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SUMMARY

Sequentially Linear Analysis (SLA) is a proven alternative to incremental-iterative solution
methods in nonlinear finite element analysis (NLFEA) of quasi-brittle specimen. The
core of the method is in its departure from a load, displacement or arc-length driven
incremental approach, aided by internal iterations to establish equilibrium, to a damage
driven event-by-event approach that approximates the nonlinear response by a sequence
of scaled linear analyses. The constitutive relations are discretised into secant-stiffness–
based saw-tooth laws, with successively reducing strengths and stiffnesses. In each
linear analysis, the global load is scaled such that the critical integration point, with the
largest stress, jumps to its next saw-tooth representing locally applied damage increments.
Despite the advantages of simplicity and numerical robustness in comparison to NLFEA,
SLA as a solution procedure still needs significant developments to be used in engineering
practice as a numerical tool for structural applications, such as the pushover analysis of a
masonry structure or the capacity assessment of a shear-critical reinforced concrete slab.
To this end, the following scientific contributions are made in this dissertation.

Real structures are subject to loading schemes that are characterised by multiple loads.
These loads act on the structure non-proportionally which proves to be complicated in a
sequentially linear framework. The first contribution in the thesis is of two novel strategies,
an analytical and an optimisation based approach, to deduce the critical integration point
and the corresponding load multiplier under non-proportional loading conditions in
an undamaged 3D continuum stress state. These are essentially two ways of solving
the characteristic cubic equation in the load multiplier, to establish the 3D orthotropic
damage directions in a smeared fixed crack/crush framework. Subsequently, the damage
propagation along the fixed directions is carried out based on uniaxial saw-teeth laws. The
analytical approach is preferred over the optimisation one for computational efficiency
and accuracy reasons. Validations are made using an experimental benchmark of a
reinforced concrete slab subject to axial and shear loads, and academic cases of notched
beams subject to combined prestress and bending loads. The SLA simulation of the slab
case appropriately exhibits 3D multi-directional fixed cracking leading to brittle shear
failure, and one of the notched beam cases with a skewed notch exhibits 3D non-planar
curved cracking. The results demonstrate the effectiveness of the proposed approach,
and thereby extend SLA to real-life 3D continuum applications with non-proportional
loads.

The second contribution is the extension of the discretised tension-shear criterion for
2D line interfaces (using the step-wise secant relations for discrete cracking and Coulomb
friction) with a compression failure criterion. This discretised composite interface model
makes it possible to analyse quasi-brittle structures in a sequentially linear framework
using predefined interfaces as potential discrete cracks, shear or crush planes. This is
elaborated herein for masonry, with the simplified micro-modelling strategy, to simulate
cracking-shearing-crushing failures typical of masonry damage until structural collapse.
The model uses a tension gap criterion coupled with a uniaxial tensile softening law, a
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compression cut-off criterion coupled with a compressive parabolic hardening-softening
law, and an uncoupled step-wise Coulomb friction formulation with cohesion softening
and without dilatancy effects. The model is validated using a pushover experiment of
a masonry wall subject to precompression followed by an in-plane lateral load, and is
shown to ably reproduce the force-displacement curves and the brittle diagonal shear
failure followed by toe-crushing due to the compressive strut action. Furthermore, the
formulation is also extended to the 3D case of planar interfaces, and validated using the
same case study thereby enabling 3D masonry applications with SLA. The extension to
include dilatancy and a more advanced cap-type model for compression are features to
be investigated in the future.

The third contribution of the thesis is the proposal of two tailor-made solvers which
efficiently use the favourable event-by-event approach of SLA. Both solvers factorise the
global stiffness matrix intermittently at only a certain number of linear analyses. The
solution for the remaining intermediate linear analyses is found for low-rank corrections
to the factorised stiffness matrix, which is possible using additional matrix-vector ma-
nipulations. The first is a direct solver based on the Woodbury-Identity matrix to find the
inverse of an arbitrary rank-r corrected matrix. The second is a Preconditioned Conjugate
Gradient (PCG) solver that uses the factorised stiffness matrix as the preconditioner for
the remaining analyses. When the elapsed time in these intermediate analyses grows,
a restart step is prescribed wherein a new factorisation is calculated. These points of
restart are deduced such that the total analysis times are minimised. The performance
of the solvers are analysed using a 2D and 3D case study, including additional saw-teeth
and mesh sensitivity studies. Both solvers perform better than a traditional direct solver
like Intel’s Parallel Direct Sparse Solver (PARDISO), especially for large 3D problems, and
the Woodbury-Identity based direct solver is more efficient among the two. Additionally,
some branches of the workflow of SLA are computed in parallel, using multi-threading, to
further improve the computational performance.

These aside, all through the thesis, the fundamental problem of using a static approach
to model an intrinsically dynamic phenomenon like cracking or crushing is investigated at
structural level and under non-proportional loading conditions. To this end, in a first of its
kind, several experimental benchmarks that exhibit structural collapse are simulated both
using SLA and an incremental sequentially linear approach, the Force-Release method.
It is exemplified that SLA realises the sequence of damage events, typical of a sudden
dynamic damage propagation, in successive equilibrium states by temporary release of
all previously applied loads. This is deemed acceptable while simulating a truly quasi-
static experiment with snap-backs. On the other hand, the Force-Release method realises
the dynamic propagation of damage through disequilibrium states while retaining all
previously applied loads, and is suitable for displacement controlled experiments. The
difference lies in SLA releasing the stresses due to a damage event instantaneously, while
Force-Release doing so gradually. Despite the differences in the approaches, the damage
patterns are similar in the considered continuum studies, as opposed to previous lattice
modelling examples wherein more abrupt changes in stiffnesses led to larger differences.

In conclusion, the SLA approach has been extended to 3D structural applications
involving cracking, crushing, and shear failures, both in a smeared and discrete manner.
Furthermore, the method in general has been made relatively efficient. Nevertheless, the
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approach still needs to be extended on important topics such as crack-closure effects,
which requires a dedicated event & an algorithm and is possibly difficult to incorporate in
the total framework, and the computational performance to make it a practical alternative
to NLFEA in engineering practice. The latter could be addressed using smart damage
tracking algorithms that distinguish the potential elements to be damaged in order to
reduce the computational time. Furthermore, other topics for future research include
influence of tension-compression interactions for damage initiation and propagation in
2D and 3D stress states, and the extension to anisotropic failure surfaces.





SAMENVATTING

Sequentieel-lineaire analyse (SLA) is een bewezen alternatief voor incrementeel-iteratieve
oplossingsmethoden in niet-lineaire eindige-elementenanalyses (NLEEA) voor construc-
ties van quasi-brosse materialen. De kern van de methode is om het concept van een
door belasting, verplaatsing of booglengte gestuurde incrementele benadering geholpen
door interne iteraties om een evenwicht tot stand te brengen, te verlaten en te vervangen
door een door schade-gestuurdebenadering die de niet-lineaire respons benadert met
een reeks geschaalde lineaire analyses. De constitutieve relaties worden gediscretiseerd
tot secant-stijfheid gebaseerde zaagtandmodellen met afnemende sterktes en stijfheden.
Bij elke lineaire analyse wordt de globale belasting zodanig geschaald dat het kritieke
integratiepunt met de grootste spanning naar de volgende zaagtand springt, wat neer-
komt op lokaal aangebrachte schade-toenames. Ondanks de voordelen van eenvoud en
numerieke robuustheid in vergelijking met NLEEA, behoeft SLA als oplossingsprocedure
nog belangrijke uitbreidingen om het toepasbaar te maken voor constructieberekeningen
in de ingenieurspraktijk, zoals pushover berekeningen van een metselwerkconstructie of
het bepalen van de capaciteit van een dwarskracht-kritische plaat van gewapend beton.
Daartoe worden in dit proefschrift de volgende wetenschappelijke bijdragen geleverd.

In de praktijk zijn constructies onderworpen aan belastingschema’s met meerdere
belastingen. Deze belastingen worden niet-proportioneel op de constructie aangebracht,
wat een complicerende factor blijkt te zijn in een sequentieel-lineair raamwerk. De eer-
ste bijdrage in het proefschrift bestaat uit twee nieuwe strategieën, een analytische en
een optimalisatie-gebaseerde benadering, om het kritieke integratiepunt en de bijbe-
horende belastingfactor af te leiden voor een onbeschadigd 3D-continuum met niet-
proportionele belastingen. Dit zijn in wezen twee manieren om de karakteristieke
derdegraads-vergelijking in de belastingfactor op te lossen, om zo de 3D orthotrope
beschadigingsrichtingen in een uitgesmeerd scheur- en verbrijzelingsraamwerk vast te
stellen. Vervolgens wordt de toename van schade langs vaste richtingen aangebracht op
basis van eendimensionale zaagtandwetten. De analytische benadering heeft de voorkeur
boven de optimalisatie om redenen van rekenefficiëntie en nauwkeurigheid, en wordt
vervolgens gevalideerd met behulp van een experimentele benchmark van een gewapend-
betonnen plaat die onderhevig is aan normaal- en dwarskracht, en meer academische
studies van gekerfde balken die onderhevig zijn aan gecombineerde voorspanning en
buiging. De SLA-simulatie van de plaat vertoont realistische 3D-scheurvorming met bros
bezwijken onder dwarskracht; een balk met een scheve kerf vertoont scheurvorming
in een 3D-gebogen vlak. De resultaten tonen de effectiviteit van de voorgestelde aan-
pak aan en breiden daarmee SLA uit naar realistische 3D continuümtoepassingen met
niet-proportionele belastingen.

De tweede bijdrage is de uitbreiding van het afschuif-trek-criterium voor interfaces
met een druk-criterium. Dit model maakt het mogelijk om quasi-brosse constructies
met vooraf gedefinieerde interfaces als potentiële scheuren, afschuifvlakken of verbrij-
zelvlakken te analyseren in een sequentieel lineair raamwerk. In eerste instantie wordt

xi



xii SAMENVATTING

voortgebouwd op de 2D formulering voor lijn-interfaces met stapsgewijze secant-relaties
voor discrete scheurvorming en Coulombse wrijving, aangevuld met secant-relaties voor
druk-bezwijken. Dit wordt uitgewerkt voor metselwerk met een vereenvoudigde micro-
modelleringsstrategie om scheur-afschuif-verbrijzeling-gedrag te simuleren, dat typisch
is voor metselwerk, tot en met het bezwijken van de constructie. Het model gebruikt een
trekcriterium in combinatie met een een-assige softeningrelatie, een drukcriterium in
combinatie met een parabolische hardening/softeningrelatie en een ontkoppelde for-
mulering voor Coulombse wrijving met cohesie-softening en zonder dilatantie-effecten,
alles in een discreet/stapsgewijs formaat. Het model is in staat om de experimentele
schadepatronen en kracht-verplaatsingscurven van een metselwerkmuur die onderhevig
is aan bovenbelasting gevolgd door laterale belasting in het vlak adequaat te reproduce-
ren, met bros en diagonaal afschuifbezwijken gevolgd door bezwijken op druk van de
drukdiagonaal. Bovendien wordt de formulering ook uitgebreid naar 3D vlakvormige
interfaces en gevalideerd voor dezelfde case-study, waardoor SLA beschikbaar is gekomen
voor 3D-metselwerktoepassingen. De uitbreiding met dilatantie en een geavanceerde
druk-kap zijn aangemerkt voor toekomstig onderzoek.

De derde bijdrage van het proefschrift is het uitwerken van twee op maat gemaakte
lineaire oplosprocedures, die efficiënt gebruik maken van de gunstige event-by-event
benadering van SLA door de globale stijfheidsmatrix slechts een beperkt aantal keren
te factoriseren. De oplossing voor de resterende analyses wordt gevonden met lage-
rangcorrecties op de gefactoriseerde stijfheidsmatrix, wat mogelijk is met behulp van
aanvullende matrix-vectormanipulaties. De eerste is een directe oplosprocedure op basis
van de Woodbury-eenheidsmatrix om de inverse van een willekeurige rang-gecorrigeerde
matrix te vinden. De tweede oplosprocedure is een Preconditioned Conjugate Gradient
(PCG) procedure die de gefactoriseerde stijfheidsmatrix gebruikt als preconditioneerder
voor de overige analyses. Wanneer de rekentijd in deze tussentijdse analyses toeneemt,
wordt een herstart gedaan waarbij een nieuwe ontbinding wordt berekend. Deze her-
startpunten worden zo afgeleid dat de totale analysetijden worden geminimaliseerd. De
prestaties van de oplosprocedures worden geanalyseerd met behulp van een 2D- en
een 3D-casestudy, aangevuld met zaagtand- en mesh-gevoeligheidsstudies. Beide op-
losprocedures presteren beter dan een traditionele directe oplosser zoals Intel’s Parallel
Direct Sparse Solver (PARDISO), terwijl de op de Woodbury-eenheidsmatrix gebaseerde
oplosprocedure de meest efficiënte is, vooral voor grote 3D-problemen. Bovendien
worden sommige delen van de workflow van SLA parallel berekend met behulp van
multi-threading om de rekenprestaties verder te verbeteren.

Een rode draad in het hele proefschrift is de fundamentele zoektocht naar het ge-
bruik van een passende statische benadering voor een intrinsiek dynamisch fenomeen
zoals scheurvorming, en dat op constructie-niveau en voor niet-proportionele belas-
tingen. Daartoe worden voor het eerst verschillende experimentele benchmarks tot en
met bezwijken van de constructie gesimuleerd, zowel met behulp van SLA als met een
incrementele sequentieel-lineaire benadering, de Force-Release-methode. Gedemon-
streerd wordt dat SLA de opeenvolging van schadegebeurtenissen, kenmerkend voor
plotselinge dynamische voortplanting van schade, realiseert in opeenvolgende even-
wichtstoestanden door tijdelijke vrijgave van alle eerder aangebrachte belastingen. Dit
is geschikt voor het simuleren van een echt quasi-statisch experiment. Aan de andere
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kant realiseert de Force-Release-methode de dynamische voortplanting van schade door
niet-evenwichtstoestanden met behoud van alle eerder aangebrachte belastingen. Deze
methode is geschikt voor verplaatsingsgestuurde experimenten. Het verschil ligt in het
feit dat SLA de spanningen als gevolg van een schade onmiddellijk opheft, terwijl Force-
Release dit geleidelijk doet. Ondanks de verschillen in de benaderingen zijn de schadepa-
tronen in de beschouwde continuümstudies behoorlijk gelijkwaardig, in tegenstelling tot
eerdere voorbeelden met lattice-modellen waar de meer abrupte stijfheidsveranderingen
tot grote verschillen leidden.

Concluderend is de SLA-benadering uitgebreid naar constructieve 3D-toepassingen
met scheur-, verbrijzel- en afschuif-faalgedrag, zowel op een uitgesmeerde als discrete
manier. Bovendien is de methode in het algemeen relatief efficiënt gemaakt. Desalniet-
temin moet de aanpak nog worden uitgebreid met belangrijke onderwerpen zoals het
sluiten scheuren, waarvoor een speciaal algoritme nodig zal zijn dat mogelijk lastig in het
raamwerk van totale benaderingen kan worden opgenomen, en het verder verbeteren
van de rekenprestaties om het een alternatief te maken voor NLEEA in de praktijk. Dit
laatste kan worden aangepakt met behulp van slimme algoritmen voor het voorspellen
van schade in potentiële elementen, om zo de rekentijd te verminderen. Andere onder-
werpen voor verder onderzoek zijn de invloed van trek-druk interacties bij de initiatie
en voortplanting van schade in 2D- en 3D-spanningstoestanden en de uitbreiding tot
anisotrope bezwijkcriteria.





SYMBOLS AND ABBREVIATIONS

The dissertation uses the following general notations and abbreviations as much as
possible for consistency. In general the notations are introduced, anew with explanations,
in the main body for additional clarity. This is also done for the exceptional or non-generic
cases which do not conform to the notations listed herein.

Roman Symbols
at Discretisation factor for shear displacement

increments in interfaces
c0,c Undamaged and mobilised cohesion
C Lower triangular matrix in the Cholesky decomposition
dipl Last successful prescribed displacement combination during

Intermittent Proportional Loading
D or Dsec Secant-stiffness matrix
Dnt 2D Orthotropic Secant-stiffness matrix
Dnst 3D Orthotropic Secant-stiffness matrix
Dtan Tangent-stiffness matrix
E0 Undamaged Young’s modulus
Ek Damaged Young’s modulus at kth saw-teeth
Ex ,Ey ,Ez Young’s modulus along x, y, z global directions
En ,Es ,Et Young’s modulus along n, s, t crack/crush directions
f, fext External force vector
fint Internal force vector
f , ft, fc General, tensile and compressive strengths
g Out-of-balance force vector
Gxy ,Gyz,Gzx Shear modulus along x, y, z global directions
Gns,Gst ,Gts Shear modulus along n, s, t crack/crush directions
Gc,G I

f ,G II
f Compressive, Mode-I (tensile) and Mode-II (shear)

fracture energies
h Crack/crush bandwidth
I1, I2, I3 Stress Invariants
kn,0, kt ,0, ks,0 Undamaged normal (n) & shear (t , s) interface stiffnesses
kn ,kt ,ks Damaged normal (n) & shear (t , s) interface stiffnesses
K Global (system) stiffness matrix
l ,m,n Directional cosines
L,Lcon,Lvar,∆Lp Loads (in general), constant loads, variable loads, and

piece-wise proportional load increments
Lipl Last successful load combination during

Intermittent Proportional Loading
L,U Lower & Upper triangular matrices

in the standard LU decomposition

xv
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p Saw-teeth discretisation factor (Band width ripple approach)
R,∆R Total reaction force vector and

reaction force vector due to a load increment
S Disequilibrium force vector
tp Variable to track history along

piece-wise proportional load increments
tn , tt , ts Normal (n) & shear (t , s) tractions in interfaces
tan(φ) Friction coefficient
u,∆u,δu Unknown displacement field, the displacement increment

per step and per iteration respectively
un , ut , us Normal (n) & shear (t , s) relative displacements in interfaces
δun , δut , δus Normal (n) & shear (t , s) relative displacement

increments in interfaces

upl
n ,upl

t Normal and shear plastic relative displacements

Greek Symbols
α Threshold crack rotation
β Shear retention factor
γxy ,γyz,γzx Shear strain components along x, y, z global directions
γns,γst ,γts Shear strain components along n, s, t crack/crush directions
∆γ,∆γmax Change in crack rotation and its largest change
ε,εnt ,εnst Undamaged, 2D orthotropic and 3D Orthotropic strain tensors
εxx,εyy ,εzz Normal strain components along x, y, z global directions
εnn,εss,εtt Normal strain components along n, s, t crack/crush directions
κ plasticity parameter
λ,λcon,λvar Load multiplier in SLA (in general) and

those for constant and variable loads
Λi Load multiplier sets per integration point
Λmodel Load multiplier set for the FE model
λcrit Critical load multiplier per analysis step in SLA
ν0 Initial Poisson’s ratio
νxy ,νyz,νzx Poisson’s ratio along x, y, z global directions
νns,νst ,νts Poisson’s ratio along n, s, t crack/crush directions
ρ Density
σ,σnt ,σnst Undamaged, 2D orthotropic and 3D Orthotropic stress tensors
∆σ,∆σL,∆σS Incremental quantities of stresses (in general) and those due to

external loads, and disequilibrium forces respectively
σgov Governing stress
σ1,σ2,σ3 Principal stresses
σxx,σyy ,σzz Normal stress components along x, y, z global directions
σxy ,σyz,σzx Shear stress components along x, y, z global directions
σnn,σss,σtt Normal stress components along n, s, t crack/crush directions
σns,σst ,σtn Shear stress components along n, s, t crack/crush directions
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Subscripts
con Constant load component of the said quantity
crit Critical components of the said quantity
ei Element number
i Integration point number
ipl Intermittent Proportional Loading
k Saw-teeth index (Continuum laws)
max Maximum components of the said quantity
min Minimum components of the said quantity
n Normal direction of crack coordinate system
r Saw-teeth index (Interface laws)
s Secondary shear direction of crack coordinate system
t Tertiary shear direction of crack coordinate system
var Variable load component of the said quantity

Superscripts
c or cmp Compressive component of the said quantity
j Analysis number (step)
shr Shear component of the said quantity
t or ten Tensile component of the said quantity

Abbreviations
2D, 3D 2-Dimensional, 3-Dimensional
BiCG, PCG, CG Bi-, Preconditioned-, Conjugate Gradient methods
CITA Continuous Incremental-only Tangent Analysis
CMOD Crack Mouth Opening Displacement
DOF Degrees Of Freedom
FE Finite Element
F-R Force-Release method
GMRES, MINRES Generalised-, Minimal residual method
ILU Incomplete L-U factorisation
IMPL-EX Implicit-Explicit solution method
IPL Intermittent Proportional Loading
LATIN LArge Time INcrement method
MUMPS MUltifrontal Massively Parallel sparse direct Solver
NAM Nederlandse Aardolie Maatschappij
NIEM Non-Iterative Energy-based Method
NLFEA Nonlinear Finite Element Analysis
NLPO Nonlinear Pushover Analysis
PARDISO PARallel DIrect Sparse SOlver
RC Reinforced Concrete
SLA Sequentially Linear Analysis
SLM Sequentially Linear Methods
SDA Strong Discontinuity Approaches
SPD Symmetric Positive Definite
SUR Smooth Unloading-Reloading approach
URM Un-Reinforced Masonry
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CHAPTER 1
INTRODUCTION

1.1. BACKGROUND

The Netherlands, a low-lying nation in Western Europe, is not known to be prone to
tectonic earthquakes. However, extensive extraction of natural gas from fields in the
northern province of Groningen, over several decades since the 1960s, has led to induced
seismic events in the region. There has been a number of small magnitude earthquakes,
with a maximum of 120 events occurring in the year 2013 as shown in Figure 1.1(b), and
the trend has shown a growth in seismic activity with increasing gas extraction [148].
Although the earthquakes are of small magnitude, with the largest reported one being 3.6
on the Richter scale in 2013, the predominantly unreinforced masonry (URM) building
stock in the region (Figure 1.2) makes it a problem that requires immediate attention
considering the risk involved. The problem is compounded by the fact that these buildings
are not designed for seismic loads and have characteristics such as slender cavity walls,
with large openings and limited cooperation between orthogonal components, which
limit their seismic capacities.

Figure 1.1: (a) The Groningen gas field and the induced seismicity in the region, as reported by the Dutch
Meteorological Institute (KNMI), with the colour code indicating the magnitude of the events on the Richter
scale, and (b) the growth of the cumulative number of events of magnitude 1.4 & higher (solid line) on the
Richter scale, and the overall annual number of earthquakes in different magnitude classes (histogram) [91]

In this regard, Nederlandse Aardolie Maatschappij (NAM), an exploration and produc-
tion company composed of a joint venture of Shell & Exxon, and the Dutch government
initiated a comprehensive research program in 2014 combining experimental testing
and computational modelling approaches (Figure 1.2) to assess the seismic behaviour of

1
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these URM buildings [87, 124]. An elaborate experimental campaign ranging from ma-
terial/element level (bricks, mortar, steel ties, timber) to component level (walls, floors)
and finally structural level testing (full scale building) was carried out to characterise the
building stock of the region and assess the potential damage. However, simultaneously,
numerical models were crucial as they not only help in understanding the structural
behaviour but also contribute to design measures towards mitigating the problem. The
goal was to first cross validate these models against existing and upcoming lab structural
tests, to reveal possible conservativeness in existing approaches, and then to predict the
capacity of the Groningen building stock under seismic action, in the current state and
post-strengthening.

Figure 1.2: The typical unreinforced masonry building typologies in the Groningen area (top), and the research
campaign to address the induced seismicity in the region using a combination of a multi-scale experimental

program and numerical & analytical modelling approaches [87].

The impact of seismic loads on a structure, in general, can be calculated using one
of the following methods: 1) lateral force analysis, which is a static and linear (material)
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approach, wherein the load is applied as a concentrated force at the center of mass of
each floor, 2) Response spectrum analysis, which is a linear dynamic analysis with loads
applied as a spectrum, 3) Pushover analysis, which is a nonlinear static analysis taking
into account the material nonlinearity and with sub-variants depending on the shape of
loading on the structure [46], and finally, 4) Nonlinear time history analysis, which is a
nonlinear dynamic analysis, wherein the load is applied as an accelerogram. Among the
alternatives, the Nonlinear Pushover Analysis (NLPO) is the simplest yet most efficient
way to obtain information about a structure’s response to earthquakes, by verifying the
seismic load paths and the performance of the contributing (structural) components. It is
computationally less intensive than the more elaborate nonlinear dynamic analysis. Finite
element (FE) models, the most widely used class of numerical methods in engineering
practice, are often the framework of choice for such pushover applications [88]. However,
the numerical prediction of damage in this context is a challenging task since unreinforced
masonry, the material under consideration, fails in a rather brittle manner.

Another application of FE models lies in the domain of reinforced concrete structures.
Nonlinear finite element analyses (NLFEA) are used in engineering practice towards the
assessment of flexural and shear capacity of existing reinforced concretes structures and
components, such as bridges & viaducts [13, 62] and slabs in nuclear reactors [20, 93].
Current design standards indicate that those of the past were mostly conservative with
respect to shear failure. Elaborate NLFEA simulations could help exploit reserves in the
existing design of structures, before venturing towards more expensive options such as
strengthening or replacement. However, these simulations are generally characterised by
cracking which is often diffused due to the presence of reinforcements, and particularly,
in case of the shear critical structures, result in a rather brittle and explosive mechanism.

Quasi-brittle materials, including concrete and unreinforced masonry, appear cracked
or damaged to the naked-eye only when the micro-damage coalesces to the macroscopic
level. Upon loading beyond their elastic limit, such materials exhibit a degradation of
stiffness and strength which is also called post-peak softening. Although it may seem as a
material characteristic, it is regarded as a structural phenomenon resulting from micro-
cracking [141]. This post-peak softening behaviour poses challenges to nonlinear finite
element simulations, as in the pushover analyses and reinforced concrete applications, in
firstly, obtaining mesh-objective results and secondly, ensuring robust solutions. Both
these issues arise due to the loss of ellipticity of the governing partial differential equations
[35], when the increase of damage results in localisation of strains, and the stiffness matrix
becomes non-positive definite. The issue of mesh objectivity has been addressed by
several researchers using regularisation procedures [12, 109, 11, 36, 108], embedded
strong discontinuity approaches (SDA) [42, 76] or the extended finite element method
[136, 89, 14, 153] to name a few, all of which are briefly described in Chapter 2. However,
the solution procedure in use for such applications, the standard incremental-iterative
technique, could lead to solutions that are not converged i.e. do not represent the true
equilibrium path.

The incremental-iterative (implicit) solution procedure solves the nonlinear system
of equations in stages or the so-called load steps, each of which are discretisations of
the total load to be applied on the model. With each load increment, the iterative part
of the procedure makes successive predictions for displacements such that the unbal-
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anced forces (between external and internal forces) are reduced and global equilibrium is
reached. In obtaining such a converged solution, the procedure could run into trouble
when structural softening results in rapid damage propagation at several locations. This
could be seen as multiple cracks trying to survive and that the simulation is at a potential
bifurcation point [123]. At such a juncture, the simulation leads to the propagation of
some cracks while other unload. Several remedies including using smaller steps, alternate
iteration schemes, displacement controlled loading, path following approaches like arc-
length control [30, 34, 147] and line search algorithms [29, 35] help only partially because
they are not completely robust and additionally, in general, require user expertise.

To address this issue of stability in NLFEA, several alternate approaches were proposed
one of which is the Sequentially Linear Analysis (SLA) conceived by Rots [117]. Originally
inspired by lattice modelling applications [128], the method was secant stiffness-based
and developed for continuum problems to simulate the failure process in quasi-brittle
materials by allowing for one damage event at a time. Thus, the nonlinear modelling
of quasi brittle fracture was alleviated of multiple cracks attempting to survive and the
use of secant stiffness made the procedure robust. The approach involves running linear
analyses sequentially, each of which identifies a critical integration point in the FE model
with the maximum stress. The strength and stiffness of this point are degraded based on
a discretised step-wise constitutive relation called the saw-tooth law. The linear analysis
results are scaled using a load multiplier corresponding to the identified critical point and
the analysis proceeds. Each linear analysis corresponds to a damage event, and therefore,
the approach is damage driven as against the load, displacement or arc-length driven ap-
proach in traditional implicit NLFEA. There exist other robust solution procedures as well
in literature like the IMPL-EX method (combination of the implicit and explicit methods)
[100], Non-Iterative Energy-based Method (NIEM)[57], Continuous Incremental-only
Tangent Method (CITA)[2] etc., which are discussed in detail in Section 2.2.2. However,
SLA, owing to the combined advantage of its simplicity and robustness, is chosen as
the solution procedure to address the numerical (FE) prediction/assessment tasks in
consideration for the thesis.

1.2. RESEARCH OBJECTIVES & SCOPE

The main objective of the work is to enhance Sequentially Linear Analysis to make general
3D FE applications such as pushover analysis on structures possible. Real life structural
analyses involves two key aspects: specimen of large magnitude, and real loading schemes
characterised by multiple loads. The latter refers to the presence of constant loads on
structures like dead weight and the subsequent application of variable loads like the
lateral seismic load. This kind of non-proportional loading makes the damage driven SLA
procedure less straightforward, and also, invokes the need for redistribution procedures to
allow for dynamic failure propagation, which in turn needs more insight at structural level
[139]. Furthermore, the SLA procedure has only had 2D modelling applications, under
plane stress assumptions, for concrete and masonry specimens in the past [131, 139, 55].
The constitutive models generally used, thus far, for such examples in SLA are the total
strain-based orthogonal fixed smeared cracking model [116], discrete cracking [140],
and Coulomb friction interface models [139]. These models need to be extended to
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three dimensional (3D) stress states, in order to enable structural masonry and concrete
illustrations. Finally, the computational efficiency of SLA is one of concern as pointed
out by many researchers [139, 151, 4, 1]. The system of linear equations to be solved only
changes locally between analyses in SLA due to the event-by-event nature of the approach.
This is not utilised effectively by traditional direct solvers, thereby compounding analysis
times.

In conclusion, the SLA method needs to be improved and extended from the non-
proportional loading, constitutive modelling and computational efficiency aspects which
translate to the following specific objectives:

• To develop a better understanding of the redistribution mechanism involved in
sequentially linear analysis under non-proportional loading conditions

• To extend the constitutive models in SLA and develop the non-proportional loading
strategy for full 3D stress states

• To develop tailor-made solvers in order to efficiently solve the system of linear
equations in an SLA setup

The studies in this dissertation involve masonry and concrete examples. Masonry
can be represented in FE models using micro, meso and macro modelling approaches
depending on the required level of accuracy (local or global behavior of the structure)
[82]. Macro-modelling, which considers masonry as a homogeneous continuum, is
used predominantly in this work because it is advantageous owing to reduced compu-
tational time and memory requirements, as well as the user-friendly mesh generation.
The material behaviour of the continuum is then described using uniaxial constitutive
laws in combination with a fixed smeared crack/crush framework and/or discrete crack-
ing/sliding interfaces [139], where necessary. Concrete has also been represented using
these formulations adequately thus far [116, 35] and is therefore used in this study.

The novelty of the work lies in the improvements to these formulations within the SLA
setup and in broadening the range of applications, while simultaneously improving the
computational efficiency without loss of accuracy. The thesis primarily extends on the
aforementioned formulations to allow for 3D cracking/crushing and sliding problems.
With regard to damage in the continuum, a simple Rankine-type failure surface is used
for both crack and crush initiation. This is followed by uniaxial linear tension soften-
ing and parabolic compression softening [51] relations for damage propagation along
the orthogonal directions of 3D fixed crack/crush system. Compressive nonlinearities
which were previously not considered in the smeared fixed system in an SLA set-up are
incorporated in this thesis. However, the effects of lateral confinement or cracking on the
compressive behaviour are currently under investigation (for the SLA framework) and
therefore, discarded in this study. Additionally, the anisotropic behaviour of masonry is
not taken into account in the developments of the constitutive models since the focus of
the study is more on the robustness of the SLA procedure for the post peak part of NLFEA
simulations. Furthermore, a composite interface model is also proposed, both for line
(2D) and planar (3D) formulations, allowing for combined cracking-shearing-crushing
failures in discrete interfaces under the domain of micro-modelling approach for masonry
analysis. Finally, experimental benchmarks of both concrete and masonry, exhibiting
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brittle failures, are used for the illustration of each of the said developments, thereby
serving as validation studies.

1.3. THESIS OUTLINE

The dissertation is organised as follows:

Chapter 2 presents an extensive literature review on FE modelling of quasi-brittle fracture,
ranging from discretisation methods to solution procedures and the problems involved
therein. Thereafter, the SLA approach and the latest contributions on the topic are sum-
marised, with a final outlook on the developments needed for this thesis.

Chapter 3 contains an overview on the different classes of sequentially linear methods
and their approaches to the non-proportional loading problem. Furthermore, a qualita-
tive discussion on the approaches is presented.

Chapter 4 presents a comparative study between two sequentially linear methods: SLA
and the Force-Release approach, using continuum models of structural case studies like
pushover analyses on walls and a masonry facade. This chapter illustrates the inherent
differences in the redistribution mechanism of the methods.

Chapter 5 presents the 3D total-strain based orthogonal fixed smeared cracking model
and proposes two possible solutions for damage initiation under non-proportional load-
ing for a full 3D stress state in the continuum. The concept is then validated using two
academic case studies of prestressed beams subject to flexure, with straight and skewed
notches to study the effect of planar and non-planar 3D curved cracking respectively.
Additionally, the chapter contains the simulation of a real-life experimental benchmark
of a reinforced concrete (RC) slab, subject to axial loads followed by a concentrated shear
load, that results in a one-way brittle shear failure.

Chapter 6 proposes an extension of the Coulomb friction formulation for interfaces in
SLA to a general multi-surface model, including tensile and compression failure options.
This is then validated using pushover analyses on 2D and 3D micro-models of a squat
masonry wall which exhibits diagonal shear failure.

Chapter 7 proposes two novel tailor-made linear equation solvers to improve the compu-
tational efficiency of SLA, solely from the point of view of solving the system of equations
more efficiently, in comparison to a direct solution method. Thereafter, using two bench-
mark cases, one of a pushover analysis on a masonry wall and the RC slab example from
Chapter 5, the proposed solvers are examined for improvement in performances, addi-
tionally with parametric studies on saw-teeth and mesh refinements.

Chapter 8 summarises the main contributions of this work, the limitations of the SLA
approach at this juncture, and presents an outlook for further research on the topic.
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Figure 1.3: Thesis outline





CHAPTER 2
LITERATURE REVIEW

This chapter presents the background theory necessary to take upon the research objec-
tives briefed in the first chapter. Section 2.1 provides a brief introduction to the available
methodologies and constitutive frameworks involved in standard & advanced finite ele-
ment formulations, with regard to the modelling of quasi-brittle fracture. Section 2.2 sheds
light on the numerical solution strategies used in the finite element method, for linear and
nonlinear problems, to solve the system of equations. The discussion motivates the need
for robust solution procedures in nonlinear finite element analysis. Section 2.3 delves into
Sequentially Linear Analysis (SLA), the non-incremental non-iterative solution procedure
to be used in this study, and provides an extensive overview on its workflow and constitutive
modelling. The chapter is summarised in Section 2.4

2.1. FINITE ELEMENT MODELLING OF QUASI-BRITTLE FRACTURE

Nonlinear analysis of a quasi-brittle structure or specimen using the finite element (FE)
method has been in practice for almost 60 years. The development of cracks is a successive
physical process that begins with the formation of the so-called fracture process zone,
which involves micro cracking, and results in its coalescence into a stress-free macro-
crack. This is commonly represented mathematically using the cohesive zone model,
originally developed for elastic-perfectly plastic material behaviour [8, 41], and later
adapted for quasi-brittle materials by Hillerborg et al. [65] as the fictitious crack model.
Herein, the crack initiation is governed by the exceedance of the principal stress at the
tip of the process zone. The cohesive force transfer is then described as a function of the
crack width, commonly referred to as tension softening curves [66, 115], and is lumped
into a fictitious line or plane.

Finite element representation of such behaviour is usually characterised by locali-
sation of strain and damage into a narrow band of elements. These narrow zones are
referred to as shear bands in ductile (metals) and granular materials (gravel, sands, soils
etc.), and as kink bands in fibre-reinforced composites undergoing compressive loading
[73]. In case of quasi-brittle materials, the FE representation of these localised damage
zones can be classified based on two perspectives as follows.

Kinematic perspective Depending on the regularity of the displacement field u, three
types of kinematic descriptions are found in literature as shown in Figure 2.1.

• Strong discontinuities: This type exhibits jumps in the displacement field across
a discontinuity in the specimen and thus, has a singularity in the strain field. It
physically corresponds to a crack or slip line. In a finite element sense, these can be

9
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represented in continuum models as discontinuities, commonly referred to as the
discrete crack approach, in the following manner:

– Using interface elements :

¦ at predefined locations in the mesh, along existing continuum element
boundaries, that are known to be prone to cracking. This could be based
on a mechanics perspective or on information from the experiments.
However, this results in strong mesh-dependence when these element
boundaries are not chosen with care [23]

¦ in new locations, as the simulation proceeds, by allowing for remeshing
of the model along the propagating crack tip [67, 68, 152, 138]. This is
done by continuously changing element topologies and subsequently,
enabling crack propagation when either the stress intensity factor, energy
release rate or crack opening displacement exceeds a critical value [154].
Although this helps avoid mesh dependence, the complexity of the code,
the need to map the previous stress state on the new mesh, and a relatively
high computational cost [22, 96] prove to be bottlenecks.

– Using elements with embedded strong discontinuities [42, 76] or the extended
finite elements [136, 89, 14, 153], that allow displacement jumps across a se-
quence of segments with arbitrary positions and orientations with respect
to the basic finite element. These approaches depend on enriching the stan-
dard shape functions by special discontinuous functions. The relatively large
computational demand, and the complications involved in describing crack
branching, coalescence and curved crack boundaries in three dimensions,
tend to not favour the use of these methods [129, 37] in comparison to the
more widely used smeared crack approach described in the following.

• Weak discontinuities: This type represents damage as a small but finite band of
elements separated from those of the undamaged material. The displacement
field herein is continuous, while the strain field has two jumps or discontinuities.
It physically represents the damage process zone with an almost constant den-
sity of micro-damage. The thickness of the band, approximated using standard
continuum finite elements, is thus bound by weak discontinuities. It can be seen
as a regularisation of the models with strong discontinuities. The smeared crack
approach [22, 23]and the approach of elements with embedded localisation bands
[15, 72] fall in this category. The former approach, considering the simplicity and
suitability to the traditional displacement-based finite element framework, con-
tinues to find popularity in the engineering community for large-scale structural
applications. However, it is known to suffer from spurious mesh dependency: both
with regard to the fineness and orientation of the elements in the mesh [10]. The
crack-band theory [12] with an orientation dependent element characteristic length
[99, 149, 131], and additional crack tracking algorithms [24, 134], relieve the ap-
proach of such problems, although not fully but satisfactorily. The latter approach
permits modelling of the band to be independent of the two issues related to mesh
dependency, and the thickness of the band can be considered to be a part of the
constitutive model.
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• No discontinuities: This type describes the damage zone as a continuously differ-
entiable displacement field using localisation limiters, which in turn makes the
strain field continuous. This physically reflects a damage process zone with higher
concentration of damage near its center. The approaches under this category are
referred to as regularised models, wherein the enrichment involves a parameter
with a characteristic length related to the size and spacing of heterogeneities in
the material. This class includes integral-type non-local models [109, 11], gradi-
ent enriched models [36, 108] and the thick level set approach [90] to name a few.
These methods require extremely fine meshes with multiple elements over the
width of the fracture process zone, which hampers use for large-scale structural
practice. Furthermore, there are rate-dependent models [142] which also regularise
the continuum description of localisation, and additionally, address the time-scale
in quasi-static cracking.

The first approach is commonly referred to as the ‘discrete crack approach’ while the
last two approaches could be considered as ‘smeared crack approaches’ together, purely
in the sense that cracks are diffused or ‘smeared’ in the continuum (irrespective of the
sophistication of the regularisation technique).

Constitutive framework All the aforementioned kinematic descriptions inherently re-
quire a constitutive framework to describe the behaviour of the material undergoing
fracture. The constitutive model describes the macroscopic features of the material using
a stress-strain relation, as illustrated in Figure 2.1. These fall broadly into three categories:
damage, plasticity and combined damage-plasticity models, all of which can adequately
describe both the discrete and smeared crack approaches.

The damage mechanics framework, first conceived by Kachanov [75], is based on the
concept of progressive reduction of the elastic stiffness. The damage accumulated is
considered irreversible and could be isotropic, represented by one or two scalar multiples
[27, 86], or anisotropic, using a family of vectors [77] or 2nd [92] or 4th order tensors
[25], depending on the model used. The loading and unloading is done using the secant
stiffness. These models are suitable to simulate stiffness degradation due to cracking or
crushing, and also crack-closure or stiffness recovery, but not irreversible deformations.
The plasticity framework [60] is based on simulating irreversible inelastic strains since
the elastic stiffness is assumed to remain constant. The total strain is decomposed into
an elastic part and a plastic part. The principal features of the framework are the yield
function which bounds an elastic region in stress space, a hardening law which defines
the evolution of the yield surface, and a flow rule. Plasticity models vary depending on
the types of these features. But these models, in general, fail to describe the stiffness
degradation due to cracking, as well as other related effects like stiffness recovery upon
crack closure [27, 59]. In combined damage-plasticity models, the positive features of the
first two classes of models are combined. The damage theory is used to model the stiffness
deterioration caused by micro-cracks propagation, while the permanent deformations
are captured using plasticity theory [94, 95]. Variations exist depending on whether the
plasticity model is combined with the isotropic [58, 101] or the anisotropic damage model
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Figure 2.1: Classification of crack representations according to: Kinematic
perspective (top) [73] and constitutive frameworks (bottom) [94]

[70, 59], with the former being preferred for practical applications (like for concrete) due
to the latter’s algorithmic complexity .

Apart from the three broad classes of constitutive models, there exists another class
of models, specifically for continuum applications, which shares the common features
of both the damage and plasticity models. This class is referred to as the smeared crack
models [116], which are not to be confused with the broader ‘smeared crack approaches’.
The latter refers to the general idea of diffusing cracks over a band of elements in a
continuum. Similar to plasticity models, the smeared crack models can decompose the
total strain into an elastic and a plastic part, herein the crack strain. Instead of the yield
condition and the flow rule, this model relates the crack strain directly to the traction
transferred across the crack. Similar to damage models, the elastic stiffness is damaged
progressively and is taken into account in the unloading mode. Such decomposed strain
based models allow for multi-directional fixed cracks [119]. Alternatively, total strain
based variations of the smeared crack models relate the material stress to the total strain
[50]. The first sub-variant of this type is the fixed crack model, wherein the crack direction
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is assumed to fixed upon crack initiation, and the shear tractions that develop across
the crack face are controlled by the so-called shear retention factor. The second sub-
variant is the rotating crack model based on the coaxial stress-strain concept, in which the
stress-strain relationships are evaluated along the principal directions of the strain vector,
thereby alleviating the need for an explicit shear retention function [119]. Hybrid sub-
variations which transition from rotating to fixed also exist [112]. This class of total strain
based smeared crack models predominate the applications illustrated in this thesis (with
secant unloading-reloading) and is described further in Section 2.3.1 from a sequentially
linear analysis point of view (described elaborately in Section 2.3).

Furthermore, for continuum representation of fracture, there exists another class of
models which are based on the relationship between the vectors obtained by projecting
the stress and strain tensors on a plane of a given orientation, as against using the tensorial
stress-strain relationship like all other classes of models described herein. The tensorial
stress-strain relations are then obtained by averaging over all possible orientations of a
finite number of potential damage planes (called microplanes). These models are called
microplane models [21, 102] and are similar to the multi-directional fixed crack concept,
except that the macroscopic strain is not decomposed.

2.2. SOLUTION PROCEDURES

2.2.1. SPARSE LINEAR SYSTEMS

For linear elastic problems, the system of equations to be solved in the standard displace-
ment based finite element analysis is as shown in the following

Ku = f (2.1)

where K is the system stiffness matrix, u is a vector of the unknown nodal degrees of
freedom (i.e. displacements and rotations. All studies in this dissertation deal with the
former.) and f is the vector of the nodal forces corresponding to the degrees of freedom u.
For practical structural applications, the assembled global stiffness matrix K is square,
sparse, and in most formulations, symmetric. Sparse linear systems in typical finite
element simulations have a large number of equations and unknowns. Therefore, solving
them efficiently is important. The solution methods for such systems are broadly split in
two main categories.

First is the traditional direct solution method to solve the system of linear equations,
also commonly referred to as Direct solvers, which involves a factorisation of the stiffness
matrix K and calculation of the displacements u by forward and backward substitution.
The factorisation takes a lot of time and memory, and is therefore computationally ex-
pensive. This is usually done by expressing K matrix as K = LU, where L and U are lower
and upper triangular matrices respectively. Commonly referred to as the LU factorisa-
tion, this reduces to the more favourable Cholesky factorisation K = CCT for symmetric
positive definite (SPD) stiffness matrices, where C is a lower triangular matrix. Once
factorised, the system can be efficiently solved for any number of right-hand sides and
the approach is rather straightforward. Two state-of-the-art direct solvers which provide
the additional option of parallelisation are the MUltifrontal Massively Parallel sparse
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direct Solver (MUMPS) [5] and the PARallel DIrect sparse SOlver (PARDISO) [127]. The
implementation of the direct solution method in DIANA [51], the commercial software
used for FE simulations in this thesis, uses Intel’s PARDISO interface which enables high-
performance serial and parallel solving of sparse linear system of equations. PARDISO is
popular for its parallel scaling, where speed ups of a factor of 7 have been realised when
running on 8 threads [7].

The second type is the iterative solution method, commonly referred to as Iterative
solvers, which involves no, or at most a partial factorisation, and deduces the solution
using inner-products, vector updates, scalar-vector and matrix-vector products. As a
result, these methods require a relatively small amount of memory to solve the problem
compared to direct solution methods. Consequently, they are more suitable to problems
where K is large, typical of structural engineering FE applications. Krylov subspace meth-
ods, a class of iterative methods, is described more in detail in Section 7.2.2. There are
many types of iterative solvers [125] and the choice is heavily system dependent. Conju-
gate Gradient method (CG) [64] is suitable for symmetric positive-definite matrices and
the MINimal RESidual method (MINRES) [125] for symmetric (and possibly indefinite)
matrices. For non-symmetric matrices, there are approaches such as the Generalised
Minimal RESidual method (GMRES) [126] and the Bi-Conjugate Gradient method (BiCG)
[53]. For information on other solvers like the class of multigrid methods, the reader is
referred to References [7, 56].

2.2.2. NONLINEAR SYSTEMS

In the case of nonlinear finite element analysis (NLFEA), similar to linear analysis, the
unknown displacements are calculated such that the internal and external forces are in
equilibrium. However, the internal force vector may vary nonlinearly on the displace-
ments (nonlinear elasticity - physical nonlinearity), or also depend on displacements
from previous increments (plasticity - physical nonlinearity). Furthermore, the exter-
nal force vector can also become dependent on the displacements when they are large
enough to change the direction or magnitude of the loads, thereby forcing to revisit the
equilibrium equations (geometric nonlinearity). Alternatively, the stiffness matrix in
itself may change with deformation owing to contact involving the interaction of parts of
the system (contact nonlinearity). There are several numerical techniques to solve such
varied nonlinear problems and these are discussed briefly in this section.

Implicit and Explicit methods In the displacement based finite element formulation,
in addition to discretising the problem in space using finite elements, the problem is
discretised in time. This may be the real-time as in a dynamic analysis but could also be
considered pseudo-time that numerically reflects a sequence of situations as in a quasi-
static analysis. The solution is then obtained by direct time integration of the equations of
motion (EOMs) of the system in the time domain t , such that they are satisfied at discrete
time intervals∆t [9]. Depending on the time integration, there exist two types of methods.

The Implicit methods, also alternatively known as incremental-iterative methods,
achieve equilibrium at the end of each increment by using an iterative solution algorithm
like a full or modified Newton-Raphson, Quasi-Newton, the linear or constant stiffness
method. For details on the types of iterative methods, the reader is referred to References
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[9, 34]. The external load, applied either as forces or prescribed displacements, is discre-
tised into smaller steps (referred to as load control or displacement control) resulting in
total displacement increments ∆u per step. The iterative displacement increment within
each step δu is first computed by using a linearised form of the stiffness matrix K. The in-
ternal forces fint are then deduced for the corresponding displacement increment, and the
out-of-balance force vector g is calculated as the difference between the external fext and
the internal forces fint. Convergence is considered to be obtained when one or both of the
out-of-balance force and the iterative displacement increments measured (for instance,
by Euclidean norms (L2)) are within a specified tolerance. For ongoing iterations, the iter-
ative displacements are re-evaluated for the new or existing stiffness matrix (depending
on the iterative scheme), and subsequently, out-of-balance forces are rechecked and the
process continues until the problem converges. Additionally, line search methods [29, 35]
which adapt the size of the displacement increment for a given stiffness matrix and min-
imise the residuals, instead of computing new search directions with a new stiffness
matrix, prove beneficial for faster convergence. However, the performance of line search
depends on the smoothness of the relation between the out of balance forces and the
displacements, and also on the quality of the current search direction [35]. Furthermore,
to capture responses that have snap-throughs and snap-backs, path following methods
like the arc-length and crack-mouth opening displacement control are available. The crux
of the arc-length method [30, 34, 147] is in forcing the solution path to remain close to the
last converged equilibrium point, which is done by introducing an additional constraint
equation for the incremental load multiplier that plays the role of an extra degree of
freedom in the global linearised equilibrium equations. Various constraint methods have
been proposed, such as the direct or indirect displacement control methods, and the
choice is crucial since it affects the convergence properties [35]. In summary, implicit
methods solve the system of equations involving both the current state of the system at
time t and the subsequent one at t +∆t . They are unconditionally stable, and the size
of time increments in solving the system of equations does not significantly affect the
accuracy of the solution as long as it is converged to an appropriately small tolerance.

The Explicit methods, also alternatively known as incremental tangent methods, solve
the system of equations at time t +∆t from the ones at time t . The use of such a purely
incremental behaviour (without internal iterations) results in numerical instability with
the use of large time-steps. It could also result in the drift of the solution from the true
equilibrium path due to lack of internal iterations. The time step in explicit analyses
must be less than the Courant time step (time taken by a sound wave to travel across an
element) for numerical stability [9, 35]. Nevertheless, due to the fact that there is no need
to solve the matrix system (factorisation) repeatedly, the explicit methods are generally
computationally less intensive than the implicit methods [135, 26]. Also, they are more
favourable for large deformation and contact problems [26]. The choice between the two
methods may be made based on the time-scale of the problem. Explicit methods are
suitable for short transient problems such as those with impact loads, while the implicit
methods are superior for quasi-static problems.



2

16 2. LITERATURE REVIEW

Sequentially linear methods NLFEA of civil engineering structures/specimens made
of quasi-brittle materials, characterised by strain-softening, can suffer from the so-called
convergence troubles. The incremental-iterative nature of the solution procedure could
push multiple integration points into softening simultaneously in a single load step. This
can affect the positive definite nature of the global stiffness matrix, resulting in the ill-
conditioning of the finite element formulation [31, 57, 35]. As a consequence, numerical
instability and divergence may occur at these instances possibly leading to inaccurate
results due to deviations into alternative equilibrium paths. Additionally, simulations of
such strain softening materials like concrete and masonry, often encounter problems
related to snap back, bifurcation points and sudden jumps in the response [123, 139, 131].
Several path-following techniques like the Arc-length control, Crack mouth opening
displacement control, energy release control [61, 147] etc. address this problem, but are
sophisticated techniques requiring user expertise in NLFEA (also knowledge of crack
locations a priori) and do not always guarantee the true response.

This gave rise to several alternate methods, one of which is the Sequentially Linear
Analysis (SLA) wherein the nonlinear response is approximated as a sequence of scaled lin-
ear analyses with gradually increasing damage (damage-driven). It is a non-incremental
(total) [117, 121, 118], secant stiffness-based event-by-event approach, wherein one linear
analysis is performed at a time to identify and damage the critical integration point in the
FE model. The definition of the load multiplier per analysis step j for each integration

point i , over all elements in the FE model, is shown below in a general sense, where f j
i

and σgov,i are the corresponding allowable strengths and governing stresses respectively.
The critical integration point is identified as the one with the minimum of all such positive
load multipliers, the critical load multiplier λcrit.
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f j
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)
∀ λ

j
crit,i > 0 . (2.2)

The linear analysis results i.e. displacements, forces, stresses and strains are then scaled
using the critical load multiplier λcrit. Subsequently, the strength and stiffness of this
integration point are reduced in a step-wise manner based on a discretised constitutive
relation, with successively reducing secant stiffnesses and allowable strengths, called the
saw-tooth law. This process of identifying critical events and load scaling is repeated
until a user-defined stop criteria is reached or possibly when all elements in the FE model
are completely damaged. The method avoids multiple integration points being pushed
simultaneously into failure, as in an incremental-iterative approach, and is therefore
robust. In other words, SLA traces through every event, i.e. a jump or snap back, that
may occur in the response of the structure. The combination of a total (load-unload)
approach and the saw-tooth laws forms the crux of the method. A detailed overview of
the SLA framework, with respect to the constitutive modelling and workflow aspects, is
presented in Section 2.3.

The approach has been under development from the early 2000s and successfully used
for structural NLFEA in the past [117, 121, 118]. It is a proven alternative for applications
in masonry [55], reinforced concrete [139] and glass [69]. Advancements in SLA include
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contributions to make the procedure mesh-objective [118, 139], saw-tooth laws for ex-
tremely brittle materials like glass (with snap-back at constitutive level) [69], extensions to
non-proportional loading situations [40, 44, 57, 43], extensions to interface elements with
discrete cracking [140], bond-slip [47] and step-wise secant Coulomb friction laws [139],
creep induced cracking [63], combined incremental-total approaches like Non-Iterative
Energy based Method (NIEM) and the automatic method [57], SLA in a stochastic setting
[54], combining SLA with crack tracking technique [131], and mesh free SLA [1].

SLA is a feature, as a part or whole, of several state-of-the-art solution methods
which are hereon referred to as Sequentially Linear Methods (SLM), although alternatively
referred to as non-iterative methods in literature [57]. These methods, comprehensively
reviewed and discussed in Chapter 3, can be classified into three categories: purely total
approaches [40, 139, 3] wherein unloading and reloading are done non-proportionally,
purely incremental approaches [44, 43, 57] wherein the stress and loading history is
explicitly tracked, and finally, a class of combined incremental-total approaches [57].

Other methods Another approach towards robust simulations in NLFEA is the IMPL-EX
method [100] which, as the name suggests, combines the implicit and explicit methods.
For a given strain in the current time step, the approach computes the stresses and inter-
nal variables in a two-staged process. In the first stage, the stresses and internal variables
(like the damage evolution parameter in an isotropic damage model) are explicitly extrap-
olated, using the implicitly integrated stresses and extrapolated values of the strain-like
internal variable obtained in the previous time step. This is used to compute the so-called
IMPL-EX algorithmic tangent matrix and then determine the internal forces. Subse-
quently, nodal displacements are obtained by fulfilling a momentum balance equation in
terms of the extrapolated stresses. In the second stage, implicitly integrated stresses and
internal variables for the current step are obtained by a standard implicit backward Euler
integration scheme of the constitutive model. A point of interest is that the length of the
time step affects the accuracy of the solution obtained using the IMPL-EX strategy, where
the order of accuracy varies linearly with the size of the time step. The approach has
also been extended to the ‘modified’ IMPL-EX approach [110] for elasto-plastic problems,
wherein the internal variables are updated in terms of the explicit evaluation of the plastic
strain tensor components, instead of the explicit evaluation of the plastic multiplier.

The Ladevese’s LArge Time INcrement method (LATIN) [18], another robust solution
procedure developed for nonlinear evolution problems, is a purely iterative approach to
derive the solution in a single time increment. The main principle of the method is to
split the equations of the problem into two groups, to avoid simultaneously solving the
global and the coupled problem. The first is a set of linear equations: the equilibrium
and compatibility equations, and the state equations, which are decoupled and applied
globally over the entire structure. The second is a group of local equations in space
variables, which are constitutive (possibly nonlinear) and also contain initial conditions.
The whole loading process is iteratively calculated in a single time increment, wherein
each iteration is a two stage process corresponding to the global and local stages. The
method’s application in modelling softening materials is limited [145] although it helps
track snap backs adequately. Additionally, since the total approach is used for non-
proportional loading, it has limitations similar to SLA wherein reloading of constant loads
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on a damaged state causes premature failure problems (addressed in detail in Chapter 3).
Another robust incremental-iterative alternative is the Smooth Unloading-Reloading

(SUR) approach [4], that was applied for an isotropic damage model. The approach
uses a target function, which replaces the softening function, and gives the equivalent
uniaxial stress. This function depends on the damage evolution parameter that is directly
proportional to the maximum strain. Additionally, the approach uses a smooth unload-
ing–reloading function to compute an approximate positive-definite tangent matrix. The
SUR function also depends on the damage evolution parameter, which is updated every
iteration based on the last converged load increment. Although the approximated matrix
is not the exact tangent, when there is loading with respect to the damage function, the
results obtained were better in terms of efficiency and robustness as against the secant
unloading-reloading method. Three acceleration approaches were also proposed [4] to
further improve the convergence properties of the SUR method.

More recently, the Continuous Incremental-only Tangential Analysis (CITA) method,
was proposed [2]. Similar to SLA, damage is introduced in steps in this incremental ap-
proach but the nonlinear stress-strain curve is discretised into piece-wise linear branches.
The crux of the method is in using the tangent elasticity modulus to calculate the struc-
tural stiffness, despite the fact that some elements may have negative stiffness, using
an appropriate linear equation solver with the ability to solve indefinite matrices. Every
event is traced by the calculation of a critical load factor to find the smallest change in in-
cremental load which causes the next damage occurrence, i.e. the smallest load for which
the end of the current piece-wise branch in the constitutive relation is reached for some
integration point. The approach is shown to successfully simulate simple concrete beam
tests and claims to improve over the computational intensity of SLA since it requires lesser
number of events. But this may not necessarily be the case if the number of branches in
the saw-tooth law were the same as the number of piece-wise linear branches in CITA.
Additionally, although the approach is damage driven, the ability to handle bifurcations
and snap backs is unclear since any stress point is allowed only to either move up or
down a piece-wise linear branch of the nonlinear curve. Furthermore, the method could
potentially fail in case a singularity is reached and this is yet to be investigated.

2.3. SEQUENTIALLY LINEAR ANALYSIS (SLA) FRAMEWORK

2.3.1. CONSTITUTIVE RELATIONS

SLA is different from the traditional incremental-iterative approaches with regard to the
constitutive framework in some aspects and these are presented in this section.

Uniaxial laws The crux of the method is in discretising the uniaxial softening constitu-
tive relation into an equivalent step wise secant material law, also known as the saw-tooth
law. In principle, the material law is described as a series of successively reducing secant
stiffnesses, starting from the initial elastic branch with the original Young’s modulus of
the material (E0). Whenever there is breach of the stress limit in an integration point
and it becomes the most critical in the FE model, the load is scaled with the critical load
multiplier, and the next secant relation with reduced strength and stiffness properties
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takes over from the previous secant branch. This process of tracing the critical point,
reducing its stiffness upon attaining a stress limit and load scaling is repeated until the
stiffness of the structure has vanished, which corresponds to a state of complete damage.

Figure 2.2: Linear tension softening saw tooth law, with p the saw-teeth
discretisation factor, based on the band width ripple approach

Initially, the saw-tooth laws were generated by consecutively reducing Young’s modu-
lus and/or strength. But these proved to generate mesh objectivity problems with respect
to capacity and energy dissipation, and consequently, a simple regularisation procedure
was applied wherein the strength or the ultimate strain or even both are updated to keep
the energy invariant, with the latter being reported as the most effective [121]. Eventually
moving towards a more general approach to achieve mesh objective results, a band width
ripple concept was introduced [118]. In this approach, a strength range p is defined as
a percentage of the undamaged material strength, and a band is introduced into the
softening part of the base curve, enclosing it such that the upper and lower triangles
cancel each other out and eventually yield the same fracture energy (refer Figure 2.2).
More recently, an improved band width ripple approach was presented pointing out that
the vertical shifts from the base material law that define the original band width ripple
approach need not necessarily be equal [139]. However, in complete contrast to the idea
of regularising uniaxial saw-tooth laws, Alfaiate et al. [3] claim that a coarse saw-teeth type
response in the force-displacement curves is as a result of an incorrect stiffness guess due
to many points lying below their respective capacities and not due to mesh-objectivity
issues with respect to fracture energy. This is in principle true since SLA is intrinsically a
linear elastic load-unload method, and therefore there cannot be any energy dissipation
as such. However, the progressive damage in the SLA approach could be interpreted as
energy being consumed, which also manifests as the area underneath the sequence of
load-displacement points. In summary, the topic of saw-teeth refinement needs further
investigation and the illustrations in this study use linear tension softening and parabolic
compressive softening relations with the original ripple band approach, unless specified
otherwise.
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CONTINUUM FRAMEWORKS

Fixed Smeared Crack Approach The fixed crack model, a type of total strain based
smeared cracking model, considered in most illustrations of the thesis, allows for orthog-
onal cracking (e.g. Reference [50]) and describes the cracking/crushing that arises in
the fracture zone to be smeared over the continuum. It is rather straightforward to use
since it describes the tensile and compressive behaviour of a material along orthogonal
directions, that are fixed upon crack/crush initiation governed by the principal stress
criterion, with uniaxial tensile and compressive saw-tooth laws. For a 2D plane stress
situation, as soon as the principal stress violates the allowable strength in tension or
compression at an integration point, the isotropic stress-strain relationσ = Dε transforms
into an orthotropic relation as σnt = Dntεnt with nt denoting the fixed cracked/crushed
coordinate system. The primary principal stress direction’s Young’s modulus and strength
are damaged according to the uniaxial saw-tooth law of the appropriate failure mode.
In the event that normal stresses in the orthogonal direction (secondary) violates the
corresponding allowable strength, caused by stress rotations or redistribution of stresses
or application of another load non-proportionally, damage is introduced in that direction
similarly. So every integration point essentially requires two uniaxial saw-tooth laws each
for tension and compression in the 2D stress state, and three in the case of a 3D stress
state.

Figure 2.3: The change in isotropic to orthotropic formulation (nst crack coordinate
system) upon damage initiation in a fixed crack framework for 3D stress states [150]

Furthermore, the model uses the crack band approach proposed by Bazant and Oh
[12], which states that fracture energy is spread over the cracked area characterised by
a certain crack band length h, to ensure that the constitutive curve depends on the
size of the crack band. This, therefore, triggers the energy consumed due to smeared
cracking in the fixed crack model to be mesh independent. Alternative projection based
crack band approaches are also available [99, 149, 133]. The shear behaviour in the fixed
cracking model is represented using a variable shear retention function that reduces with
increasing damage in normal directions of the cracked/crushed plane [132]. Also, the
Poisson’s ratio is reduced at the same rate as the associated Young’s modulus. The 3D
Orthotropic fixed crack/crush model used in SLA is presented in Section 5.1 in detail, and
therefore is not elaborated upon any further here. The full description of the formulation
for 2D plane stress state can be found in Reference [139] and the one for shell elements
in Reference [38], while detailed description of the fixed crack model in general can be
found in Reference [116].
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Rotating Smeared Crack Approach The second type of total strain based smeared
cracking model is based on the coaxial stress-strain concept, in which the stress-strain
relationships are evaluated in the principal directions of the strain vector. This approach,
also known as the Rotating crack model, is well suited to the the constitutive modeling
of reinforced concrete structures. One of the disadvantages of the fixed crack models
is the stress locking phenomenon. The shear forces generated due to the rotation of
principal stress directions result in accumulation of shear stresses on the cracked plane,
which can be controlled using the shear retention functions [116], but still may result
in spurious stress states. Nevertheless, the fixed crack approach is more favourable for
an SLA setup since it is more straightforward to implement. This is because the crack
coordinate system is fixed upon damage initiation, and the same transformation matrix
can be retrieved for a cracked integration point in assessing damage due to further events.
On the other hand, although the stress locking problem is not so significant in the case
of rotating crack models, combination with SLA is difficult because the rotation of the
principal strain is not known a priori. There have been some rotating crack models in the
context of SLA with simplifications, wherein the load multiplier is calculated with respect
to the last equilibrated direction of a damaged integration point. This is an assumption
that stands true only if no rotation of principal strains were to occur. Furthermore, since
SLA allows one event at a time, rotation of the crack systems of non-critical damaged
integration points are restricted. This is in principle incorrect and would lead to build
up of shear stresses in such integration points, but is ignored since it would necessitate
an iterative process to arrive at equilibrium. Nevertheless, the available rotating crack
approaches for SLA with their assumptions are presented in the following.

• Slobbe’s approach: Slobbe [130] proposed the first variation of a rotating crack
model for SLA, wherein a new type of event, a certain degree of rotation of a crack
for a damaged integration point, was introduced. The choice for the critical event is
then made between damaging an undamaged point and the rotation of an existing
crack. Since a continuous chain of crack rotation events (local stress redistributions
resulting in stiffness changes that affect neighbouring cracked elements) would
lead to an enormous number of events, a certain threshold angle α is defined. If
the change in crack direction |∆γ| in a cracked integration point is larger than α,
it becomes an event, and the integration point with the largest change in crack
direction |∆γmax| becomes the critical event. The updating of crack direction also
results in a stiffness change because of the orthogonal set-up of the model. On the
contrary, if the rotation of crack direction |∆γ| is smaller than α, the standard SLA
procedure is followed to find the critical integration point. Tests were carried out
for proportional loading conditions, and accordingly small threshold angles were
not recommended considering the high computational intensity. In summary, the
approach of Slobbe for rotating crack model in SLA is purely rotating only for the
critical integration points, while the rest of the damaged points continue to follow
the fixed crack model which may develop spurious stresses despite using shear
retention formulations.

• Vorel’s approach: Vorel and Boshoff [151] developed a rotating crack model that can
be used within the framework of SLA to analyse structures with strain hardening
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cement based composites (SHCC). The Force-Release (F-R) approach by Eliáš
et al. [44], an incremental sequentially linear approach described in detail in
Section 3.2, was used as the solution procedure in their framework. In this model,
the principal direction of the critical integration point is updated after each stress
redistribution. Since the loading procedure is incremental and because the rotation
of the principal directions is not known beforehand (also depends on the scaling
factor), it is assumed that the load multiplier can be evaluated with respect to the
last equilibrated principal direction of the considered integration point. When the
principal directions do not change within one increment, the procedure turns out
to be exact. The crack directions of only the critical integration point is updated
thereafter, just as in Slobbe’s approach, and therefore this can also be considered
only a partial rotating crack model. The method has been applied to three-point
bending tests on beams, and also on shear beam specimens reinforced with SHCC.

• Cook’s multi-directional fixed crack approach: Cook et al. [28] developed a multi-
directional fixed crack model to be used in conjunction with SLA. The idea was to
define a priori a number of potential damage planes per integration point (around
180). Contrary to SLA, evaluations are made along all potential planes for crack initi-
ation, and damage is introduced perpendicular to the critical plane based on typical
saw-tooth laws. The element containing the critical crack plane becomes the critical
element. In order to narrow down the probable damage planes in the model, a crack
tracking algorithm was also introduced wherein three types of elements are defined.
This includes a cracked element, an intersected element which shares boundaries
with a cracked element, and finally, pre-defined isolated elements wherein cracking
can occur without the presence of adjacent cracked elements. This algorithm helps
avoid spurious cracks in the structure elsewhere and alleviates stress locking, and
also reduces the computational intensity of the procedure reasonably. A simple
orthographic projection-based crack band approach is used for all potential crack
planes assuming that constant strain, three-noded, triangular finite elements are
used. Since multiple cracks are allowed per element, it may be interpreted as a kind
of a rotating crack model that releases the locked stresses. Although developed
originally for cracking in heterogeneous materials, the approach can also be used
for FE modelling of concrete structures and shows promising results for the Double
edged notched beam test [98] of mixed mode fracture.

• Elastic perfectly brittle fraction model: Hendriks and Rots [120] developed the
Elastic-brittle fraction approach in order to simulate the effects of rotational crack-
ing within sequentially linear analysis. This model divides each element in a set of N
parallel fractions, each of which is elastic-perfectly brittle with tensile strength, stiff-
ness and thickness chosen appropriately to represent the continuum’s constitutive
law. The total behaviour is found by the superposition of the stresses and strains of
the perfectly brittle fractions, all of whose strains are the same (refer Figure 2.4).

Each fraction, denoted by the subscript k, essentially is isotropic to begin with
and as soon as the principal stress violates the allowable strength at an integration
point, the isotropic stress-strain relation σk = Dkε transforms into an orthotropic
relation as σk,nt = Dk,ntεk,nt with nt denoting the fixed cracked coordinate system.



2.3. SEQUENTIALLY LINEAR ANALYSIS (SLA) FRAMEWORK

2

23

The fraction is fully cracked but still retains strength in the tangential direction
which can also be damaged upon rotation of stresses. Once the fraction is lost, the
next layers are damaged and the model thereby describes softening as a gradual
reduction of the cross-sectional area, which is physically in accordance with the
micro-cracking coalescing to form a macro-crack as in the fictitious crack model
[65]. The superposition of fixed crack fractions results in a rotating effect of the
crack as shown in Figure 2.4. Since the fractions may also be seen as sublayers, the
model is alternatively referred to as the sublayer model. A recent study [19] shows
that the sublayer model consistently exhibits sharper crack localisation, lesser
stress-locking, generally more flexible behaviour for several experimental plain-
concrete benchmarks, and sometimes overcomes bifurcations that may be missed
with regular SLA using the fixed crack model. The approach was also extended to
3D fractions in the same study [19] with appreciable results.

Figure 2.4: Schematic representation of the elastic perfectly-brittle fraction model [19]

The sublayer model is similar to the approaches of Slobbe [130] and Vorel [151] in
the sense that only the critical point undergoes crack rotation but there are differ-
ences. Slobbe’s approach differentiates damage and crack rotation as two different
events, while the sublayer model introduces crack rotation with each damage. In
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comparison to Vorel’s approach which explicitly allows for redistribution by grad-
ual release of forces due to damage (avalanche of ruptures using the force-release
approach), the redistribution in the sublayer model is implicit with each event.
The sublayer model also shows similarities with the approach of Cook et al. [28] in
the sense that both approaches allow for multiple cracking planes per integration
point. The difference lies in the fact that the orientation of the cracking planes are
predefined in Cook’s approach while each of the fractions in the sublayer model can
have their own cracking direction depending on the principal stress. More recently,
Liu [79] proposed the sub-element method which is fundamentally similar to the
sublayer model but is applied for lattice problems.

INTERFACE ELEMENT FRAMEWORKS

Interface elements, used in standard FE analysis to represent displacement disconti-
nuities, have thus far been used in SLA simulations as well [139]. In this section, the
applications of interface elements for discrete cracking [140], Coulomb friction [139] and
bond slip models [47] are revisited, using the 2-dimensional interface formulation with
a normal stiffness kn and a shear stiffness kt . To avoid spurious displacements in the
undamaged state, dummy initial stiffnesses kn,0 and kt ,0 which are approximately 1000
times stiffer than the normal stiffness of adjacent continuum elements are used. For the
elastic stage, the interface tractions tn and tt depend on the corresponding normal and
shear relative displacements un and ut as follows[

tn

tt

]
=

[
kn,0 0

0 kt ,0

][
un

ut

]
(2.3)

Discrete cracking In the case of discrete cracking, Eq. 2.4 is enforced to determine the
critical integration point i for crack initiation, given the tensile strength ft. Following crack
initiation, the saw-tooth law of a typical linear or exponential tension softening relation is
used as the traction-separation law (tn–un) [140]. The normal and shear stiffnesses can
then be updated based on such a law, which is in principle a damage formulation with
kn = (1−dn)kn and kt = (1−dt )kt , where dn and dt are damage variables.

tn,i (λ) = ft ∧ ∀i 6= k : tn,k (λ) < ft (2.4)

Bond Slip Interface elements have been used to demonstrate a simple bond slip model
for SLA [47, 139]. Eq. 2.5 is enforced to determine the critical integration point i for
debonding, given the ultimate bond stress tt ,ult. Following debonding, the discretised
form of a simple bi-linear law between bond stress and slip was considered (tt –ut ) and
only the shear stiffness was updated as the slip evolved, while retaining the undamaged
normal stiffness.

tt ,i (λ) = tt ,ult ∧ ∀i 6= k : tt ,k (λ) < tt ,ult (2.5)

The ∆ symbol, commonly used to denote relative displacements in interface formulations, is dropped herein to
avoid ambiguity with the variations of the said relative displacements as in Eq. 2.8.
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Coulomb friction Coulomb friction formulations in interface elements were not as
straightforward as smeared crack models or discrete cracking because of the multiple
stress components involved. Additionally, it was not possible to predefine saw-tooth laws
since the evolution of the internal variables is not known a priori. The first Coulomb
friction formulation for SLA was presented in two variations, depending on how the
secant Dsec matrix is updated: A coupled formulation considering dilatancy effects and
an uncoupled one without it [139].

For proportional loading conditions, the critical integration point is determined
based on Eq. 2.6 subject to the traction vector being non-zero and additionally Eq. 2.7
being false, where c and tan(φ) are the mobilised cohesion and the friction coefficient.
When cohesion softening is taken into account, the mobilised cohesion which only
depends on the plasticity parameter (κ) additionally becomes dependent on the load
multiplier. Therefore, the load multiplier is deduced iteratively using a local Newton-
Raphson scheme. This is explained in detail in Chapter 6.(

tn,i tan(φ)+|tt ,i |
)

(λ) = c ∧ ∀i 6= k :
(
tn,k tan(φ)+|tt ,k |

)
(λ) < c (2.6)

tt ,i

tn,i
≤ tan(φ) and tn,i < 0 (2.7)

Contrary to the saw-tooth laws defined a priori, each shear stiffness reduction in this
approach is computed during the analysis. The update to the stiffness matrix Dsec in
the uncoupled version of the model for analysis step j is computed using the critical

shear traction t ( j−1)
t ,crit , the critical relative shear displacement u( j−1)

t ,crit of the completed

( j −1)th step and a specified relative displacement increment δu( j−1)
t which is based on a

user defined factor at . The updated shear stiffness corresponds to the increased shear
displacement and the normal displacement, and this approximation turns out exact if the
actual shear displacement equals the specified increased shear displacement.

k( j )
t =

t ( j−1)
t ,crit

u( j−1)
t ,crit +δu( j−1)

t

with δu( j−1)
t = at u( j−1)

t ,crit (2.8)

The update to the secant stiffness matrix Dsec is more complicated in the coupled
version of the Coulomb friction model, and is therefore left out of the scope of this
discussion and the thesis. The uncoupled version will be used in the rest of the thesis, in
combination with a tension and compression failure criterion to enforce multi-surface
failure possibilities, refer Chapter 6 for detailed information.

2.3.2. WORK FLOW: PROPORTIONAL LOADING

The SLA procedure was initially developed for a proportional loading scheme, where
the rate of change of all loads is the same. Firstly, the saw-tooth laws are defined as
shown in Figure 2.2. Thereafter, the finite element model is loaded by a unit value of the
total imposed load (L) which could either be forces or prescribed displacements (or a
combination thereof). Subsequently, a linear analysis is performed and a load factor is
calculated for each integration point as the ratio of the allowable strength to that of the
governing stress as shown in the following.
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Figure 2.5: SLA workflow for proportional loading conditions [139]

λ
j
i =

f j
i

σ
j
gov,i

(2.9)

where j refers to the analysis step, and i either denotes an integration point number for
an undamaged situation or alternatively upon damage, denotes events corresponding to
tension/compression failure criteria along the 2 or 3 fixed damage directions (depending

on the stress state). σ j
gov,i is the governing stress component (for e.g. the principal stresses

for damage initiation in a smeared fixed crack approach) for integration point i , f j
i is

the peak stress limit as defined by the current secant branch of the saw-tooth law, and

λ
j
i is the associated load multiplier. The minimum of all load factors is referred to as the

critical load factor, and the applied load is then defined as

λ
j
crit = min

i

(
λ

j
crit,i

)
∀ λ

j
crit,i > 0

L j =λ j
critL

(2.10)

This means that the global load is scaled such that only a single integration point, the
critical point, just reaches its current peak in its local saw-tooth diagram. The results of
the linear analysis; the stresses, strains and displacements, are scaled using the critical
load multiplier. Finally, the strength and stiffness of this critical integration point are
reduced based on the saw-tooth laws, before the process is repeated.

Unlike NLFEA which is considered as one analysis containing several steps, SLA comprises several linear analysis
which are referred hereon interchangeably throughout the thesis as ‘analysis steps’ or ‘steps’ as such.
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Real-life loading schemes, however, are not proportional and consist of loads that
are constant on structures like dead weight, followed by variable ones like wind, seismic
or traffic loads. Such schemes are referred to as non-proportional loading conditions
(Figure 2.6(b)) where the rate of change of the applied loads is not the same, and they
prove to be more complicated in an SLA framework. Although the process of damage
propagation and localisation is often sudden and dynamic in nature, the SLA simulation
being quasi-static poses a fundamental problem in addressing redistributions, which
involve a sequence of damage events, and more so under non-proportional loading con-
ditions. This aspect of SLA needs better understanding, despite previous contributions,
especially at structural level. Furthermore, another important feature/disadvantage of
the SLA framework is the stress reversal problem that occurs due to redistributions under
non-proportional loading conditions. That is, upon reversal of stress along a direction,
the damaged stiffness in tension or compression, depending upon the failure mode, is
carried onto the opposite regime (Figure 2.6(a)). The need for a crack closure algorithm
to address this has been previously pointed out [139, 103] but not addressed in this work.
This may result in incorrect strains but in line with previous SLA studies [55, 139, 33], this
is accepted as an artifact/limitation for the studies in the thesis.

Figure 2.6: (a) stress reversal problem in SLA, and (b) loading schemes assuming constant & variable loads [139]

2.4. CONCLUDING REMARKS

This Chapter reviews finite element formulations, constitutive modelling, and the linear
& nonlinear solvers used in the simulation of quasi brittle fracture. A comprehensive
overview on available implicit, explicit, sequentially linear and alternative solution meth-
ods for NLFEA reinforces the importance of sequentially linear analysis, especially from
simplicity and robustness points of view. But with view to structural FE applications of
the sequentially linear method, the approach needs to be addressed with regard to the
following topics, which in turn translate into the core chapters of this thesis.
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• Redistribution mechanism in SLA type procedures requires further understand-
ing for non-proportional loading problems. The redistribution mechanism in-
volved in SLA under non-proportional loading problems is more prominent in
real-life quasi-brittle experiments, at component or structural level, rather than
in simple experimental benchmarks. Such redistributions, for instance previously
observed with a masonry facade settlement example [139], were attributed to the
lack of crack closure algorithm in SLA but there is a lack of complete understanding
on this topic. To this end, Chapter 3 presents an extensive overview on all available
sequentially linear methods in literature alongside their approaches to the non-
proportional loading problem. Additionally, a qualitative discussion and analysis
of the methods is included. Subsequently, in Chapter 4, it is sought to truly under-
stand the mechanism of redistribution in Sequentially Linear Methods (SLM) for
continuum FE simulations of real-life benchmarks or case studies. Herein, the redis-
tribution mechanism in SLA and an incremental SLM, the Force-Release method,
are compared. The validity of unloading and reloading all previously applied loads
as in SLA is compared to the gradual static stress redistribution in a Force-Release
simulation, and conclusions on suitability of either methods are drawn.

• Structural simulations require extension of the constitutive model in SLA to 3D
stress states and a 3D non-proportional loading strategy. All existing constitutive
formulations in SLA are in 2D, except the one for shell elements (made with an
approximation for calculating the critical load multiplier) [38]. Structural level
simulations motivate the need for combining a 3D smeared cracking model: either
fixed or rotating, with a solution strategy to deduce the load multiplier for damage
initiation in a full 3D stress state under non-proportional loading conditions. This is
addressed in Chapter 5 alongside validation studies. Additionally, Coulomb friction
formulations for planar interface elements in SLA would also be essential for 3D
sliding problems. This is addressed in Chapter 6.

• Structural simulations of SLA are currently extremely computationally inten-
sive. Computational intensity has been pointed out previously to be one of SLA’s
major bottlenecks [139, 151, 4, 1]. For instance, considering an SLA simulation to
predict tensile failure in an FE model with x truss elements, there can be a maxi-
mum of x × y × z linear analyses or damage events, where y & z correspond to the
number of integration points per truss element, and the number of saw-teeth in
tension per integration point respectively. This would become 2 or 3 times larger in
case of 2D or 3D elements considering the appropriate directions of the orthogonal
smeared cracking model, and possibly even more if compression nonlinearities
were to be considered. This indicates the need for an extremely high number of
linear analyses (each corresponding to a unique damage location) to bring about
an equivalent nonlinear response as in traditional NLFEA (damaging multiple lo-
cations). A departure from the event-by-event nature of SLA into multiple failures
per analysis could be considered, but the robustness may be lost in the process in
attempting to establish equilibrium using internal iterations.

Under such a premise where the event-by-event nature of SLA is not compromised,
the time taken to solve the system of linear equations using direct solvers could
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be targeted, which is the most dominant part of the computing time in each SLA
step. Since only one element is effectively damaged at a time, the system of linear
equations to be solved actually changes locally between these analyses. Traditional
direct solution techniques, such as those reviewed in Section 2.2, do not exploit this
property and calculate a rather expensive stiffness matrix factorisation every step,
resulting in high computational times. Smart tailor made solvers are required to
make SLA studies more conducive to research, before considering possibilities of
being a truly attractive alternative to implicit NLFEA. This is addressed in Chapter 7.





CHAPTER 3
ANALYSIS OF APPROACHES TO

NON-PROPORTIONAL LOADING
IN SEQUENTIALLY LINEAR METHODS*

In order to extend sequentially linear analysis to real-world structural examples in civil
infrastructure and building structures, which are not only huge in magnitude but are
also subject to real loading schemes which often have multiple loads, the approach to
non-proportional loading becomes crucial. The simplest and most common case of non-
proportional loading is when there are constant loads on the structure like dead loads,
precompression, overburden etc., and the structure is subsequently subject to variable loads
like earthquake, wind or vehicle loads. Under such loading conditions, problems arise
due to considerable stress rotations and consequently, finding the critical load multiplier
and integration point in SLA is not as straightforward anymore. SLA is a feature, as
a part or whole, of several state-of-the-art solution methods referred to as Sequentially
Linear Methods. The extension to non-proportional loading was intended to make the
SLA procedure more suitable to wider applications, and the various strategies that have
been proposed to incorporate this aspect in different sequentially linear methods, which
are generally classed into three categories, are presented in this Chapter. Firstly, purely total
approaches wherein unloading and reloading are done non-proportionally are presented
in Section 3.1. This is followed by purely incremental approaches in Section 3.2, wherein
the stress and loading history is explicitly tracked. Subsequently, a class of combined
incremental-total approaches is presented in Section 3.3. Finally, a discussion on the
methods is outlined in Section 3.4.

3.1. TOTAL METHODS

This class of sequentially linear methods relies on unloading and reloading a specimen,
of all previously applied loads, while undergoing damage propagation. In line with this
nature, they are also alternatively referred to as load-unload methods in literature [44, 81].
Each of them trace the critical event differently but are all similar with respect to non-
proportional loading.

DeJong’s method The method of DeJong et al. [40] was proposed for the smeared
cracking approach, involving tensile failure only, under plane stress assumptions. For a
system loaded by constant loads (Lcon) and a unit variable load (Lvar), the global stresses

*This Chapter is based on the author’s article published in Engineering Fracture Mechanics 2020 [105]. Minor
modifications are made to suit the thesis.

31



3

32
3. ANALYSIS OF APPROACHES TO NON-PROPORTIONAL LOADING

IN SEQUENTIALLY LINEAR METHODS

are expressed as the superposition of the stresses due to the constant and scaled variable
loads (σcon and σvar respectively) as shown in Eq. 3.1. These are then substituted in the
expression for the principal stress, to be limited by the tensile strength ( ft), which is a
function of the load multiplier for the variable load λ as shown in Eq. 3.2.

σ=σcon +λ σvar (3.1)

σ1,2 (λ) = ft (3.2)

The closed form solution for λ of Eq. 3.2 corresponds to crack or damage initiation for an
integration point. For already damaged integration points, linear equations are solved
along the orthogonal directions of the crack coordinate system, n and t , as shown in
Eq. 3.3.

σnn (λ) = ft,nn

σtt (λ) = ft,tt
(3.3)

The selection criteria for the critical load multiplier are based on the stress caused by
the variable load. In case the variable load causes tension, considering the crack opening
effect, the associated λt is considered a ‘maximum’ load multiplier (in which the super-
script j indicating the analysis step is dropped for readability). In case the variable load
causes compression, considering the crack closing effect, the associated λc is considered
as a ‘minimum’ load multiplier. The minimum of all λt from the integration points is
denoted λt

min, and the maximum of all λc from the integration points is denoted λc
max. In

the scenario that λt
min >λc

max, λt
min is chosen as λcrit, and the corresponding integration

point is damaged based on the saw-tooth law ensuring that all other integration points
adhere to the constitutive law. However, when λt

min <λc
max, no λcrit can be selected such

that all integration points in the finite element model adhere to their respective constitu-
tive relations. This situation hereon is referred to as limit point, wherein no constitutively
admissible† λcrit can be found. This limit point is not to be confused with the traditional
limit point encountered in an NLFEA response. DeJong’s approach in such a situation
proceeds forward by selecting λc

max as the critical load multiplier. Therefore, it allows for
temporary violation of the constitutive law in one or more integration points, which may
lead to rupture under invalid stress fields as has been pointed out in References [139, 44].

Constrained maximisation analogy The constrained maximisation approach proposed
by Van de Graaf [139] follows the basics of the non-proportional loading concepts pro-
posed by DeJong et al., with regard to the principal of superposition of stresses, the use of
principal stresses for damage initiation, and the calculation of the closed form solution
for the critical load multiplier. The difference lies in the selection criteria for the critical
load multiplier which herein is based on a constrained maximisation approach, and sets
of admissible load multipliers are deduced. Damage initiation involves solving quadratic
(2D) or cubic inequalities (3D) in the load multiplier depending on the stress state [104],

†A constitutively admissible critical load multiplier refers to one which limits the stresses of each integration
point in the FE Model, including the critical one, to be less than or equal to the current strength of their
respective saw-tooth laws, considering tension and compression criteria in all relevant directions.
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while damage propagation involves solving linear inequalities per direction of the orthog-
onal cracked system. The common global subset of these local sets would then reflect the
set of constitutively admissible load multipliers for the entire FE model, the maximum of
which is chosen as the critical load multiplier.

Lipl = Lcon +λ j−1
crit Lvar (3.4)

L j
ipl =λ

j
crit Lipl (3.5)

In the event that this common subset is empty in a certain analysis step j , the ap-
proach runs into the aforementioned limit point. In order to adhere to the constitutive
law, Van de Graaf proposed the double load multiplier strategy which includes an inter-
mittent proportional loading (IPL), wherein the last successful load combination Lipl of
step ( j −1) (Eq. 3.4) is scaled proportionally as shown in Eq. 3.5. It allows for redistribution
by implicitly allowing for the reduction of the constant load, and is deemed acceptable
when the redistribution is followed by full recovery of the constant load. Chenjie et al.
[155] also proposed an algorithm for the non-proportional loading problem but confined
their applications to problems wherein the determination of the critical load multiplier
was not affected significantly by the constant loads. This class of problems was referred to
as weakly nonlinear problems. The work flow for the constrained maximisation analogy
is described in detail as follows for a 2D plane stress state.

1. Set up the saw-tooth laws as shown in Figure 2.2.

2. Run a linear analysis with the full value of the constant load.

3. In case of damage already in this stage (nonlinearity):

(a) Identify the critical integration point with the least ratio of ( f /σgov), where
σg ov is the governing principal stress and f is the allowable strength (Eq. 2.9).

(b) Scale the constant load with the critical load multiplier (i.e the ratio from
above)(Eq. 2.10)

(c) Reduce the strength and stiffness of the critical integration point based on the
saw-tooth law.

(d) Return to step 2 and repeat until the scaled value of the constant load is the
same as the original full value.

4. Once the constant load is fully applied, perform a linear analysis with the two load
cases - one for the full constant load and the variable load applied as a unit load.

5. Construct the global stresses as a superposition of the stresses due to the constant
and variable loads (indicated with indices ‘con’ and ‘var’ respectively) and express
the resulting principal stress as a function of the load multiplier for the variable
load (λ) as shown below:

σxx =σxx,con +λσxx,var

σyy =σyy,con +λσyy,var

σxy =σxy,con +λσxy,var

(3.6)
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Begin
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Figure 3.1: The general workflow in SLA for a plane stress state - with additional branches
‘A’ for the the case when damage occurs before the full application of constant loads, and

‘B’ for addressing redistribution. (IP refers to integration point)

σ1,2(λ) = 1

2
(σxx +σyy)±

√
1

4
(σxx −σyy)2 + (σxy)2 (3.7)

6. Subsequently, two scenarios have to be considered.

(a) Damage initiation: For integration points that are undamaged, the princi-
pal stresses are limited to the tensile and compressive strengths ( ft and fc)
resulting in quadratic inequalities in the load multiplier λ. Solving these as
equations instead would yield a closed form solution in λ for each governing
principal stress. The resulting load multiplier would either be a maximum or
minimum value corresponding to solving for the inequality σ1,2(λ) ≤ f , and
eventually sets of values of λ per integration point i , Λt

i and Λc
i , for tension
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and compression failures respectively, are found.

σ1(λ) ≤ ft resulting inΛt
i (3.8a)

σ2(λ) ≥− fc resulting inΛc
i (3.8b)

(b) Damage propagation: For integration points that are already damaged, the
fixed crack system nt is already known. For such points, the scaled combina-
tion of constant and variable loads is limited to the current allowable strength
on the saw-tooth, along each of the orthogonal failure directions n and t ,
resulting in linear inequalities. Again, solving for these inequalities results in
sets of values of λ per integration point per failure direction. For simplicity,
only the tensile failure relations are shown below.

σnn,con +λnnσnn,var ≤ ft,nn (3.9a)

σtt,con +λttσtt,var ≤ ft,tt (3.9b)

7. The sets of constitutively admissible range of λ values from the damaged and
undamaged integration points are subsequently assembled to find a common
subset that would reflect the constitutively admissible range of load multipliers at
the model level for the current analysis j . This would yield two scenarios as listed
below.

(a) Non-zero solution set: The maximum of the common subset is denoted as the
critical load multiplier λcrit for N number of events.

Λ
j
model =

N⋂
i=1
Λ

j
i (3.10a)

λ
j
crit = max(Λ j

model) (3.10b)

L j
crit =λconLcon +λvarLvar where λcon = 1 and λvar =λcrit (3.11)

(b) Empty solution set: When the stress states in two or more integration points
do not allow for a common set of constitutively admissible scaled combination
of the constant and variable loads, a return to an intermittent proportional
loading is done. The last successful load combination is scaled in a propor-
tional way thereby reducing the constant load temporarily and also partly
retaining the scaled variable load [139]. The integration point for which the
load multiplier λ is critical (least positive) is then identified.

L j
crit =λ

j
crit(λ

j−1
con L j−1

con +λ j−1
var L j−1

var ) where λ
j
crit =λ j

crit (3.12)

8. Once the critical integration point and load multiplier are determined, scale the
stresses and strains accordingly, and obtain the new state.

9. Remove all loads, update the strength and stiffness of the critical integration point
based on the saw tooth law, return to step 4, and repeat until the element/structure
is completely damaged.
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Improved total analysis The inherent feature of unloading and reloading non-proporti-
onally is the main cause for the problems associated with non-proportional loading in
total methods, and to supposedly overcome this, Alfaiate et al. proposed the Improved
total analysis [3]. Considering a non-proportional loading case of loads L1 and L2 applied
sequentially, the improved total analysis proposes an initial load close to the last success-
ful applied load instead of reloading again sequentially as L1 and L2. So, at analysis step j ,
the load is determined based on the preceding load combination as follows.

L j−1 = L1 +λ j−1 L2 (3.13)

L j = L1 + (λ j−1 +∆λ j ) L2 (3.14)

The term ∆λ j could be negative or positive but the total second load L2 applied
remains positive. In principle, the approach claims to allow for partial unloading and
thereby avoid reloading non-proportionally. However, it seems clear from a prestressed
beam example in their work that the stress history is not kept in memory. The stress state
corresponding to each load is indeed recomputed for the damaged state, the representa-
tion of using about 75% of the last successful load multiplier is only mathematical, and
the approach does not truly adhere to the physical loading history like in an incremental
approach. The approach is therefore purely total, and equivalent to the previously de-
scribed constrained maximisation analogy. Additionally, the approach does not indicate
its take on the limit point situation where there is no possible load multiplier. However,
simultaneously, Alfaiate et al. [3] proposed an incremental version, allowing for partial
unloading, called the secant-incremental analysis which is described in the following
section.

3.2. INCREMENTAL METHODS

Force-Release method Elias et al. [44] also pointed out that DeJong’s approach essen-
tially did not incorporate the correct loading history, and additionally, that an event may
lead to a series of subsequent failures in the vicinity of a damaged element without increas-
ing the prescribed displacement or forces. These regions normally appear as instabilities
in a displacement controlled experiment which look smoothed out. However, in principle,
these are snap backs which are referred to as avalanche of ruptures by Elias at al., driven
by redistribution of the elastic energy released from damaged elements into their vicinity.
Addressing this fundamental problem of using a quasi-static approach in simulating a dy-
namic phenomenon like an avalanche of ruptures due to damage (cracking or crushing),
Elias et al. [44] proposed the Force-Release method.

This method is a purely incremental approach wherein the non-proportional load
path is discretised into a series of piece-wise proportional loading paths. They proposed to
discretise each load into a series of np load vectors with magnitudes Lp , with p = 1,2, ..np ,
ensured to be non-decreasing, so that the proper loading/stress history is taken care of.
For force loads, the magnitude is based on the euclidean norm of the prescribed forces.
The variable tp , ranging from 0 to 1, represents how far the simulation has proceeded
along a certain load magnitude Lp , and is essentially a fraction of the prescribed load. It
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is expressed as in Eq. 3.17, where∆Lp are reference load increments analogous to the unit
load in SLA. The stiffness matrix, displacements, reactions, and stresses are denoted as
K, u, R, and σ respectively. Linear analyses are performed either with the reference load
increments, which would represent regions of static equilibrium in the response, or with
disequilibrium forces representing the intermediate redistribution region. After each load
increment or event, all quantities are updated with their incremental parts and stored.

The work flow is summarised as follows. To begin, linear analysis is performed with the
reference load increment of the first load∆L1 to compute the reactions∆R, displacements
∆u, and stresses ∆σ. Thereafter the critical element, i , is deduced such that the following
holds.

(σi +λ∆σi ) = f ∧ ∀i 6= k : (σk +λ∆σk ) < f (3.15)

In Eq. 3.15, all quantities with ∆ are their corresponding incremental values caused by the
load increment∆L1, and f is the allowable strength. Once the critical element is evaluated,
a decision between damage & redistribution or proceeding to the next load’s increment
∆L2 is made based on the following (with appropriate values of the load sequence p).

0 <λ≤ (1− tp )
Lp

∆Lp
(3.16)

tp = tp +λ Lp

∆Lp
(3.17)

On the one hand, if the inequalities of Eq. 3.16 are true, the critical element i is dam-
aged. The stiffness matrix, reactions, displacements, and stresses are updated with their
corresponding scaled incremental quantities. The variable tp is also updated with its
scaled increment as shown in Eq. 3.17. Subsequently, the system is loaded by disequi-
librium forces, S = R - Ku that arise due to the previous event. This region represents a
state of disequilibrium, and a new potential critical element is deduced based on Eq. 3.15.
0 <λ≤ 1 indicates that the unbalanced forces generated by the previous damage event i
need to be redistributed in its vicinity, by another rupture. The newly identified critical
element is damaged, and the stiffness matrix, reactions, displacements and stresses are
again updated. Thereafter, the system is loaded by the newly computed disequilibrium
forces to determine if there needs to be yet another rupture due to the redistribution.
Thereby, the avalanche of ruptures or the so-called redistribution loop continues, as long
as 0 <λ≤ 1, through several disequilibrium states before returning to static equilibrium.
Once the avalanche finishes, the simulation moves to the next load Lp+1.

On the other hand, if the inequalities of Eq. 3.16 do not hold, λ= (1− tp )(Lp /∆Lp ) and
it indicates no damage possibilities until the end of the load ∆Lp . In other words, the
system is in equilibrium and further external load is added. The internal state parameters
are updated and the simulation moves to the next load Lp+1, similar to the continuation
at the end of the avalanche. The entire workflow is shown in Figure 3.2.

The Force-Release method, in summary, uses the constitutive model as in SLA while
performing linear analyses with reference load increments which are fractions of the
total prescribed load. Each reference load increment corresponds to an analysis which
may or may not lead to damage. Upon damage, the stress from a damaged element
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is released gradually through a sequentially linear redistribution loop wherein other
elements may be damaged. The approach is suitable for non-proportional loading paths
but cannot handle snap backs because of its incremental nature. Additionally, although it
is claimed that these imposed loads could either be forces or prescribed displacements,
for simulations involving global softening, the Force-Release procedure would work only
under prescribed displacements since imposed forces cannot reduce in magnitude.
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Figure 3.2: The general workflow in the Force-Release method (IP refers to integration point)

General method This approach is shown to be a generalisation, of which the load-
unload and the Force-Release methods are extreme cases [43]. It also overcomes the
problems of non-observance of snap back in the Force-Release method and the lack of
avalanche of ruptures due to a single damage event in the load-unload method. The gen-
eral method is based on the redistribution of stresses from damaged elements as is done
in the Force-Release method and the simultaneous scaling of external load characteristic
of the load-unload method.

The formulation involves defining two reference stress variables ∆σL and ∆σS cor-
responding to the external load increment and the disequilibrium forces. The method
is suited to either force or displacement loading or both (depending upon appropriate
boundary conditions). The total reference stress state is expressed as the sum of the two
reference stress variables, enhanced by a slight modification of the external load by a
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parameter ω, as shown in Eq. 3.18. ω determines the ratio between the effects of the
external load and the disequilibrium forces to the reference stress. Substituting this in the
governing equation of the Force-Release method, Eq. 3.15, the expression for the general
method is deduced (Eq. 3.19).

∆σ=∆σS +ω∆σL (3.18)

(σi +λ(∆σS,i +ω∆σL,i )) = f ∧ ∀i 6= k : (σk +λ(∆σS,k +ω∆σL,k )) < f (3.19)

The method now is general because the choice of the parameter ω allows the process
to be steered as desired. By setting ω= 0, the external load is kept constant which would
be equivalent to the Force-Release method. It can also be led to alternate equilibrium
states by choosing values for ω arbitrarily. If the ω is set such that the redistribution
finishes exactly when the external load diminishes to zero, the path would lead back
towards the origin and this corresponds to the load-unload method. The choice of the
parameter to control the external load is direct while indirect controls like the Crack
Mouth Opening Displacements (CMOD), which are often used to steer experiments, are
also possible in this set-up of the general method. The approach in shown to be suited to
both proportional and non-proportional loads [43].

Simultaneously, Liu and Sayed [81] proposed another general approach which also
treats the load-unload and Force-Release methods as special cases. However, this is based
on a simple linear interpolation of the trial displacement fields of both the methods, as
against the scaled combination of the reference stress states due to the external load
and residual forces in Elias’ general approach [43]. Elias claims that the latter seems a
more reasonable formulation considering the underlying physics of the problem since
the displacement field interpolation lacks a strong physical motivation [43].

Secant-incremental analysis In addition to the previously described Improved total
analysis, a purely incremental procedure referred to as the secant incremental solution
was proposed by Alfaiate et al. [3]. Inspired from the former, the latter approach allows for
partial unloading with the secant stiffness Kj−1 of the previous step thereby avoiding sud-
den load drops as in SLA. The load is kept close to the previously applied load, a reloading
secant-incremental stiffness K∗ is determined based on a heuristically evaluated local
constitutive D∗ matrix, and the minimum load factor is determined to reach the envelope
using the defined stiffness relation. The new secant stiffness Kj is then determined a pos-
teriori. Additionally, the approach is shown to allow for non-secant unloading, without
allowing the damage to increase, by discretising the unloading path using intermediate
multi-linear branches. Unlike the improved total analysis, this approach is incremental
in principle and therefore overcomes the non-proportional loading problem naturally.
The approach, however, is computationally intensive owing to the need of evaluating
the global stiffness matrix twice per analysis, and there is also no proof that there always
exists an admissible solution for λ.
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3.3. MIXED FORMULATIONS

Combined incremental-total approaches Two combined incremental-total approaches
were first presented by Graca-e-Costa et al. and were called the Automatic Method and
the NIEM (Non-Iterative Energy based method) [57]. Both approaches, in contrast to
SLA, use multi-linear material laws to ensure that all nonlinearities are due to loading
or unloading. The idea of both these methods it to employ a non-iterative incremental
solution, and then to shift to the total approach intermediately when bifurcation points
arise, to guarantee a unique admissible path which may not be traced otherwise. The
incremental part is controlled by the increment of loads leading to the largest energy
release at the structural level in the FE model, in line with the Energy release control
proposed by Gutierrez et al. [61]. Locally, at the integration point level, for a certain
load increment ∆L, the evolution of the constitutive law is forced to follow the valid path,
either positive (loading) or negative (unloading), that ensures the release of the largest
amount of energy. To begin with, the critical load factor λcrit is evaluated in a trial step,
which corresponds to reaching the nearest point in the multi-linear law for an integration
point. Subsequently, the true step ensuring ∆Ltrue = λcrit∆Ltrial is performed, and the
material stiffness is updated. This carries on as long as bifurcation points do not arise.
When they do, the total approach takes over. The stiffness update in each total step could
be done in two ways, and accordingly two approaches were deduced.

In the first approach, referred to as the Automatic Method, similar to SLA, the secant
stiffness is reduced by a predefined factor as in the saw-tooth law. Subsequently, only one
of the points becomes critical and reaches the original envelope, while all others are on
their respective current secant paths. After intermediately traversing through this region,
the method shifts back to the incremental approach using tangent stiffness matrix Dtan.
In the second approach, referred to as the NIEM (Non-Iterative Energy based method), the
a priori definition of the secant stiffness reductions is avoided. When an integration point
encounters a bifurcation, a true incremental step is performed, although it is incorrect.
This is done to determine the new updated stiffness for all non-critical points that may be
on the envelope or unloading, and compute their secant stiffnesses as:

K j = σ j

ε j−1 +∆ε j−1
trial

(3.20)

while keeping the secant stiffness fixed for the critical bifurcation points. This step in
any case is deemed null, and the total approach is adopted with the computed secant
stiffnesses. Eventually, the approach reverts back to the incremental part in a similar way
to the Automatic Method.

Although the material loading history is taken care of in the incremental part, the
total part of both approaches still required a non-proportional loading approach which
in turn was based on DeJong’s approach of the principle of superposition of stresses,
followed by the determination of load factors. However, the authors mention that the
adopted procedure overcomes the development of new nonlinearities during the initial
loading (non-proportional reloading) due to the preferential usage of the incremental
solution. Both methods have been validated against several benchmarks, concluding that
the NIEM leads to more consistent results in terms of energy dissipated, peak capacity
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and the consistency condition. Both methods were able to properly track the material
loading history as against a total method like SLA due to the inherent incremental nature.
Additionally, no material parameters were to be regularised, as in SLA to ensure mesh
objectivity, due to the use of multi-linear constitutive relations.

Incremental Sequentially linear analysis The Incremental Sequential Linear Analysis
(ISLA) was proposed recently [156], in which an incremental procedure is used in combi-
nation with internal iterations intermittently. In contrast to the traditional incremental-
iterative methods, this approach uses the secant stiffness relation globally and there-
fore the solution path will have jumps similar to the combined incremental-total ap-
proaches. The imposed load is either force or displacement controlled. In general, for a
non-proportional loading case with two loads L1 and L2, for each load step the loading
and stress history in stored because of the incremental nature. Three variations namely:
load control, damage control and load & damage control were proposed depending on
the method of stiffness reductions, and how the corresponding loading factors λ1,λ2 are
treated.

In the load control, the λ1 corresponding to L1 is fixed for all load steps (once fully
applied), and the λ2 corresponding to L2 is fixed in a certain load step j −1. A critical
element is identified based on the ratio of the strength to the total governing stress
accumulated thus far. For the subsequent step j , the second load factor λ2 is increased
and if the stress in the critical point exceeds the allowable strength, damage is increased
based on the saw-teeth definition and the stiffness matrix is updated. The displacements
and other system variables of the previous step j −1 are restored, and the internal forces
are calculated to check for equilibrium. If not, damage is again induced to the same
structure-state as in step j −1, for the same or another critical element, until the algorithm
reaches a temporary equilibrium state using Newton-Raphson (N-R) iterations. In the
damage control method, once a critical element is damaged, the damage is kept constant
and the load multiplier λ2 corresponding to L2 is repeatedly reduced based on a constant
reduction value or a function, using N-R iterations to arrive at an equilibrium state. In
the load & damage control method, once a critical element is damaged, the damage is
also varied (in the same or different critical elements) along with the load multiplier λ2

corresponding to L2, which is also iteratively reduced, to arrive at an equilibrium state.
The load control method in ISLA can be seen as an equivalent of the Force-Release

method which also traverses through disequilibrium states to arrive at equilibrium. Addi-
tionally, they are similar in the sense that post peak softening behaviour can be realised
only if the imposed loads are prescribed displacements.
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3.4. DISCUSSION ON THE METHODS

Sequentially linear methods, thus, differ on two main accounts. Firstly, the application
of load and the tracking of its history are different under a non-proportional loading
situation. The class of total approaches unload and reload non-proportionally. However,
as long as the current damage situation allows for all previously applied loads (or the so
called constant loads) to be applied without new failures, the constant loads are truly
kept constant and this can be interpreted as unloading only until the beginning of the
variable load. When the limit point situation arises, previously described in Section 3.1,
the constant load could potentially cause premature failure problems which brings about
the need for an explicit redistribution‡. Of all the total approaches, only the constrained
maximisation analogy with the double load multiplier strategy [139] provides an alter-
native in such a situation by allowing to unload and reload from the beginning of the
constant load. Or, in other words, an intermittent proportional loading is performed to al-
low for redistribution by scaling the last successful load combination proportionally, and
potentially reach a damage state which allows for full recovery of the constant loads. For
simplicity, the constrained maximisation variant of SLA with the double load multiplier
strategy [139] is referred to as SLA in the remainder of the thesis. In case of the class of
incremental methods, the inherent incremental nature keeps track of the loading history
thereby avoiding the problems with regard to non-proportional loading.

Secondly, the avalanche of ruptures or multiple failure events is addressed differently
by both classes of approaches. In case of the total approaches like SLA, these manifest
as sharp snap backs or sudden decay of loads. SLA brings about an instantaneous stiff-
ness reduction in the damaged element thereby relieving it of the stress. However, the
neighbouring elements that are almost loaded up to their respective strengths are unable
to take over the released stress. In such a scenario, the SLA set-up allows for a reduction
in load factor as the only option to redistribute, which brings about a snap back in the
response. This happens multiple times, inducing failures in the surrounding elements,
before allowing for a full recovery of the load factor close to the true equilibrium path.
While in the case of the incremental approaches like the Force-Release method, the load
is kept constant and the avalanche of ruptures are achieved in states of disequilibrium
using a sequentially linear redistribution loop. Herein, the unbalanced forces that may
arise due to a damage event are gradually reduced. Thus, both the approaches address
the time scales of redistribution differently as has been previously pointed out by Liu and
Sayed [80]. It is understood that when the internal forces of the damaged elements are
released instantaneously, the total methods are preferable. Contrarily, when the internal
forces are released gradually, the elemental failure sequence becomes crucial, and the
Force-Release method becomes suitable. These time scales for release of internal forces,
either instantaneously or gradually, due to a damage event are in reference to the loading
rate [43]. That is, when the loading protocol can react fast enough to a rupture, total
methods are suitable and on the other hand, when the load stays constant, the incre-
mental methods are suitable. Liu and Sayed [80] conclude from their illustrations with
lattice models that damage evolution in the Force-Release method ensures compatibility

‡These premature failure problems due to unloading and reloading non-proportionally affects the LATIN
method as well, described in Section 2.2.2 under the Other methods subsection.
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of controlled displacement loadings throughout the analysis, and that the area under the
force displacement curve is the exact amount of work done by the external loads and the
released internal forces.

There exists another minor difference between the approaches. With respect to
constitutive relations, incremental formulations allow for discretised laws with elastic
stiffnesses for evolving stress points. This means unloading under arbitrary stiffness is
possible which allows for plastic strains unlike the total approaches which rely purely
on damage mechanics. Furthermore, such modified constitutive models would make
it possible for incremental approaches to be applied to cyclic loading problems. On the
other hand, total approaches unload to zero-stress-strain state and plastic strains cannot
be captured in principle. However, there exists an alternative for allowing plastic strains
in a total set-up by defining and discretising a non-secant unloading branch using several
saw-teeth. This is in principle possible but is not investigated in this thesis.

Both the aforementioned major differences, between the total and incremental ap-
proaches to the sequentially linear method, are investigated in Chapter 4 using continuum
FE models of experimental benchmarks that exhibit true brittle collapse.

Figure 3.3: (a) Secant Saw-tooth laws applicable to both total and incremental sequentially
linear methods, and (b) elastic saw-tooth laws applicable to the incremental ones.



CHAPTER 4
REDISTRIBUTION MECHANISM IN

SEQUENTIALLY LINEAR METHODS*

The topic of non-proportional loading in SLA and similar Sequentially Linear Methods
(SLM) continues to be a debated one. This chapter illustrates the necessity for stress re-
distribution in the quasi-static set up of SLM to simulate the dynamic† phenomenon of
cracking/crushing, and elucidates the differences between a purely-total and an incremen-
tal approach for continuum finite element problems. Firstly, in Section 4.1, the inherent
differences between SLA with the double load multiplier strategy using a constrained max-
imisation approach (total) and the Force-Release method (incremental), are illustrated
using three case studies involving non-proportional loading. These include a prestressed
concrete beam example, and two in-plane pushover analysis examples of a slender can-
tilever masonry wall and a squat cantilever reinforced concrete (RC) wall. Thereafter, in
Section 4.2, the difference between prescribed forces and prescribed displacements during
the intermittent proportional loading phase in sequentially linear analysis is illustrated.
Finally, Section 4.3 presents the conclusions of the work.

4.1. COMPARATIVE STUDY: SLA VS FORCE-RELEASE METHOD

The difference in the mechanism of stress redistribution between a total and an incremen-
tal SLM is illustrated in this section using structural continuum finite element models. All
FE simulations in this study are performed in 2D under plane stress assumptions. The
constitutive model is that of the smeared fixed crack/crush model using a simple Rankine-
type failure surface for crack/crush initiation. The shear retention is damage based [132],
and the uniaxial saw-tooth relations are of the ripple band type illustrated as in Figure 2.2,
with p the saw-teeth discretisation factor, unless stated otherwise. In the presence of
interfaces, similar ripple band saw-teeth relations are used to simulate discrete cracking,
and for reinforcements, a ripple band saw teeth with constant residual stress resembling
ideal plastic response is used to simulate yielding. The latter is kept damage based as
in Reference [139] for suitability to SLA. Alternatively, for the Force-Release method, a
discretised elasto-plastic constitutive law can be made with elastic stiffnesses to attain
true plastic unloading but this is not considered herein. Pure sliding failures, which are
possible in typical masonry mechanism, may not be relevant for masonry walls which fail
in rocking as in Sections 4.1.2 & 4.1.3. Therefore, the modelling approach is restricted to

*This Chapter is based on the author’s article published in Engineering Fracture Mechanics 2020 [105]. Minor
modifications are made to suit the thesis.

†The word ‘dynamic’ in this Chapter/Thesis, used at several locations, refers to the dynamic nature of the
fracture process. It is reiterated that all studies herein are performed under quasi-static assumptions with no
inertial effects.
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macro-modelling, and not the detailed micro or meso-modelling in combination with
Coulomb friction interface formulation for SLA as in Reference [139] and Chapter 6.

The loading condition for all the chosen examples is non-proportional and is com-
posed of two stages: firstly, a precompression or prestress is added as force loads, followed
by a second stage of imposed/prescribed displacements. The force loads and prescribed
displacements are depicted in orange and green/yellow colours respectively in the FE
model descriptions for consistency.

4.1.1. PRESTRESSED BEAMS

Experiment Several three-point bending tests were performed on plain concrete beams
in an experimental campaign by Zhao et al. [157]. These were previously analysed using
SLA with plane stress assumptions [139]. Of these beams, SG2-B1, of span 600 mm, 150
mm depth, and 120 mm thickness is chosen as reference for this study. The beam is tested
in three point bending with a notch of depth 60 mm and 2 mm width, and a schematic
representation of the experiment is shown in Figure 4.1(a). The middle of the beam is in
pure bending, and if such a beam were to be subject to axial loads (purely for an academic
purpose) like a prestress force, the loading would become non-proportional. The effect
of compressive axial loads will increase the capacity of a beam and has been a proven
benchmark study for testing non-proportional loading strategies in SLA thus far [40]. This
simple case study is used to compare the performance of SLA and the Force-Release
method.

Finite Element Model The simply supported beam is modelled with geometry as shown
in Figure 4.1(a), except that the notch width is assumed to spread over an entire element
length. The FE model is made using linear 4-noded iso-parametric plane stress elements,
with 2 translational degrees of freedom per node and a regular 2×2 Gaussian integration
scheme. All elements are square and approximately 10 mm in size. Concrete has been
modelled as a linear-elastic material everywhere except the notched column of gray
coloured elements, refer Figure 4.1(b), where all the physical nonlinearity is lumped (only
tensile). A linear tensile softening saw-tooth law with material parameters mentioned in
Table 4.1 is used. Two cases are considered in this section. First, the three point bending
test of SG2-B1 beam as in the experiment is simulated. Since the notch extends over
one whole linear element, the point load is assumed to be equivalent to two prescribed
displacements applied either side of the central element at the top of the notch as shown in
Figure 4.1(b). Second, the beam is firstly assumed to be subject to a uniform compressive
prestress, of magnitude 0.42 MPa, at the ends of the beam before proceeding to the three
point bending.

Results & Discussion The force displacement curves from SLA and the Force-Release
method, for the first case without axial loads, match up well with those from the experi-
ment. Furthermore, both simulations show the propagation of the tensile crack through
the height of the notch, resulting in the reduction of effective cross section of the beam.
This behaviour results in the loss of flexural capacity, and is eventually observed as the
global softening in the force displacement curves shown in Figure 4.1(c). Furthermore, the
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Table 4.1: Modelling and Material parameters - Prestressed beam

Parameters Values

Young’s Modulus E0 [GPa] 16

Poisson’s ratio v0 0.15

Tensile strength ft [MPa] 3.78

Mode I fracture energy GI
f [N/mm] 0.224

Tension softening relation Linear

Saw-teeth discretisation factor - tensile (p) 0.15

No. of saw teeth 16

Compressive behaviour Linear elastic

Crack bandwidth h [mm] 10

Shear retention factor β 10−4

Figure 4.1: (a) Schematic diagram of the 3-point bending test on beam SG2-B1 by Zhao et al. [157], (b) FE model
of the set-up with axial force loads and prescribed displacements for the bending, and (c) load-displacement
curves for the 3-point bending case, with and without axial loads, simulated as in SLA and Force-Release method

SLA and Force-Release responses are similar for the non-proportional case of axial loads
followed by the bending load as well. The presence of axial loads like the compressive
prestress tends to delay the cracking and consequently, results in a higher capacity.

However, there are small variations between SLA and Force-Release in both sets of
responses with and without the prestress force. The SLA shows small snap backs in the
response which is indicative of the load-unload nature of the approach, and the way
multiple failure events are handled. Since one event occurs at a time, a potential event
in a neighboring integration point occurs only by allowing for a reduction of the load
in the next linear analysis. Conversely, in case of the Force-Release method, vertical
drops are observed in the force displacement response rather than snap-backs. Since
the previously applied load can not be modified, for a constant prescribed displacement,
an additional event or more occurs due to the gradually released unbalanced forces
from the previous event. This denotes a region of disequilibrium, and is referred to as
the avalanche of ruptures (previously described in Section 3.2). Additionally, since the
constant load i.e the compressive axial load is not too high, SLA does not run into the
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intermittent proportional loading and the associated redistribution. That is, SLA could
keep the prestress load (constant) throughout the entire simulation, while fully satisfying
the constitutive laws. This case study shows the inherent difference in load application
between the two approaches. The small differences in element failure sequence is not
apparent due to the problem definition, wherein the overall final crack is confined to a
single band of the elements, and is therefore not deliberated upon.

4.1.2. PUSHOVER ANALYSIS OF A SLENDER MASONRY WALL

Experiment TUDCOMP-20 was one of the several quasi-static in-plane cyclic tests
performed recently at the TU Delft laboratories. This was part of an extensive experi-
mental campaign to characterise the response of unreinforced Dutch masonry buildings
to induced seismicity [87]. The specimen was a calcium-silicate brick masonry wall,
roughly 2.7 m high and 1.1 m long, with a thickness of 102 mm. The wall was tested
under cantilever boundary conditions, i.e. it was clamped at the bottom and free to rotate
at the top. Firstly, an overburden stress of 0.63 MPa was applied on the wall through
a combination of actuators and a steel beam as shown in Figure 4.2(a). This load was
maintained constant throughout the experiment while allowing for the rotation of the
top of the wall. Subsequently, a cyclic lateral displacement was applied to the top of the
wall using a horizontal actuator connected to the top steel beam. This wall exhibited
pure rocking movement and for large displacements, splitting cracks were observed at
the bottom-left and bottom-right corner of the wall, refer Figure 4.4(a). This was followed
by the phenomenon of toe crushing, when the base shear force dropped substantially
for the same imposed displacement, starting at the red dot in the experimental response,
refer Figure 4.2(b). Considering the scope of this study/chapter, the explosive failure in
this non-proportionally loaded experiment makes for an interesting case to be investi-
gated using the SLA and Force-Release methods. The explosive failure led to instability
of the wall and its eventual collapse (refer Figure 4.4). For further information about the
experiment, the reader is referred to Reference [48].

Table 4.2: Modelling parameters - TUDCOMP20: identifed by sensitivity studies
based on material properties obtained from the experiments [87, 48]

Material Parameters Continuum Interface
MASONRY Young’s Modulus E0 [GPa] 4.972 -

Normal & Shear stiffness [N/mm3] - 104

Poisson’s ratio v0 0.16 -
Tensile strength ft [MPa] - 0.13
Mode I fracture energy GI

f [N/mm] - 0.15

Saw-teeth discretisation factor - tensile (p) - 0.1
Tension softening relation - linear
Compressive strength fc [MPa] 6.35 -
Compressive fracture energy Gc [N/mm] 20 -
Compressive softening relation parabolic -
Saw-teeth discretisation factor - compressive (p) 0.1 -
Crush bandwidth h [mm] 55 -
Shear retention factor β Damage-based [132] 10−2

STEEL BEAM Young’s Modulus E0 [GPa] 210 -



4.1. COMPARATIVE STUDY: SLA VS FORCE-RELEASE METHOD

4

49

Figure 4.2: (a) Experimental set-up to apply precompression followed by a prescribed cyclic lateral
displacement to the top of a cantilever wall, and (b) the experimental response of base shear against

the net top horizontal displacement, additionally, showing the point of onset of collapse [48]

Finite element model Since cyclic loading applications are not yet possible in the SLA
framework, the loading is kept monotonic and the results from the simulation are com-
pared to the backbone/envelope curve of the experimental cyclic response as shown in
Figure 4.3(b). The finite element model of the wall, as shown in Figure 4.3(a), is made
with 4-noded iso-parametric plane stress elements, roughly 55×55 mm in size, with linear
interpolation shape functions and a 2×2 Gaussian integration scheme. The compressive
nonlinearities are in these continuum elements and are described by a smeared fixed
crush framework, while behaving linearly in tension. The uniaxial saw-tooth compressive
softening law is of a parabolic type [51] with material parameters as described in Table 4.2.
Additionally, a zero-thickness interface (shown in green in Figure 4.3(a)) is provided at
the bottom of the wall to simulate the discrete cracking leading to the rocking behaviour.
This is made using 2+2 noded interface elements, roughly 55 mm in length each, with
linear interpolation shape functions and a 2 point Newton-Cotes integration scheme. The
tensile nonlinearities in these interface elements are described using a linear tension
softening type saw-teeth law with material parameters mentioned in Table 4.2. The FE
model also includes another row of continuum elements at the top of the wall (not shown
herein) with stiffer properties behaving linear elastically. This is to ensure the cantilever
boundary conditions. The bottom of the wall is fixed as shown in Figure 4.3(a). The over-
burden load is applied first as force loads at the top edge of the wall, and subsequently, a
prescribed displacement is applied at the left top corner. The assumption in the FE model
to separate tensile nonlinearities into the discrete cracking interface and the compressive
ones into the continuum membrane elements is made to simplify the problem while
accurately capturing the failure mode.

Results & Discussion Firstly, both the SLA and Force-Release simulations exhibit the
rocking behaviour, which is localised in the discrete cracking interface, followed by com-
pressive softening in the toe region of the wall. This leads to dissipation of energy resulting
in a rather ductile response as shown in Figure 4.3(b). It is clear that both responses show



4

50 4. REDISTRIBUTION MECHANISM IN SEQUENTIALLY LINEAR METHODS

reasonable qualitative agreement to the experiment in terms of the load-deformation
curve and the failure modes. Although the two simulations are rather identical, there are
minor differences (similar to those observed in the prestressed beam case, Section 4.1.1).

Figure 4.3: (a) FE model of the TUDCOMP20 test, (b) the base shear vs top displacement response
for SLA & Force-Release methods compared against the experimental backbone curve - including

the reference points during the collapse mechanism, and (c) evolution of the precompression
load (normalised) during the simulations

Figure 4.4: Failure pattern of masonry wall in the TUDCOMP20 experiment
before collapse (left) and after collapse (right) [48]

The explosive failure is captured adequately by both methods, but the mechanism
of redistribution differs. The point of onset of the mechanism is denoted by a green
mark in the Figure 4.3(b), and it occurs around the same imposed displacement for
both simulations. The damage patterns are also identical as seen in Figure 4.5(a) where
DmSS is the amount of damage accumulated in the discrete cracking interface and the
crushing continuum. DmSS ranges from 0 to 1, which corresponds to undamaged and
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Figure 4.5: Failure patterns of SLA & Force-Release simulations of the TUDCOMP20
experiment: (a) at the onset of collapse, and (b) during collapse, in relation to Figure 4.3

fully damaged conditions. It is clear that the two continuum elements at the bottom
right corner of the wall are fully crushed and that all interface elements to the left of
this region are completely cracked, leaving a tiny portion which effectively supports
the wall. The ensuing mechanism is described by both approaches differently. On the
one hand, SLA runs into the limit point situation described previously in Section 3.1,
where there is no constitutively admissible critical load multiplier. The intermittent
proportional loading (IPL) commences and the last successful load combination is scaled
proportionally. Firstly, the IPL occurs a little before the onset of collapse as well but
recovers back to the conventional non-proportional loading. However, once the collapse
begins, the IPL never recovers which is evident from the amount of precompression, the
first load applied (constant), that remains on the structure in the rest of the simulation,
refer Figure 4.3(c). The IPL implicitly reduces the constant load, thereby describing the
entire dynamic brittle collapse mechanism while maintaining equilibrium. On the other
hand, the Force-Release method runs into an avalanche of ruptures while going through
disequilibrium states. Since the previously applied load can not be altered, for the same
imposed displacement and the full value of precompression, the Force-Release method
attempts to allow for redistribution due to successive failure events by gradually releasing
the stresses. The ongoing failure is therefore captured differently by both approaches as
seen in Figure 4.5(b).

The difference between the approaches in describing collapse may be interpreted
as two extremes of the time scales for a dynamic redistribution process [43]. SLA in this
situation is essentially assuming that the loading equipment is fast enough to react to the
collapse mechanism, alter the load and consequently, release the stresses quickly to avoid
further failures. This is clear as the eventual failure pattern additionally only involves the
crushing of the tiny effective portion supporting the wall before the onset of collapse. The
crush zone appears to be more realistic, in a quasi-static sense, wherein SLA gives room for
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damage propagation while quasi-statically releasing the loads. The Force-Release method,
on the other hand, stays true to the displacement controlled experiment, and realises
the full collapse by gradually releasing the stresses in a sequentially linear redistribution
loop. Although the process is dynamic, the Force-Release method effectively neglects all
inertial forces. Since vertical equilibrium is not possible anymore, the simulation could
be interpreted to have been completed, and the wider crush-zone is indicative of this
instability. In summary, both approaches adequately describe a real non-proportionally
loaded experiment involving true brittle collapse, in terms of the failure patterns and the
eventual mechanism, differing only in their respective approaches to the latter.

4.1.3. PUSHOVER ANALYSIS OF A SQUAT REINFORCED CONCRETE WALL

Experiment The third benchmark is a reinforced concrete shear wall, named SW13,
from the experiments of Lefas et al. [78]. Figure 4.6 shows the experimental set-up, the
geometry, and reinforcement layout of the wall. The vertical and horizontal reinforcement
bars were of 8 mm and 6.25 mm diameter respectively. Additionally, mild steel stirrups
of 4 mm diameter were used to confine the wall edges. An axial load of 355 kN was first
applied through a spreader beam to the top edge of the walls, and the horizontal load
was then applied to the header beam at a rate of 0.04 kN/sec. The crack progression
began with the first flexural cracks near the bottom third of the tensile edge at around
15% of the horizontal load (49.5 kN). At 40% of the horizontal load (130 kN), the first
inclined crack appeared, and simultaneously, the flexural cracks had already spread at
a slight inclination within the wall web. This was followed by growth in the flexural and
inclined cracks, almost reaching the compressive edge. The first yielding of the tensile
reinforcement occurred at 75% of the horizontal load (250 kN), which was followed by the
failure. Figure 4.7(b) shows the failure that occurred by way of near-vertical splitting of
the compressive zone at a peak load of 330 kN. For further information on the experiment,
the reader is referred to Reference [78].

Figure 4.6: (a) Experimental set-up of the shear wall test by Lefas et al. [78], and
(b) geometry & reinforcement detailing of the wall [78]
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Figure 4.7: (a) FE Model of the RC shear wall test (reinforcements in yellow), and
(b) the final failure pattern of the experiment [78]

Table 4.3: Modelling parameters - RC Shear-Wall: identified by studies from the work of References [33, 97]

Material Parameters General Compression Tension
CONCRETE Young’s Modulus E0 [GPa] 28.537 - -

Poisson’s ratio v0 0.16 - -
Strength fc , ft [MPa] - 34.5 2.67
Fracture energy Gc ,GI

f [N/mm] - 34.5 0.138

Saw-teeth discretisation factor (p) - 0.1 0.1
Softening relation - Parabolic Linear
Crush/Crack bandwidth h [mm] - 75 75
Shear retention factor β - Damage-based [132] Damage-based [132]

REINFORCEMENTS Young’s Modulus E0 [GPa] 210 - -
Saw-teeth discretisation factor (p) - 0.1 0.1
Ultimate strain - -0.02 0.02

8 mm φ Yield Strength [MPa] - -470 470
6.25 mm φ Yield Strength [MPa] - -520 520

4 mm φ Yield Strength [MPa] - -420 420

Finite element model Figure 4.7(a) shows the discretised model of the shear wall used
in the SLA and Force-Release simulations. 6 noded iso-parametric triangular continuum
elements of 75 mm, with quadratic interpolation shape functions and a 3-point Gaussian
integration scheme, are used. Reinforcements are modelled as embedded units and
are shown in yellow in Figure 4.7(a). The constant vertical load of 355 kN is applied
as two uniformly distributed loads over a distance of 125 mm on the top edge of the
wall, to replicate the the load application to the spreader beam as in the experiment.
The horizontal load is applied to the right side of the header beam at mid-height as
a prescribed displacement. The foot of the wall is not modelled because its influence
was found to be negligible [33]. Instead, the base of the wall is fixed with translational
restraints in both directions to model the clamped wall base. Table 4.3 shows the material
parameters used in the simulations for concrete, according to the fib Model Code 2010
[16], and reinforcement properties obtained from the experiment.
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Figure 4.8: (a) Base shear vs top displacement response for SLA & Force-Release methods compared against
the experimental response - including the reference points during the collapse mechanism, and (b)

evolution of the precompression load (normalised) during the simulations

Results & Discussion The results from the SLA and Force-Release simulations for the
RC shear wall test, shown in Figure 4.8, exhibit the decisive failure as a drop of load.
Although the response from both the approaches is stiffer than the experiment, have
a delayed onset of cracking and exhibit a lower peak load, the qualitative behaviour is
consistent with the experiment. These problems are not a feature of the SLA or the Force-
Release methods, but also arose in previous NLFEA simulations, and is more a feature
of the constitutive modelling used [97, 33]. The material parameters in Table 4.3 are
based on previously done NLFEA studies [97, 33] to obtain the best fit. The flexural crack
progression is followed by the inclined cracks until the peak load (Figure 4.11). Eventually,
the toe crushing combined with yielding of reinforcements is captured well. The toe
region of this wall undergoes crushing of the concrete (refer Figure 4.9), compressive
yielding of the reinforcements (refer Figure 4.10), and additionally, exhibits splitting
cracks at the onset of collapse (Figure 4.12). The splitting cracks in this region are due
to the lateral compressive softening, in addition to the presence of the yielding vertical
reinforcements that are close to rupture.

The collapse mechanism begins with the crushing of concrete at the toe and the yield-
ing of the reinforcement as seen in Figures 4.9&4.10, which further propagates through
the simulation. Both approaches capture this adequately. However, the drop of load
corresponding to the eventual instability is described by the SLA and Force-Release meth-
ods in diametrically opposite ways with regard to the time scales for the redistribution.
This is in line with the differences observed between the approaches to the explosive
failure in the previous case study, and is clear from how the loading is modified in case
of SLA (Figure 4.8(b)) during collapse. SLA again describes the collapse mechanism
while maintaining equilibrium by reducing the constant load, while the Force-Release
method addresses it using the avalanche of ruptures in disequilibrium. Furthermore, as
the complex stress state in this zone evolves and undergoes redistribution, SLA experi-
ences stress reversal problems. The evolving splitting cracks (due to lateral compression
softening) in this complex zone causes unloading in surrounding elements, resulting in
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crack closure in some elements with incorrect damaged stiffness. This is a characteristic
to the approach, wherein damaged stiffness is carried onto tension or compression upon
stress reversal due to redistribution. This therefore hinders the splitting crack formation
at the peak and close to the onset of collapse in the case of SLA, refer Figures 4.11 &
4.12. On the other hand, at a similar stage in the simulation, Force-Release captures
the splitting cracks better as observed in Figure 4.12. This is because the stress reversal
problem is less accentuated in case of the Force-Release method, which is in turn due
to the inherent incremental nature of the approach in keeping track of the stress history.
Nevertheless, a dedicated stress reversal event and a corresponding load multiplier should
be incorporated in line with previous proposals for SLA in continuum models [103] and
the Force-Release method in lattice models [45].

Figure 4.9: Damage patterns of SLA & Force-Release simulations of the RC shear wall experiment
indicating toe crushing at the onset of collapse (refer Figure 4.8). DmSS ranging from 0 to -1

indicates undamaged to fully crushed situation.

Figure 4.10: Reinforcement vertical strain patterns of SLA & Force-Release simulations of the
RC shear wall experiment indicating compressive yielding and rupture (at the toe region) at

the onset of collapse (refer Figure 4.8)



4

56 4. REDISTRIBUTION MECHANISM IN SEQUENTIALLY LINEAR METHODS

Figure 4.11: Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release
simulations of the RC shear wall experiment around the corresponding peak loads (refer Figure 4.8)

Figure 4.12: Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release
simulations of the RC shear wall experiment at the onset of collapse. (refer Figure 4.8) (Splitting cracks

at the toe captured better in Force-Release compared to SLA)

Figure 4.13: Crack pattern plots (Eknn denotes the normal crack strain) of SLA &
Force-Release simulations of the RC shear wall experiment during collapse (refer Figure 4.8)
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4.1.4. PUSHOVER ANALYSIS ON A 2D MASONRY FACADE

Experiment A full scale solid clay-brick masonry building tested by Magenes et al. [85]
is a well known benchmark study to investigate the seismic response of masonry buildings
[38]. It consists of four walls: walls A + B + C which are connected by an interlocking
brick pattern around the corner, and wall D which is disconnected from perpendicular
walls A and C (Figure 4.14(a)). This detached wall can be simulated using 2D plane stress
elements. Although the experiment was a cyclic test, this benchmark is herein simulated
with monotonically increasing lateral loads, and the backbone curve of the cyclic response
is used as reference for comparison.

D
C

B

A

Figure 4.14: (a) The experimental scheme of the quasi-static cyclic pushover test on a
2-storey house, (b) the dimensions of Wall D of the house, and (c) the cyclic experimental

crack pattern of Wall-D at ultimate displacement [85]

The geometry of the facade is shown in Figure 4.14(b) and has a thickness of 0.25 m.
The facade is loaded in two stages: First, the floors are loaded by a distributed load of 10
kN/m2, resulting in total vertical loads of 248.4 kN and 236.8 kN at the first and second
floor respectively. The floors rest on beams, which are connected to walls B and D, such
that half of the floor load is carried by each facade. Second, the building is loaded by a
monotonically increasing lateral load at both floors to simulate the static equivalence
of seismic action. The damage pattern corresponding to the cyclic test at an ultimate
displacement of 23 mm is as shown in Figure 4.14(c).

CONTINUUM MODEL

The FE model of wall D is made of 8 noded iso-parametric quadrilateral plane stress
elements, with quadratic interpolation shape functions and 2×2 Gaussian integration
scheme. All elements in white, representing masonry, are provided tensile and compres-
sive nonlinearities with parameters mentioned in Table 4.4. The ones of the lintel and
those along the floor levels (in gray) are kept linear elastic since cracks are not expected
here [38]. All elements are of size 230 mm. Loading of the first stage contains vertical loads
applied as line loads along the height of the two stories, and additionally, gravity loads.
The second stage involves applying prescribed displacements to an auxiliary frame, as
shown in Figure 4.15, such that equal monotonically increasing lateral forces are applied
at both floors (using the master-slave connection) to simulate the static equivalence of
seismic action. This is in line with a mass-proportional pushover analysis (assuming
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Table 4.4: Modelling parameters - Masonry Facade: identified by studies from the work of Reference [38]

Material Parameters General Compression Tension
MASONRY Young’s Modulus E0 [MPa] 1410 - -

Poisson’s ratio v0 0.2 - -
Density ρ [Kg/m3] 1800 - -
Strength fc , ft [MPa] - -3.0 0.1
Fracture energy Gc ,GI

f [N/mm] - 10 0.05

Saw-teeth discretisation factor - 0.11 0.11
Softening relation - Parabolic Linear
Crush/Crack bandwidth h [mm] - 230 230
Shear retention factor β - Damage-based [132] Damage-based [132]

the floors have the lumped mass), contrary to a modal pushover analysis. The facade
is supported at the bottom in both horizontal and vertical directions to simulate the
fixed boundary condition. This study involves the diagonal shear failure mechanism in
piers, and in principle, requires pure-sliding failure possibilities. This is possible using
a meso-model in combination with the Coulomb friction interface formulation for SLA
as in Reference [139], but considering the scale of the facade, the study is limited to
the orthogonal fixed smeared cracking/crushing approach under macro modelling as
previously done in Reference [38].

Figure 4.15: FE Model of wall D of the pushover test on the building, simulated using a
stiff auxiliary frame to impose equal forces on both floors

Results & Discussion The results of the SLA and Force-Release simulations of the
pushover test are shown in Figure 4.16. The results show reasonable qualitative agreement
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Figure 4.16: (a) Base shear vs lateral second floor displacement response for SLA & Force-Release
methods compared against the backbone curve of the cyclic experimental response - including the
reference points during the collapse mechanism, and (b) evolution of the precompression+gravity

loads (normalised) during the simulations

with the experimental backbone curve. Since the experiment was cyclic in nature, the
damage accumulation over the test, i.e. the progressive degradation in stiffness, affects
the peak load achieved as against a monotonic counterpart. Accordingly, the simulations
show a slightly higher peak load. However, the first stage of the rocking of the piers,
followed by diagonal splitting type cracks in the center and right piers, is in accordance to
the experimentally observed damage crack patterns. Around peak load, the first drop of
load corresponds to the development of the diagonal cracks in the central and right piers.
This is shown in Figure 4.17. SLA and Force-Release methods differ slightly in the crack
patterns and this corresponds to minor differences in the elemental sequence failure
that is characteristic of both approaches. However, around this first drop of load, SLA
requires the intermittent proportional loading for redistribution due to the dynamic crack
propagation in the central and right piers. These are also seen as drops of the constant
load between the 2000th and 4000th steps (linear analysis) in Figure 4.16(b). Although
such a redistribution driven by the intermittent proportional loading is premature, i.e.
much ahead of the actual structural collapse observed in previous case studies, it allows
for recovery of the full magnitude of the constant loads and is therefore acceptable. Force-
Release, on the contrary, goes through three large avalanche of ruptures for corresponding
constant imposed displacements through this region. This again illustrates the inherent
differences in the approaches (Figures 4.18 & 4.19).

At an ultimate displacement of around 18 mm, SLA runs again into the intermittent
proportional loading. However, this time the actual collapse begins with the right pier
completely failing by diagonal splitting failure, and also lateral splitting near the toe region
due to the compression softening. Force-Release, owing to the inherent incremental
approach and the manner of redistribution, proceeds further to an ultimate displacement
of 24 mm leading to the collapse, while going through disequilibrium states. However,
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Figure 4.17: Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release
simulations of the pushover test around the peak region after the first drop of load (refer Figure 4.16)

Figure 4.18: Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release
simulations of the pushover test at onset of collapse (refer Figure 4.16)

Figure 4.19: Crack pattern plots (Eknn denotes the normal crack strain) of SLA & Force-Release
simulations of the pushover test showing ongoing collapse (refer Figure 4.16)
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the collapse mechanism is captured similarly by both approaches varying again only in
the manner of load modification. SLA, once again, enforces a relaxed failure mechanism
in equilibrium while Force-Release describes the explosive failure as an instability.

4.2. INTERMITTENT PROPORTIONAL LOADING IN SLA:
PRESCRIBED DISPLACEMENTS VS FORCE LOADS

The Intermittent Proportional Loading (IPL), that drives the redistribution mechanism in
SLA upon reaching the limit point of no constitutively admissible load multiplier under
non-proportional loading, leads to differences depending on the type of external loading.
That is, the response during IPL in SLA differs if the variable load is applied as a force or
as a prescribed displacement.

Case Study The aforementioned influence of loading on IPL in SLA is illustrated herein
using an in-plane pushover experiment on a solid clay brick squat shear wall [6] (de-
scribed also in Section 7.3). The experiment on the masonry wall subject to overburden
followed by quasi-static cyclic lateral load is said to show a brittle failure due to diago-
nal shear cracking [6]. Although the test is cyclic in nature, the test can be used under
monotonic loading as a benchmark for 2D (plane stress) SLA simulations by making qual-
itative comparisons between the response and the envelope of the experimental curve.
This is simulated using a 2D finite element model, shown in Figure 4.20(b), made of 8
noded iso-parametric quadrilateral plane stress elements (of size 55 mm) with quadratic
interpolation shape functions and a 2×2 Gaussian integration scheme. These elements
are provided with material properties listed in Table 4.5, and are described using a fixed
crack/crush constitutive framework. However, Mode-I fracture energy G I

f of 0.1 N/mm,
as mentioned in the Table 4.5, applies only for the elements along the bottom and top
edges in the model. The rest of the elements are provided G I

f = 0.15 N/mm to mimic the
larger dissipation of energy observed in a diagonal shear crack, as against the flexural
crack in the extreme elements. Furthermore, the FE model is fixed at the bottom while
the rotation at top is restrained to ensure a straight edge, using a master-slave connection.
This is to comply with the double-clamped boundary condition of the experiment.

Table 4.5: Modelling parameters - Masonry shear wall [6]

Parameters Values
Young’s Modulus E0 [GPa] 1.491
Poisson’s ratio v0 0.15
Tensile strength ft [MPa] 0.17
Mode I fracture energy GI

f [N/mm] 0.1

Saw-teeth discretisation factor - tensile & compressive 0.1
Tension softening relation linear
No. of saw-teeth 32
Compressive strength fc [MPa] 6.2
Compressive fracture energy Gc [N/mm] 40
Compressive softening relation parabolic
No. of saw-teeth 24
Crack bandwidth h [mm] Elem. size
Shear retention factor β 10−2
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Figure 4.20: (a) Experimental setup, and (b) the FE model of the quasi-static cyclic pushover test [6]

The overburden/precompression load of 0.5 MPa is applied as distributed force load.
The FE model is first simulated using an implicit NLFEA, to serve as reference, since the ex-
perimental crack patterns are not available [6]. The lateral load is applied in displacement
control over 100 equal sized steps of magnitude 0.1 mm each, on a single node as shown
in Figure 4.20(b). The implicit scheme uses a Newton-Raphson method that converges
to either a force or displacement norm of 0.0001. Thereafter, two simulations are run
using SLA. The first run is with the lateral load applied as a force, while the second one
is with a prescribed displacement (hereon, for simplicity, referred to as force-controlled
and displacement controlled SLA respectively ). In principle, both should yield the same
result since SLA is damage driven. Additionally, a force-release simulation, which also
uses prescribed displacements by default, is run to get a more comprehensive outlook.

Figure 4.21: Crack pattern plots (Eknn denotes the normal crack strain) of the implicit NLFEA,
SLA (lateral load applied as force loads or prescribed displacements) & Force-Release simulations

at the reference points shown in Figure 4.22(a) around 7.2 mm lateral top displacement.
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Figure 4.22: (a) Base shear vs top displacement response from SLA (lateral load non-proportionally
applied either as force loads or prescribed displacements), Force-Release method & an implicit NLFEA
simulation compared against the experimental cyclic response (only 1st quadrant shown) - including

the reference points for comparison of damage, and (b) the evolution of the precompression load
(normalised) during the SLA & Force release simulations

Discussion The result from the implicit NLFEA confirms the diagonal localised shear
cracking behaviour, which is in good agreement with the three responses of force and
displacement controlled SLA, and the Force-release case, as seen in the crack pattern plots
around 7.2 mm lateral top displacement (refer Figure 4.21). There are some minor differ-
ences as well but, in general, the patterns are similar. However, the force displacement
response of the force controlled SLA appears brittle in comparison to the rest of the three
cases, all of which are qualitatively similar and more ductile as shown in Figure 4.22(a).

Lipl = Lcon +λ j−1
crit Lvar (4.1)

L j
ipl =λ

j
crit Lipl (4.2)

In case of the force controlled SLA, the response is rather brittle because the recovery of
constant load becomes almost impossible when global softening is imminent or ongoing
beyond the circular marker as seen in Figure 4.22. It is clear from Eqs. 4.1-4.2 that constant
load is recovered in the IPL only when the load factor for the variable load simultaneously

reaches λ j−1
crit (which is larger in magnitude) corresponding to the last successful load

combination Lipl. Attempting to reach such a higher load factor during global softening
is not possible unless some redistribution allows for it, refer Figure 4.23. This is similar
to expecting a reduction of load in a force controlled implicit NLFEA upon reaching
the traditional limit point situation [35]. In conclusion, once a force-controlled SLA
simulation runs into IPL in the global softening region of the response, the simulation
shows a gradual reduction of constant load to extremely low values which is not truly
reflective of the experiment. The response is under loading conditions different to that of
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the experiment, and therefore could be interpreted as an alternate equilibrium path. This
kind of redistribution is hereon referred to as premature IPL.

In the other case of a displacement controlled SLA, the analysis moves forward and
the constant load is recovered. This is possible herein because the IPL for a displacement
controlled SLA is a little different. In this case, the last successful load combination is
also the prescribed displacement, and therefore in subsequent steps the IPL attempts

to reach a higher displacement d j
ipl that is greater than or equal to dipl, refer Eq. 4.3 and

Figure 4.23.

d j
ipl =λ

j
crit dipl (4.3)

However, even this case becomes impossible for a typical instability in the force-
displacement response wherein the tangent is infinite (as in a brittle collapse). Attempting
to reach a higher load factor for the variable load (in this case the prescribed displace-
ments) during local instabilities is not possible unless some redistribution allows for it. In
case of collapse, it becomes impossible. Such a response has been previously observed
during the collapse mechanisms in SLA studies of Sections 4.1.2, 4.1.3 & 4.1.4. This is
similar to expecting a reduction of the prescribed displacement in the displacement
controlled implicit NLFEA upon reaching the traditional turning point situation [35].

Figure 4.23: SLA during intermittent proportional loading with prescribed forces (left) and displacements (right)

Modelling prescribed displacements for SLA in DIANA In DIANA, the nodes with pre-
scribed displacements are constrained along the corresponding degrees of freedom in
general. Additionally, in the attempt to reduce analysis times for problems typified by
multiple load cases (non-proportional loading), the set of constrained and unconstrained
variables for any FE model is forced to be the same for all load cases by default [51]. As
a consequence, the stiffness matrix is decomposed only once, and for every load case
the solution is obtained using the backward and forward substitutions. However, this
efficient approach becomes a problem in the case of SLA since it relies on identification of
the critical integration point by superposition of stresses from different load cases. When
one of the loads is a prescribed displacement, the presence of the constraint at all times
in the FE model will affect the stress field due to the other load case. These manifest as
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small stress concentrations which are, in principle, incorrect. This particularly becomes a
problem in a non-proportional case where the variable load is applied as a prescribed
displacement along the same direction as the constant load. The problem actually calls
for the use of an incremental approach instead of the total approach. Nevertheless, it can
be addressed in a total set-up using a phased analysis, wherein the supports for prescribed
displacement is added to the FE model only while considering the corresponding load
and is discarded for other load(s). This requires extensive implementation within the
DIANA framework, and is therefore not considered in this study.

However, it has been observed over several examples in this chapter and further in
the thesis, that the effect of this feature is not significant as long as the damage zones in
the simulation are not close to the constraint like for instance in the cases described in
Sections 4.1.2, 4.1.3 & 4.1.4. The exception to this is the study described in this section,
and therefore, both the forces and displacements are applied to the wall through a stiff
small steel beam, shown in green in Figure 4.20(b).

4.3. CONCLUDING REMARKS

Finite element simulation of quasi-brittle materials using incremental-iterative methods
often suffers from robustness issues. Consequently, several sequentially linear methods
were devised to address this problem [139, 57, 3, 44, 43, 156]. Although several studies
have been made in the lattice modelling community to elucidate the inherent differences
between two classes of methods: namely the total and incremental approaches [44, 81],
their suitability to structural applications has been touched upon sparsely. Of all the
available total approaches in literature, only the constrained maximisation analogy [139]
addresses the limit point situation wherein no constitutively admissible critical load
multiplier can be found. This method is, therefore, chosen as the reference total approach
to be compared in this chapter against an incremental counterpart, the Force-Release
method.

The inherent differences between these methods are illustrated using continuum FE
models of structural examples involving non-proportional loading in this chapter. To this
end, an academic example of a prestressed beam and three experimental benchmarks:
a slender masonry wall, a squat reinforced concrete wall and a full-scale 2D masonry
facade, all subject to different magnitudes of precompression followed by a pushover load
are studied. In general, it is observed in all three case studies that the non-proportional
loading strategy in a total approach like SLA is almost equivalent to the incremental
solution obtained using a Force-Release method, in terms of force-displacement curves
and damage patterns, until the limit point situation is reached. Prior to this, although
the unloading and reloading are both done non-proportionally in SLA, it is acceptable to
interpret that unloading happens only until the beginning of the variable load (i.e. partial
unloading) since all the previously applied (constant) loads can be reloaded fully without
causing new damage. It is also interesting to note that the differences in the sequences of
events, which can significantly affect the eventual failure mechanism in the case of lattice
modelling examples [81], do not greatly affect the eventual results at continuum level for
all the presented case studies.
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However, upon reaching the limit point, which denotes an oncoming dynamic failure
propagation region in the true response, the process needs to be driven by a sudden re-
lease of energy which inherently requires multiple failure events or the so called avalanche
of ruptures. The SLA and Force-Release approaches differ in the redistribution mecha-
nism at this juncture. On the one hand, SLA allows for such multiple failures sequentially,
by reduction of all previously applied loads which brings about snap-backs. Since every
damaged element’s stress is released instantaneously, the neighbouring elements whose
stresses are close to their respective allowable strengths subsequently become critical in
SLA at a considerably lower load. This is done by scaling the last successful load propor-
tionally which in turn still allows for damage propagation by reduction of forces, unlike
complete unloading, thereby giving the structure the time to relax. In other words, SLA
lets the damage progress quasi-statically by load reduction during a dynamic event. This
is acceptable under proportional loading situations, and also under non-proportional
loading conditions if the experiments are controlled truly quasi-statically. In case of SLA,
the system as whole is allowed for an overall quasi-static damage propagation which
may be interpreted to be equivalent to a CMOD controlled experiment as in Reference
[122], which involves a unique damage process zone. However, in case of multiple cracks
developing in the system, SLA does not control a specific damage process zone as in a
CMOD experiment and may incorrectly decrease it. Force-Release method, contrarily,
may increase the CMOD due to the redistribution. In a quasi-static sequentially linear
setup, a truly CMOD controlled experiment with multiple evolving damage zones can
be appropriately simulated by the general method [43]. This is traditionally simulated
using arc-length control procedures in an implicit NLFEA set-up. On the other hand,
the Force-Release method keeps track of the load history incrementally, and allows for
multiple failure events by gradual redistribution of stresses through disequilibrium states.
The Force-Release method is suitable for typical displacement controlled experiments
which actually exhibit instabilities, but is not suitable for physical processes which exhibit
snap backs or for truly quasi-static experiments.

Thus, both approaches are essentially extremes with regard to time scales for redistri-
bution, which is more apparent only in major dynamic failure processes in the case of
continuum models. These dynamic failure processes can either be intermediate in the
entire process of damage evolution (local instabilities) or the final collapse mechanism
in itself. In the former case of an intermediate failure process, with regard to SLA, if the
simulation allows for a full recovery of all previously applied loads, the results are deemed
acceptable. Such an instance was observed around the first drop of load after the peak in
the pushover case study of a 2D masonry facade [105] (also refer Section 4.1.4). However,
during these intermediate failure processes, if all previously applied loads have to be
gradually reduced to extremely low values to simulate the failure process, then the results
of SLA correspond to alternate equilibrium paths of damage propagation that do not
culminate in the actual expected collapse mechanism. Such an instance of premature
IPL was observed in the SLA study of the pushover analysis on a squat masonry wall,
refer Section 4.2, wherein the lateral load was applied as force loads. Or, in other words,
premature loss of previously applied loads much ahead of the actual mechanism is not
equivalent to simulating the experiment truly. In the latter case where the dynamic failure
is the actual collapse mechanism as observed in the pushover case studies of the masonry
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and reinforced concrete walls, and the masonry facade (Sections 4.1.2, 4.1.3 & 4.1.4), SLA
tries to enforce equilibrium by load reduction and allows for a relaxed failure mecha-
nism. The Force-Release method, on the other hand, describes both the intermediate
and the explosive collapses through avalanches of events that are states of disequilibrium.
The Force release method stays true to the instability in the experiment but excessive
damage propagation at collapse, such as those observed in the wider-crush zone of the
slender masonry wall case study (Section 4.1.2), needs further deliberation including
a localisation analysis. In summary, complex dynamic failure processes which cause
robustness issues in incremental iterative methods also affect sequentially linear methods
under non-proportional loading, and are addressed differently by the two sub-classes:
the total and incremental approaches, with their suitability depending on the type of
experiment/structure being simulated.





CHAPTER 5
NON-PROPORTIONAL LOADING FOR

3D STRESS STATE IN CONTINUUM*

Applications in SLA, thus far, have been restricted to 2D and 3D continuum problems for
proportional loading and solely 2D problems for non-proportional loading situations,
using the total-strain based fixed smeared crack constitutive framework. To this end, this
chapter contributes to the extension of SLA to 3D stress states, under non-proportional
loading conditions, which in turn would enable structural level applications. For 3D stress
states under non-proportional loading conditions, the lack of a closed form solution for
the critical load multiplier, with regard to damage initiation, was the hindrance to the
identification of the critical integration point. Accordingly, two solutions strategies are
proposed to address the issue. Firstly, the fixed smeared cracking constitutive model for
solid elements (3D stress state) in elaborated in Section 5.1. Then, the motivation for the
3D non-proportional loading strategy is briefed upon in Section 5.2. Subsequently, in
Sections 5.3.1 & 5.3.2, the two new methodologies enabling extension to 3D stress states
in non-proportional loading are detailed upon, including a qualitative discussion in
Section 5.3.3 corroborating the choice of the first method for further studies. In the first
approach, the cubic function in the load multiplier is analytically solved for real roots
using trigonometric solutions or the Cardano method. In the second approach, the load
multiplier is expressed as a function of the inclination of a potential damage plane and is
deduced using a constrained optimisation approach. Section 5.4 presents the 3D validation
studies. This includes two academic cases of 3-point bending tests of a beam (with and
without prestress loads): one with a straight and the other with a skewed notch, and a more
complex case of RC slabs subject to shear loads in combination with axial loads [20].

5.1. ORTHOTROPIC 3D FIXED SMEARED CRACK MODEL

SLA for continuum problems is based on a total strain based smeared cracking/crushing
model with the fixed crack/crush approach. In this section, the fixed crack/crush model
extended to 3D stress states [150] is elaborated upon. The word crush(ing) is dropped
hereon for simplicity. As soon as the principal stress violates the allowable strength at an
integration point in tension or compression, the isotropic stress-strain relation σ = Dε
transforms into a 3D orthotropic relation as σnst = Dnstεnst , and the cracked coordinate
system denoted by nst is fixed along the directions of the principal stresses. A simple
Rankine type failure surface is used to initiate damage for tension or compression failures
in the fixed crack set-up. In the primary principal stress direction, the Young’s modulus

*This Chapter is based on the author’s article published in the International Journal for Numerical Methods in
Engineering 2019 [104]. Minor modifications are made to suit the thesis.
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and strength are reduced according to the uniaxial saw tooth law. Subsequently, in the
event of principal stress rotations, redistribution of stresses, or application of another
load non-proportionally; the normal stresses in the orthogonal directions of the fixed
crack system (secondary or tertiary) may violate the allowable strength, and damage
is introduced accordingly in the corresponding directions. So every integration point
essentially requires three uniaxial saw tooth laws each for tension and compression
in the 3D stress state. Furthermore, the shear behaviour in the fixed cracking model is
represented using a variable shear retention function that considers the reduction of shear
stiffness with increasing damage in the normal direction of the cracked plane. Similarly,
the Poisson’s ratio is reduced at the same rate as the associated Young’s modulus.

The 3D orthotropic compliance relation deduced from the isotropic relation ε= Cσ,
using the individual uniaxial stress-strain relations based on Hooke’s law in Voigt notation,
is given by:
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Due to the symmetry of the compliance matrix C, the Poisson’s ratios should be interre-
lated as well. Inverting the compliance matrix, the following stiffness matrix D is obtained.
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where

A = Ex Ey Ez

−Ex Ey Ez + v2
xyE 2

x Ez + v2
zxE 2

z Ey + v2
yzE 2

y Ex +2vxy vyzvzxEx Ey Ez
(5.3)

For the initial uncracked stage, denoted by subscript 0

Ex = Ey = Ez = E0; vxy = vxz = vyx = vyz = vzx = vzy = v0; Gxy =Gyz =Gzx =G0 = E0
2(1+v0) (5.4)

Upon crack initiation, the three axes of the orthotropic nst coordinate system are fixed.
The n-axis is aligned with σ1 and is perpendicular to the primary crack plane. The st
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plane covers the tangential crack directions, for which the directions are aligned with the
principal stress directions σ2 and σ3, respectively, at the onset of damage. Similarly, when
the failure type is compressive, the primary direction is that of the minimum principal
stress. In conclusion, the orthotropic relation upon damage becomes
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σtt
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σst
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= Dnst



εnn

εss
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 (5.5)

where the orthotropic stiffness matrix is similar to the aforementioned D matrix with
subscripts n, s, t instead of x, y, z.

In this formulation, Poisson effects and shear behaviour can also be made damage
based. That is, the shear stiffness is reduced in a step-wise fashion, directly dependent
on the minimum of the corresponding Young’s moduli. This variable shear retention
approach is comparable to the ones adopted for plane stress [139] and shell elements
[38]. Similarly, the Poisson’s ratios are reduced depending on their corresponding Young’s
modulus, as shown in the following. The orthotropic degradation i.e. the crux of the
fixed crack set up necessitates the simultaneous reduction of Poisson behavior during
damage to avoid spurious lateral cracking/crushing. Furthermore, this yields a favourable
symmetric reduced stress-strain relationship in which the orthotropic degradation is
solely dependent on the reduced moduli of elasticity.

vsn =vtn = v0
En

E0
vns = vts = v0
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E0
vnt = vst = v0

Et

E0
(5.6)
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(5.7)

Alternatively, Poisson’s ratios could be set to zero at the onset of damage thereby
decoupling the orthogonal behaviour, and the traditional constant shear retention could
be used. Higher values of β = 0.01 or 0.1, a constant shear retention factor, are generally
used for standard NLFEA applications in concrete to simulate the aggregate interlock,
while lower values are used to avoid stress locking problems. In the illustrations presented
in this chapter, at onset of damage, vij = 0 and a constant shear retention factor β = 0.0001
are used, unless specified otherwise. Both choices could influence the crack propagation
phase and the interaction of multiple cracks, however, considering the motivation to solely
address the crack/damage initiation problem in a 3D stress state for non-proportional
SLA (detailed further in Section 5.2), the choices are deemed reasonable.

Furthermore, in the current framework, immediately upon violation of the allowable
strengths either along the maximum or minimum principal stress direction, the transi-
tion from an isotropic to orthotropic formulation is made, and the 3D orthogonal fixed
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crack system (nst) is established. Alternatively, the fixing of the secondary and tertiary
directions of the crack system could be postponed until failure in the secondary direction,
due to violation of the allowable strength by the principal stress (computed anew) in
that direction. This is a more realistic representation of the multi-directional cracking
phenomenon in comparison to the simplified former approach, but it is not investigated
in this study.

5.2. MOTIVATION

Structural level applications of SLA, for instance a pushover analysis of a masonry or
reinforced concrete building, would only be possible if the non-proportional loading
strategy could be extended to 3D stress states. The principle of superposition of stresses
due to non-proportional loads and the total strain based fixed crack approach, with the
use of principal stresses for damage initiation, has formed the basis of 2D continuum
applications of SLA thus far. This approach relied on a closed form solution for the critical
load multiplier (for damage initiation) which, in turn, depended on the existence of
a rather simple expression for the principal stress like the one in Eq. 3.7 for the plane
stress state. In an earlier attempt to extend SLA to 3D applications, DeJong et al. [38]
made a simplification to at least enable the use of shell elements. The formulation is
similar to layered membrane elements spaced over the thickness of the shell, introduced
through a 2D mesh, with additional integration points in the thickness direction. These
assumptions fix the crack plane to be perpendicular to the plane of the shell element, and
the shell mid-surface is aligned with the n-s coordinate plane. However, this membrane
approach does not take into account the two out-of-plane shears in the calculation of
the critical load multiplier. In conclusion, it was clear that deducing a similar expression
for principal stresses from the characteristic cubic equation for a full 3D stress state was
not as straightforward, and thus had to be addressed. This motivation has previously
been touched upon leading to an alternate non-proportional loading strategy called the
Sequentially linear theta-based non-proportional strategy (SLTHNP) [103], which was
first validated for the 2D plane stress state. The characteristic equation in a 3D stress state
is given by the following equations:

det (Σ−ΛI) = 0 (5.8)

∣∣∣∣∣∣
σxx −Λ σxy σzx

σxy σyy −Λ σyz

σzx σyz σzz −Λ

∣∣∣∣∣∣= 0 (5.9)

Λ3 − I1Λ
2 + I2Λ− I3 = 0 (5.10)

where Σ is the 3D stress tensor in matrix notation,Λ are the principal values - σ1,σ2,and
σ3, I is the Identity matrix, and I1, I2 and I3 are the stress invariants. Mathematical
procedures like the Cardano’s method [17], involving a transformation to get reduced
cubic equations (a monic trinomial wherein the quadratic term is zero) and subsequent
deduction of analytical solutions using trigonometric identities, are well documented in
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literature. This forms the crux of the first method for 3D non-proportional SLA presented
in the following section. Alternatively, the SLTHNP strategy suitable for the 3D stress
states was introduced [103] wherein the problem statement was reformulated as a two-
dimensional optimisation case, with respect to the directional cosines of a potential
damage plane, and this is the second approach described in the next section.

Therefore, for undamaged integration points, analogous to Eqs. 3.8, cubic inequalities
have to be solved for both tension and compression failure, and immediately establish
the 3D orthogonal fixed crack system nst along the directions of the principal stresses at
the onset of damage. This is as shown in the following.

σ1(λ) ≤ ft resulting inΛt
i (5.11a)

σ3(λ) ≥ fc resulting inΛc
i (5.11b)

In case of the damaged integration points, analogous to Eqs. 3.9, linear inequalities
have to be solved per direction of the nst crack coordinate system for both tensile and
compressive failures, of which only the ones corresponding to tensile failure are shown
below for simplicity. These, however, are rather straightforward to solve unlike Eq. 5.11.

σnn,con +λnnσnn,var ≤ ft,nn (5.12a)

σss,con +λssσss,var ≤ ft,ss (5.12b)

σtt,con +λttσtt,var ≤ ft,tt (5.12c)

Finally, the rest of the workflow is similar to that in the plane stress case (Section 3.1,
Figure 3.1), with respect to deducing the critical load multiplier as the maximum of
the common subset of the constitutively admissible range of load multiplier values at
the model level. In the event of an empty solution set, the procedure returns to the
Intermittent Proportional Loading (IPL).

5.3. SOLUTION METHODS

5.3.1. ANALYTICAL APPROACH

This section elaborates on the analytical solution to find the critical load multiplier for 3D
stress states, for undamaged integration points (refer Eqs. 5.11,) in a fixed smeared crack
set-up. In line with the principle of superposition of stresses, the global stresses (shown in
a general index notation in Eq. 5.13) are first expressed as a scaled combination of those
due to the non-proportional loads (constant loads depicted by subscript con and variable
loads by subscript var) analogous to Eq. 3.6 .

σij =σij,con +λσij,var (5.13)
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f 3
t − I1 f 2

t + I2 ft − I3 = 0 (5.15a)

f 3
c − I1 f 2

c + I2 fc − I3 = 0 (5.15b)

These global stresses in Eq. 5.13 are subsequently substituted in the invariants I1, I2

and I3 of the 3D stress tensor shown in Eq. 5.14. Since both tension and compression
failures are considered, principal stresses σ1 and σ3 will be relevant. Accordingly, two
separate cubic equations can be obtained by substituting the invariants of the stress
tensor, containing the superposed global stresses, into Eq. 5.10: one with Λ = σ1 = ft

and another withΛ=σ3 = fc , where ft and fc are the tensile and compressive strengths.
The resulting equations, shown in Eq. 5.15 in a rather shortened sense, obtained by
substitution of Eq. 5.13 in Eq. 5.14 and subsequently in Eq. 5.10, are actually standard
cubic equations in the load multiplier λ as shown in the following:

aλ3 +bλ2 + cλ+d = 0 (5.16)

Without loss of generality, Eq. 5.16 can be written as Eq. 5.17 by manipulating the function
to have coefficient a = 1 (dividing equation by a), with coefficients b̂, ĉ and d̂ that are
detailed upon in Appendix-A.

λ3 + b̂λ2 + ĉλ+ d̂ = 0 (5.17)

Subsequently, Eq. 5.17 is transformed into a monic trinomial (or a depressed cubic equa-
tion) in a new variable α by substituting λ=α− b̂/3 as shown in the following:

α3 +Pα+Q = 0

where P = 3ĉ − b̂2

3
& Q = 2b̂3 −9b̂ĉ +27d̂

27

(5.18)

The solution strategy is then chosen based on the discriminant D of Eq. 5.18. If the
discriminant shown in Eq. 5.19 is less than or equal to zero, the depressed cubic equation
would yield three real roots (of which at least two roots would be equal if D = 0), else if the
discriminant is greater than zero, the cubic equation would yield only one real solution.
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(5.19)

In the former case, the three real solutions are obtained using trigonometric functions
and the formulae [17] as shown in the following:
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for k = 0,1,2. (5.20)

In the latter case, with the discriminant less than zero, the Cardano method [17] is used to
find the real root. The complex roots are not of concern for our application; however, the
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physical meaning of the nature of the roots is discussed at the end of this section. This
method involves introducing two new variables u and v , linked by the conditionα= u+v ,
in the depressed cubic presented in Eq. 5.18. This is followed by imposing a condition
3uv +P = 0 and eventually, solving a quadratic equation of which u3 and v3 are roots. For
further details, the reader is referred to the work of Birkhoff and Maclane [17].
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Once the real roots from the depressed cubic equation inα are determined, the actual load
multipliers λ are obtained using λ=α− b̂/3. The minimum positive value of the obtained
real roots is subsequently tested on its possibility to be a maximum or a minimum load
multiplier to satisfy the inequalities as in Eq. 5.11, additionally, subject to the condition
that σ1 > σ2 > σ3. This in turn will help deduce sets of the load multiplier λ values
per undamaged integration point (Λt

i or Λc
i as is the case), and thus the critical load

multiplier of an undamaged integration point is determined. Once an integration point
is damaged, the crack coordinate system nst is set up. In subsequent SLA cycles for
damaged integration points, three possible load multipliers are evaluated per analysis
as shown in inequalities of Eq. 5.12, corresponding to the three existing fixed failure
directions (additionally for tension and compression damage possibilities per direction
for triaxial failures), and eventually the load multiplier sets per integration point are set
up for both damaged and undamaged integration points. The critical load multiplier
λcrit for the system would be the maximum of the common subset of constitutively
admissible load multipliers for both damaged and undamaged integration points, or, in
other words, the least positive of all maximum load multipliers from the individual sets.
This is the constrained maximisation approach as detailed in Section 3.1 which returns to
the intermittent proportional loading in case of an empty solution set.

5.3.2. OPTIMISATION APPROACH

This section presents an alternative new approach for damage initiation in 3D non-
proportional loading, wherein the problem is reformulated as a constrained optimisation
case. For an undamaged integration point, the critical plane for crack/crush initiation is
now identified by expressing the load multiplier λ as a function of the inclination of an
arbitrary potential plane of damage, defined by θ for 2D plane stress states and by the two
directional cosines l and m for 3D stress states, with respect to the reference coordinate
system. The critical points of the function are deduced using optimisation techniques
and subsequently, the critical load multiplier is established. This approach was referred to
as the Sequentially linear theta-based non-proportional (SLTHNP) loading strategy, and
has been previously validated for plane stress state using benchmark studies in the work
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of Pari et al. [106]. The obtained solution was shown to match up to the corresponding
closed form solution elaborated in Section 3.1.

Instead of resorting to the closed form expressions of the eigenstresses from the
principal stress theory to subsequently find the closed-form solution for λ, the normal
stress on an arbitrary potential plane of damage is now expressed as a function of its
inclination. In the 3D stress state, an arbitrary plane may be related to the reference
coordinate system by means of the directional cosines l , m and n, of which only two
may be considered independent variables since they are related as l 2 + m2 + n2 = 1.
The normal stresses acting on this plane due to the constant and variable loads can
thus be expressed in terms of the directional cosines, and the load multiplier is now
deduced as a function of two of these directional cosines, rewriting the third as n =√

(1− l 2 −m2) whose two solutions (positive and negative) are considered herein. The
resulting optimisation problem is as shown in the following.

max
l ,m

λ(l ,m) (5.23)

subject to σnn(l ,m) ≤ ft (5.24)

σnn(l ,m) ≥− fc (5.25)

where

σnn(l ,m) =σnn,con(l ,m)+λ(l ,m)σnn,var(l ,m)

σnn,con(l ,m) =σxx,conl 2 +σyy,conm2 +σzz,conn2 +2σxy,conl m

+2σyz,conmn ++2σxz,connl

σnn,var(l ,m) =σxx,varl 2 +σyy,varm2 +σzz,varn2 +2σxy,varlm

+2σyz,varmn ++2σxz,varnl

(5.26)

The idea is to find the values of λ, at which the slope of the function is zero, denoting
the critical points of the function (namely the maxima, minima and the saddle point), and
the corresponding inclination of the plane defined by the directional cosines l ,m,n will
be representative of the plane of failure (cracking/crushing). This helps establish the 3D
orthogonal smeared fixed crack directions (nst). The function of the load multiplier may
be continuous or discontinuous for different stress states, and typical functions of the load
multiplier look like those shown in Figure 5.1. Firstly, the critical points of the functions
are found per integration point, using optimisation techniques, which are the bounds
of the solution to the superposition of the non-proportional loads. These correspond to
the limits of the admissible range of values of λ per integration point as determined in
Section 3.1, and the maximum λ of the common subset of all the integration points is
chosen as the critical load multiplier for the system. Additionally, for the critical damage
plane at an inclination l , m and n, with respect to the reference coordinate system,
there will also be normal stresses σt t and σss along tangential directions which are to be
considered. For the critical λ evaluated by finding the optimum l , m and n, with respect
to σnn , the corresponding σt t and σss should be such that σ1 >σ2 >σ3.
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For the 2D plane stress state, the extrema (bounds) of the critical load multiplier
were determined numerically using a one-dimensional optimisation routine, since the
load multiplier was a function of the inclination of the damage plane, θ. It was easier to
handle discontinuous functions at the 2D level because one-dimensional (θ) optimisation
allows for bracketing of critical points, before using optimisation techniques like the
Brent’s method (in combination with inverse quadratic interpolation) or the Golden
search methods [111] for subsequent isolation of the critical points. However, in the
reformulated 3D non-proportional loading case, the optimisation has to be done with
respect to 2 variables l and m. Consequently, a multidimensional optimisation routine is
required, and preliminary investigations were made with the rather basic downhill simplex
method (Nelder-Mead algorithm) [111]. The limitation, however, in multidimensional
optimisation is that the initial bracketing of the extremum or critical points is not possible
anymore, and emphasis has to be laid on possibly restarting the optimisation routine from
a ‘converged solution’ repeatedly to ensure that the extremum is indeed the one sought
for. The critical locations to be searched for in each function are points of zero slope
i.e. the minima, maxima and saddle point, which indicate the possible combinations
of the load multiplier and potential failure planes. In a plane stress state, every stress
state corresponded to two critical points in the range of −π to π, and the least positive
value of all minima (points of positive second derivate) corresponded to the upper bound
solution, and the maximum positive value of all maxima (points of negative second
derivate) corresponded to the lower bound. Along the same lines, the bounds of the
solution can be obtained from the sets of three possible combinations per integration
point in the 3D stress state, and eventually arrive at the critical load multiplier for damage
initiation. Once a point is damaged, the approach is similar to solving inequalities in
Eq. 5.12, and the rest of the workflow is as described in Section 5.2.

5.3.3. COMPARISON OF THE APPROACHES

In order to illustrate the two approaches described in Sections 5.3.1 and 5.3.2, three differ-
ent stress states as shown in Table 5.1 are considered. The choice of these stress states is
arbitrary, and serves to only elucidate the possible combinations of the one/three real
roots case from the analytical approach and the smooth/non-smooth functions from the
optimisation approach. The stress states as such have no significance. The analytical
approach either yields one or three real roots depending on the discriminant of the de-
pressed cubic function (Eq. 5.18) in the load multiplier λ. If and only if 4P 3 +27Q2 ≤ 0,
three real roots are obtained. When the discriminant 4P 3 +27Q2 > 0, one would expect to
have one real and two complex roots. However, only the real roots are of concern in deter-
mining the critical load multiplier as mentioned before. Although the complex roots for
the scaling multiplier would result in one of the principal stresses (σ1 or σ3) being equal
to the allowable strength, the other two principal stresses would result in complex values
which are not representative of stress states in the case of classical continuum mechanics.
Therefore, such roots are discarded. The analytical solution to the 3 illustrative stress
states are shown in Table 5.2. It has been observed in the validation studies of Section 5.4
that the case of three real roots dominate and that there are very few instances of the ‘one
real root’ case.
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Figure 5.1: Typical continuous and discontinuous functions of the load multiplier dependent
on the directional cosines of a potential failure plane: (a), (b) and (c) corresponding to stress

states I, II and III mentioned in Table 5.1

With regard to the optimisation approach for the three stress states considered, the
corresponding load multiplier λ functions, with respect to the directional cosines l ,m
of the potential damage plane, are shown in Figure 5.1. The smooth function illustrated
in Figure 5.1a, corresponding to Stress state I in Table 5.1, could be representative of
a local region in the discontinuous function displayed in Figure 5.1(b),(c). The critical
points in the discontinuous functions shown in Figure 5.1(b),(c), corresponding to stress
states II and III, are not visible owing to the large range in values of λ, and also the rather
non-smooth nature of the function. Accordingly, it is difficult to deduce these points using
optimisation techniques. There seems to be no real correlation between the type/form
of the discontinuous function and the nature of roots from the analytical approach vis-
a-vis one or three real root cases. This is also reflected in the similarity of plots for the
discontinuous functions in Figure 5.1(b),(c). Furthermore, the extreme peaks, which are
not of concern for the current study, possibly refer to inclination of failure planes that
are potentially not critical, for the stress state caused by the scaled combination of the
constant and variable loads. This is because the bounds/limits for the solution are sought,
which are the least positive of all minima (the upper bound) and the maximum positive
of all maxima (the lower bounds). Consequently, extremely large negative and positive
values of the load multipliers are not of concern as they would be farther from the solution
bounds. With regard to the optimisation approach, discontinuous functions like the ones
shown in Figure 5.1(b),(c) are typical and account for 99 % of all stress states observed
in the validation studies that follow in Section 5.4. However, since the success of such
an approach relies heavily on the smoothness of the function, which is the case for most
optimisation methods, and non-smooth functions are often hard to handle, the SLTHNP
approach could be cumbersome.

In conclusion, owing to the following reasons, the analytical approach is preferred
over the optimisation approach for all validation studies in Section 5.4.

• Discontinuous functions are hard to optimise for critical points because

– Such methods may converge to points that are not necessarily the local critical
points being sought for. This necessitates the need for multiple restarts to
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validate the converged solution, or alternatively, a good first guess

– Bracketing of critical points is not possible in multi-dimensional optimisation
methods unlike in the case one-dimensional methods like the Golden section
search or Brent’s methods [111].

Consequently, the computational intensity of the optimisation approach is higher
than the analytical approach.

• Despite the computational effort, the solutions from the optimisation approach
may still not be accurate enough, and therefore the solution may trace through
alternate equilibrium paths.

5.4. ILLUSTRATIONS

In order to verify the presented concept for 3D non-proportional loading, validation
studies are carried out using 3D solid element FE models. A notched concrete beam
tested in 3 point bending with and without the effect of axial loads, a more complex case
of a simply supported RC slab subjected to concentrated load near the supports with and
without the effect of axial load, and finally, a skewed notch concrete beam tested in 3
point bending with additional prestress (to simulate 3D non-planar curved cracks), are
considered.

5.4.1. PRESTRESSED BEAMS*

Several three-point bending tests performed by Zhao et al. [157], were previously analysed
using SLA with plane stress assumptions [139]. Of these beams, SG2-B1, of span 600 mm,
150 mm depth, and 120 mm thickness is chosen as reference for this study but now in a
3D context. The beam is tested in three point bending with a notch of depth 60 mm and
2 mm width, and a schematic representation of the experiment is shown in Figure 5.2.
The load F results in a mid-span deflection u, which was measured at the load application
point.

The middle of the beam is in pure bending (no shear), and therefore, the governing
principal stress at the mid-section will align exactly with the longitudinal axis of the beam.
If such a beam were to be subject to axial loads (purely for an investigation purpose) like
a tensile or compressive prestress, the loading would become non-proportional. The
effect of axial loads will either increase or decrease the capacity of a beam, and has been
a proven benchmark study for testing non-proportional loading strategy in SLA for the
plane stress state thus far [40]. Although the case study does not represent a truly 3D
stress state that might result in 3D multi-directional cracking, considering its simplicity
and the fact that SLA introduces asymmetric failure propagation in FEM unlike traditional
incremental iterative techniques (in this case with respect to an XY plane at the middle of
the beam along its thickness, refer Figure 5.2); which in turn could yield stress situations
that do not exactly resemble the perfectly symmetric 2D stress situation; the SG2-B1 beam
specimen subject to additional axial loads makes for a good case study to be investigated
for validation purposes of the 3D non-proportional loading strategy.

*This case study is the same as the one used in Section 4.1.1.
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Figure 5.2: (a) Schematic representation of experiment Beam SG2-B1 [157],
and (b) FE Model of the same with axial loads

Finite Element Model The simply supported beam is modelled with geometry as shown
in Figure 5.2, except that the notch width is assumed to spread over an entire element
length. The FE model is made using linear 8-noded iso-parametric solid (brick) elements,
with translational degrees of freedom and a reduced 1-point Gaussian integration scheme.
All elements are approximately 10 mm in size. Linear elements (i.e elements with linear
interpolation shape functions) are used in order to ensure constant strain distribution
over the entire element. This helps in symmetric assessment of the crack bandwidth
which is then equal to the length of the element. Concrete has been modelled as a linear-
elastic material everywhere except the notched column of elements, where all the physical
nonlinearity is lumped. These elements along the notch are provided the possibility of
tensile softening failure. The adopted saw-tooth law for these notched column of elements
is of linear tension softening type, with material parameters mentioned in Table 5.3. Three
cases are considered to address the non-proportional loading problem. First, the three
point bending test of SG2-B1 beam as in the experiment is simulated. Since the notch
extends over one whole linear element, the point load is assumed to be equivalent to a
distributed surface load applied at the top row of the central elements above the notch as
shown in Figure 5.2. Second, the beam is additionally assumed to be subject to a uniform
compressive prestress, of magnitude 0.25 MPa, at the ends of the beam. Third, the beam
is instead subject to a uniform tensile prestress, of magnitude 0.25 MPa.

Results & Discussion To begin with, the force displacement curves from SLA, on the first
case without axial loads, match up well with those from the experiment. Furthermore,
the results from all 3 analyses show the propagation of the tensile crack through the
height of the notch, resulting in the reduction of effective cross section of the beam. This
behaviour results in the loss of flexural capacity, and is eventually observed as the global
softening in the force displacement curves shown in Figure 5.3. The qualitative behaviour
of all the 3 beams is similar barring the observed ultimate capacity. The presence of
axial loads like the compressive prestress tends to delay the cracking and consequently,
results in a higher capacity. On the contrary, due to tensile axial loads, a decrease in
capacity is observed. The response from the 3 beams, therefore, qualitatively agrees
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Table 5.3: Modelling and Material parameters - Prestressed beam

Parameters Values

Young’s Modulus E0 [GPa] 16

Poisson’s ratio v0 0.15

Tensile strength ft [MPa] 3.78

Mode I fracture energy GI
f [N/mm] 0.224

Tension softening relation Linear

Saw-teeth discretisation factor - tensile (p) 0.15

No. of saw teeth 16

Compressive behaviour Linear elastic

Crack bandwidth h [mm] 10

Shear retention factor β 10−4
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Figure 5.3: (a) Force displacement curves for the 3-point bending cases using the 3D Model with and without
axial loads, and (b) its comparison against 2D plane stress state simulations

to the expected response patterns from prestressed concrete theory. Additionally, it
can also be observed that the force displacement curves match up to those obtained
through 2D plane stress SLA simulations as shown in Figure 5.3(b), thereby validating
the 3D Non-proportional strategy. With regard to the analytical solution of the load
multiplier, obtained for undamaged integration points per analysis step, both the non-
proportional cases of compressive and tensile axial loads yield 3 real roots always (not
all were necessarily positive though). Additionally, the constant load i.e the compressive
or tensile axial load in both cases was kept constant throughout the analysis, and there
was no need to return to the intermittent proportional loading which is Branch-B of the
workflow in Figure 3.1. The use of a reduced 1-point integration scheme gave symmetry
with regard to the YZ plane through the midsection but non-symmetry with respect to
the XY plane, as only one integration point can become critical at a time and not two
symmetric points (if present) of an element simultaneously.

An interesting point of observation was that while using a regular 2×2×2 Gaussian
integration scheme, the development of the crack through the thickness is rather stunted,
while it is uniform in the plane stress state or the reduced integration study in the 3D
model (Figure 5.4(b)). This is a case of alternating columns of elements, along the thick-
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Figure 5.4: (a) Force displacement curves for the 3-point bending beam (proportional loading) for different
integration schemes, and (b)-(c) their corresponding crack localisation patterns

ness of the beam, exhibiting crack localisation (within the elements) and propagation in a
zig-zag band of integration points (along either side of the notch) over the height of the
beam, as shown in Figure 5.4(c). This leaves some integration points of certain elements
undamaged, and therefore results in a lower peak capacity and lower dissipation of energy
as observed in Figure 5.4(a). The phenomenon is due to the inherent property of SLA in
inducing asymmetry in localisation rather than due to the fixed crack approach.

5.4.2. RC SLAB IN SHEAR FAILURE

In order to corroborate the non-proportional loading strategy for full 3D cracking/failure
possibilities, an RC slab case study is chosen, which was tested in shear along with
axial loads to study the effect of pre-stressing. A similar RC slab, also tested in shear,
was simulated previously [139] using SLA but under proportional loading assumptions.
The tests performed by Bui et al. [20], which are considered for this study, include a
series of slabs tested in shear with either compressive or tensile axial loads, which would
correspond to an increase or decrease in the shear strength of the RC slab respectively.
This is analogous to the prestressed beam cases presented in the previous section but will
certainly result in more typical 3D cracking patterns. In this section, the experimental
details are first described, with regard to the set up, crack patterns and force displacement
curves. Subsequently, the SLA simulations for the slabs are presented.

Experiments An extensive experimental campaign was recently conducted [20] to as-
sess the shear strength of reinforced concrete slabs, subject simultaneously to shear loads
and axial tensile or compressive loads. The purpose of the study was to understand the
effects of axial loading due to shrinkage, earthquakes etc. on the shear resistance of RC



5

84 5. NON-PROPORTIONAL LOADING FOR 3D STRESS STATE IN CONTINUUM

slabs. To this end, 8 simply supported (on all 4 sides) RC slabs of size 4m x 2.6m x 0.3m
were subject to concentrated loads near the supports.

Figure 5.5: (a) Experimental set up: Loading plate, reinforcements, axial load and prestress
application setup, and positions of strain gauges J1 - J13 to measure deformations in concrete

along the reinforcements, and (b) positions of LVDT transducers L1 - L6

All slabs were cast without shear reinforcement but were provided sufficient longitudi-
nal and transverse reinforcements, to ensure the occurrence of shear failure over flexural
failure. One reference slab (S2) was tested without axial forces, 2 slabs were tested with
compressive axial loads of magnitude 1 MPa (SC1) and 1.5 MPa (SC2), and 4 slabs were
tested with varying magnitudes of tensile axial loads ranging from 0.65 MPa to 1.2 MPa
(ST1, ST2, ST3 and ST4). The axial loads were applied by means of 12 in-plane hydraulic
jacks, while the concentrated load was applied using an out-of-plane hydraulic jack over
a loading plate, at a distance of 560 mm from the nearest line support and 875 mm from
the nearest edge. The experimental set up is shown in Figure 5.5. For further information
about the experiments pertaining to the experimental setup, material properties etc.,
the reader is referred to the work of Bui et al. [20]. Slabs S2 (without axial loads), SC2
(with 1.5 MPa compressive axial loads), and ST4 (with 1.2 MPa tensile axial loads) are
chosen for this study. These would be analogous to the prestressed beam benchmark
comparison and make for an ideal benchmark study to exemplify the newly introduced
3D non-proportional loading strategy.

Figure 5.6: Experimental crack patterns of the bottom face of slabs (a) S2, (b) SC2 and (c) ST4.
The black dashed lines from the loading plates to the supports denote the diagonal strut that

determines the effective width for shear strength estimation [20]
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Figure 5.7: FE Model of half of the RC Slabs showing (a) the concentrated load on the loading plate, axial
compressive loads and constraints along the axis of symmetry, and (b) the vertical support system

Table 5.4: Modelling and Material parameters - RC Slabs

Material Parameters Slab S2 Slab SC-2 Slab ST-4
CONCRETE Young’s Modulus E0 [GPa] 15.875a 15.375a 16.2a

Poisson’s ratio v0 0.15 0.15 0.15
Tensile strength ft [MPa] 2.87 3.63 3.5

Mode I fracture energy GI
f [N/mm] 0.175b 0.177b 0.178b

Tension softening relation linear linear linear
Saw-teeth discretisation factor (p) 0.15 0.15 0.15
No. of saw teeth 9 9 9
Compressive strength fc [MPa] 30.91 33.3 30.91
Compressive fracture energy Gc [N/mm] 43.75 44.25 43.75
Compressive softening relation parabolic parabolic parabolic
No. of saw teeth 12 12 12
Crack bandwidth h [mm] Elem. size Elem. size Elem. size
Shear retention factor β 10−4 10−4 10−4

REINFORCEMENTS Young’s Modulus E0 [GPa] 210 210 210
& STEEL PLATES Poisson’s ratio v0 0.3 0.3 0.3

a 50 % of the reported Young’s modulus in experiment to account for overly-stiff behaviour
b Values deduced by preliminary calibration which are higher than the Mode-I fracture energy prescribed by
MC2010 [16]

All slabs were characterised by a similar failure mechanism, wherein firstly flexural
cracks appeared at the bottom face along the transverse and longitudinal reinforcements,
followed by cracks due to a two way shear slab mechanism (punching shear failure) with
a perimeter crack surrounding the loaded area, and eventually, the pure shear failure
occured along the line support nearest to the loading plate (refer Figure 5.6). The failure
was quite brittle, more so in the case of slab SC2 with compressive prestress, and these
aspects of the experiment also fit well with the possibility to observe post peak brittle
failures with SLA. Figure 5.8(a) shows the force displacement relations of the applied load
at the loading plate vs deflection at LVDT position L5 (as shown in Figure 5.5(b)).

Finite Element Model FE models of the RC Slab tests are made keeping in mind the
constraints of SLA with regard to computational time. Consequently, only half the slabs
are modelled because of the symmetry along the longitudinal direction. The loading
plate and the support system of plates, to provide simple support all along the 4 sides, are
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both of uniform thickness of 20 mm, and are provided linear elastic properties of steel.
Both tensile and compressive softening possibilities (cracking and crushing) are provided
to the concrete in the RC slab, and the material properties for the same are mentioned
in Table 5.4. The steel plates and the slabs are discretised by 20-noded quadratic iso-
parametric solid (brick) elements with translational degrees of freedom and a 3×3×3
Gaussian integration scheme. Linear interface elements are provided between the steel
plate and the slab to provide uniform contact between the slabs and the support/loading
plate, as is done by the neoprene layer in the experimental set-up. The number of
elements in the direction of thickness (300 mm) is restricted to two, and the size of most
elements in the model is approximately 100-150 mm. The reinforcements are modelled as
an embedded system of bars and the constitutive behaviour is kept linear elastic since the
reinforcement ratios are quite high to result in flexural failure. This was also confirmed in
a sensitivity analysis wherein the stresses in the reinforcements did not exceed ∼350 MPa.
The FE model is as shown in Figure 5.7. Along the face of symmetry, the displacements
along the X direction (longitudinal) are constrained (Figure 5.7(a)). The vertical support
along Z axis is modelled using a single master node which is connected to the mid-line of
the steel plate system (shown in yellow) using linear constraints as shown in Figure 5.7(b).
Also, a node right in the middle of the support plate in the transverse direction is supported
along the Y direction to avoid the corresponding rigid body mode. The concentrated load
on the loading plate near the support is applied as a unit distributed pressure load, and
axial loads of -1.5 MPa or 1.2 MPa (as the case may be) are applied on either ends of the
slab. The modelling parameters and material properties pertaining to each of the three
analyses (reported by Bui et al. 2017 [20], unless stated otherwise) are summarised in
Table 5.4.
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Figure 5.8: (a) Force displacement curves for Slabs S2, SC2 and ST4 from the experiments and
(b) monotonic SLA simulations

Results & Discussion All three considered cases show initial cracking followed by a
phase of reduction in stiffness wherein the two way shear mechanism is observed to
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Figure 5.9: (a) Damage plots and (b) crack strain plots of half of slab S2’s bottom face
at the end of the brittle failure (Eknn denotes the normal crack strain)

Figure 5.10: (a) Damage plots and (b) crack strain plots of half of slab SC2’s bottom
face at the end of the brittle failure (Eknn denotes the normal crack strain)

Figure 5.11: (a) Damage plots and (b) crack strain plots of half of slab ST4’s bottom
face at the end of the brittle failure (Eknn denotes the normal crack strain)

develop, before and around the peak load, culminating in the one way brittle failure
beyond the peak load. The numerical results qualitatively agree well with the experiments
in terms of increase in load capacity with axial compressive loads and the contrary
decrease in load capacity with axial tensile loads, refer Figure 5.8(b). The crack patterns
shown in Figures 5.9, 5.10 & 5.11 are all in reasonable agreement to the experimental crack
patterns in Figure 5.6 in terms of the development of the shear crack perimeter zone,
formed due to the diagonal compression strut from the loading plate. Simultaneously,
in the same figures, damage in the first failure direction of the nst orthogonal crack
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system expressed as D = 1− (Ecurrent/Eoriginal), is also shown. DmNN = 0 and 1 in these
plots refer to undamaged and fully damaged cases, respectively, in the n direction of the
orthogonal crack system of an integration point. These plots correspond to the end of
the brittle failures in the respective force displacement evolutions (yellow circular dots in
Figures 5.12, 5.13 & 5.14).

Furthermore, it has to be pointed out that the Young’s moduli of all three specimen
have been reduced to 50 % of those reported in the experiments. With the original values
of stiffness, an overly-stiff behaviour was observed regardless of the slab. This is also
confirmed in the numerical simulations of the authors of the experimental campaign,
using a concrete damage plasticity (CDP) model in combination with an explicit solver in
the commercial FEA program ABAQUS [93], shown in Figure 5.12(a). The flexible mortar
bedding layer between the steel reaction support system and the slab was pointed out to
be the source of this discrepancy. The FE Model has an interface between the steel frame
and the slab, but this also does not help simulating the flexible behaviour observed in the
experiment. Accordingly, the decision to use reduced stiffness values was taken. However,
despite reducing the stiffness, the force displacement relation of Slab ST4 in particular
seems to still be a lot stiffer than the experimental response.

With regard to the experiments, the reduction in initial stiffness in the ST4 case,
in comparison to slabs S2 and SC2, is in line with experimentally observed trend of
decreasing initial elastic stiffness for increasing axial tensile loads for cases (Slabs ST1-
ST4) [20]. But this lacks clarity and insight. SLA simulations do not show such a decrease
in stiffness, as seen in Figure 5.8(b). Furthermore, the choice of two elements over the
thickness was made keeping in mind the computational aspects of SLA as has been
already mentioned. The mesh objectivity for this case study is illustrated using the SC2
case and is presented in Section 7.3.2, after the completion of the development of a tailor-
made linear solver for SLA to circumvent high computation times for finer meshes. Shear
locking as expected is not a problem due to the use of a lower shear retention factor.

The results are hereon presented individually (Figures 5.12, 5.13 & 5.14), in terms of
damage patterns at the end of the brittle failures in each of the three cases corresponding
to the respective force displacement curves. Firstly, the proportional loading case of slab
S2 is considered. The monotonic SLA simulation, with only the concentrated load, shows
a clear brittle failure post peak. Although the material model allows for compressive
failure, 3D orthogonal multi-directional cracking becomes decisive leading up to the
brittle failure. This is evident in the development of the diagonal tensile cracking from
the loading area toward the support as shown in Figure 5.9(b). Figure 5.12(a) additionally
shows two other responses. One of the same FE model (material & modelling parameters
as well) simulated using a traditional implicit solver (with a Newton-Raphson iteration
scheme that converges to an energy norm of 10−4, and in combination with an arc-length
control) in order to highlight the problems of non-convergence, and the other of a rather
fine FE model with the CDP material model-based explicit solver response [93]. The
post peak behaviour is rather well captured with the SLA procedure compared to the two
responses. Similar NLFEA for the non-proportional cases are not done owing to triviality.

The aim of this study is to validate the 3D non-proportional loading in SLA. The
performance in terms of delayed cracking in the compressive axial load case (SC2) and
the reduced capacity in the tensile axial load case (ST4) exemplifies the approach. Both
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Figure 5.12: (a) Force displacement curves of the experiment vs proportional SLA - Slab S2,
additionally also showing the response using the traditional incremental-iterative

procedure(implicit) and the explicit solver [93], and a yellow circular dot denoting the reference
point for end of brittle failure, and (b) the SLA damage plots of half of the slab at the reference point
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Figure 5.13: (a) Force displacement curves of the experiment vs non-proportional SLA
(compressive prestress 1.5 MPa) - Slab SC2 and a yellow circular dot denoting the reference point

for end of brittle failure, and (b) the SLA damage plots of half of the slab at the reference point

the slabs SC2 and ST4 show the brittle collapse post peak due to the shear failure involving
3D orthogonal multi-directional cracking. The damage plots are shown alongside the
force displacement evolutions in Figures 5.13 & 5.14 in relation to the reference point
at the end of the brittle failure. Additionally, the corresponding crack strain plots are
shown in an isometric view in Figures 5.10(b) & 5.11(b) which show the multi-directional
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Figure 5.15: Evolution of constant load (tensile axial load - normalised) multiplier for the Slab ST4 case

cracking, the shear perimeter and the highly deformed failing elements. Slab ST4 in
particular is reported to have a smaller shear crack perimeter than slabs S2 [20], because
of having a steeper diagonal strut due to the applied axial tension, but those from the
simulations do not differ much. However, the reported relative increase in the ductility
of the slabs in the case of axial tensile loads (ST1-ST4) [20] is well captured in the SLA
simulation of ST4.

With regard to the presented root finding algorithm for damage initiation in the 3D or-
thogonal fixed smeared cracking in this chapter, both slabs exhibit a small difference. Slab
SC2, on the one hand, does not show any stress state all through the analysis involving
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complex roots. While slab ST4 involves a few analysis steps where one or two of the un-
damaged points’ stress states yield complex roots. However, as explained in Section 5.3.3,
these roots are not of significance, and hence do not affect the non-proportional loading
strategy. The slabs SC2 and ST4 also exhibit another difference with respect to the redis-
tribution related to the double-load multiplier approach outlined in Section 3.1. On the
one hand, the constant load is maintained at its fullest value all through the analysis in
the case of slab SC2, implying no need for redistribution by returning to the intermittent
proportional loading. Contrarily, slab ST4’s SLA simulations involve the redistribution
strategy towards the end of the analysis, and this is exemplified in the evolution of the
constant load multiplier as seen in Figure 5.15. However, there is no correlation between
the observed ‘one real root’ case and the onset of redistribution in any of the steps result-
ing in the intermittent proportional loading. The need for such a redistribution in the
quasi-static set-up of SLA under non-proportional loading has been touched upon in
Chapter 4 for cases when the constant load continues to drop gradually to extremely low
values, much ahead of the actual structural collapse, indicating alternative equilibrium
paths as has been previously interpreted in Section 4.2. Nevertheless, in this case study
of ST4, the constant load is restored to its full value after each set of these redistribution
steps, happens around the actual expected structural collapse, and is therefore accept-
able. Finally, although compressive nonlinearities are allowed in the material model,
there were only few critical events involving compressive softening, and is therefore not
discussed/shown here since it is not decisive in the development of the mechanism.

5.4.3. NON-PLANAR 3D CURVED CRACK EVOLUTION IN PLAIN CONCRETE:
SKEW-NOTCHED PRESTRESSED BEAM

The two validation studies presented thus far illustrate the capability of the methodology
to capture 3D cracks in an SLA set up. The smeared distribution of damage, typically
observed in reinforced concrete behaviour, would camouflage the characteristic response
of plain concrete fracture which is proven to be rather difficult to reproduce numerically.
Therefore, modeling of 3D non-planar curved cracks, in unreinforced concrete struc-
tures is addressed in this section. 3D non planar crack propagation has been previously
simulated by numerical techniques in literature [71, 52] but are mostly validated against
experimental benchmarks like beams or cylindrical notched specimen loaded in torsion,
3-point and 4-point bending beams with eccentric/skewed notches, and wedge splitting
tests to name a few, all of which are proportional loading cases. Owing to lack of experi-
ments which are performed under non-proportional loading, an academic case study is
considered in this section to illustrate the validity of the methodology. A three-point bend-
ing test, similar to the one presented in Section 5.4.1, is analysed. The beam measures 600
mm, 150 mm and 120 mm in span, depth and thickness, respectively. However, compared
to the beam in Section 5.4.1, the depth of the notch is 30 mm, 5 mm wide and is skewed.
The inclination of the notch with longitudinal axis of the beam is tan(θ) = 0.5, and a
schematic representation of the same is shown in Figure 5.16(a). This beam is subject
to an additional compressive axial prestress, similar to the first case study. This non-
proportional case is used to further validate the proposed methodology by comparing
against an NLFEA response (using an implicit solver).
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Figure 5.16: (a) Schematic representation of a 3 point bending test with a skewed notch - 30 mm
deep and 5 mm wide, and (b) Force displacement curves of the SLA and NLFEA simulations

Finite Element Model The FE model, shown in Figure 5.17(a), is made using 3-noded
triangular iso-parametric solid (brick) elements, with translational degrees of freedom and
a reduced 1-point Gaussian integration scheme. The choice of triangular elements was
made to avoid mesh induced directional bias that would prove to be critical in achieving
the curved non-planar crack. Since the framework is that of smeared cracking, additional
crack tracking algorithms [131] could also help but this is not considered for the current
study. Concrete has been modelled as a linear-elastic material everywhere except the
middle part of the beam, containing the inclined notch, which is shown in dark blue,
refer Figure 5.17(a). All elements in this middle region are approximately 7.5 mm in size
or lower and are provided the possibility of tensile softening failure. All other elements
shown in light blue are approximately 20 mm in size. Linear elements (those with linear
interpolation shape functions) are used in order to ensure constant strain distribution
over the entire element. The adopted saw-tooth law for the middle part of the beam
has the same linear tension softening material model and parameters as mentioned in
Table 5.3, except for a couple of differences. The shear retention and Poisson effects are
both made damage based as explained in Section 5.1, and the crack bandwidth relates to
the size of the element. The point load is assumed to be equivalent to a distributed line
load applied as shown in Figure 5.17(a). The beam is additionally subject to a uniform
compressive prestress, of magnitude 1.0 MPa, at the ends. Two SLA simulations are
performed: One with only the bending load (proportional), and the other in combination
with the prestress (non-proportional). The NLFEA simulations use the same parameters
as their SLA counterparts except that the bending load is applied in displacement control,
over 100 equal sized steps of magnitude 0.012 mm, with a Newton-Raphson iteration
scheme that would converge to an energy norm of 0.0001.
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Figure 5.17: (a) FE model of the skew-notched beam case with axial loads, and damage plots for the prestress
case using SLA shown as: (b) front views along XY plane slices at several distances from front to rear of the beam

(along Z – thickness of the beam) and (c) bottom views along XZ plane slices at several distances top of the
notch to top of the beam (along Y – height of the beam)
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Results & Discussion The results from SLA simulations of the both cases, with and
without prestress, show the propagation of the 3D-curved tensile crack through the height
in a non-planar fashion, resulting in the reduction of effective cross section of the beam.
Since the purpose of the study is to validate the non-proportional loading strategy, only
the prestress case results from SLA are presented in Figure 5.17(b) & (c). Herein, crack
evolution is presented as damage plots for the middle portion of the beam (nonlinear
material). In Figure 5.17(b), the plots correspond to the front view along XY plane slices at
several distances from front to rear of the beam (along Z axis – thickness of the beam). It
is clear how the crack is straight at the front end, and starts to incline towards the rear
end indicating non-planarity about Z axis. In Figure 5.17(c), the bottom view along XZ
plane splices at several distances from top of the notch to the top of the beam are shown
(along Y axis – height of the beam). It is evident that the crack is inclined at the bottom,
and starts to straighten towards the top of the beam indicating non-planarity about Y axis.
YZ plane sections would not provide any new information. The results from NLFEA are in
good agreement with those from SLA in terms of the twisted crack propagation and are
therefore not shown.

The loss of cross section due to the crack propagation results in the loss of flexural
capacity, and is eventually observed as the global softening in the force displacement
curves shown in Figure 5.16(b). The presence of axial loads like the compressive prestress
tends to delay the cracking, and consequently results in a higher capacity, which is well
captured and qualitatively agrees to the expected response patterns from prestressed
concrete theory. Additionally, it can also be observed that both SLA responses (with and
without axial loads) match up reasonably well to those obtained from NLFEA as shown
in Figure 5.16(b), thereby validating the 3D Non-proportional strategy. The difference
in the post peak behavior is due to the higher strength properties used because of the
ripple band approach in SLA, and the stress locking typical of fixed cracking. With
regard to the solution obtained for undamaged integration points per analysis step,
the non-proportional loading case yields 3 real roots always (though not necessarily
positive). Additionally, the constant load i.e the compressive axial load, was kept constant
throughout the analysis, and there was no need to return to the intermittent proportional
loading.

5.5. CONCLUDING REMARKS

This chapter contributes to extending sequentially linear analysis to 3D applications with
non-proportional loading. Two approaches have been presented to determine the load
multiplier per undamaged integration point, in a 3D stress state, for damage initiation
under non-proportional loading in a smeared cracking framework. This in turn brings
about a change from an isotropic to a 3D orthogonal damage formulation, with directions
along those of the principal stresses at the onset of damage.

• The first approach involves deducing two cubic equations in the load multipli-
ers (tension and compression failures), manipulating the equations into monic
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trinomials, and subsequently, solving these depressed cubic equations using the
Cardano method or trigonometric solutions, for one or three real roots respectively,
depending on the discriminant of the equation.

• The second approach involves a reformulation of the case as an optimisation
problem. The load multiplier is now expressed as a function of the inclination of a
potential failure plane. The aim is to find solutions to the inclination of the critical
plane, i.e the directional cosines, and consequently, determine the critical load
multiplier. The second approach has previously been validated for 2D plane stress
state. However, for 3D stress state it is shown to be computationally intensive, and
also cannot guarantee solutions that match up to the analytical solution. The first
approach is, therefore, preferred over the second for the validation studies, due
to possibilities of loss of accuracy and computational efficiency reasons, but the
validity of the concept as such remains.

The first concept is then validated against three case studies involving 3D stress states
under non-proportional loading: A three point bending beam (notched) test example
with compression and tensile prestress loads, an experimental campaign on the effect of
axial loads on shear strength of RC slabs without shear reinforcement, and a three point
bending beam (skewed notch) example with a compressive prestress load. In the first
case, the increase and decrease in capacity of the beam with compressive and tensile
prestress respectively, was well captured in the simulations. The second case of RC slabs
also exhibited a similar trend in the shear strength capacity depending on the axial load
applied, and also showed a good-to-reasonable agreement in terms of damage patterns,
force displacement curves and the failure mechanism. The post peak brittle failure in all
three cases was captured to good degree in SLA. In the third case, the increase in capacity
of a bending beam (with a skewed notch) with additional compressive prestress was well
captured in the SLA simulation along with a 3D non-planar curved crack. With regard to
the analytical solution presented in this chapter, all non-proportional loading cases of the
prestressed beam studies and RC slabs, except the tensile axial load case of ST4, always
resulted in 3 real roots and the roots were rather easy to find in comparison to the SLTHNP
optimisation approach. Even in the case of slab ST4, 99% of all stress states in the analysis
yielded 3 real roots analytically. The ‘one real root’ case was sparsely observed but did not
affect the non-proportional loading in any way. With regard to the redistribution strategy
in SLA in returning to the intermittent proportional loading, all non-proportional case
studies involved maintaining the constant load at its fullest value all through the analysis
except in the ST4 slab case. But even in that case the redistribution was always followed
by recovery of the full magnitude of the constant load and additionally, occured closer to
the actual structural collapse which is acceptable. In conclusion, the case studies provide
satisfactory results in terms of force displacement response and damage patterns, thereby
proving the validity of the proposed 3D non-proportional loading strategy for continuum
SLA applications.





CHAPTER 6
COMPOSITE INTERFACE MODEL FOR

SEQUENTIALLY LINEAR METHODS*

This Chapter proposes an extension of the discretised tension-shear model for interfaces,
suitable for sequentially linear methods [139], with a simplified compression cap crite-
rion. This enables simulation of combined cracking-crushing-shearing failure possibilities
typical of damage in masonry. The formulation for two-dimensional (2D) line interfaces
including the tension cut-off, Coulomb friction, and compression cap criteria is detailed in
Section 6.2.1, followed by the three-dimensional (3D) planar interface formulation in Sec-
tion 6.2.2. The applicability of the formulations are illustrated using 2D and 3D models of
a pushover analysis on a squat unreinforced masonry wall in Section 6.3. The simulations
are made using both Sequentially Linear Analysis (SLA) and the Force-Release method.

6.1. MOTIVATION

Zero-thickness interface elements are used in standard finite element (FE) analysis to
represent displacement discontinuities, for e.g. in plain and reinforced concrete applica-
tions to simulate cracking and bond slip failures. In masonry structures, global failure
mechanisms generally comprise rocking, shear sliding, and diagonal shear failures, or
combinations thereof, which in turn involve a wide range of local mechanisms including
cracking and slipping of joints, cracking under direct or diagonal tension of brick units,
and masonry crushing at the toe of a rocking pier. Standard homogenised continuum
representation of all such failure possibilities is possible [84] but at the expense of ad-
ditional assumptions and is, furthermore, known to cause convergence issues in the
traditional implicit NLFEA setup. Alternatively, the micro-modelling strategy [32, 82]
has been employed by differentiating the continuum into linear elastic bricks and po-
tential failure planes represented by interface elements: along head and bed joints, and
additionally, a potential brick cracking plane. These nonlinear failure planes allow for a
discontinuous jump in the displacement field from one course of brick to the other which
is characteristic of masonry failure. The commonly used constitutive framework is the
composite-interface formulation [83] under a traditional NLFEA set-up, which allows for
combined cracking-crushing-shearing failures in discrete interface elements. However,
the ultimate collapse, most often involving crushing, is intrinsically brittle and difficult to
simulate due to convergence issues. This could therefore be addressed using numerically
robust solution procedures such as the sequentially linear methods. To this end, the
step-wise secant Coulomb friction formulation of Van de Graaf [139] needs a compression
cap criterion to allow for all 3 failures: cracking, shearing and crushing.

*This Chapter is based on the author’s article submitted to Engineering Structures.
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6.2. CONSTITUTIVE MODEL & WORKFLOW

A composite-interface formulation is proposed in this study, shown in Figure 6.1, to be
used in conjunction with the sequentially linear framework. The tension-cut-off criterion
is coupled with a uniaxial tension softening law. The compression-cap could be given
an elliptical shape but is simplified herein as a cut-off criterion, dependent purely on
the normal traction, coupled with a uniaxial hardening-softening law (referred to as the
parabolic softening law [49, 51] hereon). Step-wise secant saw-tooth laws address these
uniaxial material behavior. Finally, the Coulomb friction criterion which involves multiple
stress and/or deformation components requires a more sophisticated approach for use
in sequentially linear methods such as the SLA. In this regard, step-wise secant Coulomb
friction laws proposed by Van de Graaf [139] for SLA, briefly reviewed in Section 2.3.1,
are used herein. The sub-variant which decouples the tension and shear modes is the
formulation considered in this study. The dilatancy effects are neglected because of no
coupling, i.e the dilatancy angleψ = 0, an assumption that yields good results for masonry
structures in general [32, 144] and also using SLA [139].

The loading is considered to be non-proportional, and for a system loaded by con-
stant loads (Lcon) and a unit variable load (Lvar), the tractions corresponding to normal
(subscript n) and shear directions (subscripts t and s) are expressed as the superposition
of the tractions due to the constant and scaled variable loads as shown in Eq. 6.1 for each
integration point i . The governing stress, as the failure type may be, is then limited by the
allowable strength corresponding to the failure criterion.

tn,i = tn,i con +λ tn,i var

tt ,i = tt ,i con +λ tt ,i var

ts,i = ts,i con +λ ts,i var

(6.1)

In this section, both the 2D and 3D formulations are outlined for the different failure
types in regard to the following aspects:

• Determination of the load multipliers per integration point in the FE model : λshr
i ,

λten
i and λcmp

i corresponding to the shear, tension and compression failures, and
the identification of the critical integration point λcrit,i and failure mode.

• Updating the stiffness of the critical integration point based on the failure mode.

6.2.1. LINE INTERFACES FORMULATION (2D)

In the 2D interface formulation, at the linear elastic stage, the interface tractions tn and tt

are related to the corresponding normal and shear relative displacements un
† and ut

†

by means of the uncoupled constitutive secant matrix Dsec (with an undamaged normal
stiffness kn,0 and shear stiffness kt ,0) in the following way.[

tn

tt

]
=

[
kn,0 0

0 kt ,0

][
un

ut

]
(6.2)

†The ∆ symbol, commonly used to denote relative displacements in interface formulations, is dropped herein
to avoid ambiguity with the variations of the said relative displacements used in the stiffness update subsection
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CRITICAL LOAD MULTIPLIER

Shear mode Considering initial cohesion c0 and the yield criterion |tt | = −tn tan(φ)+c0,
the load multiplier for shearing failure per integration point i is defined as shown in
Eq. 6.3, where tan(φ) is the friction coefficient.

(|tt ,i con +λi tt ,i var|
)+ (

tn,i con +λi tn,i var

)
tan(φ) ≤ c0 (6.3)

Cohesion softening is considered for this study, and therefore the determination of the
load multiplier per integration point is not equivalent to solving Eq. 6.3. This is because
the mobilised cohesion c, in addition to being dependent on the plasticity parameter κ
(assumed to be equal to the largest plastic relative shear displacement in the absolute
sense [82]), becomes dependent on the load multiplier λ as shown in Eq. 6.4, where G II

f is

the mode-II fracture energy.

c(κ,λ) = c0 exp

(
− c0

G II
f

κ

)
κ= max |upl

t |
(6.4)

Therefore, the load multiplier is deduced in the following way:

1. Evaluate load multipliers λc0 and λ0, corresponding to states of initial cohesion
and zero cohesion, as follows:(|tt ,i con +λc0 tt ,i var|

)+ (
tn,i con +λc0 tn,i var

)
tan(φ) ≤ c0 (6.5a)(|tt ,i con +λ0 tt ,i var|

)+ (
tn,i con +λ0 tn,i var

)
tan(φ) ≤ 0 (6.5b)

2. Perform a bisection between λc0 and λ0 to find an initial root, and then refine it us-
ing a Newton-Raphson scheme to arrive at the load multiplier λshr

i for shear failure,
such that the integration point i lies on the shifted Coulomb surface (Figure 6.1),
i.e. the normalised yield lies below a user specified tolerance β as shown in Eq. 6.6.(|tt ,i con +λshr

i tt ,i var|
)+ (

tn,i con +λshr
i tn,i var

)
tan(φ)− c

c0
≤β (6.6)

The friction coefficient is assumed to be constant i.e. friction softening is neglected.
Note that in case the cohesion softening is absent, λshr

i can be calculated according to
Eq. 6.5(a).

Tension mode The load multiplier for tensile cracking is as shown in Eq. 6.7, where ft

is the current tensile strength based on a predefined saw-tooth law, or on a stress-strain
relation evolving during analysis with user specified relative displacement increments and
the corresponding traction decrements [139] as shown in Figure 6.2(a).

(
tn,i con +λten

i tn,i var

)≤ ft (6.7)
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Figure 6.1: Failure surface for the 2D line interfaces

Compression mode The load multiplier for crushing failure is as shown in Eq. 6.8,
where fc is the current compressive strength based on a predefined parabolic softening
saw-tooth law as shown in Figure 6.2(c). The failure criterion for compression in the
original composite interface formulation for masonry [82] is an ellipsoid cap model that
depends on the normal and shear stresses through a set of material parameters. However,
for simplicity, this is herein treated as a straight shear-independent cut-off criterion. This
approach is reasonably accurate and also fits well with material parameters such as the
compressive strength fc and fracture energy Gc, which are widely used in engineering
practice for e.g. in a simple Rankine-type failure surface for the total strain based smeared
cracking models.

(
tn,i con +λcmp

i tn,i var

)≥− fc (6.8)

The critical load multiplier is then determined as the minimum of all the load multipliers.

λcrit = min
i

(
λshr

i ,λten
i ,λcmp

i

)
(6.9)

STIFFNESS UPDATE

Once the critical integration point is identified, the stiffness matrix is degraded based on
the failure mode as detailed in the following.

Shear mode The shear failure involves update to only the shear stiffness term of the
uncoupled constitutive matrix Dsec, which is defined for the j th linear analysis or step as
follows

D( j )
sec =

[
k( j )

n 0

0 k( j )
t

]
(6.10)

k( j )
t =

t ( j−1)
t ,crit

u( j−1)
t ,crit +δu( j−1)

t

with δu( j−1)
t = at u( j−1)

t ,crit (6.11)
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The update to the shear stiffness is computed during the analysis, as shown in Eq. 6.11,

with the critical shear traction t ( j−1)
t ,crit and the critical relative shear displacement u( j−1)

t ,crit

of the completed ( j −1)th step, and additionally, a specified relative shear displacement

increment δu( j−1)
t which is based on a user defined factor at . This factor is similar to

the saw-tooth band width ripple factor p, as in Figure 2.2, and is used for discretising

the constitutive behavior. The updated shear stiffness k( j )
t therefore corresponds to the

increased shear displacement (1+at )u( j−1)
t ,crit , and is a prediction that is exact only if the

actual shear displacement in the subsequent step will equal the specified increased shear
displacement. This way of updating stiffness during an ongoing analysis is merely an
alternative approach to the a priori definition of saw-tooth laws. This is also shown in the
cohesion softening law evolving ‘during’ analysis in Figure 6.2(b), wherein subscripts r
for the shear stiffness kt refer to the subsequent saw teeth number in the softening law
(not to be confused with analysis step j ).The effect of larger values of the user defined
factor at was previously shown to result in a saw-tooth (coarser) type response in the
force displacement evolution, due to the approximate stiffness guess, for a shear study on
bricks under confinement [139].

Tension and Compression modes Both the cracking and crushing failures consider the
normal traction for damage initiation and propagation. Accordingly, both failures involve
update to the normal stiffness term of the uncoupled constitutive matrix Dsec, shown
in Eq. 6.10, based on predefined saw-tooth laws. For tensile cracking, linear tension
softening relations are approximated as the predefined band width ripple type saw-tooth
law shown in Figure 2.2. Alternatively, similar to the cohesion softening law evolving
during analysis, the normal stiffness updates can be made on the basis of a specified
normal relative displacement increment δun,r and an associated drop in normal traction
δtn,r for the current saw-teeth number r as shown in Figure 6.2(a). For compressive
failures, the band width ripple version of the parabolic hardening-softening relation
shown in Figure 6.2(c) is used.

Furthermore, the shear stiffness is also damaged in both cases as shown in Eq. 6.12,
where kn,0 and kt ,0 are the undamaged normal and shear stiffnesses. However, if the

current shear stiffness k( j−1)
t at the end of the completed analysis step ( j −1) is lesser than

the computed k( j )
t , the shear stiffness is not degraded any further.

k( j )
t = kt ,0

k( j )
n

kn,0
(6.12)

The original composite interface model [82] was plasticity-based, i.e. with elastic unload-
ing/reloading. In contrast, the proposed model has secant unloading/reloading for all
modes. This better fits quasi-brittle materials particularly in relation to discrete cracking.
This is because elastic unloading of fully open tensile cracks, as in the original formulation,
could result in an overly-stiff behaviour which is not desirable. In this sense, the proposed
model is advantageous. However, the use of a total approach may result in inappropriate
crack-closure effects under redistribution, with carry over of damaged stiffness between
stress regimes.
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Figure 6.2: (a) Linear tension softening law evolving ‘during’ analysis with user specified relative normal
displacement increments, (b) cohesion softening law deduced ‘during’ analysis with user specified

relative shear displacement increments, and (c) pre-defined parabolic hardening-softening saw-tooth
law for compression [49]. Studies in this chapter use (b) as such for the shear mode, while predefined

band width ripple versions of (a)&(c) (Figure 2.2) are used for the tension and compression modes.

6.2.2. PLANAR INTERFACES FORMULATION (3D)

In the 3D interface formulation, at the linear elastic stage, the interface tractions tn , tt and
ts are related to the corresponding normal and shear relative displacements un , ut and us

respectively by means of the uncoupled constitutive secant matrix Dsec (with undamaged
normal stiffness kn,0 and shear stiffnesses kt ,0 & ks,0) in the following way.tn

tt

ts

=
kn,0 0 0

0 kt ,0 0
0 0 ks,0

un

ut

us

 (6.13)

CRITICAL LOAD MULTIPLIER

The load multiplier definition for the tension and compression failure modes for the 3D
planar interfaces are the same as those for the 2D case, as shown in Eq. 6.7 & 6.8, since
the cracking or crushing initiation and propagation depends on the normal traction tn .
However, with regard to the shear failure mode in planar interfaces, the yield criterion for
an integration point i is governed by the effective shear stress [143] which is defined as
follows.

teff =−tn tan(φ)+ c0

where teff =
√

t 2
t ,i + t 2

s,i

(6.14)

Accordingly, the plasticity parameter κ is also expressed as the effective plastic shear
relative displacement in the following manner.

upl
t .eff =

√
upl

t

2 +upl
s

2
(6.15)

Rest of the workflow to determine the load multiplier for shear failure is similar to the
2D formulation, wherein equations Eq. 6.3-6.6 hold with the appropriate effective shear
stress and the effective plastic shear relative displacement. The critical load multiplier is
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then deduced according to Eq. 6.9, and the stiffness update for the corresponding failure
mode is carried out as explained in the following subsection.

Figure 6.3: Failure surface for the 3D planar interfaces

STIFFNESS UPDATE

Shear mode Similar to the 2D formulation, the shear failure involves update to the shear
stiffness terms of the 3D uncoupled constitutive matrix Dsec in Eq. 6.16. Both the shear
stiffnesses are calculated based on user-specified relative shear displacement increments

δu( j−1)
t and δu( j−1)

s , which now require two user defined factors at and as , during an
ongoing analysis step j as shown in Eq. 6.17.

D( j )
sec =

k( j )
n 0 0

0 k( j )
t 0

0 0 k( j )
s

 (6.16)

k( j )
t =

t ( j−1)
t ,crit

u( j−1)
t ,crit +δu( j−1)

t

with δu( j−1)
t = at u( j−1)

t ,crit

k( j )
s =

t ( j−1)
s,crit

u( j−1)
s,crit +δu( j−1)

s

with δu( j−1)
s = as u( j−1)

s,crit

(6.17)

Tension and Compression modes The update to the normal stiffness in case of crack-
ing and crushing failures, involves resorting to the predefined or evolving tension and
compression softening saw-teeth relations, again similar to the 2D formulation. However,
in addition to the update to normal stiffness, the shear stiffness is damaged along both

shear directions as shown in Eq. 6.18, unless the current shear stiffnesses k( j−1)
t and k( j−1)

s

at the end of the completed analysis step ( j −1) are lesser than the newly computed k( j )
t

and k( j )
s .
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k( j )
t = kt ,0

k( j )
n

kn,0

k( j )
s = ks,0

k( j )
n

kn,0

(6.18)

6.3. ILLUSTRATION : PUSHOVER ANALYSIS OF A MASONRY WALL

Experiment In this section, the experiment on a solid clay brick masonry wall tested
by Raijmakers and Vermeltfoort [113, 114] is used as a benchmark to validate the 2D and
3D composite interface formulations presented in this chapter. The wall was made of 18
courses of bricks, with dimensions of 210 mm×52 mm×100 mm, and mortar layers of 10
mm thickness. The dimensions of the wall are as shown in Figure 6.4(a), based on the 18
courses of bricks, resulting in an approximate effective width/height ratio of one. The
top and bottom courses of bricks were clamped to a steel beam to constrain the rotation
along both edges, additionally preventing the free vertical movement of the top edge. The
walls were loaded initially by an overburden pressure of 0.30 N/mm2 ∧= 30 kN, followed
by a monotonically increasing lateral load d applied under displacement control. The
force displacement evolution and damage patterns of two such walls (namely J4D and
J5D) are shown in Figure 6.6 and Figure 6.4(b),(c) respectively. The damage in both walls
begins with a rocking type failure i.e. cracks developing along the top and bottom of the
wall. This is followed by a diagonal stepped crack which leads to the failure mechanism,
simultaneously with cracks in the bricks and crushing of the compressed toes of the wall.
Such a mechanism and the availability of data on material properties, including fracture
energies from small-scale companion tests, makes this an ideal benchmark considering
the scope of the proposed composite interface formulations.

Figure 6.4: (a) Schematic representation of solids clay brick masonry walls (J4D & J5D) loaded firstly by
an overburden pressure of 0.30 N/mm2 followed by a lateral prescribed displacement d , and the

experimental crack patterns of the walls (b) J4D and (c) J5D
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6.3.1. 2D LINE INTERFACE MICRO-MODEL

Finite Element Model The walls are discretised using the simplified micro-modelling
strategy [32, 82], wherein mortar joints and the brick-mortar interfaces are lumped to-
gether into a zero-thickness interface, and the bricks are extended to account for the
mortar thickness. The bricks are modelled using 4-noded iso-parametric plane stress ele-
ments, roughly 27.5 mm×27.5 mm in size, with linear interpolation shape functions and a
2×2 Gaussian integration scheme. The zero-thickness interfaces are modelled using 2+2
noded interface elements, allowing for 2 in-plane translational degrees of freedom (DOFs)
per node, in conjunction with a 2-point Newton-Cotes integration scheme. All DOFs
along the bottom edge of the wall are fully constrained, while the top edge is prevented
against any rotation. The nodes along the top edge of the wall are given an initial vertical
displacement 0.083 mm, which is the imposed displacement equivalent to an overburden
pressure of 0.30 N/mm2. Subsequently, a lateral displacement is imposed on the top edge
to simulate the lateral load.

Figure 6.5: 2D Finite element micro model of the solid clay brick wall subject to overburden & pushover loads

The FE model shown in Figure 6.5 includes interfaces along the head and bed joints,
and additionally, along the mid-length of bricks to simulate vertical brick cracks. The
2D composite line interface formulation presented in this chapter is the adopted con-
stitutive model, and all head & bed joints are lumped with the nonlinearities of tensile
cracking, crushing and shearing, with material parameters as shown in Tables 6.1&6.2.
The predefined band width ripple based linear tension softening and parabolic compres-
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Table 6.1: Elastic modelling parameters - J4D & J5D walls: based on References [113, 114, 82]

Masonry Units Parameters Elastic
Bricks Young’s Modulus E0 [GPa] 16.7

Poisson’s ratio v0 0.15
Head & Bed Joints Normal stiffness kn [N/mm3] 82

Shear stiffness kt [N/mm3] 36
Brick Cracks Normal stiffness kn [N/mm3] 106

Shear stiffness kt [N/mm3] 106

Table 6.2: Inelastic modelling parameters based on References [113, 114, 82] (except compression)

Masonry Units Parameters Compression Tension Shear
Head & Bed Joints Strength ft, fc ,c0 [MPa] 6.0 0.25 0.35

Fracture energy Gc ,GI
f ,GII

f [N/mm] 1.8 0.018 0.125

Saw-teeth discretisation factor 0.1 0.15 0.05
Softening relation Parabolic Linear Exponential
Shear retention factor β Damage-based [132] Damage-based [132] -

Bricks Cracks Tensile Strength ft [MPa] 2
Fracture energy GI

f [N/mm] 0.08

Saw-teeth discretisation factor 0.2
Softening relation Linear
Shear retention factor β Damage-based [132]

sion hardening-softening saw-tooth laws are used. The properties for compression are
reduced in comparison to those used in Reference [82], by means of a sensitivity study, to
fit the experimental results. This is also motivated by the use of a straight cap (cut-off)
criterion instead of the elliptical cap for compression failure. For the decoupled Coulomb
friction failure mode, a user specified discretisation factor of at = 0.05 for the specified
relative shear displacement, as in Eq. 6.11, is used. Vertical interfaces are included in
the middle of the bricks, with only the discrete cracking possibility while omitting the
shear & compression failures, in accordance to previous studies in References [83, 139].
Additionally, the overall brick behaviour and the vertical brick-crack joints along the
bottom and top-most course of bricks in particular, which are attached to the stiff steel
beams, are kept linear elastic with material parameters as shown in Table 6.1.

RESULTS & DISCUSSION

Firstly, the performance of the micro-model with the full composite interface formula-
tion, i.e. discrete cracking, shearing and crushing in the interfaces, is analysed. This is
treated as the reference case and is referred to as the discrete-crushing model hereon. The
force-displacement evolution for this pushover study, shown in Figure 6.6, shows good
qualitative agreement with the experimental responses of walls J4D and J5D, in terms of
the peak loads, and the global softening behaviour that leads to loss of lateral capacity.
The deformed profile and damage propagation in the masonry are summarised for the
SLA simulation of this model in Figure 6.7 at 2 mm and 4 mm prescribed lateral top dis-
placements. The damage plots DmTeNN and DmCoNN indicate loss of normal stiffness
due to cracking and crushing respectively. The DmTeSS damage plots indicate loss of
shear stiffness which is either due to a pure-sliding failure or the damage based shear
reduction associated with the cracking/crushing modes. All damage plots herein range
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Figure 6.6: Force-displacement curves of the experiments compared against those of SLA for the reference
discrete-crushing micro model : with discrete cracking, shearing and crushing in interfaces

from 0 to 1 which refer to undamaged and fully damaged cases for the corresponding
failure criteria.

The wall firstly exhibits flexural failure which is visible as horizontal cracks along bed
joints at the bottom-right and top-left corners of the wall. After the flexural cracks are
fully developed (before 2 mm top displacement), compressive strut action results in a
staggered step-like crack along the diagonal to the toe (left bottom corner) of the wall. This
damage propagation includes both sliding failure along the bed joints, resulting in loss of
shear stiffness, and tensile cracking along head joints, resulting in loss of both normal
and shear stiffnesses. The fully developed flexural cracks and propagating diagonal step
cracks at 2 mm top displacement are shown as tensile cracking and shear failure plots
in Figure 6.7. Furthermore, the stress flow into the toe of the wall leads to the onset of
the crushing failure, which can be seen as loss of normal stiffness in the crushing plots of
Figure 6.7.

Upon further increase of the lateral displacement to 4 mm, the damage along the
diagonal shear crack increases and localises, leading to a widening of the head joints and
simultaneous sliding along bed joints, along the diagonal of the wall. Furthermore, the
stepped crack also involves vertical splitting cracks through the bricks along the courses
at mid-height of the wall, which often appear as sudden drops/instabilities in traditional
NLFEA [82]. This is adequately captured by SLA. Simultaneously, the toe of the wall is
completely crushed along half the length of an entire brick. This results in a clear drop of
lateral capacity which is observed in the force-displacement curve, indicating failure.

The performance of the model can also be assessed based on the development of the
vertical reaction forces, and its eccentricity with respect to the center line of the wall. The
comparison of these aspects with the experiments is shown in Figure 6.11. Firstly, the
general trend of the increase in vertical reaction with increasing lateral displacement is
captured reasonably well. However, the results are adrift of the experiment. Secondly, the
development of eccentricity (x/w) of the effective vertical reaction, where w is half the
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Figure 6.7: The deformed profile, and damage plots indicating tensile, shear and crushing failures for
the pushover study of reference discrete-crushing model, with discrete cracking-shearing-crushing

interfaces, using SLA at 2 mm and 4 mm prescribed lateral displacements
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width of the wall and x is the distance of the effect vertical reaction force from the center
line of the wall, is analysed. The eccentricity first grows outwards and eventually inwards
to the center line of the wall with increasing lateral displacement in the SLA simulation.
This is similar to the trends from the experiments, however, once again differences are
observed. Despite the two above mentioned artefacts, the force-displacement evolution
seems to be captured perfectly and therefore, these are considered acceptable in this
study. Furthermore, despite the assumption of zero dilatancy angle, which is a feature of
the decoupled Coulomb friction model used herein, the force-displacement response is
close to the experiment. This is in line with the findings of previous works [32, 144] on
the acceptable use of zero-dilatancy angle in the analysis of masonry structures. Finally,
the performance of the non-proportional loading strategy in SLA in fully retaining the
constant load until physical failure is remarkable in this case, and this is discussed in
detail the following section.

VARIATION STUDIES

The following variations are performed on the benchmark study to analyse the perfor-
mance of the proposed composite interface formulation. These are additionally sum-
marised in Table 6.3.

• Firstly, the micro-model is run with discrete cracking and shearing failure possi-
bilities in the interfaces excluding compressive nonlinearities, to understand the
influence of crushing that is often the primary cause of collapse in masonry units
such as shear walls. This case is referred to as the no-crushing model hereon.

• Secondly, the reference micro-model with full composite interface failure possibili-
ties, i.e. the discrete-crushing model previously analysed using the SLA, is addition-
ally studied using an incremental sequentially linear method, the Force-Release
method. This helps to understand the influence of non-proportional loading in
SLA, and also the importance of tracking stress history on damage accumulation
and the eventual failure mechanism.

• Thirdly, a variation is performed with a micro model which distinguishes only the
cracking and shearing failures into the interfaces. The crushing is smeared into the
continuum brick elements using an orthogonal fixed smeared crush model. This
case is referred to as the smeared-crushing model hereon.

Table 6.3: Overview of models studied in this section. ‘T’, ‘S’ and ‘C’ denote tension, shear and
compression nonlinearities, while ‘El.’ denotes elasticity.

Modelling Units Influence of crushing SLA vs Force Release Interfaces vs Continuum

discrete-
crushing

no-crushing discrete-
crushing

discrete-
crushing

discrete-
crushing

smeared-
crushing

Head & Bed Joints T-S-C T-S T-S-C T-S-C T-S-C T-S

Potential Brick Cracks T T T T T T

Bricks El. El. El. El. El. C
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Figure 6.8: Evolution of compressive tractions along bed joints of the wall, with and without the
crushing failure possibility (note the different colour scales), for increasing lateral displacements;
& the schematic view of the rotation and movement of two parallel struts in the case of crushing

failure possibility, with progressive crushing of the toe region of the wall.

Case 1: Influence of crushing The force displacement curves of the no-crushing model
compared against the reference discrete-crushing model is shown in Figure 6.9. The im-
portance of crushing nonlinearities is clearly observed in the response of the no-crushing
model which shows progressive increase in capacity with an increasing prescribed lateral
displacement. This is also confirmed by the growing compressive tractions, in the bed
joint interface near the toe of the wall, to almost 20 MPa at 4 mm top displacement as seen
in Figure 6.8. Contrarily, the response of the reference discrete-crushing model shows a
nonlinear distribution of compressive tractions along the length of the said bed joints
already at 2 mm top displacement. With further increase in lateral displacement, the
tractions in the bed joints drop and move inwards towards the center of the wall. This
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indicates crushing of the toe. Figure 6.8 shows the formation of two parallel struts which
are both rotating and approaching each other, which is also exemplified by the variation
of eccentricity of the effective vertical force in Figure 6.11(b). This study validates the
proposed simplified cut-off criterion used for crushing in the composite interface for-
mulation. Although an elliptical cap model is used in the original formulation [82], the
simplified straight cap (cut-off) criterion, in conjunction with other assumptions for the
shear formulation and calibrated properties in compression, performs remarkably well.

Figure 6.9: Force-displacement curves of the SLA simulation of the micro models with and
without crushing nonlinearities: discrete- and no-crushing models

Case 2: SLA vs Force Release method The Force-Release method [44] extensively com-
pared against SLA for continuum modelling illustrations in Chapter 4 is now applied for
the composite interface formulation. The reader is referred to Chapter 3 for an overview
on the method. The composite interface formulation for 2D line interfaces, as outlined in
Section 6.2.1, will hold good for the Force-Release method as well, but with the incremen-
tal approach in considering the stresses due to all previously applied loads as ‘constant’.
The force displacement curve for the Force-Release simulation of the pushover study
using the reference discrete-crushing model is as shown in Figure 6.10(a). It compares
well with SLA, and is mostly an envelope of the SLA response. This is corroborated by the
close similarity in the damage plots of the SLA and Force-Release simulations at 2 mm
prescribed lateral displacement, refer Figures 6.7 & 6.12.

The differences become apparent whenever SLA returns to the Intermittent Propor-
tional Loading (IPL), wherein the last successful load combination is scaled proportionally
to avoid violation of the constitutive law anywhere in the FE model. Under such condi-
tions, the overburden load in SLA is implicitly reduced to enforce equilibrium during a
quasi-static damage driven failure propagation. This becomes significant starting ∼ 3.7
mm prescribed lateral displacement, marked as a yellow circle in Figure 6.10, indicating
onset of collapse. The constant load drops to extremely low values through this region
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Figure 6.10: Force-displacement curves of the experiments compared against those of the SLA
and the Force-Release simulations of the discrete-crushing model, and (b) the evolution of

constant load of precompression during the simulations

Figure 6.11: (a) Evolution of the vertical reaction forces, and (b) its eccentricity with respect to the
center line of the wall, for increasing prescribed lateral displacements in the SLA & Force-Release

simulations of the discrete-crushing model

but is also recovered immediately, which appear as large snap-backs in the post-collapse
region at prescribed lateral displacements around 4 mm. Since every damaged element’s
stress is released instantaneously in SLA, the neighbouring integration points of the crit-
ical integration point whose stresses are close to their respective allowable strengths
subsequently become critical at a considerably lower load. In summary, the performance
of the non-proportional loading strategy of SLA is successful in this problem leading to
collapse, which in turn is described using its inherent redistribution procedure (IPL).
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Figure 6.12: The deformed profile, and damage plots indicating tensile, shear and crushing failures for
the pushover study of reference discrete-crushing model, with discrete cracking-shearing-crushing

interfaces, using the Force-Release method at 2 mm and 4 mm prescribed lateral displacements
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On the other hand, these regions are simulated in disequilibrium using the Force-
Release method appearing as instabilities or drops of load for a constant imposed dis-
placement. It is known that the difference in load history results in a different elemental
failure sequence in lattice simulations [44], and that for continuum studies as well damage
propagation could be different, by a small amount, as confirmed by studies in Chapter 4.
This is reiterated by the current case study as well which is evident from damage plots for
SLA and Force-Release at 4 mm top displacement, refer Figures 6.7 & 6.12. Although the
plots look alike, there are yet notable differences like the through vertical cracks in the
middle course of bricks in SLA which appears to be more a stepped crack passing through
the head and bed joint in the Force-Release case. Such minor differences are the effect of
an accumulation of differences in damage locations over several steps. The IPL is used in
SLA often after 50000 events as seen in Figure 6.10(b), while the Force-Release traverses
through these regions through several small instabilities. One such prominent region is
around 4.25 mm prescribed lateral displacement of both SLA and Force-Release curves in
Figure 6.10(a). Furthermore, the evolution of vertical reaction forces and its eccentricity
with the imposed displacement in the Force-Release simulation is also similar to that
of SLA, refer Figure 6.11. In conclusion, Force-Release simulation (incremental) of the
composite interface formulation also performs well for the case study and compares well
with the total version of SLA.

Figure 6.13: (a) SLA simulations of the discrete-crushing model, and the smeared-crushing model
with compression nonlinearity smeared into the continuum, and (b) evolution of eccentricity of

vertical reaction forces up to 4 mm horizontal displacement

Case 3: Crushing in Interfaces vs Continuum The final variation in this 2D study using
SLA (and additionally, the Force-Release method) is that of the smeared-crushing model
that allows for compressive failure in the continuum elements instead of the interfaces
as in the reference discrete-crushing model. This is done using the 2D orthogonal fixed
smeared crush model with a simple bi-axial Rankine-type failure criterion for crush
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initiation in the continuum. The nonlinearity parameters for all elements are the same
as those in Table 6.2, except that the continuum elements are provided the crushing
parameters. Uniaxial parabolic hardening-softening curves, as in Figure 6.2(c), are used
but with the band width ripple, for both directions of the 2D crush set-up. The crushing is
smeared over a bandwidth of ∼ 40 mm and the shear retention function is kept damage-
based [132].

Figure 6.14: Damage plots indicating tensile, shear and crushing failures for the pushover study of
the smeared-crushing model, with discrete cracking & shearing in interfaces while crushing is

smeared in the continuum, using SLA at 2 mm, 4 mm and 6 mm prescribed lateral displacements

The force displacement evolution for the SLA pushover study using the smeared-
crushing model is as shown in Figure 6.13(a). The evolution of the ‘constant’ overburden
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Figure 6.15: Force-displacement curves of SLA and the Force-Release simulations of the smeared-crushing
model, and (b) the evolution of constant load of precompression during the simulations

load through the analysis is shown in Figure 6.15 alongside a Force-Release simulation
of the same model for comparison. Due to the good agreement with Force-Release
simulation, only the SLA results are deliberated hereon. The damage initiation with
flexural failure, followed by the diagonal stepped cracks culminating in the toe crushing,
as observed in the experiments and in the discrete-crushing model are captured well by
the smeared-crushing model as well, refer Figure 6.14.

However, the post-peak response involving crushing of the toe is slightly more ductile
in the case of the smeared-crushing model. To understand this, the evolution of eccen-
tricity of the effective vertical reaction force with respect to the imposed displacement
is analysed. The response of both models match up until an imposed displacement of
around 2.5 mm, refer Figure 6.13. Beyond this point, the inward motion of crushing
zone towards the center of the wall is more drastic in case of the discrete-crushing model,
denoted by parameter β in Figure 6.13(b), which indicates complete crushing of the left
most part of the toe (roughly half a brick length - Figure 6.7). In accordance with Eq. 6.12,
complete crushing also leads to total loss of shear stiffness in this toe region which results
in the sliding out of the brick (Figure 6.7). The crush zone thus effectively moves more
inwards leading to an earlier collapse. However, in case of the smeared-crushing model,
the smearing out of crushing into the continuum results in a more diffused damage zone
near the toe region as seen in the plots of Figure 6.14. This damage distribution helps
delay the inward movement of the crush zone which is decisive for the onset of collapse.
That aside, the damage is distinguished into primary and secondary crushing along the
directions of the orthogonal fixed crush-coordinate system of an integration point, which
is known to have locking issues, despite the use of a shear retention function. There is also
some amount of crushing at several locations along the diagonal, due to contact between
bricks, which is not observed in the discrete-crushing model. The combined effect of
these differences results in the slightly more ductile response of the smeared-crushing
model.
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In conclusion, the relatively quicker inward displacement of the crush zone, due to
the movement and rotation of the struts, sets off the global softening faster in the case
of the reference discrete-crushing model as against the smeared-crushing model. The
ductile response of the latter can be attributed to the larger diffused crush zone coupled
with stress locking, which leads to the slower inward propagation of the crush zone, and
also more inwards than in the case of the former.

6.3.2. 3D PLANAR INTERFACE MICRO-MODEL

Finite Element Model The 3D model of the case study presented thus far is made
in the same manner as the 2D model, with regard to the micro-modelling approach,
and is therefore not shown here owing to triviality. The differences are summarised as
follows. The mortar joints and the brick-mortar interfaces are lumped together into
a zero-thickness 4+4 noded planar interfaces with a 2× 2 Newton-Cotes integration
scheme. The extended bricks are modelled using 8 noded iso-parametric solid elements,
all approximately 27.5 mm×27.5 mm×27.5 mm in size, with linear interpolation shape
functions and a 2×2×2 Gaussian integration scheme. All DOFs along the bottom faces
of wall are fully constrained, while the top face is prevented against any rotation. The
nodes along the top face of the wall are given an initial vertical displacement 0.083 mm,
which is the imposed displacement equivalent to an overburden pressure of 0.30 N/mm2.
Subsequently, a lateral displacement is imposed on the top edge to simulate the lateral
load. The presented planar interface composite interface formulation is the adopted
constitutive model and all head & bed joints are lumped with the nonlinearities of tensile
cracking,crushing and shearing, with material parameters as shown in Tables 6.1,6.2.
However, for the decoupled Coulomb friction failure mode, user specified discretisation
factor of at = 0.075 and as = 0.075 for the specified relative shear displacement along
the two shear directions, as in Eq. 6.17, are used as against at = 0.05 in the 2D analysis.
Also, all saw-teeth discretisation factors for tensile and compressive ripple band relations
are set to 0.2 whereas narrower ripple bands were used in the 2D analysis. The above
mentioned changes in discretisation factors are made to avoid long computational times.

Results & Discussion Firstly, the SLA simulation of the 3D micro-model shows good
qualitative agreement with the 2D simulation of the reference discrete-crushing model
(Figure 6.17(a)), and the experimental responses of walls J4D and J5D as well (Figure 6.16),
in terms of the peak loads and the global softening behaviour that leads to loss of lateral
capacity. The deformed profile and damage propagation in the masonry are summarised
for the SLA simulation of the 3D Model in Figure 6.18 at 2 mm and 4 mm prescribed
lateral top displacement d . The damage plots DmTeNN and DmCoNN indicate loss of
normal stiffness due to cracking and crushing respectively. The DmTeSS and DmTeTT
plots indicate loss of shear stiffness along the two shear directions, which are either due
to sliding failures or the damaged based shear reduction due to the associated normal
cracking/crushing. All damage plots herein range from 0 to 1 which refer to undamaged
and fully damaged cases for the corresponding failure criteria.

Similar to the 2D response, the wall firstly exhibits flexural failure which is visible
as horizontal cracks along bed joints at the bottom-right and top-left corners of the
wall. After the flexural cracks are fully developed, compressive strut action results in a
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Figure 6.16: Force-displacement curves of the experiments compared against those of the SLA for the 3D
model, and (b) the evolution of constant load of precompression during the SLA simulation

Figure 6.17: Force-displacement curves of the 2D and 3D SLA simulations, and (b) 3D SLA
simulations for varying values of user-specified shear displacement increment factors at and as

staggered diagonal shear crack. This damage propagation includes both sliding failure
along the bed joints, resulting in loss of shear stiffness, and tensile cracking along head
joints, resulting in loss of both normal and shear stiffness as is observed in the plots of
Figure 6.18. Although minor out-of-plane effects were seen along the staggered diagonal
crack and also at the top edge of the wall, they are negligible. The case study, in principle,
serves as a good starting case for 3D sliding problems and the proposed formulation
shows good promise. Since the 2D formulation has been shown to work equally well
with both SLA and Force-Release methods, 3D formulation is shown here only with SLA
although the Force-Release simulation should be possible in principle.
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One key aspect of simulating sliding problems using SLA is the effect of the user-
specified shear displacement increment factors at or as (Eq. 6.17) on the shear capacity. It
is most likely that only one of the two has a substantial influence in the present case study
since shearing will be dominant in only one direction. However, it is possible in principle
to change them simultaneously. Furthermore, it was noted previously that the curves
become less smooth upon increasing values of these factors, but that the peak capacity
and post-peak behavior were convergent for moderately large values [139]. However,
it is found in a sensitivity study for these factors that the effect is important for sliding
problems. It is clear from Figure 6.17(b), that values such as at = as = 0.5 or 0.25 result in
quicker loss of the mobilised cohesion and lower dissipation of energy. This is because
the update in stiffness is rather drastic leading to larger plastic shear displacements than
based on the prediction as in Eq. 6.17, and it is therefore recommended to use this factor
appropriately.

6.4. CONCLUDING REMARKS

This chapter proposes an extension to the step-wise secant Coulomb friction formulations
[139], with a compression failure criterion. This makes it possible to analyse masonry
components using the micro-modelling approach in combination with sequentially
linear methods until full collapse. The constitutive model is therefore a composite failure
criterion, and is described in detail for both line (2D) and planar interfaces (3D) with
regard to determining critical load multiplier and the mode of stiffness update. The model
is summarised as follows:

• Shear failure is described by the uncoupled Coulomb friction formulation, allowing
for cohesion softening, and updating the shear stiffness based on specified shear
relative displacement increments.

• Discrete cracking is initiated by a tension cut-off criterion coupled with a uniaxial
tension softening saw-tooth law.

• Crushing is initiated by a compression cut-off criterion coupled with a hardening-
softening saw-tooth law.

The formulations are then validated using a benchmark study of a pushover analysis
on a solid clay brick masonry wall. The wall is first subject to precompression followed
by an imposed lateral displacement, resulting in a diagonal shear failure typical of squat
masonry walls. This benchmark is simulated using both 2D and 3D models, and the
results of both compare well to the experiments. Firstly, the agreement between the SLA
simulation and the experiment is good with regard to the force-displacement relation and
the damage patterns. Toe crushing is captured adequately which leads up to the inward
movement of the crush zone, in turn due to the inward movement and rotation of two
parallel struts, and results eventually in a brittle failure. Secondly, the non-proportional
loading strategy used in SLA works well for the presented case leading up to true-collapse.
The constitutive formulation works adequately in combination with the incremental
Force-Release method as well. Furthermore, the lack of dilatancy in the Coulomb fric-
tion formulation does not seem to affect the force displacement relations, although the
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development of vertical reaction forces are adrift of those from the experiment, both in
magnitude and in terms of eccentricity. Nevertheless, there is scope to improve the perfor-
mance of the proposed composite interface formulation, for e.g. by using a compression
criterion as in the traditional elliptical cap model proposed by Lourenco [82, 83].
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Figure 6.18: Deformed profiles, and damage plots indicating tensile, shear and crushing failures
for the pushover study of 3D Model using SLA at 2 mm and 4 mm prescribed lateral displacements





CHAPTER 7
COMPUTATIONAL PERFORMANCE

ASPECTS OF SLA*

In this Chapter, two tailor-made solvers are proposed to improve the computational perfor-
mance of Sequentially Linear Analysis. Firstly, the motivation for such dedicated solvers
is briefed upon in Section 7.1. Thereafter, an adapted direct solution technique based on
the Woodbury matrix identity is proposed in Section 7.2.1. This identity, the generalisation
of the Sherman-Morrison formula (to find the inverse of a rank-1 corrected matrix) to a
rank-r correction, allows for cheaper numerical computation of the inverse of a low-rank
corrected matrix by avoiding the matrix factorisation every analysis step. The old factorisa-
tion can be reused with some additional matrix and vector manipulations in order to solve
a significantly smaller linear system of equations relatively efficiently. The optimal point of
restarting, to start off again with a new factorisation is also deduced. Secondly, an improved
preconditioner for the Conjugate Gradient (CG) method [56] is proposed in Section 7.2.2.
Instead of an Incomplete LU factorisation (ILU) as a preconditioner, which is more com-
monly used for solving large systems of equations pertaining to structural applications, the
complete factorisation (LU) of a previous analysis step is used as a preconditioner which
reduces the number of required CG iterations significantly. The point at which too many CG
iterations are required and a new factorisation is necessary, is determined using a restarting
strategy similar to that of the first method. The restarting strategy is elaborated upon in
Section 7.2.3. Subsequently, in Section 7.3 the proposed solution strategies are compared
against a widely used parallel direct sparse solver (PARDISO) [56], from a performance
perspective, using two real life benchmarks. The first benchmark is that of a masonry wall
tested for a quasi-static lateral load in combination with an overburden load [6], and the
second is a reinforced concrete slab tested for a concentrated shear load, along with axial
loads at the lateral faces [20] (also previously investigated in Section 5.4.2, Chapter 5). From
the numerical studies, it follows that both the proposed methods perform significantly
better than the direct solution method, especially for large 3-dimensional problems. Re-
sults from the sensitivity studies performed for problem sizes and for the number of steps
used to discretise the constitutive model, are detailed in Section 7.3.2. Finally, Section 7.4
summarises the main findings of the presented work and the directions to future work.

7.1. MOTIVATION

Despite active contributions to different topics under SLA by several researchers, the
computational performance remains not very conducive to practical applications as has

*This Chapter is based on an article co-authored with Swart [137], and published in the International Jour-
nal for Numerical Methods in Engineering 2020 [107]. Solvers were developed by Swart, and all studies are
contributions of the author. Minor modifications are made to suit the thesis.
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been pointed out previously [139, 151, 4, 1]. It is the event-by-event nature of the SLA
approach, which on the one hand instills robustness, contrarily makes the procedure
computationally intensive. However, since only one element is effectively damaged at
a time, the system of linear equations to be solved only changes locally between these
analyses. Traditional direct solution techniques do not exploit this property, and calculate
a rather expensive stiffness matrix factorisation every linear analysis, resulting in high
computational times per analysis step. Additionally, the need for a high number of
linear analyses, to bring about an equivalent nonlinear response as in the traditional
approaches, compounds the total analysis time. This motivated the need for a tailor-
made solver for SLA, additionally inspired by remarks made in References [45, 74]. To
address this issue, and efficiently make use of previous stiffness matrix factorisations and
solutions, two solution strategies are proposed in this chapter. Alternative faster methods
combining a traditional incremental-iterative technique and the total approach of SLA
are also available in literature, addressing the need for a practical alternative [57], but
the focus of this work is to solely improve the performance of SLA with regard to solving
the system of linear equations. It is reiterated once again that unlike NLFEA, which is
considered as one analysis containing several steps, SLA comprises several linear analyses
which are referred herein interchangeably as ‘analysis steps’ or ‘steps’ as such.
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Figure 7.1: Total CPU time (in seconds) for the most dominant processes of SLA in relation to the
problem size (number of degrees of freedom (DOFs)) of a 2D shear wall case study [137]

The traditional direct solution method to solve the system of linear equations in-
volves an expensive matrix factorisation of the stiffness matrix K , and calculates the
displacements u by forward and backward substitution.

K u = f (7.1)

Common factorisation techniques, like the LU and Cholesky decomposition methods,
become expensive if they have to be computed in every analysis step. As a result, for
increasing problem sizes, solving the system of equations becomes the bottleneck for



7.2. TAILOR-MADE SOLVERS FOR SLA

7

125

SLA, and is illustrated by the CPU-time measurements for a 2D shear wall case-study
reported in Reference [137], refer Figure 7.1 for the results. The system of equations
undergoes a low-rank correction of the global stiffness matrix per analysis step in SLA,
and therefore there is a need for efficient solution strategies that exploit this feature, two
of which (originally developed by Swart [137][107]) are outlined in the following sections.

7.2. TAILOR-MADE SOLVERS FOR SLA

7.2.1. DIRECT SOLVER USING WOODBURY MATRIX IDENTITY

The inverse of a rank-1 corrected matrix (A+uvT ), subject to the inverse A−1 being known
a priori, can be computed relatively easily using the well known Sherman-Morrison
formula [56]as against having to perform the inverse operation altogether anew. The rank
correction for practical applications in finite element analysis using the SLA, however, is
generally of a higher order.

To this end, the Woodbury matrix identity [56], which is a generalisation of the
Sherman-Morrison formula for a rank-r correction of a matrix, is more suitable. The
identity states that for matrices A ∈RN×N ,U ∈RN×r ,C ∈Rr×r ,V ∈Rr×N , assuming A and
C are invertible, the inverse of a low-rank corrected matrix is defined as : (A+UCV )−1 =
A−1 − A−1U

(
C−1 +V A−1U

)−1
V A−1. Substituting r = 1, it follows directly that the Wood-

bury identity reduces to the Sherman-Morrison formula. In SLA, additionally, the low-
rank correction is symmetric, and therefore UCV can be written as UCU T with C as a
symmetric matrix. In this case, the expression simplifies to the following:

(
A+UCU T )−1 = A−1 − A−1U

(
C−1 +U T A−1U

)−1
U T A−1 (7.2)

Assuming an element ei is damaged in the nth analysis step, the low-rank corrected
system stiffness matrix K (n+1), for the subsequent analysis step can be written as

K (n+1) = K (n) +Tei

(
K (n+1)

ei
−K (n)

ei

)
T T

ei

:= K (n) +Tei D (n)
ei

T T
ei

, (7.3)

where D (n)
ei

is the update to the stiffness matrix of element ei , and Tei is the transformation
matrix which maps the local numbering of the element to the global numbering of the FE
model. It is to be noted that the subscripts and superscripts refer to element numbers
and the analysis step respectively. Constructing the eigendecomposition of D (n)

ei
and

substituting it in Eq. 7.3, the following is obtained.

K (n+1) = K (n) +Tei Q(n)
ei
Λ(n)

ei

(
Q(n)

ei

)T
T T

ei
(7.4)

= K (n) + (
Tei Q(n)

ei

)
Λ(n)

ei

(
Tei Q(n)

ei

)T

:= K (n) +U (n)C (n)U (n)T
(7.5)

wherein the matrix C (n) =Λ(n)
ei

is a diagonal matrix whose elements are the eigenvalues of

D (n)
ei

, Q(n)
ei

contains the corresponding eigenvectors, and U (n) = Tei Q(n)
ei

. The eigendecom-
position only considers sufficiently large eigenvalues corresponding to dominant features
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of the applied damage increment in an SLA step. The basis for this choice and its effect
on the convergence of the solution is elaborated upon in Section 7.2.3. It is clear that the
rank in every analysis step increases by the number of sufficiently large eigenvalues of the
eigendecomposition of D (n)

ei
, which regardless of the type of analysis (2D or 3D) is at most

d , where d is the number of degrees of freedom (DOF) of the element ei . Rewriting in a
suitable form for Woodbury identity, Eq. 7.5 is defined recursively in terms of the initial
stiffness matrix K (0) which yields

K (n+1) = K (0) +
n∑

j=1
U ( j )C ( j )U ( j )T

= K (0) + [
U (1) . . . U (n)

]C (1)

. . .

C (n)




U (1)T

...

U (n)T


:= K (0) +UnCnU T

n . (7.6)

Algorithm 1 Direct Solution using the Woodbury matrix identity

1: Solve the system K (0)x = f, for x by using the known factorisation of K (0)

2: Solve the system K (0)Z =Un , for Z by using the known factorisation of K (0)

3: Calculate E =C−1
n +U T

n Z
4: Calculate y =U T

n x
5: Solve the system Ez = y, for z by calculating a factorisation of E , and subsequently

applying forward and backward substitutions.
6: Solution to the system of equations: u = x−Z z

Now, Eq. 7.6 is of the form as required by Eq. 7.2. Once the factorisation of K (0)

is known and the above set-up is performed, the solution to the system of equations
K (n+1)u = f of the (n +1)th linear analysis step can be calculated by performing the steps
in Algorithm 1. In summary, Woodbury identity helps achieve a cheaper computation of
the inverse of a low-rank corrected matrix, by avoiding the calculation of an expensive new
factorisation every analysis step. Thus, it enables the reuse of an old factorisation, and
subsequently, the solution is obtained with additional matrix and vector multiplications.
A significantly smaller system of equations is solved for effectively in step 5 of Algorithm 1,
as opposed to the direct solution method.

7.2.2. PRECONDITIONED CONJUGATE-GRADIENT ITERATIVE SOLVER

Krylov subspace methods, which belong to an iterative class of solution methods, in
contrast to direct solution methods generate a sequence of approximate solutions ui to
Eq. 7.1. This is done by solving a minimisation problem over the subspace Kk which
contains the solution, and is called the Krylov subspace as defined below in Eq. 7.7. Herein,
r is the residual vector and r0 = f−K u0, where u0 is the initial guess, and k is the number
of iterations.

Kk (K ,r0) = span
{

r0,K r0, . . . ,K k−1r0

}
(7.7)
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The stiffness matrix is symmetric and positive definite (SPD) for the problems solved
using SLA, and for such cases, the Conjugate Gradient (CG) method is the Krylov subspace
method of choice. After N iterations, the Krylov subspace spans RN , and therefore CG
terminates (in exact arithmetic) at the exact solution after at most N iterations. A stricter
error bound using eigenvalues is also well known, which states that if K (or P−1K for a
preconditioned problem) has ρ distinct eigenvalues, convergence is guaranteed in at
most ρ iterations [56]. The extreme eigenvalues of K influence the convergence speed
of CG , which in turn can be improved using preconditioning to obtain more favourable
eigenvalues.

In the preconditioned CG (PCG) method, for a matrix P which is assumed to be non-
singular, P−1K u = P−1f is solved for, and is shown in Algorithm 2. Since in every iteration
the linear system Pzk+1 = rk+1 is solved for, P should be chosen such that operations with
P−1 are cheap to perform. Furthermore, the choice of the preconditioner must ensure
that the eigenvalues of P−1K are clustered for a faster rate of convergence. Several choices
for the preconditioner P exist, such as the extremes P = I and P = K , or the intermediate
incomplete LU factorisation.

Algorithm 2 Preconditioned Conjugate Gradient algorithm

1: Set r0 = f−K u0, z0 = P−1r0, p0 = z0.
2: for k = 0,1, . . . until convergence do
3: αk = rT

k zk /pT
k K pk

4: uk+1 = uk +αk pk

5: rk+1 = rk −αk K pk

6: zk+1 = P−1rk+1

7: βk = rT
k+1zk+1/rT

k zk

8: pk+1 = zk+1 +βk pk

9: end for

Due to the event-by-event strategy of SLA, the choice P = K (0) would be appropriate
especially when the factorisation is not performed every analysis, in order to have a
balance between a cheap computation of P and a reasonable rate of convergence. This
suggests the use of the complete factorisation of K (0) as a preconditioner. Taking P = K (0),
it follows that in the first analysis step P−1K (0) = I , and basically becomes a direct solution
method. However, subsequent analysis steps require considerably less iterations due
to the event-by-event nature of SLA. That is, the first subsequent system needs at most
(r1 +1) iterations, with r1 equal to the rank of the first update. The second system needs
at most (r1 + r2 +1) iterations, since K (2) differs from K (0) by at most a rank r1 + r2 update.
This argument can be repeated, which implies that after n SLA steps, at most (

∑n
i=1 ri +1)

CG-iterations are needed. The iterative scheme is repeated until the approximate solution
is sufficiently converged. This is determined by a stopping criterion, one of which is
shown below for some tolerance ε, where r is the residual vector.

‖rk‖
‖f‖ ≤ ε (7.8)
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Therefore, the optimal point at which a new factorisation is calculated should be de-
termined such that the total computing time is minimised. In such an iterative approach,
instead of factorisation, the matrix K is only involved in matrix-vector multiplications,
and the solution to Eq. 7.1 is determined using inner-products, vector updates, scalar-
vector and matrix-vector products, and back- and forward substitutions with the factors
of K (0) (the most expensive operations). Krylov subspace methods, in general, require
a relatively small amount of memory to solve the problem compared to direct solution
methods. However, in SLA’s context, more memory is required because of the factorisation
being used as preconditioner.

7.2.3. RESTARTING STRATEGY FOR THE SOLVERS

The solution strategies presented in Section 7.2.1 & 7.2.2 are similar to the end that
both require an expensive factorisation step followed by a series of significantly faster
steps. While solving large linear systems using these strategies, two parameters can
be tuned. Firstly, the number of sufficiently large eigenvalues to be considered for the
eigendecomposition of the update to the critical element stiffness matrix in Eq. 7.4 has
to be chosen, i.e. a decision has to be made to find a balance between performance and
accuracy. Secondly, it is also possible to restart which implies that a new factorisation
of the stiffness matrix could be computed, resulting in the rank being set back to 0. The
penalty in restarting is in having to recompute a costly matrix decomposition, while, on
the other hand, the following analysis steps would be considerably cheaper. The restarting
point, therefore, has be to be determined such that these effects are balanced.

Eigenvalue Ratio Numerically calculated eigenvalues of the update to critical element’s
stiffness matrix, using some iterative scheme, could contain rounding errors which may
result in non-zero values, and therefore influence the eventual results. To address this,
the absolute value of all eigenvalues during every analysis step was compared to the
largest eigenvalue as a ratio, the eigenvalue threshold ε= ∣∣λi

∣∣/λmax, which in turn helped
control the choice of dominant eigenvalues differing from the largest value by a certain
order of magnitude. Parametric studies were performed on several test problems, without
restarting as proposed in Section 7.2.1, to solely analyse the influence of the choice of
an eigenvalue ratio on the accuracy of the solution. Thus, isolating the effect of only
the eigenvalue threshold, a choice of ε> 10−10 was made [137]. In general, the solution
residuals were observed to increase faster with the Woodbury based solution (without
restarting) than those of the direct solution method. This is due to the rounding errors
resulting from the numerous intermediate matrix and vector manipulations involved
in the former approach. Nevertheless, the residuals of the Woodbury solution were in
reasonable agreement to the direct solution method in terms of accuracy (one order of
magnitude difference), especially considering the fact that restarting was not yet used.

Restarting strategy After deciding on an eigenvalue threshold based on the perfor-
mance of the method without loss of any accuracy (residuals differing by one order of
magnitude), the next step of determining a restarting strategy was carried out. The op-
timal point when a new factorisation has to be recalculated for both Woodbury based
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and PCG methods, such that the total analysis time is minimised, could possibly be deter-
mined using two approaches. Owing to the inherent similarity in the proposed Woodbury
based and PCG methods, the restarting ideas are presented using the Woodbury method
as reference.

Firstly, a rank-correction based approach was considered. Herein, the theoretical
cost estimates for both the direct solution method and the Woodbury identity based
approach are derived using the theoretical flop counts for all necessary sub-steps within a
linear analysis, which depends on the rank correction r , the lower and upper bandwidths
of the stiffness matrix p, q , and also its size N×N . This rank-based optimal restarting
strategy determines the point of restarting by minimising the cost function with respect
to the rank r . However, since the approach relies heavily on the estimated bandwidths,
which cannot be efficiently deduced for complex geometries, and the fact that the direct
solution method (PARDISO) being considered here has a fill-in minimising reordering
scheme (which does not necessarily minimise the bandwidth), it is highly unlikely that
the prediction for the restarting point would be optimal indeed. Detailed information
on the rank-based restarting strategy, and the associated cost functions can be found in
Reference [137].

Secondly, a time-estimation based approach was deduced. The computing times of
the analysis steps are measured, and an estimate is made for the expected total analysis
time. The measured time for a direct solution analysis step (td ) includes those for fac-
torisation, back- and forward substitutions. The subsequent nr analysis steps, where nr

denotes the next restarting analysis step, yield the solution using Woodbury method in
time tw (i ) where i = 1, . . . ,nr . There are two key assumptions to this restarting strategy:

• The maximum number of analysis steps m is known a priori.

• The total computing time is composed of a sequence of repeating measured pat-
terns (times) after every restart.

Restarting after the nth
r analysis step and assuming that the measured sequence of

times {td , tw (1), . . . , tw (nr )} repeats until the end of the analysis, the total computing time
of the analysis can be computed as shown below, where the second term is pre-multiplied
by a typical indicator function (to adjust for the remaining analysis steps after the last of
several restarts):

t (nr ) =
⌊

m

nr +1

⌋
·
(

td +
nr∑

i=1
tw (i )

)
+ 1{

m−
⌊

m
nr +1

⌋
·(nr +1)6=0

}(nr ) ·

td +
m−

⌊
m

nr +1

⌋
·(nr +1)−1∑

j=1
tw ( j )


(7.9)

In order to corroborate the assumptions to be realistic, simple performance studies
were carried out for a coarse mesh of a 3D reinforced concrete (RC) slab problem, re-
ported in Reference [137]. This RC slab subject to concentrated shear load was previously
simulated using SLA [139] under proportional loading conditions. Figure 7.2(a) shows
the patterns of elapsed time per linear analysis step/event for the standard PARDISO,
and Woodbury Identity based direct solvers (with and without the restarts) for 80 steps.
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Figure 7.2(b) shows the total time taken for these 3 cases up to 80 steps, and emphasises
the need for restarting. The maximum number of analysis steps m does not have any
significant effect on the restarting point derived by optimising Eq. 7.9, and this was also
observed as closely spaced restarting points for varying values of m, as shown in Fig-
ure 7.3(a). This is because m just appears as a multiplicative constant in Eq. 7.9, and for
large cases, one could ignore the second term in Eq. 7.9.

Figure 7.2: (a) Elapsed times per analysis step up to 80 steps of a 3D RC-Slab simulation using the
PARDISO and Woodbury Identity based direct solution methods, with and without restarting at

the optimal point, and (b) the total elapsed time for the 3 cases up to 80 events

Figure 7.3: (a) Total elapsed times for different values of m i.e. the maximum number of analysis
steps illustrating the proximity of restarting points [137], and (b) the total elapsed times until the
10000th analysis step, for the 3D RC-Slab simulation with a finer mesh, comparing the effect of

earlier or delayed restarting with respect to the optimal point

Furthermore, the problem was solved with restarting points a few steps before and
after the optimal ones, for a finer mesh of the aforementioned case study. Figure 7.3(b)
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shows the total analysis times (for 10000 steps in all) for these three cases referred to
as Earlier, Later and Optimal. This study confirmed that continuing longer without
restarting results in a performance penalty in the last analysis steps (total analysis time
= 1289 mins), while restarting earlier results in too many expensive factorisations (total
analysis time = 1247 mins). In comparison, the optimal case takes a total analysis time
of 1166 mins. These simple studies validate the assumptions and the restarting strategy
by itself. In conclusion, the time-estimation based restarting strategy seems a more
reasonable option for the presented solution methods, and is therefore used as reference
for the validation and parametric studies presented in Section 7.3. Further information
on the time-estimation-based restarting strategy can be found in Reference [137].

7.3. CASE STUDIES

In order to validate the proposed solution strategies, two experimental benchmarks
are considered. Firstly, the structural response of both the benchmarks, as simulated
using SLA, are briefly touched upon. Thereafter, the computational performance of these
reference models (solved with the parallel direct sparse solver) are compared against those
solved with the Woodbury identity based method and the PCG. Subsequently, parametric
studies are presented in Section 7.3.2.

PUSHOVER ANALYSIS OF A SHEAR WALL (2D)
The first benchmark considered is that of an unreinforced brick masonry wall, 1.35m x
1.1m in size and clamped along the top and bottom edges, firstly subject to an overbur-
den/precompression of 0.6 MPa followed by a quasi-static lateral load. This case study
has been previously analysed in Section 4.2. Although the test is cyclic in nature, the test
can be used under monotonic loading as a benchmark for 2D (plane stress) SLA simula-
tions by making qualitative comparisons between the response and the envelope of the
experimental curve. Diagonal shear failure was observed in the experiment subsequent to
reaching the peak force. Further details about the experiment can be found in Reference
[6]. The experimental setup and the results of the SLA simulations are shown in Figure 7.4.
Modeling and material parameters are given in Table 4.5. Good agreement with the force-
displacement curves are observed, however, since the focus of this study/chapter is more
on the performance of the solver, further information on the simulation in terms of the
2D finite element model, the agreement between the experimental crack patterns and
those from SLA etc., can be found in Section 4.2 or alternatively in Reference [106].

SHEAR TESTING OF A REINFORCED CONCRETE SLAB (3D)
The second benchmark is that of a reinforced concrete (RC) slab (excluding shear rein-
forcements), 4×2.6×0.3 m in size and simply supported on all 4 sides, firstly subject to an
in-plane compressive axial load of 1.5 MPa followed by an out-of-plane concentrated load
near one of the line supports. This is the SC2 slab analysed in Section 5.4.2. The axial loads
were applied by means of 12 in-plane hydraulic jacks, while the concentrated load was
applied at a distance of 560 mm from the line support using an out-of-plane hydraulic jack
over a loading plate. The failure mechanism begins with flexural cracks that appeared at
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Figure 7.4: (a) Experimental setup of the quasi-static cyclic pushover test, and (b) the comparison
of the 2D monotonic SLA results to those of the backbone of the cyclic response [106]

Figure 7.5: (a) Experimental set up of the shear test on reinforced concrete slab: Loading plate,
reinforcement layout and axial load application setup [20], and (b) comparison of the SLA &

experimental force displacement curves [104]

the bottom face along the transverse and longitudinal reinforcements, followed by cracks
due to the two-way shear slab mechanism (punching shear failure) with a perimeter
crack surrounding the loading area, and eventually the pure shear failure along the line
support which was quite brittle. Further information on the experiment can be found
in Section 5.4.2 or in detail in Reference [20]. The experimental setup and the results of
the 3D SLA simulations are shown in Figure 7.5. Reasonable agreement is found in terms
of the force-displacement curves, and the qualitative brittle behaviour in the simulated
failure mechanism. The experimental peak load is predicted reasonably well by the SLA
simulation but the ductility is underestimated. However, this is not just a feature of SLA
but the smeared crack approach in general, as has been previously observed in another
implicit NLFEA simulation [158] and also using a plasticity-based approach in an explicit
solver based ABAQUS simulation [93]. Considering the scope of this study/chapter, all
information pertaining to the simulation can be found in Section 5.4.2 or alternatively in
Reference [104].
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7.3.1. DISCUSSION ON PERFORMANCE OF THE SOLUTION METHODS

The Central Processing Unit (CPU) used for this study is an AMD EPYC 7351 processor
with 16 cores / 32 threads, a base clock speed of 2.4 GHz, and an all core boost speed of
2.9 GHz. All studies are run on single-threading, unless specified otherwise. CPU time is
the exact amount of time spent in processing the data by the CPU for a specific process,
while the elapsed time refers to the total time taken for the completion of a process, which
is the sum of the CPU and I/O times.

Total analysis times in each SLA step are composed of those for several operations like
setting up the element stiffness matrices and assembling the global stiffness matrix (re-
ferred to as ELMATR hereon); solving the system of equations for unknown displacements
(referred to as SOLVE hereon); calculation of stresses and strains from the displacement
field (referred to as STREAC hereon); and determining the critical integration point and
the load multiplier, scaling stresses & strains, and finally updating the stiffness & strength
of the critical integration point (referred to as SLSCAL hereon). Times per analysis step
for all these operations, except SOLVE, would approximately be the same for a simulation
run using either the reference parallel direct sparse solver (PARDISO) or the proposed
solutions methods presented in Section 7.2.1 & 7.2.2. This is clear from the elapsed times
of the Shear wall and RC Slab case studies run on a single-thread of a processor, as shown
in Table 7.1.

Table 7.1: Contributions of dominant processes to total elapsed times on a single thread - Shear Wall & RC Slab

PARDISO Woodbury PCG
Description

Shear Wall RC Slab Shear Wall RC Slab Shear Wall RC Slab

SOLVE - Solve system of linear equations
43.57 % 65.69 % 13.70 % 26.86 % 29.56 % 49.08 %

(10.07 min) (282.24 min) (2.15 min) (54.15 min) (5.52 min) (145.57 min)

STREAC - Calculate strains and stresses 20.15 % 11.49 % 30.42 % 24.67 % 24.95 % 17.12 %

from displacement fields (4.66 min) (49.39 min) (4.77 min) (49.32 min) (4.69 min) (50.76 min)

SLSCAL - Determine critical int. point (IP) and λcrit,
32.54 % 22.01 % 50.06 % 46.98 % 39.98 % 32.49 %

update stiffness of IP, and scale results (7.52 min) (94.58 min) (7.85 min) (94.72 min) (7.51 min) (96.35 min)

Total elapsed time 23.12 min 429.65 min 15.69 min 201.63 min 18.78 min 296.557 min

Thus, the CPU time per analysis step to solve the system of equations (SOLVE) is
chosen as the yardstick to compare the performance of the PARDISO, Woodbury and PCG
solvers. The pattern of CPU times for the first 1000 analysis steps is illustrated in Figure 7.6
for the shear wall and RC slab studies. On the one hand, the PARDISO cost as expected
is roughly constant throughout the analysis since the stiffness matrix factorisation and
the backward and forward eliminations to obtain the solution are repeated every analysis
step. On the other hand, Woodbury and PCG gain speed by reusing the factorisation
repeatedly until the optimal points of restart are reached. This pattern of an expensive
analysis step followed by relatively cheaper steps is clearly seen in Figure 7.6(b).

In the time patterns for the 2D shear wall example shown in Figure 7.6(a), two types
of fluctuations are observed regardless of the solver type. One, when there are other
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Figure 7.6: Comparison of CPU time taken per analysis step by the SOLVE block of the PARDISO, PCG
and Woodbury solvers: for the (a) Shear wall and (b) RC Slab cases, shown for the first 1000 steps

jobs simultaneously running on the same processor (higher anomalous peaks), while
the other is when the measured time is so small, of the order of 0.01 seconds, that minor
variations seem accentuated thereby giving an impression of rather unstable patterns.
However, qualitatively, PARDISO gives a constant response at an average of 0.03 seconds
per analysis step, while PCG and Woodbury based solvers take lower times. Whenever the
Woodbury’s identity is restarted (six times up to the 1000th analysis step - brown peaks),
the time tends to be equivalent to that of PARDISO. After restarting, the times for the
Woodbury approach are reduced to an average of 0.005 seconds. However, in comparison,
the performance of PCG is poorer. This is attributed to the fact that the bandwidth of the
stiffness matrix is relatively small for 2-dimensional problems. Consequently, backward
and forward substitutions are relatively more expensive than a matrix factorisation. Since
PCG uses these backward and forward substitutions every analysis step to apply the
preconditioner, costs for PCG based method increase quicker in the intermediate steps
thereby demanding more frequent restarts in comparison to the Woodbury based solver.

In case of the 3D RC slab, a similar trend is observed in the time patterns of the three
solver types, refer Figure 7.6(b). The aforementioned fluctuations are not that apparent
here since each analysis step takes times in the order of 0.1 seconds. The only interesting
point is that the performance of PCG is a little different compared to the 2D shear wall
problem. The times for the intermediate steps do not increase as sharply as for the 2D
problem because of the larger bandwidth of the stiffness matrix for 3D problems. This
results in the back- and forward substitutions becoming relatively cheap compared to
the matrix factorisation. However, over both cases, Woodbury outperforms PCG on a
single-threading, because of the relatively lower rate of increase of time in its intermediate
steps.

In summary, the total elapsed time to solve the system of equations (SOLVE) decreases
by a factor of ∼ 5 using the Woodbury solver as against PARDISO for both the shear wall
and RC slab cases, whose model sizes are roughly 3400 DOFs and 11100 DOFs respectively.
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These problem sizes are extremely small in reference to the range illustrated in Figure 7.1
and therefore, for bigger problem sizes, the gains would be significantly higher. A para-
metric study on problem sizes for the 3D RC slab is presented in Section 7.3.2. However,
the improvement of PCG solver over PARDISO is only by a factor of ∼ 2 for both case
studies, due to PCG using back- and forward substitutions every analysis step to apply the
preconditioner. An interesting point of observation, with regard to the Woodbury solution,
is that when the rank-update is very high owing to complete loss of stiffness, the solution
time exceeds the direct solution time step. To address this, restarts were prescribed for
such unforeseen steps, wherein the rank update in one analysis step is large, i.e. close to
the rank of the critical element matrix, in addition to the time-estimation based restarting
steps as detailed in Section 7.2.3.

Figure 7.7: Performance of the PARDISO, PCG and Woodbury based direct solution methods, with and without
parallelisation, in terms of total elapsed time for the two case studies: (a) Shear wall and (b) RC Slab

Parallel computing The performance of both the proposed methods have been illus-
trated, thus far, using 2D and 3D simulations run on a single-thread of a processor.
Table 7.1, summarising the times for major operations in the work flow of SLA, indicates
that with improved times for solving the system of equations (SOLVE), the SLSCAL and
STREAC building blocks become the bottleneck. To address this and further improve
the computational performance of SLA, the operations in SOLVE and SLSCAL have been
parallelised. Furthermore, the calculation of stresses and strains in STREAC can also
be computed in parallel but this is not taken into account in this study. The result of
multi-threading on the performance of the PARDISO, PCG and Woodbury solvers for
the two case studies, using 4 threads of the AMD processor (Section 7.3.1), is shown in
Figure 7.7. Firstly, for the 2D shear wall simulation, the SOLVE blocks of the Woodbury
and PCG methods (with multi-threading) improve over PARDISO by the same factors
of ∼ 5 and ∼ 2 respectively, as observed in single-threading. Additionally, PARDISO’s
performance with multi-threading is similar to its single-threaded counterpart since the
problem is 2-dimensional and is small in size. While in the case of SLSCAL, times are
reduced with multi-threading owing to the fact that many operations in this block are
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otherwise carried out sequentially for each integration point. Secondly, with regard to
the 3D RC slab simulation, the SOLVE blocks of the Woodbury and PCG methods (with
multi-threading) again improve over PARDISO by factors of ∼ 5 and ∼ 2 respectively, as
observed in single-threading. The effective gains made in SOLVE due to multi-threading
is greater for PCG in comparison to the Woodbury solver. This is because in PCG’s case
the number of restarts is greater, and with multi-threading, the factorisation and repeated
back- and forward substitutions become cheaper. Additionally, PARDISO’s performance
with multi-threading shows an improvement over its single-threaded counterpart as it is
highly optimised for parallel computing. The improvement is more apparent compared
to the 2D case because the problem is 3-dimensional and is a larger case study. Further-
more, the effect of parallel computing on PARDISO is expected to increase with increasing
problem sizes. In case of the SLSCAL block, all three solvers gain by a factor ∼ 2 since
the number of integration points in this case is higher than the 2D case, and therefore
the positive effect of multi-threading is greater. In summary, upon multi-threading, all 4
possible combinations (of Woodbury and PCG - with or without multi-threading) are an
improvement over the traditional direct solution method (PARDISO) in terms of the total
elapsed times.

7.3.2. SENSITIVITY STUDIES: SAW-TEETH & MESH-SIZE OBJECTIVITY

EFFECT OF NUMBER OF SAW-TEETH ON SOLUTION METHODS

In order to understand the effect of refinement of the saw-tooth law (p-factor) (as shown
in Figure 2.2), on the performance of the presented solution strategies in Sections 7.2.1 &
7.2.2 and their corresponding restarting approaches, a parametric study is carried out.
Only the 3D RC slab is considered for this study since the total computation time is higher
than the 2D example, and is therefore more interesting. The single-threaded response
elaborated in Section 7.3 is treated as reference. By adjusting the saw-teeth discretisation
parameter (p) for the number of saw-teeth in the tensile softening relation, four cases are
considered: 5, 9 (reference), 11 and 13 saw-teeth, while the compressive softening relation
is kept unchanged with respect to the reference case (since the compressive failure does
not influence the failure mechanism).

Figure 7.8(a) shows the force displacement relation for the four considered cases, all
run on single-threading. It is evident that with increase of the number of saw-teeth (or
decrease in p-factor), the peak loads decrease by a small amount. This is attributed to the
corresponding shift in strength properties based on the ripple band approach (Figure 2.2).
The tail part of the post-failure response, as seen in Figure 7.5(b), is not shown here for
the 4 cases because of the small differences between them. However, qualitatively, the
onset of brittle failure begins approximately around the same displacement, and a similar
ultimate load and failure mechanism are obtained in all the cases. Therefore, in order to
objectively compare the computation times of the responses, the onset of brittle failure
for each response is treated as the reference point. The number of analysis steps (events)
to reach the reference points are 11233, 26202, 38000 and 43051 for the 5, 9 (reference), 11
and 13 tensile saw-teeth cases respectively.

The total and SOLVE block elapsed times for all four responses, to reach their respec-
tive onsets of brittle failure, are illustrated in Figure 7.8(b), and additionally, in Figure 7.9.
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Figure 7.8: (a) Force-displacement curves of 4 FE models with different number of saw-teeth for
the tensile softening relation and their corresponding onsets of brittle failure, and (b) the total &
SOLVE block elapsed times for these cases with regard to the three types of considered solvers.

Figure 7.9: Saw-teeth parametric study using the PARDISO, PCG and Woodbury solvers showing
(a) Total and (b) SOLVE block elapsed times

When the saw-tooth model is rather coarse, the number of events required to reach the
onset of brittle failure is lower as against a finer one. That is, regardless of the solver
type, the total number of SLA steps required is anyway lower for a coarser saw-tooth
model, and therefore the total analysis time also drops. This is reflected in the trends of
Figure 7.9(a),(b) and as expected, both PCG and Woodbury outperform PARDISO. How-
ever, the point of interest lies in the amount of gain that Woodbury or PCG make over
PARDISO which increases with increasing number of saw-teeth, and this is evident in
both Figures 7.8(b) and 7.9. This is attributed to the inherent increase in the number of
events required, and also to the fact that the time-estimation based restarting strategy is
indirectly related to the rank-update per analysis step in SLA. With increasing number
of saw-teeth in the constitutive model, the rank update per analysis step decreases. In
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Figure 7.10: (a) Performance of PCG and (b) Woodbury solvers, with respect to PARDISO for the 4
cases in the saw-teeth parametric study

other words, the jump in rank is more abrupt for a coarser saw-tooth law as against a finer
saw-tooth law. Therefore, the rate of increase of the times for intermediate steps and the
proximity of the restarting steps is influenced by the saw-tooth discretisation which in
turn affects the amount of gain.

The typical pattern of expensive steps followed by cheaper steps for all four cases,
with Woodbury and PCG based solvers, is illustrated in Figure 7.10, and these patterns are
identical to those presented in Figure 7.6(b). Only the first few analysis steps are shown
herein, and the variations in the number of restarts needed for the different cases is more
evident in the performances of the Woodbury based solver (Figure 7.10) which in turn
affects the gain. The performance can be further improved using parallel computing,
as detailed in Section 7.3.1, to reduce the total time shown in Figure 7.9(a), but is not
presented here owing to triviality.

EFFECT OF PROBLEM SIZE ON SOLUTION METHODS

In order to understand the effect of mesh refinement on the performance of the Woodbury
and PCG solvers, another sensitivity study is carried out. Once again, only the 3D RC
slab is considered for this study because of the higher computation times involved. The
response elaborated in Section 7.3 is treated as reference, wherein the average size of
the 20-noded iso-parametric solid brick element is approximately 150 mm. Three other
cases with average element sizes of 100 mm, 75 mm and 50 mm are considered. In
terms of the total number of degrees of freedom (DOFs), the four cases translate to 11175
(reference), 31443, 56910 and 181182 DOFs. The three new simulations are run with
the same parameters as in Table 5.4 except that the saw-teeth discretisation factor (p) is
increased to 0.25 to reduce the total number of events, in order to avoid extremely higher
computation times. The finite element models of the 4 cases are shown in Figure 7.12(a).

Figure 7.11(a) shows the force displacement relation for the four considered cases, all
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Figure 7.11: (a) Force-displacement curves of 4 FE models with different mesh sizes and the
corresponding reference points for comparison, and (b) the total & SOLVE block elapsed times for

these cases with regard to the three types of considered solvers.

run on multi-threading (4 cores). It is observed that results are closer to the experimental
peak load upon mesh refinement but the finest mesh overshoots the experimental peak
load by 150 kN. A similar failure mechanism is observed for the finer meshes but the
reference case clearly suffers from mesh objectivity problems, refer Figure 7.12(b). How-
ever, this is not a feature just of SLA and is also observed in NLFEA in general, since the
brittle shear failure when simulated using 150 mm elements (2 elements over the depth
of the slab) instead of 100, 75 or 50 mm elements (3, 4 and 6 elements over depth of slab
respectively) could be affected by mesh-directional bias, although the smeared cracking
approach based on the traditional crack band theory limits element size dependency.
The one way shear failure mechanism is captured better by the finer meshes as shown in
Figure 7.12(b). Therefore, in order to objectively compare the computation times of the
responses considering the structural response, the peak loads reached in each response
(which is followed by the brittle collapse) are treated as the reference points (denoted in
Figure 7.11(a)).

It is well known that for a band solver, the calculation of a matrix factorisation scales
(O(N b2)), and back- and forward substitutions scale (O(N b)), with respect to the problem

size N and bandwidth b (given by (O(N
(d−1)

d )) wherein d is the dimension of the problem)
[56]. Therefore, for 3D problems, factorisation and back/forward substitution scale

(O(N
7
3 )) & (O(N

5
3 )) respectively. The reinforced slab problem is 3-dimensional, and

therefore the bandwidth of the stiffness matrix increases significantly faster for increasing
problem sizes. Consequently, the number of non-zeros within the bandwidth increases
faster, and the number of calculations to be performed on these non-zero elements
increase. This manifests as the nonlinear trend observed in Figure 7.11(b) for all three
solution methods. For smaller problems, the costs of factorisation and back- and forward
substitutions are low. However, most of the performance that is gained with the solution
methods is compensated by relatively expensive overhead costs for setting up Woodbury’s
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Figure 7.12: (a) Finite element models (halves - using symmetry along global X) for the 4 cases with
average element sizes of 150 mm, 100 mm, 75 mm and 50 mm: showing the axial loads (along global Y),

concentrated shear loads (along global negative Z), and the boundary conditions (simple supports
along blue steel plates and for symmetry along the mid-face), and (b) the corresponding crack pattern

plots (Eknn denotes the normal crack strain) at the ends of the respective collapses

identity and PCG; which include allocating memory, creating arrays and initialising the
PARDISO interface for the back- and forward substitutions. Since these costs do not
depend on the problem size, with increasing problem sizes the influence of the overhead
costs on the overall performance drops.

The gains made by the proposed solution methods compared to the PARDISO, all
run with 4 threads of the AMD processor (Section 7.3.1), are summarised in Table 7.2 in
terms of factors of improvement. The PARDISO performance is treated as unity. SOLVE
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Table 7.2: Factors of improvement of Woodbury & PCG methods over PARDISO’s performance treated as unity

SOLVE TOTAL
Problem Size (DOFs) Analysis steps (events)

PARDISO PCG Woodbury PARDISO PCG Woodbury
11175 3999 1.0 1.80 4.38 1.0 1.29 1.58
31443 8049 1.0 1.98 5.08 1.0 1.54 2.30
56910 23708 1.0 2.34 6.42 1.0 1.77 2.87

181182 93328 1.0 3.66 7.72 1.0 2.58 3.65

improves by a factor of ∼ 8 with Woodbury and ∼ 4 with PCG for the largest case of 181182
DOFs. All simulations are run fully except the PARDISO ones, because of the enormous
run-times, and the total times for PARDISO necessary to calculate the factors depicted in
Table 7.2, are extrapolated based on the average of the first 3000 steps of the simulations
for each of the cases.

In case of 2D problems, the factorisation scales (O(N 2)) and back/forward substitu-

tions scale (O(N
3
2 )) for band solvers. Although the influence of problem sizes on the 2D

case study is not illustrated here, previous studies [137] show an almost linear scaling of
the direct solution, contrary to that of the 3D case. This can be attributed to the relatively
small growth in bandwidth due to the problem being 2 dimensional. For 3D problems,
the bandwidth of the matrix generally grows significantly faster due to the inherent num-
bering of the degrees of freedom. Furthermore, as previously pointed out in Section 7.3.1,
for 2-dimensional problems the back- and forward substitutions are relatively expensive
and therefore, for increasing problem sizes, the performance of PCG was observed to
remain largely equal to that of the direct solution method while the Woodbury method
gained. Detailed information on the performance of the methods for the 2D case with
regard to problem sizes can be found in Reference [137].

7.4. CONCLUDING REMARKS

This chapter addresses the high computational intensity of Sequentially Linear Analysis
(SLA), an alternative to NLFEA for civil engineering applications, through two solutions
methods that use the favourable event-by-event strategy of the method. Since numerous
linear analyses have to be solved, each requiring an expensive stiffness matrix factorisa-
tion that only changes locally, the proposed methods reuse the factorisation of a certain
analysis step followed by steps involving small matrix and vector manipulations to solve
a significantly smaller system of equations. The first method is that of direct solution
method, wherein Woodbury’s matrix identity is applied which allows for a numerically
efficient computation of the inverse of a low-rank corrected matrix. The second method
is a preconditioned CG, wherein instead of using an ILU preconditioner, the complete LU
factorisation of the stiffness matrix is used as preconditioner for the CG. Due to the quality
of this preconditioner, few iterations are required every analysis step. Furthermore, an
optimal time-estimation based restarting strategy is derived, for both the approaches,
to determine the point at which a new factorisation should be calculated. The restart-
ing strategy is additionally forced to have restarts when there are unforeseen high rank
updates, resulting in times higher than that of the PARDISO, contrary to the assumed
repeating patterns of time. Additionally, parallel computing is introduced for certain sec-
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tions of SLA’s algorithm (including those of the proposed solution methods), where there
is need for calculations at integration point level, to further improve the computational
performance.

Table 7.3: Contribution of the three dominant processes - SLSCAL, STREAC and
SOLVE, in %, for the 4 cases of Section 7.3.2

SOLVE STREAC SLSCAL
Problem Size (DOFs)

PARDISO PCG Woodbury PARDISO PCG Woodbury PARDISO PCG Woodbury
11175 63.08 40.9 22.73 17.79 30.21 37.59 16.73 24.84 34.69
31443 73.33 57.15 33.23 14.08 21.47 34.61 11.20 18.28 27.30
56910 77.68 58.72 34.76 12.00 20.86 34.21 9.25 17.41 26.26

181182 84.70 59.71 40.08 7.59 19.02 28.08 7.02 18.52 27.72

Two benchmark cases, involving non-proportional loading (which further increases
the computational intensity of SLA due to the additional need for solving quadratic and
cubic equations for undamaged integration points), are chosen to elucidate the perfor-
mance of the proposed solution methods compared against a traditional direct linear
solver like PARDISO. The first one is of a masonry wall subject to overburden followed
by a lateral load, and the second, a prestressed reinforced concrete (RC) slab subject to
axial loads followed by a concentrated shear load, simulated using 2D-plane stress and
3D models respectively. Both the proposed solution methods perform significantly better
than PARDISO, especially for 3D problems, and the Woodbury identity based solver seems
the better choice of the two proposed methods. Furthermore, numerical experiments on
the sensitivity of the proposed methods were performed for the 3D RC slab case. Firstly,
the number of tensile saw-teeth in the constitutive model was varied, and as the saw-teeth
became finer, the gains made by both the proposed methods over the direct linear solver
(PARDISO) increased. The finer the saw-tooth model, the larger the number of events
that are required to bring about a similar mechanism as in the response using a coarser
saw-teeth model. The proposed time-based restarting strategy used by both methods
relies indirectly on the rank update per linear analysis, which in turn depended on the
fineness of the saw-tooth model. Since the rank update per analysis step is smaller for
finer cases, which results in a lower rate of increase in time for the intermediate steps, the
effective number of restarts are lower, and therefore the gains are significant. Secondly,
the effect of problem size on solution methods was studied, and both methods gained sig-
nificantly over PARDISO for increasing problem sizes. SOLVE, the bottleneck as illustrated
in Figure 7.1, for large problem sizes is not the constraint anymore as is shown in the drop
of contribution to total times from about 85 % to about 40 % in the 181182 DOFs case,
refer Table 7.3. However, the remaining two blocks now become equally intensive. There
is further scope for improvement as multi-threading is yet to be introduced in STREAC.

In conclusion, to achieve higher speeds for typical FE models used in SLA, the use of
Woodbury identity based solver is recommended, in combination with parallel processing.
Furthermore, coarser saw-teeth are recommended for faster simulations, and further
research is required to find an optimum number of saw-teeth for the best performance
with regard to both computational and mechanics aspects.



CHAPTER 8
CONCLUSIONS & OUTLOOK

Sequentially Linear Methods (SLM), of which the Sequentially Linear Analysis (SLA)
is a feature, offer a robust alternative to traditional incremental-iterative methods in
the finite element analysis of quasi-brittle structures, e.g. those made of concrete and
masonry. It helps overcome convergence issues associated with post-peak softening
behaviour, due to the combined use of secant-stiffness based discretised constitutive
relations and the event-by-event damage-driven approach. This thesis took shape with
the main objective of extending the sequentially linear framework to enable typical 3D
structural applications, such as pushover analyses on masonry structures and shear
strength assessment of reinforced concrete structures/components.

8.1. REVISITING THE OBJECTIVES

In this regard, the following specific objectives were formulated, and the novel contribu-
tions of the thesis are summarised accordingly.

1. Objective: "To develop a better understanding of the redistribution mechanism
involved in sequentially linear analysis under non-proportional loading conditions".
The SLA approach combined with the double load multiplier strategy, under non-
proportional loading conditions, is directed to an Intermittent Proportional Loading
when there is no constitutively admissible load multiplier (referred to as limit point*

throughout the thesis) for variable loads on the FE model. Although correctly
aimed at avoiding violations of the constitutive law at some integration point in
the FE model, it was not clear as to what the origin of this problem was, with
the lack of crack-closure algorithm being highlighted as a possible reason in one
of the previous structural case studies [55]. Furthermore, the need for multiple
failures subsequent to a unique damage increment to bring about the redistribution
was also indicated as a possible reason, thereby concluding that the Intermittent
Proportional Loading is "a particular method to obtain a set of multiple damage
increments after which static equilibrium is re-established" [139].

Scientific Contribution: Chapters 3 & 4 aim to analyse this problem by first assess-
ing all sequentially linear methods, and their approaches to the non-proportional
loading problem. The methods are classified as total, incremental and combined
incremental-total, and an extensive qualitative review is presented on these meth-
ods highlighting the primary differences in load modification, and on how they
address the multiple failures. Based on this preliminary understanding and to fur-
ther extend it to continuum structural applications, in a first of its kind, three case

*The terminology of limit point is not to be confused with the traditional limit point encountered in NLFEA.

143



8

144 8. CONCLUSIONS & OUTLOOK

studies involving real structural collapse were analysed to exemplify the differences
between a total approach: SLA with the double load multiplier strategy, and an
incremental approach: the Force-Release method. The latter is an incremental
sequentially linear method that allows for gradual stress redistribution after each
damage increment, while simultaneously keeping track of the loading history. The
conclusions drawn based on this study are summarised in Section 8.2.

2. Objective: "To extend the constitutive models in SLA and develop the non-proportional
loading strategy for full 3D stress states". Most of the existing constitutive formu-
lations used in SLA were 2-Dimensional. Structural level simulations motivate
the need for 3D constitutive formulations with view to non-proportional loading
conditions.

Scientific Contribution: Chapters 5 & 6 aim to address this problem and are sum-
marised in the following.

• Chapter 5 addresses the lack of a closed form solution for the critical load
multiplier in a 3D continuum stress state under non-proportional loading,
which hinders the switch from the isotropic to the orthotropic formulation
in a fixed smeared cracking framework. Accordingly, two novel strategies are
proposed to allow for damage initiation in the 3D Orthogonal smeared fixed
cracking model [150] (with additionally possibility of crushing failures) under
non-proportional loading conditions. The first approach involves analytically
solving two cubic equations in the load multipliers per undamaged integration
point (tension and compression failures). This is done by first manipulating
the equations into monic trinomials, and subsequently, solving the depressed
cubic equations using the Cardano method or trigonometric solutions (for
one or three real roots respectively) depending on the discriminant of the
equation. The second approach involves a reformulation of the case as an
optimisation problem, wherein the load multiplier is expressed as a function of
the inclination of a potential failure plane. The approach finds solutions to the
inclination of the critical plane, i.e the directional cosines and consequently,
determines the critical load multiplier. The conclusions drawn based on this
chapter are summarised in Section 8.2.

• Chapter 6 proposes a simplified compression cap extension to the discre-
tised tension-shear criterion (using the step-wise secant relations for discrete
cracking and Coulomb friction [139]) to be used in the sequentially linear
framework. This makes it possible to analyse masonry components using the
micro-modelling approach, in combination with sequentially linear methods,
until structural collapse. The proposed constitutive model is a composite
failure criterion with: 1) a tension gap criterion coupled with a uniaxial linear
tension softening law, 2) an uncoupled step-wise secant Coulomb friction for-
mulation that discards dilatancy effects but allows for cohesion softening, and
3) a simplified compression cut-off criterion coupled with a uniaxial parabolic
hardening-softening law. This formulation is presented for line (2D) interfaces,
and additionally, for planar interfaces (3D) to enable structural simulations.
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Furthermore, the formulations are also verified and validated for use with an
incremental approach, the Force-Release method. The conclusions drawn
from this study are summarised in Section 8.2.

3. Objective: "To develop tailor-made solvers in order to efficiently solve the system
of linear equations in an SLA setup". The event-by-event nature of SLA, which
effectively changes the system of linear equations only locally per analysis, is not
efficiently utilised by traditional direct solvers.

Scientific Contribution: Chapter 7 proposes two new solvers namely the Woodbury-
Identity based direct solver and a Preconditioned Conjugate Gradient solver to im-
prove the computational performance of SLA. Both solvers perform the expensive
factorisation of the global stiffness matrix only in a few steps. In the first method,
the inverse of the low-rank corrected stiffness matrix in the remaining steps is
computed using the Woodbury-matrix Identity, which is a generalisation of the
Sherman-Morrison formula for an arbitrary rank-r correction. Therefore, these
steps use the old factorisation, and the equations are solved with minimal matrix-
vector manipulations. In the second method, the said factorisation is used as a
preconditioner in the traditional Conjugate Gradient method to obtain faster con-
verged solutions in the remaining steps, which involve a range of matrix-vector
manipulations. Both solvers use a time-based restarting strategy which invokes
factorisation of the stiffness matrix only at certain steps such that the total analysis
time is optimal. The performance of both solvers is extensively studied using a 2D
and 3D case study, additionally, with saw-teeth refinement and mesh-refinement
sensitivity studies to draw the conclusions summarised in Section 8.2.

8.2. CONCLUSIONS

Non-proportional loading

The main conclusions from the study of Chapters 3 & 4 are as follows:

1. Oncoming dynamic failure processes at limit points in an SLA type response for
structural level examples can be distinguished into intermediate local instabilities
or the eventual collapse mechanism. Depending on the type of dynamic failure, the
interpretation of the SLA results varies. In case of intermediate local instabilities, if
the intermittent proportional loading allows for a redistribution which helps recover
the full value of constant load, the redistribution is deemed acceptable. One such
zone is observed around the first peak load of the pushover case study on a masonry
facade in Section 4.1.4. However, if the redistribution results in gradual loss of con-
stant loads to extremely low values, much ahead of the actual structural collapse,
as observed in the case study of a pushover on a squat masonry wall in Section 4.2,
then the results have to be interpreted accordingly. This could either correspond
to alternate equilibrium paths of damage propagation that do not culminate in
the actual expected collapse mechanism or be interpreted as premature structural
failure. On the contrary, in case of the eventual collapse, the intermittent propor-
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tional loading forces a relaxed mechanism maintaining equilibrium all through
the simulation. In other words, SLA lets the damage progress quasi-statically by
releasing previously applied loads thereby allowing the structure to relax during
a dynamic collapse. Herein, as against overall unloading of the structure, only
the elastic parts on either side of active damage zones unload. This is acceptable
under non-proportional loading conditions only if the experiments are controlled
quasi-statically. Since the system as whole is allowed for an overall quasi-static
damage propagation, it may be interpreted to be equivalent to CMOD controlled
experiments as in Reference [122] which involve a unique damage process zone. In
case of multiple cracks developing in the system, SLA does not control a unique
damage process zone as in a CMOD experiment, and therefore may incorrectly
decrease it.

2. However, interpretations aside, it is clear from all case studies in Chapters 4 & 6
that the limit point situation, and the associated need for intermittent proportional
loading is not an artefact of the stress locking problem in a typical smeared fixed
model (also verified for smeared rotating model [19]), Coulomb friction model, or
even the discrete cracking model. It means that irrespective of the constitutive
model used, there is a need for multiple failures at certain points in an SLA simula-
tion (as previously concluded [139]). In such a scenario, a problem arises owing to
the inherent non-proportional unloading & reloading on a damaged state of the
structure, and therefore intermittent proportional loading follows. Furthermore, it
is exemplified using an example in Section 8.3 that the crack-closure problem is
also an effect of the said non-proportional reloading on the damaged state.

3. Comparative studies between the SLA and Force-Release approaches throughout
the thesis further substantiate the above conclusions on the dynamic propagation
of damage, which is addressed statically by both approaches through a sequence of
failures referred to as the avalanche of ruptures. On the one hand, the SLA approach
does so by temporarily releasing existing loads and maintaining equilibrium, while
the Force-Release traverses through disequilibrium states for a constant imposed
displacement. These studies also exemplify the characteristic aspects of both
approaches, at the continuum level, as summarised in the following.

• In terms of the force-displacement curves, the differences in the Force-Release
and SLA responses are due to their inherent load modification approaches.
Since every damaged element’s stress is released instantaneously in SLA, the
neighbouring elements whose stresses are close to their respective allowable
strengths, subsequently, become critical at a considerably lower load. This is
possible in SLA only by the temporary release of the load, which essentially
explains the snap-backs. The Force-Release, on the other hand, releases
the stresses gradually through disequilibrium states while maintaining all
previously applied loads (displacement history), and therefore shows drops of
load for constant displacements.

• In general, it is observed across all three case studies of Chapter 4, and further-
more the case study in Chapter 6 that the non-proportional loading strategy
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in a total approach like SLA, and the incremental solution obtained using a
Force-Release method result in the qualitatively similar results i.e. damage
patterns, despite the aforementioned differences. The contrasting differences
observed between the approaches in lattice modelling applications, for e.g. in
the elemental failure sequence as in the work of Elias [44], are not observed in
structural case studies since the change in stiffness due to a single damage
event is not so abrupt and large. Therefore, the redistribution of the energy
into the vicinity as is done in the Force-Release method does not cause further
failure before attaining equilibrium. In principle, it could also be extended that
a very fine saw-teeth formulation would result in near-equivalent responses
using the SLA and Force-Release methods.

• The suitability of the two methods depends on the type of experiment being
simulated. Force-Release method is suitable for typical displacement con-
trolled experiments which actually exhibit instabilities. On the other hand,
it may not be suitable for physical processes which exhibit snap backs or for
truly quasi-static experiments. SLA is more preferable when the damage pro-
cess zone is unique and controlled for quasi-static evolution in an experiment
[122]. However, for a CMOD controlled experiment with multiple cracking
zones, SLA may not be appropriate. Force-Release method, in this case, may
increase the CMOD due to the redistribution. In a quasi-static sequentially
linear setup, a truly CMOD controlled experiment with multiple evolving
damage zones can be appropriately simulated by the general method [43].

Constitutive modelling

The main conclusions from the study of Chapter 5 are as follows:

1. Although successfully validated for 2D plane stress states [106], the reformulated
optimisation approach to determine the load multiplier for damage initiation in
3D continuum stress state (under non-proportional loading) is computationally
intensive, and also cannot guarantee solutions that match up to the analytical solu-
tion. This is owing to the optimisation being 2D (with respect to the 2 directional
cosines), which requires multiple restarts to verify the obtained root for conver-
gence. Therefore, the analytical approach is preferred and recommended for further
studies using the 3D smeared cracking concept. Nevertheless, the validity of the
optimisation concept as such remains.

2. 3D Multi-directional cracking is adequately captured using the smeared fixed crack-
ing model, despite the shear locking issues, as shown in the RC slab study of Sec-
tion 5.4.2. However, similar to NLFEA, mesh-directional bias is an issue as con-
firmed by the study on mesh-objectivity in Section 7.3.2. To this end, the crack
tracking algorithms proposed by Slobbe [131] or Cook et al. [28] could help if ex-
tended to a 3D formulation, and furthermore, make the procedure less intensive by
reducing the number of possible computations to deduce each event.
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3. A recent study by Bresser [19] successfully uses the analytical approach for damage
initiation in the elastic-brittle fraction model for 3D stress states. This further
substantiates the validity of the approach.

4. Non-planar 3D curved cracking is also captured well under non-proportional load-
ing situations.

The main conclusions from the study of Chapter 6 are as follows:

1. The proposed composite failure criterion works adequately for both planar and
line interface formulations as illustrated by the pushover study on 2D and 3D
simulations of a masonry shear wall. This formulation is recommended to realise
global softening problems in masonry components analysis. Additionally, the
model works well with both the SLA and Force-Release methods.

2. The choice of user-specified shear displacement increment factors at or as to
deduce the stiffness update, during run-time of the analysis, in the uncoupled shear
mode has a significant influence on the shear capacity. Previously in the study of
Van de Graaf [139], it was shown that increasing the factor at makes the response
coarser giving it a saw-teeth type appearance. However, this also results in faster
loss of shear stiffness leading to larger plastic displacements, and consequently, a
quicker drop in the mobilised cohesion.

Computational efficiency

The main conclusions from the study of Chapter 7 are as follows:

1. The Woodbury-Identity based direct solver performs better than the PCG solver
over both 2D and 3D problems, because the PCG involves back- and forward sub-
stitutions every analysis step to apply the preconditioner, in addition to the several
matrix-vector manipulations. Therefore, the growth of elapsed time in intermediate
steps is faster in the case of PCG, which necessitates frequent restarts.

2. The proposed solvers perform better than the traditional PArallel DIrect sparse
SOlver (PARDISO), and especially for large 3D problems. However, despite the
reduction of the contribution of time to solve the system of linear equations from ∼
85 % to around ∼ 40% for a 180000 degrees of freedom problem size (as illustrated
in Section 7.3.2), the analysis times are still significantly longer. Recommendations
to further boost the performance are listed in Section 8.3.
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The following topics are potential directions for future work in the sequentially linear
framework.

• Adopting biaxial failure criteria to include tension-compression interaction effects.
Considering the complexity of the existing non-proportional loading problem in
addressing dynamic failures using the static approach in SLA, the tension (T) com-
pression (C) interaction effects were not investigated in depth in this work. The
decision to use a simple Rankine-type failure criterion for damage initiation in the
smeared crack/crush framework, both 2D and 3D, was made. However, considering
a 2D plane stress state, it is in principle possible to additionally solve two more
equations, one each for the T-C and C-T stress states, in the principal stress space
using a Mohr-Coulomb type yield surface as proposed in the work of Bresser [19].
Alternatively, an idealised failure surface defined by a number of cones, in the global
coordinate space, is also possible [39]. This approach has the added advantage of
combinations with different types of surfaces by tuning the coefficients of the char-
acteristic equation. Additionally, it also allows for extensions to anisotropic effects
typical of masonry applications. Both these approaches should be investigated
further, subject to the non-proportional loading problem and at junctures involving
the need for intermittent proportional loading. Furthermore, if the computational
intensity of SLA is addressed, these interaction effects could be considered for 3D
damage initiation as well.

All the above options are concerning the primary interaction effects between ten-
sion and compression with regard to damage initiation. However, during damage
propagation, secondary effects such as the dependence of compressive behaviour
on lateral effects of confinement or cracking arise. The effect of lateral cracking,
for instance, is crucial in reinforced concrete analysis typified by the compressive
strut action in the secondary direction. To this end, in accordance with the models
proposed by Vecchio and Collins [146], the a priori defined compressive saw-teeth
relations could be updated based on the lateral tensile strains as shown in Figure 8.1.
A normal saw-teeth definition by scaling those corresponding to the original curve
will be preferable, as against a new ripple bandwidth definition during run-time.
For details on the adapted curves, the reader is referred to the work of Vecchio and
Collins [146].

• Computational efficiency of SLA needs to be improved further. SLA has an advantage
over NLFEA in the sense that the man-hours required to run the model and obtain
results is not as high. This is due to the significantly large number of trials in
obtaining an appropriate scheme of load step-size, iteration scheme, arc-length
definitions etc. necessary in NLFEA to obtain converged results. Although the
computational performance of SLA has been improved in this study using the
tailor-made solvers, the solution times are still high. To this end, a smart damage-
tracking algorithm, such as those proposed by Cook et al.[28], is recommended
to be developed to distinguish the elements with the potential to be damaged,
thereby significantly reducing the number of necessary computations. Furthermore,
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Figure 8.1: The modification of the base compression softening law upon lateral cracking as
proposed by Model-A in Reference [146], and the possible saw-teeth versions

the use of reduced integration schemes, coarser saw-teeth laws, linear elements
instead of quadratic elements, all of which could potentially reduce solution times
is recommended to be investigated systematically, in order to obtain a balance
between computational performance and the mechanics aspects.

• Dedicated stress reversal event & algorithm, and the move to an incremental ap-
proach. The stress reversal problem is a long-standing one, wherein the uniaxial
damage in tensile regime is carried on one-to-one to the compressive regime or vice-
versa. As previously proposed in Pari et al. [103] and Elias et al. [45], a dedicated
crack-closure or crack-reopening event is also to be considered while determining
the critical event. The damage increment in this case will be the appropriate reset
of stiffness based on the reversal, and on the damage indicators representative of
the saw-teeth numbers in the tension and compression states. An example of such
a crack-closure incorrectly captured using SLA is illustrated in Figures 8.2 & 8.3.

The problem arises because of using a sequentially linear approach during stress
redistributions, particularly under non-proportional loading. It has been observed
in a recent study [19] that the use of an elastic-brittle sublayer model instead of
the saw-toothed fixed cracking model can delay the crack-closure effects. Also, the
pushover case study of a squat RC-Wall in Section 4.1.3 suggests that the use of an
incremental approach can delay crack-closure effects. These studies essentially
imply that crack-closure effects can be postponed but not avoided. Therefore, it
could be interpreted that the non-proportional reloading on a damaged state, which
was previously understood to account for premature tensile/compressive failure
problems and the need for intermittent proportional loading, could also potentially
cause these crack closure effects which are essentially premature. Therefore, in
order to relieve the crack-closure event of premature problems, it is suggested to
move to an incremental approach which inherently tracks stress history, and then
include the stress reversal algorithm.
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CHARACTERISTIC EQUATION IN 3D
STRESS STATE FOR CONTINUUM

Characteristic equation in the 3D stress states, given by Eq. 5.10, transforms into the
following equations by limiting the maximum (σ1) and minimum principal stresses (σ3)
to the the tensile ( ft) and compressive strengths ( fc) respectively:

f 3
t − I1 f 2

t + I2 ft − I3 = 0 (8.1a)

f 3
c − I1 f 2

c + I2 fc − I3 = 0 (8.1b)

The global stresses are expressed as a scaled combination of those due to the non-
proportional loads (constant loads depicted by subscript ‘con’ and variable loads by
subscript ‘var’), as in Eq. 5.13, and subsequently, substituted in the invariants I1, I2 and
I3 of the 3D-stress tensor (Eq. 5.14) to give the following:

σij =σij,con +λσij,var (8.2)

I1 =σxx +σy y +σzz

= (
σxx,var +σyy,var +σzz,var

)
λ+ (

σxx,con +σyy,con +σzz,con
)

= c1λ+d1

(8.3)

I2 =σxxσy y +σy yσzz +σzzσxx −σ2
x y −σ2

y z −σ2
zx

=
(
σxx,varσyy,var +σxx,varσzz,var −σ2

xy,var +σyy,varσzz,var −σ2
yz,var −σ2

zx,var

)
λ2+(

σxx,conσyy,var +σxx,conσzz,var +σxx,varσyy,con +σxx,varσzz,con −2σxy,conσxy,var+

σyy,,conσzz,var +σyy,varσzz,con −2σyz,conσyz,var −2σzx,conσzx,var

)
λ+(

σxx,conσyy,con +σxx,conσzz,con −σ2
xy,con +σyy,conσzz,con −σ2

yz,con −σ2
zx,con

)
= b1λ

2 + c2λ+d1

(8.4)
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I3 =σxxσy yσzz +2σx yσy zσzx −σxxσ
2
y z −σy yσ

2
zx −σzzσ

2
x y

=
(
σxx,varσyy,varσzz,var −σxx,varσ

2
yz,var −σ2

xy,varσzz,var+

2σxy,varσyz,varσzx,var −σyy,varσ
2
zx,var

)
λ3+((

σxx,conσyy,var +σxx,varσyy,con
)
σzz,var +σxx,varσyy,varσzz,con−

σxx,conσ
2
yz,var −2σxx,varσyz,conσyz,var −2σxy,conσxy,varσzz,var

−σ2
xy,varσzz,con +2

(
σxy,conσyz,var +σxy,varσyz,con

)
σzx,var+

2σxy,varσyz,varσzx,con −σyy,conσ
2
zx,var −2σyy,varσzx,conσzx,var

)
λ2+(

σxx,conσyy,conσzz,var +
(
σxx,conσyy,var +σxx,varσyy,con

)
σzz,con−

2σxx,conσyz,conσyz,var −σxx,varσ
2
yz,con −σ2

xy,conσzz,var−
2σxy,conσxy,varσzz,con+
2σxy,conσyz,conσzx,var +2

(
σxy,conσyz,var +σxy,varσyz,con

)
σzx,con−

2σyy,conσzx,conσzx,var −σyy,varσ
2
zx,con

)
λ+

(
σxx,conσyy,conσzz,con−

σxx,conσ
2
yz,con −σ2

xy,conσzz,con +2σxy,conσyz,conσzx,con −σyy,conσ
2
zx,con

)
= a1λ

3 +b2λ
2 + c3λ+d2

(8.5)

For demonstrative purposes, substituting the above equations in only the tensile part of
Eqs. 8.1 yields:

f 3
t − (c1λ+d1) f 2

t + (b1λ
2 + c2λ+d1) ft − (a1λ

3 +b2λ
2 + c3λ+d2) = 0 (8.6)

Rearranging the above equations in the form of Eq. 5.16:

−a1λ
3 + (b1 ft −b2)λ2 + (−c1 f 2

t + c2 ft − c3)λ+ ( f 3
t −d1 f 2

t +d1 ft −d2) = 0 (8.7)

Dividing the above equation by −a1, the following depressed cubic equation is obtained.

λ3 − (b1 ft −b2)

a1
λ2 − (−c1 f 2

t + c2 ft − c3)

a1
λ− ( f 3

t −d1 f 2
t +d1 ft −d2)

a1
= 0 (8.8)

which is similar to the form as in Eq. 5.17, and the coefficients herein correspond
to b̂, ĉ and d̂ as in Eq. 5.17 in the analytical solution detailed in Section 5.3.1. These
coefficients have to be written down hard-code to be able to subsequently solve the cubic
equation, using either the Cardano method or the trigonometric solutions.
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