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Chapter 1

Introduction

In the course of diseases like arthritis and osteoporosis bone quality might
degenerate substantially and patients experience chronic pain and loss of
function of the affected joints. One of the possible treatments of such dis-
eases is joint replacement. Joint replacement is a surgical technique which
allows to remove bone, damaged by the disease and replace it with a syn-
thetic implant. This implant should ideally restore the function of the joint
and release the pain caused by the disease.

The two major techniques used for the fixation of such implant is ce-
mented fixation and bone ingrowth. The advantage of the cemented implants
is that the initial fixation is achieved immediately. However, the durability of
the cemented fixation might be affected by high stresses in the cement layer
that cause damage accumulation (Lacroix et al. 2000). Bone ingrowth refers
to bone formation within a porous surface structure of an implant (Kien-
apfel et al. 1999). Bone ingrowth has been known as one of the implant
fixation techniques for about a century. In case a rigid interlocking between
the implant surface and the host bone is achieved, this type of fixation could
potentially maintain itself for a very long time. Bone would continuously
remodel, thus healing itself from the accumulating damage. However, there
exist many factors that can prevent ingrowth. For instance, poor implant de-
sign (Søballe et al. 1991, Luo et al. 1999), small-to-fit implant (Kendrick II
et al. 1995) or inadequate surgical techniques (Søballe et al. 1991, Otani and
Whiteside 1992, Dalton et al. 1995) cause appearance of soft tissue at the in-
terface, which might lead to aseptic loosening. Radiolucent lines, which may
be an indication for long-term loosening, have been observed at bone implant
interfaces even in up to 96 % of glenoid replacements (Lazarus et al. 2002).
The consequence of component loosening can be dramatic, as the loosened
component cannot always be replaced because of bone deficiencies (Cofield
1994). Therefore, there is a great need to improve our understanding of the
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2 Introduction

bone ingrowth process.
Both macroscopic and microscopic features of an implant influence the

bone ingrowth process. For instance, using numerical simulation, Simon et al.
(2003) came to the conclusion that the lower the stiffness of the implant, the
lower the peak magnitude of the bone-implant relative micromotions. Lacroix
et al. (2000) investigated the influence of the peg configuration for a glenoid
component and concluded that a peg anchorage system is superior for nor-
mal bone, whereas a keel anchorage system is superior for rheumatoid bone.
Murphy et al. (2001) also studied the influence of the positioning of the
component’s keel, and showed the advantage of a geometrical offset of the
keel component. The size and the shape of the microscopic features of the
implant surfaces also influence tissue formation. There is a number of animal
studies that compare bone apposition on different non-functional implants in
vivo. For instance, canine models were used to investigate the influence of
pore size on the strength of the fixation (Welsh et al. 1971, Robertson et al.
1976, Bobyn et al. 1980, Cook et al. 1985 ). These studies revealed that
the optimum pore size range is from 100 to 400 μm. Studies of Thomas and
Cook (1985), Buser et al. (1991), Cochran et al. (1998) and Simmons et al.
(1999) conclude that increasing the surface roughness leads to increased bone
appositions and bone-implant contact.

For so far, most of the research on bone ingrowth was based on clinical
and animal experiments, or in vivo and in vitro cell culture studies. This
was not only a matter of preference for the researchers, but also a require-
ment, imposed by governments on implant producing orthopedic companies.
And indeed, a repetitive success in animal and subsequent clinical tests is
a guarantee for a safe performance of a given component. Besides, this is
the only way to study aspects like biocompatibility, drug accelerated bone
ingrowth or influence of the implant coating. However, there is a wide variety
of questions that either can not or can hardly be answered by experiments.
Current experimental techniques do not always allow a good insight into the
local processes that take place at the bone-implant interface. Post-mortem
retrievals from humans provide limited information on kinetics and rate of
the bone ingrowth process. During animal and clinical experiments it is quite
difficult to control the mechanical environment within desired limits, whereas
the experiments themselves are very costly and time and labor consuming.
In addition, ethical regulations limit usage of animals in the experiments.
Contrary to experiments, computational models can simulate a very com-
plicated mechanical and biological environment. For instance, using finite
element simulation, Viceconti et al. (2001) found out that even a thin layer
of soft interface tissue can cause instability of an implant. Simmons et al.
(2001) analyzed strains within an interface tissue and concluded that the
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porous surface provides a more favorable mechanical environment for bone
differentiation than a less porous plasma coating, which was also observed
experimentally (Simmons et al. 1999). Also using finite element method,
Spears et al. (2000) successfully analyzed the influence of certain patient
activities on bone ingrowth of non-cemented acetabular cups.

The present thesis presents a set of numerical studies that aim at accu-
rate modelling of the bone ingrowth process and investigating the influence of
macro- and microscopic features of an orthopedic implant on bone ingrowth.

In Chapter 2 we study the feasibility of bone ingrowth into a glenoid
component with respect to the influence of primary fixation, elastic proper-
ties of the backing and friction of the bone prosthesis interface. In this study
we assume that tissue differentiation within the porous surface of the backing
can be modelled similar to bone fracture healing, while bonding between the
implant and the bone is controlled exclusively by the relative bone-implant
micromotions.

Chapter 3 presents a poroelastic formulation for finite element modelling
of hydrated tissues. Biological tissues such as cartilage, artery walls, fibrous
tissue and bone contain large amounts of water and are subject to large de-
formations. This results in a complex time dependent nonlinear behavior.
In this, rather methodological study we investigate different approaches to
model the poroelastic behavior of those tissues. The study demonstrates
an implementation of a poroelastic finite element formulation within a com-
mercial software package. This approach allows to combine a poroelastic
formulation, customized for the biomechanical problems, with rich function-
ality of a general purpose commercial finite element software.

Chapter 4 examines the effect of relative micromotions, implant coating
geometry and interface thickness on biophysical stimuli at the bone implant
interface. In this study, the model’s geometry replicates a detailed three-
dimensional geometry of the interface tissue, adjacent to the porous surface
of the implant. Application of different levels of interface micromotions al-
lows mimicking the mechanical environments that exist within the interface
tissue. The tissue deformation is simulated using the previously developed
poroelastic formulation. The goal of the study is to compare the biophysi-
cal stimuli inside the interface tissue adjacent to three implant surfaces. The
considered implant surfaces are porous tantalum backed surface, implant sur-
face coated by sintered titanium alloy spheres and a smooth surface.

Chapter 5 presents a tissue differentiation model of bone fracture heal-
ing. Bone fracture healing is not the subject of this dissertation, however
tissue differentiation at the bone implant interface is very similar to tissue
differentiation inside fracture callus. Therefore the model is tested on well-
documented bone fracture healing animal studies. The model is presented
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as a set of partial differential equations that describe different cellular and
tissue processes. The considered processes are cell migration, proliferation,
differentiation and replacement. The cells also produce and resorb tissues.
Most of the cellular processes are regulated by the local mechanical envi-
ronment, which is simulated using the poroelastic formulation. The finite
element formulation of the model equations is also presented. The model is
calibrated and validated using in vivo experiments from the literature. The
model is also used to study the effect of loading on the healing process.

Similarly to Chapter 4, Chapter 6 studies the effect of implant surface
geometry, interface thickness and micromotions, but in this case simulation
of bone ingrowth is performed. The main assumption is that bone ingrowth
can be simulated the same way as bone fracture healing. Therefore, the
previously developed bone fracture healing model is used to simulate tissue
differentiation at bone implant interfaces. The study is used to compare
tissue differentiation kinetics for three implant surfaces, namely a surface
covered with sintered spheres, a porous tantalum surface and a smooth sur-
face.

The manuscript is finalized with conclusions from the whole thesis and
recommendations for the future potential research directions.



Chapter 2

Bone Ingrowth Simulation for a
Concept Glenoid Component
Design∗

Abstract

Glenoid component loosening is the major problem of total shoulder arthro-
plasty. It is possible that uncemented components may be able to achieve su-
perior fixation relative to cemented components. One option for uncemented
glenoid component is to use porous tantalum backings. Bone ingrowth into
the porous backing requires a certain degree of stability to be achieved di-
rectly post-operatively. This paper investigates feasibility of bone ingrowth
with respect to the influence of primary fixation, elastic properties of the
backing and friction at the bone prosthesis interface. Finite element models
of three glenoid components with different primary fixation configurations
are created. Bone ingrowth into the porous backing is modelled based on the
magnitude of the relative interface micromotions and mechanoregulation of
the mesenchymal stem cells that migrated via the bonded part of the inter-
face. The study investigates the feasibility of bone ingrowth into the porous
tantalum backing and the influence of primary fixation and material proper-
ties of the backing on the ingrowth process. Primary fixation had the most
influence on bone ingrowth. The simulation showed that its major role was
not to firmly interlock the prosthesis, but rather provide such a load distri-
bution, that would result in reduction of the peak interface micromotions.

∗Based on A. Andreykiv, P. J. Prendergast, F. van Keulen, W. Swieszkowski,
P. M. Rozing (2005) Bone Ingrowth Simulation for a Concept Glenoid Component Design.
Journal of Biomechanics 38, 1023-1033
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6 Chapter 2

Should primary fixation be provided, friction has a secondary importance
with respect to bone ingrowth. It was also concluded that stiffness of the
backing had a counter intuitive influence: a less stiff backing material inhibits
bone ingrowth by higher interface micromotions and stimulation of fibrous
tissue formation within the backing.

2.1 Introduction

Frequent loosening of glenoid components is one of the major and challeng-
ing problems in total shoulder arthroplasty (Franklin et al. 1988, Lazarus
et al. 2002). Radiolucent lines, which may be an indication of long-term
loosening, have been observed at the bone implant interface even in up to 96
% of glenoid replacements (Lazarus et al. 2002). The consequence of com-
ponent loosening can be dramatic, as a loosened component cannot always
be replaced because of bone deficiencies (Cofield 1994). Therefore, there is a
great clinical need to improve the fixation of glenoid components.

Numerous all-polyethylene or metal-backed glenoid components, with
keel- or peg-shaped backings, fixated either with or without cement, have
been introduced in an attempt to reduce the high glenoid component loos-
ening rate in total shoulder arthroplasty (Anglin et al. 2001, Cofield 1994,
Neer 1974, Roper et al. 1990, Murphy et al. 2001). However, cemented
glenoid components are limited by high stresses in the cement layer that
cause damage (Lacroix et al. 2000) and osteolysis (Wirth and Rockwood Jr
1994), whereas cementless metal-backed components show problems with
rapid polyethylene wear, component dissociation and pull out of the screws
used for implant fixation (Bauer et al. 2002, Cofield 1994, Roper et al. 1990,
Wallace et al. 1999, Archibeck et al. 2001). Therefore, improvement of
glenoid component design is a relevant task.

Two factors are important for bone ingrowth. One is an appropriate bio-
compatibility of the implant material (Bauer and Schils 1999) and the other
is the initial stability of the implant; stable immediate (primary) fixation is
a requirement for a successful secondary fixation by bone-ingrowth (Pilliar
et al. 1986). With respect to implant material that can be used for glenoid
backing, a promising material for bone-ingrowth is a trabecular metal named
Hedrocel c© (Implex, Allendale, USA). This is a highly porous (about 82%)
tantalum metal (Fig.2.1), with an apparent stiffness of 3.3 GPa, and porous
structure, similar to cancellous bone (Zardiackas et al. 2001, Implex 2002).
This material has been successfully used in acetabular cups, custom knee and
tibial prostheses (Christie 2002). In canine models it has been reported that
not only does bone apposition occur but osseointegration progressed through
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the porous tantalum backing, leading to a rigid biomechanical fixation of the
implant (Bobyn et al. 1999b). Application of porous tantalum is expected to
solve the problem of polyethylene wear between the polyethylene layer and
the metal backing, because polyethylene can be molded into the porous tan-
talum layer, rigidly fixing it to the backing which also facilitates making the
whole component thinner. Hedrocel is known for one more advantage: the
friction coefficient of 0.88 between this material and cancellous bone is higher
than reported for traditional coated materials (0.50 - 0.66) (Fitzpatrick et al.
1997). This fact is expected to reduce the relative micromotions at the in-
terface.

The present chapter investigates the feasibility of bone ingrowth into
the porous tantalum backing of a glenoid component. If ingrowth is to be
achieved, then we also wanted to know what is the influence of primary fixa-
tion, elastic properties and friction coefficient of the backing on the ingrowth
process.

Figure 2.1: Scanning electron microscopic image of Implex’s Hedrocel Trabec-
ular Metal material (With permission from Implex, Allendale, New Jersey).

2.2 Methods

2.2.1 Finite element model

To investigate bone ingrowth, a two-dimensional finite element modelling was
used in conjunction with a mechano-biological algorithm to simulate osseoin-
tegration. Two-dimensional finite element models of three glenoid prosthesis
design concepts were generated (Fig. 2.2). The glenoid bone region is divided
into four domains (cancellous bone 1,2 and 3 and cortical bone; Lacroix and
Prendergast 1997), that are modelled as isotropic materials with different
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Figure 2.2: Finite Element Meshes of three design configurations. A - design
without pegs, B - design with non-parallel cemented pegs, C - design with
parallel cemented pegs. 1 - Polyethylene, 2 - Porous Tantalum + Polyethy-
lene, 3 - Porous Tantalum, 4 - Cancellous Bone 2, 5 - Cortical Bone, 6 -
Cancellous Bone 3, 7 - Cancellous Bone 1, 8 - Tantalum peg, 9 - cement.

elastic properties (see Table 6.1). The glenoid components consist of three
layers: a polyethylene surface layer, a porous tantalum layer, and fusion of
both in between. One design is without pegs (Fig.2.A) and two have tanta-
lum pegs cemented into the cancellous bone (Fig.2.2.B and Fig.2.2.C). These
two pegged designs differ in the inferior peg configuration: one has parallel
pegs and the other has non-parallel pegs. Mesh generation was performed us-
ing MSC Mentat (Version 2001, Palo Alto, USA). All domains were modelled
by 8-noded isoparametric plain strain elements.

2.2.2 Material properties

The elastic properties for the glenoid bone regions (see Table 6.1) were taken
from Orr et al. (1988) and Carter and Hayes (1977). The porous tantalum
layer has a Young modulus of 3.3 GPa and Poisson ratio of 0.31 (Implex
2002). The average elastic properties of the porous tantalum filled with fi-
brocartilage or fibrous tissue were taken as properties of the porous tantalum
alone, because the later is much stiffer than the filling soft tissues. The elas-
tic properties of the porous tantalum filled with bone were determined from
the micro finite element voxel model, developed for this purpose. The av-
erage permeability of porous tantalum, filled with bone, fibrous tissue and
fibrocartilage is approximately determined based on the fact that perme-
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ability of porous tantalum alone is very high compared to the permeability
of the filling tissues. So, the average permeability of the whole material is
mainly determined by the permeability of the filling tissue. It allows for the
assumption that the total permeability can be estimated as permeability of
the filling tissue multiplied by its fraction in the porous tantalum, with the
porosity of porous tantalum being 0.82 (Implex 2002). Under these assump-
tions, multiplying the porosity of porous tantalum with the permeability of
bone 3.7 × 10−13m4N−1s−1(Ochoa and Hillberry 1992), we obtain the av-
erage permeability of porous tantalum and bone 3.034 × 10−13m4N−1s−1.
When we repeat the same procedure for fibrocartilage with permeability
5.0 × 10−15m4N−1s−1 (Armstrong and Mow 1982) we obtain a permeabil-
ity of 4.1 × 10−15m4N−1s−1, and in case of fibrous tissue with permeability
1.0 × 10−14m4N−1s−1 (estimated by Prendergast et al. 1997 based on Arm-
strong and Mow 1982 and Levick 1987) the average permeability will be
8.2 × 10−15m4N−1s−1. In Marc 2001 porosity is a function of the Jacobian
determinant of the deformation gradient tensor. However, the variation of
the porosity is very small, as the poroelastic implementation in Marc 2001 as-
sumes small strain theory. In the present study initial porosity of the porous
tantalum with filled tissues was taken as porosity of porous tantalum alone,
0.82. The rationale for this is that tantalum is much stiffer than the filling
tissues. Fluid compression modulus for all the tissues was taken as 2300 MPa
(Anderson 1967).

The coefficient of friction between bone and the porous tantalum layer
was taken as 0.88 (Zhang et al. 1999). A Coulomb friction model was used.

In order to investigate the influence of the material properties of the
porous backing on the bone ingrowth process four additional simulations
were performed. Two simulations for the configurations without pegs and
with parallel pegs, investigated the case with zero friction coefficient. An-
other two simulations, for the configuration with parallel pegs, investigated
the influence of Young modulus of the porous backing. Here, in the first sim-
ulation, Young’s modulus of the porous backing was taken ten times lower
than the original (0.33 GPa). In this case it was assumed that when the
backing gets filled with bone its stiffness will reach the stiffness of immature
bone (1 GPa). In the second simulation, Young’s modulus of the porous
backing was taken thirty times higher than the original (100 GPa). But in
this case we assumed no change in the porous backing stiffness when bone
grew in.
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Table 2.1: Elastic properties of materials, used in contact simulation.
Material Young’s Modulus Poisson’s

(GPa) ration

Polyethylene 1.174 0.4
Porous Tantalum with Polyethylene 4.26 0.35
Porous tantalum 3.3 0.31
Porous tantalum with fibrous tissue 3.3 0.31
Porous tantalum with fibrocartilage 3.3 0.31
Porous tantalum with bone 5 0.35
Cancellous Bone 1 1.5 0.25
Cancellous Bone 2 0.4 0.21
Cancellous Bone 3 0.15 0.19
Cortical Bone 8 0.35
Tantalum 186 0.31
Cement 2.1 0.4

2.2.3 Boundary conditions

The applied loads correspond to an arm movement between 30o and 90o

abduction in 2 seconds. The contact forces for 30o, 60o and 90o arm abduction
(165.84, 325.85 and 392.95 N, Van der Helm 1994) are interpolated by a
second order polynomial, thus creating a continuous dependence. In total
16 cycles of loading are simulated. Contact pressure was calculated based
on Hertz theory of elastic contact of two spheres. The radius of the glenoid
component was chosen as 30 mm, and humeral component 29.8 mm. All
nodes on the medial border of the model are restrained as shown in (Fig.2.3).

With respect to fluid flow, two boundary condition types were studied:
zero pore pressure at the interface nodes of the porous tantalum layer which
allows free fluid flow, and zero fluid flow, simulating a blocked interface. The
side of the porous tantalum layer that faces the polyethylene layer is blocked
by the impermeable polyethylene hence zero fluid flux was prescribed there.

2.2.4 Ingrowth model

Interface bonding

Bone ingrowth into the porous tantalum backing is to a large extent anal-
ogous to bone fracture healing processes (for a review see Kienapfel et al.
1999). Following arthroplasty, a porous tantalum backing would become
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Figure 2.3: Boundary conditions for the model. Left - schematic presentation
of the glenoid component loaded by humeral head component. The humeral
head is located according to 30o (I ) and 90o (II ) of arm abduction. Right
- actual loading of the model: distributed pressure on the glenoid surface
(1 ), clamped displacements of the medial border (2 ), free fluid flow at the
boundary of the tantalum layer (3 ).

filled with granulation tissue. The first event that takes place at the inter-
face is bone apposition (ingrowth into the surface) on the porous tantalum
backing, this occurs by the intramembranous ossification mechanism. This
results in bonding of the interface. During fracture healing, intramembra-
nous ossification normally occurs in case of high mechanical stability and
close proximity to existing bone (Bailon-Plaza and Van der Meulen 2001,
Thompson et al. 2002), which is a source of osteoblasts and has rich vas-
cularity. The interface area is the closest place to the existing bone and
following, for instance, Spears et al. (2000), interface bonding can be sim-
ulated only if the relative interface micromotions do not exceed a certain
threshold value. This approach has been adopted in the present research.
For that purpose, pairs of adjacent nodes across the interface were identified
and relative micromotions were defined as the maximum distance between
the nodes of each pair during a loading cycle (Spears et al. 2000). Local-
ized interface bonding is simulated by tying the displacements of the nodes
thereby modelling a bonded interface. The interface bonding is simulated in
regions of the interface where micromotions do not exceed a threshold value
throughout one loading period. Due to the fact that no data was found in
literature on this threshold value for porous tantalum, one of the lowest re-
ported thresholds of 20μm was taken (Ramamurti et al. 1997). Despite the
fact that this value is fairly low, it was chosen to give conservative ingrowth
predictions.
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Mesenchymal cell migration

After arthroplasty, mesenchymal cells migrate from the exposed bone surface
across the interface into the porous tantalum backing. Mesenchymal cells
migration from the interface into the porous layer is modelled by the linear
diffusion equation:

dc

dt
= k∇2c, (2.1)

where c is cell density, normalized with respect to “saturated” cell concen-
tration and k is a diffusion coefficient. The coefficient of diffusion is selected
in such a way that the complete mesenchymal cell coverage (c ≥ 0.95) in the
porous tantalum layer would be achieved in 16 weeks. This is consistent with
the time that was needed for bone ingrowth into porous tantalum backed ac-
etabular cups (from clinical data, published by Implex 2002). Furthermore,
it is assumed that migration of mesenchymal cells via the part of the interface
that is bonded is allowed, whereas for the unbonded part it is not allowed.
Consequently, as soon as a pair of the interface nodes becomes bonded, those
nodes are assigned a “saturated” concentration of mesenchymal cells, while
the rest of the boundary nodes are assigned a zero flux. Subsequent migra-
tion of cells into the porous tantalum layer is simulated by the linear diffusion
equation (2.1).

Tissue differentiation inside the porous layer

According to the mechano-regulation model for tissue differentiation pro-
posed by Prendergast et al. (1997), absolute magnitudes of maximum shear
strain γ and relative fluid/solid velocity ν are two biophysical stimuli that
regulate tissue differentiation. Following this model, high levels of these
stimuli (γ/a + ν/b > 3, a = 0.0375, b = 3μms−1- constants, determined by
Huiskes et al. (1997) based on an animal experiment) favor differentiation
of mesenchymal cells into fibroblasts, intermediate levels (γ/a+ ν/b > 1 and
γ/a+ν/b < 3) favor chondrocytes differentiation and low levels (γ/a+ν/b <
1) - osteoblasts. In the current simulation, the tissues inside the porous tanta-
lum layer are modelled as biphasic materials. Shear strain and fluid velocity
are calculated from biphasic simulation and, subsequently, differentiation of
mesenchymal cells is simulated. Consequently, tissue type at the integration
point of the porous backing is determined using the absolute magnitudes of
the shear strain and fluid velocity. The subsequent tissue fraction is taken
equal to the normalized mesenchymal cell concentration. This comes from
the assumption that the quantity of the newly produced tissue is directly
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dependent on the concentration of the mesenchymal cell in this point. It is
also assumed that the cells of this newly created tissue can be replaced by
the equal concentration of the cells of another phenotype if the mechanical
environment changes. Hence, in the model, we do not make a distinction
between the phenotype of the cells, as we assume that all of them, like the
mesenchymal cells, have a potential to produce tissue type, dictated by the
mechanical environment in the given point. Thus, the initial granulation
tissue and another tissue might co-exist simultaneously in one integration
point. A rule of mixtures is used to calculate the material properties in those
cases (Lacroix and Prendergast 2002b). According to this rule, for instance,
Young modulus of the integration point is calculated as a sum of products
of Young moduli of the co-existing tissues and their volume fractions.

2.2.5 Solution procedure

The simulation is performed using MSC Marc (Version 2001, Palo Alto,
USA). For the first configuration (Fig. 2.2, A), the whole bone-implant
interface was assumed as unbonded. In the second and the third design con-
figurations the prosthesis was initially connected to the bone via cemented
pegs, while the rest of the interface was modelled as initially unbonded.
Each simulation consists of three parts: contact analysis, biphasic analysis
and diffusion analysis. In Fig.2.4 a summary of the analysis is given. Contact
analysis of the glenoid bone with the prosthesis calculates interface micromo-
tions and displacements of the porous layer boundary. Biphasic analysis of
the porous tantalum layer calculates biophysical stimuli. Diffusion analysis
of the porous tantalum layer calculates concentration of mesenchymal cells.
The update of the material properties inside the porous layer for both contact
and poroelastic simulation during every loading cycle is performed gradually,
during the first tenth of the loading cycle time. All simulations are coupled.
The contact simulation starts with unbonded bone implant interface and
granulation tissue inside the porous layer. The calculated interface micro-
motions are used to decide which interface nodes are to be bonded. The list
of the newly bonded nodes is passed to the diffusion simulation, where they
become sources of mesenchymal cells. Displacements of the boundary nodes
of the porous layer are also calculated in the contact simulation and passed
to the poroelastic simulation. There they are used as kinematic boundary
conditions. The poroelastic simulation calculates fluid velocity and tissue
maximum shear strain, that are used to decide which tissue type should ap-
pear in an integration point. Given this information and the concentration of
mesenchymal cells, calculated in the diffusion simulation, material properties
are calculated and passed to the contact simulation.
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fluid flow

Tissue shear strain

Figure 2.4: Solution procedure. Initially, the interface is unbonded and there
are no mesenchymal cells in the porous tantalum layer. After application
of the loading, mesenchymal cell concentration, interface micromotions and
biophysical stimuli are calculated. The tissue properties are determined for
each integration point of the porous layer depending on its position in the
tissue-differentiation diagram (under Update of the material properties due
to tissue differentiation) and updated in both poroelastic and contact sim-
ulations. The pairs of interface nodes are bonded depending on the level of
the calculated micromotions. Bonded nodes are assigned “saturated” con-
centration of mesenchymal cells. After all the updates the next analysis cycle
is started.

There is a difference in time scale of the analysis in the simulation loop.
The migration of mesenchymal cells in the diffusion analysis lasts for one
week before the sources of mesenchymal cells are updated by the contact
analysis whereas one arm movement lasts for 2 seconds, which is a time pe-
riod of the loop depicted in Fig.2.4. As it was mentioned before, 16 weeks
were needed to achieve bone ingrowth in an acetabular cup (Implex 2002).
Therefore, 16 weeks of mesenchymal cell migration and 16 arm movements
were simulated. Each simulated movement should be seen as a “characteris-
tic” movement for the current week of the cell migration simulation.

A parameter study to determine the influence of constants a and b (see
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Section 2.3) and the inhibiting micromotions threshold level was performed
by varying these values along the baseline of the above mentioned magni-
tudes. This parameter study was performed only with the original material
properties of the porous tantalum (Young modulus 3.3 GPa, friction coeffi-
cient 0.88).

2.3 Results

Boundary conditions without free fluid flow at the bone-implant interface
resulted in complete interface bonding and full bone ingrowth for both con-
figurations with pegs. Since the worst case scenario is thought to be more
interesting for the ingrowth prediction, from here on we report only on the
results obtained with boundary conditions which allowed fluid flow at the
interface.

Lack of primary fixation is predicted to have a substantially negative
influence on bone ingrowth into the porous layer of the design configuration
without pegs. Very high micromotions (Fig. 2.5) resulted only in a partial
interface bonding (Fig. 2.7). Introduction of non-parallel cemented tantalum
pegs in the second design configuration stabilized the prosthesis and inter-
face bonding is predicted everywhere, except the area above the superior peg
where micromotions even increase as bonding of the rest of the interface prop-
agates (Fig. 2.5, the graph). The situation with the third design is similar,
but peg orientation causes a more uniform distribution of the micromotions
(Fig. 2.5 and Fig. 2.6, C). As a result, complete bonding of the interface is
achieved. Reducing the stiffness of the porous tantalum layer to 0.33 GPa
resulted in higher interface micromotions (Fig. 2.6, C), while increasing it
to 100 GPa, causes micromotions to decrease (Fig. 2.6, C). Lack of friction
resulted in almost threefold increase of micromotions for the design without
primary fixation, although this effect was prominent only in the top part of
the interface, where the prosthesis came in contact with bone (Fig. 2.6,A
area marked by a circle). Absence of friction caused very little effect on the
design with parallel pegs, where micromotions increased less then 10 percent
(not plotted).

Bonding of the interface allows migration of mesenchymal cells from the
interface into the porous layer and their subsequent differentiation into other
cells depending on the biophysical stimuli. Partial bonding of the interface
(Fig. 2.7) and low biophysical stimuli inside the porous layer resulted in
partial bone ingrowth for the first design configuration (Fig. 2.8). Although
pegs facilitated greater area of interface bonding for the second configura-
tion, strain concentration near the top peg resulted in a little amount of
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Figure 2.5: Micromotions at the interface during the ingrowth. The graph
shows micromotions magnitude for the node specified by an arrow during the
simulated arm movements for the first four weeks.

cartilagineous tissue, that did not ossify till the end of the simulated time.
Parallel pegs, on the contrary, resulted in complete bone ingrowth. How-
ever, some amount of cartilage appeared during the simulation, but it was
completely replaced by endochondral ossification. Decreasing stiffness of the
porous layer to 0.33 GPa increased the biophysical stimuli, i.e. a substantial
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Figure 2.6: Micromotions before the ingrowth (the first week) at 30o arm
abduction. A - configuration without primary fixation with and without
friction. B - configuration with non-parallel pegs with original elastic and
friction properties. C - configuration with parallel pegs with soft (0.33 GPa),
original (3.3 GPa) and stiff (100 GPa) backing.

part of the backing was filled with cartilage and fibrous tissue (Fig. 2.8).
Increasing the stiffness to 100 GPa resulted in complete bone differentiation
via the intramembranous ossification mechanism.

The parameter study showed little sensitivity of the simulation to the
moderate (25 %) variation of constants a and b (variation of b had more in-
fluence on the simulation). Increasing the inhibiting micromotion threshold
to 30 μm caused more rapid interface bonding for the configuration with pegs
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Figure 2.7: Interface bonding. Results correspond to the original material
properties of the porous tantalum backing (Young modulus 3.3 GPa, friction
coefficient 0.88).

and also a complete interface bonding for the configuration with non-parallel
pegs.

2.4 Discussion

The aim of this numerical study was to establish whether or not bone in-
growth in porous tantalum backed glenoid components is likely under phys-
iological loading. If the ingrowth is to be achieved, then we also wanted to
know what is the influence of primary fixation and material properties of the
backing on bone ingrowth.

In order to simulate bone ingrowth, several assumptions were necessary.
First, modelling of ingrowth at the bone-implant interface was done by ty-
ing the displacements of the interface nodes. In general, this might lead to
an overestimation of the strength of the newly formed interfacial bonds and
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Figure 2.8: Tissue types and their fractions inside the porous tantalum layer.
The bottom row shows tissue types inside the third design configuration with
the reduces stiffness of the backing (0.33 GPa).

subsequent overestimation of the overall area of ingrowth. However, using
this approach for an acetabular cup, Spears et al. (2000) predicted ingrowth
patterns comparable with histological data for dogs. Simmons and Pilliar
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(2000) tried to estimate the probability of interface ingrowth by modelling
the interface with elements which properties were obtained by a homogeniza-
tion procedure applied to a detailed interface model. However, their model
was linear, unlike the non-linear procedure of contact with friction that is
used in the present study. The second simplification was the use of 2D in-
stead of 3D models. There is no doubt that the latter would give a more
realistic view on the stress-strain situation. It is expected that the plane
strain assumption will cause some underestimation of the interface micromo-
tions, the low value of the micromotion threshold chosen, that inhibits bone
ingrowth, is expected to compensate for this underestimation. Third, the
time period for the update of the material properties of the backing and the
interface nodes bonding was one week. Thus we assumed that the average
time period necessary for initial tissue formation is one week. This is roughly
consistent with the experimental study of Le et al. (2001), who observed fi-
broblasts differentiation 3 days after bone fracture, cartilage formation in 5
to 7 days, and woven bone in 14 days. Also Bobyn et al. (1999a) observed
bonded interfaces and 13 percent bone ingrowth in porous tantalum implant
two weeks post-operatively. The last important assumption adopted here,
involves the usage of the thresholds from Huiskes et al. (1997) for the tis-
sue differentiation model of Prendergast et al. (1997). We anticipate, that
those values might vary from species to species or even among individuals.
However, parameter studies on those thresholds performed in our study and
by Lacroix and Prendergast (2002b) show that the variation of those thresh-
olds does not greatly change the tissue differentiation patterns. Using these
thresholds, Lacroix and Prendergast (2002b) successfully predicted the main
stages of a fracture healing process and Geris et al. (2004) predicted the
main stages of tissue differentiation inside a bone chamber implanted into a
rabbit’s leg.

We cannot provide direct experimental validations of the simulation re-
sults due to the fact that we are not aware of clinical data on porous metal-
backed glenoid components. However, some of the features of the simulated
ingrowth resemble ingrowth patterns observed in other implants. For in-
stance, the simulation predicts that the bonding of the interface starts near
the pegs (Fig.2.7). This can be compared with the results for porous-coated
tibial components of total knee replacements where it was found that bone in-
growth occurred within and near the fixation pegs but was variable elsewhere
(Sumner et al. 1995, Kienapfel et al. 1996). There are several experimental
studies on bone ingrowth into porous tantalum (Bobyn et al. 1999a, Bobyn
et al. 1999b, Macheras et al. 2000, Sidhu et al. 2001, Zou et al. 2001). Sidhu
et al. (2001) show how lack of initial stability can inhibit bone ingrowth into
the implant. The same conclusion can be drawn from our results for the first
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design configuration (Fig.2.8). Bobyn et al. (1999b) show that, even if the
interface is partially bonded, bone ingrowth does not take place via the un-
bonded part of the interface. This aspect was also predicted by the simulation
for the second design configuration. This observation is fully consistent with
our assumption that precursor cells do not migrate via the unbonded part of
the interface, thus bone ingrowth inside an unbonded prosthesis is inhibited.
Finally, Bobyn et al. (1999a) show that, if primary fixation is provided, the
ingrowth kinetics resembles the patterns produced by the simulation (con-
figuration with parallel pegs, Fig.2.8). The main difference with our results
is that Bobyn et al. (1999a) observed rather sparse ingrowth in the part
of the porous tantalum area that is inserted into cancellous bone. At the
same time, the zone adjacent to the cortical bone achieved much higher bone
density. One possible explanation for that is that we did not simulate bone
resorption. Lacroix and Prendergast (2002b) managed to predict resorption
of the external callus during fracture healing simulation when the biophysi-
cal stimuli were very low. But analyzing the magnitude of the stimuli inside
the porous layer in our simulation, we predict that only very stiff porous
backing (100 GPa) would lower the stimuli’s magnitude, consequently bone
resorption could become important. But even in this case, the area where
those low stimuli were observed, occupied only 10 percent of the porous tan-
talum layer. It should be noted, that Lacroix and Prendergast (2002b) also
could not predict resorption of the internal callus and concluded that tissue
differentiation in the medullary cavity must be guided by biological rather
than mechanical factors. The last difference between the experiments and
our results is that we predicted a small amount of cartilage during the inter-
mediate stage of the ingrowth.

Based on the current simulation results for the interface micromotions
(Fig. 2.5 and Fig. 2.6), we can conclude that, for the considered design
configurations, a stiffer porous backing would be more advantageous. Worth
mentioning that there are studies that show the opposite effect, i.e. that
the lower the stiffness of the implant, the lower the peak interface micromo-
tions (see for instance Simon et al. 2003). Hence, it can be concluded, that
the optimal stiffness of the ingrowth type material depends on the specific
orthopaedic application. Our study also shows that if primary fixation is
provided, the friction at the bone-implant interface hardly influences the in-
terface micromotions. Potentially, this observation could widen the choice of
implant materials for implant designers. It should be added, that the design-
ers of glenoid prostheses should not use every chance to reduce the interface
micromotions, but rather come up with such initial fixation that will produce
a reasonably uniform distribution of the interface micromotions. Intuitively,
one might think that the longer lower peg in the design with non-parallel pegs
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should cause lower micromotions and, subsequently, faster interface bond-
ing than for the design with parallel pegs. And, indeed, the micromotions
around the lower peg are sufficiently lower than for the design with parallel
pegs (Fig. 2.6,B). But this longer peg causes imbalance in the micromotion
distribution, hence boosting micromotions in the least restrained part of the
interface, above the top peg. The design with parallel pegs produces a more
uniform micromotion distribution, although on average the micromotions are
higher than in the case of the design with non-parallel pegs. But this appears
to be unimportant as long as the produced micromotions are still lower than
the threshold value. Worth mentioning that by increasing the inhibiting mi-
cromotions threshold the differences between interface bonding patterns for
the two configurations with pegs vanishes (parametric study). Nonetheless
the parallel pegs configuration still performs better. The simulation also in-
dicates that failure of bone differentiation inside the backing would start at
very low stiffness magnitudes of the porous materials, used for the backing.
The authors also performed several simulations with stiffness magnitudes of
the backing between 0.33 GPa and 3.3 GPa, but only at 0.33 GPa cartilage
and fibrous tissue persisted till the end of the simulation. In conclusion,
the simulation predicts that primary stability of a glenoid component with
porous tantalum backing can be reached, and mechanical conditions, that
allow complete bone ingrowth into the porous tantalum layer, can be cre-
ated. In particular, it was predicted that a design with parallel cemented
pegs could confer sufficient primary stability allowing bone ingrowth at the
implant interface.
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Poroelastic formulation for
finite element modelling of
hydrated tissues

Abstract

Biological tissues like skin, cartilage or artery walls contain large amounts
of water and are subjected to large deformations. This results in complex
nonlinear time dependent behavior. A finite element formulation for simula-
tion of poroelastic media is proposed. The formulation is based on a mixed
formulation with both small and finite strain assumptions. The formulation
is implemented as a user element in the commercial FE package MSC Marc.
Consequently, this allows an easy enhancement of the formulation with ma-
terial models that are already available in MSC Marc. Moreover, usage of
MSC Marc’s features such as parallel computations, sub-structuring, con-
tact, etc. is possible. As a result, nonlinear elastic or plastic behavior can be
added to the poroelastic formulation at no additional implementation costs.
The implementation of the proposed formulation is validated with an exist-
ing small strain poroelastic Marc element and study on a poroelastic finite
strain problem, known from literature.

3.1 Introduction

Human tissues contain a large fraction of fluid that strongly influences their
mechanical behavior. Consequently, many researchers used poroelastic the-
ory to model these tissues. For instance, Mow et al. (1980) was the first to
apply poroelastic theory for modelling articular cartilage. Oomens and Van

23
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Campen (1987) used a mixture approach to model skin. Poroelastic theory
was used for modelling bone tissue (see Cowin (1999) for a review).

Most of the biomechanical problems require modelling of many physical
phenomena at the same time. For instance, this thesis discusses a problem
where contact mechanics is combined with poroelastic behavior of tissues
and migration of cells, modelled by diffusion equations. Also geometry of the
problems considered in biomechanics might be very complex. In most cases,
geometries are derived from medical images, such as Computer Tomography
scans or Magnetic Resonance Imaging techniques. Due to this complexity,
usage of “home”- made Finite Element software packages in biomechanics is
rather limited, as it requires too much development, not related to biome-
chanics itself. Even most of the geomechanics software packages that include
finite elements for poroelastic theory are too specialized to be used in biome-
chanics.

General software packages like TNO Diana (Delft, The Netherlands) or
MSC Marc (Palo Alto, USA) do include models for poroelasticity, but these
are not fully suitable for biomechanical problems. For instance, the poroelas-
tic formulation used in MSC Marc does not include geometrical non-linearity,
while both packages use a formulation resulting in non-symmetric stiffness
matrix, which increases the computing time and the amount of memory, that
needs to be allocated for matrix storage.

In this study, we attempt to combine multifunctional, commericaly avail-
able FEM software, like MSC Marc, with a custom-implemented poroelastic
model, which is particulary suited for biomechanical applications. The pro-
posed formulation is implemented as a user-defined element in MSC Marc.
The main features of the element are its tetrahedral shape, symmetric stiff-
ness matrix and finite strain formulation. Due to the fact that the element
is based on a mixed formulation, the degrees of freedom are displacements
of the solid phase and fluid pressure.

3.2 Theory

The basic assumptions of the poroelastic theory are outlined in Mow et al.
(1980). The main assumption of the theory is that any poroelastic (also
called biphasic) domain can be viewed upon as a superposition of two single
continua. Each of the continua follows its own motion and at any time t each
position x in the poroelastic domain is occupied by two different particles,
each particle corresponding to one constituent denoted by α. Here α = f
corresponds to the fluid phase and α = s denotes solid.

Due to the fact that each constituent is modelled as a continuum, prop-
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erties which are defined per unit area or volume have a “true” and an “ap-
parent” value. The true volume is the volume that constituent α occupies
physically. The true density ρα

∗ is defined as the mass of constituent α di-
vided by the true volume Vα of constituent α. The apparent density ρα is
the mass of phase α divided by volume V of the whole poroelastic domain,
hence:

ρα = nαρα
∗ with nα =

Vα

V
. (3.1)

It should be noticed, that when material constituents intermingle on the
molecular level, a volume fraction has no true physical meaning. In that
case, the apparent densities are more suitable as independent variables.

Given these definitions, other important assumptions can be introduced.
The fluid inside the poroelastic domain is assumed to be only slightly com-
pressible and inviscid (Newtonian), however, we assume the existence of drag
forces that oppose the flow of the fluid through the solid phase. The mate-
rial of the solid phase is assumed to be incompressible, i.e. its true density
ρs
∗ = const. However, this does not imply the incompressibility of the solid

phase in the apparent sense, as the porosity of the solid phase can change
due to deformation, hence ρs ≡ nsρs

∗ �= const.
The position x of a particle of constituent α is a function of time as well

as its original or reference position vector X, i.e.

xα = φφφα(Xα, t). (3.2)

The velocity of the particles is defined as

vα =
dφφφα

dt
. (3.3)

In order to define the material time derivative of a physical property, we
have to take into account which constituent is our relevant reference. If
the observer wishes to move along with constituent α, the material time
derivative of a property ψ = ψ(x, t) is given by

d(α)ψ

dt
=
∂ψ

∂t
+ vα · ∇ψ. (3.4)

For each constituent we can define a deformation tensor

Fα =
∂xα

∂Xα
. (3.5)

Because each constituent is regarded as a continuum, following its own mo-
tion, it is possible to derive balance laws for each constituent. These balance
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laws are the same as those for a single-phase material, except for so-called
interaction terms. The later arise from the presence of other constituents.
Using (3.4), we can derive the local balance of mass for the constituent α

∂ρα

∂t
+ ∇ · (vαρα) = cα (3.6)

The quantity cα is an interaction term that represents the mass supply from
the other constituents. This term is important for chemically reacting media.
The balance of the poroelastic medium as a whole leads to

cs + cf = 0. (3.7)

We assume no chemical interaction between the constituents, hence cα = 0.
The governing equations for the poroelastic model can now be derived

from the principle of virtual power. First we define a functional space for the
test functions:

δvα
j ε U0, U0 =

{
δvα

j | δvα
j ε C

0(X), δvα
j = 0 on Γvj

}
, (3.8)

where Γvj
is a part of the boundary with kinematic boundary conditions.

With this selection of the space of test functions δvα the integral over the
kinematic boundary vanishes, and the only boundary integral is the one for
the traction boundary. The test functions are also called virtual velocities.
With the above test functions, we can write the principle of virtual power as

δPα = δP int
α + δPkin

α − δPext
α = 0 ∀δvi ε U0, (3.9)

where δPα is the rate of total virtual work or the total virtual power of
constituent α, δP int

α - the rate of internal virtual work or the virtual internal
power of constituent α, δPkin

α - the virtual kinetic power of constituent α ,
δPext

α - the virtual external power of constituent α.
The virtual kinetic power δPkin

α of constituent α is given by

δPkin
α =

∫
V

δvα · v̇αραdV, (3.10)

where v̇α is the acceleration of the α phase.
The behaviour of the solid phase is assumed to be elastic, therefore the

virtual internal power of the solid phase is essentially the rate of mechanical
energy, stored in the solid. Hence,

δP int
s =

∫
V s

δDs∗ : σσσs
∗dV

s, (3.11)
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where σσσs
∗ is a true stress in the solid, Ds

∗ is the true deformation rate tensor
for the solid phase and δDs

∗ij = 1
2
(∂δvs∗i

∂xj
+ δvs∗j

∂xi
). The aim of the above

derivations is to obtain the governing equations for the whole poroelastic
domain. Therefore, the integral over V s domain, which is a true geometry of
the porous solid in (3.11), should be replaced with an integral over the whole
poroelastic volume V . In order to do this, we replace the true stress in the
solid phase σσσs

∗ with σσσs
E, which is a Cauchy stress tensor for the solid phase in

the apparent sense. Similarly, we replace the true deformation rate Ds
∗ with

Ds - a deformation rate of the solid phase in the apparent sense. In fact,
this step should be seen as an averaging procedure, where an inhomogeneous
material is replaced by a homogeneous material which is capable to store the
same amount of mechanical energy per unit volume under the equal load.
Hence we can write

δP int
s =

∫
V s

δDs∗ : σσσs
∗dV

s =

∫
V

δDs : σσσs
EdV. (3.12)

Since we have assumed that the fluid is slightly compressible, it can also store
mechanical energy. The fluid was assumed to be Newtonian, hence its true
stress is σσσf

∗ = −pI. In case of fluid it is easy to see that the apparent fluid
stress will be the the same true stress scaled with the fraction of the fluid
σσσf = −nfpI. Hence, the internal virtual power for the fluid phase is

δP int
f =

∫
V

δDf : −nfpIdV. (3.13)

The virtual external power for both phases is given by

δPext
α =

∫
V

δvα · ραfαdV +

∫
V

δvα ·ΠΠΠαdV +

∫
Γtα

δvα · tαdΓ + δPp
α, (3.14)

where fα is a body force per unit mass, ΠΠΠα - diffusive resistance due to the
relative flow between two different phases, tα - is a traction force applied
on the Γtα part of the boundary, δPp

s - is a rate of virtual work, performed
by the fluid pressure on the solid phase (see Fig. 3.1) and δPp

f - is a rate
of virtual work, performed by the hydrostatic expansion of the solid on the
fluid.

Following the conventions of the poroelastic theory, we assume that the
diffusive drag ΠΠΠα is proportional to relative velocity between the two phases:

ΠΠΠα = K(vβ − vα) where α = f, s and β = s, f (3.15)

Here K - is a diffusive drag coefficient. It follows from (3.15) that

ΠΠΠf + ΠΠΠs = 0. (3.16)
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Figure 3.1: Schematic representation of a poroelastic medium at the mi-
crolevel. The medium consists of the solid part represented by grains which
are embedded in the fluid that can move between the grains. The movement
of the fluid causes the appearance of the drug forces ΠΠΠf and ΠΠΠs acting at each
of the constituents. The fluid pressure p also contributes to the deformation
of the solid phase by rearranging the solid grains.

Similarly to (3.13), it can also be shown that the rate of virtual work,
performed by the fluid pressure on the solid phase is

δPp
s =

∫
V

δDs : nspIdV . (3.17)

Unlike (3.13) we do not have a minus sign in front of the right hand side
of (3.17) because it represents an external power, while (3.13) is an internal
power. The interpretation of the above power is the following. Although the
solid phase is considered to be incompressible, fluid pressure still can per-
form work on the solid skeleton, which results in deformation. The reason is
that the fluid pressure is not uniformly applied to the entire surface of the
solid skeleton due the presence of fluid pressure gradients and due to the fact
that the fluid pressure is not applied to the part of the skeleton surface that
coincided with the surface of the poroelastic domain.

As the solid phase is incompressible, the hydrostatic expansion of the
solid phase is zero. As a result the rate of the work, performed by the hy-
drostatic expansion of the solid on the fluid is also zero

δPp
f = 0. (3.18)
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Now, substituting all the calculated virtual power contributions into the prin-
ciple of virtual power (3.9) and regrouping some terms, we obtain∫

V

δDs : (σσσs
E − nspI)dV +

∫
V

δvs · v̇sρsdV =

=

∫
V

δvsρsf sdV +

∫
V

δvsΠΠΠsdV +

∫
Γts

δvstsdΓ, (3.19)

∫
V

δDf : (−nfpI)dV +

∫
V

δvf · v̇fρfdV =

=

∫
V

δvfρf f fdV +

∫
V

δvfΠΠΠfdV +

∫
Γtf

δvftfdΓ. (3.20)

In the above we introduce a notation σσσs = σσσs
E − nspI and substitute −nfpI

with σσσf . Although, in the true sense, fluid pressure is an external load for the
solid phase, it can be seen as as the part the solid stress in the apparent sense.
In order to obtain the strong form of the poroelastic theory, the derivatives
of the test functions must be eliminated from (3.19) and (3.20). This is
accomplished by using the derivative product rule, which gives∫

V

δDα : σσσαdV =

∫
V

1

2

[∂δvα

∂x
+

(∂δvα

∂x

)T ]
: σσσαdV =

=

∫
V

∇ · (δvασσσα)dV −
∫

V

δvα∇ · σσσαdV . (3.21)

We now apply Gauss’s theorem to the first term on the right hand-side of
(3.21):∫

V

∇ · (δvασσσα)dV =

∫
Γ

δvα(n · σσσα)dΓ =

∫
Γtα

δvα(n · σσσα)dΓ, (3.22)

where Γ is the boundary of the poroelastic domain, Γtα is the traction bound-
ary for constituent α and n is the external normal on the surface element.
The second equality follows from (3.8). Substitution of (3.21) and (3.22) into
(3.19) and (3.20) leads to∫

V

δvs
[
v̇sρs −∇ · σσσs − ρsf s −ΠΠΠs

]
dV + (3.23)

+

∫
Γts

δvs
[
(n · σσσs) − ts

]
dΓ = 0,
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V

δvf
[
v̇fρf −∇ · σσσf − ρf f f −ΠΠΠf

]
dV + (3.24)

+

∫
Γtf

δvf
[
(n · σσσf ) − tf

]
dΓ = 0.

Based on the fundamental theorem of the virtual calculus all of the terms
contained in each square bracket of (3.23) and (3.24) should be equal to zero.
A set of governing equations for the poroelastic model can now be derived:
Momentum equations

v̇sρs −∇ · σσσs − ρsf s −ΠΠΠs = 0, (3.25)

v̇fρf −∇ · σσσf − ρf f f −ΠΠΠf = 0. (3.26)

Boundary conditions
n · σσσs = ts on Γts , (3.27)

n · σσσf = tf on Γtf . (3.28)

Here we recall that
σσσs = σσσs

E − nspI, (3.29)

σσσf = −nfpI. (3.30)

Hence, the traction boundary conditions can be presented as

n · (σσσs
E − nspI) = ts on Γts , (3.31)

p = p̃(x) ≡ −|tf |
nf

on Γtf . (3.32)

The Cauchy stress of the solid phase σσσs
E can be presented as

σσσs
E = Fs · τττ s

E · (Fs)T , (3.33)

where τττ s
E is the second Piola-Kirchhoff stress tensor. For isotropic linear

elastic material, τττ s
E is given by

τττ s
E = λstr(Es)I + 2μsEs, (3.34)

where λs and μs are the Lamé elasticity constants and

Es =
1

2
(FsT · Fs − I) (3.35)

is the Green strain tensor. In case of large deformations, it is common to
replace the isotropic linear law (Hooke’s law) with Neo-Hookean material
model, where τττ s

E is given by

τττ s
E = λslnJC−1 + μs

(
I − C−1

)
. (3.36)
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Here C = FT · F is the right Cauchy-Green deformation tensor and J =
det(F) - Jacobian of the transformation between the current and the refer-
ence configurations.

Using the fact that nf + ns = 1 and ΠΠΠf + ΠΠΠs = 0, the two momen-
tum equations, (3.25) and (3.26), can be summarized as a total momentum
equation for poroelastic model:

v̇ρ−∇ · σσσ − ρf = 0. (3.37)

Here,

σσσ =
∑

α

σσσα = σσσs
E − pI, (3.38)

f =
∑

α

ραf
α/ρ, (3.39)

and the density average velocity v is defined as

v =
∑

α

ραv
α/ρ. (3.40)

In biomechanical applications, the state of the poroelastic domain is
mainly determined by its deformation, while both gravity and inertia ef-
fects are considered to be negligible, i. e. fα ≈ 0 and v̇αρα ≈ 0. Given these
assumptions it is interesting to notice that if we substitute (3.15) and (3.30)
into (3.26), it will transform into Darcy’s law:

nf (vf − vs) = −(nf )2

K (∇p). (3.41)

In the conventional notation of Darcy’s law it is set (nf )2

K = κ
μ
, where κ - is a

permeability of the solid phase and μ - viscosity of the fluid.
After the above derivations, we can obtain the mass balance equation for

the whole poroelastic domain. State equations for the fluid phase have been
given by Fernandez (1972) as

ρf
∗ = ρf

∗0
e−βf T+Cf (p−p0), (3.42)

where the subscript 0 indicates an initial steady state at standard condi-
tions, βf is the thermal expansion coefficient and Cf is the compressibility
coefficient. By retaining the first-order series expansion of (3.42) we obtain:

ρf
∗ = ρf

∗0
[1 − βfT + Cf (p− p0)]. (3.43)
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Hence we can write:
∂ρf

∗
∂t

=
1

Kf

ρf
∗0

∂p

∂t
, (3.44)

where Kf = 1/Cf is the bulk modulus of the fluid. Now, taking into account
that ρα = nαρα

∗ and cα = 0, mass balance equations (3.6) read:

ρα
∗
∂nα

∂t
+ nα∂ρ

α
∗

∂t
+ nαρα

∗∇ · vα + vα · ∇(nαρα
∗ ) = 0 (3.45)

Substituting (3.44) into (3.45), taking into account the incompressibility of
the solid phase (∂ρs∗

∂t
= 0) and neglecting the gradients of densities (Lewis and

Schrefler 1998) we obtain

ρs
∗
∂ns

∂t
+ nsρs

∗∇ · vs = 0, (3.46)

ρf
∗
∂nf

∂t
+
nf

Kf

ρf
∗0

∂p

∂t
+ nfρf

∗∇ · vf = 0 (3.47)

Now we divide (3.46) and (3.47) with ρs
∗ and ρf

∗ , respectively, and take into

account that
ρf
∗0
ρf
∗
≈ 1 (Lewis and Schrefler 1998). We obtain then

∂ns

∂t
+ ns∇ · vs = 0, (3.48)

∂nf

∂t
+
nf

Kf

∂p

∂t
+ nf∇ · vf = 0 (3.49)

The equations (3.48) and (3.49) are now added together and here we can use

the fact that nf + ns = 1 (hence ∂ns

∂t
+ ∂nf

∂t
= 0). We obtain

nf

Kf

∂p

∂t
+ nf (∇ · vf −∇ · vs) + ∇ · vs = 0 (3.50)

The numerical implementation, presented in the following paragraph, is based
on a mixed formulation. The later models the behaviour of the poroelastic
domain via the displacement field of the solid and the fluid pressure. Conse-
quently, we have to eliminate the fluid velocity from the governing equations.
In (3.50) the fluid velocity can be eliminated by using Darcy’s law, where we
also assume that nf (∇ · vf − ∇ · vs) = −κ

μ
[∇p]. Hence, the mass balance

equation for the whole poroelastic domain is

nf

Kf

∂p

∂t
+ ∇ · vs −∇ · [κ

μ
(∇p)] = 0. (3.51)
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Under the assumption of negligible inertia forces and lack of gravity, the
momentum equation for the poroelastic domain (3.37) simplifies into:

∇ · σσσ = 0. (3.52)

In order to complete the set of the governing equations, initial and bound-
ary conditions must be defined. The initial conditions define the complete
solution at time t = t0:

us|t=t0 = us
0(x), p|t=t0 = p0(x) on V (3.53)

Dirichlet’s type boundary conditions are imposed in the form of applied dis-
placements on parts of the boundary, denoted as Γu :

us = gs(x) on Γu. (3.54)

The fluid influx is defined as the fluid quantity, that crosses a unit surface
of the boundary of the poroelastic domain during a unit of time. Based on
this definition, the fluid influx is ρf

∗n
f (vf − vs)T · n. Here, we can elimi-

nate fluid velocity using Darcy’s law. In this case, the fluid flux boundary
condition is prescribed as

−κ
μ

(∇p)T · n =
qf (x)

ρf
∗

on Γq
f , (3.55)

where Γq
f is the part of the boundary where fluid flux is prescribed.

The equilibrium equation (3.52), the mass balance equation (3.51), the
initial and boundary conditions (3.31), (3.32),(3.53), (3.54) and (3.55) to-
gether with the constitutive equations (3.34) or (3.36) are the governing
equations of the presented poroelastic theory, which fully define the behavior
of the poroelastic domain under the proposed assumptions.

3.3 Numerical implementation

The boundary value problem (3.51), (3.52), (3.31), (3.32), (3.54),(3.55) is
solved using the mixed formulation presented below. The formulation pre-
sented by Lewis and Schrefler (1998) is taken as a basis for the development
of a new formulation. Voigt notation for stress and strain is used:

σσσ = {σxx, σyy, σzz, τxy, τyz, τzx}T (3.56)

E = {Exx, Eyy, Ezz, 2Exy, 2Eyz, 2Ezx}T (3.57)
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With the Voigt notation the equilibrium (3.52) can be presented as

LTσσσ = 0, (3.58)

where L is the differential operator defined as

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.59)

The stress tensor can also be presented as:

σσσ = σσσs
E − m · p, (3.60)

where mT = {1, 1, 1, 0, 0, 0}T and σσσs
E is rewritten in Voigt notation (3.56).

A finite element formulation is derived using the weighted residual method
(see Lewis and Schrefler 1998). For that purpose, lets multiply (3.58) with
arbitrary functions w from H1

0 (where H1
0 is a standard Sobolev space, which

implies that the function can be integrated along with its first derivatives and
vanishes on the boundary) and integrate over V :∫

V

wT (LTσσσ)dV = 0 (3.61)

If we use the fact that wT (LTσσσ) = LT (wTσσσ)−(Lw)Tσσσ, and take into account
Green’s theorem, (3.31) and (3.32), which gives us∫

V

LT (wTσσσ)dV =

∫
Γ

wT · (σσσ · n)dΓ =

∫
Γt

wT tdΓ, (3.62)

(3.61) can be presented as:∫
V

(Lw)TσσσdV =

∫
Γt

wT tdΓ. (3.63)

Here

n =

⎡⎢⎢⎢⎢⎢⎢⎣
nx 0 0
0 ny 0
0 0 nz

ny nx 0
0 nz ny

nz 0 nx

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.64)
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where nx,ny and nz are the components of the unit vector, normal to the
boundary. We also combined the traction boundary conditions applied to
the solid and the fluid phases for brevity of the notation. Now, lets assume
another set of weighting functions wεH1

0 . By multiply (3.51) with w and
integrating it over V we obtain:∫

V

wT · [ nf

Kf

∂p

∂t
+ ∇ · vs −∇ · [κ

μ
(∇p)]]dV = 0. (3.65)

Now, as in case of the equilibrium equation, taking into account that

wT · ∇ · [κ
μ

(∇p)] = ∇ ·
[
wT

[κ
μ

(∇p)]] − (∇w)T (
κ

μ
(∇p)) (3.66)

and∫
V

∇ ·
[
wT

[κ
μ

(∇p)]]dV =

∫
Γ

[
wT

[κ
μ

(∇p)]] · ndΓ =

∫
Γq

f

wT q
f

ρf

dΓ, (3.67)

and noticing that ∇ · vs = mTLvs, (3.65) can be presented as∫
V

[
(∇w)T

[κ
μ

(∇p)] + wTmTLvs + wT n
f

Kf

∂p

∂t

]
dV +

+

∫
Γq

f

wT q
f

ρf

dΓ = 0. (3.68)

The finite element discretization is now applied to (3.63) and (3.68). This
procedure involves division of the domain V into elements and approximating
the independent variables, namely displacements of the solid phase and the
fluid pressure, within the elements by shape functions:

us(x, t) = Nu
i (x) · us

i (t), (3.69)

p(x, t) = Np
i (x) · pi(t). (3.70)

These approximations are now introduced into (3.63) and (3.68). Now, by
applying the Galerkin method to (3.63) and (3.68), the weighting functions w
and w are replaced by the shape functions Nu and Np, respectively. Taking
into account (3.60), we obtain the following set of equations:

PI − Qp − fu = 0 (3.71)

and

Hp + QT ∂u
s

∂t
+ S

∂p

∂t
− fp = 0. (3.72)



36 Chapter 3

Here we made use of the following definitions: B = LNu,

PI =

∫
V

BTσσσs
EdV - the internal force vector for the solid phase, (3.73)

Q =

∫
V

BTmNpdV - the coupling matrix, (3.74)

H =

∫
V

(∇Np)T κ

μ
∇NpdV - the permeability matrix, (3.75)

S =

∫
V

NpT n
f

Kf

NpdV - the compressibility matrix, (3.76)

fu =

∫
Γt

NuT tdΓ - the vector of traction forces, (3.77)

fp = −
∫

Γq
f

NpT q
f

ρf
∗
dΓ - the applied fluid mass influx vector. (3.78)

Two cases can now be considered: a small strain case and a finite strain
case.

In a small strain case, we assume that the strain tensor is linearly de-
pendent on displacements and the Hooke’s law can be used for the consti-
tutive relation of the solid phase. Hence, σσσs

E = DBus, where D - is the
elastic stiffness matrix. Thus, the nodal force vector can be presented as:
PI =

∫
V

BTσσσs
EdV =

∫
V

BTDBdV us = Keu
s. The second assumption is

that we do not differentiate between the current and the reference config-
uration. Hence, we assume Fα 
 1 and

∫
V
ψ(x)dV =

∫
V0
ψ(X)dV0 for any

function ψ that can be integrated on V (here V is a current configuration and
V0 is the reference configuration). Using the above assumptions we multiply
(3.72) with -1 and present (3.71) and (3.72) in a matrix form:[

Ke −Q
0 −H

] {
us

p

}
+

[
0 0

−QT −S

]
∂

∂t

{
us

p

}
=

{
fu

−fp

}
(3.79)

Next we present (3.79) as

B̂
dx

dt
+ Ĉx = F̂. (3.80)

Here we made use of notations:

B̂ =

[
0 0

−QT −S

]
, Ĉ =

[
Ke −Q
0 −H

]
, F̂ =

{
fu

−fp

}
and x =

{
us

p

}
(3.81)
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Now we divide the investigated time period into intervals Δt and assume the
following relations for each time interval n:(

dx

dt

)
n+Θ

= (xn+1−xn)/Δt, xn+Θ = (1−Θ)xn+Θxn+1, ∀Θ ε [0, 1] (3.82)

Here, by n+Θ we denote corresponding value at time (n+Θ)Δt. Replacing
in (3.80) the time derivatives and x with values from (3.82) we obtain:

[B̂ + ΘΔtĈ]xn+1 = [B̂ − (1 − Θ)ΔtĈ]xn + ΔtFn+Θ. (3.83)

(3.83) presents a general time integration scheme for the solution of (3.80)
where the type of the scheme is determined by the parameter Θ.

Now, applying this procedure to (3.79) and multiplying the second equa-
tion by Δt we obtain:[

ΘKe −ΘQ
−QT −(S + ΔtΘH)

] {
us

p

}
n+1

=

=

[
(Θ − 1)Ke (1 − Θ)Q

−QT −S + (1 − Θ)ΔtH

] {
us

p

}
n

+

{
fu

−Δtfp

}
n+Θ

(3.84)

As we can see the system can only be made symmetric if a fully implicit time
integration scheme with Θ = 1 is applied. This yields:[

Ke −Q
−QT −(S + ΔtH)

]{
us

p

}
n+1

=

[
0 0

−QT −S

] {
us

p

}
n

+

+

{
fu

−Δtfp

}
n+1

(3.85)

The complete set of equations (3.85) presents an incremental method that
can be used to determine the displacements of the solid carcass and fluid
pressures at any time interval.

In case the two-phase medium undergoes large deformations, the solution
should be sought under the assumption of finite strains. This requires some
adaptation to the finite element formulation. First of all, we apply the same
time integration scheme to (3.71) and (3.72) by replacing us and p with us

n+1

and pn+1 and replacing the time derivatives of the degrees of freedom with
their finite differences. We obtain:

PIn+1 − Qpn+1 − fu
n+1 = 0, (3.86)

Hpn+1 + QT us
n+1 − us

n

Δt
+ S

pn+1 − pn

Δt
− fp

n+1 = 0. (3.87)
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Then, as in case of small strain formulation, we multiply (3.87) with −Δt
and rewrite it using the notation Δus = us

n+1−us
n and Δp = pn+1−pn. We

obtain
Ru ≡ PIn+1 − QΔp − (Qpn + fu

n+1) = 0 (3.88)

and

Rp ≡ −QT Δu − (S + ΔtH)Δp − ΔtHpn + Δtfp
n+1 = 0. (3.89)

This system is non-linear due to the fact that all matrices should be evaluated
with account for changing geometrical configuration of the element. One way
to solve it is by linearization and application of Newton iterative scheme (see
for instance Belytschko et al. 2000). The idea of the scheme is the following.
The nonlinear system of equations R(x, t) = 0 can be expanded in the vicinity
of yet unknown xk+1 at time point tn+1 using Taylor series:

0 = R(xk+1, tn+1) = R(xk, tn+1) +
∂R

∂x
(xk, tn+1)dx +O(dx2). (3.90)

Then the solution of the nonlinear system at time point tn+1 can be found
iteratively by solving the linearized system

∂R

∂x
(xk, tn+1)dxk+1 = −R(xk, tn+1) (3.91)

and updating the solution by xk+1 = xk + dxk+1. The procedure is repeated
until a certain convergence criteria is met. After that, the solution is sought
at the next time point tn+2.

Lets apply this procedure to solve (3.88) and (3.89). First of all, the
tangential matrix ∂R

∂x
at kth iteration is calculated:

∂R

∂x
(xk) =

[
∂Ru

∂(Δu)
∂Ru

∂(Δp)
∂Rp

∂(Δu)

∂Rp

∂(Δp)

]
=

[
KT −Q
−QT −(S + ΔtH)

]
, (3.92)

Here the structural tangent matrix KT can be presented as a sum of material
and geometrical tangential matrices (see Belytschko et al. 2000) that, in case
of Updated Lagrangian formulation, can be evaluated with respect to the
current configuration:

KTIJ
=

∫
V

BTCστBdV + I

∫
V

βββT
I σσσ

s
EβββJdV. (3.93)

Here Cστ is a reduced (due to symmetry) matrix of material tangent mod-
uli, relating Truesdell rate of Cauchy stress to the deformation rate tensor
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(the full matrix relates to the full linear elastic stiffness matrix as Cστ
ijklm =

J−1FimFjnFkpFlqDmnpq), I is a 3 × 3 unit matrix and βββiI = ∂NI/∂xi. Fi-
nally, the solution of our system at time point tn+1 is sought via the following
linearized system of equations:[

KT −Q
−QT −(S + ΔtH)

]
k,n+1

{
dus

dp

}
k+1

=

{
fu

−Δtfp

}
n+1

−

−
{

PI − Qp
−QT Δu + SΔp + ΔtHp

}
k,n+1

(3.94)

In the small strain formulation, we were ignoring the difference between
the reference and the current configuration, hence it was not necessary to
update the fluid volume ratio nf as the poroelastic domain deforms. However,
in the finite strain case nf becomes a function of strain. According to Lewis
and Schrefler (1998) the dependence of the void ratio e and subsequently nf

on strain can be presented in the following way:

e ≡ nf

1 − nf
=

dV

dV s − 1 =
dV

dV 0

dV 0

dV s
0

dV s
0

dV s − 1 = J(1 + e0)J
−1
s − 1 (3.95)

Here, J - Jacobian of the deformation gradient tensor, Js – Jacobian for the
solid phase and e0 – initial void ratio. Since the solid phase was assumed to
be incompressible, Js = 1.

3.4 Element overlapping technique

Most of the implementation effort, needed for the geometrically non-linear
poroelastic formulation, are spent on evaluation of the internal force vector
PI and the tangential stiffness matrix KT . This is especially the case if
higher-order approximation (shape) functions should be used for the solid
phase or if the solid phase should be able to exhibit plastic behavior. If the
user has the full source of the finite element code, where these, more compli-
cated elements are implemented, then the available code can be reused for
the poroelastic formulation. In commercially available codes, like ABAQUS
and MSC Marc, the user does not have this option. The suggested alter-
native in this case is to overlap the available element that has these more
complex features for the solid phase with the user element. Consequently the
two elements share corner nodes. Then, the poroelastic formulation (3.94)
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should be changed in such a way, that PI , KT and fu are made zero:[
0 −Q

−QT −(S + ΔtH)

]
k,n+1

{
du
dp

}
k+1

=

{
0

−Δtfp

}
n+1

−

−
{ −Qp

−ΔtQT Δu + SΔp + ΔtHp

}
k,n+1

. (3.96)

As a result, during the assembly procedure, the formulation (3.96) of the user
element will be added to the standard element providing values for PI , KT

and fu and recreating together formulation (3.94). This procedure is identical
to the approach for which the whole stiffness matrix and the right-hand side
are implemented in one element. Clearly this is just an implementational
trick that can be used to overcome the inaccessibility of hidden parts of a
commercial code. Sometimes it might be necessary to approximate displace-
ments with higher-order shape functions than those used for fluid pressure.
Then we could use, for instance, a standard Marc 10-node tetrahedral ele-
ment with 4-node user element. In this case the nodes on the edges of the
10-node tetrahedra will not be connected to the user element. However, this
combination is valid and is analogous to the formulation where displacement
and pressure fields have different order of approximation, as it is normally
used in incompressible analysis with mixed formulation (see Babuska 1971,
Babuska 1973 and Brezzi 1974).

3.5 Example 1. A small strain problem

The small strain formulation was tested against the MSC Marc solution of
a plane strain problem (Fig. 3.2, top left). Here a 2.5 × 2.5 mm square
of hydrated tissue was considered. The bottom of the square was vertically
restrained, while the sides were restrained horizontally. The bottom and the
sides were completely impermeable and drainage was allowed only through
the top boundary. Ramp vertical displacement of 0.125 mm directed down-
wards was applied to the left half of the top boundary in 500 sec and was kept
at this magnitude for the next 500 sec. The material properties of the tissue
were taken similar to the properties of cartilage (Spilker et al. 1988): Young
modulus 466700 Pa, Poisson ratio 0.16, permeability 1×10−14m4/Ns, initial
porosity 0.8 and fluid bulk modulus 2.3×109 Pa (taken from Anderson 1967).
First, the problem was solved using MSC Marc standard 8-noded isopara-
metric element with quadratic approximation of the displacement field and
linear (4-noded ) approximation of the fluid pressure. Next, the problem was
solved with the triangular user element with proposed poroelastic formula-
tion with linear interpolation of displacements and fluid pressures. As it can
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Figure 3.2: Comparison of small strain poroelastic formulation of MSC Marc
and the current formulation. Top left - boundary conditions of the problem,
top right - vertical displacement of the top right corner of the problem,
calculated with the standard and the user element. Bottom – final fluid
pressure distribution, calculated with the standard (left) and the user (right)
element.

be seen, the results show very good agreement between the standard and the
user elements. A somewhat denser mesh for the problem, solved with the
user element was needed due to the fact that the element was using linear
interpolations. However, general performance improvement was achieved due
to the fact that, unlike the standard MSC Marc element, the user element
was using a symmetrical stiffness matrix.
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3.6 Example 2. A finite strain problem

Here we consider an example, concerned with the consolidation of an one-
dimensional ten meter deep ground, fully saturated by water, infinitely ex-
tended in the horizontal direction and subjected to a step load applied at
the top level, with drainage allowed only through the top surface. An ini-
tial porosity of 0.3, permeability of 1 × 10−6m4/Ns, an elastic modulus of 1
GPa and zero Poisson ratio were used. Different load levels were considered,
namely 0.2, 0.4 and 0.6 fraction of the elastic modulus of the ground. The
above problem was simulated using the proposed finite strain poroelastic for-
mulation and compared to the solution of Meroi and Schrefler (1995).

The problem was modelled as a 3D column, meshed with tetrahedral ele-
ments (Fig. 3.3). The bottom of the column was vertically restrained and all
the nodes of the column were restrained horizontally. The load was applied
to the faces of the top elements and drainage was simulated by prescribing
zero fluid pressure to the top nodes. Two formulations of the solid phase
were used. First, the problem was solved using a Neo-Hookean hyperelastic
material (this formulation was used later throughout this thesis for modelling
biological soft tissues). Then, a formulation with linear elastic material was
used using the above mentioned element overlapping technique. Standard 4-
and 10-node MSC Marc elements with an Updated Lagrangian formulation
were used for the simulation of the solid phase.

Fig. 3.3 shows vertical displacement of the top surface versus normal-
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Figure 3.3: Vertical settlement versus normalized time. Set of curves A refers
to load level equal to 0.2, B - 0.4 and C - 0.6 fraction of the elastic modulus.
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Figure 3.4: Vertical settlement versus normalized time. Comparison of a
dynamic versus a poroelastic (quasi-static) solution for the material with
linear elastic material. Load level 0.2 fraction of the elastic modulus.

ized time TV (TV = cV t and cV = κE/γfh2 is the time factor, where t –
time, h – depth of the ground, E – an elastic modulus of the ground and γf

– specific weight of the fluid). As it was expected, the Neo-Hookean hypere-
lastic model causes higher stiffness of the ground as strain gets higher. Final
settlement magnitude of Meroi and Schrefler (1995) solution compares quite
well to the solution obtained with the element overlapping technique. There
was no visible difference between the results, obtained with 4- and 10-noded
MSC Marc elements used for the simulation of the solid phase. The slight
initial delay in the Meroi and Schrefler (1995) solution comparatively to the
results of the overlapping technique is supposedly attributed to the fact that
Meroi and Schrefler (1995) used a dynamic formulation. In order to test this
hypothesis we performed a linear elastic dynamic simulation and observed a
comparable delay in the initial vertical settlement (Fig. 3.4).

3.7 Discussion

The goal of this study was to develop a finite element formulation of poroe-
lastic theory, suitable for simulation of hydrated biological tissues and at the
same time allows usage of the functionality of a commercial FE package.

In biomechanical applications it is often necessary to model a problem
with poroelastic and elastic domains. However, to achieve this, the finite
element formulations for the elastic and poroelastic domains should be com-
patible. For instance, both formulations should have common degrees of
freedom at the nodes, as the two domains will share the same nodes at the
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interface. The same condition holds for the residual vectors, as these vectors
will be added during the assembly procedure.

The two major types of the finite element formulation used for the solu-
tion of the boundary value problem (3.51), (3.52), (3.31), (3.32), (3.54),(3.55)
are mixed and penalty formulations. The system of equation for the mixed
formulation is formed by equilibrium and mass balance equations, as it was
done in this work. In the penalty formulation the mass balance equation is
considered as a constraint, hence it is added to the equilibrium equation with
some penalty value. One of the examples of penalty formulation can be the
work of Suh et al. (1991). However, the elements of this formulation can not
be combined with standard elastic elements in a commercial code due to the
fact that the degrees of freedom in the nodes of these poroelastic elements are
velocities of the constituents, while in the nodes of the conventional elastic
elements the unknowns are displacements.

Oomens and Van Campen (1987) and later Lewis and Schrefler (1998)
presented a mixed formulation, that is very similar to the one, presented
here, except the momentum equation is replaced with its time derivative.
Their formulation is advantageous in a sense that, unlike our formulation,
it preserves symmetry of the stiffness matrix for all magnitudes of the time
integration parameters Θ. However, the residual (the right hand side) of this
formulation represents a rate of the internal force. Therefore, this formula-
tion can not be used in combination with conventional structural elements,
as the rate of the force from the elements of this formulation would be added
to the force of the structural elements during the assembly procedure, which
is not acceptable.

The formulation used in MSC Marc is very similar to ours, except the
stiffness matrix in this formulation is not symmetric. As a result, much
more operating memory has to be allocated to accommodate a nonsymmet-
ric stiffness matrix. Besides, in MSC Marc if a nonsymmetric stiffness matrix
is present, the user can use neither iterative solvers, nor parallel computa-
tion capabilities. The other disadvantage, present in MSC Marc, is that if
the user wants to perform a soil analysis in 3D, he can only use hexahedral
elements of second-order approximation. Per se, this is not a disadvantage,
but in biomechanics very complicated geometries can not be easily meshed
with hexahedral elements. At the same time second order approximations
for the elements in this case presents a heavy computational burden.

The finite element formulation, presented in this study, is particulary
useful for large scale biomechanical simulations, where modelling of compli-
cated geometries can be easily done by a dense mesh of linearly interpolated
tetrahedral elements. A formulation with symmetric stiffness matrix allows
usage of a wide variety of solvers, while the proposed element overlapping
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technique can be used where more sophisticated formulations for the solid
phase are needed. The fact that the right-hand side of the proposed element
is force and the nodal degrees of freedom are displacements allows combi-
nation of this elements with all the other structural elements, that exist in
MSC Marc.
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Chapter 4

The effect of micromotions,
interface thickness and implant
surface characteristics on
biophysical stimuli at the
bone-implant interface: a finite
element study†

Abstract

Bone ingrowth into the implant surface is controlled by mechanical and bio-
logical factors. If mechanical stability is not sufficient, the peri-implant tis-
sue might differentiate into fibrous tissue or cartilage instead of bone, which
leads to the fixation failure. Detailed finite element models of the interface
tissue, adjacent to the implant surface were developed. Three types of im-
plant surfaces were considered: a smooth surface, a surface covered with
sintered beads and a surface covered with porous tantalum. Deformation
of the interface tissue caused by relative motion between implant and bone
was simulated. Biophysical stimuli from Prendergast et al. (1997) were used
in order to estimate possible success of bone ingrowth. The results show
that given the same level of the micromotions, thicker interfaces have better

†Based on A. Andreykiv, F. van Keulen The effect of micromotions and interface
thickness on biophysical stimuli at the bone-implant interface: a finite element study. 6th

International Symposium on Computer Methods in Biomechanics & Biomedical Engineer-
ing, February 25-28, 2004. Madrid, Spain
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chance for ossification than the thinner ones. All surfaces produced simi-
lar magnitudes of the stimuli, although porous tantalum performed slightly
better than sintered beads and the smooth surface. The biophysical stimuli
inside the interface tissue were rather insensitive to variation of the micro-
motion application time within the range of 0.1-0.5 sec.

4.1 Introduction

The success of load-bearing orthopaedic implants requires a rigid fixation of
the implant within the host bone site. This fixation can be achieved by us-
ing cement or by a porous layer that promotes bone ingrowth. In cementless
and press-fit implant systems, fixation is achieved by mechanical interlock
between the porous surface of the implant and the ingrown bone.

Bone ingrowth into the porous backing is analogous to the bone fracture
healing process. Following arthroplasty, the porous backing becomes filled
with granulation tissue (Fig.4.1). If high mechanical stability is achieved,
the ingrowth process is similar to intramembranous ossification that can
take place in bone fracture healing if the bone fragments are stabilized. If
the interface granulation tissue is subjected to large deformations caused by
bone-implant relative motions, this can result in formation of fibrous tissue or
fibrogenesis. This will lead to fixation failure, since the fibrous tissue is much
softer than bone. There are several theories regarding the influence of the
mechanical environment on the peri-implant tissue formation. Carter and
Giori (1991) suggested that if mesenchymal cells (cells that can still differ-
entiate into bone, muscle, cartilage or tendon-making cells) are subjected to
low distortional strain and low compressive hydrostatic stress, they are more
likely to become osteogenic. Excessive distortional strain will result in fibro-
genesis. Significant compressive hydrostatic stresses and poor vascularity will
result in cartilage formation. Prendergast et al. (1997) proposed a mechano-
regulation model where the absolute values of the relative fluid/solid velocity
ν and maximum distortional strain γ are two biophysical stimuli that regu-
late tissue differentiation. Following this model, high levels of these stimuli
(γ/a + ν/b > 3, a = 0.0375, b = 3μms−1, derived by Huiskes et al. 1997)
favor differentiation of mesenchymal cells into fibroblasts, intermediate levels
(γ/a + ν/b > 1 and γ/a + ν/b < 3) favor differentiation into chondrocytes
and low levels (γ/a + ν/b < 1) favor osteoblasts. Although application of
the theories, presented by Prendergast et al. (1997) and Carter and Giori
(1991), give rather similar results for bone fracture healing (compare for in-
stance the results of Lacroix and Prendergast 2002b and Bailon-Plaza and
Van der Meulen 2003, that are based on the assumptions of Prendergast et al.
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(1997) and Carter and Giori (1991), respectively) only the theory of Pren-
dergast et al. (1997) is capable to simulate the influence of interstitial fluid
velocity and strain rate effects on tissue formation, which was also observed
experimentally (Goodship et al. 1998, Qin et al. 2003).

In this chapter the effect of the geometry of the porous coating, interface
tissue thickness, the micromotion magnitude and the micromotion applica-
tion rate on the mechanical environment within the interface tissue is inves-
tigated. The likelihood of bone ingrowth is assessed based on Prendergast
et al. (1997).

Figure 4.1: Schematic representation of the bone-implant interface. Top - a
glenoid component with porous backing. Left - detailed interface with porous
coating, penetrating interface granulation tissue and adjacent bone. Right -
model of the interface granulation tissue without porous coating.

4.2 Methods

Three types of implant surfaces were considered: porous tantalum (com-
mercial Hedrocel) surface, surface covered with sintered beads (titanium al-
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loy spheres) and a smooth surface. The three-dimensional geometry of the
porous tantalum was recreated from a series of 2D images, obtained by Gun-
son et al. (2001). Subtraction of the porous tantalum geometry from a small
interface volume resulted in a small piece of geometry of the interface gran-
ulation tissue, that penetrates the porous backing (Fig. 4.2). This geometry
was meshed using tetrahedral elements.

An idealized geometry of the sintered beads coating was created. The
geometry was created as 5 fused spheres (four large spheres with diameter of
120 μm and one small sphere, 100 μm in diameter) (Fig. 4.3.A). The geom-
etry of the adjacent interface tissue was created by subtracting the coating
geometry from a small interface volume. Fig.4.3.A shows the resulting ge-
ometry where symmetry was taken into account.

Geometry of the interface tissue for all three implant coatings is obtained
by subtracting the geometry of the coating from a small interface volume,
represented by a block. Due to the fact that the smooth implant surface does
not have a coating, the resulting subtraction procedure produces a block,
shown on Fig. 4.3.B.

A set of boundary conditions, aiming at replicating the mechanical en-
vironment at the interface, was applied to all three meshes. In order to make
the models representative for a large area of the interface, symmetric and
periodic boundary conditions (BC’s) were applied. The periodic BC’s were
implemented by tying degrees of freedom of the nodes, residing on the sides
of the model, parallel to the ZY plane (Fig.4.4). In case of porous tantalum,
the additional mirroring operation was performed (Fig.4.4). Application of
periodic boundary conditions to non-periodic structure as porous tantalum
is, strictly speaking, not entirely correct, as the geometry of the structure
that appears at the mirror plane is not representative for the real geometry
of the porous material. However, Terada et al. (2000) showed that in most
cases such geometric incompatibility does not introduce substantial errors.

Figure 4.2: Derivation of the interface tissue geometry for porous tantalum
surface.
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Figure 4.3: A left - idealized sintered beads coating geometry. A centre - the
geometry of the corresponding interface tissue which accounts for symmetry.
A right - FE mesh of the interface tissue (thickness of the interface is 500μm).
B - FE mesh of the interface tissue, adjacent to the smooth surface (thickness
of the interface is 500μm).

In order to determine whether application of such BC’s is sensitive to the
geometrical “artifact” that appears in the mirroring plane, three additional
models were created. The mirroring operation in each of those models was
performed with respect to the other three sides of the soft tissue geometry,
depicted in Fig.4.2. Comparison of the results for different mirroring planes
should indicate whether the simulation results are sensitive to the fact which
plane is taken as a mirroring plane. Symmetric BC’s were applied by restrict-
ing the displacement in Z direction for the nodes, residing on the sides of the
model, parallel to the XY plane (Fig.4.4). Since it was assumed that the
interface tissue is firmly attached to bone, the displacement at the bottom
surface of the interface tissue was restricted. Zero fluid pressure was pre-
scribed to the bottom nodes, as it was assumed that the bone permeability
is significantly higher than the permeability of the interface tissue. In order
to determine the sensitivity of the model to this boundary condition, an ad-
ditional simulation was performed. In this additional simulation fluid flow at
the bottom was not permitted (zero fluid flux was prescribed). The interface
micromotions were applied by prescribing horizontal displacements in X di-
rection (Fig.4.4) to the porous coatings (see also Fig.4.1). Two magnitudes of
micromotions BC were applied: 50 and 8 μm. These two micromotion mag-
nitudes were applied in 0.5 sec. 50 μm micromotion was also applied in 0.1
sec to the porous tantalum case. The dependence between the micromotions
and time was linear. Two interface thicknesses (interface thickness is the dis-
tance between the porous layer and bone. See Fig.4.1) were simulated: 500
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and 50 μm. Because of the high difference in stiffness between the interface
tissue and the porous implant surface, the surface materials were assumed to
be rigid. For this reason, the porous surface materials were not meshed, but
appropriate displacements were applied to the nodes at the interface between
tissue and the surface.

The interface tissue was modelled as poroelastic, with a Young’s modu-
lus of 0.2 MPa (Lacroix and Prendergast 2002b), a Poisson’s ratio of 0.1667
(Spilker et al. 1988), a porosity of 0.8 and a permeability of 1× 10−14m4/Ns
(Prendergast et al. 1997). Neo-Hookean material behavior and finite strain
formulation were used. The models were created in MSC Mentat and solved
by MSC Marc (Version 2005, Palo-Alto, USA).

4.3 Results

There is no visible difference in the effect of the porous coating geometry on
the stimulus for 500 μm thick interface models when 50 μm micromotion is
applied in 0.5 sec (Fig.4.5). The magnitude of the stimulus in the interface
tissue of the three models indicates a mechanical environment favorable for
cartilage formation (the biophysical stimulus is between 1 and 3). Applica-
tion of the same micromotion magnitude of 50 μm in 0.5 sec but to models
with 50 μm thick interface causes a substantial difference in the stimulus
magnitude (Fig.4.6). According to Prendergast et al. (1997) fibrous tissue
would develop at all three interfaces in this case (the stimulus is above 3).
Only application of 8 μm micromotion in 0.5 sec to models with 50 μm thick
interface showes a little effect of the coating geometry on the stimulus dis-
tribution (Fig.4.7). Under these conditions the mechanical environment at
the interface tissue of the smooth surface and the sintered beads is favorable
for cartilage differentiation. The same conditions for the porous tantalum

Figure 4.4: FE mesh of the interface tissue (thickness of the interface is 500
μm) that penetrates the porous tantalum backing. The arrow shows which
sides were tied to create periodic boundary conditions.
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surface allow partial bone differentiation.
Results of the simulation for the porous tantalum case are not very

sensitive to the fact which plane is chosen to be a mirroring plane. Regardless
of the choice of the mirroring plane, all three models produced a comparable
amount of areas where the stimulus was less than unity (Fig. 4.8).

The results are also not sensitive to the applied micromotions rate. Ap-
plication of 50 μm micromotion in 0.1 sec to the 500 μm thick model (results
are not plotted) and application of this micromotion in 0.5 sec (Fig. 4.5)
give almost identical distributions of the biophysical stimulus in case of the
porous tantalum surface.

The models are also not sensitive to the fluid flow boundary conditions.
Allowing or blocking the fluid flow at the bottom of the interface model with
porous tantalum surface had no visible effect on the biophysical stimulus
distribution (results are not plotted).
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Figure 4.5: Biophysical stimulus (γ/a + ν/b) in all three models with 500
μm thick interface after application of 50 μm micromotion in 0.5 sec (the
visual size ratio between the models is not preserved). At the bone-implant
interface of all the models the stimulus is between 1 and 3 (cartilage formation
is favored).
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Figure 4.6: Biophysical stimulus (γ/a + ν/b) in all the models with 50 μm
thick interface after application of 50 μm micromotion in 0.5 sec (the visual
size ratio between the models is not preserved). At the interface of the all
models the stimulus is above 3 (i.e. fibrous tissue formation is favored).

4.4 Discussion

The purpose of the present study was to investigate the influence of the me-
chanical environment on the peri-implant tissue formation. The effects of
the implant surface geometry, the interface tissue thickness, magnitude of
the micromotions and the micromotion application rate on biophysical stim-
uli inside the interface tissue were studied.

Until now several authors have simulated the mechanical environment
at the bone-implant interface with finite element models (Prendergast et al.
1997, Huiskes et al. 1997, Giori et al. 1995, etc.). Simmons et al. (2001)
were the first who took into account the geometry of the coating and showed
the advantage of the coating with higher porosity like sintered beads over
plasma sprayed surface. To our knowledge the present work is the first study
that investigates the effect of the geometry of the coating in 3D and accounts
for the poroelastic non-linear behavior of the interface tissue.

The results of the simulation allow several conclusions. First, the insensi-
tivity of the models to the variation of the applied micromotion rate and the
type of fluid boundary conditions indicates that under these conditions the
interface tissue behavior is rather elastic than poroelastic. This was also indi-
rectly demonstrated experimentally. Goodship et al. (1998) experimentally
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studied the effect of the displacement application rate on the bone fracture
healing process. They found that the effect of the variation of the displace-
ment rate between 2 mm/sec and 40 mm/sec was relatively low. At the same
time, high displacement rate of 400 mm/sec reflected the poroelastic nature
of the granulation tissue (the authors were speculating on visco-elastic nature
of the healing callus). Second, the results show that given the same level of
micromotions, thinner interface tissue is more likely to turn into fibrous or
cartilage tissue than the thicker ones (compare Fig.4.5 and Fig.4.6). Later in
this thesis (Chapter 6) it will be demonstrated that variation of the interface
thickness under the same force boundary conditions has almost no effect on
the tissue differentiation. Third, if the thickness of the interface tissue is
reasonably high, like in our 500 μm case, the influence of the implant surface
geometry is negligible (Fig.4.5). This can be the case if the placement of the
implant is not very accurate, which, for instance, happens often with glenoid
components. If the thickness of the interface is small, like in our 50 μm case
(Fig.4.7), then a porous tantalum surface creates a mechanical environment
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Figure 4.7: Biophysical stimulus (γ/a+ ν/b) in all models with 50 μm thick
interface after application of 8 μm micromotion in 0.5 sec (the visual size ratio
between the models is not preserved). The whole interface tissue, adjacent to
the sintered beads and the smooth surface, is predicted to turn into cartilage
(the stimulus is between 1 and 3). The interface tissue adjacent to porous
tantalum surface has some spots that can turn into bone (light grey areas
where stimulus is less than 1).
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Figure 4.8: Biophysical stimulus (γ/a+ ν/b) in models of the porous tanta-
lum interface tissue obtained from three different mirroring planes. Interface
thickness - 50 μm, micromotions magnitude - 8 μm, applied in 0.5 sec.

within the interface tissue, that is slightly more favorable for bone forma-
tion than the environments, created with sintered beads or smooth implant
surface.
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Numerical model of tissue
differentiation during bone
fracture healing. Influence of
the loading

Abstract

A proper modelling of bone fracture healing could assist in the development
of loading protocols, aimed at accelerating the healing process. A numer-
ical model of bone fracture healing is presented. The model includes both
biological and mechanical components. The biological component presents a
system of differential equations that describe cells migration, proliferation,
differentiation, cell replacement, tissues production and resorption. All those
processes are influenced by mechanical stimuli, calculated in the mechanical
component. The mechanical component is based on poroelastic simulation
of the healing callus. Both biological and mechanical components are im-
plemented in a 3D finite element model. The latter was calibrated and val-
idated using in vivo experiments reported in literature. The application of
the model examines the effect of bending and the loading frequency on a
healing process.

5.1 Introduction

Bone fracture is a common injury which normally heals without any compli-
cations. But in up to 10 % of the cases (Einhorn 1995, Praemer et al. 1999)
complications may lead to delayed or impaired healing. It is possible that the

57
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geometry of the intact bone is not restored and fracture results in formation
of pseudarthrosis, or false joint, which is often accompanied by chronic pain
and disability.

It was shown clinically that mechanical stimulation of the fractured bone
can influence the healing process. Many researches clinically investigated a
wide range of mechanical factors in order to find optimal mechanical condi-
tions, under which the healing will be successful. Goodship and Kenwright
(1985) showed that application of controlled axial micro-movement results
in significant improvement of healing as compared to rigid fixation of the os-
teotomy site. Claes et al. (1995), Claes et al. (1997) and Claes et al. (1998)
showed a negative effect of large osteotomy gaps on the healing process. In
earlier studies, the healing process was mainly quantified by interfragmen-
tary movement, walking stiffness or bone mineral content, while more recent
studies also present results on the histology analysis of callus under differ-
ent loading conditions (for instance, Claes et al. 1998, Le et al. 2001).
Other authors managed to develop experimental protocols, that force the
healing process to go into a predefined path, like intramembranous ossifica-
tion (Thompson et al. 2002) or atrophic non-union (Kokubu et al. 2003).
While exploring the influence of the loading applied to the fractured bone,
Augat et al. (2003) showed a negative effect of shear movement and Good-
ship et al. (1998) showed a positive effect of high frequency loading on bone
healing.

Despite the progress in experimental techniques, clinical experiments
posses one common disadvantage: it is either impossible or very difficult
to obtain a good insight into the processes that take place in the callus.
Computer models, on the contrary, allow accurate simulation of very compli-
cated mechanical and biological environments. Calculating local stresses and
strains in the fractured bone by finite element analysis, Claes and Heigele
(1999) successfully predicted course and type of fracture healing. Gardner
et al. (2000) investigated the healing process in long bone fractures and
Loboa et al. (2001) in oblique fractures. Ament and Hofer (2000) went one
step further by simulating the kinetics of the healing process using linear
elastic FE simulation in combination with their fuzzy logic model. Lacroix
and Prendergast (2002b) and Lacroix et al. (2002) assumed a poroelastic
nature of the callus and simulated dispersal of the mesenchymal cell as a
diffusion process. They assumed that differentiation of the migrating mes-
enchymal cells into bone, cartilage and fibrous tissue forming cells will be
regulated by tissue’s shear strain and velocity of the fluid inside the callus.
This approach allowed successful prediction of the osteotomy gap size effect
on the healing process. Later, Lacroix and Prendergast (2002a) performed a
3D healing simulation based on the real geometry of a fractured bone with
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an external fixator. Bailon-Plaza and Van der Meulen (2001) were the first
who introduced a very advanced biological component in their numerical
modelling, which included simulation of most of the bony cells processes and
subsequent tissues matrix formation, influenced by the growth factors. This
pioneering work did not account for the mechanics of the healing process.
However, in their next paper (Bailon-Plaza and Van der Meulen 2003) the
added mechanics helped to show the effect of the different timing in loading
application. However, as the simulation was limited to elasticity, it was not
able to predict the effect of the strain rate as was shown by Goodship et al.
(1998) (the clinical result Bailon-Plaza and Van der Meulen 2003 used for
the validation of their model). It is the complexity of their biological model,
which probably did not allow them to easily implement it in a finite element
model. Instead a 2D finite difference model was developed.

In the current chapter we aim at developing a model that would account
for the major processes during the bone healing, while, at the same time,
allowing easy implementation in a finite element model. The later makes the
model applicable for the study on realistic clinical cases, i.e. complex ge-
ometries. The model was calibrated and validated using in vivo experiments
reported in literature. The application of the model examines the effect of
bending and loading frequency on the healing process.

5.2 Methods

5.2.1 Tissue differentiation model inside the callus

Bone fracture healing can be classified as primary and secondary. Primary
healing takes place in case of high mechanical stability and small gap sizes.
In this case, bone fragments get connected by direct bone remodelling in the
space between the bone fragments with formation of small or no fracture cal-
lus (Perren 1979). However, in most cases, the healing goes via a secondary
path. Secondary healing starts with inflammation, when blood, that comes
from the ruptured blood vessels, causes formation of hemorrhage (Einhorn
1998). Next, mesenchymal cells, that originate from the broken periosteum,
and marrow stromal cells migrate into the callus and proliferate. Depending
on the local mechanical and biological environment, these cell differentiate
either into osteoblasts, bone forming cells, chondrocytes, cartilage forming
cells or fibroblasts, the cells that produce fibrous tissue. Again, depending
on the mechanical and biological environment, these cells can migrate, pro-
liferate and produce corresponding tissues. Mesenchymal cells that reached
the fracture gap often differentiate into fibroblasts, forming fibrous tissue.
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Bone formation starts along the bone fragments via intramembranous ossi-
fication and chondrogenesis initiates along the periosteum layer, but in the
middle of the callus. As healing progresses, the intramembranous ossifica-
tion front advances towards the center of the callus. Next, the ossification
of the cartilage callus begins, a process known as endochondral ossification.
Endochondral ossification finalizes the differentiation stage of the healing.
During this process chondrocytes are replaced by osteoblasts that produce
bone matrix. Endochondral ossification continues until all the cartilage has
been replaced by bone and bone entirely bridges the fracture gap. The last
stage of the healing is restoration of the original geometry of the bone by
resorption of the external callus.

In this study we present a model of secondary bone healing. We study
the same geometry of the fracture callus as Lacroix and Prendergast (2002b)
which is assumed constant during the simulation. The model consists of
the two main components: biological and mechanical. The biological com-
ponent of the model allows simulation of cellular processes, namely cells
migration, proliferation, differentiation, tissue deposition and replacement.
The mechanical component of the model calculates the mechanical stimuli
that influence the cellular processes. We assume that all cell types have the
same critical “saturated” density value and the presented cell densities are
normalized with respect to that saturated density. The presented tissue den-
sities are quantified as volume fractions of the corresponding tissues. It is
assumed that initially the callus is filled with granulation tissue and all the
cell and other tissue densities are zero. It is also assumed that mesenchymal
cells originate from the periosteum layer and the bone marrow, hence the
mesenchymal cells density at those areas are kept at the highest saturated
level (unity in terms of the normalized values) for a period of time which is
treated later as a parameter of the model. We also assume that cell differ-
entiation, proliferation and tissue production are regulated by tissue shear
strain and interstitial fluid velocity, as was proposed by Prendergast et al.
(1997). In this model mesenchymal and fibroblast cells dispersal is assumed
to be described by

dcm
dt

= Dm∇2cm + Pm(1 − ctot)cm − Ff (1 − cf )cm −
− Fc(1 − cc)cm − Fb(1 − cb)cm, (5.1)

dcf
dt

= Df∇2cf + Pf (1 − ctot)cf + Ff (1 − cf )cm −
− Fc(1 − cc)cf − Fb(1 − cb)cf . (5.2)

Here cm, cf , cc and cb are mesenchymal, fibroblast, chondrocyte and os-
teoblast normalized cells densities, Dm and Df are the corresponding dif-
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fusion coefficients. The diffusion coefficients are assumed to depend on
bone (mb) and cartilage (mc) volume fractions in the following way: Di =
Di0(1 − mc − mb), i = m, f . Dm0 and Df0 are the initial diffusion coeffi-
cients. The total cell density is ctot = cm + cf + cc + cb. Values Pm and
Pf are proliferation rates, that also depend on cartilage and bone volume
fractions: Pi = Pi0(1 − mc − mb), i = m, f . Values Pm0 and Pf0 are the
initial proliferation rates that depend on the mechanical stimulus (see Ap-
pendix A) introduced by Prendergast et al. (1997): S = γ

a
+ ν

b
. Values γ

and ν are maximal shear strain and interstitial fluid velocity, respectively,
and a = 0.0375 and b = 3μms−1 are the constants, determined by Huiskes
et al. (1997). According to Prendergast et al. (1997), if S is smaller than
some threshold Smin, then the mechanical environment is favorable for os-
teoblast differentiation and bone matrix deposition. Moderate magnitudes
of the stimulus (Smin < S < Smax) favor chondrocytes differentiation and
cartilage production. High values of the stimulus (Smax < S) favor fibroblast
differentiation and fibrous tissue production. Therefore, Ff ,Fc and Fb are
differentiation rates that also depend on S (see Appendix A). Chondrocytes
and osteoblast cells dispersal is modelled in a similar way, but it is assumed
that they do not migrate:

dcc
dt

= Pc(1 − ctot)cc + Fc(1 − cc)(cm + cf ) − Fb(1 − cb)cc, (5.3)

dcb
dt

= Pb(1 − ctot)cb + Fb(1 − cb)(cm + cf + cc). (5.4)

Here Pc and Pb are chondrocytes and osteoblasts proliferation rates that also
depend on cartilage and bone volume fractions and on the mechanical stimu-
lus S. Tissues production and replacement is regulated by the corresponding
cells, tissues themselves and mechanical stimulation:

dmb

dt
= Qb(1 −mb)cb, (5.5)

dmc

dt
= Qc(1 −mb −mc)cc −Dbcbmcmtot, (5.6)

dmf

dt
= Qf (1 −mtot)cf − (Dbcb +Dccc)mfmtot. (5.7)

Here mb, mc and mf are bone, cartilage and fibrous tissue volume fractions,
respectively, Qb, Qc and Qf are production rates of the corresponding tissues.
The production rates are also functions of S (See Appendix A). Db and
Dc are tissues resorption rates that are chosen to be equal to Qb and Qc.
mtot = mf+mc+mb is the volume fraction of all tissues except the granulation
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tissue, which volume fraction is 1 −mtot.
The mechanical component of the model is meant for the calculation

of the stimulus S in the callus. All tissues in the callus were modelled as
poroelastic, using a finite strain formulation and Neo-Hookean hyperelastic
properties for the solid phase. Cortical bone was modelled as linear elastic.
The material properties of the tissues are presented in Table 5.1. Stiffness
of the granulation tissue was calculated similar to Lacroix and Prendergast
(2002b), by fitting the Young’s modulus of the granulation tissue in such a
way that 500N force applied to the cortex results in approximately 1 mm
of interfragmentary motion. This is also consistent with the experiment of
Claes et al. (1998). The obtained overall stiffness was 188 kPa. Since several
tissues can coexist together in one material point, mechanical properties at
this point are calculated by the rule of mixtures (Lacroix and Prendergast
2002b):

Total property=
∑

i single tissue propertyi ×mi.

The set of partial differential equations (5.1)–(5.7) was solved using a fi-
nite element model (Appendix B), which was formulated using the Galerkin
method. Semi-implicit time integration procedure was used. The resulting
nonlinear system was solved by a Newton iterative scheme. The formula-
tion was implemented as a four-node tetrahedral user element in MSC Marc
(version 2003r2, Palo Alto, USA) and successfully validated using an one-
dimensional Matlab solution. A finite strain poroelastic four-node tetrahe-
dral user element was also implemented in MSC Marc (see Chapter 3). All
simulations were performed on a 8-node parallel network cluster.

5.2.2 Calibration of the model

Calibration of the model was performed using animal test results, reported
by Claes et al. (1995) and Claes and Heigele (1999). In these studies the
authors investigated the influence of the osteotomy gap size on the fracture
healing process. Several groups of sheep underwent a standardized trans-
verse osteotomy of the right metatarsal. The osteotomy was stabilized by
a specially designed external ring fixator with extremely high bending and
torsional stiffness, while allowing axial movements through a telescoping sys-
tem. Weight bearing in the operated limb produced an axial telescoping,
corresponding to a controlled interfragmentary movement. The change of
interfragmentary movement was monitored weekly.

The proposed model was calibrated to the results of the group of sheep
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with 3 mm gap size and approximately 1 mm initial interfragmentary move-
ment. The calibrated values were cell differentiation rates (Fbmin

,Fbmax , Fcmax ,
Ffmax), tissue production rates (Qbmin

,Qbmax , Qcmax , Qfmax , see Appendix A
for the definitions), time period for mesenchymal cells boundary condition
application and, as was mentioned before, initial callus stiffness. The goal of
the calibration was to obtain realistic kinetics of interfragmentary movement
and tissues distribution, i.e. similar to the ones, reported by Claes et al.
(1995) and Claes and Heigele (1999).

A 3D finite element mesh used for the calibration, was build from the ax-
isymmetric geometry introduced by Lacroix and Prendergast (2002b). Due
to axial symmetry, the geometry was simplified to one eight of the corti-
cal bone with marrow and callus (Fig.5.1). The mechanical component of
the model simulates the mechanical environment, as described by Claes and
Heigele (1999). The bottom nodes of the mesh are constrainted in vertical
direction and a vertical axial force of 500N is applied in 0.5 s (the force is
linearly dependent on time). Symmetry boundary conditions are applied to
the sides of the model. The biological component of the model was modelled
only in the callus region of the mesh, where the healing takes place. As was
mentioned before, saturated mesenchymal cell density was prescribed at the
periosteum layer and bone marrow interface and kept constant for a short

Table 5.1: Material properties
Young’s Poisson’s Permea- Porosity Fluid
Modulus ratio bility Bulk
(MPa) (m4N−1s−1) modulus

Material (MPa)

Cortical Bone 20000a 0.3a – – –

Mature Bone 6000a 0.3a 3.7 × 10−13b
0.8 2300c

Cartilage 10d 0.1667e 5 × 10−15f
0.8 2300c

Fibrous Tissue 2d 0.1667e 1×10−14g
0.8 2300c

Gran. Tissue 0.188 0.1667e 1×10−14g
0.8 2300c

a - Claes and Heigele (1999)

b - Ochoa and Hillberry (1992)

c - Anderson (1967)

d - Hori and Lewis (1982)

e - Spilker et al. (1988)

f - Armstrong and Mow (1982)

g - estimated by Prendergast et al. (1997) based on Armstrong and Mow (1982) and Levick (1987)
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Mechanical component Biological component

Figure 5.1: Finite Element mesh, used for the calibration of the model.

period of time, the latter is determined from the calibration of the model.
Initially, all cell densities are zero, except those prescribed as bound-

ary conditions. First, the biological model starts. It immediately invokes a
mechanical simulation which runs with the initial material properties of the
callus. When the mechanical simulation is finished, it passes the calculated
stimulus S to the biological part. The biological part simulates one day of the
healing process and invokes the mechanical simulation with new callus ma-
terial properties. This cycle is repeated until 7 weeks of the healing process
is simulated.

5.2.3 Validation of the model

The model was validated against the ovine experiment reported by Goodship
et al. (1998). The latter investigated the effect of strain rate and timing of
mechanical stimulation on fracture healing. In this experiment a middiaphy-
seal osteotomy was created to form a 3-mm gap which is stabilized with a
unilateral external fixator. The fixator was applied to the cranial aspect of
the tibia. The sheep walked within 24 hours of surgery and the fixator frames
were left in situ for 12 weeks. In the first part of the study three groups of
skeletally mature female sheep were used in which displacement rates of 2
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mm, 40 mm, and 400 mm per second were applied using a microprocessor
controlled actuator. An initial displacement was used, applied with a force of
200N at 0.5 Hz for 5 consecutive days per week for 12 weeks. The second part
of the study used an additional group of six sheep. The osteotomies in this
group were subjected to the same stimulation (400 mm/sec of applied cyclic
micromovement) as the preceding groups, but the stimulation was initiated
at 6 weeks postoperatively when periosteal bridging had commenced.

In order to simulate the described experiment, some adjustments to the
calibrated model were needed. In order to take into account the bending
moment, caused by walking, one fourth of the fractured bone had to be sim-
ulated (Fig.6.5).

Axial loading

by the actuator

200N

Bending moment

caused by walking

5% and 40 %

of 1900 N cm

Figure 5.2: Finite Element mesh and boundary conditions used for the vali-
dation of the model.

The simulation aims at replicating the loading conditions, reported in
Goodship et al. (1998) experiment. Hence both axial loading, applied by
the microprocessor controlled actuator, and bending loading, applied when
the sheep was walking with the locked fixator, are simulated. Due to the
fact that in the animal experiment the axial stimulation was applied sepa-
rate from the bending stimulation, separate purely axial and purely bending
simulations are performed. The magnitude of S, that is passed to the tissue-
differentiation model every day, is taken as a maximum of the two values,
calculated from the two loading regimes. Similarly to the animal experiment,
the axial stimulation is simulated only during the working days (Monday till
Friday), while the bending moment is applied during every day of the simu-
lated period, since in the animal experiment the sheep were allowed to walk
freely. Duda et al. (1998) showed that the maximum bending moment dur-
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ing the sheep’s gait is 1900 N cm. Similarly to Bailon-Plaza and Van der
Meulen (2003), we investigate the influence of the bending moment by using
5% and then 40 % of this value. The corresponding moment is applied to
the bone as a linearly distributed pressure. In the experiment by Goodship
et al. (1998), an initial displacement of 1 mm was caused by application of
200N force. In order to replicate this behavior, the initial callus stiffness is
changed to 0.085 MPa, which was the result of the calibration.

In order to study the influence of the loading frequency, as reported in
the animal experiment, two displacement rates of 2 and 40 mm/sec are sim-
ulated. As in the experiment, the above rates are applied by 200N axial load
in subsequently 0.5 and 0.025 sec.

In total, three validation numerical experiments are performed. First,
the one with 2 mm/sec displacement rate for the axial loading and 5 % of
the total bending moment. Second, the one with 40 mm/sec displacement
rate and 5 % of the total bending moment. Third, the one with 2 mm/sec
displacement rate for the axial loading and 40 % of the total bending mo-
ment.

The results of the simulations are presented as spatial distribution of cells
and tissue densities in the callus at different time points. Interfragmentary
movement, axial stiffness and bone fractions were also calculated. Axial stiff-
ness was calculated similar to Bailon-Plaza and Van der Meulen (2003), by
applying 100 N load and dividing this load by the average nodal displacement
of the cortex at the osteotomy gap. Average bone fraction was calculated
in the whole callus and at the osteotomy plane. Axial stiffness and bone
fraction results were qualitatively compared to the walking stiffness index
and the bone mineral content at the osteotomy line, measured by Goodship
et al. (1998).

5.3 Results

Calibration of the model produced the following values for the model pa-
rameters: cell differentiation rates Fbmin

= 0.005 day−1, Fbmax = 0.15 day−1,
Fcmax = 0.3 day−1, Ffmax = 0.01 day−1, tissue production rates Qbmin

=
0 day−1, Qbmax = 0.1 day−1, Qcmax = 0.2 day−1, Qfmax = 0.06 day−1, time
period for maintaining the mesenchymal cells boundary conditions at the
periosteum layer - one week. Using these parameters the model could suc-
cessfully reproduce the interfragmentary movement history obtained by Claes
et al. (1995) and Claes and Heigele (1999) (Fig.5.3). Tissue differentiation
inside the callus also compares well with the scheme reported by Claes and
Heigele (1999). Initially, the callus is filled with granulation tissue only. The
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Figure 5.3: Simulated and experimentally observed interfragmentary move-
ment.

following event is invasion of the mesenchymal cells and their subsequent
differentiation into osteoblasts along the bone sides (Fig.5.4), and fibroblasts
and chondrocytes differentiation in the gap area. The corresponding tissues
production has a similar pattern to the cell densities distribution (Fig.5.5).
The cells differentiation is governed by the biophysical stimulus S, which re-
duces gradually, as the callus gets stiffer (Fig.5.6).

Application of small bending moment (5 % of the 1900 Nm maximum
value) in the validation simulation does not substantially change the tissue
distribution pattern as compared to the pattern in the calibration simula-
tion with pure uniaxial loading (Fig.5.7). Application of the higher bending
moment (40 % of the 1900 Nm maximum value) disturbs the symmetry of
the tissue distribution. The bending moment causes some extra stimula-
tion of the distal part of the callus which leads to the additional bone and
cartilage production in this area (Fig.5.8). This additional stimulation also
causes increase of the average bone density in the whole callus (Fig.5.9) and
in the osteotomy plane (Fig.5.10). The increase of the bone density in the
osteotomy plane results in the increase of the axial stiffness (Fig.5.11) and
subsequent decrease in the interfragmentary movement (Fig.5.12).

Higher displacement rates also changes the tissue distribution pattern in
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Figure 5.4: Cell concentrations inside the callus for the calibration simula-
tion.

the callus (Fig.5.13). It increases the stimulus S, which causes more carti-
lage and bone formation in certain areas of the callus (Fig.5.9). However,
the tissue distribution, caused by the higher displacement rate, is such that
the ossification front propagation is delayed. As a result, the axial stiffness
(Fig.5.11) and the bone fraction in the osteotomy plane (Fig.5.10) are lower
than in case of 2 mm/sec displacement rate, which is in contradiction with
the experimental results of Goodship et al. (1998).

5.4 Discussion

In this study we were aiming at the development of a tissue differentiation
model for fracture healing that from one side would be able to capture the
influence of the mechanical environment on the number of cellular and tis-
sues processes, and from the other side allows application to complicated 3D
geometries and loading conditions.
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Figure 5.5: Tissue fractions inside the callus for the calibration simulation.

In order to model tissue differentiation, some assumptions were necessary.
First of all, most of the model parameters were either calibrated in such a
way that the results agree with experiments by Claes et al. (1995) or taken
from in vitro studies. Clearly, most parameters might vary from species to
species or even among individuals. However, the magnitude and the influence
of these variation can be roughly estimated. For instance, osteoblast prolif-
eration rates used in the present model were based on four independent in
vitro studies, chondrocyte and fibroblast proliferation on two in vitro studies.
Lacroix (2001) and Andreykiv et al. (2005) performed parameter studies on
a and b (constants in expression for stimulus S ) and found that the models
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Figure 5.6: Biophysical stimulus S for the calibration simulation.
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Figure 5.7: Tissue fractions inside the callus for the simulation with 2 mm
per second displacement rate and 5 % bending moment.

were insensitive to minor variations of these values. In addition, using the
same values, Geris et al. (2004) successfully predicted tissue differentiation
inside a bone chamber. The second assumption of the model is a simplified
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Figure 5.8: Tissue fractions inside the callus for the simulation with 2 mm
per second displacement rate and 40 % bending moment.

geometry of the bone and the callus. Apparently, using a real geometry, as
it was done by Lacroix and Prendergast (2002a), would contribute to the
accuracy of the simulation. However, in this study we were not trying to
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Figure 5.9: Average bone fraction in the whole callus for the validation
simulations.
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Figure 5.10: Average bone fraction in the osteotomy plane of the callus for
the validation simulations.

solve a real problem, but rather demonstrate the predictive abilities of the
model. One more factor that was not explicitly modelled is the stimuli cre-
ated by growth factors, as it was done by Bailon-Plaza and Van der Meulen
(2001) and Bailon-Plaza and Van der Meulen (2003). Although significance
of the growth factors is an established fact, it remains unclear how impor-
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Figure 5.11: Axial stiffness for the validation simulations.

Figure 5.12: Interfragmentary movement for the validation simulation. The
curves are not continuous because the axial loading was not applied during
weekends.

tant it is to model the growth factors themselves. A number of bone fracture
healing models, mentioned earlier in this thesis, are shown to be capable to
predict the main stages of the healing process. Therefore, we hypothesize
that the explicit modelling of the growth factors becomes crucial only if the
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Figure 5.13: Tissue fractions inside the callus for the simulation with 40 mm
per second displacement rate and 5 % bending moment.

distribution of the growth factors is abnormal. The latter can happen, for
instance, in case of absence or altered expression of a single growth factor,
which may lead to dramatic fracture healing abberations (King et al. 1994
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and Kocher and Shapiro 1998). Another example is when the growth factors
are administered exogenously to a fracture in order to induce bone formation
and accelerated healing (Joyce et al. 1990).

Despite the above limitations, the model was able to predict the tissue
differentiation patterns as observed by Claes et al. (1995) and Claes and
Heigele (1999). In particular, the ossification front starts from the external
side of the bone and propagates down as the tissue differentiation contin-
ued (Fig.5.5). Similarly to the animal experiment of Claes et al. (1995),
the model did not predict bone bridging of the osteotomy gap, leaving some
space filled with cartilage tissue. However, unlike the experiment of Good-
ship et al. (1998), the model showed a negative effect of the displacement
rate increase on the axial stiffness. It is unclear whether the axial stiff-
ness, defined by Bailon-Plaza and Van der Meulen (2003), correlates with
the walking stiffness index used by Goodship et al. (1998). The latter could
not be measured in our simulation, because it would require explicit sim-
ulation of the external fixator device. Goodship et al. (1998) observed an
increase in the bone mineral content in the osteotomy plane when the applied
displacement rate was changed from 2 to 40 mm/sec. However, the simula-
tion predicted quite an opposite effect - as the displacement rate is increased
from the 2 to 40 mm/sec, an average bone fraction in the osteotomy plane
decreases (Fig.5.10). However, Goodship’s experiment also presents a case
of a negative correlation between the applied displacement rate and the bone
mineral content in the osteotomy place: application of 400 mm/sec displace-
ment rate produced lower bone mineral content at the osteotomy gap than 40
mm/sec rate. This might indicate that there is some optimal displacement
rate which produces the maximum bone mineral content in the osteotomy
gap, but our model is not calibrated good enough to detect this optimum.
It is also worth mentioning that, as compared to the result of 2 mm/sec
displacement rate, the effect of 40 mm/sec rate was positive for the average
bone fraction in the whole callus (Fig. 5.9). This is also consistent with
Goodship et al. (1998). Radiographs of the callus distribution, presented in
Goodship et al. (1998), show higher mineral content in the callus, stimulated
with 40 mm/sec displacement rate, as compared to the one, stimulated with
2 mm/sec displacement rate. Comparison of Goodship’s radiographs for the
callus, stimulated with 2 and 400 mm/sec displacement rates, might explain
why the axial stiffness in the numerical simulation did not show positive cor-
relation with the displacement rate. From the radiographs it looks like the
size of the callus stimulated with 400 mm/sec displacement rate is noticeably
larger than the one, stimulated with of 2 mm/sec displacement rate. Appar-
ently the larger size of the callus gives the whole structure higher stiffness.
Garcia et al. (2002) have made an attempt to simulate callus size growth
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caused by the cell proliferation.
Based on the results of the simulation we suggest that this model is a

step forward as compared to the studies of Lacroix and Prendergast (2002b),
Lacroix et al. (2002) and Lacroix and Prendergast (2002a). Unlike the nu-
merical algorithms in these studies, the present model is presented as a set
of differential equations where cell proliferation is modelled explicitly, tissues
are modelled separate from cells and tissue production rates are not equal
for every tissue. Although the model does not allow simulation of the growth
factors, like Bailon-Plaza and Van der Meulen (2001) and Bailon-Plaza and
Van der Meulen (2003), it allows for a finite element simulation, which is a
big advantage for complicated geometries and loading conditions. However,
the comparison of tissue differentiation patterns of our results and results of
Bailon-Plaza and Van der Meulen (2003) is quite good. Both, the present
model (see Fig.5.13) and the models presented by Bailon-Plaza and Van der
Meulen (2001) and Bailon-Plaza and Van der Meulen (2003), were able to
predict the clinically observed fact (Claes and Heigele 1999) that bone differ-
entiation starts from the external side of the bone. However, in Bailon-Plaza
and Van der Meulen (2003) and certainly in Bailon-Plaza and Van der Meulen
(2001) this can be explained by the fact that the external bone surface is also
a source of the osteoblasts favoring growth factors, while in the presented sim-
ulation this comes purely as a result of the mechanical environment. Due to
the fact that in Lacroix and Prendergast (2002b), Lacroix et al. (2002) and
Lacroix and Prendergast (2002a) the bone is appearing with an equal rate
whenever stimulus S is less than unity, bone differentiation pattern is some-
what different. Although the ability of the model to predict the influence of
the loading frequency was proven only partially, this fact makes the model a
potential tool in the development of loading protocols used for acceleration
of fracture healing processes.
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Effect of surface geometry and
local mechanical environment
on peri-implant tissue
differentiation. A finite element
study‡

Abstract

Implant surface geometry, the amount of soft tissue at the bone-implant
interface and the type of loading can influence the bone ingrowth process.
Detailed finite element models of the interface tissue, adjacent to the implant
surface were developed. Three types of implant surfaces were considered: a
smooth surface, a surface covered with sintered beads and a surface covered
with porous tantalum. The main assumption of the study is that the bone
ingrowth process can be modelled the same way as bone fracture healing. A
previously developed tissue differentiation model is used. The results of the
simulation show a higher rate of bone ingrowth into the surfaces with porous
coatings as compared to the smooth surface. It is also shown that a thicker
interface does not increase the chance of fixation failure.

‡Based on A. Andreykiv, F. van Keulen Effect of surface geometry and local mechanical
environment on peri-implant tissue differentiation. A finite element study. III European
Conference on Computational Mechanics. Solids, Structures and Coupled Problems in
Engineering, C. A. Mota Soares et al. (eds.) 5-8 June 2006, Lisbon, Portugal
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6.1 Introduction

The success of load-bearing orthopaedic implants requires a rigid fixation of
the implant within the host bone site. This fixation can be achieved by using
cement, or by a porous layer that promotes bone ingrowth. In cementless
and press-fit implant systems, fixation is achieved by mechanical interlock
between porous surface of the implant and ingrown bone.

There exist a wide range of techniques for implant surface modification to
promote bone ingrowth. The surface features produced by these techniques
can be classified as either macroscopic or microscopic (for reviews see Pilliar
1998 and Kienapfel et al. 1999). Macroscopic features, such as threads or
macro-porous metals, have a length scale in the order of milliliters or higher,
whereas microscopic surface features have dimensions ranging from submi-
cron to hundreds of microns. Microscopic features are produced either by
subtractive processes, in which material is removed from the implant sur-
face, resulting in alterations to the surface texture, or by additive processes,
where material is deposited onto the implant substrate to form a surface
structure. Microscopically modified surfaces include micro-porous metals
with a pore size up to 500 μm using titanium (Lueck et al. 1969 ); cobalt-
chromium-molybdenum alloy (Welsh et al. 1971); stainless steel (Ducheyne
et al. 1977); porous tantalum (Cohen and Bobyn 1995, Bobyn et al. 1999a,
Bobyn et al. 1999b); porous polymers such as teflon, polyethylene, polysul-
fone and polypropylene (Spector et al. 1976, Spector et al. 1978, Cestero
et al. 1975); porous carbon (Cestero et al. 1975); porous ceramics (Klawitter
1972, Brown et al. 1980) among others. Presently, the surface modifications
that are most commonly used in clinical trials are metal coatings. These
coatings are applied by cast structures, sintered structures (e.g. cobalt-
chromium micro-spheres), direct coatings (e.g. plasma-sprayed coating of
commercially pure titanium), and diffusion bonding of preformed structures
(e.g. commercially-pure titanium-fiber metal composite).

The size of the microscopic features of the implant surfaces may have im-
plications in terms of the mechanisms by which these surfaces influence tissue
formation. There is a number of studies that compare bone apposition on
different non-functional implants in-vivo. For instance, canine models were
used to investigate the influence of pore size on the strength of the fixation
(Welsh et al. 1971 and Robertson et al. 1976). The range of the studied pore
sizes was from less than 50 to 800 μm. In studies examining pore sizes less
than 100 μm, the increasing pore size was associated with increasing strength
of fixation. In studies where the studied pore size range was between 150
to 400 μm there was almost no effect of the pore size on strength of the
fixation (Cook et al. 1985, Bobyn et al. 1980). Thomas and Cook (1985)
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made a comparison between press-fit implants with grit-blasted and polished
surfaces. As a result, 32 weeks post-implantation the grit-blasted implants
showed higher bone apposition. Buser et al. (1991) found that increasing the
surface roughness of titanium implants leads to increased bone-implant con-
tact. Cochran et al. (1998) showed that sandblasted, acid-etched titanium
implants had significantly greater bone apposition than titanium plasma-
sprayed implants, inserted in a canine mandible. Simmons et al. (1999)
studied the effect of implant surface geometry on early tissue formation by
comparing the performance of a sintered porous-structured surface and a
plasma-sprayed surface. At 4 and 8 days after surgery the healing tissue was
integrated more extensively with the 3-dimensional interconnected structure
of the porous surface than with the irregular geometry of the plasma-sprayed
coating. After 8 days there was an evidence of mineralized tissue within
pores and adjacent to the sintered particles of the porous-surfaced region.
This was in sharp contrast to the appearance of the interface zone for the
plasma-sprayed region, which did not show evidence of mineralized tissue ap-
position. There exists a number of studies comparing tissue formation at the
interfaces with different surface characteristics under conditions of functional
loading or controlled micromovement. Søballe et al. (1992) and Søballe
et al. (1992) reported on tissue regeneration during gap healing around a
specially designed micromotion device implanted into the condyles of dogs.
Different tissues were found in the peri-implant gap as a function of time
after implantation, magnitude of implant micromotion and implant-coating
characteristics. They found higher bone apposition within hydroxyapatite
coating as compared to plasma-sprayed titanium alloy implants. Fibrous
tissue differentiation at the interface was explained by a higher level of the
applied micromotions (500 μm), while lower levels (150 μm) allowed bone
ingrowth. Histological analysis, performed during several stages of the in-
growth, showed that the interface tissue undergoes differentiation through
several tissues: starting from fibrous tissues, then fibrocartilage, and, as the
interface was getting stiffer, bone.

Bone ingrowth into the porous backing is similar to bone fracture heal-
ing process (for a review see Kienapfel et al. 1999). Following arthroplasty,
the porous backing becomes filled with granulation tissue. If high mechanical
stability is achieved, the ingrowth process progresses similar to intramembra-
nous ossification taking place in bone fracture healing if the bone fragments
are stabilized. If the interface granulation tissue undergoes high deforma-
tion caused by the bone-implant relative motion, this can result in formation
of fibrous tissue or fibrogenesis. This often leads to fixation failure, since
the fibrous tissue is much softer than bone. There are several theories re-
garding the influence of the mechanical environment on the peri-implant
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tissue formation. Carter and Giori (1991) suggested that if mesenchymal
cells, (cells that still can differentiate into bone, muscle, cartilage or tendon-
making cells) are subjected to low distortional strain and low compressive
hydrostatic stress, they are more likely to become osteogenic. Excessive dis-
tortional strain will result in fibrogenesis. Significant compressive hydrostatic
stresses and poor vascularity will result in cartilage formation. Prendergast
et al. (1997) proposed a mechano-regulation model where fluid/solid relative
velocity ν and maximum distortional strain γ are two biophysical stimuli that
regulate tissue differentiation. Following this model, high levels of these stim-
uli (γ/a + ν/b > 3, a = 0.0375, b = 3μms−1- constants, derived by Huiskes
et al. (1997) ) favor differentiation of mesenchymal cells into fibroblasts,
intermediate levels (γ/a + ν/b > 1 and γ/a + ν/b < 3) favor chondrocytes
differentiation and low levels (γ/a + ν/b < 1) favor osteoblasts differentia-
tion. In case of bone fracture healing the models of Carter and Giori (1991)
and Huiskes et al. (1997) produce rather similar results (compare for in-
stance the study of Lacroix and Prendergast (2002b) that is based on the
theory of Prendergast et al. (1997) and the study Bailon-Plaza and Van der
Meulen (2003) which is partially based on the assumptions of Carter and
Giori (1991)). However only the latter is capable to show the influence of
interstitial fluid velocity and strain rate effect on tissue formation, which was
also proven experimentally (Qin et al. 2003, Goodship et al. 1998).

The objective of this work is to examine the effect of geometry of the
implant surface, interface tissue thickness and the loading on the bone in-
growth process. A previously presented tissue-differentiation model (Chapter
5), that is partially based on assumptions of Prendergast et al. (1997) is used
as a framework for the study. The model was already successfully used for
bone fracture healing application and the main assumption of this study is
that it can also be applied to bone-implant interface modelling. This thesis
already studied the effect of geometry of the implant surface on bone in-
growth by means of analyzing the biophysical stimuli at the interface tissue
(Chapter 4). This chapter makes an attempt to compare the conclusions,
made from the analysis of the biophysical stimuli at the interface (Chap-
ter 4), with the conclusions, made from the simulation of the whole bone
ingrowth process.
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6.2 Methods

6.2.1 Animal model

Before using the tissue-differentiation model to study the interface, its pre-
dictive ability is validated on an animal experiment reported by Simmons
and Pilliar (2000). Simmons and Pilliar (2000) have examined the effect of
implant surface geometry on bone formation for endosseous dental implants
subjected to controlled loading shortly after implantation, before endosseous
integration has occurred. A custom developed loading apparatus was used for
controlled application of relative shear motion to the implant with respect to
bone under torsional load. A canine mandible model was used. The loading
was applied one week after implantation, but before initial tissue mineraliza-
tion had occurred. For the first week of loading, displacement control was
used and the average reaction torque was recorded. For the remaining three
weeks of the experiment, the implants were subjected to this average torque.
In cases where tissue maturation leading to bone formation occurred, the
relative displacements decreased in the first few days of torque-controlled
movements. After the experiment the interface zone characteristics were as-
sessed by transmitted light microscopy and backscattered electron imaging.
From the animal model it was concluded that bone ingrowth can occur for
Ti6A14V porous-surfaced (covered by sintered spheres) implants subjected
to initial relative displacements of up to 50 μm. Somewhat larger relative
displacements, up to 75 μm, results in implant anchorage by fibrous tissue
forming and intertwining with the porous surface region.

6.2.2 Numerical model for tissue differentiation

Tissue differentiation at the bone implant interface is very similar to bone
fracture healing. However, there is a number of important differences. For in-
stance, when an implant is inserted into bone there is a biochemical reaction
of the implant material to the host environment, which is not present in case
of bone fracture healing. The other difference is a very small dimension of
the healing space in the direction of the interface thickness. The latter does
not allow modelling of the interface domain as homogenous if the interface
thickness approaches the size of a cell. Depending on the implant material
there is a difference in apposition rate of the cells, that arrive from bone, as
well as the difference in the apposition strength. In this work we assume that
the interface is thick enough to model it as a homogeneous material. We also
assume that the interface tissue is firmly connected to the implant surface
and the biochemical influence of the implant material on the ingrowth pro-
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cess is negligible.
The model, adopted for this study, consists of two main parts: biological

and mechanical. Biological part of the model allows simulation of the cellular
processes, namely cell migration, proliferation, differentiation, tissue deposi-
tion and replacement. Mechanical part of the model enables calculation of
mechanical stimuli that influence the cellular processes. It is assumed that all
cell types have the same critical “saturated” density value and the presented
cell densities are normalized with respect to that saturated density. The pre-
sented tissue densities are quantified as volume fractions of the corresponding
tissues. Initially it is assumed that the space between implant and the bone
is filled with granulation tissue and all cell and other tissue densities are zero.
Since it is assumed that mesenchymal cells originate from the bone surface,
the mesenchymal cells density at this area is kept at the highest saturated
level (unity in terms of the normalized values) for some period of time (one
week). It is also assumed that cell differentiation, proliferation and tissue
production are regulated by tissue shear strain and interstitial fluid velocity,
as was proposed by Prendergast et al. (1997). Mesenchymal and fibroblast
cell dispersal is modelled by

dcm
dt

= Dm∇2cm + Pm(1 − ctot)cm − Ff (1 − cf )cm −
− Fc(1 − cc)cm − Fb(1 − cb)cm, (6.1)

dcf
dt

= Df∇2cf + Pf (1 − ctot)cf + Ff (1 − cf )Cm −
− Fc(1 − cc)cf − Fb(1 − cb)cf , (6.2)

where cm, cf , cc and cb are mesenchymal, fibroblasts, chondrocytes and os-
teoblasts normalized cells densities, Dm and Df are diffusion coefficients.
The diffusion coefficients also depend on bone (mb) and cartilage (mc) vol-
ume fractions: Di = Di0(1 −mc −mb), i = m, f and Dm0 and Df0 are the
initial diffusion coefficients. The total cell density is ctot = cm + cf + cc + cb.
Pm and Pf are proliferation rates, that also depend on cartilage and bone
volume fractions: Pi = Pi0(1 −mc −mb), i = m, f . Pm0 and Pf0 are the ini-
tial proliferation rates that depend on stimulus S, introduced by Prendergast
et al. (1997): S = γ

a
+ ν

b
. Ff ,Fc and Fb are differentiation rates that also

depend on S (See Appendix A). Chondrocytes and osteoblasts dispersal is
modelled in a similar way, but it is assumed that they do not migrate:

dcc
dt

= Pc(1 − ctot)cc + Fc(1 − cc)(cm + cf ) − Fb(1 − cb)cc, (6.3)

dcb
dt

= Pb(1 − ctot)cb + Fb(1 − cb)(cm + cf + cc). (6.4)
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Here Pc and Pb are chondrocytes and osteoblasts proliferation rates that also
depend on cartilage and bone volume fractions, but also on the stimulus S.
Tissues production and replacement is regulated by the corresponding cells,
tissues themselves and mechanical stimulation:

dmb

dt
= Qb(1 −mb)cb, (6.5)

dmc

dt
= Qc(1 −mb −mc)cc −Dbcbmcmtot, (6.6)

dmf

dt
= Qf (1 −mtot)cf − (Dbcb +Dccc)mfmtot, (6.7)

where mb, mc and mf are bone, cartilage and fibrous tissue volume fractions,
respectively. Qb, Qc and Qf are production rates of the corresponding tissues
that are functions of S (See Appendix A). Db and Dc and the rates of tissues
degradation that are chosen to be equal to Qb and Qc. mtot = mf +mc +mb

is the volume fraction of all the tissues except the granulation tissue, which
volume fraction is 1 −mtot.

The mechanical part of the model is meant for the calculation of the
stimulus S in the interface tissue. All the tissues at the interface were mod-
elled as poroelastic with a Total Lagrangian formulation and Neo-Hookean
hyperelastic properties for the solid phase. The material properties of the
tissues are presented in Table 6.1. Since several tissues can coexist together
in one material point, mechanical properties at this point are calculated by
the rule of mixtures (Lacroix and Prendergast 2002b).

The set of partial differential equations (6.1)-(6.7) is modelled using a
finite element model. The finite element formulation is created using the
Galerkin method (See Appendix B). Semi-implicit time integration was used.
The resulting nonlinear system was solved by Newton scheme. The formula-
tion was implemented using a four-noded tetrahedral user element in MSC
Marc (version 2003r2, Palo Alto, USA) and successfully validated by an
one-dimensional Matlab solution. A non-linear poroelastic four-noded tetra-
hedral user element was also implemented in MSC Marc (Chapter 3). The
simulations were performed on an 8-node parallel network cluster.

6.2.3 Finite element mesh

In order to validate the predictive ability of the model the previously men-
tioned animal experiment by Simmons and Pilliar (2000) was simulated. Due
to the fact that the loading conditions and the geometry of the experimental
setup caused pure shear of equal magnitude for the whole interface tissue,
tissue differentiation of only a small representative element of the interface
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Table 6.1: Material properties
Young’s Poisson’s Permea- Porosity Fluid
Modulus ratio bility Bulk
(MPa) (m4N−1s−1) modulus

Material (MPa)

Bone 6000a 0.3a 3.7 × 10−13b
0.8 2300c

Cartilage 10d 0.1667e 5 × 10−15f
0.8 2300c

Fibrous Tissue 2d 0.1667e 1×10−14g
0.8 2300c

Gran. Tissue 0.2h 0.1667e 1×10−14g
0.8 2300c

a - Claes and Heigele (1999)

b - Ochoa and Hillberry (1992)

c - Anderson (1967)

d - Hori and Lewis (1982)

e - Spilker et al. (1988)

f - Armstrong and Mow (1982)
g - estimated by Prendergast et al. (1997) based on Armstrong and Mow (1982) and Levick (1987)

h - Lacroix and Prendergast (2002b)

is simulated (Fig. 6.1, interface tissue adjacent to sintered beads). The
thickness of the interface tissue was taken as 100 μm (see Fig. 4.4 for the
definition of the interface thickness). This value was estimated visually from
the backscattered scanning electron micrograph presented by Simmons and
Pilliar (2000). The representative implant surface element was simulated as
two large spheres and half of a smaller one, sintered together. The radii of
the sintered Ti6A14V spheres were taken as 120 μm and 100 μm.

In order to study the influence of the porous coating geometry on the
ingrowth process we also created a model of the interface tissue adjacent to
a smooth implant (Fig. 6.1, top) and a model of the interface tissue adjacent
to the surface covered with porous tantalum. The effect of the interface tis-
sue thickness is studied by comparing the results of a 100 μm thick interface
with a 50 μm thick interface (The exact definition of the micromotions is the
same as in Chapter 4).

6.2.4 Boundary conditions

A set of boundary conditions aiming at replicating the mechanical environ-
ment at the interface, is applied to the interface model. In order to make
the model representative for a large area of the interface, symmetry and pe-
riodic boundary conditions (BC’s) are applied. Symmetry BC’s are applied



6.2 Methods 85

Derivation of the geometry of the interface tissue,
adjacent to the smooth surface,

RVE and geometry mesh

�

�

�

RVE

implant surface

coating
geometry

mesh

RVE
implant surface

coating
geometry

mesh

adjacent to the surface,
covered with sintered beads,

adjacent to the surface,
covered with porous tantalum.

Figure 6.1: Derivation of the geometry and FE mesh of the interface repre-
sentative volume element.
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by restricting the displacement in Z direction for the nodes, residing on the
sides of the model, parallel to XY plane (Fig. 6.2). The periodic BC’s are
implemented by tying degrees of freedom of the nodes residing on the sides
of the model parallel to ZY plane (Fig. 6.2). Since it was assumed that the

Figure 6.2: Boundary conditions, imposed on the mesh.

interface tissue is firmly attached to bone, the displacement at the bottom
surface of the interface tissue was restricted. Three magnitudes of the hor-
izontal micromotion (direction X on Fig. 6.2) are applied to the coating:
25, 50 and 75 μm. These values are applied in 0.5 sec. Due to the large
difference in stiffness between interface tissue and coating material, the coat-
ings are modelled as rigid. Consequently, the coatings were not meshed, but
the appropriate displacements were prescribed for the nodes at the interface
between tissue and the coatings. The loading regime is the same as in the
animal experiment: first displacements are applied to the coating during the
first seven days of the simulated period, then, for the next three weeks, force
is applied to the coating. The magnitude of the force is equal to the aver-
age reaction force resulting from the application of the displacement during
the initial seven days. An additional simulation with only horizontal force
loading applied to coatings of models with 50 μm thick interface was per-
formed. The goal of this additional simulation is to compare bone ingrowth
for models with 50 and 100 μm thick interfaces under equal force loading.
Hence, the force for the first seven days of the simulation was equal to the
reaction force, calculated from the application of 50 μm displacement to the
100 μm interface. For the next three weeks the applied force was equal to
the average of the force magnitudes, applied during the first seven days.

6.3 Results

Validation of the applied method proved to be successful. Similar to the
animal experiment, the model predicted appearance of a small fraction of
bone across the interface tissue when 50 μm displacement was applied to a



6.3 Results 87

100 μm thick interface adjacent to a sintered beads coating (Fig. 6.3). Ini-
tially, a very high magnitude of the biophysical stimulus S (Fig. 6.4) caused
differentiation of fibroblasts and production of fibrous tissue at the interface
area . Meanwhile, in the area protected by the sintered spheres, the stimulus
was low enough to allow production of cartilage and bone. As the fibrous
tissue was stiffening the interface, the micromotion (Fig. 6.5, 50 μm applied)
and the stimulus magnitude (Fig. 6.4) reduced enough to allow osteoblasts
differentiation and production of small quantities of bone matrix (0.3% of
the volume) during the last four days of the simulated period. When 75 μm
displacement was initially applied to the 100 μm thick sintered beads inter-
face, the biophysical stimulus S magnitude at the interface area was above 3
till the end of the simulated time (Fig. 6.6). As a result, only fibrous tissue
was produced at the interface. Micromotions also did not reduce to the same
extent as for 50 μm initial displacement (Fig. 6.5, 75 μm applied).

Implant surface characteristics proved to have a significant influence on
the kinetics of the ingrowth. Unlike sintered beads surface, neither porous
tantalum (Fig. 6.7) nor smooth implant surface (not plotted) allowed bone
differentiation at the interface till the end of the simulated period. It was
also reflected by more moderate reduction of the micromotions as compared
to the sintered beads (Fig. 6.8).

Interface thickness also had an important effect on the bone ingrowth pro-
cess. Application of 50 μm micromotion to a 50 μm thick interface caused
a much higher biophysical stimulus than when 50 μm micromotion was ap-
plied to 100 μm thick interface. As a result no bone tissue was produced at
the interface and, consequently, the reduction of the micromotions in time
was not substantial as compared to a 100 μm thick interface (Fig. 6.9).
At a certain stage there was a problem with convergence of the poroelastic
simulation for the porous tantalum surface. However, the kinetics of the
micromotions, obtained till that point, allows to assume that bone ingrowth
would not occur (Fig. 6.9). When 25 μm displacement was applied to a 50
μm thick interface, bone appeared at the interface of both sintered beads and
porous tantalum surfaces, while no bone was predicted at the interface of the
smooth implant. The corresponding reduction of the micromotions can be
seen in Fig. 6.10. In the purely force controlled simulation, bone appearance
at the interface was also predicted for sintered beads and porous tantalum
surface (Fig. 6.11), while no bone was predicted for the smooth surface. The
corresponding reduction of the micromotions is plotted in Fig. 6.12.
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Cartilage

Bone
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Figure 6.3: Tissue fractions for a 100 μm thick interface with a sintered beads
surface. Applied level of the micromotions is 50 μm. Bone appears at the
interface after four weeks of the simulated experiment.

6.4 Discussion

The goal of this study is to investigate the influence of the geometry of the
implant surface, interface tissue thickness and the loading on the bone in-
growth process. A numerical model, previously used for bone fracture healing
simulation, is applied to simulate interface tissue differentiation. The bone
ingrowth process is assessed by the tissue fractions inside the interface area
and the level of the micromotions.

In order to model bone ingrowth, some assumptions were made. The
main assumption is that bone ingrowth at the interface can be simulated
exactly the same way as bone fracture healing. By doing so, we neglected
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Figure 6.4: Stimulus S for a 100 μm thick interface with a sintered beads
surface. Applied level of the micromotions is 50 μm. After 25 days of the
simulated experiment the stimulus S at the interface decreases below unity,
hence allowing bone differentiation.

the influence of a few issues that are specific for this problem. The first issue
is the biochemical reactions of the implant material with the host environ-
ment. Cell culture toxicity studies show that aluminium and vanadium ions
released from Ti6Al4V implants can inhibit the differentiation and expression
of osteoblasts and suppress the deposition of mineralized matrix (Thompson
and Puleo 1995). However, Simmons et al. (1999) observed rapid mineral-
ization in Ti6Al4V porous-surfaced interface zone, suggesting that if surface
chemistry is an important factor, it is secondary comparatively to surface
geometry. The second issue is a very small thickness of the interface tis-
sue. A very thin interface does not allow modelling of the interface domain
as homogenous if the interface thickness approaches the diameter of a cell.
However, the simulated interface thicknesses are up to an order of magnitude
larger than the diameter of a cell. Another relevant issue is that depending
on the implant material or the surface structure there is a difference in the
apposition rate of cells that arrive from bone, as well as the difference in the
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Figure 6.5: Micromotions for a 100 μm thick interface with a sintered beads
surface. Applied micromotions levels are 50 and 75 μm.

Figure 6.6: Stimulus S for a 100 μm thick interface with a sintered beads
surface. Applied level of the micromotions is 75 μm. Stimulus S at the
interface remains higher than three till the end of the simulated time. Hence
only fibrous tissue differentiation is favoured.

tissue apposition strength (Ducheyne et al. 1980, Cook et al. 1992). How-
ever, we assume that the interface tissue is firmly connected to the implant
surface.

There is number of experimental and numerical studies on the influence
of surface geometry and interface thickness on the ingrowth process. Com-
paring Ti6Al4V sintered porous-surfaced and Ti plasma-sprayed implants in
an animal experiment, Simmons et al. (1999) demonstrated that porous sur-
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Figure 6.8: Micromotions for a 100 μm thick interface. Results for all in-
terface surfaces are included. Applied level of micromotions is 50 μm. Only
sintered beads surface caused rapid decrease of micromotions by the end of
the simulated time.
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Figure 6.9: Micromotions for a 50 μm thick interface. Results are presented
for all interface surfaces. Applied level of micromotions is 50 μm. With
this level of micromotions only fibrous tissue develops at all three interfaces.
Hence kinetics of micromotion in all three cases is comparable. The graph for
the porous tantalum case is not complete due to the convergence problems
with poroelastic simulation.
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Figure 6.10: Micromotions for a 50 μm thick interface. Results are presented
for all interface surfaces. Applied level of micromotions is 25 μm. Unlike
the smooth surface, both sintered beads and porous tantalum surface cause
rapid reduction of the micromotions.

faces create more favorable mechanical environments for bone differentiation
than smoother plasma-sprayed coating. Davies (1998) suggested that surface
texture may also dictate the mechanism of osseointegration based on the sta-
bility of the fibrin scaffold that forms shortly after implantation. If scaffold
stability is provided, osteogenic cells will be able to reach the implant surface
where they can initiate bone formation. Viceconti et al. (2001) performed a
numerical study on the influence of soft tissue layer thickness on the primary
stability of cementless hip stems. They found a correlation between the layer
thickness and the resulting interface micromotions. Assuming some critical
threshold of the micromotions, Viceconti et al. (2001) came to the conclusion
that even thin layers of soft tissue may create micromotions, large enough to
activate adverse biological effects.

A first numerical study that suggested that the porous-surface geometry
provides a local mechanical environment that is more favorable for localized
bone formation than that provided by the smoother (plasma sprayed) design
was initially done by Simmons and Pilliar (2000) and Simmons et al. (2001).
Although in these studies the bone ingrowth is not simulated explicitly, the
authors base their conclusions on the analysis of strains in the interface re-
gion. The strain distribution was obtained from a 2D linear elastic model
in combination with the homogenization theory. Based on their numerical
results, the authors concluded that the porous surface shields some areas of
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Figure 6.12: Micromotions for a 50 μm thick interfaces with force BC’s. The
applied force is equal to the reaction force calculated from the 100 μm thick
models with 50 μm micromotions applied.

the soft tissue from the excessive strains, thus providing a mechanical envi-
ronment more favorable for bone formation than in case of a smooth implant
surface. To our knowledge we are the first to simulate bone ingrowth pro-
cess in 3D taking into account the implant surface geometry. Based on the
results of the simulation we could add to the conclusions of Simmons et al.
(2001) that it is not only important how much interface tissue is shielded,
but also whether the shielded areas continuously extend from implant to
bone. For better understanding, lets imagine that we covered the implant
not with two or three layers of sintered spheres, but with ten. Undeniably,
the shielded area would increase with every added layer of spheres, but this
would not contribute to the performance of the implant (Friedman et al.
1976). We expect it is more important to modify the implant surface in such
a way that continuous areas with lower stimuli between implant and bone
are created. When these areas ossify, they will assist in reduction of the mi-
cromotions. Probably, such surface modification might also create areas with
excessive stimuli, but eventually they will also ossify, since the ossification of
the shielded areas will cause reduction of the micromotions.

Viceconti et al. (2001) suggested that a thicker interface tissue layer has
a detrimental role in the implants failure. This conclusion was based on the
numerically established fact that thicker interface layers cause higher inter-
face micromotions. Our results suggest quite a different conclusion. Com-
paring the micromovement reduction of 50 and 100 μm thick interfaces with
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50 μm initial micro-movement (Fig. 6.8 and Fig. 6.9), it can be concluded
that reducing the interface thickness, while applying the same level of mi-
cromotions, has only a negative effect. Comparison of the results of the two
interface thicknesses under the same force loading condition (Fig. 6.8 and
Fig. 6.12) does not show significant improvement of bone ingrowth for the
thinner interface (maybe except the case with porous tantalum surface). Of
course, initially, under the same loading, the thinner interface generates lower
micromotions, but at the end the thicker interface reduces its micromotions
as fast as the thin one, also allowing bone ingrowth. However, there exists
a number of experimental studies (see the review of Kienapfel et al. 1999)
that demonstrate a negative effect of a thick interface. This allows for an
assumption that the negative effect of a thick interface is caused by more
complicated biological factors, that are not taken into account in this study.
But it is worth mentioning that these experimental studies compare inter-
face thicknesses which are one order of magnitude higher than the thicknesses
considered in this work.

A number of authors suggested existence of a threshold for micromotions
that inhibit bone ingrowth (Szmukler-Moncler et al. 1998, Ramamurti et al.
1997, etc.). The results of this study suggest that this threshold strongly
depends on the thickness of the interface layer and the geometry of the im-
plant surface. Comparing the results of the two interface thicknesses under
the same force loading conditions (Fig. 6.8 and Fig. 6.12), we suggest that
it would be better to use a shear stress or a shear strain within the interface
tissue instead, as these values are much less sensitive to the variation of the
interface thickness as compared to the micromotion threshold.

The results of the present study also demonstrate that relative perfor-
mance of an implant surface can vary depending on the interface thickness.
Analysis of the micromotions for 100 μm thick interfaces with 50 μm ini-
tial micromotion shows that the sintered beads promoted reduction of the
micromotion substantially better than the porous tantalum and the smooth
surface (Fig. 6.8). However, in case of a 50 μm interface, the performance
of the porous tantalum surface was noticeably better than the performance
of the other two surfaces (Fig. 6.10 and Fig. 6.12). This suggests that every
surface texture has its optimal interface thickness and, probably, this optimal
thickness correlates with shape and size of the surface features.

Similar to this chapter, chapter 4 also studies the influence of the implant
surface characteristic on bone ingrowth. However, analysis of the biophysical
stimuli in the initial interface tissue, performed in chapter 4, appears to be
much less sensitive to the surface variations than the complete bone ingrowth
simulations performed in this chapter. For instance, the initial magnitude
of the stimulus S for both sintered beads (Fig. 6.4) and porous tantalum
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surfaces (not plotted) for a 100 μm thick interface with 50 μm micromotions
is higher than 3, thus showing little difference in the performance of the two
surfaces. However, only the sintered beads surface allows bone differentiation
at the interface (Fig. 6.3), while the interface of the porous tantalum sur-
face remains filled with only cartilage and fibrous tissue (Fig. 6.7). Hence,
a complete simulation of bone ingrowth, as proposed in this chapter, pro-
vides better assessment of an implant surface than a mere analysis of the
biophysical stimuli in the interface tissue.
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Appendix A

Parameters of the tissue
differentiation model

Estimation of different model parameters was performed based on a num-
ber of in vitro studies and mechanoregulation theory of Prendergast et al.
(1997).

Diffusion coefficient for mesenchymal cells dispersal was based on leuko-
cyte movement studies (Gruler and Bültmann 1984), which gave an estimate
for Dm0 = 240μm2min−1 = 0.3456 mm2day−1. A similar value was obtained
by Lacroix et al. (2002) during calibration of their model. Based on Friedl
et al. (1998), Bailon-Plaza and Van der Meulen (2001) made an estimate
of the fibroblasts diffusion coefficient, which resulted in a maximum value of
Df0 = 60 μm2min−1 = 0.1152 mm2day−1. The latter was also used in the
present model.

A number of authors performed in vitro studies on osteoblast prolifera-
tion (Findlay et al. 2004, Lee et al. 2004, Heino et al. 2004, Ushida et al.
2001). Based on these studies, osteoblast proliferation rate Pb0 can be esti-
mated between 0.5 and 1 day−1. In the present study 0.5 day−1 was used.
Application of a low cyclic strain has a stimulatory effect on the proliferating
osteoblasts. From studies of Weyts et al. (2003), Kaspar et al. (2000), Kapur
et al. (2003) and Kaspar et al. (2002) it was estimated that proliferation
rate of the stimulated osteoblasts is 1.5 time higher that of non-stimulated
ones. Now, assuming that the highest osteoblast proliferation rate will be
achieved at the maximum value of the mechanical stimulus S, favorable to
osteoblasts differentiation, the osteoblast proliferation rate Pb0 depends on S
as depicted in Fig.A.1.

In vitro studies show that non-stimulated chondrocytes proliferate at a
rate similar to osteoblasts. Analyzing the results of Zhang et al. (2003) and
Wu and Chen (2000), Pc0 can be estimated as 0.75 day−1, while moderate
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Pb0 Pc0 Pf0 Pm0

Pbmin

Pcmin

Pcmax Pfmax

Pfmin

Pmmax

Pmmin

Smin S Smin Smax S Smin Smax S Smin S

1.5Pbmin

Figure A.1: Cell proliferation rates as functions of stimulus S.

Figure A.2: Cell differentiation rates as a functions of stimulus S.

mechanical stimulation can increase this rate to 0.925 day−1. Prendergast
et al. (1997) assumed that the most favorable environment for the differ-
entiation and proliferation of chondrocytes is reached when the biophysical
stimulus S lies between Smin and Smax. Based on this hypothesis and the
results of Zhang et al. (2003) in the present chapter it is assumed that Pc0

depends on S as shown on Fig. A.1.
Fibroblasts exhibit much lower proliferation rates without mechanical

stimulation. According to Mizuno et al. (2004), proliferation rate of non-
stimulated fibroblasts Pf0 can be estimated as 0.1 day−1. The reported stim-
ulated rates (Mizuno et al. 2004, Yang et al. 2004) range between 0.1 and
0.6 day−1 (0.6 day−1 used in this work) and the maximum stimulation is
achieved under higher strain levels (Yang et al. 2004). The assumed depen-
dence between Pf0 and S is shown in Fig.A.1.

We are aware of only one in vitro study on the mechanical influence on
mesenchymal cells. According to Simmons et al. (2003), proliferation rate of
non-stimulated mesenchymal cells Pm0 can be estimated as 1.2 day−1. Even
small mechanical strains reduce this rate to around 0.5 day−1. Given this
data, we assumed the dependence of Pm0 on S as shown in Fig.A.1.

Cell differentiation rates were obtained from calibration of the model
presented in this work. The calibrated values Fbmin

, Fbmax , Fcmax and Ffmax

were used in the dependencies, as shown in Fig.A.2. The shape of the rates
dependence on stimulus S was assumed taking into account the mechanoreg-
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ulation model of Prendergast et al. (1997).
Tissue production rates depend on S in the same manner as the differen-

tiation rates, shown in Fig.A.2. The corresponding parameters Qbmin
, Qbmax ,

Qcmax and Qfmax were obtained from the calibration of the model.
The lower and the higher thresholds of the stimulus S according to

Huiskes et al. (1997) are: Smin = 1, Smax = 3.
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Appendix B

Finite element formulation for
the tissue differentiation model

Only equations (5.1) and (5.2) have to be solved by the finite element method.
The other equations could be solved locally i.e., on element level.

Following the weighted residual method, equations (5.1) and (5.2) are
multiplied with arbitrary vector functions wm and wf from H1

0 (where H1
0 is

a standard Sobolev space, which provides that the function can be integrated
along with its first derivatives and vanishes on the boundary) and integrated
over the whole domain. Assuming that there are no applied cell fluxes on
the boundary (as the later are not used in the simulation) we obtain:∫

Ω

wT
m

[
dcm
dt

− Dm∇2cm − Pm(1 − ctot)cm + Ff (1 − cf )cm +

− Fc(1 − cc)cm + Fb(1 − cb)cm

]
dΩ = 0, (B.1)∫

Ω

wT
f

[
dcf
dt

− Df∇2cf − Pf (1 − ctot)cf − Ff (1 − cf )cm +

+ Fc(1 − cc)cf + Fb(1 − cb)cf

]
dΩ = 0. (B.2)

First we apply Greens theorem to the diffusion terms to eliminate the
divergence operator. Furthermore we introduce finite element approximation
by dividing the domain into finite elements and approximating the cellular
densities cm and cf within the elements by the product of the element nodal
values cm and cf and approximating shape functions N, i.e., cm = Ncm

and cf = Ncf . By applying Galerkin’s method, the weighting functions wm

and wf are replaced by the interpolating shape functions N. The resulting
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equations on element level are:

C
dcm

dt
+ Kmcm −

[
Pm[1 − cc − cb] − Ff − Fc[1 − cc] − Fb[1 − cb]

]
Ccm +

+ [Pm − Ff ]pmix(cm, cf ) + Pmpn(cm) = 0, (B.3)

C
dcf

dt
+ Kfcf −

[
Pf [1 − cc − cb] − Fc[1 − cc] − Fb[1 − cb]

]
Ccf −

− FfCcm + [Pf + Ff ]pmix(cm, cf ) + Pfpn(cf ) = 0, (B.4)

with

C =

∫
Vel

NTNdVel, (B.5)

Ki =

∫
Vel

∇NTDi∇NdVel, i = m, f , (B.6)

pn =

∫
Vel

NT(ciN)2dVel, i = m, f , (B.7)

pmix =

∫
Vel

NT(cmN)(cfN)dVel . (B.8)

Next we apply time discretization. First, we replace the time derivatives with

the finite differences: dcm

dt
= Δcm

Δt
=

(cmn+1−cmn )

Δt
and dcf

dt
= Δcf

Δt
=

(cfn+1
−cfn )

Δt
.

Then, in each equation of the system, a variable is solved implicitly (taken at
the yet unknown time step n+1) only if that equation represents the rate of
that variable. More specifically, in Equation (B.3) cm is replaced with cmn+1

and in Equation (B.4) cf is replaced with cfn+1 . All the other variables are
taken with index n (hence, they are known). We obtain:

C
(cmn+1 − cmn)

Δt
+ Kmcmn+1 −

−
[
Pm[1 − ccn − cbn ] − Ff − Fc[1 − ccn ] − Fb[1 − cbn ]

]
Ccmn+1 +

+[Pm − Ff ]pmix(cmn+1 , cfn) + Pmpn(cmn+1) = 0, (B.9)

C
(cfn+1 − cfn)

Δt
+ Kfcfn+1 −

−
[
Pf [1 − ccn − cbn ] − Fc[1 − ccn ] − Fb[1 − cbn ]

]
Ccfn+1 −

−FfCcmn + [Pf + Ff ]pmix(cmn , cfn+1) + Pfpn(cfn+1) = 0. (B.10)
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The motivation for this is to have a maximum number of terms calculated
implicitly while still maintaining symmetry of the element stiffness matrix
and avoiding additional degrees of freedom that can not be solved on element
level. Although a fully implicit formulation of the system would provide bet-
ter stability and accuracy of the solution, all variables in the nonlinear sys-
tem would be unknown (all cell concentrations and tissue fractions in (B.9)
and (B.10) would be taken at time point n + 1) and the linearization and
subsequent iterations should be performed with respect to all the unknown
variables. This would make the stiffness matrix nonsymmetric and not allow
the solution of cc, cb, mf , mc and mb on element level. Besides, the presented
formulation was successfully tested against an one-dimensional Matlab solu-
tion.

Due to the fact that some non-linear terms, namely vectors pn, include
unknown variables, the system is still non-linear. Therefore, the solution is
obtained via a Newton scheme. Equations (B.9) and (B.10) are linearized
and the linearized system is solved iteratively during the same time step un-
til some convergence criterium is met. The corresponding linearized iterative
system is: [

Kmstiff
0

0 Kfstiff

] {
δcmn+1

δcfn+1

}
=

{
FIm

FIf

}
(B.11)

where,

Kmstiff
= C + Δt

[
Km − (Pm[1 − ccn − cbn ] − Ff − Fc(1 − ccn)−

−Fb(1 − cbn))C + [Pm − Ff ]
∂pmix(cmn , cfn)

∂cmn

+ Pm
∂pn(cmn)

∂cmn

]
(B.12)

Kfstiff = C + Δt

[
Kf − (Pf [1 − ccn − cbn ] − Fc(1 − ccn)−

−Fb(1 − cbn))C + [Pf + Ff ]
∂pmix(cmn , cfn)

∂cfn

+ Pf
∂pn(cmn)

∂cfn

]
,(B.13)

FIm = CΔcmn + Δt

[
Kmcmn − (Pm[1 − ccn − cbn ] − Ff − Fc(1 − ccn)−

−Fb(1 − cbn))Ccmn + [Pm − Ff ]pmix(cmn , cfn) + Pmpn(cmn)

]
, (B.14)
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FIf = CΔcfn + Δt

[
Kfcfn − (Pf [1 − ccn − cbn ] − Fc(1 − ccn)−

−Fb(1 − cbn))Ccfn − FfCcmn + [Pf + Ff ]pmix(cmn , cfn) +

+Pfpn(cfn)

]
, (B.15)

∂pn(cin)

∂cin

= 2

∫
Vel

NTN(Ncin)dVel, i = m, f (B.16)

∂pmix(cmn , cfn)

∂cin

=

∫
Vel

NTN(Ncjn)dVel, i = m, f j = f,m. (B.17)

As was mentioned before, due to the fact that equations (5.3)-(5.7) do
not contain any divergence operators, it is quite convenient to solve them on
element level, without the need for additional degrees of freedom. Applying
the previously mentioned consideration for time discretization to (5.3) and
regrouping the terms around c2cn+1

and ccn+1 , (5.3) is presented as:

ΔtPcc
2
cn+1

+ [1 − (Pc(1 − cmn − cfn − cbn) − Fc(cmn + cfn)−
− Fb(1 − cbn))Δt] ccn+1 − (Fc(cmn + cfn)Δt+ ccn) = 0 (B.18)

Using (B.18), ccn+1 is calculated during every iteration as a root of a second
order equation. In case of a 4 - node tetrahedral element, that was developed
for this study, we assumed values cc, cb, mb, mc and mf to be constant within
the element, while cm and cf are linearly interpolated between the nodes. So,
in (B.18) and further cm and cf are the magnitudes, interpolated in the center
of the element.

Similarly, osteoblast density, bone, cartilage and fibrous tissue volume
fractions are found from the following equations. Osteoblast density cbn+1 :

ΔtPbc
2
bn+1

+ [1 − (Pb(1 − cmn − cfn − ccn)−
− Fb(cmn + cfn + ccn))Δt] cbn+1 −
−Fb(cmn + cfn + ccn)Δt− cbn = 0, (B.19)

bone matrix volume fraction mbn+1 :

mbn+1 =
ΔtQbcbn +mbn

1 + ΔtQbcbn

, (B.20)

cartilage volume fraction mcn+1 :

ΔtDbcbnm
2
cn+1

+ [1 + Δt(Qcccn +Dbcbn(mbn +mfn))]mcn+1 −
−(mcn + ΔtQc(1 −mbn)ccn) = 0, (B.21)
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and fibrous tissue volume fraction mfn+1 :

Δt(Dbcbn +Dcccn)m2
fn+1

+ [1 + Δt(Qfcfn + (Dbcbn +Dcccn)(mcn +

+mbn))]mfn+1 − (mfn + ΔtQf (1 −mcn −mbn)cfn) = 0. (B.22)
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Summary

Bone ingrowth is an effective fixation technique for orthopaedic implants.
Successful ingrowth has the advantage that it is maintaining itself, as bone re-
news its structure via remodelling, avoiding this way damage accumulation.
However, lack of mechanical stability can inhibit the ossification process,
which leads to fixation failure.

The goal of this thesis is to investigate the effect of macro- and micro-
scopic features of an orthopaedic implant on bone ingrowth and provide a
better understanding of the ingrowth process itself.

The two factors that can influence the bone ingrowth process are bio-
logical and mechanical environments. However, in this study we consider
the ingrowth process as mechanically regulated. Although some biological
processes were considered, they were assumed to be controlled by mechanical
stimuli.

The main instrument, used in the thesis for reaching the goal, is nu-
merical modelling. Using numerical simulations, we were able to assess the
mechanical environment within the ossifying tissues from which we could
judge on feasibility of bone ingrowth. Using computational tissue differenti-
ation models, we were able to simulate the bone ingrowth process.

First, using a two-dimensional finite element model of glenoid bone with
a component, we study the effect of the component’s material and geomet-
ric properties on the ingrowth process. Interface bonding and tissue differ-
entiation inside porous component backing are simulated. The bonding is
regulated by the magnitude of the relative interface micromotions. The tis-
sue differentiation is simulated using a fracture healing model known from
literature. The study shows positive effects of stiff glenoid components and
components that provide a uniform distribution of the interface micromo-
tions. It was also concluded that a high friction coefficient is of secondary
importance for glenoid components with primary fixation.

In the next study a finite element formulation for simulation of hydrated
poroelastic tissues is presented. The goal of this work is development of an
effective numerical tool for large-scale non-linear biomechanical problems.
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The formulation is implemented as a user element in a commercial FEM
package (MSC Marc). This allows easy enhancement of the element with
material models already available and usage of such powerful features as
parallel computations. The formulation is tested against results obtained
with a commercial finite element code, but also results published in litera-
ture.

Another study presents a numerical model for tissue differentiation dur-
ing fracture healing. The model is presented as a system of partial differential
equations and allows modelling of such phenomena as cell migration, prolif-
eration, differentiation and replacement, but also production and resorption
of tissues. The results of the model are compared with results of published
animal studies.

Two other studies investigate the influence of micro-features, like implant
surface geometry characteristics and interface tissue thickness, on the bone
ingrowth process. In both studies, a detailed geometry of a small piece of the
interface tissue that penetrates the porous surface of the implant is created.
The first study investigates the mechanical environment inside the interface
tissue, created by three types of implant surface, namely porous tantalum,
sintered spheres coating and a smooth implant surface. Using the geometries
obtained in the first study, the second study analyzes the influence of the
implant surface characteristics by means of simulating tissue differentiation
at the bone-implant interface. The main assumption of the second study is
that bone ingrowth processes can be modelled the same way as bone fracture
healing. The earlier developed model for bone fracture healing is used to sim-
ulate tissue differentiation at the bone-implant interface. In both studies it
was concluded that a porous surface favors faster bone ingrowth as compared
to a smooth surface. The studies show that a thick interface layer is not less
likely to ossify as compared to a thin one. In the second study it is proposed
to replace such known parameter as inhibiting micromotions threshold with
stress or strain based value. This is explained by the fact that inhibiting
micromotions level strongly depends on the interface tissue thickness. The
level of inhibiting interface stress or strain is, on the contrary, almost insen-
sitive to the interface thickness variations. It was also demonstrated that
under force controlled boundary conditions, the tissue differentiation pro-
cess is not as sensitive to the variations of the interface thickness as under
the displacement controlled boundary conditions. The second study shows
that relative performance of an implant surface can vary depending on the
interface thickness. This suggests that every surface texture has its opti-
mal interface thickness and, probably, this optimal thickness correlates with
shape and size of the surface features. Comparison between the two studies
shows that performance of the particular implant surface can be much better
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evaluated with the full ingrowth simulation, as compared to the estimation
of the biophysical stimuli at the interface tissue.
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Samenvatting

Botingroei is een effectieve manier om orthopaedische implantaten te fix-
eren. Het voordeel van deze methode is dat de fixatie, wanneer deze eenmaal
gevormd is, wordt onderhouden door het botremodelleringsproces dat het
botweefsel continu vernieuwt, waardoor een toename van beschadigingen in
het weefsel wordt voorkomen. Wanneer een prothese echter niet voldoende
stabiel in het bot is bevestigd kan dit de botingroei belemmeren, hetgeen
fixatie van de prothese kan verhinderen.

Dit onderzoek is uitgevoerd om het effect van zowel de macroscopische als
de microscopische eigenschappen van een prothese op botingroei te bestud-
eren en om meer inzicht te krijgen in het botingroeiproces.

Het botingroeiproces wordt bëınvloed door zowel biologische als mecha-
nische factoren. In dit onderzoek wordt echter aangenomen dat het botin-
groeiproces wordt gereguleerd door mechanische factoren. Een aantal biolo-
gische processen is in de modellen opgenomen, maar hierbij werd aangenomen
dat deze biologische processen mechanisch gereguleerd zijn.

Bij het uitvoeren van dit onderzoek is vooral gebruik gemaakt van nu-
merieke modellen. Met deze modellen konden we de effecten van een belast-
ing van de prothese in het botvormende weefsel berekenen, waarna bepaald
werd of botingroei mogelijk was. Het botingroeiproces werd gesimuleerd met
behulp van weefseldifferentiatiemodellen.

Ten eerste is het het effect van het materiaal en de vorm van de prothese
op het botingroeiproces bestudeerd met behulp van een twee-dimensionaal
eindige elementen model van het glenoid met een glenoid prothese. De weef-
seldifferentiatie in de poreuze laag van de prothese en hechting van het bot
aan het poreuze deel van de prothese werden gesimuleerd. Deze hechting
wordt bepaald door de grootte van de microbewegingen op het raakvlak.
Het weefseldifferentiatieproces werd gesimuleerd met een bestaand, al in de
literatuur beschreven, model van fractuurgenezing. Uit dit onderzoek bleek
dat glenoid componenten met een hoge stijfheid en componenten die zorgen
voor een uniforme verdeling van de microbewegingen een positieve invloed
hadden op de botingroei. Een hoge wrijvingscoëfficient bleek minder belan-
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grijk voor glenoid componenten met een primaire fixatie.
Vervolgens wordt een eindige elementenmethode voor het simuleren van

gehydrateerde poroelastische weefsels beschreven. Deze methode is ontwikkeld
om een effectieve numerieke methode voor het oplossen van grote, niet-
lineaire, biomechanische modellen te verkrijgen. Deze methode is gëımplemen-
teerd in commerciële eindige elementen software (MSC Marc) als een nieuw
type element. Dit element kan gebruikt worden in combinatie met al bestaande
materiaalmodellen en in parallelle simulaties. Het nieuwe element is getest
door vergelijk met resultaten van een commerciële eindige elementen code en
reeds gepubliceerde resultaten.

Vervolgens wordt een numeriek model voor weefseldifferentiatie tijdens
fractuurgenezing beschreven. Dit model bestaat uit partiële differentiaalver-
gelijkingen en kan gebruikt worden om cel migratie, proliferatie, differentiatie
en vervanging, maar ook productie en resorptie van weefsels te simuleren. De
resultaten van dit model zijn vergeleken met resultaten van gepubliceerde
dierexperimentele studies.

In twee andere studies wordt de invloed van micro-eigenschappen van
de prothese, zoals de oppervlakte-geometrie en de dikte van de weefsellaag
tussen prothese en bot, op het botingroeiproces onderzocht. In deze studies
is een gedetailleerd model gemaakt van een klein gedeelte van het weefsel dat
doordringt in de poreuze laag van de prothese. De eerste studie onderzoekt
de spanning, vervorming en vloeistofstroming in dit weefsel bij drie verschil-
lende prothese-oppervlakken: poreus tantalium, gesinterde bolletjes en een
glad oppervlak. Met de geometrieën uit de eerste studie, wordt in de tweede
studie de invloed van het prothese-oppervlak bestudeerd door middel van
simulatie van het weefseldifferentiatieproces tussen bot en prothese. De be-
langrijkste aanname van de tweede studie is dat botingroei op dezelfde manier
gemodelleerd kan worden als fractuurgenezing. Het eerder ontwikkelde model
voor fractuurgenezing wordt gebruikt om weefseldifferentiatie tussen bot en
prothese te simuleren. Uit beide studies bleek dat een poreus oppervlak
leidt tot een snellere botingroei dan een glad oppervlak. Deze studies laten
tevens zien dat een dikke weefsellaag tussen bot en prothese niet minder
kans heeft om omgezet te worden in botweefsel dan een dunne. In de tweede
studie wordt voorgesteld om de grenswaarde van de microbeweging waar-
boven geen botingroei plaatsvindt te vervangen door een waarde gebaseerd
op spanning of vervorming van de weefsellaag. De reden hiervoor is dat de
maximale grootte van de microbeweging sterk afhankelijk is van de dikte van
deze weefsellaag, terwijl de grenswaarde voor spanning en vervorming vrijwel
onafhankelijk is van deze laagdikte. Ook werd aangetoond dat het weefsel-
differentiatieproces in een model met opgelegde krachten minder gevoelig is
voor variaties in de laagdikte dan bij opgelegde verplaatsingen. Uit de tweede
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studie blijkt dat het functioneren van een prothese-oppervlak kan variëren,
afhankelijk van de dikte van de weefsellaag tussen prothese en bot. Dit
suggereert dat iedere oppervlakte textuur een optimale laagdikte heeft, die
waarschijnlijk afhankelijk is van de vorm en de afmeting van de structuur op
het oppervlak. Vergelijk van de twee studies laat zien dat het functioneren
van een bepaald prothese-oppervlak veel beter geëvalueerd kan worden met
de volledige botingroei simulatie dan met een schatting van de biofysische
stimuli in de weefsellaag tussen bot en prothese.
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Conclusions

The numerical studies reported in this thesis make a contribution to the
knowledge of the bone-ingrowth problem and introduce a number of numer-
ical techniques meant for further investigation of bone ingrowth.

In Chapter 2 it was established that a stiffer backing of the glenoid com-
ponent with pegs is more advantageous. This conclusion was made despite
the fact that in some other orthopaedic applications decreasing the implant
stiffness leads to reduction of the interface micromotions. It was also con-
cluded that a high friction coefficient is of secondary importance for glenoid
components with primary fixation. This observation potentially can widen
the choice of implant materials. The study also shows that implant de-
signers should not use every chance to reduce the interface micromotions,
but rather come up with such an initial fixation of the component that will
produce a reasonably uniform distribution of the interface micromotions.
Overconstraining the component in one location can lead to imbalance in
the micromotions distribution, hence boosting micromotions in the less con-
strained areas of the interface and, subsequently, inhibiting bone ingrowth.
The study also suggests that primary stability of glenoid components with
porous tantalum backing can be reached and mechanical conditions that al-
low complete bone ingrowth into the porous backing can be created.

In Chapter 3, a finite element formulation for simulation of hydrated
poroelastic tissues is presented. The formulation leads to a symmetrical
stiffness matrix, which is an advantage in terms of computational costs.
The formulation is particulary useful for large-scale biomechanical simula-
tions, where modelling of complicated geometries can be easily done by dense
meshes of linearly interpolated tetrahedral elements. The formulation is im-
plemented as a user element in a commercial FEM package (MSC Marc).
This allows easy enhancement of the element with material models already
available and usage of such powerful features as parallel computations. The
formulation also allows combination of the poroelastic elements with struc-
tural elements, which is frequently needed in biomechanics.

Chapter 4 studies the effect of implant surface characteristics, interface
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tissue thickness and the effect of loading on biophysical stimuli inside the
interface tissue. According to our knowledge, this is the first full three-
dimensional finite element analysis of the mechanical environment at the in-
terface, where implant surface geometry is modelled explicitly. In the study
performance of three types of implant surface, namely a smooth surface, a
surface covered with sintered beads and a porous tantalum surface is com-
pared. The study confirms a previously existing hypothesis that porous im-
plant surface creates a mechanical environment more favorable for bone dif-
ferentiation than the one created by smooth surfaces. It was also concluded
that a porous tantalum surface is more likely to ossify than the surface cov-
ered with sintered beads or a smooth surface. Another conclusion is that
the higher interface tissue thickness is not necessarily a disadvantage, as it
was previously believed. Given the same level of micromotions, a thinner
interface has less chance to ossify as compared to a thick one.

Chapter 5 presents a numerical model for tissue differentiation during
bone fracture healing. The model is capable to incorporate such effects as
cell migration, proliferation, differentiation and replacement, but also pro-
duction and resorption of tissues. Unlike the numerical algorithms in the
earlier studies known from literature, the model is presented as a set of
differential equations which model cell proliferation explicitly. Tissues are
modelled separate from cells and tissue production rates are not equal for
every tissue. The model does not allow simulation of the growth factors
as some models known in the literature, but it is easy to implement in a
finite element model, which is a big advantage for complicated geometries
and general loading conditions. These aspects turn it into a potential tool
in development of loading protocols used for acceleration of bone fracture
healing process.

Like Chapter 4, Chapter 6 also studies the effect of the implant surface
characteristics and the mechanical environment at the interface, but this time
the bone ingrowth process is simulated. The study compares tissue differen-
tiation at the interface between bone and a smooth surface, surface covered
with sintered beads and a surface covered with porous tantalum. Similarly
to Chapter 4 it was also concluded that a porous surface favors faster bone
ingrowth comparing to a smooth surface. The study shows that a thick
interface layer is not less likely to ossify as compared to a thin one. The
latter, however, is in contradiction with a number of experimental studies
that demonstrate the opposite effect. This allows for an assumption that the
negative effect of the thick interface is caused by more complicated biological
factors, that are not taken into account in this study. This study proposes
to replace such known parameter as an inhibiting micromotions threshold
with stress or strain based value, as it was found that inhibiting micromo-
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tions level strongly depends on the interface tissue thickness, while the level
of inhibiting interface stress or strain is almost insensitive to the interface
thickness variation. It was also demonstrated that under force controlled
boundary conditions, the tissue differentiation process is not as sensitive to
the variations of the interface thickness as under the displacement controlled
boundary conditions. The results of the study also demonstrate that rela-
tive performance of an implant surface can vary depending on the interface
thickness. This suggests that every surface texture has its optimal interface
thickness and, probably, this optimal thickness correlates with shape and
size of the surface features. The study also shows that the outcome of the
analysis of biophysical stimuli inside the interface tissue is far less sensitive
to the variation of the implant surface geometry than the outcome of the
complete bone ingrowth simulation. Hence, performance of the particular
implant surface can be much better evaluated with the full ingrowth simula-
tion, as compared to the estimation of the biophysical stimuli at the interface
tissue.
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Recommendations

Despite the work, presented in this thesis, there is a number of unan-
swered research questions and potential methodological improvements that
might be considered for future study.

Several researchers performed three-dimensional stress analysis of scapula
with glenoid components, studying stresses in the cement mantle of metal-
backed and all polyethylene components, but we are not aware of a three-
dimensional simulation of bone ingrowth for a glenoid component. If a re-
liable numerical simulation could be performed in 3D it would greatly con-
tribute to the development of glenoid components.

It was already proven that growth factors can strongly influence the bone
fracture healing process. Numerical models that incorporate the influence of
growth factors on cell differentiation and tissue production already exist.
However, due to their complexity, they are not implemented in finite element
models. Development of such formulation would help simulation of growth
factors mediated bone ingrowth in complicated three-dimensional geometries.

During the bone fracture healing process the geometry of a callus changes.
The latter is mainly attributed to cell proliferation and subsequent tissue pro-
duction. This change of geometry, or simply swelling, changes the mechanical
environment in the callus, thus influencing the healing process. We are aware
of a few attempts to simulate swelling, but we think much more work should
be done in this direction. As we conclude from the results presented in this
thesis, incorporation of callus swelling might seriously help in accurate bone
fracture healing simulation.

In this thesis, cells were not modelled explicitly, i.e. only relative cell
concentrations were included. This approach has certain limitations. For
instance, it is known that processes like proliferation and apoptosis are stage
dependent. Incorporation of stage dependent processes in the field equations
is not an option, because knowing only cell concentration one can not specify
which cell is younger or which cell is older. Another example is an accurate
prediction of cell migration. In this thesis the cell dispersal is simulated by
diffusion. This approach has certain limitations if we want to simulate the
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migration of cells by means of the interconnected network of extracellular ma-
trix. The limitation of continuous modelling of cells obviously reveals itself
when one wants to study implant surfaces with texture feature, comparable
to the cell size. In that case explicit modelling of cells, collagen fibers (bone
matrix, etc.) might be necessary. This would not only help to accurately
model the mechanical environment on the interface, but also to identify the
mechanical stimuli that cause cells to commit to a certain lineage.

In the study on the effect of implant surface characteristics on the bone
ingrowth process we assumed that interface tissue was firmly attached to the
implant. However, it is known that the degree of attachment of tissues and
cells varies depending on chemical composition and texture of the implant
surface. Hence, simulation of gradual attachment of cells and tissues to the
implant surface would help in more accurate prediction of bone ingrowth.

Since long, researchers have searched for the optimal texture of implant
surfaces. However, intuitive optimization of complicated geometries is not
very effective. Combination of reliable bone ingrowth models and numerical
optimization techniques might become a powerful tool for implant texture
development.
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