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1 Abstract
In this paper, we explore the creation of control algorithms for
swarms of robots playing the role of either predator or prey in
an environment filled with static obstacles. The paper devel-
ops on a famous flock simulation model proposed by Craig
Reynolds called boids. The paper analyzes a zero-sum game
situation, in which one swarm of robots, the prey, is trying to
reach a certain pre-determined target, while another swarm of
robots, the predator, is trying to prevent it from reaching its
objective. Swarm control algorithms for both the predator and
the prey scenarios are analyzed in an arms race manner. The
robots are modelled as point-mass holonomic entities, that
can move in arbitrary directions. The proposed algorithms
are tested on characteristics such as success rate and time in
a simulated environment. As a result, a set of algorithms for
both the predator and prey are proposed and their strength and
weaknesses are discussed.
Keywords: predator-prey, obstacle-avoidance, swarm con-
trol, boids, UAVs, robot swarms, war robots, military robots,
self-driving cars, collision avoidance, simulation, control al-
gorithm

2 Introduction
2.1 Background
A swarm can be defined as a collection of entities interacting
with each other through simple pre-defined rules from which
a highly complex behaviour emerges. Swarm behaviour is
encountered in nature at various species of animals, ranging
from fishes to mammals and birds, and it usually serves an
optimisation purpose. The fact that swarm behaviour evolved
independently in so many species, indicates that being able
to recreate it might be beneficial for solving various kinds of
real-life problems [2].

One particular context in which the exploration of swarm
behaviour could lead to interesting and useful results is a
predator-prey game. A predator-prey game, or a ’preda-
tion’ represents a situation in which a group of individuals
from one species is trying to kill the individuals from an-
other species [1]. This creates a conflict between 2 groups
of agents, the predators and the prey. Since the 2 groups of
agents have fully conflicting interests, the entire situation can
be seen as a zero-sum game. This means, that any advantage
gained by one party represents an equal disadvantage to the
other party.

The particular type of predator-prey game that this paper
explores is target-oriented. This means that the purpose of
the prey is not only to survive the predators, but also to move
to a certain target in the environment. The environment that
the prey needs to navigate is not empty, however, but rather it
contains obstacles of various sizes at random positions. Thus,
the prey swarm needs to successfully navigate an obstacle-
filled environment, while at the same time avoiding preda-
tors. In contrast, the predator swarm has the opposite goal of
preventing the prey from reaching the desired target.

2.2 Importance
As highlighted before, insight into swarm control algorithms
in the context of a predator-prey situation could lead to useful

applications.
One such application is a war-like scenario involving

robots. Concretely, let us say that we have a swarm of UAVs
with the mission of reaching a spatial target to deliver sup-
plies. There are certain spots along the way that the UAVs
should avoid, since in these spots, the UAVs are vulnarable
to enemy fire from below. On top of that, the enemy deploys
his/her own swarm of Kamikaze UAVs, with the purpose of
taking down the original UAVs before reaching their target
[15]. This situation easily fits the context of target-oriented
predator-prey swarm control, since the friendly UAVs can be
modelled as a prey swarm, the kamikaze UAVs as a predator
swarm and the dangerous spots as environment obstacles.

Applications are not strictly limited to war-like scenarios.
Research into this area could prove useful for robotics in a
more general sense. Taken separately, the prey swarm control
algorithm could be used in the context of any fleet of robots
trying to navigate an obstacle-filled environment in order to
reach a certain destination safely. As a matter of fact, naviga-
tion throughout an area that contains obstacles is a common
problem in robotics [5]. Since we want to avoid collisions
in-between the robots of the fleet, it makes sense to model
the fleet as a swarm. Unexpected moving obstacles might be
part of the navigated environment. In such a case the anti-
predator evasive moves of the prey swarm control algorithm
are of great use.

To illustrate the previous point with a concrete example, let
us look at self-driving cars. Up to a certain point, several cars
driving on a road share a common destination, for example,
the exit of the highway. It is crucial for the self-driving cars
to avoid colliding into each other. There might be certain
static obstacles on the road or high-way, such as a section that
is under construction, or a stationary car. Moving obstacles
are also possible, such as humans or animals traversing the
road. Since each self-driving car is its own distinct entity,
centralized decision making is not possible. It is not hard to
see that swarm control algorithms, especially the kind that
can avoid predators (humans or animals walking towards the
self-driving car), can prove very useful in this context [7].

On another note, since both swarm behaviour and predator-
prey scenarios are inspired by nature, the algorithms pre-
sented in the paper might be used to create graphical simula-
tions of a group of predators trying to hunt down prey, such as
a pack of wolves hunting dear, or banks of fish hunting other
fish [10]. Realistic graphics simulation of such phenomena
could then be used in movies or video games.

2.3 Problem Formalization
In order to have a good understanding of the problem that this
paper is exploring, it is of great use to lay down the main con-
cepts that are being dealt with, which is what the following
subsections do. The appendix provides a graphical represen-
tation of the problem environment.

Safe area
The safe is the area where the prey agents are initially
spawned, on the right side of the map. The spawn positions
of the prey agents are random. No obstacles spawn in the safe
area.



Danger area
The danger area is the area the prey swarm needs to traverse
in order to reach the target area. It contains obstacles that
need to be avoided, as well as predators that can destroy prey
agents.

Target area
The target area is the area that all prey agents need to reach.
It is located on the left side of the map. Predator agents that
hit the target area get destroyed. This mechanic is to pre-
vent predator agents from camping around the target area (our
main interest is intercepting the prey while they are on the
move).

Obstacles
The obstacles are regions inside the danger area that the
swarm agents need to avoid on their way to the target area.
They spawn at random positions, and they have random sizes.
If either a prey agent or predator agent hits an obstacle, that
agent gets destroyed.

Prey agents
The prey agents are the agents that need to reach the target
area. They spawn at random positions in the safe area (right
side of the map) and on their way to the target area (left side
of the map), they need to avoid obstacles and predators. This
paper explores several swarm control algorithms for the prey
agents.

Predator agents
The predator agents form a swarm that has the goal of pre-
venting the prey swarm from reaching the target. The preda-
tor agents act by crashing into the prey agents, destroying
them. On impact with a prey agent, the predator gets de-
stroyed as well. Predators also get destroyed if they hit the
target area. This paper explores several swarm control algo-
rithms for the predator agents.

Perception
Each prey agent is aware of the position of the target area and
obstacles, as well as of the positions and velocities of all other
prey agents in the swarm. In contrast to this, prey agents can
only detect predator agents that are within their perception
distance. Predator agents have an advantage over the prey.
On top of everything else in the environment, predators are
always aware of the positions and velocity of the prey agents.

Goals and constraints
The goal of the prey swarm control algorithm is to maximize
the number of prey agents that reach the target area, while at
the same time minimizing the time it takes for them to get
there. The prey agents need to try to avoid all obstacles, since
crashing into an obstacle disables the agent. The predator
agents, on the other hand, need to prevent the prey agents
from reaching their goal, by crushing into them, so a lower
performance of the prey is seen as a higher performance of the
predator. The top speeds of both the prey agents and predator
agents are limited.

2.4 Research Questions
All of the above lead us to the questions that this paper aims
to answer:

• Can the number of prey agents that reach the target be
increased and their travel time be decreased through the
creation or use of smart prey swarm control algorithms?
If so, how would such a algorithms work? How would
they compare with each other?

• Given some prey swarm control algorithm, can the num-
ber of prey agents that reach the target be decreased or
their travel time be increased through the creation or use
of smart predator swarm control algorithms? If so, how
would such a algorithms work? How would they com-
pare with each other?

3 Related Work
3.1 Spring and dampers swarm control
Wiech, Jakub, Victor A. Eremeyev, and Ivan Giorgio discuss
a method of swarm control based on a pair of virtual spring
and dampers used to create a structure between the agents
[16]. The springs and dampers make sure that the swarm
agents do not collide, while at the same time preserving the
cohesion of the swarm.

The control algorithm tackles obstacle avoidance is a sim-
ilar fashion, by modelling the interaction between a swarm
agent and a nearby obstacle using the same type of parallel
spring and damper system.

From a mathematical perspective, a spring applies a force
directly proportional to its elongation. The direction of the
applied force is alongside the main axis of the spring.

On the other hand, the force generated by the damper is di-
rectly proportional to the ’elongation speed’, or the derivative
of the elongation.

By adding the 2 forces, we obtain the force generated by
one instance of the parallel spring-damper system, as seen in
equation 1.

F = Fspring + Fdamper = k(l − l0) + c
d(l − l0)

dt
(1)

Each agent is connected to its swarm members by a spring-
damper system acting with the force given by equation 1. By
computing the resulting force and then dividing by the mass
of the agent, we can obtain the formula for the acceleration
that the agent needs to move with.

a⃗i =
1

mi

∑
j∈Ni

F⃗ij (2)

As pointed out by the authors, this control algorithm causes
the agents to oscillate. Such oscillations can be undesirable
when more precise control of the behaviour of each agent is
wanted, which is why this model was not chosen as the theo-
retical background of this paper. While the oscillations can be
tackled by good hyper-parameter optimization, they cannot
be fully prevented due to the nature of the dynamical model.



3.2 Boids
Craig Reynolds attempted to find an easy and computation-
ally efficient way to simulate natural swarms, such as flocks
of birds, herds of land animals or schools of fish [11]. The re-
sult of his research was a novel computational model, called
’boid’, representing a simplistic form of ’artificial life’ that
can realistically simulate flocking behaviour using a set of
very simple dynamical laws.

As C. Hartman and B. Benes point out [6], the 3 main laws
that govern the movement of a boid are:

• Cohesion - defined as the boid’s tendency to stick to the
center of its flock.

• Separation - defined as the boid’s tendency to keep a
certain distance from its swarm neighbors in order to
avoid collision.

• Alignment - defined as the boid’s tendency to synchro-
nize its position and direction with the other members of
the swarm/flock.

The implementation of the 3 laws above is enough to cre-
ate a functional swarm of boids, however, such a swarm is
not very useful without a goal. Luckily, the boids model is
flexible and can be extended in various ways, such as adding
a steering force or obstacle avoidance mechanisms in order to
get the boids to achieve a certain goal or task.

Due to its simplicity and extensibility the boids model was
chosen as the basis for the algorithms developed in this paper.
The mathematical description of the model is presented in the
theoretical background section.

3.3 Fear model for boids
Carlos Delgado-Mata, Jesus Ibanez Martinez, Simon Bee,
Rocio Ruiz-Rodarte and Ruth Aylett propose an interesting
method of emulating animal fear in a flock of boids [4]. While
their research is not the topic of this paper, their idea of hav-
ing the prey communicate the presence of a predator acted as
a source of inspiration for the explosive predator avoidance
strategy.

4 Methodology
4.1 Algorithms development
The methodology used for algorithm development is adapted
to and reflects the nature of the problem that this paper deals
with. The algorithms that need to be explored fall into 2 cat-
egories. The first category is represented by the prey swarm
control algorithms, which need to maximize the number of
prey agents that reach the target while minimizing the time it
takes for them to do so. In contrast to that, the second cat-
egory consists of the predatory control algorithms having a
conflicting goal. While being different, the 2 categories of
algorithms share a common component, which is obstacle
avoidance.

The intrinsic structure of the problem leads down to a nat-
ural breakdown of the methodology. The first step consists
of developing the obstacle avoidance algorithms, which are
shared sub-components of both prey and predator control.

After this class of algorithms is fully explored and bench-
marked, the next step is to move on to the actual prey-predator
swarm control. Since these 2 categories can be seen as parties
in a zero-sum game, an ’arms race’ methodology is followed.

The ’arms race’ approach consists of an iterative process of
improvement, alternating from prey to predator control, like
in an actual ’arms race’. This means that first, prey control
algorithms are developed. Afterwards, predator control algo-
rithms capable of countering the prey control algorithms are
created. Then, we move on to prey control again. This pro-
cess is repeated until state-of-the-art solutions are obtained.

4.2 Simulation and benchmarking
The algorithms developed according to the process described
above need some way to be evaluated and benchmarked
against each other. Since performing benchmarks on real
hardware would be difficult, the natural solution is to use a
simulated environment. The simulated environment devel-
oped for this research consists of two tools, with complemen-
tary functions:

• Headless Simulator - takes configuration files defining
the simulations to be performed as input and outputs
simulation files, as well as their results as plots.

• Web-based simulation visualizer - takes simulation
files as input and creates visualizations of them.

The simulation environment was implemented in python,
using ’flask’ as a backend framework. The simulation envi-
ronment used in this research is open source. The appendix
contains the link to the repository.

5 Theoretical Background
As presented in the related work section, the computational
model based on which all swarm control algorithms in this
paper are implemented is the ’boids model’. As C. Hartman
and B. Benes present in their paper [6], the following math-
ematical characterization can be formulated for the boids (all
the formulas are taken from the paper):

5.1 Boid
Each boid in this paper is characterized by a position p⃗i and
a velocity v⃗i, but not an orientation, as in the original paper.
This leads to formally defining the boid as a pair of the 2
quantities, as in equation 3

bi = (p⃗i, v⃗i) (3)
A swarm of boids is, then, simply a set of boids that are

interacting with each other.
The neighbors of a certain boid bi represent the boids bj of

the swarm that are within a certain distance d from bi.

Ni = {bj | ∥p⃗i − p⃗j∥< d} (4)

5.2 Separation
Separation represents the force that prevents 2 or more boids
of the same swarm to collide with each other, by pushing
them aside when they get too close. Separation is mathemat-
ically defined in equation 5.



s⃗i = −
∑

bj∈Ni

(p⃗i − p⃗j) (5)

5.3 Cohesion
Complementary to the separation force, the cohesion force
has the role of keeping the swarm together. This means that
this force will determine each agent to move towards the
mean position of its neighbors. This is expressed mathemat-
ically in equation 6 (the mean position) and equation 7 (the
actual cohesion force)

c⃗i =
1

|Ni|
∑

bj∈Ni

p⃗j (6)

The cohesion force, thus, becomes:

k⃗i = (c⃗i − p⃗i) (7)

5.4 Alignment
The role of this force is to make sure that the velocities of the
swarm somewhat match each other, so that the swarm moves
roughly in the same direction. This force is inspired by the
natural tendency of flock animals to try to match their velocity
to the velocity of their peers. Mathematically, we can express
the alignment force as follows:

m⃗i =
1

|Ni|
∑

bj∈Ni

v⃗j (8)

5.5 Combining the steering forces
All the steering forces applicable on agent i can be linearly
combined into one steering force, as follows:

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i (9)

The optimal values for the real parameters S,K,M de-
pends on the problem, and can be determined using optimiza-
tion techniques, such as genetic algorithms [3].

Each time instance the steering force increments the value
of the boid’s velocity, as shown in equation 10.

v⃗i := v⃗i + f⃗i (10)

Equation 11 shows how the position of the boid gets incre-
mented using the velocity in time instances of size ∆t.

p⃗i := p⃗i + v⃗i∆t (11)

6 Algorithms Description
6.1 Static Obstacle Avoidance
One of the ways in which the boids model needs to be ex-
tended in order to solve the proposed problem is the addition
of obstacle avoidance capabilities. As presented in the prob-
lem formalization section, the area between the spawn point
of the prey and the target is filled with randomly generated
static obstacles. A swarm agent, either a prey or predator,

hitting any of these obstacles gets destroyed. Thus, the suc-
cess rate of any of the 2 categories of swarm control algo-
rithm depends on the chosen obstacle avoidance strategy. The
following sections will explain in detail the various obstacle
avoidance strategies proposed by this paper.

Outwards force field
Following the direction indicated by the original boids pa-
per, one of the obstacle avoidance models that this paper pro-
poses is a force field radiating outwards from each obstacle
[11]. The proposed outwards force field takes the gravita-
tional force field as a source of inspiration, but rather than
radiating inwards, as is the case for gravity, this force field
radiates outwards, rejecting any agents that come too close
[8].

Since we are modelling the outwards force field as an in-
verse gravitational field, we want the strength of the field to
be inversely proportional to the square distance of the agent
with respect to the center of the field. We can thus represent
the force field as a vector field with the following formula,
expressed in a coordinate system tied to the static obstacle.

g⃗(r⃗) =
wg

∥r⃗∥2
r⃗ (12)

Figure 1: (Left) Outwards force field around obstacle. (Right) Agent
located in an outwards force field.

The formula defines a force field that acts on agents re-
gardless of their distance to the static obstacles. Even though
the strength of the force field decreases with the distance, we
would ideally want to confine the force field within a certain
area around the static obstacle. This helps avoid unnecessary
movements caused by obstacles far away from the agent and,
hence, of no risk of collision with it. As a result of this, the
extension to the previous formula in equation 13 is proposed.

g⃗(r⃗) =

{
wg

∥r⃗∥2 r⃗, if ∥r⃗∥≤ d

0, otherwise
(13)

The last aspect that we need to see is how to introduce the
force field into our pre-existing model of the boid. This is
achieved by adding the sum of all force fields as a weighted
term to the boid steering force defined initially in equation
17.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i +G
∑
j∈O

g⃗(p⃗i − o⃗j) (14)



where: G = real coefficient
p⃗i = the position of boid i
o⃗j = the position of obstacle j

Spiral force field
The outwards force field presented in the previous section has
one big disadvantage. When the agent approaches it frontally,
rather than altering the agent’s direction, it only slows the
agent down, which is not desirable for achieving obstacle
avoidance.

The attempt this paper proposes with regard to tackling the
issue is a spiral force field. This means that rather than hav-
ing a force field radiating outwards, we alter its direction to
make it radiate in a spiral shape, essentially creating a reverse
’whirlpool’. The formula in equation 15 corresponds to gen-
erating such a force field.

h⃗(r⃗) = (rx − ry )⃗i+ (rx + ry )⃗j +
wh

∥r⃗∥2
r⃗ (15)

Figure 2: (Left) Spiral force field around obstacle. (Right) Agent
located in a spiral force field.

As in the case of the outward force field, we would like to
be able to clamp the force field once the agent is outside a
certain area around the obstacle. In a similar fashion, this can
be achieved by extending the formula of the force field in the
following way.

h⃗(r⃗) =

{
(rx − ry )⃗i+ (rx + ry )⃗j +

wh

∥r⃗∥2 r⃗ ≤ d

0, otherwise
(16)

Integrating the spiral force field into the boids computa-
tional model is done in a similar fashion as for the outwards
force field.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i +H
∑
j∈O

h⃗(p⃗i − o⃗j) (17)

Directional spiral force field
One issue with the spiral force fields presented in the previ-
ous subsection is that, if two obstacles are relatively close to
each other, the rotating component in the region between 2
obstacles might get cancelled.

The directional spiral force field tries to solve this, by ad-
justing the direction of the spirals, based on the boid’s steer-
ing direction. Rather than cancelling each other, the 2 force
field should act together to provide a velocity boost to the
boid. Equation 20 shows how this can be achieved by alter-
nating the direction of the spiral as either clockwise (equation
19) or counter-clockwise (equation 18), based on the veloc-
ity of the boid and the relative position of the obstacle to the
boid.

h⃗a(r⃗) = (rx − ry )⃗i+ (rx + ry )⃗j +
wh

∥r⃗∥2
r⃗ (18)

h⃗c(r⃗) = (rx + ry )⃗i+ (ry − rx)⃗j +
wh

∥r⃗∥2
r⃗ (19)

h⃗dir(r⃗, s⃗) =


h⃗a(r⃗), ∥r⃗∥≤ d ∧ s⃗ · r⃗ < 0

h⃗c(r⃗), ∥r⃗∥≤ d ∧ s⃗ · r⃗ ≥ 0

0, otherwise
(20)

The directed spiral force field is integrated with the boid’s
model in the same way as the spiral force field, as shown by
equation 21.

f⃗i = Ss⃗i+Kk⃗i+Mm⃗i+H
∑
j∈O

h⃗dir(p⃗i− o⃗j , t⃗− p⃗i) (21)

Steer away strategy
The other direction in terms of collision avoidance that the
original paper on boids recommends is trying to avoid obsta-
cles by steering away from imminent collisions [11]. Pur-
suing the recommendation, this paper proposes an algorithm
that always assumes a constant trajectory for the boid and, if
an obstacle is found on the assumed constant trajectory, the
boid’s trajectory is slightly altered.

Figure 3 shows the boundaries of the agent’s trajectory
within which the obstacle will be hit. The first step that needs
to be taken, in order to determine whether or not the agent will
hit the obstacle is finding those boundaries. This is equivalent
to finding the angle between the collision axis (axis uniting
the center of the agent with the center of the obstacle) and
one of the boundaries. This angle, named α is drawn in Fig-
ure 3.

By applying simple geometry based on the structure pre-
sented in figure 3, we obtain the following formula for the
tangent of the angle α:

tan(α) =
S1

l1
=

S2

l2
(22)

From equation 22 we can, then, derive the following:

S1 + S2 = tan(α)(l1 + l2) ⇐⇒ (23)

tan(α) =
S1 + S2

l1 + l2
⇐⇒ α = tan−1(

S1 + S2

l1 + l2
) (24)

Now that the boundary trajectories are known, we need to
determine whether or not the agent’s trajectory is within those
boundaries. If it is the case, then we know that the obstacle
is on a collision course and, thus, the trajectory of the agent



Figure 3: Geometry of the maximum collision angle. Yellow - Ob-
stacle, White - Agent

Figure 4: Geometry of the trajectory angle. Yellow - Obstacle,
White - Agent

needs deviation. So let us see how the trajectory angle β, that
can be seen in figure 4 can be determined.

tan(β) =
sin(β)

cos(β)
=

|v⃗×∆r⃗|
|v⃗||∆r⃗|
v⃗·∆r⃗

|v⃗||∆r⃗|
=

|v⃗ ×∆r⃗|
v⃗ ·∆r⃗

(25)

Based on the derived equations, we can formulate the
mathematical condition for when the agent is on a collision
course with an obstacle. As it can be geometrically seen in the
figures 3, 4, in order for the agent to be on a collision course
with the obstacle the trajectory angle needs to be within the
boundary angle. This translates mathematically to the follow-
ing.

−α ≤ β ≤ α ⇐⇒ (26)
− tan(α) ≤ tan(β) ≤ tan(α) ⇐⇒ (27)

−S1 + S2

l1 + l2
≤ |v⃗ ×∆r⃗|

v⃗ ·∆r⃗
≤ S1 + S2

l1 + l2
⇐⇒ (28)

|v⃗ ×∆r⃗|
|v⃗ ·∆r⃗|

≤ S1 + S2

l1 + l2
(29)

So we know that the agent is on a collision course when-
ever |v⃗×∆r⃗|

|v⃗·∆r⃗| ≤ S1+S2

l1+l2
holds. The next step is to develop an

update rule that enables the agent to steer away from the ob-
stacle in order to avoid collisions. Let γ represent the value
of the small angle adjustment that we want to make to the
current course. Since we always want to steer towards the di-
rection that will lead to the fastest avoidance, our steer will be
positive whenever the current course is ’above’ the collision
axis and negative otherwise. Using a 2D rotational matrix
R(x), we can mathematically encode the update rule as fol-
lows.

v⃗ :=

{
R(γ)v⃗, if v⃗ ·∆r⃗ ≥ 0

R(−γ)v⃗, otherwise
(30)

Kitchen sink approach
Since the force field methods and the steer away method are
not mutually exclusive, the kitchen sink approach proposes
implementing a combination. More precisely, in the kitchen
sink approach, the boid makes use of both the directional spi-
ral force field and the steer away strategy in order to avoid
collisions.

6.2 Prey Control Algorithms
Another direction in which the boids swarm model presented
so far can be extended is as a prey swarm. This means that
the steering force needs to be modified in such a way that the
boids move towards the target area, as shown in equation 31.

f⃗i = Ss⃗i+Kk⃗i+Mm⃗i+col. avoid. term+T (⃗t− p⃗i) (31)

While simply moving towards the target area might be
enough in a safe environment, adding predators to the game
means that the prey control algorithm will need to follow a
strategy to avoid them. Hence, the next subsections discuss
strategies that the prey swarm can use to avoid the predator
swarm.

Jump Strategy
The first strategy that this paper proposes is the jump strat-
egy. This is a very basic strategy that involves making the
prey agent ’jump’ in a random direction, whenever a predator
agent is in its proximity. Hence, the ’jumping force’ can be
defined as in equation 32.

j⃗i =

{
random_dir(), if∥p⃗k − p⃗i∥≤ p_d for some k ∈ P

0, otherwise
(32)

where: P = the set of all predators
p_d = the prey’s perception distance
r⃗i = the position of the prey agent
r⃗k = the position of some predator agent

Integrating the jump strategy into the boid model is, then,
as simple as adding the ’jumping force’ as a weighted term to
the resulting steering force, as shown in equation 35.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i + C.A. + T (⃗t− p⃗i) + Jj⃗i (33)

Evasive Strategy
The evasive strategy builds upon the jump strategy. Rather
than ’jumping’ in a random direction, the evasive strategy
proposes that the prey agent moves away from all of the
predator agents in its proximity. To confirm to this, we will
define the corresponding force as the sum of all relative posi-
tion vectors between the agent and the predators in its prox-
imity, as represented by equation 34

e⃗i =
∑
k∈Np

(p⃗i − p⃗k) (34)



where: Np = the set of all nearby predators
p⃗i = the position of the prey agent
p⃗k = the position of a nearby predator agent

Same as before, the integration of the evasive strategy in
the model is simple and can be achieved by adding the evasive
force as a weighted term.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i + C.A. + T (⃗t− p⃗i) + Ee⃗i

(35)

Split Strategy
In contrast to the evasive strategy, the split strategy tries to
confuse the predators by splitting the swarm into 2. With-
out an advanced control algorithm that tackles this case, the
predator swarm will chase only one of the 2 sub-swarms, or
it might even fail to chase any of them.

The 2 sub-swarms are obtained based on the parity of the
agent id. Even ids become part of the first sub-swarm, while
odd ids are part of the second sub-swarm. An anti-neighbour
force is also introduced. The anti-neighbour force has the
role of pushing away neighbours that are part of different sub-
swarms, with the purpose of facilitating the physical separa-
tion of the 2 swarms.

We will start by defining c⃗ai, which represents the mean
position of the neighbours of agent i that are part of a different
subswarm.

c⃗ai =
1

|Ai|
∑
j∈Ai

p⃗j (36)

Based on the center-position, we define the anti-neighbor
force a⃗i as in equation 37.

a⃗i = p⃗i − c⃗ai (37)
The anti-neighbour force is introduced in a similar fashion

as before.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i + C.A. + T (⃗t− r⃗i) +Aa⃗i (38)

Note that the anti-neighbour force is only applied for a lim-
ited time ∆t until the swarms are fully separated.

Explode Strategy
The explode strategy takes a different approach from all the
other strategies above. The idea behind this strategy is to
make the swarm ’explode’, i.e. increase the distance in-
between the swarm members, whenever the predators ap-
proach the prey swarm. Unlike the other strategies, the ex-
plode strategy requires the prey swarm to have communica-
tion capabilities since each prey agent needs to be able to in-
form the other agents in its swarm whenever a predator is
detected.

The explosive force is triggered within the entire swarm,
whenever one of the prey agents detects a predator. The force
acts on each of the swarm agents from the direction of the
swarm center, as illustrated by equation 39.

X⃗i =
p⃗i − c⃗

∥p⃗i − c⃗∥2
(39)

The explosive force only acts for a pre-defined period of
time ∆t after it was triggered. When the time expires, the
explosive force is simply removed from the boid model. As
for all of the other forces, extending the boid model with the
explode strategy reduces to adding the explosive force as a
weighted term to the resulting steering force.

6.3 Predator Control Algorithm
The last direction in which the boids model is extended is
predator control. The purpose of this family of control al-
gorithms is to enable the predators to hunt their prey effi-
ciently and, thus, prevent the prey swarm from reaching its
objectives. In order to create an efficient predator control al-
gorithm we need to create a good strategy that enables the
predator swarm to intercept and hunt down as many members
as possible from the prey swarm. In light of this, the follow-
ing subsections will explore different strategies that can be
used to achieve this.

Center Steering Strategy
The first and the most simple predator strategy is the center
steering strategy. This strategy consists of getting all of the
predator agents to move towards the center of the prey swarm.
This is implemented in a similar fashion to the way the prey
control algorithm is made to gravitate towards the target area.
The formula of the steering force is expressed in equation 52.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i + C.A. + T
1

|B|
∑
j∈B

(p⃗j − p⃗i)

(40)

Proportional Navigation Strategy
An improvement over the center steering strategy is the pro-
portional navigation strategy. This strategy is inspired by the
well-known PNG law used by missiles to intercept their tar-
gets [13], but it is adapted to the boid’s computational model.

The idea behind this strategy is to predict where the prey
swarm is heading and, based on that, adjust the direction of
the predator swarm in order to intercept it. For this strategy to
be applicable, the predator swarm needs to be able to detect
the instant velocity of each of the prey.

While the traditional PNG law outputs the acceleration that
should be applied to the pursuer in order to intercept the tar-
get, the strategy proposed by this paper outputs the velocity
v⃗p that each predator boid should aim to have in order to in-
tercept the prey.

The velocity law is derived mathematically from the colli-
sion pyramid (see figure 5), which is a geometrical structure
that indicates where 2 point-masses would collide assuming
that they maintain their current velocity. Since none of the
swarms maintain their velocities, the velocity law is used on
every timestamp and the resulting velocity is integrated into
the predator boid’s steering force.

We will now go on to derive the mathematics behind this
strategy. The first aspect that we need to observe is that in



Figure 5: Collision pyramid.

order for the predator agent to collide with the prey swarm
center, both entities need to reach the expected collision point
at the same time. Thus, we can write the following:

vp =
dp
∆t

⇐⇒ ∆t =
dp
vp

(41)

vt =
dt
∆t

⇐⇒ ∆t =
dt
vt

(42)

dp
vp

=
dt
vt

(43)

Using the law of sines [9], we can express the angle α be-
tween the direction of the predator and the line of sight (i.e.
the direction of the prey from the perspective of the predator)
in the following way:

dt
sin(α)

=
dp

sin(β)
=

dp

∥k⃗ × l⃗u∥
(44)

sin(α) =
dt
dp

∥k⃗ × l⃗u∥=
vt
vp

∥k⃗ × l⃗u∥ (45)

The unit vector u⃗ defining the direction that the predator
agent needs to follow in order to intercept the prey can be
found by rotating the unit vector l⃗u defining the line of sight
by α, which is expressed mathematically as follows.

u⃗ = R(α)⃗lu =

[
cos(α) − sin(α)
sin(α) cos(α)

]
l⃗u = (46)

=

[ √
1− sin(α)2 − sin(α)

sin(α)
√
1− sin(α)2

]
l⃗u (47)

The next step consists of determining the velocities for
the predator agent and the prey swarm center. The speed
of the predator agent is constant and chosen as a parameter
for the algorithm. We express this mathematically as vpu⃗,
where vp = const. The velocity of the prey swarm center is
more complicated, however. Since the prey swarm center is
an aggregated entity, its corresponding velocity needs to be

approximated from the velocities of each of the swarm mem-
bers. Ideally, we would like to compute an approximation
that does not change trajectory too much, in order to obtain
smoother behaviour. It is known that the prey swarm will be
seeking to reach the target area. Thus, the approximation will
be computed by projecting the average velocity of the swarm
in the direction of the target area. Mathematically, this ap-
proximation is presented in equation 48. Based on the ap-
proximated velocity vector, the absolute speed vt of the prey
swarm center and the direction unit vector k⃗ can be obtained,
as shown in equation 49.

v⃗t = (
1

|B|
∑
i∈B

v⃗i)
t⃗− 1

|B|
∑

i∈B p⃗i

∥t⃗− 1
|B|

∑
i∈B p⃗i∥

(48)

vt = ∥v⃗t∥, k⃗ =
v⃗t
∥v⃗t∥

(49)

Now that all relevant equations are laied out, we can put
together the control algorithm. The speed of the predator vp
is a pre-configured constant. The approximated speed of the
prey swarm vt can be derived from equation 48, while the
unit vector k⃗ indicating the direction of the prey swarm can
be derived from equation 49. The line of sight vector l⃗u can
easily be determined by subtracting the relevant position vec-
tors and normalizing the result. Based on these quantities, as
well as equation 47, the unit vector u⃗ indicating the direction
towards which the predator needs to travel can be computed
as follows.

cu =
vt
vp

∥k⃗ × l⃗u∥ (50)

u⃗ =

[ √
1− c2u −cu
cu

√
1− c2u

]
l⃗u (51)

The last step we need to look at is how to integrate every-
thing into the existing boids model. In a similar fashion to all
other algorithms presented in this paper, extending the boids
model with the proportional navigation strategy boils down to
adding the desired predator velocity vpu⃗ as a weighted term
to the boid’s steering force.

f⃗i = Ss⃗i +Kk⃗i +Mm⃗i + C.A. + Tvpu⃗ (52)

Clustering Strategy
The last proposed strategy for the predator swarm is the clus-
tering strategy. This kind of strategy arises from the need to
enable the predator swarm to counter the split and explode
strategies, that split the prey swarm into sub-swarms.

The idea behind the clustering strategy is to make use of
a clustering algorithm to identify sub-swarms and then act
accordingly, by splitting the predator swarm in a way that en-
ables chasing the sub-swarms simultaneously. The clustering
algorithm that this paper proposes is K-Means [14]. While
K-Means enables us to find which prey belongs to each sub-
swarm (a.k.a. cluster), there is still no way to determine how
many sub-swarms / clusters to expect.

The standard way to approach the problem of finding the
ideal number of clusters for K-Means is a method called



’knee point detection’ [17]. The method involves running K-
Means for different values of k and, then, computing the SSE
(sum of squared errors) for each of the centroids determined
by K-Means. The ’knee point’ or ’the inflexion point’ is rep-
resented by the value of k after which, if we increase k, there
will be only a small drop in SSE. One popular algorithm de-
veloped to solve this problem is ’Kneedle’, and it is what the
proposed implementation uses [12]. Multiple clustering algo-
rithms could theoretically be used, but exploring all of them
is beyond the scope of this research.

7 Experimental Results
As presented in the methodology section, all algorithms pro-
posed in this paper were implemented and run within a self-
developed simulator/simulation framework that allows for the
creation of benchmarks. Various types of experiments were
run, in order to gain more insight into how the proposed algo-
rithms work. The setup and results of those experiments are
presented in the following sections.

The 2 benchmarked characteristics of the algorithms were
the success rate and the average trial time. The success rate
represents the average percentage of prey agents that man-
aged to reach their target, while the average trial time mea-
sures how long it takes on average for all the prey agents to
get to the target. Hence, a higher success rate and a lower av-
erage time indicate that the prey was successful. In contrast,
a lower success rate and a higher average time mean a more
successful predator, given a competitive scenario.

It is important to take into account that the outcomes of
the experiments were to a large extent influenced by the cho-
sen hyper-parameters for all the different algorithms. Finer
tuning the hyper-parameters of some of the algorithms could
potentially lead to better performances, however, this is left
for further research. The exact hyper-parameters that were
used in the experiments can be found in the appendix.

7.1 Obstacle Avoidance Experiment
The purpose of this experiment was to explore how the dif-
ferent proposed obstacle avoidance algorithms compare with
each other. Since for this experiment predator-prey interac-
tions were of no interest, the testing environment consisted of
only a prey swarm trying to reach the target area.

The algorithms that were benchmarked in this experiment
were the following: baseline (prey swarm without obstacle
avoidance, used as a reference point), outwards field, spiral
field, directional spiral field, steer away, kitchensink (steer
away + directed spiral field). The benchmark was performed
in both environments with 10 obstacles (figure 6) and 30 ob-
stacles (figure 7).

All algorithms perform better than the baseline, which
means that all of them succeed at achieving obstacle avoid-
ance to a certain extent. The best 2 performing algorithms
seem to be the classical outwards field and the kitchen sink
approach, however, the classical outwards field is somewhat
faster.

It is interesting to notice that the spiral field algorithms de-
crease drastically in performance as the number of obstacles
increases. From empirical observations, a likely explanation

is that situations with many ’spiral field obstacles’ around the
agent tend to create a sort of ’vortex deadlocks’, trapping the
agent inside them. This would require further analysis, since
being able to identify those deadlocks could boost the perfor-
mance of this class of algorithms.

Figure 6: Obstacle avoidance benchmark. Results averaged over
1000 trials in environments with 10 random obstacles.

Figure 7: Obstacle avoidance benchmark. Results averaged over
1000 trials in environments with 30 random obstacles.

7.2 Prey vs Predator Experiment
This experiment was meant to analyse how different prey and
predator control algorithms interact with each other, in order
to gain insight into their performance and behaviour.

The prey algorithms that took part in the benchmark were
the following: baseline (prey swarm with obstacle avoidance
but no predator evasion strategy), evasive, explode, explode-
evasive (combination of explode and evasive), jump, split,
split-evasive (combination of split and evasive). All prey al-
gorithms used the kitchensink approach for obstacle avoid-
ance.

In contrast, the predator algorithms that were benchmarked
were the center steering strategy and the proportional naviga-
tion strategy. All predator algorithms used the outwards field
obstacle avoidance.

The benchmarks were run on 1000 trials, in both situations
with no obstacles (see figures 8, 10) and situations with 10
randomly positioned obstacles (see figures 9, 11).

The first aspect to notice from this experiment is that, ex-
cept for the jump strategy, all other strategies performed bet-
ter than the baseline. This means that, except for the jump
strategy, all other prey control algorithms are viable solutions.
The jump strategy was not the best heuristic and it was only
chosen as a starting point, so the result makes sense.

Out of all prey control algorithms, the explode-evasive and
the split-evasive strategies seem to have the highest success



rates across all test cases. This is consistent with the the-
ory, since neither the center-steering algorithm nor the pro-
portional navigation algorithm has a good way to deal with
sub-swarms.

One other aspect to notice is that the evasive strategy
seems to be particularly vulnerable to the proportional nav-
igation strategy. The proportional navigation strategy, how-
ever, seems to perform worse in obstacle environments. This
is again, expected since the obstacle interferes with the colli-
sion pyramid.

Figure 8: Prey control algorithms benchmarked against center steer-
ing predators. Results averaged over 1000 trials in environments
without obstacles.

Figure 9: Prey control algorithms benchmarked against center steer-
ing predators. Results averaged over 1000 trials in environments
with 10 random obstacles.

Figure 10: Prey control algorithms benchmarked against propor-
tional navigation predators. Results averaged over 1000 trials in a
environments without obstacles.

7.3 Cluster Strategy
The cluster strategy proved too computationally expensive for
any relevant benchmarks to be performed. A less computa-

Figure 11: Prey control algorithms benchmarked against propor-
tional navigation predators. Results averaged over 1000 trials in en-
vironments with 10 random obstacles.

tionally intensive way of clustering should be researched in
order to facilitate experiments.

8 Responsible Research
As for any research project the reproducibility of the experi-
ments is very important in order to facilitate peer review and
allow others to make sure that the conclusions derived as a
result of the research are valid. While this paper conceptually
explains all algorithms that were used in the experiments, as
well as the mathematics that goes behind them, implementa-
tion details are not discussed. On top of that, certain details
with regard to how the simulation environment works, such
as the obstacle field generator, are also not tackled in this pa-
per, due to them not being central to the research questions at
hand. All of those factors lead to a situation in which, based
only on this paper, the results might not be reproducible.

In order to tackle this issue, the simulated environment that
was used for the experiments, together with all of the algo-
rithm implementations were released to the public in an open
source manner. In this way, the reader of the paper can look
over the code, in order to see how the algorithms were ex-
actly implemented. The user can also use the simulated en-
vironment to test his own algorithms and, possibly, perform
further research. A link to the repository that contains the
simulated environment can be found in the appendix.

9 Conclusions and Future Work
The goal of this research was to explore various swarm con-
trol algorithms in a target-oriented predator-prey situation
with an obstacle-filled environment. The theoretical back-
ground that was chosen for the research was the boids com-
putational model. In light of this, the research was split into
2 parts.

The first part saw the creation, exploration and benchmark
of obstacle avoidance algorithms, common for both predator
and prey situations. All algorithms performed better that the
baseline (which consisted of no obstacle avoidance), which
means that the proposed algorithms worked. The efficiency of
the algorithms could be further improved if hyper-parameter
optimization was performed, which can be a future research
direction. On top of that, a mathematical analysis of deadlock
situations (situations in which the agent gets stuck) could lead
to more promising results, especially when it comes to the
spiral field algorithm.



The second part of the research dealt with the arms race
style development, exploration and benchmarking of prey and
predator algorithms. Most proposed algorithms performed
better than the baseline. The jump prey heuristic turned out
not to work, and I believe that no more effort should be spent
in its direction. The cluster predator strategy was too compu-
tationally intensive to benchmark. The creation of a cluster-
based predator that is easier to simulate would represent an in-
teresting continuation of the project. As in the case of obsta-
cle avoidance, hyper-parameter optimization should be per-
formed to boost the capabilities of the proposed algorithms.
Neural network based approaches to both the prey swarms
and the predator swarms could also be promising continua-
tions of the research.

A Problem Formalization

Figure 12: Explanation of the problem environment

B Notation Explanations
B.1 Related Work

• F - force in the parallel spring-damper system [N]
• Fspring - force in the spring [N]
• Fdamper - force in the damper [N]
• k - elastic constant [N/m]
• l - current elongation [m]
• l0 - initial elongation [m]
• c - damping coefficient [N*s / m]
• a⃗i - target acceleration for the agent, according to the

control algorithm [m/s2̂]
• mi - mass of agent i [kg]
• Ni - the neihbours of agent i

• F⃗ij - force in the damper between agent i and agent j

B.2 Theoretical Background
• bi - boid i
• p⃗i - position vector of boid i
• v⃗i - velocity vector of boid i

• N⃗i - neighbors of boid i

• c⃗i - mean position of neighbors
• s⃗i - separation force of boid i

• k⃗i - cohesion force of boid i
• m⃗i - matching force of boid i

• f⃗i - steering force of boid i

B.3 Algorithm Development
• S,K,M,A, T,E,G,H, J,X - real coefficients
• g⃗(r⃗) - outwards force field
• wg - outwards field strength
• d - threshold distance in various contexts
• h⃗(r⃗) - spiral force field
• wh - spiral force field outwards component strength

• h⃗a(r⃗) - anti-clockwise spiral force field

• h⃗c(r⃗) - clockwise spiral force field

• h⃗dir(r⃗, s⃗) - directional force field
• s⃗ - steering direction (difference between the target’s po-

sition vector and the boid’s position vector)

• t⃗ - position vector of target area
• o⃗j - position vector of object j
• S1 - the radius of the agent (see diagram)
• S2 - the radius of the obstacle (see diagram)
• l1 - distance between agent center and boundary inter-

section point (see diagram)
• l2 - distance between obstacle center and boundary in-

tersection point (see diagram)
• α - boundary angle (steer away context)
• β - actual steering angle with respect to obstacle (i.e. if β

is within +α and −α, the agent will hit the target (steer
away context)

• ∆r⃗ - relative position vector between agent and obstacle
• R(x) - 2D rotational matrix
• γ - small steer away adjustment angle
• Ai - set of anti-neighbors of agent i
• C.A. - genetic collision avoidance term.

• f⃗i - steering force driving the agents.
• B - set of all prey boids.
• P - set of all predators.
• e⃗i - evasive force
• c⃗ai - mean position of neighbors of agent i that are part

of a different sub-swarm.
• a⃗i - anti-neighbor force
• dt - distance between target and expected collision point

(in the context of the collision pyramid).
• dp - distance between predator and expected collision

point (in the context of the collision pyramid).
• vp - predator / pursuer speed
• vt - approximated target / prey speed



C Experiments hyper-parameter list
• M - 0.05

• K - 0.005

• S - 0.05

• wg - 10

• G - 1.0

• H - 1.0

• T - 0.1

• wh = 10

• E - 0.01

• X - 20.0

• explosion time - 50

• J - 3.0

• A - 200.0

• anti neighbor time - 30.0

• anti neighbor distance - 50.0

• perception distance - 30

• swarm distance - 3

• number of prey agents - 6

• number of predator agents - 15

D Simulator Repository
The simulator can be found on a pub-
lic github repository at the following link
https://github.com/catalinlup/SwarmResearchSimulator.
More details about how to use it can be found in the
README.md section.
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