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Summary

Perfectly Matched Layer (PML) has become a powerful tool in computational underwater acoustics and
elastodynamics. By employing complex coordinate stretching in the wavenumber—frequency domain,
PMLs effectively attenuate outgoing waves from the physical domain and thereby provide an efficient
means to truncate the computational domain. Although PMLs have been widely adopted in the finite
element and finite difference communities, their use in semi-analytical solutions remains limited. A
major challenge is that, when modal analysis is applied to the acousto-elastic domain with PML in a
semi-analytical framework, the found modes are not orthogonal. This challenge formulates the main
motivation of this research. On the other hand, the modes obtained from the discrete solution of the
elastic layer with PML, based on the thin-layer method, do preserve orthogonality. Therefore, this thesis
aims to understand the differences between the modal solutions of the semi-analytical and thin-layer
methods in the elastic domains with PMLs, which may provides insights into the reasons why modes in
the semi-analytical solution are not orthogonal to each other.

The main storyline of this thesis is developed through four cases with increasing system complexity. In
the first case, the modes of the elastic domain are computed using both the semi-analytical approach
and the thin-layer method (TLM), and the comparison demonstrates the equivalence of the two meth-
ods in the absence of PMLs. In the second case, the acoustic domain with PML is investigated using the
semi-analytical approach, with emphasis on the polynomial order of the complex-stretching function.
Mathematical derivations show that a zero-order polynomial induces discontinuities at the interface,
leading to uneliminated boundary terms and perturbing modal orthogonality, while numerical results
confirm that higher-order polynomials preserve the cross-orthogonality of modes, as well as the contin-
uous slopes of the potential functions at the interface. In the third case, a quadratic complex-stretching
function is employed, and the elastic domain with PML is analyzed using both approaches. The com-
parison reveals differences in eigenvalues and eigenvectors; finer TLM discretization yields increased
matches between the two methods, but excessive discretization results in orthogonality violations. Fi-
nally, in the fourth case, the semi-analytical modes of the acousto-elastic domain with PML are stud-
ied. Propagating, evanescent, and Bérenger modes are identified, with cross-orthogonality preserved
given sufficient integration points. Bérenger modes consistently arise in PML formulations and exhibit
anomalous dispersion characteristics.

The main contribution of this thesis lies in revealing the influence of the polynomial order of the complex-
stretching function on the modes of the acoustic domain with PML. When a quadratic complex-stretching
functions are employed, the numerical results suggest that the semi-analytical modes of the elastic or
acousto-elastic domains with PML are orthogonal. Therefore, it is suggested that a positive value of
polynomial order is recommended when computing normal modes of the acousto-elastic domain with
PML. However, in the future, a systematic study on the influence of the polynomial order should be
conducted for the elastic layer or acousto-elastic domain with PML.

Furthermore, the comparative study of modal solutions highlights the differences between the semi-
analytical approach and the thin-layer method. The nature of modal solutions comes from the different
formulations of the eigenvalue problem, leading to different eigenvalues and eigenmodes. For TLM, the
over-discretization of the PML domain is not suggested due to the violated orthogonality, although the
reasons behind that require further investigations.

Overall, this thesis advances the fundamental understanding of the modal basis of acoustic, elastic, and
acousto-elastic layers with PML formulations, providing a foundation for future research in two main
directions: (i) the study on modes of the acoustic layers coupled with multiple elastic layers with PML,
which better represent realistic ocean environments with geological strata; and (ii) the computation of
forced responses of structures in acousto-elastic layers with PMLs to model the pile-water-soil interac-
tions using modal matching techniques.
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Introduction

1.1 Motivation and research questions

A waveguide is a finite domain with parallel boundaries, where energy propagates via multiple reflec-
tions between the upper and lower surfaces [7, 20]. Elastic and acoustic waveguides are essential in
numerous engineering applications, such as underwater acoustics, seismic exploration, and structural
health monitoring, as they facilitate wave propagation over large distances [8]. Normal mode meth-
ods are one of the approaches for studying wave propagation in acoustic or elastic waveguides [11].
More specifically, their robustness and computational efficiency contribute to their preference over
wavenumber integration techniques [20]. Studies have also shown that normal mode solutions are
widely applied to wave propagation in bounded media without range dependency. However, existing
models of ocean environments include layered waveguides and a half-space [11]. Among existing lit-
erature, a combination of complex wavenumber integration and modal methods was found to provide
the exact solution [16]. However, purely adopting the standard mode solution for wave propagation in
infinite or semi-infinite media necessitates truncation.

In general, two approaches have been used in the existing research for domain truncation: (1) assuming
a non-reflecting boundary condition at the truncation interface; (2) defining an absorbing boundary layer. The
first approach minimizes wave reflection from the interface by applying an appropriate boundary condi-
tion at the interface between the computational domain and the truncated domain. The non-reflecting
boundary conditions can be either exact or local, where a comprehensive review of these two categories
was given in [25]. The exact method provides high accuracy but is computationally expensive, whereas
the local method is more efficient but introduces errors due to reflections [13]. In the second approach,
an absorbing layer is introduced to enforce the decay of wave motion within the region, thereby mini-
mizing waves reflected from the truncation interface. This approach is considered to be one of the most
successful techniques for numerical truncation, mainly due to the success of Perfectly Matched Layers
(PMLs).

Perfectly Matched Layer (PML) is one type of the aforementioned absorbing layer. PML was initially de-
veloped and implemented by Bérenger [5] for Maxwell’s equations by introducing an additional flat layer
beneath the regular domain. This layer attenuates electromagnetic waves propagating in all directions.
Consequently, reflections at the interface of PMLs and the regular domain can be minimized. In [5],
Bérenger highlighted the mathematical superiority of the PML approach over existing absorbing layers
by achieving a significantly lower reflection rate, independent of their incident angles. Extending from
application in electromagnetics, extensive research suggests the successful application of PML formu-
lations in elastic wave propagation problems, and a comprehensive review of their applications can be
found in [13].

Although perfectly matched layers (PMLs) are widely utilized in the Finite Element (FE) community,
their application in semi-analytical solutions remains limited. Furthermore, the nonphysical nature
of PMLs also introduces leaky modes for some cases [9, 26], which corresponds to poles of the char-
acteristic equations located in the improper Riemann sheets. Leaky modes grow exponentially in the
vertical direction, indicating they violate the radiation conditions for exact and continuous solutions
of displacements in the lower half-space. Alongside normal and leaky modes, Bérenger modes are also
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identified in the eigenvalue problems of waveguides with PMLs. Those modes, with energy localized in
the PML regions, are sensitive to PML parameters [17]. Moreover, they are considered to be purely math-
ematical modes with anomalous modal shapes [4]. Generally, educated guesses based on boundary and
interface conditions can be given for an arbitrary question, called continuous solutions. Alternatively, nu-
merical methods can be used to solve the same problem, leading to a discrete solution. These two types of
modal solutions consist of eigenvalues and eigenvectors. Throughout this thesis, the eigenvalues arising
in the continuous solution are sometimes referred to as roots, as they correspond to the solutions of the
dispersion relation. The associated eigenvectors, or modes, are continuous functions defined over the
modal coordinates. In contrast, in the discrete solution, the eigenvectors are represented as vectors of
modal values sampled at discrete points.

More specifically, the continuous modal solutions presented in this work are semi-analytical, since the
eigenvalues associated with the dispersion relations are computed using numerical root-finding algo-
rithms. In addition to these continuous solutions, this thesis also employs a discrete solution, the Thin-
Layer Method (TLM). Originally developed in the early 1970s, TLM has been widely used for wave prop-
agation analysis. It discretizes the waveguide along the layering (typically transverse) direction, while
analytical expressions are retained in the remaining coordinates [4].

When the Thin-Layer Method (TLM) is applied to the eigenvalue problem in an elastic domain with a
perfectly matched layer (PML), the resulting discrete solution yields a set of normal modes whose asso-
ciated eigenvalues exhibit the expected orthogonality. In contrast, the semi-analytical formulation no
longer preserves orthogonality among different eigenvectors, despite describing the same physical sys-
tem. This discrepancy between the continuous and discrete treatments of the same problem motivates
a deeper investigation into the underlying mathematical and physical mechanisms, ultimately leading
to the main research question of this thesis, which is:

How and why do the modal characteristics differ between semi-analytical and thin-layer method (TLM)
solutions in acoustic or elastic domains with PMLs?

The following supplementary questions are proposed to support the investigation of the main research
question:

1. For a linear isotropic elastic layer, how do the eigenvalues and eigenmodes obtained from the semi-
analytical method differ from those produced by the thin-layer method (TLM)? What are the pri-
mary factors contributing to these differences?

2. In a fluid layer with a PML, how does the presence of the PML affect the semi-analytical modal so-
lutions? Specifically, how does varying the PML polynomial order mipy influence the computed
eigenvalues, eigenvectors, and their orthogonality?

3. For a linear isotropic elastic layer with an adjacent PML, what are the differences in modal charac-
teristics (in particular, eigenvalues and eigenmodes) between the semi-analytical and thin-layer
methods? What mechanisms account for these differences?

1.2 Research aim

This research aims at investigating how and why the modal solution of an elastic domain with PMLs
differs between the following two computational methods: (1) the semi-analytical approach and (2) the
thin-layer method. The comparison of results for the two methods may give insights into the reason why
modal orthogonality fails sometimes in the semi-analytical solution.
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1.3 Thesis objectives

The following four objectives of this thesis are given:

1. A comparative analysis between the Thin-Layer Method (TLM) and the semi-analytical solution
for a linear elastic layer is first conducted to identify their similarities and differences. This com-
parison serves as an essential preparatory step for understanding more complex acoustic, elastic,
and acousto-elastic domains involving perfectly matched layers (PMLs).

2. Investigate the modal behavior of an acoustic layer with a perfectly matched layer (PML), with par-
ticular attention to the orthogonality of modes and their associated eigenvectors, as formulated
in [26]. While previous studies, such as [4], have frequently noted the emergence of nonphysical
Bérenger modes, their mathematical and physical origins remain insufficiently explored. Here,
a semi-analytical framework is employed to analyze the eigenvalue spectrum, modal structures,
and dispersion characteristics, with the aim of clarifying the nonphysical nature of these modes.
Furthermore, the impact of various complex-stretching functions on the modal properties is as-
sessed, with an emphasis on the role of the polynomial order mpy; .

3. Examine the differences in modal solutions between two formulations—discrete (thin-layer method,
TLM) and continuous (semi-analytical)—for an elastic medium with a perfectly matched layer
(PML). Understanding the correspondence and divergence between these approaches is essential
for analyzing wave propagation in PML-coupled elastic waveguides. However, such a compara-
tive study remains largely absent in the existing PML literature, thus motivating this key objective
of the thesis.

4. Provide a modal solution for an acousto-elastic layer with PML via the semi-analytical solution.

1.4 Scope of the research

The complete modal solutions of the acousto-elastic domain are a fundamental topic in the context of
underwater acoustics and elastodynamics, and their successful applications in solving complex pile-
water-soil interaction problems in offshore pile-driving activities can be found in existing research [16,
22, 24]. The focus of work in this thesis is limited to a few aspects:

1. Problems considered here are limited to unforced systems. For the unforced system, the starting
point of analysis is the eigenvalue problem after the separation of variables. In the next stage, the
eigenvalue problem will be solved using either the semi-analytical or thin-layer method, including
the roots of the dispersion relations (eigenvalues) and their corresponding modes (eigenvectors).
The study of this thesis will focus on the basic properties of modes when PML is presented.

2. Generally, the modal basis of the elastic domain contains P-wave type, SV-wave type, and SH-wave
type modes. Among these, P-wave type and SV-wave type modes form Rayleigh modes propagat-
ing along the surface; the SH-wave type modes are associated with Love waves. The focus of the
study is on the P-SV wave type of modes in the elastic domain.

1.5 Thesis outline

This thesis presents a comparative study of continuous and discrete modal solutions of an elastic layer
incorporating a Perfectly Matched Layer (PML). It begins with a comparison of continuous and discrete
modal solutions for a single elastic layer, which provides Subsequently, the continuous modal solution
for a single acoustic layer with a PML is introduced. The comparative analysis is then extended to the
elastic layer with PML, focusing on main differences between the continuous and discrete solutions.
Based on previous discussions, the modal solutions of an acousto-elastic domain via the semi-analytical
approach will eventually be provided. The thesis concludes with a summary of findings and offers rec-
ommendations for future research.
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The structure of this thesis is visualized in Figure @ Chapter 2 provides a review of the necessary theo-
retical background for this thesis, introducing key concepts and foundational principles that are relevant
to this thesis.

Chapter 3 presents a comparative study of modal solutions obtained via a semi-analytical and thin-layer
method for a single elastic layer. The chapter begins with the formulation of both solution methods, fol-
lowed by a detailed comparison of the roots and eigenvectors under various frequencies and attenuation
rate.

In Chapter 4, the semi-analytical approach is extended to a single acoustic waveguide with one PML.
The formulation of the semi-analytical solution in the presence of the PML is presented in detail. Addi-
tionally, the properties of the roots and modes are examined, with particular attention given to the or-
thogonality between modes and their conjugate eigenvectors. Furthermore, this chapter also includes a
discussion on the influences of the order of the polynomial complex-stretch function mpyy on the modal
solutions.

Chapter 5 focuses on the modal analysis of an elastic layer with one PML. The formulations of the two
approaches are briefly introduced, followed by a comparison of the resulting eigenvalues and eigenvec-
tors. Finally, the orthogonality conditions of modes in the semi-analytical approach will be checked.
This comparative study highlights the similarities and differences between the two methods, with a dis-
cussion on possible causes for any differences.

Chapter 6 presents the modal solutions of an acousto-elastic domain with a single PML, obtained using
the semi-analytical approach. Following the methodology presented in Chapter 4, the analysis covers
the eigenvalue, modes, and their cross-orthogonality properties.

Chapter 7 concludes the thesis by answering all research questions and providing recommendations for
future research directions.

[Chapter 1: Introduction}

(Chapter 2: Theoretical Background]

Chapter 3: Modal Solutions
of An Elastic Waveguide

y
Chapter 4: Modal Solutions of
An Acoustic Waveguide with %| Sub-research Question 2 |

PML via Semi-analytical Method

J

Chapter 5: Modal Solution of a
Single Elastic Domain with a PML

- J

!
Chapter 6: Modal Solution of An
Acousto-elastic Domain with a
PML via Semi-analytical Method

|

[Chapter 7: Conclusions and Recommendations}

%| Sub-research Question 1 |

%| Sub-research Question 3 |

Figure 1.1. A flowchart of the structure of the thesis
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Figure 2.1. A Flow Chart of the theoretical framework of this thesis

In this Chapter, the theoretical background of this thesis will be introduced, along with a review of ex-
isting research within the continuous and discrete modal solutions of acoustic and elastic layers with
and without PML formulations. As shown in the framework of all physical variables (See Figure @),
this chapter mainly provides:

{2.1} Basic mathematical definitions and the coordinate system used in this research.

{2.2} Wave propagation in acoustic and elastic media.

{2.3} An explanation of normal-mode solutions, including both the continuous and discrete form.
{2.4} Wave-dispersion phenomena.

{2.5} PML techniques, with a focus on complex stretch.

{2.6} Areview of the Thin-layer method, including the formulation, orthogonality, and the application
with PML.



6 2. Theoretical Background

2.1 Definitions
First of all, all integration transforms are defined here:

Fourier transform would be used for frequency domain analysis, which is given as below:
f(x1)= ff(x,w) exp (iwt) dw, f(x,w) = ff(x, t)exp(—iwt) dt. 2.0
0 0

In addition, the Hankel functions that are used in this thesis are as follows:
HV(x) = Jo(x) + Y (x), HP (x) = Jo(x) = 1Y (). 2.2)

Two kinds of Bessel functions are plotted in Figure , with the solid and dashed lines representing
the first and second kind, respectively. The corresponding Hankel functions are plotted in Figure .

(a) Plot of Bessel Functions. (b) Plot of Hankel Function.
T T r T T
) =)
g =
R d U
:
= =
) ©
= = 1y iy
! ! !
0 5 10 15 20
X X
— Jo(x) --- Yp(x) — Re[H"(x)| -~ m|[H?(x)]

Figure 2.2. Indicative plots of Bessel and Hankel functions

Secondly, the following gradient operator V and Laplacian operator V? will be utilized in this thesis:
V=0,e,+0,e,+0,e, VZ=0le, +0 e, +00e,.

wheree,, e, and e, represent the unit vectors along the Cartesian coordinate axes x, y, and z, respec-
tively, indicating the directional components of the gradient and Laplacian operators in three-dimensional

space.

Finally, Einstein’s summation convention was used for repeated indices. Besides, the Kronecker delta
notation §;; is defined as

Lol
5, = { t=J 2.3)
0, i+#j.

2.2 Horizontally stratified waveguides

In the real ocean environment, the acoustic impedance varies continuously in the fluid layer, while it
jumps at the interfaces between geological strata. Therefore, the layered model in the following figure
could be applied in the analytical and numerical framework, aimed at reflecting two distinct types of
medium heterogeneity [11]. The model in Figure B is assumed to be horizontally stratified, which is con-
sidered to be a widely recognized canonical model in underwater acoustics. This assumption indicates
that waveguide properties are only dependent on z.
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2.3 Cylindrical coordinate system

The propagation of conical waves considered in this thesis is formulated as an axisymmetric potential prob-
lem, in which both the geometry and the applied boundary conditions are symmetric about the axis of
revolution. A cylindrical coordinate system is adopted to express the analysis in the radial and axial
directions [3].

In cylindrical coordinates, the position vectoris expressed asr = (7,6, z), with the z-axis passing through
the source (see Figure @). Consequently, Equation (@) takes the form:

V=0,e +0,/rey+0,e, V2 =0,(rd,)/r+8;/r*+a:. 2.4)

Given the assumption of axisymmetry in the cylindrical coordinate system, i.e., 9 = 0, Equation (@)
should be simplified to:

V=0,e +0,e, VZ=0%+0,/r+0:. 2.5)
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2.4 Wave propagation in an acoustic medium

Linear wave equation

The motion of an inviscid, compressible fluid can be described by the scalar velocity potential ¢¢(r, z, t),
which satisfies the acoustic wave equation:

1.
Vipr— — ¢ =0, 2.6)
Gt

where cf denotes the sound speed in the fluid, and V? is the Laplacian operator as defined in Equa-

tion (@).

Helmholtz equation

Applying a Fourier transform to Equation (@) leads to the frequency-domain Helmholtz equation:
—_~ (,()2 ~
Vi + — ¢ =0, 2.7)
G
where ¢(r, z, ) denotes the velocity potential of the fluid layer in the frequency domain.

Constitutive relation
The velocity field ¥(r, z, ) and pressure field py(r, z, ) in the fluid layer are given by:
7=V, P = —iw pghy. (2.8)
where p; represents the fluid density and V is the gradient operator defined in Equation (@).
2.5 Wave propagationin elastic medium

Navier-Cauchy equations

The motion of an isotropic, linear elastic soil layer is governed by Navier—Cauchy equation:
usViug + (Ag + pg) VV - ug — pgiig = 0, 2.9)

whereuy(r,z,t) = u,,(r,2,t) e, +ug (7,2, t) e, denotes the displacement vector of the soil particles, V
is the gradient operator defined in Equation (@), As and pg are the Lamé constants, and p is the density
of the elastic medium.

Transforming Equation (@) into the frequency domain via the Fourier transform yields
U V2 + (Ag + ) VV - i + pyw?ti = 0, (2.10)

where tiy(r, z, ) denotes the displacement field in the frequency domain and w is the angular frequency.

Pontential relations

The displacement field of the soil layer 6i can be expressed via Helmholtz decomposition:
iy = Vo, + V x .. (2.11)

where ¢,(r,z,w) denotes the scalar potential that is associated with compressional (P wave) motion,
and ¥(r, z, ) stands for the vector potential describing transverse (S wave) motion, which is written
as

¥, = y.e,. (2.12)

where (7, z,w) is a scalar potential of SV wave.
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Combining the contributions from V¢, and V x ¥ yields
i, = (0,6 — 0.5 Je, + (0.5 + 0, T + W/ 7 e, (2.13)

Constitutive relations
The constitutive and compatibility laws in the soil layer are expressed as:
1

Uncoupled equations
Substituting ) into Equation (@) gives:
BV? (Vs + V x )+ (A + 1) YV - (Vb + V x B ) + pyo? (Ve + V x ¥ | = 0. (2.15)

The following properties of gradient and curl terms can be easily proved:
V-V, = V3¢, V-VxW¥,=0. (2.16)
Substituting ) into Equation () results in the following expression:
\Y% [ (A +20,) Vi, + pswzfﬁs] +V x [uSVZ‘T’S +p,w?¥,| = 0. (2.17)

The substitution of Equation () into () will give the following uncoupled Equations of Motions
(EoMs) for P-SV waves [20]:

o~ (1)2 —~
vz(lbs + 2 ()bs =0, (2.18)
L
Uy o
VA — =+ — 7, = 0. (2.19)
2 2

by:

(2.20)

2.6 Normal-mode method

The normal-mode method has been extensively applied in both underwater acoustics and elastodynam-
ics. A comprehensive treatment of this method in the context of underwater acoustics is given in Chap-
ter 5 of [11], while its applications to elastic media are discussed in detail in [2]. In this work, only the
aspects directly relevant to the present study are outlined for brevity.

Continuous solution

By applying the separation of variables, Equation (@) can be projected onto the modal coordinates:
d*®;,

dz?

where @,p(z, w) is the p-th mode of the velocity potential of the fluid layer.

+ (k= k2, ®p, =0, 2.21)

The general solution to Equation () is given as below:
5fyp (z,w) = A, exp(iysz) + Ay exp(—iy;2). (2.22)

where yi(w) = \/w?/c? — kZ,, respresenting the vertical wavenumber of the p-th mode.
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Similarly, the modal equations derived from Equations () and () are given by
d*®

sp 2_12)\§ =

0+ (k2 - k2,)®,, =0 (2.23)
d?¥

Sp 2_12\§ -

T (k2 - k2,) ¥, =0 (2.24)
The general solutions to the equations above are given as:

b ,(2,0) = Agexp(iyy.2)+A, exp(~iy,.2) (2.25)
(Ijs,p (z,w) = As eXP(iYTZ) +Aq eXp(_iYTZ) (2.26)

where y; (w) = \/w?/c? - ki, and yr(w) = \/w?/c? - k&, are the vertical wavenumbers of the P- and

S-waves, respectively.

Furthermore, @ »(z2,w)and ' (2, 0) denote the p-th modes of the scalar displacement potentials for
P- and S-waves in the soil layer.

In a domain composed of layered media, a system of algebraic equations can be formed by introducing
post-processed physical fields, namely, displacement, stress, and pressure, into interface and boundary
conditions, which reads

MA=f (2.27)
The dispersion relation is given by setting the determinant of M to zero:
detM =0 (2.28)

For each w, solving equations above gives infinite number of k,,(w) with p = 1,2,3,...,00. Further-
more, the modes corresponding to each root could also be computed, which formulate the following
modal expansions of velocity and displacement potentials:

(1, z,0) = zl C,HP (kyy1)®s (2, 0), (2.29)
p:

os(r,z,0) =Y CpHO(Z)(k,pr)ﬁSsyp(z,w), (2.30)
p=1

W(r,z,0)= Y. C,HP (k1) ¥, ,(2,0). (2.31)
p=1

where 5&, (z,w), 5S,p(z, w) and ‘T’syp(z, w) are known modes along z direction, the unknown complex-
valued constants C,, are determined by solving the forced response of the whole system. It should be
indicated that the solutions of C,, are beyond the scope of this thesis.

Discretized solution

For adiscretized elastic medium, normal modes can be found by solving the following generalized eigen-
value problem:

(k2 + &, By + G, — M, )@, = 0 (2.32)

Where k, is the radial wavenumber of cylindrical modes; @, is the displacement potential vector along
z direction; A, G, and M, can be derived from virtual work principle of a linear, isotropic elastic layer,
which have been discussed in [12] and [19]. We will also revisit this discretized solution in the review of
the thin layer method.
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Eigenmodes

For the single acoustic or elastic media with a rigid bottom, only discrete eigenvalues can be found,
as shown indicatively in Figures and . Modes whose eigenvalues lie close to the real axis are
referred to as trapped modes, as their energy remains confined within the waveguide due to repeated
reflections at the rigid boundary [20]. In contrast, modes near the imaginary axis are known as evanes-
cent modes, with energy localized near the source and rapidly decaying with range. Symbolically, the
modal content in such a closed waveguide can be expressed as:

M M
® =~ ) TrappedModes+ )_ EvanescentModes. (2.33)
m=1

m=1

It should be noted, however, that in an elastic medium—whether lossless or lossy—the distribution of
eigenmodes differs significantly, as shown indicatively in Figure and . This difference has been
mentioned in [16] for the elastic halfspace: Dissipation is included in the form of complex-valued Lamé
constants, leading to complex-valued eigenvalues in the third and fourth quadrants in an asymmetric
way. However, for the lossless elastic medium, all modes are distributed symmetrically.

When the rigid boundary is removed, the complex contour integration must also account for the contribu-
tions of continuously radiated body waves. The physical interpretation of these contributions has been
discussed in [22]: Their radial wavenumbers k, are small and satisfy 0 < k2 < k2. Such small values of
k, correspond to steep angles of incidence, resulting in continuous radiation of energy into the lower
halfspace. Consequently, these conical wave types are so-called leaky modes, and they inherently vi-
olate the radiation condition. In this context, the total field is expressed as a combination of discrete
trapped modes and a continuous spectrum of radiated modes, represented by an integration along the
branch-cut contour (dashed line) in Figure @:

M

D = Trapped Modes + f Radiated Modes. (2.34)
m=1
@branch
(a) Fluid waveguide: single layer (b) Lossless single elastic waveguide
Im(k;) Im(k,)
k —kr -k 8k
o o Re(k,) o s eoo o oo Re(k,)

(c) Lossy single elastic waveguide
Im(k,)

Figure 2.5. Indicative positions of eigenvalues for different bounded layered media
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Re(k,)

Figure 2.6. Complex contour integration of a lossless elastic halfspace

Modal dispersion

The founding of wave group phenomena by Russell (1844) marks the start of research on wave propaga-
tion in dispersive media. He found that some waves move more quickly than the group of waves. In1876,
Stokes developed the analytical expression of group velocity, which was later refined by Rayleigh. Fol-
lowing the definition of stationary by Kelvin (1887), Lamb gave the visualization of wave group-related
concepts in 1990. The wave group is shown in Figure @ It contains a modulation with a larger wave-
length, which propagates with ¢, and carrier waves propagating with ¢, = c.

A more general wave composed of wave groups with a continuous wavenumber spectrum, as shown
in Figure . A small variation ARe(k) around Re(k,), resulting in the Aw around w,. This small
perturbation is considered to be related to a cluster of waves with the following group c,(k,) and phase
velocity ¢, (ko):

Wy

cg(ko) = aRe(ko)w(Re(ko))r Cph(ko) = Re(ky)’ (2.35)
Achenbach [1] showed that its averaged energy density propagates with velocity:
Cg = Cg = ORe(k)a) (236)

Based on this derivation, Miklowitz [14] pointed out that for symmetrical and antisymmetric P waves
propagating in an infinite elastic plate, the aforementioned relationship is valid. Besides, the same
conclusion has been proved for harmonic wave propagation in waveguides with constant cross sections.

For underwater acoustic wave propagation, modal dispersion is closely linked to energy transport. Jensen
[11] observed that near the cut-off frequency, the phase velocity ), becomes large due to steep vertical

wave propagation, attributed to a small k,.. Conversely, the group velocity ¢, is nearly zero, reflecting a

minimal horizontal energy transport. At higher frequencies, horizontally propagating waves dominate,

causing cpp, and ¢, to converge toward the medium’s wave velocity ¢;. As a result, ¢, decreases while c,

increases with frequency, with both asymptotically approaching c;, as shown in Figure .

For physical dispersions, the energy travels with the modulation in Figure @with Cg < Cph- Inother words,
the energy travels more slowly than the phase of the waves. In contrast, anomalous dispersion occurs

when Cg > Cpn [14], Equation () yields:

Ope(rywRe(k)—w 1

aRe(k)Cph = Re?(k) = Re(k)(cg - h) >0 (2.37)

Cp

That is to say, Oge(x)Cpn > O for anomalous dispersions, suggesting their phase velocities c,, increase with
the real part of wavenumber Re(k).
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u (x ’ tl )
Modulation Carrier wave

Figure 2.7. Wave grouping phenomena

(a) Dispersion curve (b) Group and phase velocity spectra

) Co,ph

Re(k) Re(k)

Figure 2.8. Dispersion curve, wave and group velocity

Orthogonality The orthogonality of P—SV modes for a single-layered elastic medium with a thickness
of Hg; could be derived using reciprocity theorem of elastodynamics [6, 22], which could be found in as
below:

H, ~
EL ~ us,r,q(z) Us,zz,q(z)
rpq = rp6pq = f Cs kp us,r,p(z) k—q +ns'us,r,p(z)k—
0 " np (2.38)
o, (2)
_us,z,p(z)& dz,
kr'q

where {, = p, - [cf — (c? 2+ ¢})?| [ ¢t and g = (cE-2¢}) [ 2.
¢, and c¢; are wave speeds of the compression and shear waves in the elastic waveguide, respectively.

is () and i ,(z) define the displacement field of particles in the direction of r and z. & ,(z) and
0, (z) are normal and shear stresses respectively. Finally, k, defines the radial wavenumbers.

What is more, the orthogonality of modes in an acoustic medium with a thickness of Hy, is given in [11]
regarding modes of fluid potential ¢(z), which is:

(2.39)

Hpyy,
¢f,p(z)¢f,q(z)
Lpg =Tpdpq = f ———dz,
5 D¢

where p is the fluid density.
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Figure 2.9. Schematic of A PML truncation boundary along coordinate z.

2.7 PMLTechnique

Initially developed by Bérenger [5] as an absorbing layer for electromagnetic waves, the Perfectly Matched
Layer (PML) has been extensively applied in elastodynamics [#4, 13] and underwater acoustics [10, 11, 26].
By employing complex stretching in the wavenumber-frequency domain, PMLs effectively attenuate
waves in that layer, facilitating the truncation of numerical domains in semi-analytical and numerical
formulations of open waveguides. This section will review the complex stretch technique and examine

existing studies regarding its impact on modal contributions.

In the PMLlayer of Figure @, dz is transformed to a complex-valued dz by complex stretching function

e(z,w):
dz = ¢(z',w)dz

Therefore, the transformed vertical coordinate Z is

z
zZ= fg(z’, w)dz'.
0
The complex stretching function £(z’, w) in Equation () reads
z
e(z,w) = a(z) + —ﬁ_( ),
iw
where a,(z) is called scaling function, and f,(z) is the attenuation function.
Moreover, they have the following basic properties:
1. When0<z<Z,,a(z)=1and B(z) =0.
2. When Z, < z < Z,, a(z) and B(z) monotonically increase with respect to z,
Therefore, the real and imaginary part of Z are given as follow:

Re(2) = f a(z)dz, Im(z) = —i f A(2)dz.
0

0
In the PML layer, the basic properties of the scaling and attenuation functions imply

Re(z) > 1, Im(z) < 0.

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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Equation () indicates the following definitions related to spatial derivatives is given:

d d 1 d

L, =, 2.45
dz dz ¢ dz ( )

For a harmonic wave propagating within an one-dimensional PML layer in Figure (@), where z is transformed
to Z, the depth-separated part reads

exp(—ikz) = exp (—iRe(k)Re(z) + ﬂm(k)lm(z)) exp (Re(k)lm(z) + Im(k)Re(Z)). (2.46)

Oscillatory part Amplitude factor
For a propagating wave, where Re(k) > 0 and Im(k) = 0, Equation () reads

exp(—ikz) = exp(—ikRe(Z)) exp (klm(z)), (2.47)

Oscillatory part ~ Amplitude factor

As a result, the propagating harmonic wave in Equation () is transformed into an evanescent one
when kIm(Z) < 0, because under this condition the exponential amplitude factor in Equation ()
decays with increasing Im(Z). Inthe PMLformulation, Im(Zz) increases monotonically with the physical
coordinate z; therefore, the damping becomes progressively stronger toward the lower regions of the
PML, ensuring effective absorption of outgoing waves.

For an evanescent wave, Im(k) < 0 and Re(k) = 0, hence Equation () is written as
exp(—ikz) = exp (iIm(k)Im(Z)) exp (Im(k)Re(Z)). (2.48)

The attenuation term in Equation () is dominated by the scaling function. In both cases, the scaling
function a(z) artificially increases the depth of the domain, which induces an accelerated amplitude
decay of the wave within the PML layer. The scaling function a(z) reads

1 0=sz=<2,
a(z) = (z—zl)m"ML (2.49)

On the other hand, the attenuation function §(z) is written as
0 O0<sz=27,
B ={ (.,
1
N

H, PML

(2.50)

mpmL
) Z,=z2=7,.

where Z, and Hyp,),; are the thicknesses of the two layers, §, and «, are tuning constants for scaling and
attenuation functions, and mpy, is the order of the polynomial attenuation inside the PML domain.

When considering the attenuation of propagating wave only, the following complex-valued coordinate
Z can be given by neglecting the scaling tuning «, [19]:

BoHpm1, (Z -7 )mPML+1
o (Mpyy, +1)

z=z-1H(z-27,;) (2.51)

H, PML

where H(-) is the Heaviside function.

The polynomial order mpy; determines the attenuation function profile. Alarger mpyy createsasmoother
transition at the PML-regular domain interface, as well as a sharper attenuation near the fixed bound-
ary [13]. This allows incoming waves to enter the PML smoothly before being attenuated. In the existing
research, mpyy, = 2 is typically used for finite element and thin-layer methods [4, 13], as higher-order
functions, namely, quadratic or cubic £(z), effectively minimize boundary reflections in discrete solu-
tions [18]. However, the influence of mypy, in continuous solutions remains unstudied.
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— Re(k,)
¥ .'<,~—. kr
‘ ‘,/, " 4 Leaky mode
k) " e Trapped mode

I = Bérenger mode

Figure 2.10. Indicative modes of lossy elastic halfspace truncated by single-layer PML, the dashed line stands for the
%Gpranch in Equation () of the elastic halfspace and the solid lines are the new branches 6pyy, in [9]

When a finite PMLis used to truncate the elastic halfspace, leaky modes will appear to compensate for the
contribution of continuous radiated modes in Equation (). Therefore, a new type of mathematical
model will appear [4], which is called Bérenger modes, which is

® ~ ) Trapped Modes + ) Leaky Modes + Y Bérenger Modes (2.52)

Overall, for the elastic halfspace with PMLs, the eigenvalues will contain both trapped modes, evanes-
cent modes, and Bérenger modes. The characteristics of these three types of modes for the Pekiris
waveguides have been studied [26]. What is more, it has been pointed out that, except for discrete
points, a new branch cut 6€py, would appear for the regular domain with an infinite PML [9]. Therefore,
the modal basis can be expressed as:

® =~ ) Trapped Modes + ) Leaky Modes + f Bérenger Modes (2.53)

€pmL

The energy of all discrete modes is trapped inside the domain if a rigid boundary is applied [23]. There-
fore, the modal contribution for a single regular layer with a finite PML layer, the continuous radiation
modes in Equation () will be replaced by ) These Bérenger modes should be distributed along
the hyperbolic branch €py [9], as illustrated in Figure .

Existing research on the orthogonality of modes for continuous solutions in acoustic or elastic domains
with PMLs remains limited: According to [4], these leaky modes represent non-physical solutions that
continuously radiate energy into the lower halfspace; therefore, the orthogonality property will not be
valid due to the infinite energy of the modes. [26] examined Pekeris waveguide systems with a PML.
While the modes do not directly satisfy cross-orthogonality conditions, orthogonality can be established
through the construction of conjugate (adjoint) eigenmodes, leveraging the special properties of the
boundary conditions and the Helmholtz equation operator.

For the same physical problem, it is reasonable to expect that discrete and continuous solutions would
exhibit similar modal characteristics. Discrete solutions obtained through the TLM method have been
demonstrated to satisfy orthogonality; thus, continuous solutions describing the same system should,
in principle, preserve this property. Moreover, for a finite PML with fixed boundaries, no energy leakage
occurs into the lower halfspace, suggesting that orthogonality between leaky modes and trapped modes
should remain valid. However, the validity of these assumptions for continuous solutions has not been
systematically examined in the literature, thereby motivating the comparative analysis between contin-
uous and discrete formulations conducted in this thesis.
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2.8 Thin-Layer Method (TLM)

In this section, a brief introduction to the Thin-Layer Method (TLM) will be presented. The thin-layered
method is an effective semi-discrete numerical approach for wave motion in layered media. Asadiscrete
form of normal mode solution, TLM was initially developed in the early 1970s, and it has been commonly
used in acoustic, elastic, and acousto-elastic problems since the 1990s [4]. Besides, TLM was limited
to bounded domains with rigid boundaries, and nowadays TLMs have been used in the simulation of
unbounded domains after the availability of PMLs and paraxial boundaries. A brief history of TLM can
be found in [15].

Generally, the key concept of TLM is the partial discretization of the domain along the layering direc-
tion. In a 2D problem, A finite element discretization will be implemented along a spatial direction,
while analytical solutions will be used in the remaining directions. For an axisymmetric linear elastic
isotropic halfspace without body force, the Equation of motion can be expressed in the matrix form in
the cylindrical coordinates (7,0, z):

Lo —pgiig =0, (2.54)

where ug is the displacement vector and o is the stress tensor.

Using virtual work principle, the final elementary layer matrices A,, G, and M, can be derived as follows

[4]:

A[ = hg . y G[ = h;l . y M[ = h[ . . (255)

However, the B, is not dependent on the element thickness h,. Finally, the following matrix equation
of the eigenvalue problem will be derived after matrix assembly:

(k2,A+ K, ,B+ G- w?M] b, =0 (2.56)

where A, M and G are symmetric. However, B is not symmetric, with the following structure:

0 0 B,
B=|0 0 o0][. 2.57)
B, 0 0

zr

The quadratic eigenvalue problem indicated by Equation () can be linearized and transformed to
normal modes of Rayleigh and Love waves. On the one hand, for P—SV modes, the following linear
non-symmetric eigenvalue problem in k?,, has been derived in [19]:

®, 0
k2 A+ c [ ool = l 2.58
krpq)zp ( )
where A and C have the following form:
— | A 0 — | G, -w*M B
— r . — P w r rz2 2.59)
B, A, 0 G, — w*M,

On the other hand, the SH modes have the following linear symmetric eigenvalue problem in k?:
(2,89 + Gy — 0*My) g, = 0, (2.60)

Where ¢, ,,, g, and ¢, are modal displacements at interfaces of thin layers in the radial, circumfer-
ential and vertical directions, evaluated at both the interfaces of each layer and the interpolation points
within each layer. In this study, quadratic interpolation polynomials are employed for TLM, resulting in
one interpolation point per layer.
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(a) Without PMLs (b) With PML
r r
Thin layer 1 Thin layer 1
Hpy,
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hy PML layer 1
- Hpy,
z z

Figure 2.11. Schematics of TLMs

Equation () can be written as:

[ Ak2, +G, - 0’M, B,, 1] &, ] [o .6
| Bzrk?p Azkgp +Gr _szr‘ | krp(pzp_ 0 .
Alternatively, the Equation above can be written as:
A k%, +G, —w’M, B, k7, krp®rp | _ l (] ‘ .62
_ B,, Ak, +G— M, | | g 0
The left and right eigenvectors are defined as below:
— (I)rKr — (I)r
%] el

where K, = diag{k,; k,, ---} is the diagonal matrix computed from sorted eigen wavenumber k,,
associated with P-SV modes. Furthermore, @, and ®, are modal matrices with the following form:

(I)rz[ ¢ b o ]’ (Dz=[ b b ] (2.64)
Therefore, Equations () and () read:
AZK2+CZ=0 A YK’+C Y=0 (2.65)

Therefore, we have the following normal orthogonality relations:
YAZ=72'A'Y=K, Y CzZ=7'CY=-K (2.66)

Following the implementations introduced by Kausel and de Oliveira Barbosa, the layer thickness in the
PML layer should be modified after complex stretch in Equation (), which is:

B 1 f mppp,+1 [ 1 mppr+1
hg = Z[—Z[_l =H —-iQ ( ) —( ) ) (267)
NPML NPML NPML
where Q = L.
o (Mpyy, + 1)
According to Equation (), elemental matrix for /-th layer in PML domain should be modified as:
~ Iy — k — Ry _
A[ = —A[, G( = '_G/’ M[ = —A[, B[ = Bg (268)
hy hy hy

Therefore, a new version of generalized eigenvalue problems of SH and P—SV waves should be derived
for layered elastic media with PMLs.
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Figure 3.1. Schematic of single elastic layer

Table 3.1. Basic parameters used for numerical examples in Chapter 3

Elastic layer thickness | Hgy, 10 m
Solid density upper layer | pg 1700 kg/m3
Poisson’s ratio v 04 -
Young's modulus E, 0.7 MPa

This chapter will perform a comparative study between the continuous and discrete solutions of the
single elastic layer with a fixed bottom boundary. The elastic layer illustrated in Figure @ will be solved
using the normal mode method, with all dimensions given in Table EI! The methodology of this chapter
consists of the following steps:

{3.1} Formulate the eigenvalue problem for both semi-analytical and TLM solutions. This chapter briefly
introduces the mathematical derivations, while a detailed derivation will be given in Appendix A
for readers interested in semi-analytical solutions.

{3.2} Solve eigen-value problems for three different loading frequencies for the elastic layer with zero
and non-zero attenuation.

{3.3} Compare the eigenvalues (roots) and eigenvectors (mode shapes) of the discrete and continuous
solutions.

{3.4} Check the orthogonality of eigenvectors from two different approaches.

19
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3.1 Formulation of eigenvalue problems

3.1.1 Continuous solution

We start with the Helmholtz equations for the Rayleigh (PSV) waves in the single elastic layer:

V2, + ki s =0, (3.1)
V2, — % + k2, = 0. 3.2)

where ¢(7, z) and (7, z) represent the potential field for P and S waves, and tildes over them denote
the complex amplitude in the frequency domain. Additionally, k; and k; are the P-wavenumber and
S-wavenumber, respectively, with the following expressions:

kL :(U/CL, kT :w/CT. (33)

in which ¢; and ¢ denote the speeds of the compressional and shear waves in the elastic waveguide,
respectively. In addition, a set of boundary conditions for the system in Figure @ must be satisfied:

0,,(r,0,w)=0 0,.(r,0,w)=0 (3.4)
izs,z(r’Zl’w) =0 izs,r(r’Zl’(‘)) =0 (3.5)

The general solutions of Equation (@) and @)are given as below:

¢ (1,2,0) = 5S(z,w)H(§2)(k,r) = [Al exp (iy z) + Ay exp (—iy 2) ]Héz)(krr) (3.6)
v (r,z,w) = ‘T’S(z,w)Hl(z)(krr) = [A3 exp (iypz) + Ayexp (—iyrz) ]Hl(z)(k,r), (3.7)

where @ (z,w) and ¥ (z, w) are normal modes that are related to P and S waves. Besides, y; and y; are
vertical wavenumbers with the following expressions:

YL =\ w?/c? - k? yr =\ w?/cE— k2. (3.8)
Rewrite the normal modes as below to maintain numerical stability:

D (z,w) = A, exp [-iyL(z—2Z)) ]+ Ayexp (iyr2), (3.9)
¥ (z,0) = Azexp [—iyr(z—2Z)) | + Asexp (iyr2), (3.10)

The displacement of soil particles i , and 7 , are given as below based on Equation ():

g, = Hl(z)(krr) [—kr(Al exp (iyL (Z, - z)) + A, exp (iyLz))
(3.11)

vive[Asexp (ivr (- 2)) - Asexp (ira2) |

fy . = Hy (k,r) [k, (Asexp(i7e (2= 2)) + Appexpiyr2)
(3.12)

#in (- A explin (22 - 2]+ A zexp (-ini2)
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The following formulae give the stress fields:

Gy.z = HP (k1)

24 krYTi( — A, €xp (iYT (Z,-2) ) + A, exp (iyrz) )
(3.13)

- (As kf + Z,Usz) (Al,l exp (iYL (Z, - Z)) + Ay pexp (iyL2) ) .

Ogzr = H(Z)(k I) s ( k?)(AZ,l exp (iYT (z _Zl)) + Az, eXP(_iYTZ))

(3.14)

+(ik,yL) (Al,l exp (iYL (z—-2,) ) + A, exp (iYLZ)) .

The substitution of all fields into the boundary conditions gives the coefficient matrix M as shown in
Equation (@). therefore gives the dispersion relation

detM = 0. (3.15)

The roots of dispersion relations in the complex k, plane give all eigenvalues k,. Based on these roots,
the eigenvectors ®(z) and ¥ (z) will be computed by imposing an inhomogeneous displacement at the
bottom boundary.

3.1.2 Discrete solution

Briefly, the generalized discrete eigenvalue problem of P-SV modes in the elastic waveguide is given in
the following form using TLM [12]:

(prp — [ 0
rp (bzp 0

where here ¢,,, ¢, are modal dlsplacements at interfaces of thin layers in the radial and vertical di-

2
k A+C [ k (3.16)

rections. A and C have the following form:

— | A 0 — | G, —w’M B
= r : =" r "~ (3.17)
B,, A, 0 G, -w°M,
Define the left eigenvector Y and right eigenvector Z as below:
— (DrKr — (I)r
Y= @, ] ) Z= ®_K, l . (3.18)

where K, = diag{k,; k,, ---} is the diagonal matrix computed from sorted eigen wavenumber k,,,
associated with P-SV modes. Furthermore, @, and ®, are modal matrices with the following form:

D, = [ b1 b o ]’ o, = [ b b ] (3.19)
Then we have the following eigenvalue problem based on Y and Z:
Y'AK2 +Y'CZ =0 (3.20)

Therefore, Y and Z are supposed to have the following orthogonality relations, which have been proved
by Waas and Kausel [12]:

Y'Az=K, Y'cz=-K} (3.21)

The eigenvalues k,, and unnormalized eigenvectors are directly given by solving the eigenvalue prob-
lem shown in Equatlon (-) which can be solved easily using the inbuilt function np.linalg.eigin
Python. Returned eigenvectors will be normalized by the orthogonality relation Y'AZ = K,. Besides,

the roots with positive imaginary part will be discarded to select the mode that decays in the range [12].
Implementations of all steps mentioned here have been done in the programming language Python. A
detailed explanation of the Thin layer method can be found in [19].
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3.2 Numerical results and discussions

In this section, the continuous and discrete modal solutions of a linear isotropic elastic layer will be
compared, including their (1) eigenvalues, (2) eigenvectors, and (3) orthogonality. For completeness, we
will show modal solutions for f = 50 Hz, f = 200 Hz, and f = 500 Hz. Additionally, different attenuation
rates a, in the continuous solution, which correspond to material damping ¢, in the discrete solution,
will be considered.

Table 3.2. Fixed parameters of the Thin-layer method used in Chapter 3

Number of thin layers [N 1000 -
Layer thickness hy 0.01 m

Table 3.3. Attenuation rates and frequencies used in six cases in Chapter 3

Groups | Attenuationrate | Frequency
Groupl.l (@ 0 dB/A f 50 Hz
Groupl.2 |a@y 1 dB/A f 50 Hz
Group2.1|ag 0 dB/A f 200 Hz
Group2.2|ay 1 dB/A f 200 Hz
Group3.l |@gs 0 dB/A f 500 Hz
Group3.2|as 1 dB/A f 500 Hz

3.2.1 Parameter setup

Inaddition to the parameters displayed in Table @, the fixed parameters used in the thin-layered method
are shown in Table EZ! However, the attenuation rates of elastic media in TLMs and the semi-analytical
solution are defined in slightly different ways. Here we will briefly introduce a consistent way of defining
them.

In the semi-analytical solution, the attenuation is defined in terms of the wave speed. Let us use ¢ as
an example:

_ Re(¢;)
C1-in
where the attenuation coefficient ) = a, /(407 loge), and a, represents the attenuation rate of the elastic

layerindB/A. However, the elastic damping ratio ¢, in the TLM is incorporated through complex-valued
Lamé constants [19]:

o (3.22)

Ad = /15(1 +2i€ssgn(w)) and u; = ps(l +2i€ssgn(w)). (3.23)

They are used to calculate the complex-valued wave speeds using Equation (); therefore, we can
match a, and ¢, based on wave speeds. The calculation of complex-valued wave speeds in semi-analytical
solutions is introduced in the first section of Appendix A for interested readers. Here we directly provide
the mapping between ¢, and a:

1-(1- ai/(407mloge))’
= ( o1/ & )2 ‘ (3.24)
2i(1 - a,i/ (407 loge))
Note that in this chapter, we assume identical attenuation rates for both P and S waves:
ar = o, = . (3.25)

Finally, six cases have been designed based on different frequencies and attenuation levels, as presented

in Table @
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Figure 3.2. Zero contour plots of real and imaginary parts of Equation () and roots when a; = 1dB/A
and f = 800Hz.

3.2.2 Eigenvalues

The algorithm is designed to locate the roots of the dispersion relation given in Equation ). The un-
derlying principles of the algorithm, as applied to both elastic and acousto-elastic layers, are discussed
in detail in [20]. Briefly, the algorithm proceeds according to the following steps:

{1} Counting: Based on the principle of the argument, first count the total number of roots of the
dispersion relation for given regions.

{2} Subdivision: Subdivide the region into smaller regions with a limited number of roots based on
the principle of the argument method.

{31 Polishing: Refine the location of roots by minimizing the modulus of det M for each subdivision.

The roots and zero-contour plots of Equation (), computed by the root-finder for f = 800 Hz with
ag = 1, are shown in Figure @ The plots indicate that all roots located at the intersections of the real
(blue line) and imaginary parts (red line) of the dispersion relation have been successfully identified.
This demonstrates the effectiveness of the root-finder.

Figure @ presents six subfigures comparing the roots obtained from the semi-analytical and TLM eigen-
value problems, corresponding to all cases defined in Table @.The following observations can be no-
ticed:

1. When the medium is lossless (@, = 0), the roots are symmetrically distributed in the third and
fourth quadrant. However, this symmetry is violated in the presence of attenuation («, > 0). For
all cases, the roots move from an evanescent region near the imaginary axis to the real axis with
increasing frequency, reflecting that more modes become propagative at higher frequencies.

2. Theroots of the continuous and discrete solutions match closely at 50 and 200 Hz. At500 Hz, small
deviations appear, mainly due to the discrete solution having a finite number of modes set by the
system matrix size, whereas the continuous formulation admits infinitely many modes. Increas-
ing the number of thin layers in the TLM could reduce this gap but at a higher computational cost.
Overall, both approaches agree well on the number and location of roots in the complex plane.



24

3. Modal Solutions of an Elastic Waveguide

@) f =50 Hz, ag = 0dB/A

- =
0.0 B ®
®
8 ¥ ow
_ ® ]
_ ® B
2.5 ] E
8 o°
2 B g
5 & g
—5.0 & %
© @
= ]
-4 =
& )
=75

(b) f =50 Hz, &g = 1dB/A

0.0 = T a1 ™
-8
=3
@ ® &
9E [ B
— 1= B
i S
EE B
@ 1
e 2 ]
—5.0 ﬁ?ﬁ ?%
& %
g B
-751 §

—12.5
~15.0 o TIM
x  Semi-analytical
L} k
—175 -
A kr
—0.5 0.0 0.5 1.0 1.5 2.0 2.5
Re(k,)
() f = 200 Hz, a; = 0dB/A
074 R T EEE
B ®
) .
= 02 Roots near kp,
—4 o 00 ® ® 28 =2 EEE
g 02
GE = 325 350 375 400 425
E “s” 02 Roots near kp
= .
E 78& B 0.0 = B B R R ERR R
= ]
R 0TTOR o ww 102
—10f ®
b = o TLM
& @ .. .
_121 & x Semi-analytical
® - ki,
1
“up s Lok
B
0 2 4 6 8 10
Re(k,)
(e) f =500 Hz, ag =0dB/A
0 & &8 =
—9 02 Roots near &y,
0.0 BR B8R R BR KR EHE
. 02T W w1080
- 'k . Roots near kr
<5 0.2
E 008 B 8 B 8 B 8 & B3R
=
—6f XM B B BB %0
o TLM
_3 x  Semi-analytical
E " ki,
® 4 kT
0 5 10 5 20 25

Figure 3.3. Comparison of eigenvalues from the discrete and continuous solutions for all groups listed in Table @

—125
~15.0 o TLM
g x  Semi-analytical
- LI
—17.5 g
A kr
—0.5 0.0 0.5 1.0 1.5 2.0 2.5
Re(k,)
) f =200 Hz, o, = 1dB/A
0 @ Eﬂgﬂxg%gﬁﬁﬂﬁxﬁmﬂﬂxﬁﬂm
@ &
20 % &
]
- Roots near ki,
1]
4o 4 0.0
[:] @B
@ g Lopfw % T ®F
1]
8 B 325 350 375 400 425
—61m 4
- 2 Roots near kr
<5 B 0.0
= s 2
= 8@ = —02] ® @ & @ @ @ O &G
—_— Lz B
1]
B 8
B 950 975 1000 1025
= ]
—108 &
B ® =
E s o TLM
= .. .
DY x  Semi-analytical
B © .
B 2 L] k]_
B
® A ke
—14¢ =
B
0 2 4 6 8 10
Re(k,)
(® f =500Hz, @y =1dB/A
0 -
g @&
PGk
5] =%
@&
_9 s, Roots near &y,
] &
—0.2 PR @ & Q{[X@(Qﬂﬂw
s ¥ 075 1000 1025 1050
-4
N Roots near kg
<5 e
= [} 0.4
= B o X X X O OX O KOXCKOCO0OHIK
=
~06
—6F 4 B0 2525 2550 25705 26.00
B
s o TLM
x  Semi-analytical
-8
3 .k
A kr
]
5 10 5 20 25




3. Modal Solutions of an Elastic Waveguide 25

3.2.3 Eigenvectors

Eigenvectors from discrete and continuous eigenvalue problems are normalized based on orthogonality.
In the thin-layer method, the left and right eigenvectors are normalized using the relation Y AZ = K.
The normalization of the semi-analytical solution follows the orthogonality relation (). This section
compares different types of modes at 50 Hz and 500 Hz; additional results are provided in Appendix C.

SV wave type modes

Normalized SV wave type modes from both approaches , with k, close to ky, will be compared in the six
subfigures of Figure B.4, modes from two methods are consistent.
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Figure 3.4. Comparison of selected normalized SV-wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, ag, = 1dB/A, (b) f =
500Hz, a, = 1dB/A.
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P wave type modes

In the next stage, normalized modes with k, close to k; will be compared. As shown in the following
six subfigures, the modal shapes from both approaches agree well. Furthermore, these modes exhibit
strong vertical oscillations, suggesting their energy propagates vertically.
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Figure 3.5. Comparison of selected normalized P-wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, ag = 1dB/A, (b) f =
500Hz, a, = 1dB/A.
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Evanescent modes

Finally, we compared normalized modes with radial wavenumbers k, that have large imaginary parts,
resulting in rapid decay in the radial direction. Nevertheless, the spectrum of such evanescent modes is
essential foraccurately capturing near-field wave propagation and structure—soil-fluid interaction [@] .
The six subfigures in Figure @ show that the evanescent modes obtained from the two approaches are
in close agreement.
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Figure 3.6. Comparison of selected normalized Evanescent wave type modes obtained from semi-analytical
(black-continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, a; = 1dB/A, (f)
f =500Hz, ag = 1dB/A.
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3.2.4 Orthogonality

Figures @ and @ show the orthogonality conditions of normalized eigenvectors for the elastic layer,
both with and without dissipation, using continuous and discrete solutions. In each set of six subfig-
ures, the left column displays the values [T, | for the first three hundred normalized modes from the
continuous solution, whereas the right column presents log, |T | for the first five hundred modes ob-
tained from the discrete solution. The vertical axis corresponds to mode number p, and the horizontal
axis to mode number ¢. In all cases, the off-diagonal terms are zero, indicating that the modes are
orthogonal.

3.3 Summary

In this chapter, the continuous and discrete modal solutions of the elastic waveguide shown in Figure @
have been compared. The primary conclusions are summarized as follows:

1. The eigenvalues obtained from the discrete and continuous solutions are consistent across various
combinations of frequency f and attenuation rate «.

2. Different types of normalized eigenvectors—namely, P-wave type, SV -wave type, and evanescent
modes—computed from the two methods agree well.

3. The modal orthogonality relations derived from both approaches remain valid for different com-
binations of frequency f and attenuation rate «.
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(@) f = 50 Hz, continuous solution (b) f = 50 Hz, discrete solution
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Modal Solution of an Acoustic Domain with
PML via Semi-analytical Method

—> T
Acoustic domain Hgy,
Pe Ct
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Bo, Mpmr, i
z=2,

Figure 4.1. Schematic of a single acoustic layer with PML.

Table 4.1. Basic parameters used for numerical examples in Chapter 4

Acoustic layer thickness | Hgy, 20 m
PML layer thickness Hppr 20 m
Medium Wave Speed | ¢¢ 1500 m/s
Fluid Density O¢ 1000 kg/m®
Attenuation coefficient | B, 5 -

This chapter presents the study of the semi-analytical modal solution of an acoustic waveguide with a
PML. As shown in Figure @, the single acoustic layer has a thickness of H; and is extended with a PML
with a thickness of Hpyyy . The fluid density p; and medium wave speed ¢; remain constant across both
layers. Furthermore, the PML layer requires two specific parameters: the attenuation coefficient , and
the polynomial order of the attenuation function mp), . These parameters remain constant across all
numerical examples in this chapter, as detailed in Table @ The methodology of this chapter are:

{4.1} Formulate the dispersion relation for the semi-analytical solution.

{4.2} Identify the roots for two different frequencies for the acoustic layer with one PML, using three
different polynomial complex stretching functions.

{4.3} Check the orthogonality of eigenmodes for different cases and investigate the effects of mpy, on
the cross-orthogonality of modes.

{4.4} Check the dispersion characteristics of Bérenger modes.

31
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4.1 Formulation of the eigenvalue problem

Complex-stretched coordinate
Follow the notation in [4, 13], the complex-stretched coordinate Z is given as:

z ¥4

5 _ / r_ _i ’ 1
z—/e(z,w)dz =z wb[ﬁ(z)dz. 4.1

0

where ¢(z', w) denotes the complex-valued stretching function [13] and f(z) is defined as follows

0 0sz=27,
p(z) =

z— Hpgy, ) mpMmL (4.2)

ﬁow(mPML + 1)( Zy<z=2,.

H PML

with the amplitude B, w (mpyy, + 1) chosen to normalize the magnitude of the complex-stretched coor-
dinate Z for different values of mipy; and w.

The imaginary part of Z, which governs the exponential decay of waves in the PML, is

0 0<z<27,

Im(z) = Z — Hpp ympmL+1 (4.3)

BoH, HL Z\<z<7,.

0 PML( Hout ) 1 2

An equivalent compact form, also used in [19], is
B ) z—H. mpyL+1
z=z-iH(z - HFL)ﬁOHPML( H. FL) (4.4)
PML

where H(-) indicates the Heaviside function.

As illustrated in Figure , while the complex coordinates have consistent boundary values z(Z,) = Z,;
and z(Z,) = Z, — ByHpy i for all values of mpyy , their smoothness at Z; is governed by the parameter
Mpy: When mipy = 0, the profile exhibits a violation of C! continuity at z = Z;. Conversely, higher
polynomial orders (mpy; > 0) ensure C' continuity across the interface.

0

—201
& 40/
™
= —601
E — mpyL = 0

—801 mpyL = 1

— mpy = 2 PML domain
—1001 | | | | | | |
0 15} 10 15 20 25 30 35 40

Re(2) (m)

Figure 4.2. Comparison of Z for different mpy, = 0 (blue-continuous line), mpyy. = 1 (orange-continuous line),
mpypy, = 2 (red-continuous line).
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Equation of motions

In an axisymmetric cylindrical coordinate system with complex stretching in Z only, the Helmholtz equation
is given as:

2
V' gi(r,2)+ = h(r,2) =0, (4.5)
f

where ¢(r,z) is the velocity potential in the frequency domain of the acoustic layer. The complex-
stretched Laplacian V* shows differences in two different layers:
—2 ar(rar)/r+azzy 0=sz=<27,

vV = (4.6)
0.(rd.)/r+0,[0,/e(2)]/e(=2), Z,<z<2Z,.

wheree(z) =1 - %ﬁ(z).

General solutions

Using Separation of variables, the general solutions of Equation (@) are given as:

0<z<Z 4.7)

Bua(1,2) = H? ()| s exp (132 = 22)) + Asexp (-i732)
(E_z(r,z) = Héz)(k,r) [A3 exp (iyf(z _Zz)) + A exp (—iyf(z —Z_l))] Z,<z<Z, 4.8)

where y; = \/w?/c? — k represents the wavenumber of the scalar potential ¢ in z direction and A, A,
are unknown constants to be computed.

For the i-th mode (i = 1,2), the vector velocity field ¥; and scalar pressure field py; are given by
iv,i :v(’z;f,i(r’zyw)r (49)
Pri = —lwpedy(r,2,0), (4.10)

whereV; = 7, ; e, + U, ; e, has components in the r- and z-directions.

Boundary and interface conditions

Except for the radiation condition at r — oo satisfied automatically via the general solutions, the fol-
lowing boundary and interface conditions:

Pe1(r,0,0) =0 Dr2(r,Zy0) =0 (4.11)
Pia (1, 2y, 0) = Pro(r, 2, 0) U,.(r,.Z,0) =0,,(r,Z,,0) 4.12)

Substituting the assumed general solutions into the equations above leads to the eigenvalue problem
MA = 0. The detailed form of M is given in Equation () in Appendix A for interested readers.

Dispersion relation

Setting detM = 0 gives the following dispersion relation:

2y;|1+exp (2yf((i+ ,BO)HPML+iZl)) =0 (4.13)

Equation () suggests that the dispersion relation of one acoustic layer with one PMLlayer depends on
Z,, ki, By, and Hpyyp - In other words, the eigenvalues should be consistent for different values of mpyy,
in this scenario.
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Table 4.2. PML polynomial order and frequencies used in Chapter 4

Groups PML Order | Frequency
Groupl.l |mpyy O —|f 50 Hz
Groupl.2 |mpyy 1 —|f 50 Hz
Groupl.3 |mpyp 2 —|f 50 Hz
Group 2.1 |mpyy O —|f 200 Hz
Group2.2|mpy, 1 —|f 200 Hz
Group2.3 |mpyy 2 —|f 200 Hz

4.2 Numerical results and discussions

Six numerical cases have been considered in this chapter, as indicated in Table . These cases combine
two frequencies with three PML polynomial orders:

1. f =50Hz: mPML = 0, 1,2
2. f = 200Hz: mPML = 0, 1,2

4.2.1 Eigenvalues

Using the root-finding algorithm described previously, the roots of Equation ) have been deter-
mined for all cases listed in Table @ Figure B shows the visualization of | det(M)| in the complex k,
plane for f = 50 Hz, herelog,, | det(M)| is shown here for a better visualization. This surface plot clearly
demonstrates the positions of the poles of Equation ), which appear as minima of the surface in the
complex k, plane.
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Figure 4.3. 3D visualizations of det(k, ) for f = 50Hz
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Figure 4.4. Zero contour plots of real and imaginary parts of Equation () for f = 50Hz

Figure @ and B show that all complex roots were distributed along one hyperbolic branch, as suggested
by [9] for the finite PML layer.

4.2.2 Orthogonality between Eigenvectors and Conjugate Eigenvectors

The cross-orthogonality of modes and their conjugate eigenvectors has already been proved in [26] for
the Pekeris Waveguide with one PML, the method has been modified in this thesis for the single acoustic
layer with one PML layer:

Z
Ly =Ty0,, = f@-cpf,qdz 4.14)
0

where ¢, is the p—th conjugate eigenvector and k,,, are its related eigenvalue; ¢ , is the g—th eigen-
vector and k, , are its related eigenvalue. Moreover, ¢y, satisfies the following adjoint equation of (#.3):

d* @1 2 g2} _

S (k2 = k2 Jrp =0 0<z<Z 4.15)
d 1 d (Pf,p,z ) 2 2 (pf,p,2
—_———— +|kf—ki]—— =0 Z1<z<Z 4.16
dz(s(z) dz(s(z) ) ( f r) e(z) 12854 (4.16)

Therefore, the general solutions of Equation () is given as:
@rpa(2) = Ay expliyi(z — Z;)] + Ay exp(—iy4z) 0=sz=27, (4.17)
e(z) Zi<z<7, (4.18)

Prp2(2) = |Azexp [in (2 _Zz)] + A exp [_in (Z _Zl)]

¥ p,2(2)/ €(2) satisfy the same boundary conditions of ¢ ,. The detailed derivation of these equations
will not be expanded here for the sake of brevity, but it is provided in Appendix A for interested readers.
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4.2.3 Eigenvectors

The eigenvectors are determined by considering a slight inhomogeneous boundary velocity at the bot-
tom of the PML domain, then normalized so that [T, ,| = 1. Figure E compares the normalized modes
for different PML polynomial orders mipyy ; each subfigure is associated with one frequency in Table @
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Figure 4.5. Comparison of different modes for three different values of mpy, for (2) f = 50 Hz, (b) f = 200 Hz.
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The following observations are made:

(1) These eigenvectors exhibit some anomalous behavior. Figure B suggests all modes exhibit an exponential-
like profile, remaining nearly flat in the regular region and rising sharply when approaching the PML.
The modal amplitude is closely associated with the energy characteristics of the mode. Therefore, the
modal energy exhibits the same characteristic behaviour. Theoretically, the energy of these modes should
propagate with a nearly horizontal angle because Re(k,) > Im(k,). However, the energy of eigen-
vectors in Figure @ is suddenly amplified near the interface between the acoustic and PML domains,
which is quite anamalous compared to physical modes. These modes are so-called nonphysical pseudo-
numerical modes in the existing literature[4, 9, 17].

(2) The C* continuity (continuity of slope) is violated at z = Z,, if mpyy, = 0 is used. Briefly, this discontinuity
of Im(e) will induce a discontinuity in the derivative operator, which finally results in a discontinuity
of the slope of the modal solution at Z = Z,. When my,,; = 0 is assumed, a discontinuous complex
stretch function Im(e(z)) will be generated, as depicted in Figure B The slope of the mode at the right
interface z = Z; is complex stretched as follows in the PML domain:

_ 1 déoy
bt o s ) :f;’z » (4.19)
Whereas, this slope is as follows at z = Z; (left interface in the regular domain):
i, . d;/)? i (4.20)
When mpyy, = 0, as seen in the blue line in the Figure @:
Im(e(Z]))<0—e(Z)#1 (4.21)

Therefore, a discontinuous slope of the potential field ¢y is found at z = Z; from Equations () and ():

e(Z{)#1 - ¢f,

* Pf, 4.22)
- Z

Z

The physical meaning of the first-order derivative of the potential field corresponds to the velocity field.
In other words, violation of the C' continuity condition represents a discontinuity in the velocity field at
the regular-PML domain interface. For this reason, a piecewise-linear complex-stretching function is
not recommended, as it would introduce artificial velocity discontinuities that are physically unrealistic.
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Figure 4.6. Comparison of £(z) for different mpyy;, = 0 (blue-continuousline), mpyy, = 1 (orange-continuous line),
mpypr, = 2 (red-continuous line).
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4.2.4 Modal Orthogonality

This section investigates characteristics of modal orthogonality between modes and their conjugate
eigenvectors under the context of the perfectly matched layer (PML) of acoustic layers. Briefly, the re-
sults and discussions reflect the following three aspects on orthogonality:

1. the influence of polynomial orders mpyy ;
2. the impact of the size of the integration step dz;

3. the influence of different integration schemes.

Orthogonality for different values of mpy.

IT' 4| was computed using Equation (). Furthermore, the in-built numerical integration function
np.trapz was used and dz is 1 x 107> m. The six subfigures in Figure @ indicate the [T, | for the first
thirty modes that correspond to different values of mpyy, and f. For two different considered frequen-
cies (50 Hz and 200 Hz), the following observations are made:

1. When the value of polynomial order mpyy is increased from 0 to 1 or 2, the values of off-diagonal
elements are reduced, indicating a better cross-orthogonality.

2. However, when mpy;, is equal to 2, some diagonal elements [T, ,|, are found to be larger than 1.

The cause of the first observation is given below: Following a derivation on the cross-orthogonality be-
tween eigenvectors and their conjugate eigenvectors of an acoustic layer with one PML with a fixed bot-
tom boundary in Appendix A, the boundary terms that are produced during the integration by parts
read:

P (20|41 (21) — 0, Z)] + 9a(2) (4.23)

]

z=7,

|

z=7Z;

where ; represents the mode and @; represents its conjugate eigenvectors. The elimination of boundary
terms is seen as a necessary condition for deriving the final conjugate eigenvectors, which are subject to
the following condition:

C! continuity of pe(z) and (@(z)/s(z)) atz =27,

which is not valid at mpy;, = 0 form the mathematical derivation and numerical results in Figure @
Therefore, these remaining boundary terms may lead to the failure of deriving conjugate eigenvectors,
which finally violates the orthogonality relations between eigenvectors and their conjugate eigenvectors

in Equation ().

Furthermore, the continuity of the complex stretching function ¢ and its derivative ¢’ are required to
eliminate all boundary terms, which have been derived in Appendix A. Therefore, from mathematical
derivation, it is suggested to use mpyy; = 2 to maintain the C° and C! continuity of the complex stretch-
ing function.

However, the reason behind the second observation requires further investigation in future work. The
values of [T, | for a higher polynomial order, namely mpyy;, = 3, were also computed, and similar con-
clusions were obtained as for the case of mpy; = 2. As increasing mpyy results in a higher-order poly-
nomial £(z) in the evaluation of |, | via Equation (), it is possible that np . trapz may not provide
sufficiently accurate numerical integration. This limitation arises because the trapezoidal rule is only
first-order accurate, and its performance deteriorates when the integrand exhibits strong variations or
oscillations, as is the case for higher-order £(z). Therefore, more advanced quadrature schemes may be
required for mpyy, > 1, which warrants systematic investigation in future work.
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Figure 4.7. Orthogonality heatmaps of modes and its conjugate eigenvectors for different PML polynomial orders
mpyr, of complex-stretch functions at f = 50 Hz: (2) mpyy, = 0, (b) mpyy, = 1, (€) mpyy, = 2.



40 4. Modal Solution of an Acoustic Domain with PML via Semi-analytical Method

Orthogonality for different values of dz

In this section, the influence of the size of integration steps is discussed. mpyy, = 1 will be assumed for
this case, and three values of dz have been considered: (i) dz = 1 x 10~ m, (ii) dz = 1 x 10™* m and (iii)
dz=1x10""m.

The value of |T',,| are shown in Figure @ for f = 200 Hz. It can be observed from the following six
figures that finer integration steps will reduce the magnitude of the oft-diagonal element with large
values of p and g, reflecting a better cross-orthogonality between modes and their conjugate eigenvec-
tors for these high-order modesl. This behavior can be explained by the exponential nature of higher-order
modes. Modes with larger imaginary parts exhibit more pronounced exponential decay, causing their
modal amplitudes to change rapidly near the peak values of the eigenvectors (see Figure E). Conse-
quently, more integration steps are necessary to accurately capture these steep variations and maintain
an accurate calculation of the cross-orthogonality.

(@dz=1x10"3m (b)dz=1x10"*m (©dz=1%x10"%m
2.5 1.0 1.0
25 < or
2.0 0.8 0.8
20 p
= 1.5 o 0.6__ 0.6
<15 g < B g =
s =) = = =)
= 10 1.0 = 0.4 0.4
5 0.5 £ 0.2 ki 0.2
0
0 5 10 15 20 0 5 10 15 20 25 0 5 10 15 20 25

mode p mode p

mode p

Figure 4.8. Orthogonality heatmaps of the first thirty modes and their conjugate eigenvectors for different size
of integration step dz of complex-stretch functions at f = 200 Hz: (a) dz = 1 x 10%8m,(b)dz=1x10"*m, (¢)
dz=1x10"m.
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Figure 4.9. Comparison of mode 20 and 30 at f = 200 Hz: higher-order modes (red-continuous line), lower-order
modes (black-continuous line)

'Here higher order modes represent the modes with larger Re(k, ) and Im(k,) in Figure B
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4.2.5 Modal Dispersion Characteristics

Figure presents the first thirteen dispersion curves for the single fluid layer with one PML, as de-
fined in Figure @, obtained from the complex-valued eigenvalues computed by the numerical root-
finding algorithm for f ranging from 0 to 30 Hz. The left column shows the imaginary part, and the left
column shows the real part. The complex-valued roots are found numerically via the root-finder; some
points are missing; however, the main dispersion branches are clearly captured and sufficient for the
present discussion. In addition, Figure #.1] shows the group and phase velocities of the top 10 modes,
ranked by Re(k,) at the terminal frequency, computed using Equation (). As can be observed from

Figures and :

1. The dispersion curves exhibit large slopes, indicating that all modes experience high group veloc-
ities across the w range.

2. As shown in Figure (), with increasing frequency, the group velocity decreases, and phase ve-
locity increases. This finding is opposite to the profile of the group and phase velocity of the phys-
ical modes, which is indicated by Figure @ The phase velocity of all modes is smaller than the
group velocity, which follows the definition of anomalous dispersion given by Miklowitz in [14].
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= 1001 1
<
= | /
3 751 1
501 ]
251 |

0 T T T T T T T T T T T T
-0.12  -0.10 —-0.08 —0.06 —0.04 —0.02 0.00 0.05 0.10 0.1¢ 0.20 0.25 0.30 0.35
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Figure 4.10. Dispersion curves for one acoustic layer with one PML
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Figure 4.11. Group and phase velocity spectra of the top 10 modes ranked by Re(k,.) at the last frequency.
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4.3 Summary

This Chapter provides a study of the normal-mode solution of a single acoustic domain with a perfectly
matched layer (PML) in Figure @, via the semi-analytical method. In particular, the key conclusions are
summarized as follows:

1.

The roots of the dispersion relation Equation () were detected successfully by the root-finder
for two considered frequencies: 50 Hz and 200 Hz. First, they are located around a hyperbolic
line. Second, for a single acoustic layer with PML, the form dispersion relation is not dependent
on polynomial orders; therefore, the eigenvalues will not be subject to different choices of the
complex-stretch function in the semi-analytical solution.

. The spatial profile of modes that are considered here share some nonphysical characteristics. First,

they grow exponentially in the physical domain before being attenuated in the PML. Physically,
their energy starts to amplify inside the PML domain.

. The eigenvectors (modes) will differ between values of mpyy; . The mode will have a discontinuous

slope at the interface of the regular and PML domains, if mpyy = 0 is chosen. For this reason, a
linear attenuation function in the PML domain is not suggested, because the violation of C* conti-
nuity is equivalent to discontinuous velocity, which is not acceptable from a physical perspective.
For this reason, mpyy, > 0 will be assumed in the remaining cases.

. Using mypyy. = 0 violates orthogonality: it violates the slope continuity of the eigenvector at the

interface between the PML and physical domain. As a result, the boundary terms in Equation
() will not be eliminated when deriving the conjugate modes via the method in [26]. Finally,
the cross orthogonality of the mode and its conjugate eigenvector will be violated. Again, mpyy, >
0 is suggested for the application of complex stretch in the semi-analytical solution, because it
maintains the C! continuity of the eigenvector at z = Z;.

. For higher-order PML polynomials (mpyy, > 1), the use of np.trapz may lead to inaccuracies

in evaluating orthogonality integrals, since the trapezoidal rule is only first-order accurate and
becomes unreliable when the integrand exhibits strong variations. Mathematically, the orthogo-
nality is still valid, but the numerical integration may fail to capture it accurately. This limitation
suggests that more advanced quadrature schemes should be considered in future work.

. Bérenger modes exhibit anomalous dispersion. They display unrealistically high group velocities

across all frequencies, and, moreover, their group velocities exceed the corresponding phase ve-
locities, which is physically invalid.
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Figure 5.1. Schematic of a single elastic domain with one PML

Table 5.1. Basic parameters used for numerical examples in Chapter 5

This chapter compares the Thin-Layer method and a semi-analytical approach regarding their modal so-
lutions for a single elastic waveguide with a PML. Figure
a single elastic layer has a thickness of Hg; and is above a PML with a thickness of Hpy; . Besides, the

shows the statement of the problem, where

geometry dimensions, material properties, and PML parameters used in this chapter are displayed in
Table E]! Furthermore, they remain fixed across all numerical examples in this chapter. The methodol-
ogy of this chapter is briefly given as:

{5.1}
{5.2}

{5.3}
{5.4}

43

Formulate the eigenvalue problem via the semi-analytical method and TLM.

Identify the roots for two different loading frequencies of the system, using a quadratic complex-
stretched functions in the PML domain.

Check the orthogonality condition of eigenvectors of semi-analytical solutions.

Compare the eigenvalues and modes computed from TLM and semi-analytical method. The num-
ber of layers in the PML domain is treated as a variable for the Thin-layer method. The comparison
is performed for different numbers of layers.
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5.1 Formulation of the eigenvalue problem

5.1.1 Continuous solution

Following the same notations in Chapter 3, we will start from the Helmholtz equations in elastodynam-
ics, in the elastic domain:

V21 (1, 2;0) + k2 g1 (1, 2;0) =0 0<z<Z, (5.1)
_ v, (r,z;o _
Vzwsyl(r,z;w)—Lz)+k%1//s,1(r,z;w) =0, 0<z<Z, (5.2)
r

where the Laplacian operator V is:
V2 =1/rd,(rd,)e, + de,. (5.3)

The coordinate z is assumed to be stretched into a complex-valued Z in the PML domain using Equa-
tion (EII)

Z_HEL

3
Z_)Z:Z_iﬁOHPML( ) Zl <Z<Z2 (5.4)

H, PML

Correspondingly, the Helmholtz equations in the PML domain are:

V. Bes(r,250) + k2 By (1, 2 0) = 0 2, <z< 7, (5.5)

{/78,2(r! Z;(x))

ﬁztﬁs,z(r,z;w) - 2 + k2 ,(r,Z;0) = 0, Z,<z<Z,. (5.6)

V" is modified Laplacian operator with complex stretched z:
YV =1/r0,(rd,)e, +1/e(z2)-0,(0,/e(2))e,. (5.7)
The expressions of all potential fields in the elastic domain read:
(ﬂpvs,l = [A1 exp (iyy.z) + Ay exp (—iy;.2) ]Héz)(k,r) 0<z<Z (5.8)
Y1 = [A3 exp (iypz) + Ay exp (—iyrz) ]Hl(z)(k,r), 0<z<Z (5.9)
On the other hand, the potential fields in the PML domain are:
(’/;&2 = [A5 exp (iy.z) + Ag exp(—iyLZ)]Héz)(k,r), Z,<2<2Z, (5.10)
Yso = [A7 exp (iyrz) + Agexp (—iyrZz) ]Hl(z)(krr). Z,<2<Z, (5.11)

The general solutions here were modified, aimed at
1. avoiding the overflows of the exponential terms

2. a stable mapping for calculating the determinant of the matrix of coefficients, as suggested by
Jensen in [11]

o = |Azexp (—iy,2) + A exp (iyu(z - 2)) [HE (k, 7), 0<z<Z (5.12)
Tan = | Asexp (=iyr2) + Az exp (iye(z - 20) | B (k, 1), 0<z<2 (5.13)
(E,z = [A6exp (—i)/L(Z —21)) + As exp (i)/L(Z —Zz)) ]Héz)(krr), 21 <zZ< 22 (5.14)

Vo = [A8 exp (—in(z —Zl)) + A, exp (in(z —ZZ)) ]Hl(z)(k,r), Z,<z<Z, (.15
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The post-processed displacement field vector U, in the elastic layer is written as below:
i, = (0, — 0.1 )€, + (0.1 + 0,1 + T/ T)e. (5.16)
Incorporating the complex stretch, field vector Uy, in the PML s
i = (0,2 — 0.Ts2/e(2) e, + (0.6 2/€(2) + 0,0 + Wsal T ey (5.17)

The vertical stress fields 7, ; (i = 1,2) are:

~ | . ~ - |
5-zz,1 = /ls : (aig(ps,l + ;6r(ps,1) + (As + zlus) 6z(ps,l + 2,[18 : (6z6r1//s,1 + ;GZWS,I) . (5.18)

Gopp=A (a2~ Y )+(7L +2 )La 0:0s2 fop-| 2007, + Lo (5.19)
zz,2 — ‘'s r(ps,Z r r(ps,Z S :us E(Z) z E(Z) .us E(Z) z rWs,Z r st,z . .

The shear stress fields 7, ; (i = 1,2) are:

~ ~ ~ —~ 1. _ 1 _

Ozr1 = Mg (zaraz(l)s,l - azzws,l + 631//&1 + ;arWS,l - ﬁWs,l) (5-20)
- 1 ~ 1 0,V 1. 1 _

O-Zr’Z = uS (% . Zaraz(ps,z - %62 ( E(ZS)Z ) 6,2‘1//&2 + ;arws,z - ﬁwsvz) . (5.21)

For the system in Figure @, the following boundary conditions must be satisfied:

0,21(0,1,0)=0 G.r100,7,0) =0 (5.22)
U 0(Zy1,0) =0 fiy 2 (Zs 1, 0) =0 (5.23)
Us,1(Z;,r,0) = ils,z,z(zl’ r,w) Us,1(Zy,r,w) = asy,yz(z, rw) (5.24)
Oz1(Zy,1,0) = (~7zz,2(z1» r,w) Or1(Zy,1r,0) = (~7zr,2(z1) r,w) (5.25)

Therefore, a system of equations MA = 0 can be formed after substituting all fields into the boundary
conditions. The detailed form of M is provided in Section A.3 of Appendix A.

Let the determinant of the coefficient matrix M be zero, which gives the dispersion relation of this sce-
nario:

detM =0 (5.26)

The roots of Equation () in the complex k, plane give all eigenvalues k,. For any k,,,, its corre-
sponding eigenvector @), ;(z) and W), ;(z) will be computed by imposing an inhomogeneous interface
condition.

5.1.2 Discrete solution

Following the implementations introduced by Kausel and de Oliveira Barbosa, the layer thickness in the
PML should be modified after complex stretch (see Figure @) in Equation () when mpyy, = 2, which

1S:
_ 1 ¢\ (-1
hy=%,~%,_,=H i - , (5.27)
o {NPML Po [(NPML) (NPML] ]}

Due to the complex stretch in the PML, the elemental matrix for /—th layer in the PML domain should
be modified as:

— — h —
Ar=3°An Gr=7G, M= h—jAg, B, =B, (5.28)
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Finally, the generalized discrete eigenvalue problem of P-SV modes in the elastic waveguide after the
assembly of the matrix in each layer [12]:

2 A (brp _ 0
(k2,A+C) ko, | =] 0 (5.29)
As shown previously, they satisfy the following orthogonality relations [12]:
Y'AZ =K, Y'CzZ=-K3 (5.30)

The eigenvalues k,, and unnormalized eigenvectors are directly calculated bynp . 1inalg. eigin Python.
In the next stage, eigenvectors will be normalized by the orthogonality relation Y/ AZ = K,. Besides, the
roots with positive imaginary part will be excluded to select the mode that decays in the range direction
[12].

5.2 Numerical results and discussions

In this section, the continuous and discrete modal solutions of a linear isotropic elastic layer with one
PML will be compared, including their (1) eigenvalues, (2) eigenvectors, and (3) orthogonality. For com-
pleteness, we will consider modal solutions for f = 50Hz, f = 200 Hz. Additionally, different attenua-
tion rates a; in the semi-analytical solution, which correspond to material damping & in the Thin-layer
method, will be considered. In this section, the numerical results for Group 1.2 is provided and dis-
cussed, the results of remaining cases are provided in Appendix.

Table 5.2. Attenuation rates and frequencies used in six cases in Chapter 5

Groups | Attenuationrate | Frequency
Group 1.1 | ag 0 dB/A |f 50 Hz
Groupl.2 |as 1.5 dB/A |f 50 Hz
Group 2.1 | ag 0 dB/A |f 200 Hz
Group2.2|as 1.5 dB/A |f 200 Hz

There are 300 layers in the physical domain; therefore, the thickness of the thin layer in the regular do-
main is fixed to be 1/60 m. As mentioned, the comparison of continuous and discrete modal solutions
will be carried out for different values of h,

1. hy, = 0.25m. In other words, assume a PML with moderate thickness (See Figure ).
2. hy, = 0.01 m. Under this scenario, we have PML with minimal thickness (See Figure ).

— mpyL =2 PML domain

0 2 4 6 8 10
Re(z) (m)

Figure 5.2. Complex-stretched coordinate Z in Chapter 5.
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(a) Normal thin layer (b) Extremely thin layer
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1
z z

Figure 5.3. Schematics of discretizations in TLM with different h,: (2) 0.25 m, (b) 0.01m.

5.2.1 Eigenvalues

The comparison between eigenvalues for all cases listed in Table 5.2 will be presented. The eigenvalues
are compared first globally in the left column of the figures, followed by zoomed-in versions highlighting
the eigenvalues that agree perfectly with each other. The first row compares h, = 0.25 m, while the
second row presents the results for i, = 0.01 m. The following observations can be made:

1. For all cases considered here, a small subset of the TLM modes are perfectly consistent with the
semi-analytical solution. Beyond this subset, the eigenvalues of the TLM have large imaginary
part. In contrast, the semi-analytical eigenvalues are distributed around two hyperbolic curves
associated with P-wave and SV-wave type modes.

2. The overall comparison (left-column) and zoomed-in comparison (right column) both suggest that
decreasing h, brings the eigenvalues from two methods into closer agreement.

5.2.2 Eigenvectors

For eigenvalues in perfect agreement, their normalized eigenvectors are compared in Figure @ The
normalization for discrete and continuous solutions is based on Equation () and (), respectively.
However, it is subjected to the following modification in the PML domain due to the complex stretch of
dztodz = ¢(z)dz:

Zy _ _ ~ _
~ _ us,r,Z,q(z) ~ _ Us,zz,z,q(z)
rpq,z = 1—‘p,26pq = fE(Z)(CS kp us,r,Z,p(Z) k—q - ns'us,r,Z,p(Z)k—
Z ' i (5.31)
~ _ 6s,zr,2,q(2)
+us,z,2,p(z) k - |dz,
rq

where ¢, = p;- o ~(c? =2+ ¢})?| [ ? and 1, = (cE-2¢}) [ ¢t
The observations are made as follows:
1. The spatial profiles of modes obtained from the two approaches match each other exactly.

2. Modes demonstrate an exponentially increasing profile initially. As they reach the lower part
of the PML, their modal amplitude are attenuated, attributed to the relatively high value of the
quadratic attenuation function B(s) near the fixed boundary of the PML domain (z = Z,).
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(@) hy = 0.25 m, comparison of roots (b) hy = 0.25 m, zoomed-in comparison of roots
0 0.
T < Y ‘.. . . < Semi-analytical
_2 . . «  Semi-analytical LA N \, . . TLM
. = Ry 02 o ° L o | m
—50 a4 kr K s Ak
— 04
= i <
= 1 = o6
150 . . . ©
“ s esaee RAAAIITTEPPOR —08
175 \
- ) 5 10 15 20 25 30 35 40 -t 0 1 2 3 4 5
Re(k,) Re(k:)
(¢) iy = 0.01 m, comparison of roots (d) iy = 0.01 m, zoomed-in comparison of roots
0 " 0. .
IR AT — — 3 . « Scmi-analytical
% . s, . ' LTl . \. . TLM
¢ . - S .. c . ‘ —02 ‘. “ =k
—50 . L . . ‘. sk
P 04
S_‘/flﬂl) \’ij
= 1 = o6
150 . TLM
o Semianalytical | * %7 %000 ot enenanan 0y . e e 08
)| o ke R
N R
—00y 5 i) 15 20 25 30 5 ) —105 1 2 3 1
Re(k,) Re(k;)

Figure 5.4. Comparison of eigenvalues obtained via semi-analytical approach(red circles) and TLM (black crosses)
for f =50Hz, ay = 1.5dB/A: (a) and (b): hy = 0.25 m; (c) and (d): hy = 0.01 m.
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Figure 5.5. Comparison of eigenvectors obtained via semi-analytical approach (black-continuous line) and TLM
(red-dashed line), and grey domain indicates the PML for f = 50Hz, a, = 1.5dB/A
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5.2.3 Modal orthogonality

Figure @ demonstrates the value of |T',,, | of the first forty normalized modes computed from the semi-
analytical solution for f = 50 Hz and @, = 1.5dB/A. The vertical axis corresponds to mode number p,
and the horizontal axis to mode number g. In all cases, the off-diagonal terms are zero, indicating that
the modes are orthogonal.

On the other hand, the log,, [T, | at 50 Hz between modes obtained via TLM is displayed in Figure @
The figure in the left column represents results when h, = 0.25 m, where an acceptable orthogonality
can be found via zero off-diagonal elements; However, the orthogonality is violated if a i, = 0.0l m is
chosen, indicated by non-zero off diagonal elements in . From this point of view, small 4, in the
TLMs with PML should not be suggested due to the violated orthogonality. Modal orthogonality plots at
other frequencies are provided in Appendix D.

Figure 5.6. Orthogonality heatmap of first forty modes at f = 50 Hz and a = 1.5dB/A.

(@) ag =1.5dB/A, f =50Hz, hy =0.25m (b) ag = 1.5dB/A, f =50 Hz, hy = 0.01 m
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Figure 5.7. Orthogonality heatmaps of all modes obtained via TLM: left column: good orthogonality when h, =
0.25 m, right column: violated orthogonality when h, = 0.01 m.
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5.2.4 Dispersion characteristics

The forty-six selected curves in Figure @ illustrate the dispersion characteristics of the single elastic
layer with one PML (see Figure @) obtained via the semi-analytical solution, for frequencies ranging
from 0 to 50 Hz. The black curves represent the first twenty-one modes (ranked by ascending Re(k,))
near the k; branch, while the red curves represent the remaining twenty-five modes associated with the
ky branch. As can be observed:

1.

2.

Figure @ and E demonstrate that all modes experience high group velocities across all frequen-
cies.

As shown in Figure and : With increasing w, the decreasing group velocity. Furthermore,
the first two spectra (from left to right) of group velocities in Figure exhibit non-monotonic
variation in certain frequency intervals, and they touch each other. These findings are opposite to
the profile of the group and phase velocity of the physical modes, which is indicated by Figure @

. The phase velocities are lower than the group velocity, which follows the definition of anomalous

dispersion given by Miklowitz in [I4]. This also reveals the non-physical character of Bérenger
modes.

K Ny 7

—0.8 —0.6 —0.4 —0.2 0.0 ).0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Im(k,) (rad/m) Ro(kr) (1‘&(17111)

Figure 5.8. Dispersion curves of the first twenty-one Bérenger modes near the k; branch (black continuous lines)
and the first twenty-five modes (red continuous lines) near the ky branch (ranked by ascending Re(k;,)).
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Figure 5.9. Group and phase velocity spectra of the last twelve Bérenger modes near the k; branch (black lines)
and the last eigen Bérenger modes near the k; branch (red lines).
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5.3 Summary

This chapter compares the continuous and discrete modal solutions of the elastic waveguide with PML
shown in Figure @ The primary conclusions are summarized as follows:

1. Unlike the single elastic waveguide, the eigenvalues obtained from semi-analytical and TLM sug-
gest significant differences for the case with one perfectly matched layer. Overall, most of the
modes from TLM are evanescent with a big imaginary parts. However, the eigenvalues obtained
from the semi-analytical solution are distributed along a hyperbolic line in the complex k, plane
near the real axis. Two categories of solutions are convergent to each other if the h, is tiny.

2. The matched eigenvalues’ related modes are in excellent agreement. Furthermore, they share pre-
cisely the same characteristics regarding spatial profiles with the Bérenger modes of one acoustic
layer with one PML: An intensely exponential increasing before decreasing near the end of the PML
domain. Consequently, the central part of their non-zero parts is found inside the PML domain.

3. The modal orthogonality between the normalized Bérenger modes of the semi-analytical modes
is well observed, although a relatively small dz is still suggested to give accurate results.

4. For the TLM approach, the modes are acceptable when h, = 0.25 m is used. However, the orthog-
onality condition deteriorates if h, is reduced to h, = 0.01 m. Therefore, it is not suggested to use
too many layers in the TLM solition with PML for maintaining cross-orthogonality.

5. Forthesingle elasticlayer with PML, obtained Berenger modes via semi-analytical solution demon-
strate anomalous dispersion characteristics: (1) A large group velocity across all frequencies, and
the group velocity is always larger than the phase velocity. (2) The non-monotonic variation of the
group velocity spectras are found for two modes near the k; branch. These anomalous dispersion
characteristics imply the non-physical nature of the Bérenger modes, which are introduced by the
nonphysical perfectly matched layer.
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Figure 6.1. Schematic of an acousto-elastic layer with one PML.

Table 6.1. Basic parameters used for numerical examples in Chapter 6

Fluid layer thickness Hpy, 20 m
Elastic layer thickness | Hgp, 5 m
PML layer thickness Hpyp, 5 m
Fluid density Ps 1000 kg/m?3
Fluid Media Wave Speed | c¢ 1500 kg/m?3
Solid density Ps 1700 kg/m?3
Young’s modulus Eq 0.7 MPa
Poisson’s ratio v 0.4 —
Attenuation rate ag 1.5 dB/A
Attenuation coefficient | 5 —
PML order MpML 2 -

This chapter provides a semi-analytical modal solution for the system depicted in Figure @ As shown
in the figure, the physical domain consists of a coupled acousto-elastic layer, where the acoustic layer
has a height of Hy; and the elastic domain has a height of Hy; . This two-layered system is extended
with a PML having a height of Hpyy; . The PML is assumed to be an elastic layer with material properties
consistent with those of the elastic domain above it.

The eigenvalue problem is formulated analytically. Subsequently, the roots of the dispersion relation are
found numerically through a root-finding algorithm. The eigenvectors are then computed and normal-
ized based on orthogonality relations. Besides, the cross-orthogonality between the normalized modes
is examined. Finally, the dispersion characteristics of modes will be discussed.
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6.1 Formulation of eigenvalue problem

6.1.1 Acousticdomain

In an axisymmetric cylindrical coordinate system, the Helmholtz equation in the acoustic layer is given as:
2
2 W~
Vi, + ?(;bf,l =0 0<z<Z (6.1)
f

where the Laplacian operator V? is:
V2 =1/rd,(rd,)e, + de,. (6.2)

The general solution of this Equation (@) is given as:

G (1, 2,0) = H? (k1)

where yi(w) = \/w?/cf - k?.

Besides, the velocity and pressure fields are based on the potential field ¢ ;:

Ay exp (iyfz) + A, exp ( —iyi(z - ZO)) ] (6.3)

Pra(r,2,0) = 0, (6.4)

The velocity field is given as
‘71(7‘,Z,a)) = V(’)l;f,l (65)
V=20,e. +0,e,. (6.6)

6.1.2 Elasticdomain

The Helmholtz equations of the elastic domain read:

2
~ W ~
V2, + ?%,2 =0 Zy<z<Z. (6.7)
L
2 ~ 17//8,2 wz ~
\v} WS,2_7+?UIS,2:0’ ZO<Z<Z1. (6.8)
T

where the Laplacian operator V? is:
V2 =1/rd,(ro,) + 82. (6.9)

Again, the general solution of the Helmholtz equations in the elastic domain is given as:

(E,z(r, zZ,0) = HO(Z)(krr) Az exp (iyL(z —ZO)) + A, exp ( —iyL(z —Zl)) (6.10)

Wia(r,2,0) = HV (k1)

Agexp (in(z—ZO)) +A6exp(—in(z—Z1))] (6.11)

where y (w) = \/w?/c? — kZ and yr(w) = \/w?/c2 - kE.
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The post-processed displacement field vector Uy, in the elastic layer read:

iis,2 = (ar(ﬂ,z - 621’/75,2)er + (@‘E,Z + ari/‘]s,z + 170;'2/1’)92. (6~12)

The vertical stress field 7, , in the elastic domain is given as:

N 1.~ ~ SO
azz,2 = As ) (634’&2 + ;ar(pbs,z) + (As + 2:us) az(pbs,z + 2/Js : (azaru’s,Z + ;GZWS,Z) . (6'13)

The shear stress field 7, , in the elastic domain is given as:
_ IS DA I
Ozr2 = Hg 2araz(Ps,Z - az 1//s,2 + ar 1//s,2 + ;6r1/Is,2 - ﬁWs,Z (6.14)

6.1.3 PMLdomain

The Helmholtz equations in the PML domain reads:

—2 ~ wZ ~
V s+ ?(Ps,g =0 Z) <2< Z,. (6.15)
L
=2 __ 1?5,3 a)2 —
v Ta— =5 + 7 Vs =0, Z,<z<Z,. (6.16)
T

where the Laplacian operator vV is:
V' =1/r0,(rd,) +1/e(z) - 8.(8,/e(2)). 6.17)

Using quadratic polynomial attenuation function f(z) in the PML domain, the complex stretch function
£(z) reads

2
e(z) =1 —31/30(2_21) (6.18)

PML

Therefore, the general solutions of the Helmholtz equations in the PML domain are:

bys(r,2,0) = HP (k, 1)

A, exp (iyL(Z—Zl)) +A3exp(—iyL(2—Zz))] (6.19)

12’/5,3(7‘!2!(”) = Hél)(krr)

Agexp (i)/T(Z—Zl)) +Aloexp(—in(Z—Zz))] (6.20)

Where Z denotes the complex-stretched coordinate in the PML domain:

z—Hygg

3
Z=2z- iﬁOHPML( ) Zl <z< ZZ (6.21)

H, PML

Incorporating the complex stretch, field vector U 5 in the PML is

s = (0, By — 0. Ta/(2) e, + (0.ss/6(2) + 0,5 + Tas /7). (6.22)
Furthermore, the vertical stress field G, 5 is given as:
N 1.~ 1 [0, 1 1.
0223 = /ls : (afgbss + ;6r¢s,3) + (/15 + 2"‘5) : %62( ;(;)3) + 2/"5 . (@azarWS,S + ;OZWS,S) . (6.23)
Finally, the shear stress field 6, 5 is given as:
1 ~ 1 I RT7 . 1
O,r3 = M| ——=-20,0 -—0,[=2>16? -0 -— . 6.24
Uzr,S y’s (E(Z) T z(pbs,?) €(Z) z ( €(Z) ) rWs,B + r rWs,3 r?_ %,3) ( )
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6.1.4 Boundary and interface conditions

Modes of the system in Figure @ are supposed to satisfy the following boundary and interface condi-
tions:

Pia(r,0,0) =0, (6.25)
5zr,2(r,Z0,a)) =0, (6.26)
P (1,20, 0) = =0, 5(1, 2y, 0), U1 (1, Zy, 0) = iwug, ,(1,Zy, w), (6.27)
U, ,(r,Zy,0) = i,4(r,Z;,0), Uy o(r,Zy,0) = U, 5(r,Z,,0), (6.28)
Oz0(r, 2, 0) = 6zz,S(rrZI)w)r O (1,21, 0) = 6zr,3(rr21!w)r (6.29)
ﬁz,3(r,22,w) =0, ﬁ,lg(r,zz,w) =0. (6.30)

The substitution of all assumed general solutions into the ten boundary conditions will give the following
system of equations:

MA =0. (6.31)
Then the dispersion relation is given by setting the determinant of the M to zero:
detM = 0. (6.32)

The detailed form of the matrix M is provided in Section A.4 of Appendix A.

6.2 Numerical values and discussions

This section will consider f = 50 Hz, 100 Hz, and 150 Hz. The material properties of the considered
system are listed in Table EI!; they are fixed in the numerical examples.

6.2.1 Eigenvalues

The root-finding algorithm has successfully detected the roots of Equation (). We provide a zero-
contour plot of the real and imaginary part of det M as Figure EZI The figure suggests the roots of the
dispersion relations have been detected at f = 50Hz. Besides, the spectrum of the eigenvalues at the
three considered frequencies, the primary observations are made as follows:

1. Three types of modes can be identified. First, evanescent modes are found near the imaginary
axis. Second, propagative modes are observed near the real axis. FinBérengerrenger modes are
distributed along two hyperbolas.

2. With increasing frequency, the number of propagating modes increases. Furthermore, Bérenger
modes migrate along translated hyperbolic curves that pass through the enhanced values of k;
and ky, respectively.
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6.2.2 Modal orthogonality

The orthogonality for the acousto-elastic waveguide was given as Equation (3.25) in [21], which can be

modified to include the acoustic layer:

Vl T, ( )~
qu:rr)@pq:_f : Izrq Pi1(2)dz
Fluid layer
Z, ~
~ Us,r, (Z) Os,22 ( ) Os,zr ( )
+f(skpus,r,p(z)k—q+ns' srp( ) A szp( ) - dz
Zo rq ”P r‘i
Elasticlayer
Zy
sr() szz() szr()
+f(s srp() 1 +1s- srp() 1 szp() ¢
rq rp rq

PML

(6.33)

The difference between the second and third integration comes from the complex-stretch function €(z):

dz — dz =¢€(z)dz

The values of (IT 4 in Equation (6.33) are shown shown in Figure @, the horizontal axis is p and the
illustrates that the first 100 modes are orthogonal when f = 50 Hz

vertical axis represents g. Figure

(6.34)

by the zero off-diagonal elements. The orthogonality condition for the remaining two frequencies are

given in Appendix E.
0 o X ‘--.. 000y o
-.:/]\ '-.-.ﬁ A . ---.....
L
/—Q 4 ;
= :
=
— .
64
: «  Complexed roots
—81 i TR
s A ]CT
/ x  kr
—10 . " " " " " " "
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Re(k,)

Figure 6.4. Roots of Equation () at f = 50 Hz.



58 6. Modal Solution of one Acousto-elastic Domain with a PML via Semi-analytical method

—1.0

0.8

0.6

[T

0.4

0.2

0 20 40 60 80
mode p

Figure 6.5. Orthogonality of the first 100 modes of the acousto-elastic layer with one PML at f = 50 Hz.

6.2.3 Eigenvectors

All eigenvectors will be normalized such that |Fp » | = 1. The following figure shows the modal amplitude
of the pressure field and vertical displacement field for three modes. The result of 50 Hz is provided in
Figure @ and @, but similar observations of modal behavior were found for 100 Hz and 150 Hz (pro-
vided in Appendix E), as given below:

1. Evanescent modes exhibit harmonic amplitude in the acoustic domain but sharp amplitude growth
in the elastic domain, with proper attenuation in the PML before reaching boundaries. Their
eigenvalues have large imaginary parts and nearly zero real parts. In the fluid domain, the real

wavenumber k; yields real vertical wavenumber y; = /kZ — k7, producing harmonic behavior. In
the elastic domain, complex wavenumbers k; and k; generate large imaginary parts iny; and yr,
causing exponential amplitude growth. Physically, their radial wavenumber with small real parts
in the elastic layer creates steep incident angles, becoming leaky before attenuation in the PML.

2. The eigenvalues of propagating modes are near the real axis. Therefore, the vertical wavenumber
¥; is a small real number in the fluid domain, leading to harmonic behavior. Due to smaller inci-
dent angles, their modal amplitude remains non-leaky in the elastic domain. In the PML domain,
modal amplitudes are successfully attenuated before reaching the boundary.

3. The modal shape of Bérenger modes exhibits the aforementioned non-physical behaviors: a sig-
nificant modal amplitude in the PML.
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(@) f = 50 Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure E
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(b) f = 50 Hz, vertical pressure eigenfunction for wavenumber 2 as marked in Figure E
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(¢) f = 50 Hz, vertical pressure eigenfunction for wavenumber 3 as marked in Figure Q
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Figure 6.6. Pressure field distributions for three types of modes at frequency f =50 Hz. The computational domain
consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML) region

(grey).
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(@) f = 50 Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure E
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(b) f = 50 Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure E
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(c) f = 50 Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure E
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Figure 6.7. Vertical displacement field distributions for three types of modes at frequency f =50 Hz. The compu-

tational domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer
(PML) region (grey).
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6.2.4 Dispersion characteristics

Evanescent and propagating modes

The dispersion curves of the evanescent and propagating modes are shown in the figure below. The left
panel shows the wavenumbers of the evanescent modes with Re(k,) = 0. As can be observed from Fig-
ure @, with increasing frequency, these modes are evanescent up to a certain frequency, which is called
the cut-off frequency; after which they become propagating modes. Furthermore, the dispersion curves
in the right figure of Figure @ implies that the group velocities are smaller than the phase velocity; Fur-
thermore, the increasing group velocity and decreasing phase velocity converge to ¢; with increasing
frequency w, which obeys the feature of physical modes in Figure p.§.

w (Ia(:i/b) )

-1.2 -1.0 -0.8 —0.6 —0.4 —0.2 0.2 0.4 0.6 0.8 1.0 1.2

Im(k,) (rad/m) Re(k,) (rad/m)

Figure 6.8. Dispersion curves of the acousto-elastic layer: the left and right columns represent purely imaginary-
valued (evanescent modes) and purely real-valued wavenumbers (propagating modes), respectively.
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Figure 6.9. Dispersion curves of the acousto-elastic layer: the left and right columns represent imaginary and real
parts of the complex-valued k, for the first twelve Bérenger modes near kj -branch, respectively.



62 6. Modal Solution of one Acousto-elastic Domain with a PML via Semi-analytical method

cr
180 180

160 160

140 140
)
=
g 120 / 120 /
3 100 / 100 %

( o
//

—0.175 —0.150 —0.125 —0.100 —0.075 —0.050 —0.025 0.000 0.4 0.6 ).8 1.0 1.2 1.4

Im(k,) (rad/m) Re((kr) (rad/m)

Figure 6.10. Dispersion curves of the acousto-elastic layer: the left and right columns represent imaginary and
real parts of the complex-valued k, for the first six Bérenger modes near kr-branch, respectively.

The dispersion curves of the Bérenger modes are shown in Figure @ and . Figure @ shows the real
and imaginary parts of the complex-valued k, for the first thirteen modes (ranked by ascending Re(k,))
near the k; branch; whereas represent the first six modes near the ky branch. They simultaneously
imply anomalous dispersion characteristics as seen in the previous Chapter: the group velocities are
larger than the phase velocity. This observation remarks the non-physical feature of Bérenger modes,
which are introduced into the modal basis via the PML formulation.

6.3 Summary

This chapter provides the modal solution of the acousto-elastic domain with one PML. The main findings
are summarized as follows:

1. The eigenvalue spectrum obtained from the dispersion relation detM = 0 reveals three distinct
categories of modes:

(@) Evanescent modes: Eigenvalues located near the imaginary axis with large imaginary parts
and nearly zero real parts, corresponding to modes that decay exponentially in the radial
direction.

(b) Propagating modes: Eigenvalues positioned near the real axis, representing physically mean-
ingful propagating waves in the waveguide.

(c) Bérengermodes: Eigenvalues distributed along hyperbolic curves in the complex plane, arising
from the PML implementation and representing non-physical artificial modes.

2. The modal shapes exhibit distinct behaviors across different domains:

(@) Evanescent modes: Exhibit harmonic amplitudes in the acoustic domain, sharp exponential
growth in the elastic domain due to complex vertical wavenumbers y; and y, and appropri-
ate attenuation in the PML domain.

(b) Propagating modes: Maintain harmonic behavior throughout all domains with small real ver-
tical wavenumbers, leading to non-leaky characteristics and effective attenuation within the
PML region.

(c) Bérenger modes: Display non-physical behavior, with negligible energy in the physical do-
mains but concentrated energy within the PML region.
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3. The dispersion analysis reveals two distinct types of behavior for the propagating modes:

(@) Physical dispersion: Branches of the dispersion curves with small values of Re(k, ) exhibit nor-
mal dispersive behavior, where group velocities are smaller than phase velocities, and both
group and phase velocities converge to ¢; at high frequencies.

(b) Anomalous dispersion: Branches of the dispersion curves in which group velocities exceed
phase velocities, representing non-physical dispersion characteristics.

4. From a numerical perspective, the normalized modes of the acousto-elastic waveguide system
were found to be orthogonal by evaluating the right-hand side of Equation (). The normalized
eigenvectors satisfy |T'),,| = 1, and excellent cross-orthogonality (T',, = 0 for p # q) is observed.
Nevertheless, the following remarks should be noted:

(@) Modalorthogonality is preserved when sufficiently smallintegration steps dz are employed. For higher-
order modes, even smaller dz values are recommended to ensure accurate verification of
cross-orthogonality.

(b) Although the orthogonality of modes has been derived for both elastic and acoustic layers, a rigorous
mathematical proof for the elastic layer with PMLis not yet available. The present numerical results
are obtained under the assumption that orthogonality remains valid in this case, thereby
allowing the use of the superposition principle to sum the contributions of different layers.

(¢) Inthischapter, a PML polynomial order of mpyy;, = 2 was considered. However, the influence of
Mpyr, 01 orthogonality has not been examined for the (acousto-)elastic layer with PML. A systematic
parametric study on the role of myp,,; is therefore recommended for future research on the
(acousto-)elastic layer with PML.



Conclusions and Recommendations

This thesis investigates computational methods for the acousto-elastic domain with perfectly matched
layers (PMLs), focusing on the differences between the thin-layer method (TLM) and the semi-analytical
method. It begins with a comparative study of the modal solutions for a single elastic layer. This is
followed by an in-depth analysis of the modal solutions for an acoustic layer using the semi-analytical
approach. Chapter 4 presents a comparative study of the modes of an elastic layer with PMLs using
both the semi-analytical method and TLM. Finally, Chapter 5 provides the semi-analytical solution for
an acousto-elastic layer with one PML. This chapter summarizes the main conclusions, addressing all
research questions, and offers recommendations for future work.

7.1 Conclusions

As mentioned in Chapter 1, the first research objective is the investigation of the differences between the
modal solutions of the single elastic layer, which provides a solution to the first supplementary research
question:

In the case of a linear isotropic elastic layer, how do the eigenvalues and eigenmodes calculated by the
semi-analytical method differ from those obtained using the thin-layer approach? What causes these differences?

From all observations in Chapter 3, it is concluded that the continuous (semi-analytical) and discrete
(TLM) modal solutions show consistency for a single elastic domain with PML.

The second research objective focuses on studying modal solutions of an acoustic waveguide with PML
using the semi-analytical solution, which have been completed in Chapter 4. The key finding of this
chapter focus on the influence of the polynomial order mpyy of attenuation function on the modal so-
lutions, which provides the solution the second supplementary research question:

For a fluid layer with a PML, how does the introduction of the PML affect the modal solutions of semi-analytical
solutions? In what ways do different PML polynomial orders mpyy. influence the solutions of eigenvalue problems,
namely, eigenvalues, eigenvectors, and orthogonality?

From all observations in Chapter 4, the following conclusions of this research question are given:

1. The PML influences the semi-analytical solutions by introducing Berenger modes.

2. For the single acoustic layer with one PML, the imaginary part of the complex-stretch coordinate
Im(Z) is normalized with respect to mpy; . Under this condition, the eigenvalues are not affected
by mpyy since the dispersion relation is independent of it.

3. The parameter myp,),; affects the orthogonality of modes. Canceling certain boundary terms in
the orthogonality derivation requires continuity of the modal slope at z = Z;. When mypy; = 0,
the slope becomes discontinuous, leading to residual boundary terms that violate the standard
orthogonality assumptions. Numerical results indicate that using mpy, > 0 ensures acceptable
orthogonality and preserves the theoretical foundation of PML-coupled systems.
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The third objective of this thesis is to investigate the differences between the continuous and discrete
modal solutions for an elastic layer with an adjacent PML. This objective is addressed in Chapter 5. In
this chapter, the discrete and continuous modal solutions of the system shown in Figure E]! are com-
pared, following the methodology established in the previous chapters. The conclusions drawn from
these observations provide answers to the following research question:

For a linear elastic isotropic layer with one PML, how do the eigenvalues and eigenmodes calculated by the
semi-analytical method differ from those obtained using the thin-layer approach? What causes these differences?

The study in Chapter 5 provides the solution to this research question. First, the main differences be-
tween two types of modal solutions of an elastic layer with one PML are given as follow

1. Eigenvalue Distribution: The semi-analytical solution produces eigenvalues distributed along a hy-
perbolic line in the complex k, plane, corresponding to Bérenger modes. In contrast, the TLM
approach yields predominantly evanescent modes with significant imaginary components con-
tributing to discrete modal solution convergence.

2. Modes: The modes of the semi-analytical and the TLM solution for a single elastic layer with one
PML differ, owing to the differences in their eigenvalues. In the thin-layer method, the modal
basis mainly consists of evanescent modes with only a few Bérenger modes, while in the semi-
analytical solution all modes belong to the Bérenger type.

3. Orthogonality: The criteria required to achieve improved orthogonality differ between the two meth-
ods. For the semi-analytical solution, enhanced orthogonality can be achieved through a finer
discretization of the trapezoidal integration scheme. By contrast, in the thin-layer method, in-
creasing the number of thin layers beyond an appropriate level results in a marked loss of orthog-
onality.

The differences arise from the distinct eigenvalue problem formulations. The thin-layer method produces a
discrete eigenvalue problem, yielding a finite number of modes determined by the number of layers,
whereas the dispersion relation admits an infinite set of eigenvalues and modes. In the semi-analytical
solution, only Berenger modes occur, clustering near a hyperbola in the complex plane. In contrast, the
TLM yields two eigenvalue sets—one near the imaginary axis and another near the hyperbola. Increas-
ing the number of layers in the TLM introduces more modes along the hyperbolic locus, bringing the
modal distribution closer to the infinite basis of the continuous solution.

In summary, these conclusions provide the answer to the following main research question:

How and why do the modal characteristics of the acoustic or elastic domains with PMLs differ between the
semi-analytical solution and the thin-layer method?

Consistent with the answer to research question 3, the differences primarily arise from the eigenvalue
distribution, modal characteristics, and cross-orthogonality, which are ultimately caused by the dis-
tinction between discrete and continuous eigenvalue problems.
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7.2 Recommendations

Based on the conclusions of this thesis, the following recommendations are proposed for extending the
fundamental research on computational methods for modes of the acousto-elastic system with PMLs by
the author.

1. While the modal solution of a single elastic layer with one PML has been thoroughly studied via a
semi-analytical method, a comparative analysis of the semi-analytical solution and TLM for a sin-
gle acoustic layer or acousto-elastic with PML is recommended to better elucidate the differences
between these two computational approaches.

2. In Chapter 3, the influence of the polynomial order mpy; on the modal solutions was examined.
Based on the conclusions drawn from numerical results and mathematical derivations, it is rec-
ommended that mpy; > 0 be used for the semi-analytical solution of a fluid layer incorporating
PML. However, it remains unclear whether this conclusion can be extended to the remaining cases
with PML; therefore, a study on the influence of mp)y; is recommended for the elastic layer or the
acousto-elastic layer with PML in future research, via mathematical derivations and numerical
results.

3. Although the polynomial order mpy; has been examined in this research, the influence of other
PML parameters, namely the attenuation coefficient f; and the height of the PML layer Hpyy,
should also be investigated owing to their impact on the modal solutions. Therefore, a detailed
parametric study on these remaining parameters is recommended for future research.

4. As shown in Figure B in Chapter 2, real ocean environments include bottom layers with discon-
tinuous properties in the vertical direction, representing the interfaces between geological strata.
Therefore, the model with a single elastic layer with PML can be extended to the case of multiple
elastic layers with one PML in future research.

5. In the semi-analytical solutions, the calculations of |T',,| were performed using the trapezoidal
integration scheme, which requires many integration points for higher-order Berenger modes
due to their similarity. Among the results of the acoustic layer with PML, the trapezoidal inte-
gration scheme does not work well for mpy > 1. It is possible that a more advanced quadrature
scheme may be required for this case. Therefore, future research is recommended to explore al-
ternative integration schemes.

6. The cross-orthogonality of the modes that are computed from the thin-layer method is violated
when too many thin layers are used. The reasons for this finding is still not unclear. A physical or
numerical reasons behind this finding can be investigated furtherly in the future research.

In addition to the development of fundamental research, the following suggestions are provided regard-
ing the practical applications of the two computational methods for the acousto-elastic domain with
PML:

1. When the semi-analytical method is used with a polynomial attenuation function in the PML,
a positive value of mp), is recommended to maintain the continuity of the eigenvector at the
interface between the physical and PML domains, as well as to improve the cross-orthogonality of
the modes.

2. Duetotheviolated cross-orthogonality, it is not suggested to use too many layers in the PML when
the Thin-layer method is adopted.



(1]

(9]

Bibliography

J. D. Achenbach. Wave Propagation in Elastic Solids, volume 16 of Applied Mathematics and Mechanics.
Elsevier, Amsterdam, 1973. First edition: 1973, First paperback edition: 1975, Reprinted multiple
times.

K. Aki and P. G. Richards. Quantitative Seismology: Theory and Methods. Freeman, New York, 1980.

A. A. Bakr. The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems, volume 14
of Lecture Notes in Engineering. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

Joao Manuel de Oliveira Barbosa, Joonsang Park, and Eduardo Kausel. Perfectly matched layers
in the thin layer method. Computer Methods in Applied Mechanics and Engineering, 217—-220:262—274,
2012.

J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of
Computational Physics, 114(2):185-200, 1994.

M. G. Bostock. On the orthogonality of surface wave eigenfunctions in cylindrical coordinates.
Geophysical Journal International, 103:763-767, 1990.

W. M. Ewing, W. S. Jardetzky, and F. Press. Elastic Waves in Layered Media. McGraw-Hill, New York,
1957. Lamont Geological Observatory Contribution.

M. Gallezot, F. Treyssede, and L. Laguerre. A modal approach based on perfectly matched layers
for the forced response of elastic open waveguides. Journal of Computational Physics, 356:391-409, 03
2018.

M. Gallezot, F. Treysséde, and L. Laguerre. Contribution of leaky modes in the modal analysis of
unbounded problems with perfectly matched layers. The Journal of the Acoustical Society of America,
141(1):EL16-EL21, 2017.

Fang Q. Hu. On absorbing boundary conditions for linearized euler equations by a perfectly
matched layer. Journal of Computational Physics, 129(1):201-219, 1996.

Finn B. Jensen, William A. Kuperman, Michael B. Porter, and Henrik Schmidt. Computational Ocean
Acoustics. Modern Acoustics and Signal Processing. Springer New York, New York, NY, 2011.

Eduardo Kausel. An explicit solution for the green functions for dynamic loads in layered media.
Technical Report R81-13, Massachusetts Institute of Technology (MIT), May 1981. Research Report
R81-13, Order No. 699.

S. Kucukcoban and L. F. Kallivokas. Mixed perfectly-matched-layers for direct transient analysis
in 2d elastic heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 200(1—
4):57-76, January 2011.

J. Miklowitz. The Theory of Elastic Waves and Waveguides. North-Holland Publishing Company, Ams-
terdam, 1978.

Joonsang Park. Wave motion in finite and infinite media using the Thin-Layer Method. Doctor of science
in structures and materials, Massachusetts Institute of Technology (MIT), February 2002. Advisor:
Eduardo Kausel.

67



68

Bibliography

(16]

(19]

[20]

[24]

[25]

[26]

Yaxi Peng, Apostolos Tsouvalas, Tasos Stampoultzoglou, and Andrei Metrikine. A fast computa-
tional model for near- and far-field noise prediction due to offshore pile driving. Journal of the Acous-
tical Society of America, 149(3):1772—1790, 2021.

H. Rogier and D. De Zutter. Berenger and leaky modes in optical fibers terminated with a perfectly
matched layer. Journal of Lightwave Technology, 20(7):1141-1148, July 2002.

A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Artech, Norwood, MA, 2000.

A.TSETAS. Aunified modelling framework forvibratory pile driving methods. PhD thesis, Delft University
of Technology, 2023.

A. Tsouvalas, H. Hendrikse, and A. V. Metrikine. The completeness of the set of modes for var-
ious waveguides and its significance for the near-field interaction with vibrating structures. In
A. Cunha, E. Caetano, P. Ribeiro, and G. Miiller, editors, Proceedings of the 9th International Con-
ference on Structural Dynamics, EURODYN 2014, pages Porto, Portugal, 30 June — 2 July 2014. Depart-
ment of Civil Engineering, Faculty of Engineering and Geosciences, Delft University of Technology,
The Netherlands, 2014.

Apostolos Tsouvalas. Underwater Noise Generated by Offshore Pile Driving. PhD thesis, Delft University
of Technology, Delft, The Netherlands, 2015.

Apostolos Tsouvalas and Andrei V. Metrikine. A semi-analytical model for the prediction of under-
water noise from offshore pile driving. Journal of Sound and Vibration, 332(13):3232-3257, 2013.

Apostolos Tsouvalas and Andrei V. Metrikine. A three-dimensional vibroacoustic model for the pre-
diction of underwater noise from offshore pile driving. Journal of Sound and Vibration, 333(8):2283—
2311, 2014.

Apostolos Tsouvalas and Andrei V. Metrikine. Structure-borne wave radiation by impact and vibra-
tory piling in offshore installations: From sound prediction to auditory damage. Journal of Marine
Science and Engineering, 4(3):44, 2016.

Semyon V. Tsynkov. Numerical solution of problems on unbounded domains. a review. Applied
Numerical Mathematics, 27(4):465-532, August 1998.

J. Zhuand Y. Zhang. Cross orthogonality between eigenfunctions and conjugate eigenfunctions of
aclass of modified helmholtz operator for pekeris waveguide. Journal of Theoretical and Computational
Acoustics, 2018.



Semi-analytical Matrices of coefficients

This Appendix provides all matrices of the systems used in the semi-analytical solutions of

1. Asingle elastic layer
2. An acoustic domain with PML
3. Anelastic domain with PML

4. An acousto-elastic domain with PML

A1 Elasticlayer

For a single elastic layer, the structure of the system matrix M is given as below:

[ i(2py? + AKZ)EMA i(2pyE + AKE)  —2puk, et 205k, 71
M 245k, v €M “2uken s (r—k2)e™ (k7)) D
1 yem ik, ik, 11
ik, ik, elrr4 Yr —ypelfT4

A.2 Acousticdomain with PML

For an acoustic domain with PML, the structure of the system matrix M is given as below: The structure
of matrices are given as:

i e 0 0
—ie 141 i i —je~YtHpmL(i+5o)
M= (A.2)
e iz 1 -1 _e—YfHPML(i+/30)
0 0 _ir]/fe_YfHPML(i+ﬁ0) iy
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A.3 AnElastic Domain with PML

- (kf/ls + Zusyf]e’ihzl

—2ik k, ek
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— kr
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2iky kg
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21k, kg (2 - k2 poeiHr2
ik e kA ~k,
—k,e s —ikr
(k2 + k2)A + 2ugk|e 2 —2ikyk, g
—2ik; k, e il — k2 + k2 pug
0 0
0 0

=2ikrk, g
(2 - 2
ke ki
ikpe i
2ik, ke~ e

(- K+ e hrm

jkLe—HPML(ﬁo+i)

kre—HPML(ﬁoﬂ)
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0 0 0
—iky, kre_HPML(ﬁo+i) k,
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(kP + k) A = 2k —Aok? = 2uk? = kZA  2ikpk, pe Ao ik, g
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—iky e~ HrmL(Bo+) k, kye—HpML(ﬁOJri)
_kreiHPML(ﬁOH) —iky ikTe’HPML(ﬁO+i)




A.4 Anacousto-Elastic Domain with PML

—iwp 0 0 0 0 —iwpelks 0 0 0 0
0 =ik, k,pge G20 (62 — 2 pgeitrGo=) 0 0 0 2ik k, i1, (2 = 2 s 0 0
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Orthogonality between Eigenvectors and
Conjugate Eigenvectors

B.1 Introduction

The cross orthogonality between the eigenvectors and their conjugates has been proved in [26] for a
Pekeris waveguides with one PML. In this Appendix, we will give the same derivation for a single acous-
tic layer with PML, as shown in Figure

B.2 The derivation of the conjugate eigenfunction

Assume operator &£ as:

= Li Li + k2 (B.1)
~e(z)dzle(z)dz f '
where
1, 0<z<Z,
e(z) = (B.2)
1-if(2)/w Z,<z<Z,.

Assume ¢ (z) and ¢(z) be the eigenvector and its corresponding conjugate eigenvector and they satisfy
the boundary conditions discussed in the previous chapter.

We will start with the derivation of the following internal product:

Zy
(Lo.9)= | 9@ Lg()dz ®.3
It could be expanded as:
d(1d
L9 9) = f"’l[ iz TR d”f"’z £(2) dz(e(z) d(iz) +hig, | dz
Zy Zy Z (B.4)
d? _ d(1d _ _
Z 0 z
I, I3 Iy
Apply integration by parts to I, and I,:
Z
_ (44| _ % doy
h= (pl( dz ) o dz dz de (B.3)
— Z, 22
I = P2 % IL%E 4)2 (B.6)
27 e2(2)| dz e(z) dz dzle(z) ’
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Applying integration by parts again gives:
A A Z Lo m
L=¢1¢1| -y +f(/’1 dz2 - dz (B.7)
0 0 0
Y7
_ P29 ¢, f(P 1 d( [ ) (B.8)
27 e2(z)|, £(2) e(z) 2 dz | e(z) dz \e(z) '
As a result, we have
(L, o)=L +L+1,+1,
1 d{ ¢ ) 2—
f¢1ld 2 Hk 1901 dz +f¢2 dz(e(z) dz (s(z) ) T1r92| dz (B.9)
+ Boundary Terms
The boundary terms are witten as
¢1(Z1)1(Z1) — 91 (0)p1(0) — 1 (Z1) 1 (Z1) + 1 (0) gy (0) + 02(2,)p3(2,) [ €%(Z,)
. Y Ly (B.10)
PRI 2 - 2 eZ)Tale) |+ aulz) o) (ol
z2=7, z=2,
Applying boundary conditions of both eigenvectors and conjugate eigenvectors:
$(0)=0 $5(Z,) =0 (B.11)
0:(0) =0 (@2r2)| =0 (B.12)
z=Z,
Equation () are furtherly reduced to:
P2 - eI + w2 @le| | - anz0(7le] B13)
z=7, z=2,
Due to the continuity of eigenvectors at z = Z;, we have
»1(Z1) = ¢,(2)) (B.14)
Therefore, the boundary terms can be furtherly reduced into
D412~ 92 2) | + 4u(2) [e(2) [(a) - (7ae] .15
=Z z=7Z)
When €(z) is continuous at z = Z;:
e(Z,) =1 (B.16)
As aresult, () are reduced to:
P[220 - 83(2)] + o(20) [(@/e) - (@are) .17
z=7Z; z=7Z3
The second term here can be expanded as:
w)|[@re)| (@) (@) (@ ®19)
z=7, z=7, z=7, z=7,
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When ¢'(z), ¢(z),€ and €' are continuous at z = Z;, the boundary terms can be canceled out. We can
have the following definition:

Zy

dz 2 f(,b./%_(pdz = (¢, M) (B.19)
0

(L) = f¢()

1 d{ o
dz (s(z) dz(e(z))) +Yf(p

The ¢;(z) satisfies the following equations of motions:

d*p; _
7 (k2 = k2)gr = 0 0<z<z, 520)
d 1 d (pz ) 2 2\—
ki = kr ), =0 Z Z B.21
dZ(E(z)dZ(E(Z) )+( f r)(pZ 1< Z< 4y ( )
The second EoM here can be written in an alternative form:
1 d 1 d(9 ) 2 2) P2
ki —k =0 Z Z B.22
e(z) dZ(S(z) dz(s(z) )+( f r)e(z) 1<z2<Z, (B.22)

Let y,(2) = ¢, /&(z), we could have

1 i 1 dy, 2_ g2 _
e(z) dz(e(z) dz )+ (kf k’)% =0 Z1<z<2, (B.23)

Besides, 1 is assumed to satisfy the following boundary conditions on the basis of Equation ():

v,(0) =0 AR (B.24)
=7,
The general solutions of ¢;(z) are given as:
¢1(2) = Ay expliyi(z — Z;)] + Ay exp(—iy;z) 0<sz=<Z (B.25)
@,(z) = |Agexp [1yf( Zz)] + A, exp[ 1)ff( 1)] e(z) Z1<z=<2, (B.26)
B.3 Orthogonality
We first have:
2 2 2
(Lpvg) = [T Lbydz= [Ty dz = k2, [y 0dz (B.27)
0 0 0
We also have:
2 2 2
(¢, M@;) = fﬂ(pp-d)q dz = fkqu;—,,-% dz = kfpf(p_p-(,bq dz, (B.28)
0 0 0
Since (£}, ¢ ) = (¢, Mp;), we will have:
A A
K2, [ 0gdz =k, [ By d (B.29)
0 0

The orthogonality between the eigenvector and its conjugate eigenvector is finally given as:

2
(K2, ~ k2,) [ @902 =0 (8.30)
0



Additional Comparison of Modes for a
Single Elastic Domain

This Appendix provides the additional comparisons of continuous and discrete modal solutions of a sin-
gle elastic layer in Chapter 3.

C.1 SV wave type modes
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Figure C.I. Comparison of selected normalized SV wave type modes obtained from semi-analytical (black-

continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, a, = 0dB/A, (b) f =
200Hz, a, = 0dB/A, () f = 200Hz, o, = 1dB/A, (d) f = 500Hz, a, = 0dB/A.

C.2 Pwave type modes
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Figure C.3. Comparison of selected normalized P wave type modes obtained from semi-analytical (black-
continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, @, = 0dB/A, (b) f =
200Hz, a, = 0dB/A, (¢) f = 200Hz, a = 1dB/A, (d) f = 500Hz, a, = 0dB/A.
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C.3 Evanescent type modes
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Figure C.5. Comparison of selected normalized evanescent wave type modes obtained from semi-analytical
(black-continuous line) and TLM solutions (grey-dashed line) for different cases: (a) f = 50Hz, @y = 0dB/A, (b)
f =200Hz, a; =0dB/A, (c) f =200Hz, a, = 1dB/A, (d) f = 500Hz, ag = 0dB/A.



Additional Results of an Elastic Domain

with PML

This Appendix provides additional results of Chapter 5, including

1. The comparison of eigenvalues for Groups 1.1, 1.3 and 1.4 in Table .

2. The comparison of matched eigenmodes for Groups 1.1, 1.3 and 1.4 in Table EZ!

3. The modal orthogonality plots for Groups 1.1, 1.3 and 1.4 in Table @

D.1 Comparisons of Eigenvalues
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Figure D.1. Comparison of eigenvalues obtained via semi-analytical approach(red circles) and TLM (black crosses)
for f = 50Hz, @y = 0dB/A: (2) and (b): hy = 0.25 m; (c) and (d): i, = 0.01 m.
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Figure D.2. Comparison of eigenvalues obtained via semi-analytical approach(red circles) and TLM (black crosses)
for f = 200Hz, a;, = 0dB/A: () and (b): hy = 0.25 m; (c) and (d): hy = 0.01 m.
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D.2 Comparisons of Eigenmodes
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Figure D.4. Comparison of eigenvectors obtained via semi-analytical approach (black-continuous line) and TLM
(red-dashed line), and grey domain indicates the PMLfor (a) f = 50Hz, ag = 0dB/A; (b): f = 200Hz, a;, = 0dB/A;
(b): f = 200Hz, ag = 1.5dB/A
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D.3 Orthogonality

Semi-analytical solution

(@) f =50Hz and ag = 0dB/A.

1.0
’ 0.8
0.6
g
=
0.4
0.2
0 5 10 15 20 25 30 35 0.0
mode p
(b) f =200 Hz and as = 0dB/A.
1.0
’ 0.8
0.6
=
S 59
=
0.4
; 0.2
0 5 0 15 20 25 0.0
mode p
(c) f =200 Hz and ag = 1.5dB/A.
1.0
o
0.8
20
- 0.6
S15 g
3 =
= 0.4
10
0.2
0
0 5 0 15 20 2 0.0

mode p

Figure D.5. Orthogonality of first forty modes at f = 50 Hz and first thirty modes at f = 200 Hz obtained via
semi-analytical method
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Thin layer method
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Figure D.6. Orthogonality of all modes obtained via TLM: left column: good orthogonality when h, = 0.25 m,
right column: violated orthogonality when h, = 0.01 m.
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E.1 Resultsat100 Hz
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Figure E.1. Orthogonality of the first 108 modes of the acousto-elastic layer with one PML at f = 100 Hz.
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(@) f = 100 Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure
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Figure E.2. Pressure field distributions for three types of modes at frequency f = 100 Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)

region (grey).
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(@) f = 100 Hz, vertical displacement eigenfunction for wavenumber I as marked in Figure
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Figure E.3. Displacement field distributions for three types of modes at frequency f = 100 Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)
region (grey).
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E.2 Resultsat150 Hz
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Figure E.4. Orthogonality of the first 100 modes of the acousto-elastic layer with one PML at f = 150 Hz.
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(@) f = 150 Hz, vertical pressure eigenfunction for wavenumber 1 as marked in Figure
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Figure E.5. Pressure field distributions for three types of modes at frequency f = 100 Hz. The computational
domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)

region (grey).
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(@) f = 150 Hz, vertical displacement eigenfunction for wavenumber 1 as marked in Figure
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(b) f = 150 Hz, vertical displacement eigenfunction for wavenumber 2 as marked in Figure
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domain consists of the acoustic region (blue), the elastic region (yellow), and the perfectly matched layer (PML)

region (grey).
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