝐻EL

(b)With PML
𝑟

𝑧

⋯

Thin layer 1

Thin layer 𝑖

PML layer 1

⋯
ℎℓ

𝐻PML

𝐻EL

Figure 2.11. Schematics of TLMs

Equation (2.58) can be written as:

⎡
⎣
𝐀𝑟𝑘2𝑟𝑝+𝐆𝑟 −𝜔2𝐌𝑟 𝐁𝑟𝑧

𝐁𝑧𝑟𝑘2𝑟𝑝 𝐀𝑧𝑘2𝑟𝑝+𝐆𝑟 −𝜔2𝐌𝑟

⎤
⎦
⎡
⎣

𝛟𝑟𝑝
𝑘𝑟𝑝𝛟𝑧𝑝

⎤
⎦
=  𝟎

𝟎  (2.61)

Alternatively, the Equation above can be written as:

⎡
⎣
𝐀𝑟𝑘2𝑟𝑝+𝐆𝑟 −𝜔2𝐌𝑟 𝐁𝑟𝑧𝑘2𝑟𝑝

𝐁𝑧𝑟 𝐀𝑧𝑘2𝑟𝑝+𝐆𝑟 −𝜔2𝐌𝑟

⎤
⎦
⎡
⎣
𝑘𝑟𝑝𝛟𝑟𝑝
𝛟𝑧𝑝

⎤
⎦
=  𝟎

𝟎  (2.62)

The left and right eigenvectors are defined as below:

𝐘 =  𝚽𝑟𝐊r
𝚽𝑧

 , 𝐙 =  𝚽𝑟
𝚽𝑧𝐊r  . (2.63)

where 𝐊r = diag {𝑘𝑟1 𝑘𝑟2 ⋯} is the diagonal matrix computed from sorted eigen wavenumber 𝑘𝑟𝑝
associated with 𝑃-𝑆𝑉modes. Furthermore,𝚽𝑟 and𝚽𝑧 are modal matrices with the following form:

𝚽𝑟 =  𝛟𝑟1 𝛟𝑟2 ⋯ , 𝚽𝑧 =  𝛟𝑧1 𝛟𝑧2 ⋯ . (2.64)

Therefore, Equations (2.61) and (2.62) read:

𝐀𝐙𝐊2
r +𝐂𝐙 = 𝟎 𝐀𝑇𝐘𝐊2

r +𝐂
𝑇𝐘 = 𝟎 (2.65)

Therefore, we have the following normal orthogonality relations:

𝐘𝑇𝐀𝐙 = 𝐙𝑇𝐀𝑇𝐘 = 𝐊r 𝐘𝑇𝐂𝐙 = 𝐙𝑇𝐂𝑇𝐘 = −𝐊3
r (2.66)

Following the implementations introduced by Kausel and deOliveira Barbosa, the layer thickness in the
PML layer should be modified after complex stretch in Equation (2.51), which is:

ℎ̄ℓ = 𝑧̄ℓ−𝑧̄ℓ−1 = 𝐻
⎧
⎨
⎩

1
𝑁PML

−iΩ
⎡
⎣
⒧ ℓ
𝑁PML

⒭
𝑚PML+1

−⒧ ℓ−1𝑁PML
⒭
𝑚PML+1⎤

⎦

⎫
⎬
⎭
, (2.67)

whereΩ = 𝛽0
𝜔(𝑚PML+1)

.

According to Equation (2.55), elemental matrix for ℓ−th layer in PML domain should be modified as:

𝐀ℓ =
ℎ̄ℓ
ℎℓ

𝐀ℓ, 𝐆ℓ =
ℎℓ
ℎ̄ℓ

𝐆ℓ, 𝐌ℓ =
ℎ̄ℓ
ℎℓ

𝐀ℓ, 𝐁ℓ = Bℓ (2.68)

Therefore, a new version of generalized eigenvalue problems of 𝑆𝐻 and 𝑃−𝑆𝑉 waves should be derived
for layered elastic media with PMLs.
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3
Modal Solutions of an ElasticWaveguide

𝑟

𝑧

Elastic layer

𝜌s,𝜈,𝐸s,𝛼L,𝛼T

𝑧 = 𝑍1

𝐻EL

Figure 3.1. Schematic of single elastic layer

Table 3.1. Basic parameters used for numerical examples in Chapter 3

Elastic layer thickness 𝐻EL 10 m
Solid density upper layer 𝜌s 1700 kg/m3

Poisson’s ratio 𝜈 0.4 -
Young’s modulus 𝐸s 0.7 MPa

This chapter will perform a comparative study between the continuous and discrete solutions of the
single elastic layer with a fixed bottom boundary. The elastic layer illustrated in Figure 3.1 will be solved
using the normalmodemethod, with all dimensions given in Table 3.1. Themethodology of this chapter
consists of the following steps:

{3.1} Formulate theeigenvalueproblemforboth semi-analytical andTLMsolutions. This chapterbriefly
introduces the mathematical derivations, while a detailed derivation will be given in Appendix A
for readers interested in semi-analytical solutions.

{3.2} Solve eigen-value problems for three different loading frequencies for the elastic layer with zero
and non-zero attenuation.

{3.3} Compare the eigenvalues (roots) and eigenvectors (mode shapes) of the discrete and continuous
solutions.

{3.4} Check the orthogonality of eigenvectors from two different approaches.

19
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3.1 Formulation of eigenvalue problems

3.1.1 Continuous solution
We start with the Helmholtz equations for the Rayleigh (PSV) waves in the single elastic layer:

∇2𝜙s+𝑘2L 𝜙s = 0, (3.1)

∇2𝜓s−
𝜓s
𝑟2 +𝑘

2
T 𝜓s = 0. (3.2)

where 𝜙s(𝑟,𝑧) and𝜓s(𝑟,𝑧) represent the potential field for P and S waves, and tildes over them denote
the complex amplitude in the frequency domain. Additionally, 𝑘L and 𝑘T are the P-wavenumber and
S-wavenumber, respectively, with the following expressions:

𝑘L = 𝜔/𝑐L, 𝑘T = 𝜔/𝑐T. (3.3)

in which 𝑐L and 𝑐T denote the speeds of the compressional and shear waves in the elastic waveguide,
respectively. In addition, a set of boundary conditions for the system in Figure 3.1 must be satisfied:

𝜎𝑧𝑧(𝑟,0,𝜔) = 0 𝜎𝑧𝑟(𝑟,0,𝜔) = 0 (3.4)
𝑢s,𝑧(𝑟,𝑍1,𝜔) = 0 𝑢s,𝑟(𝑟,𝑍1,𝜔) = 0 (3.5)

The general solutions of Equation (3.1) and (3.2)are given as below:

𝜙s(𝑟,𝑧,𝜔) = Φs(𝑧,𝜔)𝐻 (2)
0 (𝑘𝑟𝑟) = 𝐴1 exp(i𝛾L𝑧)+𝐴2 exp(−i𝛾L𝑧)𝐻 (2)

0 (𝑘𝑟𝑟) (3.6)

𝜓s(𝑟,𝑧,𝜔) = Ψs(𝑧,𝜔)𝐻 (2)
1 (𝑘𝑟𝑟) = 𝐴3 exp(i𝛾T𝑧)+𝐴4 exp(−i𝛾T𝑧)𝐻 (2)

1 (𝑘𝑟𝑟), (3.7)

whereΦs(𝑧,𝜔) and Ψs(𝑧,𝜔) are normalmodes that are related to P and Swaves. Besides, 𝛾T and 𝛾L are
vertical wavenumbers with the following expressions:

𝛾L =𝜔2/𝑐2L −𝑘2𝑟 𝛾T =𝜔2/𝑐2T −𝑘2𝑟 . (3.8)

Rewrite the normal modes as below to maintain numerical stability:

Φs(𝑧,𝜔) = 𝐴1 exp − i𝛾L (𝑧−𝑍1)+𝐴2 exp(i𝛾T𝑧) , (3.9)
Ψs(𝑧,𝜔) = 𝐴3 exp − i𝛾T (𝑧−𝑍1)+𝐴4 exp(i𝛾T𝑧) , (3.10)

The displacement of soil particles 𝑢s,𝑟 and 𝑢s,𝑟 are given as below based on Equation (2.13):

𝑢s,𝑟 = 𝐻 (2)
1 (𝑘𝑟𝑟)−𝑘𝑟⒧𝐴1 exp ⒧i𝛾L (𝑍1−𝑧)⒭+𝐴2 exp(i𝛾L𝑧)⒭

+ i𝛾T⒧𝐴3 exp ⒧i𝛾T (𝑧−𝑍1)⒭−𝐴4 exp(i𝛾T𝑧)⒭.
(3.11)

𝑢s,𝑧 = 𝐻 (2)
0 (𝑘𝑟𝑟)𝑘𝑟⒧𝐴2,1 exp ⒧i𝛾T (𝑍1−𝑧)⒭+𝐴2,2 exp(i𝛾T𝑧)⒭

+ i𝛾L⒧−𝐴1,1 exp [i𝛾L (𝑍1−𝑧)]+𝐴1,2 exp(−i𝛾L𝑧)⒭.
(3.12)
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The following formulae give the stress fields:

𝜎s,𝑧𝑧 = 𝐻 (2)
0 (𝑘𝑟𝑟)2𝜇s𝑘𝑟𝛾Ti⒧−𝐴2,1 exp ⒧i𝛾T (𝑍1−𝑧)⒭+𝐴2,2 exp(i𝛾T𝑧)⒭

− ⒧𝜆s𝑘2L +2𝜇s𝛾2L⒭ ⒧𝐴1,1 exp ⒧i𝛾L (𝑍1−𝑧)⒭+𝐴1,2 exp(i𝛾L𝑧)⒭.
(3.13)

𝜎s,𝑧𝑟 = 𝐻 (2)
1 (𝑘𝑟𝑟)𝜇s⒧𝛾2T −𝑘2𝑟 ⒭⒧𝐴2,1 exp ⒧i𝛾T (𝑧−𝑍1)⒭+𝐴2,2 exp(−i𝛾T𝑧)⒭

+(i𝑘𝑟𝛾L)⒧𝐴1,1 exp ⒧i𝛾L (𝑧−𝑍1)⒭+𝐴1,2 exp(i𝛾L𝑧)⒭.
(3.14)

The substitution of all fields into the boundary conditions gives the coefficient matrix 𝐌 as shown in
Equation (A.1). therefore gives the dispersion relation

det𝐌= 0. (3.15)

The roots of dispersion relations in the complex 𝑘𝑟 plane give all eigenvalues 𝑘𝑟. Based on these roots,
the eigenvectorsΦs(𝑧) andΨs(𝑧)will be computed by imposing an inhomogeneous displacement at the
bottom boundary.

3.1.2 Discrete solution
Briefly, the generalized discrete eigenvalue problem of 𝑃-𝑆𝑉modes in the elastic waveguide is given in
the following form using TLM [12]:

⒧𝑘2𝑟𝑝𝐀+𝐂⒭
𝛟𝑟𝑝

𝑘𝑟𝑝𝛟𝑧𝑝
 =  𝟎

𝟎  (3.16)

where here 𝛟𝑟𝑝, 𝛟𝑧𝑝 are modal displacements at interfaces of thin layers in the radial and vertical di-
rections. 𝐀 and 𝐂 have the following form:

𝐀 =
⎡
⎣
𝐀𝑟 𝟎
𝐁𝑧𝑟 𝐀𝑧

⎤
⎦
; 𝐂 =

⎡
⎣
𝐆𝑟 −𝜔2𝐌𝑟 𝐁𝑟𝑧

𝟎 𝐆𝑧−𝜔2𝐌𝑧

⎤
⎦

(3.17)

Define the left eigenvector 𝐘 and right eigenvector 𝐙 as below:

𝐘 =  𝚽𝑟𝐊r
𝚽𝑧

 , 𝐙 =  𝚽𝑟
𝚽𝑧𝐊r  . (3.18)

where 𝐊r = diag {𝑘𝑟1 𝑘𝑟2 ⋯} is the diagonal matrix computed from sorted eigen wavenumber 𝑘𝑟𝑝
associated with 𝑃-𝑆𝑉modes. Furthermore,𝚽𝑟 and𝚽𝑧 are modal matrices with the following form:

𝚽𝑟 =  𝛟𝑟1 𝛟𝑟2 ⋯ , 𝚽𝑧 =  𝛟𝑧1 𝛟𝑧2 ⋯ . (3.19)

Then we have the following eigenvalue problem based on 𝐘 and 𝐙:
𝐘𝑇𝐀𝐊2

r +𝐘𝑇𝐂𝐙 = 𝟎 (3.20)

Therefore, 𝐘 and 𝐙 are supposed to have the following orthogonality relations, which have been proved
byWaas and Kausel [12]:

𝐘𝑇𝐀𝐙 = 𝐊r, 𝐘𝑇𝐂𝐙 = −𝐊3
r (3.21)

The eigenvalues 𝑘𝑟𝑝 and unnormalized eigenvectors are directly given by solving the eigenvalue prob-
lem shown in Equation (3.16), which can be solved easily using the inbuilt function np.linalg.eig in
Python. Returned eigenvectors will be normalized by the orthogonality relation 𝐘𝑇𝐀𝐙 = 𝐊r. Besides,
the roots with positive imaginary part will be discarded to select themode that decays in the range [12].
Implementations of all steps mentioned here have been done in the programming language Python. A
detailed explanation of theThin layer method can be found in [19].
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3.2 Numerical results and discussions
In this section, the continuous and discrete modal solutions of a linear isotropic elastic layer will be
compared, including their (1) eigenvalues, (2) eigenvectors, and (3) orthogonality. For completeness, we
will showmodal solutions for𝑓 = 50Hz,𝑓 = 200Hz, and𝑓 = 500Hz. Additionally, different attenuation
rates 𝛼s in the continuous solution, which correspond to material damping 𝜉s in the discrete solution,
will be considered.

Table 3.2. Fixed parameters of theThin-layer method used in Chapter 3

Number of thin layers 𝑁 1000 -
Layer thickness ℎℓ 0.01 m

Table 3.3. Attenuation rates and frequencies used in six cases in Chapter 3

Groups Attenuation rate Frequency
Group 1.1 𝛼s 0 dB/𝜆 𝑓 50 Hz
Group 1.2 𝛼s 1 dB/𝜆 𝑓 50 Hz
Group 2.1 𝛼s 0 dB/𝜆 𝑓 200 Hz
Group 2.2 𝛼s 1 dB/𝜆 𝑓 200 Hz
Group 3.1 𝛼s 0 dB/𝜆 𝑓 500 Hz
Group 3.2 𝛼s 1 dB/𝜆 𝑓 500 Hz

3.2.1 Parameter setup
Inaddition to theparametersdisplayed inTable 3.1, thefixedparametersused in the thin-layeredmethod
are shown in Table 3.2. However, the attenuation rates of elasticmedia in TLMs and the semi-analytical
solution aredefined in slightly differentways. Herewewill briefly introduce a consistentwayof defining
them.
In the semi-analytical solution, the attenuation is defined in terms of the wave speed. Let us use 𝑐L as
an example:

𝑐L =
Re(𝑐L)
1− i𝜂 (3.22)

where theattenuationcoefficient𝜂=𝛼s/(40𝜋 loge), and𝛼s represents theattenuation rateof theelastic
layer indB/𝜆. However, the elastic damping ratio 𝜉s in theTLM is incorporated through complex-valued
Lamé constants [19]:

𝜆∗s = 𝜆s⒧1+2i𝜉s sgn(𝜔)⒭ and 𝜇∗
s = 𝜇s⒧1+2i𝜉s sgn(𝜔)⒭. (3.23)

They are used to calculate the complex-valued wave speeds using Equation (2.20); therefore, we can
match𝛼s and𝜉s basedonwave speeds. Thecalculationof complex-valuedwave speeds in semi-analytical
solutions is introduced in thefirst section of AppendixA for interested readers. Herewedirectly provide
the mapping between 𝜉s and 𝛼:

𝜉s = 1−⒧1−𝛼si/⒧40𝜋 loge⒭⒭
2

2i⒧1−𝛼si/⒧40𝜋 loge⒭⒭2
. (3.24)

Note that in this chapter, we assume identical attenuation rates for both 𝑃 and 𝑆 waves:
𝛼T = 𝛼L = 𝛼s. (3.25)

Finally, six cases have been designed based on different frequencies and attenuation levels, as presented
in Table 3.3.
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Figure 3.2. Zero contour plots of real and imaginary parts of Equation (3.15) and roots when 𝛼s = 1 dB/𝜆
and 𝑓 = 800Hz.

3.2.2 Eigenvalues
The algorithm is designed to locate the roots of the dispersion relation given in Equation (3.15). The un-
derlying principles of the algorithm, as applied to both elastic and acousto-elastic layers, are discussed
in detail in [20]. Briefly, the algorithm proceeds according to the following steps:

{1} Counting: Based on the principle of the argument, first count the total number of roots of the
dispersion relation for given regions.

{2} Subdivision: Subdivide the region into smaller regions with a limited number of roots based on
the principle of the argument method.

{3} Polishing: Refine the location of roots by minimizing the modulus of det𝐌 for each subdivision.

The roots and zero-contour plots of Equation (3.15), computed by the root-finder for 𝑓 = 800Hz with
𝛼s = 1, are shown in Figure 3.2. The plots indicate that all roots located at the intersections of the real
(blue line) and imaginary parts (red line) of the dispersion relation have been successfully identified.
This demonstrates the effectiveness of the root-finder.

Figure 3.3presents six subfigures comparing the rootsobtained fromthesemi-analytical andTLMeigen-
value problems, corresponding to all cases defined in Table 3.3.The following observations can be no-
ticed:

1. When the medium is lossless (𝛼s = 0), the roots are symmetrically distributed in the third and
fourth quadrant. However, this symmetry is violated in the presence of attenuation (𝛼s > 0). For
all cases, the roots move from an evanescent region near the imaginary axis to the real axis with
increasing frequency, reflecting that more modes become propagative at higher frequencies.

2. Therootsof the continuousanddiscrete solutionsmatchclosely at50and200Hz. At500Hz, small
deviations appear, mainly due to the discrete solution having a finite number of modes set by the
systemmatrix size, whereas the continuous formulation admits infinitely manymodes. Increas-
ing the number of thin layers in the TLM could reduce this gap but at a higher computational cost.
Overall, both approaches agree well on the number and location of roots in the complex plane.
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(b) 𝑓 = 50Hz,𝛼s = 1 dB/𝜆
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(c) 𝑓 = 200Hz,𝛼s = 0 dB/𝜆
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(d) 𝑓 = 200Hz,𝛼s = 1 dB/𝜆
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(e) 𝑓 = 500Hz,𝛼s = 0 dB/𝜆
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(f) 𝑓 = 500Hz,𝛼s = 1 dB/𝜆
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Figure3.3. Comparison of eigenvalues from thediscrete and continuous solutions for all groups listed inTable 3.3.
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3.2.3 Eigenvectors
Eigenvectors fromdiscrete and continuous eigenvalueproblemsarenormalizedbasedonorthogonality.
In the thin-layer method, the left and right eigenvectors are normalized using the relation 𝐘𝑇𝐀𝐙 = 𝐊r.
The normalization of the semi-analytical solution follows the orthogonality relation (2.38). This section
compares different types of modes at 50Hz and 500Hz; additional results are provided in Appendix C.

SV wave type modes
Normalized SVwave typemodes from both approaches , with𝑘𝑟 close to𝑘T, will be compared in the six
subfigures of Figure 3.4, modes from twomethods are consistent.

(a) 𝑓 = 50Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 2.56−0.05i
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Figure 3.4. Comparison of selected normalized SV-wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 1dB/𝜆, (b) 𝑓 =
500Hz, 𝛼s = 1dB/𝜆.
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P wave type modes
In the next stage, normalized modes with 𝑘𝑟 close to 𝑘L will be compared. As shown in the following
six subfigures, the modal shapes from both approaches agree well. Furthermore, these modes exhibit
strong vertical oscillations, suggesting their energy propagates vertically.

(a) 𝑓 = 50Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 1.00−0.03i
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(b) 𝑓 = 500Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 10.57−0.19i
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Figure 3.5. Comparison of selected normalized 𝑃-wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 1dB/𝜆, (b) 𝑓 =
500Hz, 𝛼s = 1dB/𝜆.
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Evanescent modes
Finally, we compared normalized modes with radial wavenumbers 𝑘𝑟 that have large imaginary parts,
resulting in rapid decay in the radial direction. Nevertheless, the spectrum of such evanescentmodes is
essential for accurately capturingnear-fieldwavepropagationandstructure–soil–fluid interaction [20].
The six subfigures in Figure 3.6 show that the evanescent modes obtained from the two approaches are
in close agreement.

(a) 𝑓 = 50Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 0.55−14.94i
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(b) 𝑓 = 500Hz,𝛼s = 1 dB/𝜆„ 𝑘𝑟 = 0.15−9.63i
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Figure 3.6. Comparison of selected normalized Evanescent wave type modes obtained from semi-analytical
(black-continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 1dB/𝜆, (f)
𝑓 = 500Hz, 𝛼s = 1dB/𝜆.
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3.2.4 Orthogonality
Figures 3.7 and 3.8 show the orthogonality conditions of normalized eigenvectors for the elastic layer,
both with and without dissipation, using continuous and discrete solutions. In each set of six subfig-
ures, the left column displays the values |Γ𝑝𝑞| for the first three hundred normalized modes from the
continuous solution, whereas the right column presents log10 |Γ𝑝𝑞| for the first five hundredmodes ob-
tained from the discrete solution. The vertical axis corresponds to mode number 𝑝, and the horizontal
axis to mode number 𝑞. In all cases, the off-diagonal terms are zero, indicating that the modes are
orthogonal.

3.3 Summary
In this chapter, the continuous anddiscretemodal solutions of the elasticwaveguide shown in Figure 3.1
have been compared. The primary conclusions are summarized as follows:

1. Theeigenvalues obtained fromthediscrete and continuous solutions are consistent across various
combinations of frequency 𝑓 and attenuation rate𝛼s.

2. Different types of normalized eigenvectors—namely,𝑃-wave type, 𝑆𝑉-wave type, and evanescent
modes—computed from the twomethods agree well.

3. Themodal orthogonality relations derived from both approaches remain valid for different com-
binations of frequency 𝑓 and attenuation rate 𝛼s.
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(a) 𝑓 = 50Hz, continuous solution
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(b) 𝑓 = 50Hz, discrete solution
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(c) 𝑓 = 200Hz, continuous solution
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(d) 𝑓 = 200Hz, discrete solution
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(e) 𝑓 = 500Hz, continuous solution
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(f) 𝑓 = 500Hz, discrete solution
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Figure 3.7. Comparison of eigenvector orthogonality between the continuous and discrete solutions for 𝛼s =
0dB/𝜆..
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(a) 𝑓 = 50Hz, continuous solution
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(b) 𝑓 = 50Hz, discrete solution
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(c) 𝑓 = 200Hz, continuous solution
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(d) 𝑓 = 200Hz, discrete solution
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(e) 𝑓 = 500Hz, continuous solution
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(f) 𝑓 = 500Hz, discrete solution
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Figure 3.8. Comparison of eigenvector orthogonality between the continuous and discrete solutions for 𝛼s =
1dB/𝜆.
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4
Modal Solution of an Acoustic Domainwith

PML via Semi-analyticalMethod
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Figure 4.1. Schematic of a single acoustic layer with PML.

Table 4.1. Basic parameters used for numerical examples in Chapter 4

Acoustic layer thickness 𝐻FL 20 m
PML layer thickness 𝐻PML 20 m
MediumWave Speed 𝑐f 1500 m/s
Fluid Density 𝜌f 1000 kg/m3

Attenuation coefficient 𝛽0 5 -

This chapter presents the study of the semi-analytical modal solution of an acoustic waveguide with a
PML. As shown in Figure 4.1, the single acoustic layer has a thickness of𝐻FL and is extendedwith a PML
with a thickness of𝐻PML. The fluid density 𝜌f and medium wave speed 𝑐f remain constant across both
layers. Furthermore, the PML layer requires two specific parameters: the attenuation coefficient𝛽0 and
the polynomial order of the attenuation function𝑚PML. These parameters remain constant across all
numerical examples in this chapter, as detailed in Table 4.1. Themethodology of this chapter are:

{4.1} Formulate the dispersion relation for the semi-analytical solution.

{4.2} Identify the roots for two different frequencies for the acoustic layer with one PML, using three
different polynomial complex stretching functions.

{4.3} Check the orthogonality of eigenmodes for different cases and investigate the effects of𝑚PML on
the cross-orthogonality of modes.

{4.4} Check the dispersion characteristics of Bérenger modes.

31
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4.1 Formulation of the eigenvalue problem
Complex-stretched coordinate
Follow the notation in [4, 13], the complex-stretched coordinate 𝑧̄ is given as:

𝑧̄ =
𝑧


0
𝜀(𝑧′,𝜔)d𝑧′ = 𝑧− i

𝜔

𝑧


0
𝛽(𝑧′)d𝑧′. (4.1)

where 𝜀(𝑧′,𝜔) denotes the complex-valued stretching function [13] and 𝛽(𝑧) is defined as follows

𝛽(𝑧) =
⎧⎪⎪
⎨⎪⎪⎩

0 0 ≤ 𝑧 ≤ 𝑍1,

𝛽0𝜔⒧𝑚PML+1⒭⒧
𝑧−𝐻FL
𝐻PML

⒭
𝑚PML

𝑍1 ≤ 𝑧 ≤ 𝑍2.
(4.2)

with the amplitude 𝛽0𝜔(𝑚PML+1) chosen to normalize themagnitude of the complex-stretched coor-
dinate 𝑧̄ for different values of𝑚PML and𝜔.
The imaginary part of 𝑧̄, which governs the exponential decay of waves in the PML, is

Im(𝑧̄) =
⎧⎪⎪
⎨⎪⎪⎩

0 0 ≤ 𝑧 ≤ 𝑍1,

𝛽0𝐻PML⒧
𝑧−𝐻FL
𝐻PML

⒭
𝑚PML+1 𝑍1 ≤ 𝑧 ≤ 𝑍2.

(4.3)

An equivalent compact form, also used in [19], is

𝑧̄ = 𝑧− iH(𝑧−𝐻FL)𝛽0𝐻PML⒧
𝑧−𝐻FL
𝐻PML

⒭
𝑚PML+1

(4.4)

where H(⋅) indicates the Heaviside function.
As illustrated in Figure 4.2, while the complex coordinates have consistent boundary values 𝑧̄(𝑍1) = 𝑍1
and 𝑧̄(𝑍2) = 𝑍2−𝛽0𝐻PMLi for all values of𝑚PML, their smoothness at 𝑍1 is governed by the parameter
𝑚PML: When𝑚PML = 0, the profile exhibits a violation of 𝐶1 continuity at 𝑧 = 𝑍1. Conversely, higher
polynomial orders (𝑚PML > 0) ensure 𝐶1 continuity across the interface.
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Figure 4.2. Comparison of 𝑧̄ for different𝑚PML = 0 (blue-continuous line),𝑚PML = 1 (orange-continuous line),
𝑚PML = 2 (red-continuous line).
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Equation of motions
In an axisymmetric cylindrical coordinate systemwith complex stretching in 𝑧̄ only, theHelmholtz equation
is given as:

∇2𝜙f(𝑟, 𝑧̄)+
𝜔2

𝑐2f
𝜙f(𝑟, 𝑧̄) = 0, (4.5)

where 𝜙f(𝑟,𝑧) is the velocity potential in the frequency domain of the acoustic layer. The complex-
stretched Laplacian∇2

shows differences in two different layers:

∇2 =
⎧⎪
⎨⎪⎩

𝜕𝑟(𝑟𝜕𝑟)/𝑟 +𝜕2𝑧 , 0 ≤ 𝑧 ≤ 𝑍1,

𝜕𝑟(𝑟𝜕𝑟)/𝑟 +𝜕𝑧𝜕𝑧/𝜀(𝑧)𝜀(𝑧), 𝑍1 ≤ 𝑧 ≤ 𝑍2.
(4.6)

where 𝜀(𝑧) = 1− i
𝜔𝛽(𝑧).

General solutions
Using Separation of variables, the general solutions of Equation (4.5) are given as:

𝜙f,1(𝑟,𝑧) = 𝐻 (2)
0 (𝑘𝑟𝑟)𝐴1 exp ⒧i𝛾f(𝑧−𝑍1)⒭+𝐴2 exp ⒧−i𝛾f𝑧⒭ 0 < 𝑧 < 𝑍1 (4.7)

𝜙f,2(𝑟, 𝑧̄) = 𝐻 (2)
0 (𝑘𝑟𝑟)𝐴3 exp ⒧i𝛾f(𝑧̄− 𝑍̄2)⒭+𝐴4 exp ⒧−i𝛾f(𝑧̄− 𝑍̄1)⒭ 𝑍1 < 𝑧 < 𝑍2 (4.8)

where 𝛾f =𝜔2/𝑐2f −𝑘2𝑟 represents the wavenumber of the scalar potential 𝜙̃f in 𝑧 direction and𝐴1,𝐴2
are unknown constants to be computed.

For the 𝑖-th mode (𝑖 = 1,2), the vector velocity field 𝐯𝑖 and scalar pressure field 𝑝f,𝑖 are given by

𝐯𝑖 = ∇𝜙f,𝑖(𝑟,𝑧,𝜔), (4.9)
𝑝f,𝑖 = −i𝜔𝜌f 𝜙f,𝑖(𝑟,𝑧,𝜔), (4.10)

where 𝐯𝑖 = 𝑣𝑟,𝑖 𝐞𝑟 + 𝑣𝑧,𝑖 𝐞𝑧 has components in the 𝑟- and 𝑧-directions.

Boundary and interface conditions
Except for the radiation condition at 𝑟 → ∞ satisfied automatically via the general solutions, the fol-
lowing boundary and interface conditions:

𝑝f,1(𝑟,0,𝜔) = 0 𝑝f,2(𝑟,𝑍2,𝜔) = 0 (4.11)

𝑝f,1(𝑟,𝑍1,𝜔) = 𝑝f,2(𝑟,𝑍1,𝜔) 𝑣𝑧,1(𝑟,𝑍1,𝜔) = 𝑣𝑧,2(𝑟,𝑍1,𝜔) (4.12)

Substituting the assumed general solutions into the equations above leads to the eigenvalue problem
𝐌𝐀 = 𝟎. The detailed form of𝐌 is given in Equation (A.2) in Appendix A for interested readers.

Dispersion relation
Setting det𝐌= 0 gives the following dispersion relation:

2𝛾f1+ exp⒧2𝛾f⒧(i+𝛽0)𝐻PML+i𝑍1⒭⒭ = 0 (4.13)

Equation (4.13) suggests that the dispersion relation of one acoustic layerwith onePML layer depends on
𝑍1, 𝑘f, 𝛽0, and𝐻PML. In other words, the eigenvalues should be consistent for different values of𝑚PML
in this scenario.
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Table 4.2. PML polynomial order and frequencies used in Chapter 4

Groups PML Order Frequency
Group 1.1 𝑚PML 0 − 𝑓 50 Hz
Group 1.2 𝑚PML 1 − 𝑓 50 Hz
Group 1.3 𝑚PML 2 − 𝑓 50 Hz
Group 2.1 𝑚PML 0 − 𝑓 200 Hz
Group 2.2 𝑚PML 1 − 𝑓 200 Hz
Group 2.3 𝑚PML 2 − 𝑓 200 Hz

4.2 Numerical results and discussions
Six numerical cases have been considered in this chapter, as indicated in Table 4.2. These cases combine
two frequencies with three PML polynomial orders:

1. 𝑓 = 50Hz:𝑚PML = 0,1,2
2. 𝑓 = 200Hz:𝑚PML = 0,1,2

4.2.1 Eigenvalues
Using the root-finding algorithm described previously, the roots of Equation (4.13) have been deter-
mined for all cases listed in Table 4.2. Figure 4.3 shows the visualization of |det(𝐌)| in the complex 𝑘𝑟
plane for𝑓 = 50Hz, here log10 |det(𝐌)| is shownhere for a better visualization. This surface plot clearly
demonstrates the positions of the poles of Equation (4.13), which appear asminima of the surface in the
complex 𝑘𝑟 plane.
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Figure 4.3. 3D visualizations of det(𝑘𝑟) for 𝑓 = 50Hz
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Figure 4.4. Zero contour plots of real and imaginary parts of Equation (4.13) for 𝑓 = 50Hz

Figure 4.4 and 4.3 show that all complex roots were distributed along one hyperbolic branch, as suggested
by [9] for the finite PML layer.

4.2.2 Orthogonality between Eigenvectors and Conjugate Eigenvectors
The cross-orthogonality of modes and their conjugate eigenvectors has already been proved in [26] for
the PekerisWaveguidewith one PML, themethodhas beenmodified in this thesis for the single acoustic
layer with one PML layer:

Γ𝑝𝑞 = Γ𝑝𝛿𝑝𝑞 =
𝑍2

0
𝜑f,𝑝 ⋅ 𝜙f,𝑞d𝑧 (4.14)

where 𝜑f,𝑝 is the 𝑝−th conjugate eigenvector and 𝑘𝑟𝑝 are its related eigenvalue; 𝜑f,𝑞 is the 𝑞−th eigen-
vector and 𝑘𝑟𝑞 are its related eigenvalue. Moreover,𝜑f,𝑝 satisfies the following adjoint equation of (4.5):

d2𝜑f,𝑝,1
d𝑧2 +⒧𝑘2f −𝑘2𝑟 ⒭𝜑f,𝑝,1 = 0 0 < 𝑧 < 𝑍1 (4.15)

d
d𝑧⒧

1
𝜀(𝑧)

d
d𝑧⒧

𝜑f,𝑝,2
𝜀(𝑧) ⒭⒭+ ⒧𝑘

2
f −𝑘2𝑟 ⒭

𝜑f,𝑝,2
𝜀(𝑧) = 0 𝑍1 < 𝑧 < 𝑍2 (4.16)

Therefore, the general solutions of Equation (4.16) is given as:

𝜑f,𝑝,1(𝑧) = 𝐴1 exp [i𝛾f(𝑧−𝑍1)]+𝐴2 exp(−i𝛾f𝑧) 0 ≤ 𝑧 ≤ 𝑍1, (4.17)

𝜑f,𝑝,2(𝑧) = 𝐴3 exp i𝛾f ⒧𝑧̄− 𝑍̄2⒭+𝐴4 exp −i𝛾f ⒧𝑧̄− 𝑍̄1⒭𝜀(𝑧) 𝑍1 ≤ 𝑧 ≤ 𝑍2 (4.18)

𝜑f,𝑝,2(𝑧)/𝜀(𝑧) satisfy the same boundary conditions of 𝜙f,𝑞. The detailed derivation of these equations
will not be expanded here for the sake of brevity, but it is provided in Appendix A for interested readers.
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4.2.3 Eigenvectors
The eigenvectors are determined by considering a slight inhomogeneous boundary velocity at the bot-
tom of the PML domain, then normalized so that |Γ𝑝𝑝| = 1. Figure 4.5 compares the normalizedmodes
for different PMLpolynomial orders𝑚PML; each subfigure is associatedwith one frequency in Table 4.2.

(a) 𝑓 = 50Hz, 𝑘𝑟 = 0.80−0.30i

0 5 10 15 20 25 30 35 40

z (m)

0

1000

2000

3000

4000

5000

6000

|φ̃ f
|(

m
2 /s

/H
z)

mPML = 0

mPML = 1

mPML = 2

18 20 22
0

100

200

300

(b) 𝑓 = 200Hz, 𝑘𝑟 = 0.61−0.22i
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Figure 4.5. Comparison of different modes for three different values of𝑚PML for (a) 𝑓 = 50Hz, (b) 𝑓 = 200Hz.
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The following observations are made:

(1)These eigenvectors exhibit some anomalous behavior. Figure 4.5 suggests all modes exhibit an exponential-
like profile, remaining nearly flat in the regular region and rising sharply when approaching the PML.
The modal amplitude is closely associated with the energy characteristics of the mode. Therefore, the
modal energyexhibits the samecharacteristicbehaviour. Theoretically, theenergyof thesemodes should
propagate with a nearly horizontal angle because Re(𝑘𝑟) ≫ Im(𝑘𝑟). However, the energy of eigen-
vectors in Figure 3.4 is suddenly amplified near the interface between the acoustic and PML domains,
which is quite anamalous compared to physical modes. Thesemodes are so-called nonphysical pseudo-
numerical modes in the existing literature[4, 9, 17].

(2)The𝐶1 continuity (continuity of slope) is violated at 𝑧 = 𝑍1, if𝑚PML = 0 is used. Briefly, this discontinuity
of Im(𝜀) will induce a discontinuity in the derivative operator, which finally results in a discontinuity
of the slope of the modal solution at 𝑍 = 𝑍1. When𝑚PML = 0 is assumed, a discontinuous complex
stretch function Im(𝜀(𝑧))will be generated, as depicted in Figure 4.6. The slope of themode at the right
interface 𝑧 = 𝑍+

1 is complex stretched as follows in the PML domain:

𝜙′
f,2𝑍+

1

= 1
𝜀(𝑍+

1 )
d𝜙f,2
d𝑧 

𝑍+
1

(4.19)

Whereas, this slope is as follows at 𝑧 = 𝑍−
1 (left interface in the regular domain):

𝜙′
f,1𝑍−

1

= d𝜙f,2
d𝑧 

𝑍−
1

(4.20)

When𝑚PML = 0, as seen in the blue line in the Figure 4.6:

Im(𝜀(𝑍+
1 )) < 0 → 𝜀(𝑍+

1 ) ≠ 1 (4.21)

Therefore, a discontinuous slope of the potential field 𝜙f is found at 𝑧 = 𝑍1 from Equations (4.19) and (4.20):

𝜀(𝑍+
1 ) ≠ 1↔ 𝜙′

f,1𝑍−
1

≠ 𝜙′
f,2𝑍+

1

(4.22)

The physical meaning of the first-order derivative of the potential field corresponds to the velocity field.
In otherwords, violation of the𝐶1 continuity condition represents a discontinuity in the velocity field at
the regular-PML domain interface. For this reason, a piecewise-linear complex-stretching function is
not recommended, as itwould introduce artificial velocity discontinuities that are physically unrealistic.
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4.2.4 Modal Orthogonality
This section investigates characteristics of modal orthogonality between modes and their conjugate
eigenvectors under the context of the perfectly matched layer (PML) of acoustic layers. Briefly, the re-
sults and discussions reflect the following three aspects on orthogonality:

1. the influence of polynomial orders𝑚PML;

2. the impact of the size of the integration step d𝑧;
3. the influence of different integration schemes.

Orthogonality for different values of𝑚PML
|Γ𝑝𝑞| was computed using Equation (4.14). Furthermore, the in-built numerical integration function
np.trapzwas used and d𝑧 is 1×10−5m. The six subfigures in Figure 4.7 indicate the |Γ𝑝𝑞| for the first
thirty modes that correspond to different values of𝑚PML and 𝑓. For two different considered frequen-
cies (50Hz and 200Hz), the following observations are made:

1. When the value of polynomial order𝑚PML is increased from 0 to 1 or 2, the values of off-diagonal
elements are reduced, indicating a better cross-orthogonality.

2. However, when𝑚PML is equal to 2, some diagonal elements |Γ𝑝𝑝|, are found to be larger than 1.
The cause of the first observation is given below: Following a derivation on the cross-orthogonality be-
tween eigenvectors and their conjugate eigenvectors of an acoustic layer with one PMLwith a fixed bot-
tom boundary in Appendix A, the boundary terms that are produced during the integration by parts
read:

𝜑f,1(𝑍1)𝜙′
f,1(𝑍1)−𝜙′

f,2(𝑍1)+𝜙f,2(𝑍1)⒧𝜑f,1/𝜀⒭
′

𝑧=𝑍1

−⒧𝜑f,2/𝜀⒭
′

𝑧=𝑍1

 (4.23)

where𝜙𝑖 represents themodeand𝜑𝑖 represents its conjugate eigenvectors. Theeliminationofboundary
terms is seen as a necessary condition for deriving the final conjugate eigenvectors, which are subject to
the following condition:

𝐶1 continuity of𝜙f(𝑧) and ⒧𝜑f(𝑧)/𝜀(𝑧)⒭ at 𝑧 = 𝑍1

which is not valid at𝑚PML = 0 form the mathematical derivation and numerical results in Figure 4.5.
Therefore, these remaining boundary terms may lead to the failure of deriving conjugate eigenvectors,
which finally violates the orthogonality relations between eigenvectors and their conjugate eigenvectors
in Equation (4.14).

Furthermore, the continuity of the complex stretching function 𝜀 and its derivative 𝜀′ are required to
eliminate all boundary terms, which have been derived in Appendix A. Therefore, from mathematical
derivation, it is suggested to use𝑚PML = 2 tomaintain the𝐶0 and𝐶1 continuity of the complex stretch-
ing function.

However, the reason behind the second observation requires further investigation in future work. The
values of |Γ𝑝𝑞| for a higher polynomial order, namely𝑚PML = 3, were also computed, and similar con-
clusions were obtained as for the case of𝑚PML = 2. As increasing𝑚PML results in a higher-order poly-
nomial 𝜀(𝑧) in the evaluation of |Γ𝑝𝑞| via Equation (4.14), it is possible that np.trapzmay not provide
sufficiently accurate numerical integration. This limitation arises because the trapezoidal rule is only
first-order accurate, and its performance deteriorates when the integrand exhibits strong variations or
oscillations, as is the case for higher-order 𝜀(𝑧). Therefore, more advanced quadrature schemesmay be
required for𝑚PML > 1, which warrants systematic investigation in future work.
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(a)𝑚PML = 0, 𝑓 = 50Hz
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(b)𝑚PML = 0, 𝑓 = 200Hz
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(c)𝑚PML = 1, 𝑓 = 50Hz
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(d)𝑚PML = 1, 𝑓 = 200Hz
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(e)𝑚PML = 2, 𝑓 = 50Hz
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(f)𝑚PML = 2, 𝑓 = 200Hz
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Figure 4.7. Orthogonality heatmaps ofmodes and its conjugate eigenvectors for different PML polynomial orders
𝑚PML of complex-stretch functions at 𝑓 = 50Hz: (a)𝑚PML = 0, (b)𝑚PML = 1, (c)𝑚PML = 2..
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Orthogonality for different values ofd𝑧
In this section, the influence of the size of integration steps is discussed.𝑚PML = 1will be assumed for
this case, and three values of d𝑧 have been considered: (i) d𝑧 = 1×10−3m, (ii) d𝑧 = 1×10−4m and (iii)
d𝑧 = 1×10−5m.
The value of |Γ𝑝𝑞| are shown in Figure 4.8 for 𝑓 = 200 Hz. It can be observed from the following six
figures that finer integration steps will reduce the magnitude of the off-diagonal element with large
values of 𝑝 and 𝑞, reflecting a better cross-orthogonality betweenmodes and their conjugate eigenvec-
tors for these high-ordermodes1. This behavior can be explained by the exponential nature of higher-order
modes. Modes with larger imaginary parts exhibit more pronounced exponential decay, causing their
modal amplitudes to change rapidly near the peak values of the eigenvectors (see Figure 4.5). Conse-
quently, more integration steps are necessary to accurately capture these steep variations andmaintain
an accurate calculation of the cross-orthogonality.
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(b) d𝑧 = 1×10−4 m
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(c) d𝑧 = 1×10−5 m
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Figure 4.8. Orthogonality heatmaps of the first thirty modes and their conjugate eigenvectors for different size
of integration step d𝑧 of complex-stretch functions at 𝑓 = 200 Hz: (a) d𝑧 = 1×10−3 m, (b) d𝑧 = 1×10−4 m, (c)
d𝑧 = 1×10−5m.
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Figure 4.9. Comparison ofmode 20 and 30 at 𝑓 = 200Hz: higher-ordermodes (red-continuous line), lower-order
modes (black-continuous line)

1Here higher order modes represent the modes with larger Re(𝑘𝑟) and Im(𝑘𝑟) in Figure 4.4
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4.2.5 Modal Dispersion Characteristics
Figure 4.10 presents the first thirteen dispersion curves for the single fluid layer with one PML, as de-
fined in Figure 4.1, obtained from the complex-valued eigenvalues computed by the numerical root-
finding algorithm for 𝑓 ranging from 0 to 30Hz. The left column shows the imaginary part, and the left
column shows the real part. The complex-valued roots are found numerically via the root-finder; some
points are missing; however, the main dispersion branches are clearly captured and sufficient for the
present discussion. In addition, Figure 4.11 shows the group and phase velocities of the top 10 modes,
ranked by Re(𝑘𝑟) at the terminal frequency, computed using Equation (2.35). As can be observed from
Figures 4.10 and 4.11:

1. The dispersion curves exhibit large slopes, indicating that all modes experience high group veloc-
ities across the𝜔 range.

2. As shown in Figure (4.11), with increasing frequency, the group velocity decreases, and phase ve-
locity increases. This finding is opposite to the profile of the group and phase velocity of the phys-
ical modes, which is indicated by Figure 2.8. The phase velocity of all modes is smaller than the
group velocity, which follows the definition of anomalous dispersion given byMiklowitz in [14].

−0.12 −0.10 −0.08 −0.06 −0.04 −0.02

Im(kr) (rad/m)

0

25

50

75

100

125

150

175

ω
(r

ad
/s

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Re(kr) (rad/m)

cf

Figure 4.10. Dispersion curves for one acoustic layer with one PML
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Figure 4.11. Group and phase velocity spectra of the top 10 modes ranked by Re(𝑘𝑟) at the last frequency.
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4.3 Summary
This Chapter provides a study of the normal-mode solution of a single acoustic domain with a perfectly
matched layer (PML) in Figure 4.1, via the semi-analyticalmethod. In particular, the key conclusions are
summarized as follows:

1. The roots of the dispersion relation Equation (4.13) were detected successfully by the root-finder
for two considered frequencies: 50 Hz and 200 Hz. First, they are located around a hyperbolic
line. Second, for a single acoustic layer with PML, the form dispersion relation is not dependent
on polynomial orders; therefore, the eigenvalues will not be subject to different choices of the
complex-stretch function in the semi-analytical solution.

2. The spatial profile of modes that are considered here share some nonphysical characteristics. First,
they grow exponentially in the physical domain before being attenuated in the PML. Physically,
their energy starts to amplify inside the PML domain.

3. The eigenvectors (modes) will differ between values of𝑚PML. Themode will have a discontinuous
slope at the interface of the regular and PML domains, if𝑚PML = 0 is chosen. For this reason, a
linear attenuation function in thePMLdomain is not suggested, because the violation of𝐶1 conti-
nuity is equivalent to discontinuous velocity, which is not acceptable from a physical perspective.
For this reason,𝑚PML > 0will be assumed in the remaining cases.

4. Using𝑚PML = 0 violates orthogonality: it violates the slope continuity of the eigenvector at the
interface between the PML and physical domain. As a result, the boundary terms in Equation
(4.23) will not be eliminated when deriving the conjugate modes via the method in [26]. Finally,
the cross orthogonality of themode and its conjugate eigenvector will be violated. Again,𝑚PML >
0 is suggested for the application of complex stretch in the semi-analytical solution, because it
maintains the 𝐶1 continuity of the eigenvector at 𝑧 = 𝑍1.

5. For higher-order PML polynomials (𝑚PML > 1), the use of np.trapz may lead to inaccuracies
in evaluating orthogonality integrals, since the trapezoidal rule is only first-order accurate and
becomes unreliable when the integrand exhibits strong variations. Mathematically, the orthogo-
nality is still valid, but the numerical integration may fail to capture it accurately. This limitation
suggests that more advanced quadrature schemes should be considered in future work.

6. Bérenger modes exhibit anomalous dispersion. They display unrealistically high group velocities
across all frequencies, and, moreover, their group velocities exceed the corresponding phase ve-
locities, which is physically invalid.
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Figure 5.1. Schematic of a single elastic domain with one PML

Table 5.1. Basic parameters used for numerical examples in Chapter 5

Elastic layer thickness 𝐻EL 5 m
PML layer thickness 𝐻PML 5 m
Solid density 𝜌s 1700 kg/m3

Young’s modulus 𝐸s 0.7 MPa
Poisson’s ratio 𝜈 0.4 -
Attenuation coefficient 𝛽0 5 -
PML order 𝑚PML 2 -

This chapter compares theThin-Layermethod anda semi-analytical approach regarding theirmodal so-
lutions for a single elastic waveguide with a PML. Figure 5.1 shows the statement of the problem, where
a single elastic layer has a thickness of 𝐻EL and is above a PML with a thickness of 𝐻PML. Besides, the
geometry dimensions, material properties, and PML parameters used in this chapter are displayed in
Table 5.1. Furthermore, they remain fixed across all numerical examples in this chapter. Themethodol-
ogy of this chapter is briefly given as:

{5.1} Formulate the eigenvalue problem via the semi-analytical method and TLM.

{5.2} Identify the roots for two different loading frequencies of the system, using a quadratic complex-
stretched functions in the PML domain.

{5.3} Check the orthogonality condition of eigenvectors of semi-analytical solutions.

{5.4} Compare the eigenvalues andmodes computed fromTLMand semi-analyticalmethod. Thenum-
ber of layers in the PMLdomain is treated as a variable for theThin-layermethod. The comparison
is performed for different numbers of layers.

43
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5.1 Formulation of the eigenvalue problem
5.1.1 Continuous solution
Following the same notations in Chapter 3, we will start from theHelmholtz equations in elastodynam-
ics, in the elastic domain:

∇2𝜙s,1(𝑟,𝑧;𝜔)+𝑘2L 𝜙s,1(𝑟,𝑧;𝜔) = 0 0 < 𝑧 < 𝑍1, (5.1)

∇2𝜓s,1(𝑟,𝑧;𝜔)−
𝜓s,1(𝑟,𝑧;𝜔)

𝑟2 +𝑘2T 𝜓s,1(𝑟,𝑧;𝜔) = 0, 0 < 𝑧 < 𝑍1, (5.2)

where the Laplacian operator∇ is:

∇2 = 1/𝑟𝜕𝑟(𝑟𝜕𝑟)𝐞𝑟 +𝜕2𝑧𝐞𝑧. (5.3)

The coordinate 𝑧 is assumed to be stretched into a complex-valued 𝑧̄ in the PML domain using Equa-
tion (4.4)

𝑧 → 𝑧̄ = 𝑧− i𝛽0𝐻PML⒧
𝑧−𝐻EL
𝐻PML

⒭
3

𝑍1 < 𝑧 < 𝑍2 (5.4)

Correspondingly, the Helmholtz equations in the PML domain are:

∇2𝜙s,2(𝑟, 𝑧̄;𝜔)+𝑘2L 𝜙s,2(𝑟, 𝑧̄;𝜔) = 0 𝑍̄1 < 𝑧̄ < 𝑍̄2, (5.5)

∇2𝜓s,2(𝑟, 𝑧̄;𝜔)−
𝜓s,2(𝑟, 𝑧̄;𝜔)

𝑟2 +𝑘2T 𝜓s,2(𝑟, 𝑧̄;𝜔) = 0, 𝑍̄1 < 𝑧̄ < 𝑍̄2. (5.6)

∇2
is modified Laplacian operator with complex stretched 𝑧̄:

∇2 = 1/𝑟𝜕𝑟(𝑟𝜕𝑟)𝐞𝑟 +1/𝜀(𝑧) ⋅ 𝜕𝑧(𝜕𝑧/𝜀(𝑧))𝐞𝑧. (5.7)

The expressions of all potential fields in the elastic domain read:

𝜙s,1 = 𝐴1 exp(i𝛾L𝑧)+𝐴2 exp(−i𝛾L𝑧)𝐻 (2)
0 (𝑘𝑟𝑟) 0 < 𝑧 < 𝑍1 (5.8)

𝜓s,1 = 𝐴3 exp(i𝛾T𝑧)+𝐴4 exp(−i𝛾T𝑧)𝐻 (2)
1 (𝑘𝑟𝑟), 0 < 𝑧 < 𝑍1 (5.9)

On the other hand, the potential fields in the PML domain are:

𝜙s,2 = 𝐴5 exp(i𝛾L𝑧̄)+𝐴6 exp(−i𝛾L𝑧̄) 𝐻 (2)
0 (𝑘𝑟𝑟), 𝑍1 < 𝑧̄ < 𝑍2 (5.10)

𝜓s,2 = 𝐴7 exp(i𝛾T𝑧̄)+𝐴8 exp(−i𝛾T𝑧̄) 𝐻 (2)
1 (𝑘𝑟𝑟). 𝑍1 < 𝑧̄ < 𝑍2 (5.11)

The general solutions here were modified, aimed at

1. avoiding the overflows of the exponential terms

2. a stable mapping for calculating the determinant of the matrix of coefficients, as suggested by
Jensen in [11]

𝜙s,1 = 𝐴2 exp(−i𝛾L𝑧)+𝐴1 exp(i𝛾L(𝑧−𝑍1))𝐻 (2)
0 (𝑘𝑟𝑟), 0 < 𝑧 < 𝑍1 (5.12)

𝜓s,1 = 𝐴4 exp(−i𝛾T𝑧)+𝐴3 exp(i𝛾T(𝑧−𝑍1))𝐻 (2)
1 (𝑘𝑟𝑟), 0 < 𝑧 < 𝑍1 (5.13)

𝜙s,2 = 𝐴6 exp ⒧−i𝛾L(𝑧̄−𝑍1)⒭+𝐴5 exp ⒧i𝛾L(𝑧̄−𝑍2)⒭𝐻 (2)
0 (𝑘𝑟𝑟), 𝑍1 < 𝑧̄ < 𝑍2 (5.14)

𝜓s,2 = 𝐴8 exp ⒧−i𝛾T(𝑧̄−𝑍1)⒭+𝐴7 exp ⒧i𝛾T(𝑧̄−𝑍2)⒭𝐻 (2)
1 (𝑘𝑟𝑟), 𝑍1 < 𝑧̄ < 𝑍2 (5.15)
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The post-processed displacement field vector 𝐮s,1 in the elastic layer is written as below:

𝐮s,1 = ⒧𝜕𝑟𝜙s,1−𝜕𝑧𝜓s,1⒭𝐞𝑟 +⒧𝜕𝑧𝜙s,1+𝜕𝑟 𝜓s,1+ 𝜓s,1/𝑟⒭𝐞𝑧. (5.16)

Incorporating the complex stretch, field vector 𝐮s,2 in the PML is

𝐮s,2 = ⒧𝜕𝑟𝜙s,2−𝜕𝑧𝜓s,2/𝜀(𝑧)⒭𝐞𝑟 +⒧𝜕𝑧𝜙s,2/𝜀(𝑧)+𝜕𝑟 𝜓s,2+ 𝜓s,2/𝑟⒭𝐞𝑧. (5.17)

The vertical stress fields 𝜎𝑧𝑧,𝑖 (𝑖 = 1,2) are:

𝜎𝑧𝑧,1 = 𝜆s ⋅ ⒧𝜕2𝑟 𝜙s,1+
1
𝑟 𝜕𝑟

𝜙s,1⒭+ (𝜆s+2𝜇s)𝜕𝑧𝜙s,1+2𝜇s ⋅ ⒧𝜕𝑧𝜕𝑟 𝜓s,1+
1
𝑟 𝜕𝑧𝜓s,1⒭ . (5.18)

𝜎𝑧𝑧,2 = 𝜆s ⋅ ⒧𝜕2𝑟 𝜙s,2+
1
𝑟 𝜕𝑟

𝜙s,2⒭+ (𝜆s+2𝜇s) ⋅
1

𝜀(𝑧)𝜕𝑧⒧
𝜕𝑧𝜙s,2
𝜀(𝑧) ⒭+2𝜇s ⋅ ⒧

1
𝜀(𝑧)𝜕𝑧𝜕𝑟 𝜓s,2+

1
𝑟 𝜕𝑧𝜓s,2⒭ . (5.19)

The shear stress fields 𝜎𝑧𝑟,𝑖 (𝑖 = 1,2) are:

𝜎𝑧𝑟,1 = 𝜇s ⒧2𝜕𝑟𝜕𝑧𝜙s,1−𝜕2𝑧 𝜓s,1+𝜕2𝑟 𝜓s,1+
1
𝑟 𝜕𝑟 𝜓s,1−

1
𝑟2 𝜓s,1⒭ (5.20)

𝜎𝑧𝑟,2 = 𝜇s ⒧
1

𝜀(𝑧) ⋅ 2𝜕𝑟𝜕𝑧
𝜙s,2−

1
𝜀(𝑧)𝜕𝑧 ⒧

𝜕𝑧𝜓s,2
𝜀(𝑧) ⒭𝜕

2
𝑟 𝜓s,2+

1
𝑟 𝜕𝑟 𝜓s,2−

1
𝑟2 𝜓s,2⒭ . (5.21)

For the system in Figure 5.1, the following boundary conditions must be satisfied:

𝜎𝑧𝑧,1(0,𝑟,𝜔) = 0 𝜎𝑧𝑟,1(0,𝑟,𝜔) = 0 (5.22)

𝑢s,𝑧,2(𝑍2, 𝑟,𝜔) = 0 𝑢s,𝑟,2(𝑍2, 𝑟,𝜔) = 0 (5.23)

𝑢s,𝑧,1(𝑍1, 𝑟,𝜔) = 𝑢s,𝑧,2(𝑍1, 𝑟,𝜔) 𝑢s,𝑟,1(𝑍1, 𝑟,𝜔) = 𝑢s,𝑟,2(𝑍1, 𝑟,𝜔) (5.24)

𝜎𝑧𝑧,1(𝑍1, 𝑟,𝜔) = 𝜎𝑧𝑧,2(𝑍1, 𝑟,𝜔) 𝜎𝑧𝑟,1(𝑍1, 𝑟,𝜔) = 𝜎𝑧𝑟,2(𝑍1, 𝑟,𝜔) (5.25)

Therefore, a system of equations𝐌𝐀 = 0 can be formed after substituting all fields into the boundary
conditions. The detailed form of𝐌 is provided in Section A.3 of Appendix A.

Let the determinant of the coefficient matrix𝐌 be zero, which gives the dispersion relation of this sce-
nario:

det𝐌= 0 (5.26)

The roots of Equation (5.26) in the complex 𝑘𝑟 plane give all eigenvalues 𝑘𝑟. For any 𝑘𝑟𝑝, its corre-
sponding eigenvector Φs𝑝,𝑖(𝑧) and Ψs𝑝,𝑖(𝑧)will be computed by imposing an inhomogeneous interface
condition.

5.1.2 Discrete solution
Following the implementations introduced by Kausel and deOliveira Barbosa, the layer thickness in the
PML should bemodified after complex stretch (see Figure 5.2) in Equation (2.51) when𝑚PML = 2, which
is:

ℎ̄ℓ = 𝑧̄ℓ−𝑧̄ℓ−1 = 𝐻
⎧
⎨
⎩

1
𝑁PML

−i𝛽0
⎡
⎣
⒧ ℓ
𝑁PML

⒭
3
−⒧ ℓ−1𝑁PML

⒭
3⎤
⎦

⎫
⎬
⎭
, (5.27)

Due to the complex stretch in the PML, the elemental matrix for ℓ−th layer in the PML domain should
be modified as:

𝐀ℓ =
ℎ̄ℓ
ℎℓ

𝐀ℓ, 𝐆ℓ =
ℎℓ
ℎ̄ℓ

𝐆ℓ, 𝐌ℓ =
ℎ̄ℓ
ℎℓ

𝐀ℓ, 𝐁ℓ = 𝐁ℓ (5.28)
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Finally, the generalized discrete eigenvalue problem of P-SV modes in the elastic waveguide after the
assembly of the matrix in each layer [12]:

⒧𝑘2𝑟𝑝𝐀+𝐂⒭
𝛟𝑟𝑝

𝑘𝑟𝑝𝛟𝑧𝑝
 =  𝟎

𝟎  (5.29)

As shown previously, they satisfy the following orthogonality relations [12]:

𝐘𝑇𝐀𝐙 = 𝐊r, 𝐘𝑇𝐂𝐙 = −𝐊3
r , (5.30)

Theeigenvalues𝑘𝑟𝑝 andunnormalizedeigenvectors aredirectly calculatedbynp.linalg.eig inPython.
In the next stage, eigenvectors will be normalized by the orthogonality relation𝐘𝑇𝐀𝐙 = 𝐊r. Besides, the
roots with positive imaginary part will be excluded to select themode that decays in the range direction
[12].

5.2 Numerical results and discussions
In this section, the continuous and discrete modal solutions of a linear isotropic elastic layer with one
PML will be compared, including their (1) eigenvalues, (2) eigenvectors, and (3) orthogonality. For com-
pleteness, we will consider modal solutions for 𝑓 = 50Hz, 𝑓 = 200Hz. Additionally, different attenua-
tion rates𝛼s in the semi-analytical solution, which correspond tomaterial damping 𝜉s in theThin-layer
method, will be considered. In this section, the numerical results for Group 1.2 is provided and dis-
cussed, the results of remaining cases are provided in Appendix.

Table 5.2. Attenuation rates and frequencies used in six cases in Chapter 5

Groups Attenuation rate Frequency
Group 1.1 𝛼s 0 dB/𝜆 𝑓 50 Hz
Group 1.2 𝛼s 1.5 dB/𝜆 𝑓 50 Hz
Group 2.1 𝛼s 0 dB/𝜆 𝑓 200 Hz
Group 2.2 𝛼s 1.5 dB/𝜆 𝑓 200 Hz

There are 300 layers in the physical domain; therefore, the thickness of the thin layer in the regular do-
main is fixed to be 1/60m. As mentioned, the comparison of continuous and discrete modal solutions
will be carried out for different values of ℎℓ

1. ℎℓ = 0.25m. In other words, assume a PML withmoderate thickness (See Figure 5.3a).
2. ℎℓ = 0.01m. Under this scenario, we have PML withminimal thickness (See Figure 5.3b).
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Figure 5.2. Complex-stretched coordinate 𝑧̄ in Chapter 5.
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(a)Normal thin layer
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Figure 5.3. Schematics of discretizations in TLMwith different ℎℓ: (a) 0.25m, (b) 0.01m.

5.2.1 Eigenvalues
The comparison between eigenvalues for all cases listed in Table 5.2 will be presented. The eigenvalues
are comparedfirst globally in the left columnof thefigures, followedby zoomed-in versionshighlighting
the eigenvalues that agree perfectly with each other. The first row compares ℎℓ = 0.25 m, while the
second row presents the results for ℎℓ = 0.01m. The following observations can be made:

1. For all cases considered here, a small subset of the TLM modes are perfectly consistent with the
semi-analytical solution. Beyond this subset, the eigenvalues of the TLM have large imaginary
part. In contrast, the semi-analytical eigenvalues are distributed around two hyperbolic curves
associated with P-wave and SV-wave type modes.

2. Theoverall comparison (left-column) andzoomed-in comparison (right column) both suggest that
decreasing ℎℓ brings the eigenvalues from twomethods into closer agreement.

5.2.2 Eigenvectors
For eigenvalues in perfect agreement, their normalized eigenvectors are compared in Figure 5.5. The
normalization for discrete and continuous solutions is based on Equation (5.31) and (5.30), respectively.
However, it is subjected to the followingmodification in the PML domain due to the complex stretch of
d𝑧 to d𝑧̄ = 𝜀(𝑧)d𝑧:

Γ𝑝𝑞,2 = Γ𝑝,2𝛿𝑝𝑞 =
𝑍2

𝑍1

𝜀(𝑧)⒧𝜁s𝑘𝑝 𝑢s,𝑟,2,𝑝(𝑧̄)
𝑢s,𝑟,2,𝑞(𝑧̄)
𝑘𝑟𝑞

−𝜂s⋅ 𝑢s,𝑟,2,𝑝(𝑧̄)
𝜎s,𝑧𝑧,2,𝑞(𝑧̄)
𝑘𝑟𝑝

+ 𝑢s,𝑧,2,𝑝(𝑧̄)
𝜎s,𝑧𝑟,2,𝑞(𝑧̄)
𝑘𝑟𝑞

⒭d𝑧,

(5.31)

where 𝜁s = 𝜌s ⋅ 𝑐4L−(𝑐2L −2 ⋅𝑐2T)2𝑐2L and 𝜂s = ⒧𝑐2L−2𝑐2T⒭𝑐2L .
The observations are made as follows:

1. The spatial profiles of modes obtained from the two approaches match each other exactly.

2. Modes demonstrate an exponentially increasing profile initially. As they reach the lower part
of the PML, their modal amplitude are attenuated, attributed to the relatively high value of the
quadratic attenuation function 𝛽(𝑠) near the fixed boundary of the PML domain (𝑧 = 𝑍2).
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(a)ℎℓ = 0.25m, comparison of roots
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(b)ℎℓ = 0.25m, zoomed-in comparison of roots
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(c)ℎℓ = 0.01m, comparison of roots
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(d)ℎℓ = 0.01m, zoomed-in comparison of roots
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Figure 5.4. Comparison of eigenvalues obtained via semi-analytical approach(red circles) and TLM (black crosses)
for 𝑓 = 50Hz, 𝛼s = 1.5dB/𝜆: (a) and (b): ℎℓ = 0.25m; (c) and (d): ℎℓ = 0.01m.
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Figure 5.5. Comparison of eigenvectors obtained via semi-analytical approach (black-continuous line) and TLM
(red-dashed line), and grey domain indicates the PML for 𝑓 = 50Hz, 𝛼s = 1.5dB/𝜆
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5.2.3 Modal orthogonality
Figure 5.6 demonstrates the value of |Γ𝑝𝑞| of the first forty normalizedmodes computed from the semi-
analytical solution for 𝑓 = 50Hz and 𝛼s = 1.5dB/𝜆. The vertical axis corresponds to mode number 𝑝,
and the horizontal axis to mode number 𝑞. In all cases, the off-diagonal terms are zero, indicating that
the modes are orthogonal.

On the other hand, the log10 |Γ𝑝𝑞| at 50Hz betweenmodes obtained via TLM is displayed in Figure 5.7.
The figure in the left column represents results when ℎℓ = 0.25m, where an acceptable orthogonality
can be found via zero off-diagonal elements; However, the orthogonality is violated if a ℎℓ = 0.01m is
chosen, indicated by non-zero off diagonal elements in 5.7b. From this point of view, small ℎℓ in the
TLMswith PML should not be suggested due to the violated orthogonality. Modal orthogonality plots at
other frequencies are provided in Appendix D.
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Figure 5.6. Orthogonality heatmap of first forty modes at 𝑓 = 50Hz and 𝛼s = 1.5dB/𝜆.

(a)𝛼s = 1.5dB/𝜆, 𝑓 = 50Hz, ℎℓ = 0.25m (b)𝛼s = 1.5dB/𝜆, 𝑓 = 50Hz, ℎℓ = 0.01m

Figure 5.7. Orthogonality heatmaps of all modes obtained via TLM: left column: good orthogonality when ℎℓ =
0.25m, right column: violated orthogonality when ℎℓ = 0.01m.
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5.2.4 Dispersion characteristics
The forty-six selected curves in Figure 5.8 illustrate the dispersion characteristics of the single elastic
layer with one PML (see Figure 5.1) obtained via the semi-analytical solution, for frequencies ranging
from 0 to 50 Hz. The black curves represent the first twenty-one modes (ranked by ascending Re(𝑘𝑟))
near the𝑘L branch, while the red curves represent the remaining twenty-fivemodes associatedwith the
𝑘T branch. As can be observed:

1. Figure 5.8 and 5.9 demonstrate that all modes experience high group velocities across all frequen-
cies.

2. As shown in Figure 5.9a and 5.9b: With increasing𝜔, the decreasing group velocity. Furthermore,
the first two spectra (from left to right) of group velocities in Figure 5.9a exhibit non-monotonic
variation in certain frequency intervals, and they touch each other. These findings are opposite to
the profile of the group and phase velocity of the physicalmodes, which is indicated by Figure 2.8.

3. The phase velocities are lower than the group velocity, which follows the definition of anomalous
dispersion given by Miklowitz in [14]. This also reveals the non-physical character of Bérenger
modes.

−0.8 −0.6 −0.4 −0.2 0.0

Im(kr) (rad/m)

0

50

100

150

200

250

300

ω
(r

ad
/s

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Re(kr) (rad/m)

0

50

100

150

200

250

300

ω
(r

ad
/s

)

cL

cT

Figure 5.8. Dispersion curves of the first twenty-one Bérengermodes near the 𝑘L branch (black continuous lines)
and the first twenty-five modes (red continuous lines) near the 𝑘T branch (ranked by ascending Re(𝑘𝑟)).
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Figure 5.9. Group and phase velocity spectra of the last twelve Bérenger modes near the 𝑘L branch (black lines)
and the last eigen Bérenger modes near the 𝑘L branch (red lines).
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5.3 Summary
This chapter compares the continuous and discrete modal solutions of the elastic waveguide with PML
shown in Figure 5.1. The primary conclusions are summarized as follows:

1. Unlike the single elastic waveguide, the eigenvalues obtained from semi-analytical and TLM sug-
gest significant differences for the case with one perfectly matched layer. Overall, most of the
modes from TLM are evanescent with a big imaginary parts. However, the eigenvalues obtained
from the semi-analytical solution are distributed along a hyperbolic line in the complex 𝑘𝑟 plane
near the real axis. Two categories of solutions are convergent to each other if the ℎℓ is tiny.

2. Thematched eigenvalues’ relatedmodes are in excellent agreement. Furthermore, they share pre-
cisely the same characteristics regarding spatial profiles with the Bérengermodes of one acoustic
layerwithonePML:An intensely exponential increasingbeforedecreasingnear theendof thePML
domain. Consequently, the central part of their non-zero parts is found inside the PML domain.

3. The modal orthogonality between the normalized Bérenger modes of the semi-analytical modes
is well observed, although a relatively small d𝑧 is still suggested to give accurate results.

4. For the TLM approach, themodes are acceptable whenℎℓ = 0.25m is used. However, the orthog-
onality condition deteriorates ifℎℓ is reduced toℎℓ = 0.01m. Therefore, it is not suggested to use
too many layers in the TLM solition with PML for maintaining cross-orthogonality.

5. For the single elastic layerwithPML,obtainedBerengermodesvia semi-analytical solutiondemon-
strate anomalous dispersion characteristics: (1) A large group velocity across all frequencies, and
the group velocity is always larger than the phase velocity. (2) The non-monotonic variation of the
group velocity spectras are found for twomodes near the𝑘L branch. These anomalous dispersion
characteristics imply the non-physical nature of the Bérengermodes, which are introduced by the
nonphysical perfectly matched layer.



T

6
Modal Solution of one Acousto-elastic

Domainwith a PML via Semi-analytical
method

𝑟

𝑧

Acoustic domain

Elastic domain

PML domain

𝜌f,𝑐f

𝜌s,𝜈,𝐸s,𝛼L,𝛼T

𝜌s,𝜈,𝐸s,𝛼L,𝛼T
𝛽0,𝑚PML

𝑧 = 𝑍0

𝑧 = 𝑍1

𝑧 = 𝑍2

𝐻FL

𝐻EL

𝐻PML

Figure 6.1. Schematic of an acousto-elastic layer with one PML.

Table 6.1. Basic parameters used for numerical examples in Chapter 6

Fluid layer thickness 𝐻FL 20 m
Elastic layer thickness 𝐻EL 5 m
PML layer thickness 𝐻PML 5 m
Fluid density 𝜌f 1000 kg/m3

Fluid MediaWave Speed 𝑐f 1500 kg/m3

Solid density 𝜌s 1700 kg/m3

Young’s modulus 𝐸s 0.7 MPa
Poisson’s ratio 𝜈 0.4 −
Attenuation rate 𝛼s 1.5 dB/𝜆
Attenuation coefficient 𝛽0 5 −
PML order 𝑚PML 2 −

This chapter provides a semi-analytical modal solution for the system depicted in Figure 6.1. As shown
in the figure, the physical domain consists of a coupled acousto-elastic layer, where the acoustic layer
has a height of 𝐻FL and the elastic domain has a height of 𝐻EL. This two-layered system is extended
with a PML having a height of𝐻PML. The PML is assumed to be an elastic layer withmaterial properties
consistent with those of the elastic domain above it.
The eigenvalue problem is formulated analytically. Subsequently, the roots of the dispersion relation are
found numerically through a root-finding algorithm. The eigenvectors are then computed and normal-
ized based on orthogonality relations. Besides, the cross-orthogonality between the normalizedmodes
is examined. Finally, the dispersion characteristics of modes will be discussed.
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6.1 Formulation of eigenvalue problem
6.1.1 Acoustic domain
In an axisymmetric cylindrical coordinate system, the Helmholtz equation in the acoustic layer is given as:

∇2𝜙f,1+
𝜔2

𝑐2f
𝜙f,1 = 0 0 < 𝑧 < 𝑍0 (6.1)

where the Laplacian operator∇2 is:

∇2 = 1/𝑟𝜕𝑟(𝑟𝜕𝑟)𝐞𝑟 +𝜕2𝑧𝐞𝑧. (6.2)

The general solution of this Equation (6.1) is given as:

𝜙f,1(𝑟,𝑧,𝜔) = 𝐻 (2)
0 (𝑘𝑟𝑟)𝐴1 exp ⒧i𝛾f𝑧⒭+𝐴2 exp ⒧− i𝛾f(𝑧−𝑍0)⒭ (6.3)

where 𝛾f(𝜔) = 𝜔2/𝑐2f −𝑘2𝑟 .
Besides, the velocity and pressure fields are based on the potential field 𝜙f,1:

𝑝f,1(𝑟,𝑧,𝜔) = −i𝜔𝜌f 𝜙f,1 (6.4)

The velocity field is given as

𝐯1(𝑟,𝑧,𝜔) = ∇𝜙f,1 (6.5)

∇ = 𝜕𝑟𝐞𝑟 +𝜕𝑧𝐞𝑧. (6.6)

6.1.2 Elastic domain
TheHelmholtz equations of the elastic domain read:

∇2𝜙s,2+
𝜔2

𝑐2L
𝜙s,2 = 0 𝑍0 < 𝑧 < 𝑍1. (6.7)

∇2𝜓s,2−
𝜓s,2
𝑟2 + 𝜔2

𝑐2T
𝜓s,2 = 0, 𝑍0 < 𝑧 < 𝑍1. (6.8)

where the Laplacian operator∇2 is:

∇2 = 1/𝑟𝜕𝑟(𝑟𝜕𝑟)+𝜕2𝑧 . (6.9)

Again, the general solution of the Helmholtz equations in the elastic domain is given as:

𝜙s,2(𝑟,𝑧,𝜔) = 𝐻 (2)
0 (𝑘𝑟𝑟)𝐴3 exp ⒧i𝛾L(𝑧−𝑍0)⒭+𝐴4 exp ⒧− i𝛾L(𝑧−𝑍1)⒭ (6.10)

𝜓s,2(𝑟,𝑧,𝜔) = 𝐻 (1)
0 (𝑘𝑟𝑟)𝐴5 exp ⒧i𝛾T(𝑧−𝑍0)⒭+𝐴6 exp ⒧− i𝛾T(𝑧−𝑍1)⒭ (6.11)

where 𝛾L(𝜔) = 𝜔2/𝑐2L −𝑘2𝑟 and 𝛾T(𝜔) = 𝜔2/𝑐2T −𝑘2𝑟 .
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The post-processed displacement field vector 𝐮s,1 in the elastic layer read:

𝐮s,2 = ⒧𝜕𝑟𝜙s,2−𝜕𝑧𝜓s,2⒭𝐞𝑟 +⒧𝜕𝑧𝜙s,2+𝜕𝑟 𝜓s,2+ 𝜓s,2/𝑟⒭𝐞𝑧. (6.12)

The vertical stress field 𝜎𝑧𝑧,2 in the elastic domain is given as:

𝜎𝑧𝑧,2 = 𝜆s ⋅ ⒧𝜕2𝑟 𝜙s,2+
1
𝑟 𝜕𝑟

𝜙s,2⒭+ (𝜆s+2𝜇s)𝜕𝑧𝜙s,2+2𝜇s ⋅ ⒧𝜕𝑧𝜕𝑟 𝜓s,2+
1
𝑟 𝜕𝑧𝜓s,2⒭ . (6.13)

The shear stress field 𝜎𝑧𝑟,2 in the elastic domain is given as:

𝜎𝑧𝑟,2 = 𝜇s ⒧2𝜕𝑟𝜕𝑧𝜙s,2−𝜕2𝑧 𝜓s,2+𝜕2𝑟 𝜓s,2+
1
𝑟 𝜕𝑟 𝜓s,2−

1
𝑟2 𝜓s,2⒭ (6.14)

6.1.3 PML domain
TheHelmholtz equations in the PML domain reads:

∇2𝜙s,3+
𝜔2

𝑐2L
𝜙s,3 = 0 𝑍1 < 𝑧 < 𝑍2. (6.15)

∇2𝜓s,3−
𝜓s,3
𝑟2 + 𝜔2

𝑐2T
𝜓s,3 = 0, 𝑍1 < 𝑧 < 𝑍2. (6.16)

where the Laplacian operator∇2
is:

∇2 = 1/𝑟𝜕𝑟(𝑟𝜕𝑟)+1/𝜀(𝑧) ⋅ 𝜕𝑧(𝜕𝑧/𝜀(𝑧)). (6.17)

Usingquadratic polynomial attenuation function𝛽(𝑧) in thePMLdomain, the complex stretch function
𝜀(𝑧) reads

𝜀(𝑧) = 1−3i𝛽0⒧
𝑧−𝑍1
𝐻PML

⒭
2

(6.18)

Therefore, the general solutions of the Helmholtz equations in the PML domain are:

𝜙s,3(𝑟, 𝑧̄,𝜔) = 𝐻 (2)
0 (𝑘𝑟𝑟)𝐴7 exp ⒧i𝛾L(𝑧̄−𝑍1)⒭+𝐴8 exp ⒧− i𝛾L(𝑧̄−𝑍2)⒭ (6.19)

𝜓s,3(𝑟, 𝑧̄,𝜔) = 𝐻 (1)
0 (𝑘𝑟𝑟)𝐴9 exp ⒧i𝛾T(𝑧̄−𝑍1)⒭+𝐴10 exp ⒧− i𝛾T(𝑧̄−𝑍2)⒭ (6.20)

Where 𝑧̄ denotes the complex-stretched coordinate in the PML domain:

𝑧̄ = 𝑧− i𝛽0𝐻PML⒧
𝑧−𝐻EL
𝐻PML

⒭
3

𝑍1 < 𝑧 < 𝑍2 (6.21)

Incorporating the complex stretch, field vector 𝐮s,3 in the PML is

𝐮s,3 = ⒧𝜕𝑟𝜙s,3−𝜕𝑧𝜓s,3/𝜀(𝑧)⒭𝐞𝑟 +⒧𝜕𝑧𝜙s,3/𝜀(𝑧)+𝜕𝑟 𝜓s,3+ 𝜓s,3/𝑟⒭𝐞𝑧. (6.22)

Furthermore, the vertical stress field 𝜎𝑧𝑧,3 is given as:

𝜎𝑧𝑧,3 = 𝜆s ⋅ ⒧𝜕2𝑟 𝜙s,3+
1
𝑟 𝜕𝑟

𝜙s,3⒭+ (𝜆s+2𝜇s) ⋅
1

𝜀(𝑧)𝜕𝑧⒧
𝜕𝑧𝜙s,3
𝜀(𝑧) ⒭+2𝜇s ⋅ ⒧

1
𝜀(𝑧)𝜕𝑧𝜕𝑟 𝜓s,3+

1
𝑟 𝜕𝑧𝜓s,3⒭ . (6.23)

Finally, the shear stress field 𝜎𝑧𝑟,3 is given as:

𝜎𝑧𝑟,3 = 𝜇s ⒧
1

𝜀(𝑧) ⋅ 2𝜕𝑟𝜕𝑧
𝜙s,3−

1
𝜀(𝑧)𝜕𝑧 ⒧

𝜕𝑧𝜓s,3
𝜀(𝑧) ⒭𝜕

2
𝑟 𝜓s,3+

1
𝑟 𝜕𝑟 𝜓s,3−

1
𝑟2 𝜓s,3⒭ . (6.24)
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6.1.4 Boundary and interface conditions
Modes of the system in Figure 6.1 are supposed to satisfy the following boundary and interface condi-
tions:

𝑝f,1(𝑟,0,𝜔) = 0, (6.25)
𝜎𝑧𝑟,2(𝑟,𝑍0,𝜔) = 0, (6.26)
𝑝f,1(𝑟,𝑍0,𝜔) = − 𝜎𝑧𝑧,2(𝑟,𝑍0,𝜔), 𝑣𝑧,1(𝑟,𝑍0,𝜔) = i𝜔𝑢s,2,𝑧(𝑟,𝑍0,𝜔), (6.27)

𝑢𝑧,2(𝑟,𝑍1,𝜔) = 𝑢𝑧,3(𝑟,𝑍1,𝜔), 𝑢𝑟,2(𝑟,𝑍1,𝜔) = 𝑢𝑟,3(𝑟,𝑍1,𝜔), (6.28)

𝜎𝑧𝑧,2(𝑟,𝑍1,𝜔) = 𝜎𝑧𝑧,3(𝑟,𝑍1,𝜔), 𝜎𝑧𝑟,2(𝑟,𝑍1,𝜔) = 𝜎𝑧𝑟,3(𝑟,𝑍1,𝜔), (6.29)

𝑢𝑧,3(𝑟,𝑍2,𝜔) = 0, 𝑢𝑟,3(𝑟,𝑍2,𝜔) = 0. (6.30)

Thesubstitutionof all assumedgeneral solutions into the tenboundary conditionswill give the following
system of equations:

𝐌𝐀 = 𝟎. (6.31)

Then the dispersion relation is given by setting the determinant of the𝐌 to zero:

det𝐌= 0. (6.32)

The detailed form of the matrixM is provided in Section A.4 of Appendix A.

6.2 Numerical values and discussions
This section will consider 𝑓 = 50 Hz, 100 Hz, and 150 Hz. The material properties of the considered
system are listed in Table 6.1; they are fixed in the numerical examples.

6.2.1 Eigenvalues
The root-finding algorithm has successfully detected the roots of Equation (6.32). We provide a zero-
contour plot of the real and imaginary part of det𝐌 as Figure 6.2. The figure suggests the roots of the
dispersion relations have been detected at 𝑓 = 50Hz. Besides, the spectrum of the eigenvalues at the
three considered frequencies, the primary observations are made as follows:

1. Three types of modes can be identified. First, evanescent modes are found near the imaginary
axis. Second, propagative modes are observed near the real axis. FinBérengerrenger modes are
distributed along two hyperbolas.

2. With increasing frequency, the number of propagatingmodes increases. Furthermore, Bérenger
modes migrate along translated hyperbolic curves that pass through the enhanced values of 𝑘L
and 𝑘T, respectively.
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6.2.2 Modal orthogonality
The orthogonality for the acousto-elastic waveguide was given as Equation (3.25) in [21], which can be
modified to include the acoustic layer:

Γ𝑝𝑞 = Γ𝑝𝛿𝑝𝑞 = −
𝑍0

0

𝑣1,𝑟,𝑞(𝑧)
i𝜔𝑘𝑟,𝑞

𝑝f,1(𝑧)d𝑧


Fluidlayer

+
𝑍1

𝑍0

𝜁s𝑘𝑝 𝑢s,𝑟,𝑝(𝑧)
𝑢s,𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

+𝜂s ⋅ 𝑢s,𝑟,𝑝(𝑧)
𝜎s,𝑧𝑧,𝑞(𝑧)
𝑘𝑟,𝑝

−𝑢s,𝑧,𝑝(𝑧)
𝜎s,𝑧𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

d𝑧


Elastic layer

+
𝑍2

𝑍1

𝜁s𝑘𝑝 𝑢s,𝑟,𝑝(𝑧)
𝑢s,𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

+𝜂s ⋅ 𝑢s,𝑟,𝑝(𝑧)
𝜎s,𝑧𝑧,𝑞(𝑧)
𝑘𝑟,𝑝

−𝑢s,𝑧,𝑝(𝑧)
𝜎s,𝑧𝑟,𝑞(𝑧)
𝑘𝑟,𝑞

d𝑧̄
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PML

(6.33)

The difference between the second and third integration comes from the complex-stretch function 𝜀(𝑧):

d𝑧 → d𝑧̄ = 𝜀(𝑧)d𝑧 (6.34)

The values of (|Γ𝑝𝑞|) in Equation (6.33) are shown shown in Figure 6.5, the horizontal axis is 𝑝 and the
vertical axis represents 𝑞. Figure 6.5 illustrates that the first 100modes are orthogonal when 𝑓 = 50Hz
by the zero off-diagonal elements. The orthogonality condition for the remaining two frequencies are
given in Appendix E.
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Figure 6.4. Roots of Equation (6.32) at 𝑓 = 50Hz.
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Figure 6.5. Orthogonality of the first 100modes of the acousto-elastic layer with one PML at 𝑓 = 50Hz.

6.2.3 Eigenvectors
All eigenvectorswill be normalized such that Γ𝑝𝑝 = 1. The followingfigure shows themodal amplitude
of the pressure field and vertical displacement field for three modes. The result of 50Hz is provided in
Figure 6.6 and 6.6, but similar observations of modal behavior were found for 100 Hz and 150 Hz (pro-
vided in Appendix E), as given below:

1. Evanescentmodes exhibit harmonic amplitude in the acoustic domain but sharp amplitude growth
in the elastic domain, with proper attenuation in the PML before reaching boundaries. Their
eigenvalues have large imaginary parts and nearly zero real parts. In the fluid domain, the real
wavenumber𝑘f yields real vertical wavenumber 𝛾f =𝑘2f −𝑘2𝑟 , producing harmonic behavior. In
the elastic domain, complexwavenumbers𝑘L and𝑘T generate large imaginary parts in𝛾L and𝛾T,
causing exponential amplitude growth. Physically, their radial wavenumber with small real parts
in the elastic layer creates steep incident angles, becoming leaky before attenuation in the PML.

2. The eigenvalues of propagating modes are near the real axis. Therefore, the vertical wavenumber
𝛾f is a small real number in the fluid domain, leading to harmonic behavior. Due to smaller inci-
dent angles, theirmodal amplitude remains non-leaky in the elastic domain. In the PMLdomain,
modal amplitudes are successfully attenuated before reaching the boundary.

3. The modal shape of Bérenger modes exhibits the aforementioned non-physical behaviors: a sig-
nificant modal amplitude in the PML.
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(a) 𝑓 = 50Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure 6.4
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(b) 𝑓 = 50Hz, vertical pressure eigenfunction for wavenumber 2 as marked in Figure 6.4
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(c) 𝑓 = 50Hz, vertical pressure eigenfunction for wavenumber 3 as marked in Figure 6.4
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Figure6.6. Pressurefielddistributions for three typesofmodesat frequency𝑓 =50Hz. Thecomputationaldomain
consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML) region
(grey).
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(a) 𝑓 = 50Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure 6.4
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(b) 𝑓 = 50Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure 6.4
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(c) 𝑓 = 50Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure 6.4
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Figure 6.7. Vertical displacement field distributions for three types of modes at frequency 𝑓 = 50Hz. The compu-
tational domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer
(PML) region (grey).
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6.2.4 Dispersion characteristics
Evanescent and propagating modes
The dispersion curves of the evanescent and propagating modes are shown in the figure below. The left
panel shows the wavenumbers of the evanescent modes with Re(𝑘𝑟) ≈ 0. As can be observed from Fig-
ure 6.8, with increasing frequency, thesemodes are evanescent up to a certain frequency, which is called
the cut-off frequency; afterwhich they becomepropagatingmodes. Furthermore, the dispersion curves
in the right figure of Figure 6.8 implies that the group velocities are smaller than the phase velocity; Fur-
thermore, the increasing group velocity and decreasing phase velocity converge to 𝑐f with increasing
frequency𝜔, which obeys the feature of physical modes in Figure 2.8.
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Figure 6.8. Dispersion curves of the acousto-elastic layer: the left and right columns represent purely imaginary-
valued (evanescent modes) and purely real-valued wavenumbers (propagating modes), respectively.
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parts of the complex-valued 𝑘𝑟 for the first twelve Bérenger modes near 𝑘L-branch, respectively.



62 6. Modal Solution of one Acousto-elastic Domain with a PML via Semi-analytical method

−0.175 −0.150 −0.125 −0.100 −0.075 −0.050 −0.025 0.000

Im(kr) (rad/m)

40

60

80

100

120

140

160

180

200

ω
(r

ad
/s

)

0.4 0.6 0.8 1.0 1.2 1.4

Re(kr) (rad/m)

40

60

80

100

120

140

160

180

200

cT

Figure 6.10. Dispersion curves of the acousto-elastic layer: the left and right columns represent imaginary and
real parts of the complex-valued 𝑘𝑟 for the first six Bérenger modes near 𝑘T-branch, respectively.

Thedispersion curves of the Bérengermodes are shown in Figure 6.9 and 6.10. Figure 6.9 shows the real
and imaginary parts of the complex-valued𝑘𝑟 for the first thirteenmodes (ranked by ascendingRe(𝑘𝑟))
near the 𝑘L branch; whereas 6.10 represent the first six modes near the 𝑘T branch. They simultaneously
imply anomalous dispersion characteristics as seen in the previous Chapter: the group velocities are
larger than the phase velocity. This observation remarks the non-physical feature of Bérenger modes,
which are introduced into the modal basis via the PML formulation.

6.3 Summary
Thischapter provides themodal solutionof the acousto-elastic domainwithonePML.Themainfindings
are summarized as follows:

1. The eigenvalue spectrum obtained from the dispersion relation det𝐌 = 0 reveals three distinct
categories of modes:

(a) Evanescent modes: Eigenvalues located near the imaginary axis with large imaginary parts
and nearly zero real parts, corresponding to modes that decay exponentially in the radial
direction.

(b) Propagatingmodes: Eigenvalues positioned near the real axis, representing physically mean-
ingful propagating waves in the waveguide.

(c) Bérengermodes: Eigenvaluesdistributedalonghyperbolic curves in the complexplane, arising
from the PML implementation and representing non-physical artificial modes.

2. Themodal shapes exhibit distinct behaviors across different domains:

(a) Evanescent modes: Exhibit harmonic amplitudes in the acoustic domain, sharp exponential
growth in the elastic domain due to complex vertical wavenumbers𝛾L and𝛾T, and appropri-
ate attenuation in the PML domain.

(b) Propagatingmodes: Maintain harmonic behavior throughout all domains with small real ver-
ticalwavenumbers, leading to non-leaky characteristics and effective attenuationwithin the
PML region.

(c) Bérenger modes: Display non-physical behavior, with negligible energy in the physical do-
mains but concentrated energy within the PML region.
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3. The dispersion analysis reveals two distinct types of behavior for the propagating modes:

(a) Physical dispersion: Branches of the dispersion curveswith small values of Re(𝑘𝑟) exhibit nor-
mal dispersive behavior, where group velocities are smaller than phase velocities, and both
group and phase velocities converge to 𝑐f at high frequencies.

(b) Anomalous dispersion: Branches of the dispersion curves in which group velocities exceed
phase velocities, representing non-physical dispersion characteristics.

4. From a numerical perspective, the normalized modes of the acousto-elastic waveguide system
were found to be orthogonal by evaluating the right-hand side of Equation (6.33). The normalized
eigenvectors satisfy |Γ𝑝𝑝| = 1, and excellent cross-orthogonality (Γ𝑝𝑞 = 0 for 𝑝 ≠ 𝑞) is observed.
Nevertheless, the following remarks should be noted:

(a) Modalorthogonality ispreservedwhensufficiently small integrationstepsd𝑧are employed. Forhigher-
order modes, even smaller d𝑧 values are recommended to ensure accurate verification of
cross-orthogonality.

(b) Although the orthogonality of modes has been derived for both elastic and acoustic layers, a rigorous
mathematical proof for the elastic layerwithPML is not yet available.Thepresent numerical results
are obtained under the assumption that orthogonality remains valid in this case, thereby
allowing the use of the superposition principle to sum the contributions of different layers.

(c) In this chapter, a PML polynomial order of𝑚PML = 2was considered. However, the influence of
𝑚PML on orthogonality has not been examined for the (acousto-)elastic layer with PML. A systematic
parametric study on the role of𝑚PML is therefore recommended for future research on the
(acousto-)elastic layer with PML.
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Conclusions andRecommendations

This thesis investigates computational methods for the acousto-elastic domain with perfectly matched
layers (PMLs), focusing on the differences between the thin-layermethod (TLM) and the semi-analytical
method. It begins with a comparative study of the modal solutions for a single elastic layer. This is
followed by an in-depth analysis of the modal solutions for an acoustic layer using the semi-analytical
approach. Chapter 4 presents a comparative study of the modes of an elastic layer with PMLs using
both the semi-analytical method and TLM. Finally, Chapter 5 provides the semi-analytical solution for
an acousto-elastic layer with one PML. This chapter summarizes the main conclusions, addressing all
research questions, and offers recommendations for future work.

7.1 Conclusions
Asmentioned inChapter 1, the first research objective is the investigation of the differences between the
modal solutions of the single elastic layer, which provides a solution to the first supplementary research
question:

In the case of a linear isotropic elastic layer, how do the eigenvalues and eigenmodes calculated by the
semi-analytical method differ from those obtained using the thin-layer approach? What causes these differences?

From all observations in Chapter 3, it is concluded that the continuous (semi-analytical) and discrete
(TLM) modal solutions show consistency for a single elastic domain with PML.

The second research objective focuses on studying modal solutions of an acoustic waveguide with PML
using the semi-analytical solution, which have been completed in Chapter 4. The key finding of this
chapter focus on the influence of the polynomial order𝑚PML of attenuation function on the modal so-
lutions, which provides the solution the second supplementary research question:

For a fluid layer with a PML, how does the introduction of the PML affect the modal solutions of semi-analytical
solutions? In what ways do different PML polynomial orders𝑚PML influence the solutions of eigenvalue problems,

namely, eigenvalues, eigenvectors, and orthogonality?

From all observations in Chapter 4, the following conclusions of this research question are given:

1. The PML influences the semi-analytical solutions by introducing Berenger modes.

2. For the single acoustic layer with one PML, the imaginary part of the complex-stretch coordinate
Im(𝑧̄) is normalized with respect to𝑚PML. Under this condition, the eigenvalues are not affected
by𝑚PML since the dispersion relation is independent of it.

3. The parameter 𝑚PML affects the orthogonality of modes. Canceling certain boundary terms in
the orthogonality derivation requires continuity of the modal slope at 𝑧 = 𝑍1. When𝑚PML = 0,
the slope becomes discontinuous, leading to residual boundary terms that violate the standard
orthogonality assumptions. Numerical results indicate that using𝑚PML > 0 ensures acceptable
orthogonality and preserves the theoretical foundation of PML-coupled systems.

64
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The third objective of this thesis is to investigate the differences between the continuous and discrete
modal solutions for an elastic layer with an adjacent PML. This objective is addressed in Chapter 5. In
this chapter, the discrete and continuous modal solutions of the system shown in Figure 5.1 are com-
pared, following the methodology established in the previous chapters. The conclusions drawn from
these observations provide answers to the following research question:

For a linear elastic isotropic layer with one PML, how do the eigenvalues and eigenmodes calculated by the
semi-analytical method differ from those obtained using the thin-layer approach? What causes these differences?

The study in Chapter 5 provides the solution to this research question. First, the main differences be-
tween two types of modal solutions of an elastic layer with one PML are given as follow

1. Eigenvalue Distribution:The semi-analytical solution produces eigenvalues distributed along a hy-
perbolic line in the complex 𝑘𝑟 plane, corresponding to Bérenger modes. In contrast, the TLM
approach yields predominantly evanescent modes with significant imaginary components con-
tributing to discrete modal solution convergence.

2. Modes: The modes of the semi-analytical and the TLM solution for a single elastic layer with one
PML differ, owing to the differences in their eigenvalues. In the thin-layer method, the modal
basis mainly consists of evanescent modes with only a few Bérenger modes, while in the semi-
analytical solution all modes belong to the Bérenger type.

3. Orthogonality:Thecriteria required toachieve improvedorthogonalitydifferbetween the twometh-
ods. For the semi-analytical solution, enhanced orthogonality can be achieved through a finer
discretization of the trapezoidal integration scheme. By contrast, in the thin-layer method, in-
creasing the number of thin layers beyond an appropriate level results in amarked loss of orthog-
onality.

The differences arise from the distinct eigenvalue problem formulations. The thin-layer method produces a
discrete eigenvalue problem, yielding a finite number of modes determined by the number of layers,
whereas the dispersion relation admits an infinite set of eigenvalues andmodes. In the semi-analytical
solution, only Berengermodes occur, clustering near a hyperbola in the complex plane. In contrast, the
TLM yields two eigenvalue sets—one near the imaginary axis and another near the hyperbola. Increas-
ing the number of layers in the TLM introduces more modes along the hyperbolic locus, bringing the
modal distribution closer to the infinite basis of the continuous solution.

In summary, these conclusions provide the answer to the followingmain research question:

How andwhy do themodal characteristics of the acoustic or elastic domains with PMLs differ between the
semi-analytical solution and the thin-layer method?

Consistent with the answer to research question 3, the differences primarily arise from the eigenvalue
distribution, modal characteristics, and cross-orthogonality, which are ultimately caused by the dis-
tinction between discrete and continuous eigenvalue problems.



66 7. Conclusions and Recommendations

7.2 Recommendations
Based on the conclusions of this thesis, the following recommendations are proposed for extending the
fundamental research on computationalmethods formodes of the acousto-elastic systemwith PMLs by
the author.

1. While the modal solution of a single elastic layer with one PML has been thoroughly studied via a
semi-analyticalmethod, a comparative analysis of the semi-analytical solution and TLM for a sin-
gle acoustic layer or acousto-elastic with PML is recommended to better elucidate the differences
between these two computational approaches.

2. In Chapter 3, the influence of the polynomial order𝑚PML on the modal solutions was examined.
Based on the conclusions drawn from numerical results and mathematical derivations, it is rec-
ommended that𝑚PML > 0 be used for the semi-analytical solution of a fluid layer incorporating
PML.However, it remainsunclearwhether this conclusion canbe extended to the remaining cases
with PML; therefore, a study on the influence of𝑚PML is recommended for the elastic layer or the
acousto-elastic layer with PML in future research, via mathematical derivations and numerical
results.

3. Although the polynomial order𝑚PML has been examined in this research, the influence of other
PML parameters, namely the attenuation coefficient 𝛽s and the height of the PML layer 𝐻PML,
should also be investigated owing to their impact on the modal solutions. Therefore, a detailed
parametric study on these remaining parameters is recommended for future research.

4. As shown in Figure 2.3 in Chapter 2, real ocean environments include bottom layers with discon-
tinuous properties in the vertical direction, representing the interfaces between geological strata.
Therefore, the model with a single elastic layer with PML can be extended to the case of multiple
elastic layerswith one PML in future research.

5. In the semi-analytical solutions, the calculations of |Γ𝑝𝑞| were performed using the trapezoidal
integration scheme, which requires many integration points for higher-order Berenger modes
due to their similarity. Among the results of the acoustic layer with PML, the trapezoidal inte-
gration scheme does not work well for𝑚PML > 1. It is possible that a more advanced quadrature
scheme may be required for this case. Therefore, future research is recommended to explore al-
ternative integration schemes.

6. The cross-orthogonality of the modes that are computed from the thin-layer method is violated
when too many thin layers are used. The reasons for this finding is still not unclear. A physical or
numerical reasons behind this finding can be investigated furtherly in the future research.

In addition to thedevelopment of fundamental research, the following suggestions are provided regard-
ing the practical applications of the two computational methods for the acousto-elastic domain with
PML:

1. When the semi-analytical method is used with a polynomial attenuation function in the PML,
a positive value of 𝑚PML is recommended to maintain the continuity of the eigenvector at the
interface between the physical and PMLdomains, as well as to improve the cross-orthogonality of
the modes.

2. Due to the violated cross-orthogonality, it is not suggested touse toomany layers in thePMLwhen
theThin-layer method is adopted.
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A
Semi-analyticalMatrices of coefficients

This Appendix provides all matrices of the systems used in the semi-analytical solutions of

1. A single elastic layer

2. An acoustic domain with PML

3. An elastic domain with PML

4. An acousto-elastic domain with PML

A.1 Elastic layer
For a single elastic layer, the structure of the systemmatrix𝐌 is given as below:

𝐌=

⎡
⎢⎢⎢⎢⎢⎢⎢
⎣

i⒧2𝜇s𝛾2L +𝜆s𝑘2L⒭ei𝛾L𝑍1 i ⒧2𝜇s𝛾2L +𝜆s𝑘2L⒭ −2𝜇s𝑘𝑟𝛾Tei𝛾T𝑍1 2𝜇s𝑘𝑟𝛾L
2𝜇s𝑘𝑟𝛾Lei𝛾L𝑍1 −2𝜇s𝑘𝑟𝛾L −i𝜇s ⒧𝛾2T −𝑘2𝑟 ⒭ei𝛾T𝑍1 −i𝜇s ⒧𝛾2T −𝑘2𝑟 ⒭

−𝛾L 𝛾Lei𝛾L𝑍1 −i𝑘𝑟 −i𝑘𝑟ei𝛾T𝑍1

i𝑘𝑟 i𝑘𝑟ei𝛾T𝑍1 𝛾T −𝛾Tei𝛾T𝑍1

⎤
⎥⎥⎥⎥⎥⎥⎥
⎦

. (A.1)

A.2 Acoustic domain with PML
For an acoustic domain with PML, the structure of the systemmatrix𝐌 is given as below: The structure
of matrices are given as:

𝐌=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

i e−i𝛾f𝑍1 0 0

−ie−i𝛾f𝑍1 i i −ie−𝛾f𝐻PML(i+𝛽0)

e−i𝛾f𝑍1 1 −1 −e−𝛾f𝐻PML(i+𝛽0)

0 0 −i𝛾fe−𝛾f𝐻PML(i+𝛽0) i𝛾f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(A.2)
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A.3 An Elastic Domain with PML

𝐌=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−⒧𝑘2L𝜆s+2𝜇s𝛾2L⒭e−i𝛾L𝑍1 −⒧𝜆s+2𝜇s⒭𝛾2L −𝑘2𝑟𝜆s 2i𝑘𝑟𝑘T𝜇se−i𝛾T𝑍1 −2i𝑘T𝑘𝑟𝜇s 0 0 0 0

−2i𝑘L𝑘𝑟𝜇se−i𝑘L𝑍1 2i𝑘L𝑘𝑟𝜇s ⒧𝑘2T−𝑘2𝑟 ⒭𝜇se−i𝑘T𝑍1 ⒧𝑘2T−𝑘2𝑟 ⒭𝜇s 0 0 0 0

−i𝑘L i𝑘Le−i𝑘L𝑍1 −𝑘𝑟 −𝑘𝑟e−i𝑘T𝑍1 i𝑘Le−𝐻PML(𝛽0+i) −i𝑘L 𝑘𝑟e−𝐻PML(𝛽0+i) 𝑘𝑟

−𝑘𝑟 −𝑘𝑟e−i𝑘L𝑍1 −i𝑘T i𝑘Te−i𝑘T𝑍1 𝑘𝑟e−𝐻PML(𝛽0+i) 𝑘𝑟 i𝑘Te−𝐻PML(𝛽0+i) −i𝑘T

⒧𝑘2L+𝑘2𝑟 ⒭𝜆s+2𝜇s𝑘2L ⒧𝑘2L+𝑘2𝑟 ⒭𝜆s+2𝜇s𝑘2Le−i𝑘L𝑍1 −2i𝑘T𝑘𝑟𝜇s 2i𝑘𝑟𝑘T𝜇se−i𝑘T𝑍1 −⒧𝑘2L+𝑘2𝑟 ⒭𝜆s−2𝜇s𝑘2L −𝜆s𝑘2L−2𝜇s𝑘2L−𝑘2𝑟𝜆s 2i𝑘T𝑘𝑟𝜇se−𝐻PML(𝛽0+i) −2i𝑘T𝑘𝑟𝜇s

2i𝑘L𝑘𝑟𝜇s −2i𝑘L𝑘𝑟𝜇se−i𝑘L𝑍1 −𝜇s𝑘2T+𝑘2𝑟𝜇s ⒧−𝑘2T+𝑘2𝑟 ⒭𝜇se−i𝑘T𝑍1 −2i𝑘L𝑘𝑟𝜇se−𝐻PML(𝛽0+i) 2i𝑘L𝑘𝑟𝜇s ⒧𝑘2T−𝑘2𝑟 ⒭𝜇se−𝐻PML(𝛽0+i) ⒧𝑘2T−𝑘2𝑟 ⒭𝜇s

0 0 0 0 i𝑘L −i𝑘Le−𝐻PML(𝛽0+i) 𝑘𝑟 𝑘𝑟e−𝐻PML(𝛽0+i)

0 0 0 0 −𝑘𝑟 −𝑘𝑟e−𝐻PML(𝛽0+i) −i𝑘T i𝑘Te−𝐻PML(𝛽0+i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦



A.4 An acousto-Elastic Domain with PML

𝐌=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−i𝜔𝜌f 0 0 0 0 −i𝜔𝜌fei𝑘𝑧𝑧0 0 0 0 0

0 −2i𝑘L𝑘𝑟𝜇sei𝑘L(𝑧0−𝑍1) ⒧𝑘2T−𝑘2𝑟 ⒭𝜇sei𝑘T(𝑧0−𝑍1) 0 0 0 2i𝑘L𝑘𝑟𝜇s ⒧𝑘2T−𝑘2𝑟 ⒭𝜇s 0 0

𝑘𝑧ei𝑘𝑧𝑧0
𝜔 −i𝑘Lei𝑘L(𝑧0−𝑍1) −𝑘𝑟ei𝑘T(𝑧0−𝑍1) 0 0 −𝑘𝑧

𝜔 i𝑘L −𝑘𝑟 0 0

−i𝜔𝜌fei𝑘𝑧𝑧0 −⒧𝑘2L+𝑘2𝑟 ⒭𝜆s−2𝜇s𝑘2L 2i𝑘T𝑘𝑟𝜇sei𝑘T(𝑧0−𝑍1) 0 0 −i𝜔𝜌f −⒧2𝜇s+𝜆s⒭𝑘2L−𝑘2𝑟𝜆s −2i𝑘T𝑘𝑟𝜇s 0 0

0 i𝑘L 𝑘𝑟 −i𝑘Le−𝐻PML(𝛽0+i) −𝑘𝑟e−𝐻PML(𝛽0+i) 0 −i𝑘Lei𝑘L(𝑧0−𝑍1) 𝑘𝑟ei𝑘T(𝑧0−𝑍1) i𝑘L −𝑘𝑟

0 −𝑘𝑟 −i𝑘T 𝑘𝑟e−𝐻PML(𝛽0+i) i𝑘Te−𝐻PML(𝛽0+i) 0 −𝑘𝑟ei𝑘L(𝑧0−𝑍1) i𝑘Tei𝑘T(𝑧0−𝑍1) 𝑘𝑟 −i𝑘T

0 −⒧2𝜇s+𝜆s⒭𝑘2L−𝑘2𝑟𝜆s 2i𝑘T𝑘𝑟𝜇s ⒧𝑘2L+𝑘2𝑟 ⒭𝜆s+2𝜇s𝑘2L −2i𝑘T𝑘𝑟𝜇se−𝐻PML(𝛽0+i) 0 −⒧𝑘2L+𝑘2𝑟 ⒭𝜆s−2𝜇s𝑘2L −2i𝑘T𝑘𝑟𝜇sei𝑘T(𝑧0−𝑍1) ⒧𝑘2L+𝑘2𝑟 ⒭𝜆s+2𝜇s𝑘2L 2i𝑘T𝑘𝑟𝜇s

0 −2i𝑘L𝑘𝑟𝜇s ⒧𝑘2T−𝑘2𝑟 ⒭𝜇s 2i𝑘L𝑘𝑟𝜇se−𝐻PML(𝛽0+i) ⒧−𝑘2T+𝑘2𝑟 ⒭𝜇se−𝐻PML(𝛽0+i) 0 2i𝑘L𝑘𝑟𝜇sei𝑘L(𝑧0−𝑍1) ⒧𝑘2T−𝑘2𝑟 ⒭𝜇sei𝑘T(𝑧0−𝑍1) −2i𝑘L𝑘𝑟𝜇s −𝜇s𝑘2T+𝑘2𝑟𝜇s

0 0 0 i𝑘L 𝑘𝑟 0 0 0 −i𝑘Le−𝐻PML(𝛽0+i) 𝑘𝑟e−𝐻PML(𝛽0+i)

0 0 0 −𝑘𝑟 −i𝑘T 0 0 0 −𝑘𝑟e−𝐻PML(𝛽0+i) i𝑘Te−𝐻PML(𝛽0+i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦



B
Orthogonality between Eigenvectors and

Conjugate Eigenvectors

B.1 Introduction
The cross orthogonality between the eigenvectors and their conjugates has been proved in [26] for a
Pekeris waveguides with one PML. In this Appendix, wewill give the same derivation for a single acous-
tic layer with PML, as shown in Figure 4.1.

B.2 The derivation of the conjugate eigenfunction
Assume operatorℒ as:

ℒ = 1
𝜀(𝑧)

d
d𝑧

1
𝜀(𝑧)

d
d𝑧+𝑘

2
f (B.1)

where

𝜀(𝑧) =
⎧⎪
⎨⎪⎩

1, 0 ≤ 𝑧 ≤ 𝑍1,

1− i𝛽(𝑧)/𝜔 𝑍1 ≤ 𝑧 ≤ 𝑍2.
(B.2)

Assume𝜙(𝑧) and𝜑(𝑧) be the eigenvector and its corresponding conjugate eigenvector and they satisfy
the boundary conditions discussed in the previous chapter.
We will start with the derivation of the following internal product:

⟨ℒ𝜙,𝜑⟩ = 
𝑍2

0
𝜑(𝑧) ⋅ℒ𝜙(𝑧)d𝑧 (B.3)

It could be expanded as:

⟨ℒ𝜙,𝜑⟩ =
𝑍1

0
𝜑1

d2𝜙1
d𝑧2 +𝑘2f 𝜙1d𝑧+

𝑍2

𝑍1

𝜑2
1

𝜀(𝑧)
d
d𝑧⒧

1
𝜀(𝑧)

d𝜙2
d𝑧 ⒭+𝑘2f 𝜙2d𝑧

=
𝑍1

0
𝜑1

d2𝜙1
d𝑧2 d𝑧
𝐼1

+
𝑍2

𝑍1

𝜑2
1

𝜀(𝑧)
d
d𝑧⒧

1
𝜀(𝑧)

d𝜙2
d𝑧 ⒭d𝑧


𝐼2

+
𝑍1

0
𝜑1𝑘2f 𝜙1d𝑧


𝐼3

+
𝑍2

𝑍1

𝜑2𝑘2f 𝜙2d𝑧


𝐼4

(B.4)

Apply integration by parts to 𝐼1 and 𝐼2:

𝐼1 = 𝜑1⒧
d𝜙1
d𝑧 ⒭

𝑍1

0
−

𝑍1

0

d𝜙1
d𝑧 ⋅ d𝜑1d𝑧 d𝑧 (B.5)

𝐼2 =
𝜑2

𝜀2(𝑧)⒧
d𝜙2
d𝑧 ⒭

𝑍2

𝑍1
−

𝑍2

𝑍1

1
𝜀(𝑧)

d𝜙2
d𝑧 ⋅ dd𝑧

𝜑2
𝜀(𝑧)d𝑧 (B.6)
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Applying integration by parts again gives:

𝐼1 = 𝜑1𝜙′
1
𝑍1

0
−𝜙1𝜑′

1
𝑍1

0
+

𝑍1

0
𝜙1
d2𝜑1
d𝑧2 d𝑧 (B.7)

𝐼2 =
𝜑2𝜙′

2
𝜀2(𝑧) 

𝑍2

𝑍1
− 𝜙2
𝜀(𝑧)

𝜑2
𝜀(𝑧)

′

𝑍2

𝑍1
+

𝑍2

𝑍1

𝜙2 ⋅
d
d𝑧

1
𝜀(𝑧)

d
d𝑧⒧

𝜑2
𝜀(𝑧)⒭d𝑧 (B.8)

As a result, we have

⟨ℒ𝜙,𝜑⟩ = 𝐼1+𝐼3+𝐼2+𝐼4

=
𝑍1

0
𝜙1

d2
d𝑧2 +𝑘

2
f 𝜑1d𝑧+

𝑍2

𝑍1

𝜙2
d
d𝑧⒧

1
𝜀(𝑧)

d
d𝑧⒧

𝜑2
𝜀(𝑧)⒭⒭+𝛾

2
f 𝜑2d𝑧

+BoundaryTerms

(B.9)

The boundary terms are witten as

𝜑1(𝑍1)𝜙′
1(𝑍1)−𝜑1(0)𝜙′

1(0)−𝜙1(𝑍1)𝜑′
1(𝑍1)+𝜙1(0)𝜑′

1(0)+𝜑2(𝑍2)𝜙′
2(𝑍2)/𝜀2(𝑍2)

−𝜑2(𝑍1)𝜙′
2(𝑍1)/𝜀2(𝑍1)−𝜙2(𝑍2)/𝜀(𝑍2)⒧𝜑2/𝜀⒭

′

𝑧=𝑍2

+𝜙2(𝑍1)/𝜀(𝑍1)⒧𝜑2/𝜀⒭
′

𝑧=𝑍1

(B.10)

Applying boundary conditions of both eigenvectors and conjugate eigenvectors:

𝜙1(0) = 0 𝜙′
2(𝑍2) = 0 (B.11)

𝜑1(0) = 0 ⒧𝜑2/𝜀⒭
′

𝑧=𝑍2

= 0 (B.12)

Equation (B.10) are furtherly reduced to:

𝜑1(𝑍1)𝜙′
1(𝑍1)−𝜑2(𝑍1)𝜙′

2(𝑍1)+𝜙2(𝑍1)⒧𝜑2/𝜀⒭
′

𝑧=𝑍1

−𝜙1(𝑍1)⒧𝜑1/𝜀⒭
′

𝑧=𝑍1

(B.13)

Due to the continuity of eigenvectors at 𝑧 = 𝑍1, we have

𝜑1(𝑍1) = 𝜑2(𝑍1) (B.14)

Therefore, the boundary terms can be furtherly reduced into

𝜑1(𝑍1)𝜙′
1(𝑍1)−𝜙′

2(𝑍1)/𝜀2(𝑍1)+𝜙2(𝑍1)/𝜀(𝑍1)⒧𝜑1⒭
′

𝑧=𝑍1

−⒧𝜑2/𝜀⒭
′

𝑧=𝑍1

 (B.15)

When 𝜀(𝑧) is continuous at 𝑧 = 𝑍1:

𝜀(𝑍1) = 1 (B.16)

As a result, (B.15) are reduced to:

𝜑1(𝑍1)𝜙′
1(𝑍1)−𝜙′

2(𝑍1)+𝜙2(𝑍1)⒧𝜑1/𝜀⒭
′

𝑧=𝑍1

−⒧𝜑2/𝜀⒭
′

𝑧=𝑍1

 (B.17)

The second term here can be expanded as:

𝜙2(𝑍1)⒧𝜑1′/𝜀⒭
𝑧=𝑍1

−⒧𝜑2′/𝜀⒭
𝑧=𝑍1

+⒧𝜑2𝜀′/𝜀2⒭
𝑧=𝑍1

−⒧𝜑1𝜀′/𝜀2⒭
𝑧=𝑍1

 (B.18)
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When 𝜙′(𝑧), 𝜑(𝑧),𝜀 and 𝜀′ are continuous at 𝑧 = 𝑍1, the boundary terms can be canceled out. We can
have the following definition:

⟨ℒ𝜙,𝜑⟩ =
𝑍2

0
𝜙(𝑧) ⋅  d

d𝑧⒧
1

𝜀(𝑧)
d
d𝑧⒧

𝜑
𝜀(𝑧)⒭⒭+𝛾

2
f 𝜑d𝑧 ≜

𝑍2

0
𝜙ℳ𝜑d𝑧 = ⟨𝜙,ℳ𝜑⟩ (B.19)

The𝜑𝑖(𝑧) satisfies the following equations of motions:
d2𝜑1
d𝑧2 +⒧𝑘2f −𝑘2𝑟 ⒭𝜑1 = 0 0 < 𝑧 < 𝑍1 (B.20)

d
d𝑧⒧

1
𝜀(𝑧)

d
d𝑧⒧

𝜑2
𝜀(𝑧)⒭⒭+ ⒧𝑘

2
f −𝑘2𝑟 ⒭𝜑2 = 0 𝑍1 < 𝑧 < 𝑍2 (B.21)

The second EoM here can be written in an alternative form:

1
𝜀(𝑧)

d
d𝑧⒧

1
𝜀(𝑧)

d
d𝑧⒧

𝜑2
𝜀(𝑧)⒭⒭+ ⒧𝑘

2
f −𝑘2𝑟 ⒭

𝜑2
𝜀(𝑧) = 0 𝑍1 < 𝑧 < 𝑍2 (B.22)

Let𝜓2(𝑧) = 𝜑2/𝜀(𝑧), we could have
1

𝜀(𝑧)
d
d𝑧⒧

1
𝜀(𝑧)

d𝜓2
d𝑧 ⒭+⒧𝑘2f −𝑘2𝑟 ⒭𝜓2 = 0 𝑍1 < 𝑧 < 𝑍2 (B.23)

Besides,𝜓 is assumed to satisfy the following boundary conditions on the basis of Equation (B.12):

𝜓1(0) = 0 𝜓′
2
𝑧=𝑍2

= 0 (B.24)

The general solutions of𝜑𝑖(𝑧) are given as:
𝜑1(𝑧) = 𝐴1 exp [i𝛾f(𝑧−𝑍1)]+𝐴2 exp(−i𝛾f𝑧) 0 ≤ 𝑧 ≤ 𝑍1 (B.25)

𝜑2(𝑧) = 𝐴3 exp i𝛾f ⒧𝑧̄− 𝑍̄2⒭+𝐴4 exp −i𝛾f ⒧𝑧̄− 𝑍̄1⒭𝜀(𝑧) 𝑍1 ≤ 𝑧 ≤ 𝑍2 (B.26)

B.3 Orthogonality
We first have:

⟨ℒ𝜙𝑝,𝜑𝑞⟩ =
𝑍2

0
𝜑𝑝 ⋅ℒ𝜙𝑞d𝑧 =

𝑍2

0
𝜑𝑝 ⋅ 𝑘2𝑟𝑞𝜙𝑞d𝑧 = 𝑘2𝑟𝑞

𝑍2

0
𝜑𝑝 ⋅ 𝜙𝑞d𝑧, (B.27)

We also have:

⟨𝜙𝑝,𝑀𝜑𝑖⟩ =
𝑍2

0
ℳ𝜑𝑝 ⋅ 𝜙𝑞d𝑧 =

𝑍2

0
𝑘2𝑟𝑝𝜑𝑝 ⋅ 𝜙𝑞d𝑧 = 𝑘2𝑟𝑝

𝑍2

0
𝜑𝑝 ⋅ 𝜙𝑞d𝑧, (B.28)

Since ⟨ℒ𝜙𝑝,𝜑𝑞⟩ = ⟨𝜙𝑝,𝑀𝜑𝑖⟩, we will have:

𝑘2𝑟𝑝
𝑍2

0
𝜑𝑝 ⋅ 𝜙𝑞d𝑧 = 𝑘2𝑟𝑞

𝑍2

0
𝜑𝑝 ⋅ 𝜙𝑞d𝑧 (B.29)

The orthogonality between the eigenvector and its conjugate eigenvector is finally given as:

⒧𝑘2𝑟𝑝−𝑘2𝑟𝑞⒭
𝑍2

0
𝜑𝑝 ⋅ 𝜙𝑞d𝑧 = 0 (B.30)



C
Additional Comparison ofModes for a

Single Elastic Domain

ThisAppendix provides the additional comparisons of continuous and discretemodal solutions of a sin-
gle elastic layer in Chapter 3.

C.1 SV wave type modes

(a) 𝑓 = 50Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 2.56+0.00i
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(b) 𝑓 = 200Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 10.35+0.00i
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(c) 𝑓 = 200Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 10.36−0.19i

0.0

0.8

1.6

2.4

|ũ r
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(d) 𝑓 = 500Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 25.90+0.00i
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Figure C.1. Comparison of selected normalized SV wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 0dB/𝜆, (b) 𝑓 =
200Hz, 𝛼s = 0dB/𝜆, (c) 𝑓 = 200Hz, 𝛼s = 1dB/𝜆, (d) 𝑓 = 500Hz, 𝛼s = 0dB/𝜆.

C.2 P wave type modes

(a) 𝑓 = 50Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 1.00+0.00i
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(a) 𝑓 = 200Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 4.22+0.00i
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(b) 𝑓 = 200Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 4.22−0.08i
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(c) 𝑓 = 500Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 10.57+0.00i
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Figure C.3. Comparison of selected normalized P wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 0dB/𝜆, (b) 𝑓 =
200Hz, 𝛼s = 0dB/𝜆, (c) 𝑓 = 200Hz, 𝛼s = 1dB/𝜆, (d) 𝑓 = 500Hz, 𝛼s = 0dB/𝜆.
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C.3 Evanescent type modes

(a) 𝑓 = 50Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 0.54−14.94i
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(b) 𝑓 = 200Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 0.30−14.73i
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(c) 𝑓 = 50Hz,𝛼s = 1 dB/𝜆, 𝑘𝑟 = 0.41−14.77i
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(a) 𝑓 = 50Hz,𝛼s = 0 dB/𝜆, 𝑘𝑟 = 0.00−9.69i
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Figure C.5. Comparison of selected normalized evanescent wave type modes obtained from semi-analytical
(black-continuous line) and TLM solutions (grey-dashed line) for different cases: (a) 𝑓 = 50Hz, 𝛼s = 0dB/𝜆, (b)
𝑓 = 200Hz, 𝛼s = 0dB/𝜆, (c) 𝑓 = 200Hz, 𝛼s = 1dB/𝜆, (d) 𝑓 = 500Hz, 𝛼s = 0dB/𝜆.



D
Additional Results of an Elastic Domain

with PML

This Appendix provides additional results of Chapter 5, including

1. The comparison of eigenvalues for Groups 1.1, 1.3 and 1.4 in Table 5.2.

2. The comparison of matched eigenmodes for Groups 1.1, 1.3 and 1.4 in Table 5.2.

3. Themodal orthogonality plots for Groups 1.1, 1.3 and 1.4 in Table 5.2.

D.1 Comparisons of Eigenvalues

(a)ℎℓ = 0.25m, comparison of roots
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(b)ℎℓ = 0.25m, zoomed-in comparison of roots
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(c)ℎℓ = 0.01m, comparison of roots
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(d)ℎℓ = 0.01m, zoomed-in comparison of roots
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FigureD.1. Comparison of eigenvalues obtained via semi-analytical approach(red circles) and TLM (black crosses)
for 𝑓 = 50Hz, 𝛼s = 0dB/𝜆: (a) and (b): ℎℓ = 0.25m; (c) and (d): ℎℓ = 0.01m.
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(a)ℎℓ = 0.25m, comparison of roots
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(b)ℎℓ = 0.25m, zoomed-in comparison of roots
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(c)ℎℓ = 0.01m, comparison of roots
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(d)ℎℓ = 0.01m, zoomed-in comparison of roots
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FigureD.2. Comparison of eigenvalues obtained via semi-analytical approach(red circles) andTLM (black crosses)
for 𝑓 = 200Hz, 𝛼s = 0dB/𝜆: (a) and (b): ℎℓ = 0.25m; (c) and (d): ℎℓ = 0.01m.

(a)ℎℓ = 0.25m, comparison of roots
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(b)ℎℓ = 0.25m, zoomed-in comparison of roots
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(c)ℎℓ = 0.01m, comparison of roots
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(d)ℎℓ = 0.01m, zoomed-in comparison of roots
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FigureD.3. Comparison of eigenvalues obtained via semi-analytical approach(red circles) andTLM (black crosses)
for 𝑓 = 200Hz, 𝛼s = 1.5dB/𝜆: (a) and (b): ℎℓ = 0.25m; (c) and (d): ℎℓ = 0.01m.
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D.2 Comparisons of Eigenmodes

(a) 𝑓 = 50Hz,𝛼s = 0dB/𝜆
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(b) 𝑓 = 200Hz,𝛼s = 0dB/𝜆
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ũ
z
|)

(m
/H

z)

×10−2

Semi TLM

(c) 𝑓 = 200Hz,𝛼s = 1.5dB/𝜆

0.0

0.5

1.0

1.5

|ũ r
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Figure D.4. Comparison of eigenvectors obtained via semi-analytical approach (black-continuous line) and TLM
(red-dashed line), and grey domain indicates the PML for (a)𝑓 = 50Hz,𝛼s = 0dB/𝜆; (b): 𝑓 = 200Hz,𝛼s = 0dB/𝜆;
(b): 𝑓 = 200Hz, 𝛼s = 1.5dB/𝜆

.
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D.3 Orthogonality
Semi-analytical solution

(a) 𝑓 = 50Hz and𝛼s = 0dB/𝜆.
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(b) 𝑓 = 200Hz and𝛼s = 0dB/𝜆.
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(c) 𝑓 = 200Hz and𝛼s = 1.5dB/𝜆.
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Figure D.5. Orthogonality of first forty modes at 𝑓 = 50 Hz and first thirty modes at 𝑓 = 200 Hz obtained via
semi-analytical method
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Thin layer method

(a)𝛼s = 0dB/𝜆, 𝑓 = 50Hz, ℎℓ = 0.25m (b)𝛼s = 0dB/𝜆, 𝑓 = 50Hz, ℎℓ = 0.01m

(c)𝛼s = 0dB/𝜆, 𝑓 = 200Hz, ℎℓ = 0.25m (d)𝛼s = 1.5dB/𝜆, 𝑓 = 200Hz, ℎℓ = 0.01m

(e)𝛼s = 1.5dB/𝜆, 𝑓 = 200Hz, ℎℓ = 0.25m (f)𝛼s = 0dB/𝜆, 𝑓 = 200Hz, ℎℓ = 0.01m

Figure D.6. Orthogonality of all modes obtained via TLM: left column: good orthogonality when ℎℓ = 0.25 m,
right column: violated orthogonality when ℎℓ = 0.01m.



E
Additional results of an acousto-elastic

domainwith PML

E.1 Results at 100 Hz

(a) 𝑓 = 100Hz, Eigenvalues
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(b) 𝑓 = 100Hz, Orthogonality

0 27 54 81
mode p

0

27

54

81

m
od

e
q

0.2

0.4

0.6

0.8

1.0

|Γ p
q|

Figure E.1. Orthogonality of the first 108 modes of the acousto-elastic layer with one PML at 𝑓 = 100Hz.
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(a) 𝑓 = 100Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure E.1a
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(b) 𝑓 = 100Hz, vertical pressure eigenfunction for wavenumber 2 as marked in Figure E.1a
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(c) 𝑓 = 100Hz, vertical pressure eigenfunction for wavenumber 3 as marked in Figure E.1a
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Figure E.2. Pressure field distributions for three types of modes at frequency 𝑓 = 100 Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)
region (grey).
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(a) 𝑓 = 100Hz, vertical displacement eigenfunction for wavenumber 1 as marked in Figure E.1a
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(b) 𝑓 = 100Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure E.1a
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(c) 𝑓 = 100Hz, vertical displacement eigenfunction for wavenumber 3 as marked in Figure E.1a
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FigureE.3. Displacement field distributions for three types ofmodes at frequency 𝑓 = 100Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)
region (grey).
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E.2 Results at 150 Hz

(a) 𝑓 = 150Hz, Eigenvalues
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(b) 𝑓 = 150Hz, Orthogonality
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Figure E.4. Orthogonality of the first 100modes of the acousto-elastic layer with one PML at 𝑓 = 150Hz.
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(a) 𝑓 = 150Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure E.4a
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(b) 𝑓 = 150Hz, vertical pressure eigenfunction for wavenumber 2 as marked in Figure E.4a
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(c) 𝑓 = 150Hz, vertical pressure eigenfunction for wavenumber 3 as marked in Figure E.4a
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Figure E.5. Pressure field distributions for three types of modes at frequency 𝑓 = 100 Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)
region (grey).
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(a) 𝑓 = 150Hz, vertical displacement eigenfunction for wavenumber 1 as marked in Figure E.4a
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(b) 𝑓 = 150Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure E.4a
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(c) 𝑓 = 150Hz, vertical displacement eigenfunction for wavenumber 3 as marked in Figure E.4a
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FigureE.6. Displacement field distributions for three types ofmodes at frequency 𝑓 = 150Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)
region (grey).
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