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Physics-Informed Neural Networks for Solving
Forward and Inverse Problems in Complex

Beam Systems
Taniya Kapoor , Hongrui Wang , Member, IEEE, Alfredo Núñez , Senior Member, IEEE, and Rolf Dollevoet

Abstract— This article proposes a new framework using
physics-informed neural networks (PINNs) to simulate complex
structural systems that consist of single and double beams
based on Euler–Bernoulli and Timoshenko theories, where the
double beams are connected with a Winkler foundation. In
particular, forward and inverse problems for the Euler–Bernoulli
and Timoshenko partial differential equations (PDEs) are solved
using nondimensional equations with the physics-informed loss
function. Higher order complex beam PDEs are efficiently solved
for forward problems to compute the transverse displacements
and cross-sectional rotations with less than 1e − 3% error.
Furthermore, inverse problems are robustly solved to determine
the unknown dimensionless model parameters and applied force
in the entire space–time domain, even in the case of noisy
data. The results suggest that PINNs are a promising strategy
for solving problems in engineering structures and machines
involving beam systems.

Index Terms— Complex system, double-beam system,
Euler–Bernoulli beam, physics-informed neural networks
(PINNs), Timoshenko beam.

I. INTRODUCTION

COMPLEX engineering issues in real-life scenarios are
often characterized by the connection between various

subsystems and uncertainty in behavior caused by internal
and external variables and their interactions. Furthermore,
the design and maintenance of complex systems, such as
engineering structures and machines, are made challenging by
the unpredictable collective behaviors and properties of these
concurrently operating and interacting components. These
issues are typically difficult to analyze through conventional
methods [1]. Most of these complex engineering systems are
continuous, and partial differential equation (PDE) models
are used to characterize and understand their behavior. These
PDE models are used to simulate a wide range of engi-
neering phenomena, ranging from multiple beam systems in
suspension bridge cables (Timoshenko beam equations) [2] to
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catenary–pantograph interactions in railways (damped beam
equations) [3] to simulating air turbulence that disrupts flight
(Navier–Stokes equations) [4], [5], among many others [6],
[7], [8], [9], [10], [11], [12], [13]. Solutions to governing
PDEs enable real challenges such as structural health moni-
toring [14], [15], [16] and optimal structural design [17], [18]
to be addressed.

The development of algorithms for diagnostics and prog-
nosis is an issue in maintaining complex engineering systems
[1]. Insights could be obtained by solving the forward and
inverse problems for the governing PDEs of interest to forecast
the system’s behavior and minimize unexpected downtimes
of complex systems. These equations range in complexity
from being extremely nonlinear (Navier–Stokes equation [19])
to incorporating intricate higher order boundary conditions
(fourth-order beam equations [20]). In practice, these equa-
tions are too complicated to be solved analytically and
must be solved numerically. Numerical methods such as the
finite-difference and finite-element methods have been used to
approximate the solutions of these PDEs. Despite their success
in practice, these methods encounter some difficulties, such as
mesh creation, which is more difficult for complex geometries
in higher dimensions [21], [22].

In recent years, scientific machine learning, which combines
scientific computing with machine learning methodologies to
estimate PDEs solutions, has made remarkable developments
and has emerged as a viable alternative to the aforementioned
numerical methods. The review papers [21], [23], [24] exten-
sively discuss the state-of-the-art breakthroughs in scientific
machine learning, including works on real-world engineer-
ing problems. However, data-driven methods require a large
amount of data, which are possibly computationally expensive
and susceptible to noise in some engineering systems [25].
One possible way to mitigate the effects of these problems
is to use the known physical knowledge of the underlying
system in the learning procedure [26], [27], [28]. Prior physical
knowledge could be incorporated into the learning procedure
by collocating the PDE residual at training points, similar
to leveraging the physical equation in the training process.
The underlying neural networks proposed in [25] are called
physics-informed neural networks (PINNs).

PINNs use neural networks’ universal function approx-
imation property [29] and embed the well-posed physical
equations modeled by PDEs in the loss function. Prior knowl-
edge of physical principles works as a regularization agent
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in neural network training, restricting the space of admissible
solutions and improving the function approximation accuracy.
As a result, given some knowledge of the physical features
of the problem and some training data, PINN can be used to
identify a high-fidelity solution. PINNs have already proven
to be a very effective paradigm for approximating solutions of
PDEs for real-world problems [30], [31], as discussed in the
review papers [21], [23].

However, several challenges for PINNs have also been
found [32]. One such challenge for PINNs is to learn relevant
physical phenomena for more complex problems with large
coefficients in the physical equation [33]. A sequence-to-
sequence learning task was proposed in [33] as a remedy to
this problem. However, this can be computationally expensive
when the scale is large. In [34], the importance of using nondi-
mensional equations in the PINN framework was highlighted
for cardiovascular blood flow. We build on these works and
address the challenge of multiscale complex beam systems.
Accordingly, this article uses nondimensional PDEs instead of
dimensional PDEs in the loss function. This provides a way
to simulate realistic physical equations with computational
tractability.

Accurate prediction of the dynamics of structures [35] and
structural elements, such as plates [36], and beams [37], [38],
is crucial in the field of structural engineering. However,
measuring quantities of interest in beam systems through lab-
oratory experiments can prove to be difficult, as it necessitates
specialized prototypes, training, and safety during the testing
process, increasing the overall cost of the experiment. PINNs
offer a simulation-based solution as a mesh-free method
that does not require discretizing the domain into a finite
number of elements, making it computationally inexpensive
compared with numerical methods. PINNs can effectively
integrate incomplete or noisy information with prior physical
knowledge. The proposed framework converts dimensional-
ized PDEs into a nondimensionalized form, increasing the
suitability for neural networks and enabling the prediction of
deflections and rotations for any material, resulting in a more
generalizable method.

This article provides a framework to simulate complex
structural systems consisting of two or more basic structural
systems connected by an elastic layer. In particular, the forced
vibration of two elastically connected beams is studied, which
is commonly encountered in the mechanical, construction,
and aeronautical industries [6]. These double-beam systems
in engineering structures have received significant attention in
the scientific community and are considered complex systems.
Studies have been conducted to predict the dynamics of these
systems under various loading and force conditions, such
as those found in papers [39], [40], [41], [42], [43], [44],
[45], [46], [47], among others. These studies include the
use of analytical and closed-form solutions [43], [48], [49],
[50], [51]; however, analytical methods have limitations in
applicability, as they may be useful only for specific types
of problems and can become complex for systems with many
variables or nonlinear equations. Other approaches, such as
the state-space method presented in [45] and [52], may also be
computationally expensive for systems with a large number of
states. In addition, modal analysis methods as presented in [6]

and [53] have been used to study the natural frequencies and
modes of vibration, but they do not provide information on the
full response of the system and cannot be used to predict the
time-domain response at any instant.

The considered governing equations are modeled using
Euler–Bernoulli and Timoshenko theories. In addition to solv-
ing the forward problem and computing the physical quantities
of interest, we also solve the inverse problem. For the inverse
problem, one may not necessarily have complete information
about the inputs to the PDEs, such as initial or boundary data,
coefficients [54], [55], [56] or applied forces. This lack of
knowledge makes the forward problem ill-posed, and subse-
quently, the forward problem cannot be solved uniquely. In this
article, access to data for quantities of interest is leveraged to
determine the PDEs’ unknown inputs, for instance, the model
parameters and applied forces.

The main contributions of the current article are as follows.
1) To the best of the authors’ knowledge, this is the first

work to use physics-informed machine learning to solve
the forward and inverse problems of Euler–Bernoulli and
Timoshenko complex beam models.

2) We address a challenge for PINNs in solving multiscale
complex beam PDEs and propose a framework for using
nondimensional equations in the loss function.

3) The proposed nondimensional PINN framework is used
to address ill-posed inverse problems for complex sys-
tems and to identify the unknown model parameters
and the applied force on the beam components. This
is achieved using data from indirect measurements such
as the displacement and cross-sectional rotations of the
beams.

4) The presented methodology is robust to noise and can
accommodate potential uncertainty in the measurement
data, making it well-suited for real-world applications
where data are incomplete or uncertain.

The rest of this article is organized as follows. In Section II,
the PINN method is presented to simulate the dimensional
Euler–Bernoulli beam equation. Due to the limitations of
PINNs in simulating the dimensional Euler–Bernoulli beam
equation, an alternative approach of using nondimensional
equations in the PINN’s loss function is proposed and suc-
cessfully used to solve the dimensionless Euler–Bernoulli
equation in Section III. Section IV first applies the pro-
posed framework to simulate the Timoshenko beam model for
solving forward and inverse problems. The forward problem
of the Euler–Bernoulli double-beam equation is then solved.
In addition, Section IV covers forward and inverse Timo-
shenko double-beam system problems. Section V concludes
this article.1

II. PINNS FOR DIMENSIONAL PDES

In this section, the method of PINNs to simulate PDEs
is presented in brief using an abstract dimensional PDE.
The method is then used to simulate the dimensional
Euler–Bernoulli equation. The following abstract dimen-
sional PDE is considered with implicit initial and boundary

1Collection of code and data intended for replicating the experiments
presented in this paper can be found here: https://github.com/taniyakapoor/
PINNs_beam/tree/master
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Fig. 1. Simply supported beam with varying transverse force.

conditions:

K̄ (x̄, t̄) := D[ū](x̄, t̄; λ̄) − f̄ (x̄, t̄)

∀(x̄, t̄) ∈ �̄ × T̄ ⊂ Rd
× R (1)

where D[
.
] denotes the differential operator, ū is the quantity

of interest, x̄ ∈ �̄ ⊂ Rd, t̄ ∈ T̄ ⊂ R for d ≥ 1, �̄ denotes
the spatial boundary contained in the d-dimensional Cartesian
spatial space, T̄ denotes the temporal domain, λ̄ ∈ R is the
model parameter, f̄ (x̄, t̄) is the external force, and K̄ is the
notation for the abstract physical equation.

Deep neural networks are the core for PINNs in which
inputs (x̄, t̄) map to output (ū) through an iterative composition
of hidden layers. The composition consists of weights (w),
biases (b), and linear or nonlinear activation function(s) (σ ).
The inputs undergo a linear composition within a neuron,
where they are multiplied by respective weights and summed
along with a bias term. Subsequently, this combined input
is passed through a nonlinear activation function (σ ). This
allows the neural network to introduce nonlinearity, enabling
the network to capture intricate relationships between inputs
and outputs.

To train the neural network, one needs training set (1),
consisting of spatial boundary points (1b), temporal boundary
points (1i), and interior points (1int). As a result, the training
set can be written as 1 = 1i ∪1b ∪1int. In this work, 1i, 1b,
and 1int are considered to have Ni, Nb, and Nint training points,
respectively. The total number of training points is denoted by
Ntrain. To approximate the quantity of interest ū, one needs
to minimize the loss function containing the physical model
in the form of a PDE with initial and boundary conditions
of (1). No additional data are required in the loss function for
forward problems. The loss function L̄ is defined as follows:

L̄(θ) = Min
θ

(
1

Ntrain

Ntrain∑
n=1

||K̄ (x̄n, t̄n)||
2

)
(2)

where (x̄n, t̄n) represents the training tuple for each n.
Minimizing this loss function using a suitable optimization
algorithm provides optimal parameters θ = {w, b}.

Now, we use the PINN algorithm for the dimensional
Euler–Bernoulli beam equation and evaluate the corresponding
performance. The dynamic Euler–Bernoulli beam equation is
given by

ρ Aū t̄ t̄ + E I ū x̄ x̄ x̄ x̄ = f̄ (x̄, t̄) x̄ ∈ [0, l̄], t̄ ∈ [0, tend]. (3)

Here, l̄ and tend refer to the length of the beam and
final time, respectively. This equation models the transverse
displacement of beam ū in the space–time domain subject
to the external transverse force f̄ as shown in Fig. 1. This
work considers a uniform cross-sectioned beam with constant

material properties throughout the beam. The parameters ρ and
A denote the density and cross-sectional area of the beam,
respectively. The parameters E and I are Young’s modulus
and the moment of inertia of the beam, respectively. The
external force f̄ acts nonuniformly on the body, and ū is
the transverse displacement of the beam, which is the only
unknown in the governing PDE. In addition, utt represents
the second-order partial derivative of u with respect to t , and
uxxxx represents the fourth-order partial derivative of u with
respect to x . The goal of the forward problem is to compute
the transverse displacement of the beam supplemented with
the initial and boundary conditions. For this study, simply
supported beams are considered, which rest on two supports
and are free to move horizontally. Real-world applications of
simply supported beams include railway tracks and bridges,
to name a few. Mathematically, the simply supported boundary
condition for (3) is given by

ū(0, t̄) = ū(l̄, t̄) = ū x̄ x̄ (0, t̄) = ū x̄ x̄ (l̄, t̄) = 0.

For the numerical experiment, the parameter values
of aluminum-like material are considered in the physi-
cal equation, which are widely used for making beams.
The parameter values taken for the problem are ρ =

2 × 103 kg/m3, A = 5 × 10−2 m2, E = 1010 N/m2, and
I = 4 × 10−4 m4. In addition, the beam is taken to be π2

m long, and the external force f̄ is taken to be E I (1 −

16π2) sin (x̄/π) cos(4ct̄/π)/l̄3N, where c = (E I/ρ A)1/2.
Taking the final time to be π2/200, the PDE to be solved
takes the form

102ū t̄ t̄ + 4 × 106ū x̄ x̄ x̄ x̄

= 4 × 106(1 − 16π2) sin (x̄/π) cos(800t̄/π)/π3 (4)

in the domain x̄ ∈ [0, π2
] and t̄ ∈ [0, π2/200]. For (4) to be

well-posed, the initial condition of the beam is taken to be
sin(x̄/ l) with zero initial velocity, where l =

√

l̄.
For training the neural network, 16 000 random training

points are generated with the distribution Ni = 2000, Nb =

4000, and Nint = 10 000. The neural network consists of four
hidden layers with 20 neurons in each hidden layer. The tanh
activation function, which is one of the most commonly used
activation functions in the PINN literature, as described in the
review paper [23], is chosen. The loss function (2) consists of
the initial condition, boundary condition, and PDE. The PDE
is regularized in the loss function with the residual parameter
0.1 [57]. The L-BFGS optimizer, which is again one of the
most commonly used optimizers in the PINN literature [23],
is used to minimize the loss function. As shown in Fig. 2
15 000 epochs are performed. However, the figure clearly
illustrates that the optimizer does not converge to the solution,
and a vast training loss of 1014 is obtained. In addition, the
graph shows that the optimizer is stuck in the local minima
and hence will not converge even if the number of epochs is
increased for the same neural network configuration.

In [16] and [58], the problem of free vibrations in the
Euler–Bernoulli single-beam equation was successfully solved
by PINNs, where the coefficients of the PDE were taken to be
unity. This shows that PINNs can simulate the beam equations,
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Fig. 2. L-BFGS training loss versus the number of epochs for the dimensional
Euler–Bernoulli beam equation.

and the challenge lies in the multiscale coefficient values
that arise when dealing with a real-life physical equation.
The nonconvergence in our case is due to the high value of
coefficients, which is due to the dimensional equation. Con-
sequently, a pressing need arises to transform the dimensional
form of the equation into a nondimensional form. It may be
possible that for some configurations containing hundreds of
hidden layers and neurons, this problem may be solved without
the need to nondimensionalizing the PDE. However, nondi-
mensionalization aims to provide computational tractability.

III. PINNS FOR NONDIMENSIONAL PDES

This section presents the proposed framework of using
nondimensional equations in the PINN loss function. The
method for nondimensionalizing the governing PDE is
described first. Then, the algorithms for forward and inverse
problems using dimensionless equations in PINNs are pre-
sented. To nondimensionalize the abstract PDE given by (1),
the following transformations are performed:

x̄ = ξ1(x); t̄ = ξ2(t); ū = ξ3(u); f̄ = ξ4( f ) (5)

where ξ1, ξ2, ξ3, and ξ4 are suitable functions that map the
dimensional quantities x̄ , t̄ , ū, and f̄ to the corresponding
nondimensional quantities. After substituting the above trans-
formations in (1) and introducing the dimensionless parameter
λ, one obtains

K(x, t) := D[u](x, t; λ) − f (x, t)

∀(x, t) ∈ � × T ⊂ Rd
× R. (6)

The proposed framework uses dimensionless equations to
simplify and stabilize the problem computationally. By nondi-
mensionalizing the variables and parameters, they are kept
within a specific range, resulting in improved performance
and generalization of the neural network. Furthermore, dimen-
sionless equations generate more interpretable solutions by
eliminating the units of measure, making it easier to under-
stand the underlying physical phenomena and to compare
the results across different physical systems in the form of
ratios and parameters. Hence, using dimensionless equations
in PINNs can enhance the neural network’s computational
stability, generalization, and interpretability.

A. PINN Framework for Forward Problems

K, the nondimensional PDE corresponding to the dimen-
sional PDE K̄ , is now used in the loss function L defined as

follows:

L(θ) = Min
θ

(
1

Ntrain

Ntrain∑
n=1

||K(xn, tn)||2
)

. (7)

A schematic representation of the proposed PINN-based
framework is illustrated in Fig. 4.

B. Nondimensional Euler–Bernoulli Beam Equation

We now test the nondimensional equation in the PINN
framework and evaluate the corresponding performance.
To nondimensionalize (3), the following transformations are
used:

u = ū/ l; x = x̄/ l; t = ct̄/ l2
; f = f̄ l3/(E I ). (8)

Upon substituting these values in (3), one obtains

ut t + uxxxx = f (x, t) x ∈ [0, π], t ∈ [0, 1] (9)

where f (x, t) = (1 − 16π2) sin (x) cos(4π t), with the initial
and boundary conditions

u(x, 0) = sin(x), ut (x, 0) = 0
u(0, t) = u(π, t) = uxx (0, t) = uxx (π, t) = 0.

For the error estimation, the relative percentage error (R)
used in [57] is chosen. Here, u∗ is the prediction and u is the
analytical solution

R =
||u∗

−u||2

||u||2
× 100.

The same neural network architecture as the previous case
is chosen to solve this resulting nondimensional PDE. A low
training loss is obtained, indicating that the PINN is trained
successfully. The analytical solution for this case is u(x, t) =

sin(x) cos(4π t), which is used to quantify the error in the
approximated solution. The nondimensional displacement of
the Euler–Bernoulli beam is computed withinR = 5.3e − 4%.
The nondimensional displacement prediction using PINN is
shown in Fig. 3(a). Fig. 3(b) shows the absolute error between
the exact and predicted solutions.

The contour plot for the approximate solution shows the
dynamics of a simply supported beam under a force, where the
x-axis represents the time, the y-axis represents the position
along the length of the beam, and the colors represent the
displacement of the beam. In Fig. 3(b), the red regions
indicate high displacement, while the blue regions indicate low
displacement. There is a strong displacement at the position
of the beam when a substantial force is applied, which is
consistent with the known physics of this system. The network
accurately captures the displacement behavior of the beam,
which is evident by the smooth and continuous transition of
colors across the plot.

The contour plot for the error in Fig. 3(b) shows the
difference between the approximate solution obtained from the
network and the true solution. The x-axis represents the time,
the y-axis represents the position along the length of the beam,
and the colors represent the error. The red regions indicate
high error, while the blue regions indicate low error. The areas
where the training point concentration is low account for more
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Fig. 3. Nondimensional Euler–Bernoulli beam equation color bar represents predicted solution (u∗) (left). Absolute error in prediction (|u − u∗
|) (right).

Fig. 4. PINN framework for beam systems: For forward problems, the loss
function comprises the nondimensional PDEs and the boundary and initial
conditions. For inverse problems, the nondimensional PDEs are supplemented
with extra data and potential initial/boundary conditions.

error, and areas where the concentration of training points is
more have relatively low error. One approach to reduce the
error is to have more training points in the regions of high
error. However, the overall error is low, which indicates that
the network accurately captures the displacement behavior of
the beam.

From Fig. 3(b), the PINNs are found to solve the dimension-
less Euler–Bernoulli beam equation accurately, and hence, for
all further experiments, nondimensional PDEs are simulated
using PINNs. In addition, the nondimensional displacement is
henceforth referred to as displacement for conciseness. The
presented methodology predicts the dimensionless quantities,
and hence, all the plots of results and their associated error
plots are dimensionless. Consequently no units are mentioned
in the plots of the presented results. Next, we describe
the inverse problem-solving strategy using nondimensional
equations.

C. PINN Framework for Inverse Problems

The abstract dimensionless PDE described by (6) is well-
posed, and the forward problem can be solved uniquely.
However, in the case of an inverse problem, the problem
is ill-posed and either the initial/boundary conditions or the
parameters/forces are unknown. Hence, the generic abstract

PDE can be rewritten as

K′(x, t) := D[u](x, t; λ) − f (x, t)

∀(x, t) ∈ � × T ⊂ Rd
× R. (10)

The algorithm for the PINN framework is presented to solve
inverse problems.

Algorithm 1 Inverse PINN Algorithm
Goal: To predict the unknown parameter λ̄ or function

f̄ (x̄, t̄).
Step 1: Nondimensionalize the governing PDE to approx-
imate the dimensionless parameter λ or function f (x, t).

Step 2: Choose the training set from the space–time
domain � × T , and augment with (xdata, tdata) at which
additional data (udata) are provided.

Step 3: Construct a feedforward deep neural network with
inputs (x, t) and outputs u, λ, or f (x, t).

Step 4: Minimize the loss function (11) with a suitable
optimization algorithm, and find the optimal parameters.

Step 5: Use the optimal parameters to approximate the
parameter λ∗ or the function f ∗(x, t).

The aim of the inverse problem is to predict the unknown
parameter λ or the force function f (x, t), when data are
provided for the observable u in some part of the training
domain. In this article, udata denotes the available data for the
inverse problem at Ndata points. The prediction of the unknown
parameter requires additional information in the loss function
as shown in Fig. 4. It is essential for the Jacobian matrix
used in the inverse operation study using neural networks to
exhibit a nonzero determinant, to be invertible, and to possess
a reasonable ratio between its largest and smallest eigenvalues
to guarantee a unique solution and ensure computational
stability. The algorithm for the inverse problem is the same
as for the forward problem with a minor modification in the
loss function. In addition to the output u, the PINNs now
predict the unknown parameter, force, and initial or boundary
conditions of the physical problems by leveraging the known
data. The loss function for the inverse problem can be defined
as

L′(θ) = Min
θ

(
1

Ntrain

Ntrain∑
n=1

||K(xn, tn)||2

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

+
1

Ndata

Ndata∑
n=1

||udata(xn, tn) − upred(xn, tn)||2
)

.

(11)

Here, upred denotes the prediction of u by the neural network
section implementing the PINN algorithm for forward and
inverse problems of dimensionless beam equations.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, five numerical experiments are presented.
The experiments are conducted in a progressive manner,
beginning with simple models such as a single-beam sys-
tem and then progressing to more complex ones such as a
double-beam connected to a Winkler foundation. To verify
the proposed method, we first investigate forward and inverse
problems for a single beam, which serves as the proof of
the concept. Then, we apply the method to more intricate
cases of double-beam systems to simulate forward and inverse
problems.

A. Timoshenko Beam Forward Problem

The Euler–Bernoulli theory of beams is widely used in the
literature and has been successfully applied in structures such
as the Eiffel Tower and Ferris wheels. However, it does not
consider the effects of transverse shear deformations, which
are often significant in the vertical displacements of short
and thick beams [59]. Timoshenko beam theory provides a
mathematical framework for analyzing thick-beam bending
[59]. According to the Timoshenko theory, upon the action of
an external force, the beam undergoes some cross-sectional
rotation in addition to transverse displacement. Mathemat-
ically, the dynamics are modeled by a coupled system of
PDEs with two variables: transverse displacement and cross-
sectional rotation. The model is given by

ρ I θ̄ t̄ t̄ − E I θ̄ x̄ x̄ − k AG(w̄ x̄ − θ̄ ) = 0
ρ Aw̄ t̄ t̄ − k AG(w̄ x̄ x̄ − θ̄ x̄ ) = ḡ(x̄, t̄) (12)

where ρ, A, E , and I have the usual meaning as in the
case of the Euler–Bernoulli beam; k is called the Timoshenko
shear coefficient; G is the shear modulus; and ḡ(x̄, t̄) is the
external force acting on the beam. The transverse displacement
is w̄(x̄, t̄), and θ̄ (x̄, t̄) is the cross-sectional rotation of the
beam at position x̄ and time t̄ . After nondimensionalizing (12)
and taking the resulting parameters [60] to be unity, the
nondimensional equation can be written as follows:

θt t − θxx + (θ − wx ) = 0
wt t + (θ − wx )x = g(x, t). (13)

We consider the external force [61] to be g(x, t) = cos(t)−
(π/2) sin(x) cos(t) and the computational domain to be x ∈

[0, π] and t ∈ [0, 1]. To make (13) well-posed, the initial and
boundary conditions are supplemented as

θ(x, 0) =
π

2
cos(x) +

(
x −

π

2

)
, θt (x, 0) = 0

w(x, 0) =
π

2
sin(x), wt (x, 0) = 0

θ(0, t) = θ(π, t) = w(0, t) = w(π, t) = 0.

To estimate the error in the approximated solutions, the
analytical solution for the considered problem is used, which
is

θ(x, t) =

(π

2
cos(x) +

(
x −

π

2

))
cos(t)

w(x, t) =
π

2
sin(x) cos(t).

When analytical solutions are not available, there are various
ways to validate the PINN solution. One approach is to
compare the solutions with those obtained using numerical
methods such as finite difference, finite element, finite volume,
or spectral methods. This can be done by comparing the
predicted solutions from the PINNs with the solutions from the
numerical simulation for the same physical equation. Another
approach is to compare the solutions obtained through PINNs
with experimental data. One can compare the predicted solu-
tions from the PINNs with values experimentally measured
over space and time. Finally, one can validate the solutions
obtained through PINNs by checking whether they satisfy
the known physical constraints of the system. In summary,
one can use available experimental data, numerical methods,
or physical constraints to evaluate the accuracy of the solution
obtained using PINNs.

The difficulty of solving a system of PDEs is greater than
that solving a single PDE, but the neural network struc-
ture used for the Euler–Bernoulli equation is successful in
approximating solutions for Timoshenko beams. In partic-
ular, the transverse displacement of the beam is computed
within R = 3.3e − 4%, and the cross-sectional rotation
is approximated within R = 2.8e − 3%. Approximated
solutions and absolute errors in predicting the transverse
displacement and cross-sectional rotation are presented in
Figs. 5 and 6. Fig. 5 demonstrates that when a sinusoidal
force is applied to a Timoshenko beam, the beam bends more
than it rotates. As indicated by the scale in the figures, the
maximum deflection is 1.44 and the maximum rotation is 0.32.
In addition, the low error in predictions demonstrates that even
with the increase in PDE complexity, the PINN successfully
solves the Timoshenko PDE with comparable results to the
Euler–Bernoulli equation.

We compare the results obtained from our method with
three other methods. The first method we consider is the
widely used numerical technique called the finite difference
method (FDM). The other two methods are neural-network-
based approaches, namely, physics-guided neural networks
(PGNNs) [28], [62], [63], [64], [65] and gradient-enhanced
PINNs (gPINNs) [66]. First, for FDM we use a central differ-
ence scheme to approximate space derivatives and a leapfrog
scheme to approximate time derivatives. This approach allows
us to solve problems with second-order accuracy in space and
time. The results for the Timoshenko beam show that PINNs
can achieve a higher level of accuracy than the FDM even with
a smaller number of training points. Specifically, 30 000 points
are used in the FDM scheme, while only 16 000 points were
used for training with PINNs, and Table I indicates that PINNs
perform better than FDM.

Second, the performance of PINN is compared with
a neural-network-based approach PGNN, which leverages
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Fig. 5. Timoshenko single-beam; color bar represents cross-sectional rotation (θ∗) (left). Transverse displacement (w∗) (right).

Fig. 6. Timoshenko single-beam absolute error in predictions. Left: |θ − θ∗
|. Right: absolute error |w − w∗

|.

TABLE I
TIMOSHENKO BEAM: R AT t = 1

physical knowledge embedded in the available data, for
instance, the relationship between beam acceleration and dis-
placement for the Timoshenko beam problem. Accelerometers
can be used at discrete locations along the beam to obtain
acceleration data. Acceleration data at five equidistant points
along the beam are used, with 2000 data points at each
location. This dataset is augmented with the boundary and
initial conditions of displacement to match the training data
size of PINN. PGNN is a deep neural-network-based archi-
tecture with inputs: position (x), time (t), and acceleration.
Displacement (w) is taken as the output of this neural network.
Training PGNN with identical hyperparameters to those used
in PINN, PGNN predicts the displacement (w) with an error
of approximately 0.002739%, as shown in Table I.

Furthermore, using the displacement values (w), the neural
network’s auto differentiation, and (13), we derived θx . Sub-
sequently, a second neural network was constructed to predict
θ , where θx is used as the input. The boundary and initial
conditions for cross-sectional rotation (θ) are also used to
guide the PGNN toward the optimal solution. After training
the PGNN, cross-sectional rotation is predicted with approxi-
mately 3.486727% error. It can be inferred from Table I that
both displacement and rotation predictions exhibited higher
errors than PINN. This discrepancy can be attributed to the
restricted availability of acceleration data at only discrete
spatial locations within the interior domain rather than a
random distribution across the entire domain. Furthermore,
the second neural network, used for rotation prediction,

demonstrated inferior performance potentially due to error
propagation.

Third, we perform another comparison with a neural-
network-based method to simulate PDEs, gPINN [66], which
differs from PINN in terms of the loss function. The acronym
“gPINN” proposed in [66] is used in this work instead of
“GPINN” as it is used for another method [67]. In addition
to the loss function of PINN, gPINN leverages gradient
information of the PDE residual and embeds the gradient
into the loss function. For the Timoshenko beam problem,
derivatives of the system of PDE (13) with respect to space
(x) and time (t) are supplemented in the loss function. Table I
shows that gPINN exhibits higher relative error percentages
in learning displacement and cross-sectional rotation than
PINN. The high-order derivatives of the physical equations
in the loss function of gPINN make it challenging for autod-
ifferentiation [68] and backpropagation of the loss function,
resulting in poor predictions of deflection and rotation for
the Timoshenko beam. Table I demonstrates that PINN out-
performs FDM, PGNN, and gPINN in accurately predicting
displacement and cross-sectional rotation for the Timoshenko
beam, emphasizing its superior performance compared with
the three alternative methods.

B. Timoshenko Beam Inverse Problem
This section addresses the inverse problem for the Timo-

shenko beam, with the aim to determine the material properties
of a beam leveraging the PDE and beam’s displacement and
rotation data. In structural engineering, the inverse problem
of a Timoshenko beam PDE is significant for determining the
beam system’s structural behavior and for health monitoring.
This helps engineers infer the internal material properties and
unknown forces from observed responses such as displacement
and rotation measurements. The PINN solves this problem by
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Fig. 7. Data to learn the parameters for the Timoshenko single-beam.
Blue dots: collocation points. Red dots: additional data points of rotations
(θ ) and displacement (u). Black dots: initial and boundary points.

combining the knowledge of physics and deep learning. The
PINN uses a neural network to learn the mapping between
the unknown parameters of the PDE and observed data while
incorporating the constraints of physics in the form of PDEs.
This parameter identification aids in providing crucial infor-
mation for structural diagnosis and repair and helps engineers
ensure the safety and stability of structures. The Timoshenko
model for parameter estimation is presented as follows:

αθt t − θxx + (θ − wx ) = 0
wt t + (θ − wx )x = g(x, t). (14)

In the context of the inverse problem of the Timoshenko
beam, the PINN is trained on the observed deflections and
rotations of the beam, and the material properties are treated
as the unknowns to be estimated. In this case, the force
g(x , t) applied to the beam is considered to be known, and
the only unknown in the model is α. This makes the problem
ill-posed, requiring additional data at a priori to predict the
unknown parameter. For α = 1, the transverse displacement
and cross-sectional rotation data obtained from the forward
problem are supplied to approximate the parameter value.
These data are not error-free and come with 10−3% error
for transverse displacement and with 10−4% error for cross-
sectional rotation. As shown in Fig. 7 the additional data are
supplied on 5000 points (red dots) at five positions on the
beam (x = 0.2, 0.8, 1.8, 2.6, 3). In practice, these data can be
collected using sensors installed at the corresponding locations
on the beam as shown in Fig. 7.

To solve the inverse problem, the neural network consists of
1600 random training points with the distribution Ni = 200,
Nb = 400, and Nint = 1000. To regularize the PDE term in the
loss function, a regularization parameter of 1 was chosen [25].
Using the L-BFGS optimizer, 5000 iterations are performed
and the other parameters are kept the same as in the forward
Timoshenko problem. At t = 0.5, the unknown parameter
α = 1.0136 is learned.

We perform a comparison between the PINN and DNNs,
as using a numerical iterative method for inverse problems

is computationally expensive. From PINNs, at t = 0.5, the
unknown parameter α = 1.0136 is learned. We use DNNs to
identify the parameters of a Timoshenko single-beam. We use
the same architecture for DNN as used by the PINN. The
predicted value of alpha is 0.6124 using DNN. PINN is
more accurate than DNNs for the inverse problem of beam
systems.

However, there are several issues that one may need to
take care of while solving inverse problems through the
presented framework. First, to avoid overfitting, the minimum
training data points required to solve the problem should be
determined empirically by gradually increasing the number of
training points until the model’s performance is satisfactory.
Second, for some physical problems, noisy data may lead to
nonconvergence of the optimization algorithm. Hence, suitable
filtering or preprocessing of data may be required before using
the PINN framework. Finally, for every run of the neural
network, one may learn a different parameter or function value;
due to the convergence of the optimizers at different local
minima, it may be useful to find the statistics of the inverse
problem solution through multiple runs.

The experimental results for single-beam equations illus-
trate that PINNs can efficiently solve forward and inverse
problems for single beams. In this study, we investigate the
ability of PINNs to handle more complex systems, specifically
double-beam systems connected by a Winkler foundation,
as depicted in Fig. 10.

C. Euler–Bernoulli Double-Beam Forward Problem
In this section, and for all further experiments, forced trans-

verse vibrations of two parallel beams are studied. Structurally,
two parallel beams of equal lengths joined by a Winkler
massless foundation are considered. Both the beams are con-
sidered slender and have homogeneous material properties.
The transverse displacement of both the beams is governed
by the following system of PDEs [41]:

m1w̄1t̄ t̄
+ K1w̄1x̄ x̄ x̄ x̄

+ k(w̄1 − w̄2) = f̄ 1(x̄, t̄)

m2w̄2t̄ t̄
+ K2w̄2x̄ x̄ x̄ x̄

+ k(w̄2 − w̄1) = f̄ 2(x̄, t̄). (15)

Here, w̄1 and w̄2 are the beam displacements for the first and
second beams, respectively. The distributed continuous forces
acting transversely on the beams are f̄ 1 and f̄ 2 as shown in
Fig. 10. The product of the density and the cross-sectional
area of the beams is given by m1 = ρ1 A1 for the first beam
and m2 = ρ2 A2 for the second beam. The parameters K1 and
K2 denote the flexural rigidity of the beams and are given
by K1 = E1 I1 and K2 = E2 I2. The stiffness modulus of
the Winkler elastic layer connecting both the beams is given
by k. For simplicity, we consider m1 = m2 and K1 = K2,
and nondimensionalize (15). After taking all the resulting
parameters to be unity, the nondimensional equation has the
same form as (15) with unit coefficients. The initial conditions
are

w1(x, 0) = sin(x), w1t (x, 0) = 0

w2(x, 0) =
π

2
sin(x), w2t (x, 0) = 0.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



KAPOOR et al.: PINNs FOR SOLVING FORWARD AND INVERSE PROBLEMS IN COMPLEX BEAM SYSTEMS 9

Fig. 8. Euler–Bernoulli double-beam: color bar represents absolute error in predictions. Left: |w1 − w∗

1 |. Right: |w2 − w∗

2 |.

Fig. 9. Derived quantities for the Euler–Bernoulli double-beam. Scattered points represent the exact solution and the continuous line refers to the derived
solution. Top: first beam, left: bending moment, mid: velocity, and right: acceleration. Bottom: second beam, left: bending moment, mid: velocity, and right:
acceleration.

All the four ends of the beams are assumed to be simply
supported, expressed as

w1(0, t) = w1(π, t) = w1xx (0, t) = w1xx (π, t) = 0
w2(0, t) = w2(π, t) = w2xx (0, t) = w2xx (π, t) = 0.

The external acting force is

f1(x, t) =

(
1 −

π

2

)
sin(x) cos(t)

f2(x, t) =

(π

2
− 1

)
sin(x) cos(t).

For the considered problem, the analytical solution is given
by

w1(x, t) = sin(x) cos(t), w2(x, t) =
π

2
sin(x) cos(t).

In addition to computing the beam displacements, derived
quantities such as velocity, acceleration, and bending moment
are also computed for this problem. These derived quantities
also help in the prognosis and diagnostics of the system. For
instance, the bending moment estimates the bending effect
when an external force is applied to a structural element.
Estimating the bending moment can be used to quantify the
bending upon the action of applied forces. The beam is
the most common structural member vulnerable to bending

Fig. 10. Double-beam system connected by a Winkler foundation.

moments because it can bend at any point along its length
when subjected to an external force.

For simulating Euler–Bernoulli double beams, the same
neural network architecture as for the single Euler–Bernoulli
beam is considered. The only change is in the residual param-
eter, which is 1 for this case. The results are illustrated in
Figs. 8 and 9 and Table II. The absolute difference between
the PINN-predicted solution and the exact solution for the
first beam is approximately 10−4, and for the second beam,
it is approximately 10−3, as shown in Fig. 8. The bending
moment, velocity, and acceleration are computed using the
neural network’s autodifferentiation and backpropagation fea-
tures. Table II describes the efficiency in the computation of
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Fig. 11. Timoshenko double-beam. Scattered points represent the exact solution, and the continuous line refers to the predicted solution. Top: first beam.
Left: displacement (w1). Right: rotation (θ1). Bottom: second beam. Left: displacement (w2). Right: rotation (θ2).

TABLE II
EULER–BERNOULLI DOUBLE-BEAM: R AT t = 1

these quantities at t = 1 for both the beams. The relative
percent error in computing the transverse displacement of the
beams is on the order of 10−5, and for acceleration, this error
is on the order of 10−2, which is very low and shows the
potential of physics-informed learning. Fig. 9 illustrates the
computed velocity, bending moment, and acceleration of both
the beams.

D. Timoshenko Double-Beam Forward Problem
The double-beam system modeled by Euler–Bernoulli the-

ory can also be modeled using Timoshenko theory under the
same assumptions as described for the single Timoshenko
equations [40]. In addition to providing the transverse dis-
placement of the beams, the Timoshenko theory also provides
the cross-sectional rotation of both the beams through the
system of PDEs [40] given by

k A1G(θ̄1x̄
− w̄1x̄ x̄

) + ρ A1w̄1t̄ t̄
+ K (w̄1 − w̄2) = f̄ 1(x̄, t̄)

E I2θ̄2x̄ x̄
+ G A2k(w̄2x̄

− θ̄2) − ρ I2θ̄2t̄ t̄
= 0

k A2G(θ̄2x̄
− w̄2x̄ x̄

) + ρ A2w̄2t̄ t̄
+ K (w̄2 − w̄1) = f̄ 2(x̄, t̄)

E I1θ̄1x̄ x̄
+ G A1k(w̄1x̄

− θ̄1) − ρ I1θ̄1t̄ t̄
= 0 (16)

where w̄i (x̄, t̄) and θ̄ i (x̄, t̄), i = 1, 2 denote the trans-
verse displacement and cross-sectional rotation of the beams

respectively. K is the stiffness modulus of the Winkler elastic
layer. G is the shear modulus, and k is the Timoshenko shear
coefficient. The rest of the parameters have the usual meanings
as described earlier. For simplicity, we consider A1 = A2 and
I1 = I2 and nondimensionalize (16). With some additional
assumptions, the nondimensional equation has the same form
as (16) with unit coefficients. For the numerical experiment,
the initial state of the double-beam system is taken to be

θ1(x, 0) =

(π

2
cos(x) +

(
x −

π

2

))
, θ1t (x, 0) = 0

w1(x, 0) =
π

2
sin(x), w1t (x, 0) = 0

θ2(x, 0) =
2
π

(π

2
cos(x) +

(
x −

π

2

))
, θ2t (x, 0) = 0

w2(x, 0) = sin(x), w2t (x, 0) = 0.

Simply supported boundary conditions are provided to make
the problem well-posed

θ1(0, t) = θ1(π, t) = w1(0, t) = w1(π, t) = 0
θ2(0, t) = θ2(π, t) = w2(0, t) = w2(π, t) = 0.

Here, f1(x, t), f2(x, t), and the analytic solutions are as
follows:

f1(x, t) = cos(t)(1 − sin(x))

f2(x, t) =
2
π

cos(t) −
π

2
sin(x) cos(t)

θ1(x, t) =

(π

2
cos(x) +

(
x −

π

2

))
cos(t)

θ2(x, t) =
2
π

(π

2
cos(x) +

(
x −

π

2

))
cos(t)

w1(x, t) =
π

2
sin(x) cos(t), w2(x, t) = sin(x) cos(t).
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Fig. 12. Timoshenko double-beam absolute errors in prediction; θ1 and w1 are the rotation and displacement of the first beam, respectively, and θ2 and
w2 are the rotation and displacement of the second beam, respectively. Top: 16 000 training points (a) |θ1 −θ∗

1 |, (b) |w1 −w∗

1 |, (c) |θ2 −θ∗

2 |, and (d) |w2 −w∗

2 |.
Bottom: 1600 training points (a) |θ1 − θ∗

1 |, (b) |w1 − w∗

1 |, (c) |θ2 − θ∗

2 |, and (d) |w2 − w∗

2 |.

TABLE III
TIMOSHENKO DOUBLE-BEAM: HYPERPARAMETERS

TABLE IV
TIMOSHENKO DOUBLE-BEAM: R AT t = 1

Two experiments are performed, varying the number of
training points, as shown in Table III. Table IV shows the
relative percent error in approximating the transverse dis-
placement and cross-sectional rotations for both the beams.
For cross-sectional rotations θ1 and θ2, the magnitude of
the percent error remains the same even for fewer training
points.

Using a large number of training points can increase the
training time and may not be feasible for problems with many
parameters. In these cases, using fewer training points can lead
to less accurate solutions, but they can be obtained relatively
faster. This approach allows engineers to make informed deci-
sions about the parameters, and once optimal parameters have
been identified, forward solutions can be recalculated with
higher accuracy by using more training points. This is referred
to as training with fewer points for the forward problem. The
absolute difference between the predicted and exact solutions
of θ1, w1, θ2, and w2, even for 1600 training points, is very
small as shown in Figs. 11 and 12. Fig. 11 presents the PINNs;
prediction for a double Timoshenko beam. The scattered points
refer to the exact solution, and the continuous line represents
the predicted solution. The force is applied uniformly in both
the beams; however, the deflection and rotation of the first
beam are greater than those of the second beam. The results
in Fig. 12 indicate that for the second beam, a larger number
of training points (16 000) result in a more accurate prediction
of deflection and rotation than a smaller number of training
points (1600). Conversely, for the first beam, a smaller number
of training points (1600) result in a more accurate prediction
of the quantity of interest than a larger number of training

points (16 000). In any case, the difference in absolute error is
relatively small, demonstrating that even with fewer training
points, PINNs can still produce accurate predictions.

E. Timoshenko Double-Beam Inverse Problem

The applied force on structural systems is critical for struc-
tural design and condition assessment. In design, control, and
diagnosis, accurate estimation of dynamic forces acting on a
structure is essential. These details can be used to evaluate the
structural condition. For example, understanding the impact of
heavy vehicles on bridge structures can aid in detecting early
damage to them. Indirect force determination is of special
interest when the applied forces cannot be measured directly,
while the responses can be measured easily.

For the inverse problem, three distinct experiments are
performed on (16). First, the unknown parameter is learned
from the Timoshenko double-beam system. We consider the
unknown parameter to be ρ A1 from (16). For the value
of ρ A1 = 1, the data for transverse displacement and
cross-sectional rotation are provided at some points in the
computational domain. Second, the unknown applied function
on the first beam is learned by providing noise-free simulated
displacement and cross-sectional rotation data. For this case,
all other parameters, and initial and boundary conditions are
considered to be known, and only the function f1(x, t) is
unknown. Third, the same force function is predicted by
providing noisy displacement and cross-sectional rotation data.
The data generated for learning the function in the second case
are corrupted with noise to be used in the third case. The exact
solution for the function to be learned in the second and third
cases is cos(t)(1 − sin(x)).

The inverse problem in engineering refers to the process
of estimating unknown parameters or functions from a set
of measured data. In PINNs, the inverse problem is usually
solved by training a neural network to fit the measured data
and the known physical laws. However, the measured data
can be affected by various sources of noise, which can make
estimation of the quantity of interest more challenging. The
noise can make the measured data unreliable, and the neural
network may not be able to accurately estimate the unknown
parameters or functions. In such a scenario, the optimizer
of the neural network does not necessarily converge to local
minima.
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Fig. 13. Timoshenko double-beam inverse problem: absolute error in the prediction of force when the additional data of rotation and deflections provided
at five locations has no noise (left) and 20% Gaussian noise (right).

Fig. 14. Data to learn material properties for the Timoshenko double-beam:
Blue dots: collocation points. Red dots: additional data points of displacement
and rotation for the double-beam at one location. Black dots: initial and
boundary points.

The same neural network architecture is used as in the
forward double-beam Timoshenko problem, with residual
parameter 1 to regularize the physical equation in the loss
function. Here, 2500 epochs are performed using the L-BFGS
optimizer to train the neural network. For learning the param-
eter, 5000 data points are provided at x = 1.8, as shown in
Fig. 14. The exact value of the unknown parameter is ρ A1 =

1 in (16), and the predicted value of the parameter using
the PINN framework is 1.0208, which is close to the desired
value. Even for a system of four PDEs, by only providing
data at one particular beam location, the unknown parameter
is learned successfully using PINNs. This shows that PINNs
can handle large complex systems of PDEs efficiently.

The function f1(x, t), the applied force on the first beam,
is predicted in the second experiment. As illustrated in Fig. 15,
the data for transverse displacement and cross-sectional rota-
tion are provided at six different locations with 5000 data
points at each location.

For the third experiment, the data provided for learning
the unknown function f1(x, t) are provided with 10% and
20% Gaussian noise, and the corresponding performance in
learning the function is shown in Table V. Even with 10%
and 20% noise, the relative error percent between analytic
and predicted force is lower, as seen in Table V. Fig. 13
shows the force prediction along the beam when rotation and
deflection observations are available at five points. The results
demonstrate that the PINN is more precise in its predictions
when the data are free from noise compared with when they
are noisy. Despite the presence of noise in the data, the
absolute error remains within the magnitude of 10−2, which

Fig. 15. Data to learn force for the Timoshenko double-beam: Blue dots:
collocation points. Red dots: additional data points of displacement and
rotation for the double-beam at six different locations. Black dots: initial and
boundary points.

TABLE V
TIMOSHENKO DOUBLE-BEAM INVERSE PROBLEM: NOISE VERSUS R

is comparable to the error observed when data are not noisy.
To be more precise, Fig. 13 shows the absolute difference error
of the PINN-predicted force and exact force at t = 0.5 with
0% and 20% noise. Even with 20% noise, the unknown force
is learned with less than 1% error over the entire space–time
domain, demonstrating that PINN is a very accurate and robust
approach.

The minimum number of data points required to estimate
the model parameters depends on several factors, such as the
complexity of the physics, the number of physical parameters
in the model, and the quality of the data. More data points and
more complex physics require more neural network capacity,
resulting in a larger neural network with more hyperparam-
eters. In practice, more data points lead to overfitting. The
minimum training data points required for a PINN framework
are determined empirically by gradually increasing the number
of training points until the model’s performance is satisfactory.

Finally, a sensitivity analysis is carried out to examine
the influence of input variables, specifically the displacement
and rotation, on the output variable, which is the force.
The analysis involves adding 20% Gaussian noise to the
displacement data while no noise is added to the rotation
data. The resulting mean accuracy of the force is 0.14313413.
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In contrast, when 20% noise is introduced to the rotation
data with the displacement data remaining unaltered, the mean
accuracy of the force is 0.204627. The results of this analysis
show that the force is more sensitive to rotations than the
displacement data.

V. CONCLUSION

The design and maintenance of complex structural systems
are challenging due to the multiscale interaction of their com-
ponents. It is desirable to predict the behavior of these complex
systems by solving the governing model of interest. Recently,
PINNs have emerged as a viable method for simulating PDEs.
In this work, we propose using the PINN algorithm with the
nondimensionalization step aiding in the learning procedure
for complex beam systems. The PINN framework successfully
solves the forward and inverse problems for nondimensional
single- and double-beam systems. Based on the numerical
experiments, the following conclusions are drawn.

First, the relative percent error in computing the beam
displacement does not increase with increasing model com-
plexity when solving the forward problem. In fact, for both
Euler–Bernoulli and Timoshenko theories, the error decreases
by an order of magnitude for double-beam systems compared
with single-beam systems. In addition, the error in computing
the bending rotation is comparable for single and double
Timoshenko beam systems. This nonincrease in error as the
model complexity increases suggests that the PINN framework
is appropriate for simulating large-scale systems with multiple
connected components.

Second, it is demonstrated that PINNs precisely discover the
unknown force function and model parameters through their
inverse problem-solving capability. The proposed algorithm
successfully learns the model parameter with less than 3%
error for the single Timoshenko beam. In addition, for the
double-beam Timoshenko system, the unknown function is
approximated on the whole space–time domain with less than
0.05% error, demonstrating the algorithm’s effectiveness for
solving inverse problems.

Third, physical quantities such as velocity, acceleration,
and bending moment characterize the system’s behavior. Even
though the derived quantities are not directly trained in the
neural network, they are approximated with less than 2e −2%
error for the Euler–Bernoulli double-beam system.

Fourth, the algorithm’s ability to use fewer training points in
forward problems and to accommodate noisy data in inverse
problems is exploited. The obtained results show that even
with 1600 training points, the double Timoshenko beam dis-
placement is predicted on the entire space–time domain with
less than 5e − 3% error. In the case of the inverse problem,
the force function is discovered with less than 0.2% error even
when the data used in the learning procedure contain 20%
Gaussian noise. These findings imply that the algorithm is
accurate and robust under the tested noise levels.

To summarize, PINNs enable the simulation of complex
structural systems with multiple interacting components effi-
ciently, accurately, and robustly. In the future, this approach
could be extended to estimate displacements for various input
forces and mechanical vibration modes and incorporate robust

methods to account for stochasticities. In addition, future
works on PINNs could be focused on reducing the compu-
tational cost and developing methodologies to augment their
generalizability, thereby expanding the applicability of PINNs
beyond the training domain.
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