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Summary
The Paris Agreement has intensified international efforts to reduce greenhouse gas emissions. Elec-
trification and the adoption of renewables like wind and solar power are central to achieving this goal.
However, the ongoing electrification of energy demand, e.g. the growing share of EVs in the car fleet
(RvO, 2024), and the increasing integration of renewable generation technologies in the Dutch energy
system (CBS, 2023) have put the high-voltage grid under considerable pressure. The growing demand
for and supply of electricity leads to grid congestion. Grid congestion occurs when the requested amount
of transported electricity cannot be facilitated by the grid, which means that the capacity of the transmis-
sion lines is not large enough. This limits the uptake of renewables and the electrification of energy use.
Thus, to keep the energy transition moving, it is essential to tackle grid congestion.

The most straightforward method for reducing grid congestion is to expand the capacity of the trans-
mission lines. However, the growth in electricity demand and renewable supply is currently outpacing
the growth of grid capacity (Ministerie van Algemene Zaken, 2023). This underlines the need for a differ-
ent type of solution. Battery Energy Storage Systems (BESS) could prove to be an efficient alternative.
TenneT, the Dutch Transmission System Operator, the organization responsible for maintaining a sta-
ble grid, confirms the need for BESS on the high voltage grid in a design that allocates BESS to Dutch
provinces by 2030 (TenneT, 2024). BESS can be distributed in many ways, both geographically i.e. at
different locations and in terms of size i.e. large versus small amounts of storage capacity at locations.
Thus, there are many different decentralized system designs with BESS to consider, each with relative
strengths and weaknesses.

Policymakers use large electricity system optimization models to build grounded arguments for infras-
tructure planning and policy. A high spatial resolution in this type of model is critical to capture regional
variation in energy generation and consumption. This level of detail allows for a more precise identi-
fication of areas prone to grid congestion, as well as the design of localized solutions for storage and
generation capacity. The goal of this research is to identify the trade-offs for future designs of decen-
tralized electricity systems to support decision-making in infrastructure planning. Thus, this research
proposes a multi-node model of the Dutch power system on the NUTS2 level i.e. the province level.

Available literature provides many examples of how to build a model with renewable generation
(Tröndle, 2020) and electricity demand (Launer, 2024) on the NUTS2 level, but the most effective ap-
proach for high resolution grid modeling is not yet known. The issue here is twofold.

First, it remains unclear how to integrate physical constraints into Net Transfer Capacity (NTC) cal-
culations to estimate realistic transmission line capacities that account for voltages and resistances.
Although more advanced, methods exist (flow-based alternatives), they tend to be computationally in-
tensive and may not be easily integrated into large-scale optimization frameworks that co-optimize gen-
eration and transmission capacity.

Secondly, while there are datasets from power-flow based models that include specific electrical pa-
rameters, such as in PyPSA-EUR (Xiong, Fioriti, Neumann, Riepin, & Brown, 2024), the potential benefit
of using these parameters in NTC based models is not proven. Furthermore, most NTC based models
are not capable of handling such specific parameters and as most energy system models are based
on NTC grid modeling methods, developing reliable estimates of NTCs out of electrical grid data would
open up the use of high-resolution grid data, which are increasingly available. This research attempts
to bridge these gaps by identifying the most accurate method to calculate NTCs and by evaluating the
benefit of exploiting electrical data from power-flow based models in a NTC based model.

With such a model, it is then possible to identify the trade-offs in decentralized system designs and
make grounded recommendations for storage and generation infrastructure. Using three demand sce-
narios, the model builds least-cost system designs based on the BESS capacity projections by TenneT
(TenneT, 2024) and also based on flexible allocations of BESS capacity based on a system wide cost
optimization to highlight important trade-offs for decentralized system designs with a focus on the appli-
cation of BESS, reducing congestion and reaching climate goals.

To begin with, this study identifies the most accurate method for calculating NTCs using line specific
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data from the Static Grid model (TenneT, 2023) to validate the accuracy of NTC calculation methods
found in literature. The research evaluates three different methods for calculating NTCs: simple-transport
model, efficiency per kilometer and the St. Clair approximation. An efficiency per kilometer is found to be
themost accuratemethod to estimate key physical constraints in NTC calculations. This method provides
a straightforward way to prevent overly optimistic capacity estimates and its abstract formulation makes
it easy to incorporate into both existing and newly developed NTC-based models, thereby enhancing the
realism of NTC based models.

Then, after establishing the most accurate method for calculating NTCs, the study dives deeper into
the using the to NUTS2 level clustered grid data from PyPSA-EUR in NTC calculations. The goal is to
assess the usability of such data sets, by comparing the data to the data in the Static Grid model. The
inherent simplifications of the clustered dataset, such as universal voltages, resistances, and maximum
currents, result in substantial inaccuracies. Additionally, there is an asymmetry between the PyPSA-
EUR data and the SGM in the number of lines between different sets of regions, further emphasizing the
negative impact of the clustering on the accuracy of the NTCs. This inconsistency leads to overestimation
in one case and underestimation in the other, highlighting the effect of using simplified and clustered data
compared to more detailed line-specific parameters. Moving forward, the multi-node model thus utilizes
data from the Static Grid model and an efficiency per kilometer to estimate NTCs.

Next, the model is used to identify important trade-offs for designing decentralized system designs.
The results show that grid expansion can cut down congestion significantly, especially on the lines that
connect Zuid-Holland and Noord-Holland to Noord-Brabant and Flevoland respectively. Unfortunately,
efforts to expand the grid are currently outpaced by the growth in demand for electricity transport. Storage
proves to be an alternative, with estimates for required capacities in 2030 ranging from 7.45 GW to 13.02
GW. A significant contribution to minimize congestion can be made by deploying BESS in the South and
West, especially in the regions where most of the projected offshore wind is connected to the shore and
Utrecht. Although storage in these areas can offset some of the need for extra transmission capacity
(and vice versa), both are necessary elements of a balanced grid in the near future. This underlines
that TenneT should coordinate the BESS deployment based on the efforts to expand the transmission
together with battery operators to identify the most efficient locations for BESS.

However, focusing solely on the deployment of BESS in these key areas results in a large dependence
on gas generation and imports and exports to balance the grid, especially in the northeast region, where
demand is relatively small. During hours with large renewable output, the excess electricity from these
small demand areas cannot be fed into the grid to supply high demand areas, because the grid in these
areas is also heavily loaded during these hours. By storing excess renewable power in small demand
areas, more of the generated power can be used locally or for supplying high-demand areas, rather
than being exported or wasted. This reduces uncertainty in terms of costs related to dependence on
gas power plants and imports to provide flexibility. This also enables the import and storage of cheap
foreign electricity for later usage. Thus, it is recommended to complement renewable generation in small
demand areas with storage options.

Overall, the projected BESS capacities require a significant increase in collaborative efforts of TenneT,
DSOs, ACM, and battery operators, starting with the implementation of a tariff structure that facilitates
flexible loading and unloading of BESS to strengthen the business case of BESS while also accounting
for TenneT’s and the DSO’s business model and balancing requirements.

In addition, large amounts of solar PV are consistently installed across scenarios in the large demand
areas such as Noord-Holland, Zuid-Holland, Noord-Brabant, and Gelderland. This emphasizes the ben-
efit of local solar generation and the need for support schemes for solar generation that incentivize smart
self-consumption to account for the spatial and temporal value of electricity while also incentivizing con-
sumers and businesses to invest in solar PV. However, the uptake of solar PV in areas with high demand
increases the pressure on land availability in these regions, especially in Zuid-Holland. Placing large
amounts of BESS and solar to meet local demand might not always be feasible within these regions.
Infrastructure planning should thus also consider the trade-off between system-wide cost and additional
land use in less demand intensive areas compared to the land use of regions with large annual demand.
The results indicate that there is a limit to the benefit of local rooftop PV capacity. At a certain point,
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the addition of local generation capacity results in only marginal improvements in overall system costs
and might even results in higher levels of congestion. TenneT and battery operators should therefore
work together with DSOs and local governments to smoothen permitting processes and identify precise
locations that integrate BESS in public space, the distribution system, and the transmission system to
ensure smooth distribution of the storage systems.

These findings show that although local storage and renewable generation in high-demand regions
can help match supply closer to consumption, it is also possible to shift renewable generation and storage
to smaller-demand areas in close proximity to these areas at slightly higher costs. This complements
earlier statements on the potential benefits of storing surplus power in small demand areas for later usage
during low renewable hours to reduce reliance on gas or imports during peak times. This approach
alleviates land-use pressure in densely populated areas and ultimately creates a more balanced and
resilient electricity system that maximizes existing transmission infrastructure.

Substantial investments in renewable generation and storage infrastructure are necessary across all
scenarios, with large deployments of rooftop photovoltaic systems, offshore wind, and high storage ca-
pacities. However, time is short, and if additional renewable capacity and storage do not materialize, this
study suggests continued reliance on fossil fuels and the potential need to keep coal plants operational
for a longer time. The development of Carbon Capture and Storage (CCS) can mitigate some climate-
related concerns related to gas-fired power, highlighting the need for continued investment incentives
for innovative projects to support the development of carbon capture technologies.

Although challenges remain in determining the most optimal locations for storage infrastructure that
reduce congestion and facilitate the integration of renewables in the Dutch power system, this work
presents a stepping stone towardmore realistic high-resolution grid modeling, enabling informed decision
making in decentralized power system design.



Acronyms
• BESS: Battery Energy Storage Systems

• HVAC: High Voltage Alternating Current

• HVDC: High Voltage Direct Current

• NTC: Net Transfer Capacity

• PV: Photovoltaics

• SGM: Static Grid Model

• CSGM: Clustered Static Grid Model

• NUTS: Nomenclature of territorial units for statistics

• PTB: Power Triangle Based

Province NUTS2 Code
Groningen NL11
Friesland NL12
Drenthe NL13
Overijssel NL21
Gelderland NL22
Flevoland NL23
Utrecht NL31
Noord-Holland NL32
Zuid-Holland NL33
Zeeland NL34
Noord-Brabant NL41
Limburg NL42

Table 1: Provinces of the Netherlands and their corresponding NUTS2 codes
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1
Introduction

1.1. Problem introduction
The Paris Agreement seeks to limit global temperature rise to well below 2 ° C, pushing nations around
the world to accelerate their energy transitions. In the Netherlands, this has resulted in a rapid increase
in renewable energy deployment, with the share of wind energy doubling and solar energy tripling in the
past four years (CBS, 2023). However, implementing renewable energy sources in our electrical systems
is not without obstacles. To enable a transition to clean energy sources, different challenges must be
overcome. First, solar and wind are intermittent sources, which means that they cannot be turned on and
off as needed. This makes it more difficult for transmission system operators, TenneT in the Netherlands,
to balance the supply and demand for power. For example, when solar generation exceeds the demand
for power shares of the solar energymust be exported to other regions or countries, stored, or, if storage is
not feasible, curtailed. Curtailed means that excess power is wasted. Also, relying on intermittent energy
sources causes problems for the reliability of supply in times when these sources have hardly any output,
emphasizing the need for sufficient flexible generation capacity. The intermittency of renewables thus
challenges the uptake of these sources. Second, the electricity demand, or load, has experienced a
large growth in recent years due to electrification of the energy demand. With increasing demand, more
transfer capacity is required to deliver electricity. Data shows that there has been an increase of roughly
six times the number of electric vehicles (EVs) in the past six years (RvO, 2024). This is an example of
electrification that intensifies the demand for electricity. In the future, with electric mobility and electric
heating being used more frequently, the demand for electricity is expected to grow even further. An
assessment of the impact of this load growth is needed to identify what type of infrastructure is needed
in what locations to maintain a stable grid.

The electrification of energy demand and the additional renewable capacity are in some areas causing
grid congestion. Grid congestion occurs when the requested transported amount of electricity is larger
than the capacity of the grid connection. This emphasizes that the challenges of the energy transition
must be addressed not only on a national scale but also on a more regional scale to account for local grid
constraints that limit further electrification and integration of renewable resources. Figure 1.1 illustrates
the congested areas for consumer requests. Here red means that there is no transport capacity available
and congestionmanagement is not possible, orangemeans that there is no transport capacity at this point
in time, yellow areas have limited capacity available, and transparent areas still have available capacity.
Looking at the congestion map for feeding and consuming electricity in the Netherlands, it can be noticed
that in large areas of the country congestion is already a major issue. Consequently, businesses cannot
start or expand their operations and new renewable energy plants cannot be connected to the grid due
to capacity restrictions.

13



14 1. Introduction

Figure 1.1: Congestion map (Netbeheer Nederland, 2024)

Additional transport infrastructure can help relieve the stress caused by congestion was it not that
expanding the grid infrastructure requires a significant amount of time and funds. Currently, the growth
of demand and electricity supply is outpacing the growth of transfer capacity (Ministerie van Algemene
Zaken, 2023). According to (TenneT, 2024), Battery Energy Storage Systems (BESS) will have an im-
portant role in balancing the Dutch power system in the coming years. BESS can provide the necessary
flexibility through supplying and consuming power during hours with low and peak renewable output,
respectively. TenneT (2024) shared a vision for the BESS which the system requires by 2030. How-
ever, there are many potential system designs with different amounts of generation and storage capacity
that could work around local grid constraints, making the distribution of the capacity complex in terms of
capacity and geographical placement.

To inform decision makers in this complex process of grid infrastructure planning, large electricity
system optimization models are used to find cost-optimal future system designs. High spatial resolution
is essential for accurately modeling the grid, renewable generation, and load because it captures regional
variations in electricity demand, flexibility, and availability of renewable resources. This granularity allows
for a more precise analysis of localized grid congestion and the effectiveness of additional generation
and BESS capacity.

The literature describes many examples of methods to enhance spatial resolution in energy system
optimization models. Although we already have established methods for integrating generation capac-
ity, renewable generation, and demand on a high spatial resolution, such as those employed in the
Euro-Calliope model (Tröndle, 2020), there remains a critical gap in understanding. Specifically, we lack
knowledge of the most effective methods for modeling the grid constraints, i.e. calculating Net Transfer
Capacities (NTCs) between areas in a model with a high spatial resolution. More precisely, while there
are good-quality datasets to model grids at a high resolution (Xiong et al., 2024), these datasets are
based on electrical grid parameters (such as voltage, impedance, resistance, reactance and suscep-
tance) conceived for use in power-flow-optimizing models. However, flow-based alternatives are often
computationally heavy and not easily integrated into large-scale optimization frameworks that co-optimize
generation and transmission capacity on the long-term. The majority of energy system optimization mod-
els, instead, bypass the need for power-flow balance constraints by adopting simpler power capacity
constraints, namely NTCs, which are often available for pre-defined resolutions (Pickering, Lombardi,
& Pfenninger, 2022). As a drawback, NTC based models cannot benefit from high-resolution grid data
based on electrical parameters that they cannot handle. Developing robust techniques to incorporate
grid constraints in NTCs using electrical grid data would facilitate the use of high-resolution grid data,
which is becoming increasingly accessible.

Using high-resolution electrical grid data in NTC based models thus requires methods to circumvent
the lack of power-flow balances in such models while still retaining information on the underlying physical
constraints in such a way as to avoid overly optimistic NTC estimations. For example, NTC correction
factors that account for resistance and voltage differences across regions. Although some attempts
have been made to formulate correction factors in recent work (Wiese, Bökenkamp, Wingenbach, &
Hohmeyer, 2014; Van Ouwerkerk et al., 2022; Martin et al., 2017), the relative merits of each approach
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are not yet well understood or validated. This research aims to address these gaps by exploring the
methodologies for calculating NTCs and incorporating adjustments for physical grid characteristics. The
first step of this research is therefore to dive deeper into the literature to identify the available approaches
for calculating NTCs and correction factors for voltages and resistances. This led to the formulation of
the first sub-question, where the goal is to find methods for calculating NTCs while also accounting for
resistances and voltages into the formulation of these NTCs.

Ultimately, the most accurate approach will be used to build an optimization model within the frame-
work of the Calliope model (Pfenninger & Pickering, 2018). Calliope is used in different studies on
national-scale power system analysis. Additionally, Calliope allows for mixed-integer problems and easy
customization and integration. The basis for the model used in this research already exists at TNO in
the form of the single-node model. The model is first enhanced with known methods for implementing
high spatial resolution demand and renewable generation. Thereafter, the most promising method for
calculating NTCs is implemented. High-resolution electrical grid data from PyPSA-EUR (Brown et al.,
2024) using the OSM data (Xiong et al., 2024) is applied to evaluate to what extent NTC based models
can potentially benefit from using high-resolution electrical data from power-flow-optimization models.
High spatial resolution is critical in this research to capture regional disparities in energy generation and
consumption. This level of detail allows for a more precise identification of areas prone to grid conges-
tion, as well as the design of localized solutions for storage and generation capacity. So far, literature
does not provide studies that apply high spatial resolution grid modeling to assess the trade-offs between
(de)centralized design options while optimizing for both costs and line loading. The research will thus
add to existing literature by providing deep insights to the trade-offs for (de)centralized designs of the
network. This gives a new perspective and a better understanding of the discussion of BESS as a solu-
tion for grid congestion. Therefor, the contents of this research will also prove to be useful for decision
makers to enhance the robustness of the network.

1.1.1. Main research question
The main research question is: ’What are the trade-offs for future decentralized Dutch electricity system
designs in the face of future load growth?’

To divide the main research question into different sub-questions an approach must be defined. The
research question focuses on three key areas: First, it aims to compare and identify the most effective
methods for calculating NTCs and accounting for voltages and resistances within regions. This involves
different methods that are assessed for their performance by comparing the resulting NTCs to reference
NTCs. Then, the goal is to assess the potential of using grid data from a power-flow-optimization model
in an NTC based model. The last focus point is to select the most ”promising” method from this analysis
and integrate it into the TNO single-node model using accurate grid data. The enhanced multi-node
model is then used to explore potential decentralized system designs, specifically designed to address
grid congestion under various load scenarios for 2030.

• How can we calculate Net Transfer Capacities and how can we integrate correction factors for
resistances and voltages and transferring it to a Net Transfer Capacity?

• How well does the model reflect the real electricity system’s operation?

• What are potential decentralized design options for relieving congestion in the Dutch electricity
system considering different scenarios for future load development?

1.1.2. Link with MSc program
The research will not only contribute to finding the most optimal method for calculating NTCs in high
spatial resolution electricity system optimization models and the benefits of using high spatial resolution
electrical parameters from power-flow-optimization models. It also aims at designing different effective
measures for policy and infrastructure in the network to deal with grid congestion. Through assessing the
impact of potential interventions and showing the trade-offs for different design options, the research will
help decision makers make informed decisions with respect to power infrastructure. The Dutch power
system is a system with many different technical components, but also with many different stakeholders
in business and policy. Insights into the relative merits of each design can help stakeholders reach a con-
sensus. The energy transition problems discussed are analyzed using an electricity system optimization
model, which is closely related to different courses in the Energy and Industry domain.
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Methodology

This part of the study provides an overview of the methods employed to answer each sub-question,
starting with an introduction to the literature research and the methods used to identify the most accurate
methods for calculating NTCs. Subsequently, a description is given of the steps taken to assess the
use of data from a flow-based model in the NTC based model. Thereafter, the modeling approach is
discussed, starting with an introduction to Calliope and the TNO single-node model. Different aspects
of the single-node model are highlighted, such as the context and the technologies. Next, the process
of enhancing the spatial resolution of the single-node into the multi-node model is discussed, showing
the disaggregation of demand, the input data, and the constraints that are used in different steps of the
research. Lastly, the section describes the methods that are used to validate the resulting multi-node
model, and lastly a description is given of how the model uses different scenarios and objective functions
to find decentralized system designs.

2.1. Methods for calculating NTCs
The first sub-question is addressed by reviewing state-of-the-art literature and examining examples of
how researchers calculate NTCs in high spatial resolution electricity system models. The primary source
for identifying the available methods is Scopus. The result is a list of potential methods for calculating
NTCs, found in Section 3, including an explanation of the method, characteristics, applications, and
related study. To determine the most accurate NTC method, the methods are applied to real-world data.
Twice a year, in accordance with Article 25(2)(f) of the Day-ahead capacity calculation methodology for
the Core capacity calculation region, the TSOs publish the Core SGM. This model takes the form of
an Excel file and provides a list of the transmission system elements along with their properties such
as lengths, resistances, and voltages. This part of the research concludes by comparing the resulting
NTCs of individual lines from the SGM using each method to the actual NTCs in Section 4.1.1. This
comparison is based on graphs that show the ratio of the Power Triangle Based (PTB) NTCs (see Section
3.2, which serve as a reference, and the NTC calculated with each estimation method. A ratio close to
1 indicates a high accuracy. In addition, Pearson correlation coefficients are calculated to measure the
linear correlation between the NTCs calculated with the PTB and each method.

Thereafter, the grid data from PyPSA-EUR is evaluated as a potential source for high-resolution grid
data. PyPSA-EUR is a publicly accessible dataset that models Europe’s energy system comprising
the demand, supply, and transmission networks for the entire ENTSO-E region. Currently, it is the only
openly available tool that can generate clustered grid representations at any desired resolution. Although
detailed grid data, such as that provided by TenneT in the Static Grid Model (SGM) (TenneT, 2023), is
available for the Netherlands, similar datasets may not be accessible for other regions. This makes
it valuable to assess whether the adaptable workflow of PyPSA-EUR is sufficiently robust for broader
applications. Moreover, even for the Netherlands, there are instances where clustering the grid at a
lower resolution than TenneT’s is beneficial. In these cases, having a customizable grid generation
workflow like that offered by PyPSA-EUR could be particularly useful. In this phase, the NTCs are again
calculated with each method, but now using clustered NUTS2 line data from PyPSA-EUR. The resulting
intterregional NTCs are compared to the sum of interregional NTCs as per the Clustered Static GridModel
(CSGM). The clustering of both PyPSA-EUR and the CSGM are explained in Section 2.2.3. Different
aspects of the data are discussed, including the number of lines that connect two regions, voltages,
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maximum current and resistances to make a complete assessment of the usability of the PyPSA-EUR
grid data as input for the multi-node model.

2.2. Modeling approach
2.2.1. Calliope
Calliope is an open-source tool for energy system analysis that uses a least-cost optimization approach.
In this framework, various technologies are configured to supply energy, convert one carrier into another,
transport energy, store it, or consume it. In the Calliope framework, it is possible to assign technologies
many different characteristics, such as ramp rates, emissions, operational expenditures (OPEX) and
capital expenditures (CAPEX).

The model operates by seeking the least-cost design to meet energy demand in all locations and
time steps, within a set of constraints defined by the modeler. The constraints ensure that the amount of
energy produced at any location and time is consumed, stored, or exported. When no solution satisfies
these constraints, the model is infeasible. Unmet demand and supply are added to ensure feasibility.
However, this is linked to high costs, so the model will try to avoid unmet demand and supply.

Cost can be represented in different ways. However, in this study, the cost is measured in millions
of euros (MEUR). Meanwhile, the model is also able to separately track emissions associated with fossil
fuel use and line load, but does not incorporate these into its cost-minimizing objective. This opens the
door to adding emission constraints or minimizing for line load within a certain cost range.

To arrive at the optimal solution, the model must address two key aspects: system design and system
operation. System design is about the choice of how much capacity to install for each technology at each
allowed location. The model uses technology characteristics such as OPEX and CAPEX to find the least-
cost solution. The user can pose constraints as to what technologies can be deployed at which location,
including a minimum or maximum capacity. Once design choices are set, the model operates each
technology by controlling its input and output at each time step.

Calliope represents energy systems using a node-link topology. The nodes house supply, conversion,
storage, and demand technologies, anchored to a specific geographic location based on coordinates.
Links connect pairs of nodes to define transmission lines, and their distance is derived from the nodes’
positions. This distance, in turn, can be used to influence the cost of building and operating transmission
technologies.

2.2.2. The single-node model
The starting point of this research is the Dutch single-node model, which is provided by TNO. The goal
is to develop a high spatial resolution model of the Dutch energy system. Currently, the Netherlands is
modeled as a single node and this node hosts all the technologies described in Section 2.2.2.

Context of the single-node model
The single-node model approaches the Dutch energy system as a single node within the North-West
of Europe (Figure 2.1). This structure includes transmission lines for import and export, but neglects
internal transmission bottlenecks.

Figure 2.1: Single-node model network

North-West Europe includes the United Kingdom, Belgium, Germany, Denmark, and Norway. These
countries are also represented by one node to simulate import and export with historic day-ahead prices
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for which the price duration curves are presented in Appendix C.3. These countries host two technologies
each, an electricity import interconnector, to model Dutch imports, and an electricity export interconnector
to model Dutch exports. The other countries are connected to the Dutch node with HVAC and HVDC
lines.

Technologies
The model includes renewable generation technologies, storage, gas, coal, nuclear, waste, biomass,
and hydrogen infrastructure. A complete overview is found in Table D.1. The cost data are retrieved
from the existing TNO database and completed using additional sources on the Internet. Appendix D
lists the cost data and other characteristics of the different technologies. The table includes carrier in,
carrier out, CAPEX, OPEX, variable OPEX, efficiency, interest rate, dispatch and flexibility rules.

Table D.3 highlights a notable assumption. Unlike Utility PV and onshore wind, rooftop PV does not
have an interest rate. This zero-interest assumption makes rooftop PV the most cost-efficient technology
of the three in terms of the levelized cost of electricity (LCOE). Including an interest rate, the LCOE of
rooftop PV would be more than twice that of the non-interest rate LCOE of rooftop PV. The LCOE of
onshore wind is 75% higher than the LCOE of rooftop PV without interest, but including interest rooftop
PV has a 35% higher LCOE than onshore wind. At the same time, the LCOE of rooftop PVwithout interest
is also lower than the LCOE of utility PV. This is not the case when interest is also applied to rooftop PV.
The zero interest assumption strongly impacts the LCOE of the different technologies, given that the
other cost assumptions remain the same. Given an average weather year, this zero-interest assumption
will cause the model to favor rooftop PV over utility PV and onshore wind. Also, comparing LCOE in Table
D.3 to the LCOE in Euro-Calliope (Table D.6, it is expected that the zero-interest assumption results in a
relatively large share of Rooftop PV in the future generation capacity.

The single-node model is an NTC based optimization model that defines three technologies for trans-
mission: HVAC, HVDC and free transmission. The technologies differ in terms of the efficiency per kilo-
meter that is used to calculate the NTC for each link. In the single-node model, internal transmission is
neglected (free transmission).

2.2.3. The multi-node model
The following section describes how the single-node model is transformed into the multi-node model.
(Section 2.3). For the purpose of this research, the spatial resolution of the single-node model is en-
hanced to the NUTS2 i.e. province level, using technologies and their techno-economical characteris-
tics. That means that the multi-node model has 12 nodes for the Netherlands. Each node is assigned
a set of technologies, from the list in Table D.1, and a capacity based on historic capacities. The nodes
are connected with links (HVAC, HVDC and gas pipelines). High-resolution electrical grid data is re-
trieved from a power flow optimization model (Xiong et al., 2024), based on OpenStreetMap data (Open
Infrastructure Map ) or on the CSGM.

Context of the multi-node model
In the multi-node model, other countries are represented with one node (the same as in the single-node
model), including the import interconnector and the export interconnector. However, where the single-
node model has a single transmission line between the Netherlands and the connected countries, the
multi-node model contains the interconnecting lines from each individual region to the neighboring coun-
tries. Export prices are based on historic 2023 day-ahead prices. Future day-ahead prices might be
different in terms of volatility or an increase in hours where renewables set the price. However, forecasts
are based on many assumptions, such as future capacities, regulations and fuel prices, whereas histor-
ical values capture actual price patterns. The import price is constant and higher than the costs of the
most expensive generation technology. This means that the model only uses imports from neighboring
countries as a last resort to balance the grid.

Another aspect of imports that is important to highlight is that imports do not result in additional 𝐶𝑂2
output. The model can thus use imports as a non-emitting flexible resource during low renewable hours,
when ETS credits are scarce or high in costs.

Capacities on NUTS2 level
The historic capacity is the capacity in 2023 and for each technology at each node the capacity is given by
a source listed in Table E.1. For the sake of this research, gas infrastructure is included as a copperplate.

https://openinframap.org/#2/26/12
https://openinframap.org/#2/26/12
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This means that there is one node that contains all the existing gas supply infrastructure (LNG terminals
and gas production fields) with unlimited pipeline capacity to the other nodes in the system.

Hydrogen infrastructure is left out of the scope of this study and the forecasted electricity demand for
hydrogen production is also filtered from the total demand to align with this assumption. Nevertheless,
hydrogen could serve as a form of long-duration storage in comparison to lithium-ion batteries, which
have high round trip efficiencies. This might make hydrogen relatively appealing for balancing seasonal
or inter-day fluctuations, whereas BESS may target more frequent, shorter-term shifts in supply and
demand. As a result, both technologies can coexist, addressing different segments of the market. In
combination with filtering out the demand related to power to hydrogen demand, this reduces the impact
of leaving the hydrogen infrastructure out of scope.

The weather data consists of the capacity factors at NUTS2 level for the year 2019 from renew-
ables.ninja (Pfenninger & Staffell, 2016). The model uses weather time series based on the year 2019
to determine the output from renewable sources. According to KNMI, 2019 was the year with the third
most sun hours since 1999 (KNMI, 2020). Thus, the dispatch runs could results a relatively large output
of solar PV technologies.

Demand
The hourly demand data from 2023 from the single-node model is disaggregated to NUTS2 level us-
ing Gregor (Launer, 2024). Based on a population proxy, the total load of the Netherlands is first
disaggregated to a square kilometer raster for each time-step. In this study, the population density
data (people/𝑘𝑚2) is retrieved from WorldPop and is based on the Dutch population in the year 2020
(WorldPop, 2020). From the raster level the load is aggregated to NUTS2 level to be applied in the
model.

Alternative disaggregation methods could involve the use of separate industrial demand data along-
side the population proxy to capture both residential and industrial loads. Another option is to rely on
historical demand distributions, which capture observed spatial distributions of demand, or to use eco-
nomic indicators, such as GDP, to reflect regional activity levels.

The strength of the population-based method lies in its practicality, because it is straightforward and
applicable even when high-resolution historical or industrial demand data are not available. However,
its weakness is that it may not accurately capture variations in industrial demand or regional economic
activity, potentially leading to imprecise estimates. The resulting 2023 demand distribution is visualized
and compared to historical demand in Section 4.2.

Transmission
The single-node model is currently unable to handle high-resolution electrical grid data. The goal is to
use the most promising methods for calculating NTCs in the model using high-resolution electrical grid
data from a power flow optimization model. Xiong et al. (2024) proposes such a multi-node model of the
European power system that can be clustered to NUTS2 level. The output of this model will serve as input
for the NTC calculations in the multi-node model to make up for the lack of power-flow balances in the
model while retaining information on the underlying physical constraints in such a way as to avoid overly
optimistic NTC estimations. By validating the model, we can then assess to what extent NTC based
models can benefit from the use of high-resolution grid data from PyPSA-EUR (Xiong et al., 2024).

PyPSA-EUR uses k-means clustering based on the geographical centers of the NUTS2 areas. In
addition, a weight is assigned based on the load and demand in the area. Thus, the aggregated grid
data is based not only on the geographical center but also on an electrical center. Unfortunately, the
PyPSA-EUR cluster drops certain physical and electrical parameters for the transmission lines when
clustering to NUTS2. PyPSA-EUR clusters the Netherlands to a NUTS2 level by simplifying to a 380kV
system with a standard line type (Al/St 240 4 cable bundles) thus neglecting the differences in voltages
and other line characteristics. As a reference, this research proposes the use of the SGM as a means
of validation for using the PyPSA-EUR data. The SGM, on the other hand, contains physical and elec-
trical line specific values of all the HVAC lines in the Netherlands and the interconnectors with Belgium,
Denmark, Norway, the UK and Germany. For the sake of evaluating the benefit of using the data of the
PyPSA-EUR clustered grid in interregional NTC calculations, the SGM data is clustered to NUTS2 level
by filtering for interregional lines based on the strategy in Figure 2.2. The result is the CSGM, that uses
the sum of NTCs of the individual interregional lines per set of neighboring NUTS 2 regions to define the
total interregional NTCs per set of regions. The CSGM is based on individual line characteristics, such
as real-world cable length, resistance, reactance, maximum current and voltage.
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Region A Region B Region A Region B

Figure 2.2: Illustration of the selection of interregional lines from the Static Grid model.

The CSGM does not consider transmission between substations within regions and neglects inter-
nal transmission bottlenecks. Moreover, the model does not consider the capacity of transformer and
converter stations. The underlying assumption is that the planning of building converter and transformer
stations is integrated with the planning of additional transmission capacity. The model thus assumes that
internal transmission, converter and transformer capacity is always sufficient. Also, the model is based
on existing lines and does not account for transmission projects that are already in the pipeline (under
planning, permitting or construction).

Emissions
The multi-node model does initially not impose an emission limit on the system’s operation in terms
of annual emissions. The ETS price is equal to €83 / ton 𝐶𝑂2 according to the average price in 2023
(Agency, 2024).

2.3. Model validation
Having outlined the modeling approach, attention now turns to the validation of the model. The validation
is based on the multi-node model and historic capacities, demand and weather data as explained in
Section 2.2.3. This step focuses on comparing the model’s performance to the actual operation of the
Dutch power system to answer the second sub-question. This step involves a comparison of the PyPSA-
EUR and the CSGM grid data. First, the most promising methods for calculating NTCs are applied
to the PyPSA-EUR data. To assess whether the methods are also applicable to clustered data, the
resulting NTCs are compared to the NTCs using the PTB approach. Next, the line characteristics, such
as voltages, current, line crossings and eventually the resulting NTCs of the PyPSA-EUR cluster are
compared to the CSGM. Interregional NTC is the sum of all the lines that cross the border between a
set of neighboring NUTS2 regions. The number of line crossings is defined as the number of lines that
connect two regions. This will provide insights into the usability of the clustered grid data from PyPSA-
EUR in the multi-node model.

After the grid data and the resulting NTCs from PyPSA-EUR and the CSGM are compared, both data
sources are implemented into the multi-node model. The multi-node model is then validated in three
steps according to methods found in Open Data Based Model of the Dutch High-Voltage Power System
(Zomerdijk, Gusain, Palensky, & Cvetkovic, 2022) for which the 220kV and 380kV data also comes from
the SGM.

1. Conceptual validation: Are the assumptions and theories for the conceptual model correct?

2. Operational verification. Does the model operate as intended?

3. Operational validation: comparing performance metrics against the Open Data Based Model of
the Dutch High-Voltage Power System and available real world data for one year (Zomerdijk et al.,
2022)

After building the multi-node model, two dispatch runs are performed using historic demand, weather
and capacity data. The results from the CSGM and PyPSA-EUR based grid models are then compared
to one another and to historic data to compare the operation of the model the actual system’s operation,
while also testing the impact of using PyPSA-EUR as a source for grid data. The historic data includes
monthly generation per production type.
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2.4. Scenario analysis
In contrast to the model used in the validation, which is based on historic data for generation capacities,
this section describes how the model is used to find optimal capacities based on future demand profiles.
This section further describes the methodology for the scenario analysis, starting with the input data for
demand, renewable capacities, storage, power plants, transmission and emissions. The section then
presents the formulation of the model objectives and the sensitivity analysis before giving a detailed
overview of the flow of the research and the tested cases.

2.4.1. Input data
The following section gives an overview of the data that is used in the scenario analysis, starting with the
demand forecasts for 2030. Subsequently, the renewable capacity factors and the input and constraints
of the storage, generation, emission, and transmission technologies are discussed.

Demand
The hourly load data for 2030 are based on the three scenarios of the Investment Plan 2024 (IP2024),
published by Netbeheer Nederland (2023). The IP2024 serves as a strategic guide for the development
of the Dutch electricity and gas infrastructure. It employs a scenario-based approach to ensure that
the energy network can adapt to emerging trends, such as growing electrification and the integration of
renewable energy. By examining possible futures through three scenarios, IP2024 offers a view of how
policy, market dynamics, and technology could shape electricity demand patterns in the Dutch energy
system through 2030. The three scenarios are Internationale Ambitie, Nationale Drijfveren and Klimaat
Ambitie. Figure 2.3 shows the demand scenarios and their relation to future demand scenarios as per
(Netbeheer Nederland, 2023).

Figure 2.3: Demand scenarios IP2024 Netbeheer Nederland (2023)

In short, the storyline of each scenario is as follows:

1. Klimaat Ambitie (KA): Reflects current and proposed climate policies, aiming for a 55% reduc-
tion in CO2 by 2030. This scenario emphasizes a balanced transition that features electrification,
sustainable gases, and energy efficiency. The annual load in this scenario is equal to 159.49 TWh.

2. Nationale Drijfveren (ND): Focuses on self-sufficiency and widespread adoption of domestic wind
and solar resources. This scenario assumes a rapid move toward electrification in transport, in-
dustry, and buildings, supported by decentralized generation. In this scenario, the annual load is
equal to 181.33 TWh.

3. Internationale Ambitie (IA): Describes extensive global cooperation and cross-border energy trad-
ing. Large-scale renewable projects, hydrogen imports/exports, and carbon capture and storage
play an important role, positioning the Netherlands as a central energy hub. This scenario has an
annual load of 146.39 TWh.

For this study, the demand scenarios are derived from these IP2024 scenarios as provided by The
Energy Transition Model (Quintel, 2023). Each scenario provides electricity demand under different
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policies and technology pathways enabling robust analysis of potential system designs. To align the
demand scenarios with the scope and purpose of this research, the demand related to future power-to-
hydrogen applications is filtered from the time series. The resulting load-duration curves can be found in
Appendix C. This approach supports more resilient decision making, as infrastructure investments can
be informed by a range of plausible futures.

Renewables
The generation capacities of wind on land and solar PV are determined by the optimization model. In the
scenario runs, rooftop PV is allowed to increase up to a maximum of 5.15 GW per region, which is equal
to 10% of the maximum installed capacity in the IP2024 scenarios. Utility PV per region is constraint
according to the same logic. Each region can host up to 10% of the maximum estimated systemwide
Utility PV capacity. These constrainst are added to force themodel to divide the generation capacity more
equally over the regions. Onshore wind is only constraint by a systemwide maximum capacity of 12GW.
The offshore wind capacity scenario is based on the Routekaart wind op zee (Rijksoverheid, 2022).
This document provides an overview of offshore windparks that are operational, under construction, and
planned. The total offshore capacity in this scenario is 21 GW. The capacity is allocated to NUTS2
regions based on information on the preferred connections (RVO, 2023).

Similar to the model used in the validation, weather data in the scenarios consists of capacity factors
at NUTS2 level for the year 2019 from renewables.ninja (Pfenninger & Staffell, 2016). Since 2019 was
a relatively favorable year for solar generation, it is important to consider the impact of the weather year
when interpreting the resulting generation capacities, especially because of the relative LCOE of the
renewable generation technologies in the multi-node model. In scenarios with weather conditions that
favor solar generation, the model may allocate a relatively large amount of solar capacity compared to
runs with less favorable conditions. As a result, the additional solar capacity might partially reduce the
deployment of other generation technologies, such as onshore wind.

Storage
The first scenario for storage (Centralized) is based on the document published by TenneT, showing
minimum and maximum battery storage capacities needed per NUTS2 region to maintain a stable grid
in 2030 (TenneT, 2024). The Centalized scenario assumes the maximum capacity per region presented
in the TenneT estimates, which sums to a total of 13 GW.1 The second scenario (Flexible) for storage
allows Calliope to estimate the optimal BESS allocation without any systemwide capacity constraints. In
terms of costs, current estimates for OPEX, CAPEX and round-trip efficiency are used, even though there
are indications of potential future cost reductions. However, the impact of increased demand for lithium,
potential trade restrictions, and technological innovation is uncertain. Consequently, using current cost
parameters provides a foundation for modeling based on available data rather than speculative future
pricing. Implementing learning curves and cost reductions could be an interesting topic for future studies
focussed on the business case of BESS.

Power plants
The TenneT BESS estimates assume that by 2030 Dutch hard coal plants are closed. To align with the
storage scenario, the generation capacity of the coal plants is equal to zero in all the 2030 scenarios.
Gas power plants remain open at minimum of the existing capacity, and the same applies to biomass and
nuclear power plants. However, since nuclear plant planning and construction is not considered feasible
by 20302, capacity expansion is not allowed. The potential of small modular reactors could be included in
future research. The model allows expansion of the capacity for gas CCGT plants, while keeping Carbon
Capture Storage (CCS) out of the equation. CCGT in combination with CCS could be an alternative for
BESS for flexible generation while also cutting 𝐶𝑂2 emissions. Although Porthos, a CCS project for the
industry at the Port of Rotterdam, is already under construction, and Aramis is under development, the
potential availability for storage of 𝐶𝑂2 for suppliers with CCGT plants remains uncertain. The model
also allows investments in biomass capacity.
1As there is no indication of the assumed storage capacity in the TenneT scenario, for the Centralized scenarios in this research
the storage capacity is assumed to be four times larger than the installed GW.

2History learns that only construction of nuclear power plants is very time consuming. According to Shykinov, Rulko, and Mroz
(2016) the construction of a nuclear power plant consumes 7 years on average, with the process from planning to commissioning
taking approximately 11 to 12 years in total.
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Transmission
For the transmission system, the current estimated interregional capacities are used as fixed NTCs. The
methods for calculating these NTCs are explored in Section 3 and validated in section 4.1. The most
accurate method is implemented in the multi-node model to calculate the current intterregional capacities
that are used in the scenario analysis (Section 4.4). Later, in the sensitivity analysis (Section 4.6), the
model has the possibility to invest in additional transmission capacity according to the constraints laid
out in Section 2.4.3. The idea is to find the impact of not expanding the grid, identifying bottlenecks
in a decentralized system and comparing the relative merits of (de)centralized system designs to limit
congestion. Congestion is defined as a line operating above 99% of it’s capacity and the number of
congested line hours on an annual basis is equal to the the number of lines being congested per hour
summed over a full year. The model does not contain line specific parameters for lines that are not
built yet. Thus, in the case of expansion of transmission capacity, the model uses the areal distance
between the nodes in the optimization to determine CAPEX and tranmission losses. Moreover, when
optimizing the transmission capacity, the model does not consider the need for transformer and converter
stations. The underlying assumption is that the planning of building converter and transformer stations
is integrated with the planning of additional transmission capacity. This idea is not represented in the
cost assumptions, which is an important note when comparing the system costs of system designs with
and without transmission capacity expansion. The model thus assumes that transmission, converter and
transformer capacity is always sufficient.

Emissions
The amount of emissions allowed through the ETS is determined by the emissions target, which for 2030
is equal to a reduction of 55% compared to 1990. In 1990 the emissions of the power sector were equal
to 39.6 Mton CO2 (Centraal Bureau voor de Statistiek, 2024). A 55% reduction means that in 2030 the
equivalent to 17.82 Mton CO2 is emitted though power generation. In all scenarios, the model operates
within the limit of the 55% reduction. The ETS price is equal to the average 2023 ETS price that is used
in the model validation.

2.4.2. Optimization formulation
The research uses the methodology of modeling to generate alternatives (MGA) to find energy system
designs that limit the load of the lines within a solution space that is nearly cost-optimal. First, the model
will look for the cost-optimal solution for each of the scenarios. Then, for each scenario, the focus will
shift to minimizing congestion in terms of the average line loading. In this step, the costs of the cost-
optimal solution for each demand scenario are used as input for a new constraint. For each scenario, the
total system costs are constraint to be equal or less than 101% of the system costs in the cost-optimal
solution, allowing the model to look for designs that limit the line load in the system within the near-cost-
optimal solution space. The implementation of this strategy in the model is visualized in Appendix F. The
hourly line loading for each line is equal to the flow divided by the line’s NTC.

Line load𝑡,𝑖 =
Net flow𝑡,𝑖
NTC𝑖

(2.1)

where 𝑡 is the time step, 𝑖 is the line, Net flow and NTC are both given in GW. The net flow in the model
is calculated by:

Net flow𝑡,𝑖 = carrier_prod𝑡,𝑖 − carrier_con𝑡,𝑖 . (2.2)

2.4.3. Sensitivity analysis
The sensitivity analysis’s goal is to highlight the potential of different system designs by making changes
to the model’s input. For each of the previous scenarios, two changes are proposed: A smaller limit to
solar PV per region, to prevent high concentrations of renewables, and allowing the model to expand the
transmission capacity.

Loose solar PV
In this case, the max allowed capacity for solar rooftop PV is increased. The max capacity of rooftop
solar is equal to 7.725 GW per region, this is equal to 15% of the maximum installed capacity as per
the IP2024 scenarios for 2030. As described in Section 2.4.1, in the original scenario runs, rooftop solar
was allowed to increase up to a maximum of 5.15 GW per region. In this analysis, the model has more
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freedom to allocate rooftop PV in the most cost-efficient way. Key aspects that are compared are the
costs, emissions, congested hours, BESS capacity (factor) and the land use in each region.

Transmission expansion
In this case, the study tries to find the impact of not expanding transmission capacity on system costs and
allocation of generation and storage capacity. Key aspects that are highlighted involve costs, emissions,
congested hours and BESS capacity (factor). To this end, expansion of the capacity of the transmission
lines is possible within a margin per line, where the current NTC of the line determines what this margin
is. The line with the smallest NTC can increase by the maximum amount of addition allowed: 50%. For
the other lines, the size of their NTC relative to the smallest NTC determines the allowed expansion,
where the allowed expansion is equal to 50% over the relative size. The relative size is equal to a line’s
NTC over the minimum NTC.

2.4.4. Overview of the tested cases
This section provides an overview of the tested cases in this research. Figure 2.4 gives an example of
the cases per demand scenario.

Figure 2.4: Scenario overview Nationale Drijfveren.

The first distinction between scenarios lies in the allocation of BESS, which is addressed through two
approaches (Section 2.4.1):

• Centralized: In this approach the battery capacity per region is fixed based on theBESS estimates
by TenneT. Under these constraints, Calliope determines the cost-optimal allocation of generation
capacities and dispatch, using the existing capacities as a minimum baselin, except that coal plants
are assumed to be decommissioned. Furthermore, transmission capacity is maintained at historic
levels and the offshore capacity is fixed in accordance with the Routekaart Wind op Zee.

• Flexible: In this approach, Calliope determines the BESS capacity to find the least-cost system
design. The other constraints are the same as in the Centralized scenarios.

Combining these approaches with the demand scenarios in Section 2.4.1, the optimization of both
the cost and line load and the sensitivity analysis results in a total of 8 cases per demand scenario. A
complete overview of the tested cases is listed in Table 2.1.
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Technology Model Validation Cost Opt. Centralized Cost Opt. Flexible Minimal Line Load Loose PV Transmission Expansion
Generation
Offshore wind Historic capacity Routekaart wind op zee Routekaart wind op zee Routekaart wind op zee Routekaart wind op zee Routekaart wind op zee
Onshore wind Historic capacity Calliope Calliope Calliope Calliope Calliope
Rooftop PV Historic capacity Calliope Calliope Calliope Calliope (max

7.725GW/region)
Calliope

Utility PV Historic capacity Calliope Calliope Calliope Calliope Calliope
Nuclear Historic capacity Historic capacity Historic capacity Historic capacity Historic capacity Historic capacity
Gas CCGT Historic capacity Calliope Calliope Calliope Calliope Calliope
Coal Historic capacity - - - - -
Biomass Historic capacity Calliope Calliope Calliope Calliope Calliope
Import Calliope Calliope Calliope Calliope Calliope Calliope

Storage
BESS Historic capacity TenneT estimates Calliope TenneT estimates/Calliope TenneT estimates/Calliope TenneT estimates/Calliope

Grid
Transmission PyPSA-EUR / CSGM

based Historic capacity
Historic capacity Historic capacity Historic capacity Historic capacity Calliope

Rationale The model uses historical
grid and generation

capacities in an economic
dispatch to meet historical

demand.

Minimizes system costs
and optimizes generation

investments to meet future
electricity demand using
historical grid capacities.

Minimizes system costs
and optimizes generation
and storage investments
to meet future electricity
demand using historical

grid capacities.

Reduces transmission
usage while maintaining

near-optimal costs by
minimizing line load within

1% of cost optimum as
explained in Section 2.4.2

using historical grid
capacities.

Minimizes system costs
and optimizes generation
and storage investments.

Tests impact of the
regional PV constraints

and the potential benefit of
increased PV adoption by

applying less strict PV
constraints as explained in

Section 2.4.3. Uses
historical grid capacities

Minimizes system costs
and optimizes generation,
transmission and storage
investments. Evaluates
system behavior with

expanded transmission
and gives insights into the

trade-offs for
(de)centralized system
design. Transmission

expansion is allowed as
explained in Section 2.4.3.

Table 2.1: Overview of how technologies are modeled in the validation, optimization, minimal line load, and sensitivity scenarios.
Note: In the table “Calliope” refers to the model’s optimization of capacity within constraints laid out in Section 2.4, using historical capacity as a
minimum.

Figure 2.5 provides a schematic overview of the research workflow, outlines the sequential application
of the methods employed in this study, and highlights how the steps relate to the sub-questions.

Identifying and
validating NTC

estimation methods

Multi-node model
validation

Running PyPSA-EUR
to obtain clustered
NUTS2 grid data

Clustering grid data
from the SGM

Most accurate method 
for calculating NTCs

Grid data CSGM Grid data PyPSA-EUR

Disaggregating
demand to NUTS2
level using Gregor

Historic  demand 
NUTS2 level

Costs in the
optimum per 

demand scenario

Identifying cost
optimal solutions for

2030

System designs 
with minimal line load

Identifying solutions
to minimize line

loading with +1% cost

Allowing for
transmission

expansion in the
model definition

Insights into the tradeoffs for 
(de)centralized system designs (SQ3)

Comparing
(de)centralized
system designs

2030 demand scenarios 
on NUTS2 level

Identifying cost
optimal solutions for

2030

Technologies,
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Weather data,
Cost data,

Single-node model

Insights into the accuracy 
of different methods for 
calculating NTCs (SQ1)

Relaxing maximum
PV constraints in the

model definition

Identifying cost
optimal solutions for

2030

Cost optimal 
system designs 
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Multi-node model

Insights into the impact of using 
grid data from flow-based models 

in NTC based models (SQ2)

Cost optimal 
system designs
incl. more local 

solar PV

Cost optimal 
system designs

+

Figure 2.5: The research flow diagram.
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Literature

This section presents the findings of the literature and desk research to give an overview of the different
methods for calculating NTCs. This includes a brief description of what TSOs call NTCs and the PRB
method, that is used as a reference NTC to validate the methods in Section 4.1. The section concludes
with a discussion on existing knowledge and a link to the contribution of the work to answer the first
sub-question:

“How can we calculate Net Transfer Capacities and how can we integrate correction factors for resis-
tances and voltages and transferring it to a net power cap?”

3.1. NTCs according to the TSO
TSOs calculate NTCs based on total transfer capacity (TTC) and transmission reliability margins (TRM)
((ETSO), 2000). TRMs are used to account for imperfect information from market players and unex-
pected real-time events. Information from market players is imperfect at the time the transfer capacities
have to be communicated. This comes in addition to the uncertainty on some power system parameters,
as well as the uncertainty of tie-line flows due to unexpected real-time events, which are always possible.
The TRM represents the capacity that is needed to ensure the security of the system in such unexpected
events. The TSO accounts for ambient temperatures impacting the capacity of the transmission lines in
load flow based calculations. TTC is based on thermal and voltage limits as well as stability limits. 

Additionally, the n-1 criteria is used, all line capacities are multiplied by 0.7. The n-1 criteria states
that the system should be able to continue operation when one of the lines fails for whatever reason.
This rationale is also applied in the multi-node model.

3.2. Power Triangle Based
The Power Triangle Based (PTB) approach is based on the relation between the true power, reactive
power and the apparent power. The PTB approach is used as a reference to validate the other methods
for calculating NTCs. The actual power consumed in a circuit is known as true power and is measured
in watts (P) (Circuits, 2014). Reactive power influences voltage and current levels, but does not directly
dissipate power as heat or work. When true power and reactive power are combined, the result is
apparent power, which corresponds to the product of voltage and current magnitudes without considering
their phase relationship.

True power is calculated using a circuit’s resistance (R), while reactive power depends on the circuit’s
reactance (X). Apparent power, on the other hand, is related to the total impedance (Z). The equations
describing these relations are:

𝑃 = 𝐼2𝑅 (true power)

𝑄 = 𝐼2𝑋 (reactive power)

𝑆 = 𝐼2𝑍 (apparent power)
True power, reactive power, and apparent power can be described using the Power Triangle in Figure
3.1 (Circuits, 2014). Using the figure, it is possible to determine all the different powers using either the

26
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impedance (Z) and the size of one side or the length of the two known sides. This method is used as the
”real” NTC and serves as a reference NTC to validate the approximation methods found in the literature.

Figure 3.1: The Power Triangle

The literature does not provide applications of the PTB approach in energy system optimization mod-
els, potentially due to the impossibility of using line-specific parameters when dealing with grid expansion
or the general unavailability of such specific parameters. So far, no examples are found that demonstrate
a method to apply the PTB in the absence of the line-specific parameters. In this study, expansion of
transmission capacity is an important part of identifying trade-offs for the design of future electricity sys-
tems.

The literature mentions roughly two types of models: NTC based, and power-flow-optimization mod-
els or flow-based. Although, power-flow optimization models results in a representation of grid dynamics
that closely aligns with physical constraints and real-time operations by adhering to Kirchhoff’s voltage
law and the use of detailed line-specific parameters (Gunkel, Koduvere, Kirkerud, Fausto, & Ravn, 2020),
this complexity increases computational requirements, which can slow down simulations in large, multi-
node systems and render flow-based models less suitable for overarching investment analysis. Thus
the focus of this research is to compare methods for calculating NTCs and assessing the benefit of using
the high-resolution electrical data from power-flow-optimization models in NTC based models to avoid
overly optimistic NTC calculations.

Methods for
calculating line

capacities

Dynamic Line Rating DC power flow Simple transport Efficiency per
distance

St. Clair
approximationAC power flow

Flow-based NTC-based

Figure 3.2: Methods for calculating line capacities from the literature

The next subsection will give a brief description of three methods used in NTC based models, the
models that we are interested in, and the section thereafter describes examples of flow-based models. 
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3.3. NTC based models
3.3.1. Simple transport model
There aremodels that do not take into account physical constraints. These simple transport models apply
fixed capacities, equal to the nominal capacities. PyPSA is an open source framework that includes an
option for using simple transport models (Brown et al., 2017). PyPSA offers two approaches for modeling
inter-regional power transfers: one is a simple transport model, and the other incorporates constraints
based on Kirchhoff’s current and voltage laws in linear optimal power flow (LOPF) based on AC or DC
power flow. In large scale optimization models with large time-horizons, the simple transport model can
help to reduce the computational burden. In the transport model, PyPSA calculates line limits using the
maximum current and the voltage with the following formula:

𝑁𝑇𝐶PyPSA = √3 ⋅ 𝑈𝑖 ⋅ 𝐼𝑖 ⋅ 0.7 (3.1)

where 𝑈𝑖 is the voltage of line 𝑖 (in volts), 𝐼𝑖 is the maximum current of line 𝑖 (in amperes), and 0.7 is a
factor that serves as an 𝑛 − 1 approximation.

Models of this type do not account for resistances, such as in DIETER (Zerrahn, Gaete-Morales,
Kittel, Roth, & Schill, 2021). The question remains why PyPSA would not use the method explained in
section 3.2 in the transport model as PyPSA has the necessary parameters in the standard line types. A
potential explanation could be that using one standard line type, ignores other characteristics such as the
different voltage levels across regions. Implementing exact line types per region might not be feasible,
for example when the line type is not publicly available. In section 4.1 the simple transport method is
compared to the actual NTC to validate the method.

3.3.2. Efficiency per distance
TNO is looking to enhance the spatial resolution of their current Dutch single-node model, which is
currently using the nominal grid capacity (in MW), length and efficiency per distance parameters for HVAC
and HVDC to calculate NTCs between regions (HVDC at 0,99965%/km and HVAC at 0,999967%/km).

The same method is found in renpass (Wiese et al., 2014). renpass is an open-source energy system
optimization model designed to be fully transparent and capable of representing both entirely renewable
energy systems and current systems at a high spatial and temporal resolution. In renpass NTCs, are
based on nominal capacity, efficiency per kilometer per line type and distance. Another option in renpass
is to reduce the nominal capacity of each line with a percentage that is the same for each line regardless
of the voltage or line type.

VanOuwerkerk et al. (2022)mentions a slightly different approach, which they implement in GENESYS-
2 (G2), based on capacities of all lines between regions, combined into a single link. G2 uses length
of the line and an efficiency parameter for overhead and submarine lines to calculate NTCs between
regions. In the essence, G2, renpass and the TNO single-node model apply the same theory, which is
expressed in this formula:

𝑁𝑇𝐶 = √3 ⋅ 𝑈𝑖 ⋅ 𝐼𝑖 ⋅ 𝑒𝑓𝑓𝑘𝑚 ⋅ 0.7 (3.2)

where 𝑈𝑖 is the voltage of line 𝑖 (in volts), 𝐼𝑖 is the maximum current of line 𝑖 (in amperes), 𝑒𝑓𝑓𝑘𝑚 is the
efficiency per kilometer of the line, and 0.7 is a factor that serves as an 𝑛 − 1 approximation.

3.3.3. St Clair approximation
The last method proposes three regions for line limits based on the length of a line. The first region is the
region of thermal limitation, the second region is the region of voltage drop limitation and the last region
is the region of small-signal stability limitation as shown in Figure 3.3. The method is based on based on
Surge Impedance Loading and St. Clair curves that reduce the rating of a line based on line impedance,
shunt susceptance, and length for stability and voltage considerations.
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Figure 3.3: An example of a St. Clair curve Martin et al. (2017)

In their study on the Texan high-voltage grid, Martin et al. (2017) demonstrate that while the St. Clair
method can be effective for estimating the overall magnitude of transmission interconnections between
regions, their level of inaccuracymay be excessive for direct use in unit commitment and dispatchmodels.
A key challenge lies in the absence of a systematic bias such as a consistent tendency to over- or
underestimate transmission capacity, which makes it difficult to interpret the results as definitive bounds.
The authors suggest that part of the error arises from how the length of the equivalent transmission line
is estimated, noting that smaller regions in the western part of their case study led to overestimates of
capacity, whereas larger regions in the east resulted in underestimates.

For future applications of the St. Clair curve in transmission approximation, the authors propose de-
signing regions of uniform size to foster a predictable pattern of over- or underestimation. They also
recommend delineating regions in a way that aligns approximated lines with actual transmission corri-
dors, a step that would allow for more thorough validation against known capacities. Although the St.
Clair curve offers a promising foundation for transmission approximation, Martin et al. (2017) conclude
that additional refinements are necessary before it can be confidently employed in unit commitment and
dispatch models for renewable capacity planning.

The St Clair approximation is also found in a version of a PyPSAmodel made for South Africa (PyPSA-
RSA) (Economics, 2024). This method proposes a different approach than PyPSA-EUR and PyPSA sim-
ple transport, based on Surge Impedance Loading and St Clair curves. The NTC of HVAC lines equals
the total of line capacities between two regions. A 30% reduction is applied as an n-1 approximation. If
there is more than one line connecting two regions, the capacity of the largest line is deducted to approx-
imate the n-1 criterion. The authors use the St. Clair approximation because PyPSA-EUR overestimates
NTCs in the case of long lines. According to the documentation, the model is currently under develop-
ment and only validated for the 1-supply spatial resolution i.e. the single-node version, meaning that
the model including the transmission network at high spatial resolutions is not yet validated. In the high
spatial resolution, NTCs are calculated using the St. Clair approximation using the following formula:

𝑁𝑇𝐶St.Clair =min(Thermal limit, 𝑆𝐼𝐿𝑖 ⋅ 53.736 ⋅ 𝑙−0.65𝑖 ⋅ 0.7) (3.3)

Here, 𝑙𝑖 is the length of the line in kilometers, and 𝑆𝐼𝐿 is the surge impedance loading in megawatts (MW)
and 0.7 serves as an 𝑛 − 1 approximation. The thermal limit is given by:

Thermal limit = √3 ⋅ 𝑈𝑖 ⋅ 𝐼𝑖 ⋅ 0.7 (3.4)
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where 𝑈𝑖 is the line voltage in volts, and 𝐼𝑖 is the maximum current in amperes and 0.7 serves as an 𝑛−1
approximation. The Surge Impedance Loading, or SIL, is calculated using the following equation:

𝑆𝐼𝐿𝑖 =
𝑈2𝑖
𝑍0,𝑖

(3.5)

where 𝑈𝑖 is the line voltage in kilovolts, and 𝑍0,𝑖 is the characteristic impedance of a line. The character-
istic impedance of a line is calculated with the following formula:

𝑍0,𝑖 = √
𝐿𝑖
𝐶𝑖

(3.6)

In this formula, 𝐿𝑖 is the inductance and 𝐶𝑖 is the capacitance of the lines. Appendix G illustrates how
𝐿𝑖 and 𝐶𝑖 can be calculated. Unfortunately, the SGM does not provide the specific characteristics to
calculate 𝐶𝑖. Thus, the capacitance from PyPSA-EUR is used.1.

For the lines in the thermal limitation region, according to the St. Clair approximation, the thermal
limit applies. For HVDC, there is no such thing as a voltage drop and thus the thermal limit determines
the NTC. N-1 also does not apply to DC lines.

3.4. Flow-based models
Alternatively to NTCs, one can choose to use flow-based models, for which two example models are
given in the next section.

3.4.1. Dynamic Line Rating
In PyPSA-EUR, physical parameters are used to calculate line ratings in an optimal-power flow balance
that accounts for power flow constraints. It calculates dynamic line ratings based on thermal limits and
heat exchange (Brown et al., 2024). This includes resistance-based loss, radiation from the transmis-
sion line and natural/wind-based convection. A heat balance that incorporates each line’s maximum
temperature threshold is employed to calculate the highest feasible capacity factor, or NTC, for every
transmission line at each time step. This approach ensures that the line operates within its thermal limits,
thereby providing a more accurate measure of its real-time capacity. 

3.4.2. AC load flow
In LOPF in PyPSA for AC networks, the series reactance together with the deviations in voltage angle
are used to compute the load flow. Voltage angles are calculated using a linear set of equations. This
includes the incidence matrix, which describes how buses are connected by branches and a diagonal
matrix that contains the inverse of the series reactances for each branch. Once the voltage angles
are computed, the active power flows in the network branches can be determined by multiplying the
voltage angles with the transpose of the incidence matrix with the diagonal matrix of inverse series
reactances. This approach is useful because it simplifies the analysis by reducing the number of variables
and focusing on the key parameters that affect active power flow in an AC transmission system.

3.4.3. DC load flow
In DC networks, PyPSA, applies the same AC LOPF formulas, but instead of the differences in voltage
angle, the deviation in the magnitude of the voltage is used as well as the series resistance instead of
the reactance. In another paper, Gunkel et al. (2020) compare flow-based (FB) with Power Transfer
Distribution Factors to the NTC representation when using optimization models for investment. FB uses
Kyrchoff’s circuit law to generate so called thermal limits and DC approximation resulting in a DC load
flow model. This approach makes many assumptions to linearize AC line characteristics. This approach
uses a PTDF matrix that shows how the power generated in the nodes relates to the line flows. At the
same time, it assumes lossless transmission lines. In this paper the authors use PyPSA-EUR for grid
data, which is interesting as this study proposes to validate the use of this data source for high-resolution
grid models. 
1PyPSA-EUR leverages the capacitance per unit length from the standard line types provided in PyPSA: 13.8 nF/km and 12.5
nF/km for 220kV and 380kV lines respectively
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Flow-based models offer improved realism by adhering to Kirchhoff’s voltage law and using detailed
line-specific parameters, leading to a representation of grid dynamics that closely aligns with physical
constraints and real-time operations (Gunkel et al., 2020). 

However, this complexity increases computational requirements, which can slow down simulations in
large, multi-node systems and render flow-based models less suitable for overarching investment anal-
ysis (Gunkel et al., 2020). Furthermore, the authors indicate that flow-based models might overestimate
capacity, potentially leading to unforeseen congestion or stress under actual operational conditions. So,
NTC proves to be conservative while FB might overestimate. 

3.5. Discussion
 

Many multi-node optimization models in energy systems do not fully capture the physical constraints
of transmission lines, relying instead on simplified Net Transfer Capacity (NTC) assumptions. This can
lead to mismatches between the actual physics of power flows and the capacity limits used in high-
level planning or investment models. Since the goal of this research is to look for potential system
configurations that help solve grid congestion, more accurate estimates of NTCs help to assess the
need for additional local generation, transport or flexibility needs to relieve the stress of the grid. Although
more advanced, methods exist (e.g., in PyPSA-EUR and other flow-based alternatives), they tend to be
computationally intensive and may not be easily integrated into large-scale optimization frameworks that
co-optimize generation and transmission capacity. Moreover, as most energy system models are based
on NTC grid modeling methods, developing reliable estimates of NTCs out of electrical grid data would
open up the use of high-resolution grid data, which are increasingly available.

Currently, most NTC models apply nominal capacities or an efficiency per distance per line type. The
St. Clair curve offers another relatively straightforward method to account for physical constraints when
estimating NTCs. However, as Martin et al. (2017) highlights, its application can produce significant
inaccuracies, particularly when the regions or line lengths vary substantially. The method has yet to be
comprehensively validated in unit commitment or capacity expansion contexts. Its use in PyPSA-RSA
has also not been accompanied by extensive documentation or peer-reviewed studies that demonstrate
its effectiveness in practical, multi-node optimization models because it is still in development. Martin et
al. (2017), highlight in the Texan case significant inaccuracies and unpredictable bias, potentially caused
by the large size difference of the regions and the significant difference in line lengths. In the Dutch case,
the line lengths and the size of the NUTS2 regions vary less than in the Texan case. By implementing
the St. Clair approximation alongside other, more established NTC assessment methods, and validating
the model operation for a present-day Dutch power system configuration against real-world data, the
research will provide valuable insights to the boundaries of the application of the St. Clair approximation. 

The St. Clair approximation is highly dependent on the line lengths and the voltages of approximated
transmission lines. The authors recommend delineating regions in a way that aligns approximated lines
with actual transmission corridors. In this work, regions and line lengths from PyPSA-EUR as well as from
the SGM are used as a basis for the St. Clair approximations. This way, an assessment of the accuracy
of the St. Clair approximation is made with the clustered data from a validated flow-based model such
as PyPSA-EUR as well as actual transmission line data. This could point out whether it is interesting
to use the grid data from such models in models that initially do not consider physical constraints when
calculating NTCs.  

This research aims to bridge this gap by testing the St. Clair curve in a high spatial resolution model
of the Dutch power system considering the improvements suggested by Martin et al. (2017). This is an
environment fundamentally different from the Texas system in both scale and geographical layout. By
leveraging the detailed grid data from PyPSA-EUR and the SGM, the model will optimize generation
and storage to address grid congestion issues, examining how the St. Clair-based NTC estimates per-
form. Because the Netherlands comprises smaller, more densely interconnected regions than Texas,
the method’s validity in this context is not assured; nonetheless, if it proves effective, the St. Clair curve
could offer a middle ground between abstract capacity assumptions and the computationally heavy flow-
based approach. This work thus aims to evaluate whether incorporating physical parameters with the
St. Clair approach into multi-node models can yield more accurate, system configuration solutions for
grid congestion than the other NTC methods that use the nominal capacity or an efficiency per distance
to account for losses.
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Results

The Results section shows the results from the methods as explained in the Methodology section. The
section starts with the validation of the methods for calculating NTCs, concluding with the most accurate
method to be used in the model. Following the method validation, the PyPSA-EUR grid data is evaluated
by comparing the data and the resulting NTCs to the clustered SGM (CSGM). After that, the demand
distribution is illustrated before diving deeper into the model validation and the scenario analysis. Finally,
a sensitivity analysis is performed to test the robustness of the results.

4.1. Validating NTC methods
This subsection describes the results of the analysis that is used to validate and compare the different
methods for calculating NTCs, starting with the validation of each method. The approximated NTCs
according to each of the methods are compared to the NTC using the method found in Section 3.2. The
methods are first applied to all the individual lines, as per the SGM. The NTC methods are then applied
to the PyPSA-EUR and CSGM data to calculate the interregional NTCs for each network representation.
Finally, the grid data of both PyPSA-EUR and the CSGMand the resulting NTCS are compared to validate
the usage of clustered grid data from a flow-based model such as PyPSA-EUR in NTC based models.
Table 4.1 gives an overview of the different abbreviations and names used for the NTC methods and the
grid data sources.

ID Explanation
Data Sources
SGM Static Grid Model by TenneT, including line-specific parameters, used to ap-

proximate line-specific NTCs.
CSGM Clustered SGM, which aggregates the NTCs from the SGM into a single NTC

per set of neighboring regions. The CSGM is used to validate the PyPSA-EUR
data.

PyPSA-EUR Clustered grid data on the NUTS 2 level from PyPSA-EUR, based on Open-
StreetMap data and standard line types.

Approximation Methods
Simple Transport A Simple Transport-Based approximation using the PyPSA simple transport ap-

proach.
Efficiency per Distance Estimates transmission losses based on an efficiency factor per kilometer.
St. Clair Uses the St. Clair approximation to compute line NTCs.
PTB Power Triangle Based approach, serving as the reference NTC for validating

the approximation methods.

Table 4.1: Overview of data sources and approximation methods used in this study.
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4.1.1. Method validation
In this analysis, the PTB NTC values for all the individual lines from the SGM are compared with the three
approximation methods: the St. Clair approximation (Figure 4.1), the Simple Transport from PyPSA
(Figure 4.3) and an efficiency-per-kilometer-based approach (Figure 4.2). In the method validation, pa-
rameters provided by the SGM serve as input to estimate the NTC values. The resulting NTCs are thus
based on individual line characteristics from the SGM.

Validation of individual line NTCs

Figure 4.1: Validation of the NTC per
line using the St. Clair approximation.

Figure 4.2: Validation of the NTC per
line using an efficiency per kilometer.

Figure 4.3: Validation of the NTC per
line using Simple Transport.

Each point in the plots represents a specific transmission line, and the diagonal dashed line indicates
perfect agreement between the estimated and PTB NTC values. A strong alignment of the points along
the diagonal suggests a high degree of accuracy in the approximation methods. The Pearson correlation
coefficients quantify this relationship, with values of 0.991 for the St. Clair approximation, 0,995 for
the Simple Transport and 0.997 for the efficiency-per-kilometer method. These high correlation values
indicate that all the methods closely replicate the NTC values from the PTB approximation, with the
efficiency-per-kilometer method showing the highest alignment.

Figure 4.1 illustrates that, for certain transmission lines, the St. Clair approximation yields a lower
NTC than the PTB NTC, whereas Figure 4.2 does not show this behavior. The St. Clair approximation is
used to account for losses, specifically in systems with long transmission lines. In such cases, the Simple
Transport calculation is said to overestimate NTCs. However, in this case, there are lines for which the
St. Clair method actually underestimates the PTB NTCs. Several lines demonstrate an underestimation
by the St. Clair method, especially when the lines tend to be relatively long.

Figure 4.4 further highlights this trend by plotting the difference between the PTB NTC and the St.
Clair-based NTC against the line length. The difference is calculated by subtracting the St. Clair NTCs
from the PTB NTCs. For shorter lines, the bias of the St. Clair approximation seems more unpredictable
in terms of underestimation and overestimation.

Figure 4.4: NTC estimation error using the St. Clair approximation.

Nonetheless, these results validate the reliability of the approximation method using the efficiency
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per kilometer in capturing the transmission capacity of the grid.1 This comparison provides confidence
in using the approximation for scenarios where the full SGM parameters might not be readily available.
It also confirms the findings of Martin et al. (2017) indicating an unpredictable bias in the approximation
results using the St. Clair curve. The results further suggest that additional refinements to the St. Clair
approximation may be required to not become overly conservative when calculating the NTC of long
individual transmission lines, to prevent underestimation.

Validation of the cluster
The following analysis will provide information on the accuracy of the clustered grid data from PyPSA-
EUR and the potential benefit of using such data to approximate NTCs. First, by applying the different
methods for NTC approximation to the PyPSA-EU and then by comparing the PyPSA-EUR data and the
resulting NTCs to the CSMG. After clustering the SGM data to the NUTS2 level CSGM2, the methods
for calculating NTCs are applied to both the PyPSA-EUR data and the CSGM. The resulting NTCs and
the underlying network characteristics are then compared.

Appendix B.2 shows the NTCs of interregional lines using the different methods with the PyPSA-EUR
grid data as input in Figure B.1 and Figure B.2. No strange behavior is observed, and the approximated
NTCs seem to align with the PTB NTCs quite closely.

Figure B.3 in Appendix B.2 confirms this, indicating that all the NTC methods closely resemble the
PTB NTCs using PyPSA-EUR as input. Based on the PyPSA-EUR data, the St. Clair method shows a
strong correlation (Pearson’s r = 0.9915) with the PTB NTCs, while the per kilometer approach shows
an even higher correlation (Pearson’s r = 0.9988). Thus, both methods closely track the PTB NTCs,
although the per-km approach appears to provide a marginally better fit. The methods are thus also
applicable to clustered data.

To test the accuracy of the PyPSA-EUR grid data, the NTCs are compared to the interregional NTCs
derived from the CSGM in Figure 4.5. Interregional NTC is the sum of all the lines that cross the border
between a set of neighboring NUTS2 regions. Additionally, the number of line crossings at each border is
analyzed for both data sources, where line crossings are defined as the number of lines connecting two
regions. Figure 4.6 shows the alignment of the number of line crossings per set of regions, represented
by a data point. The dotted line indicates perfect alignment, where the number of line crossings according
to the PyPSA-EUR cluster is equal to the number of line crossings as per the CSGM data. Figure 4.5

Figure 4.5: Comparison of interregional NTC using
the PTB with PyPSA-EUR and CSGM data.

Figure 4.6: Comparison of line crossings between
CSGM and PyPSA-EUR.

compares the interregional NTCs based on the CSGM with the PyPSA-EUR PTB NTCs, revealing a
moderate spread around the diagonal: some points lie close to a 1:1 relationship, while others deviate
more substantially. Figure 4.6, which contrasts the number of line crossings recorded by the CSGM
versus the PyPSA-EUR approach, likewise shows a scattered relationship. Looking at the correlation
statistics, the PyPSA-EUR PTB NTCs achieve a moderate Pearson coefficient of 0.5237, compared
to the PTBs NTCs using the CSGM. Although these results indicate some linear alignment, they also
highlight that neither method fully captures the interregional capacities observed using the CSGM.
1The kilometers in the SGM are real-world cable lengths.
2The SGM is clustered to the CSGM according to the method laid out in Section 2.2.3
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Comparing estimates for interregional NTC using both the CSGM data and the data from PyPSA-EUR
indicates that systemwide interregional capacity estimates are relatively similar with PyPSA-EUR and the
CSGM, 68GW and 63GW, respectively (without the n-1 criteria). However, the CSGM clusters the NTCs
from the SGM, which incorporates detailed line parameters (maximum current, voltage, resistance, and
reactance), while the PyPSA-EUR data uses uniform line characteristics. This simplification, along with
the clustering strategy, inevitably affects the accuracy of capacity calculations for individual connections.
Furthermore, the differences in line crossings between the grid data sources reflect how the clustering
alters both the line characteristics and the resulting capacity estimates. Figure B.4 gives an overview
of the difference per individual line. Although many of the capacities line up reasonably well, certain
interconnections deviate substantially such as NL32:NL33 and NL11:NL13. Moreover, some lines show
CSGM estimates exceeding the calculation based on PyPSA-EUR, while others show the opposite trend.
These discrepancies underscore the impact of simplified assumptions and clustered line characteristics
in the PyPSA -EUR data, as opposed to the more detailed, line-specific parameters using the CSGM. In
the model validation, the model’s operation is compared to the actual system’s behavior to help decide
on what input data to use for further analysis of the Dutch power system.

4.2. Demand distribution
The demand distribution is computed according to the method described in Section 2.2.3. Each demand
scenario follows the same process. Figure 4.7 illustrates the process of distributing the demand in the
different regions using the historical demand for 2023. The figure shows that the demand is allocated
based on the density of the population. Noord-Holland, Zuid-Holland, Noord-Brabant, and Gelderland
have the largest annual load, while Zeeland and the regions in the North-East have relatively small
loads. According to Klimaatmonitor (Klimaatmonitor, 2025), the electricity consumption in 2023 in Noord-

National annual demand (2023) Population Density Annual demand per NUTS2 region (2023)
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Figure 4.7: National annual demand, population density and demand distribtuion map.

Holland is equal to 18.59 TWh. The demand disaggregation proposed in this research estimates the
electricity demand in 2023 to be equal to 17.95 TWh. For Groningen Klimaatmonitor shows an electricity
consumption of 4.80 TWh and the disaggregation in this research results in 3.74 TWh. Thus, it can
be concluded that a population-based proxy offers a reasonable approximation of regional electricity
consumption.

4.3. Model validation
The multi-node model is validated in three steps according to methods found in Open Data Based Model
of the Dutch High-Voltage Power System (Zomerdijk et al., 2022) for which the 220kV and 380kV data
comes from the SGM.

1. Conceptual validation: Are the assumptions and theories for the conceptual model correct?

2. Operational verification. Does the model operate as intended?

3. Operational validation: comparing performance metrics against the Open Data Based Model of
the Dutch High-Voltage Power System and available real world data for one year (Zomerdijk et al.,
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2022)

4.3.1. Conceptual validation
In this subsection, the underlying theories and concepts of the multi-node model will be validated using
the TenneT model Infrastructure Outlook. Looking at the underlying theories, (Zomerdijk et al., 2022)
identifies the following points of interest:

1. A linear programming framework determines the optimal network flow pattern.

2. Hourly demand and supply profiles are derived from historical weather data.

3. The national supply and demand data are allocated regionally to identify local grid constraints.

4. Cross-border electricity flows serve as a last-resort mechanism for balancing the system.

5. Each transmission line is assigned a maximum bidirectional flow limit in megawatts (MW).

Calliope uses a linear programming framework to determine optimal energy flow patterns across a
network. By defining nodes as locations with energy demand, supply, or storage, and edges as transmis-
sion links connecting them, the model ensures energy balance at every node while minimizing system
costs or achieving other objectives. The multi-node model considers hourly profiles to determine the
generation of sources that rely on weather conditions, such as solar and wind. The demand is based on
historical hourly demand, which is determined by historical weather and other factors. In the multi-node
model the national supply and demand are indeed allocated across the different provinces of the Nether-
lands with the goal of identifying bottlenecks in the Dutch high-voltage grid. The assignment of a high
price to imports causes the model to use cross-border electricity flows only as a last resort to balance
the system. In the multi-node model, each transmission line is assigned a NTC in megawatts, which is
a maximum bidirectional flow limit.

4.3.2. Operational verification
To verify the model’s operation, from the model results, the electricity demand at different nodes is first
compared to the demand input. Secondly, the maximum generation capacity of renewable sources is
tracked for a subset of time and compared to the product of the installed capacity and the capacity
factor at each node for the same subset of time. The results showed that the capacity factors in the
model results are slightly different compared to the capacity factors in the input data. The difference
is caused by the small amount of curtailment that can be observed in the model results. When forcing
resource utilization of the renewables to it’s fullest, the difference in the capacity factor is no longer
present. The third part of the operational verification looks at the merit order and the cost assumptions of
each generation technology. Finally, the model’s compliance with some important constraints is tested.
The first constraint is the balance of supply and demand of electricity. For each node, the system balance
for a subset of time is analyzed. For the system to be balanced, the sum of generated electricity equals
the sum of consumed electricity and the import and export balance at each node. Additionally, the line
loading for each line is computed to check the results for overloaded lines. The line loading is defined
as the flow on a line at a certain time divided by the NTC of that line. A line loading value larger than 1
would mean that the model does not operate within the given constraints. The results show no signs of
overloaded lines. Moreover, no irregularities are observed in the other variables and the model operates
within the system balance constraint. Thus, the operation of the model is verified. This is as expected
because Calliope is a reliable, long-established modeling framework.

4.3.3. Operational validation
In terms of the grid, it is observed that the NTC estimates based on the PyPSA-EUR network do not align
with the estimated NTCs in the CSGM in all cases, because of differences in underlying characteristics
such as voltages and number of line crossings. To uncover the impact of these inaccuracies, the output
of the multi-node model using both network representation is compared. However, the input for the
calculations proved to be crucial for calculating accurate NTCs. Thus, in the operational validation,
instead of looking at one model, two models are compared. The difference between the models lies
in the input data that is used to calculate the NTCs. The first model uses the PyPSA-EUR clustered
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data, whereas the second model will use the aggregated interregional line capacity as calculated per the
CSGM.

To validate the operation of the models, a separate dispatch run is performed with both the grid data
sources. A dispatch runs means that all capacities are fixed and no additional investment is allowed.
Using the output data of these dispatch runs, a comparison can be made with real world data. The
first interesting model output is the average monthly generation per technology, which is compared to
the actual generation per type in 2023 (CBS Statline, 2025) in Figures H.1, H.2 and H.3. There are
deviations in the model generation, first of all in the renewable generation. This can be explained by the
fact that the multi-node model uses the installed capacities of renewables (or opgesteld vermogen) of
2024 instead of the operational capacity of 2023. Moreover, the model uses weather time series based
on the year 2019, which was a year with a relatively large amount of sun hours.

In another effort to validate the operation of both models, the daily average line loading is computed
as in Figure 4.8. Both models show the same pattern, with the CSGM based model showing a slightly
higher average and higher peaks.
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Figure 4.8: Comparison of line loading per PyPSA-EUR and CSGM network.

In terms of the average annual line load, both models again show similar patterns. However, the
lines connecting the north to the rest of the country, experience higher line loading in the CSGM network
representation. The same applies to the line connecting Flevoland and Noord-Holland.
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(a) Average line loading using the PyPSA-EUR grid data.
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(b) Average line loading using the CSGM grid data.

Figure 4.9: Average line loading using PyPSA-EUR and CSGM data.

Taking another perspective, when optimizing the distribution of power infrastructure over the NUTS
regions, it is not only the line loading that is interesting. Being dependent on the NTC, the line loading
might not give a full view of the impact of the different grid data sources on the required infrastructure at
at each location. The absolute amount of power being transported from one node to another might result
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Figure 4.10: Power flows during maximal renewable output using both grid data sources.

in different conclusions in terms of flexibility needs for example. Therefor, this last validation step dives
deeper into the power flow during critical hours such as the hour with the largest load and the hour with
the largest renewable production. Figure 4.10 shows the size and direction of flows during the hour with
the highest renewable output, where the thickness of the line indicates the size of the flow relative to the
maximum flow.3

It can be observed that the magnitude of power transported across certain lines varies between the
model that uses the CSGM and PyPSA-EUR grid data. Again, the lines connecting the north to the rest of
the country are showing different patterns in the CSGM network representation compared to the PyPSA-
EUR network. In the PyPSA-EUR network, large amounts of power are transported from Groningen to
Drenthe and from Drenthe to Overijssel, whereas this power transfer is limited to smaller amounts in
the CSGM network. This affects the required generation in the individual regions, which is confirmed in
Appendix H in Figure H.4 showing the gas generation during the largest load hour. The figure shows
larger gas output in Groningen (NL11) in the PyPSA-EUR based model.

The analysis in this section points out that even though the annual generation per technology is similar
for both models, the aggregated daily line loading and the hourly line loading per individual line, plus the
different utilization of gas generation, show that the underlying grid not only impacts the power flow in
the optimization, but also the need for different types of infrastructure. Bearing in mind that the goal of
this research is to look for potential decentralized system designs and identify the tradeoffs for designing
these systems, moving forward, the NTCs of the lines are based on data from the CSGM.

4.4. Scenario analysis
In the scenario analysis, the multi-node model is employed to determine cost-optimal designs for each
scenario. Section 4.4.1 presents these designs. First, the the allocation of capacity among various tech-
nologies is presented and then the line loading for each scenario is discussed. Next the section gives
an overview of the emissions, capacity factors of BESS, the number of congested hours, the genera-
tion mix and costs for each of the scenarios. Following, the research explores the near cost-optimal
solution space with the objective to minimize line loading. Different metrics are highlighted to compare
the line-load-optimal solutions to their cost-optimal counterparts. Finally, in Section 4.6, the designs
are compared with designs of the that allow for larger amounts of Rooftop PV or transmission capacity
expansion. The goal is to test the robustness of the results and highlight more potential trade-offs in
decentralized energy system design.
3The maximum flow is equal to the maximum flow of the two models combined to enable direct comparison of the flows in both
models.
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4.4.1. Cost-optimal results
Capacity allocation
The following analysis examines the cost-optimal allocation of generation and storage capacities. Figures
4.11, 4.12, 4.13, 4.14, 4.15 and 4.16 depict the optimized distribution of onshore wind, rooftop and
utility-scale PV, and BESS. In addition, these figures illustrate the offshore capacity assigned directly to
regions connected to offshore wind parks. A comprehensive summary of the total generation capacity
by technology is presented in Table I.1.
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Figure 4.11: Installed renewable and BESS capacity
for Central ND scenario.
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Figure 4.12: Installed renewable and BESS capacity
for Flex ND scenario.
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Figure 4.13: Installed renewable and BESS capacity
for Central KA scenario.
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Figure 4.14: Installed renewable and BESS capacity
for Flex KA scenario.
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Figure 4.15: Installed renewable and BESS capacity
for Central IA scenario.
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Figure 4.16: Installed renewable and BESS capacity
for Flex IA scenario.

Across all scenarios, the Flexible configurations result in lower amounts of BESS capacity, from ap-
proximately 6.5% less in the KA scenario to 18. 6% in the IA and 7.5% in the ND scenario. However,
where in the Central scenarios, Groningen, Zeeland and Noord-Brabant are assigned a relatively large
amount of BESS, in the Flex scenarios, this is not necessarily the case. Indeed, BESS is installed in
Groningen in the Flex scenarios (due to the connected offshore wind generation), but BESS is predomi-
nantly located in Noord-Holland, Zuid-Holland, Zeeland and Utrecht in the Flex scenarios. Although this
indicates that BESS in the South and West would be particularly valuable in terms of minimizing costs,
especially where the projected offshore wind is brought ashore, there is uncertainty about the extent to
which hydrogen production could reduce the need for battery storage. Industrial parties in these regions
may utilize offshore wind for electrolysis to produce green hydrogen, where the energy is stored chemi-
cally and later used in industrial processes or potentially reconverted to electricity. Hydrogen can serve
as a form of long-duration storage in comparison to lithium-ion batteries, which excel at a shorter dis-
charge time. Further research into the role of hydrogen production is therefore needed to better assess
the business case and the required amount of BESS in these areas. However, while hydrogen may
complement or partially displace battery storage, BESS still provides short-term flexibility, indicating that
it will likely continue to play an important role in these areas. Besides Utrecht, these regions are all
connected to large amounts of offshore wind generation, showing the need for storage in these areas to
complement the potentially large renewable output.

Moreover, rooftop PV has a dominant role in all scenarios in terms of total installed capacity, especially
in Central scenarios. The rooftop PV capacity in NL11 and NL13 is not substantially affected by the size
of the demand and has small installed capacities in all scenarios. NL32, NL33, and NL31 also have a
constant deployment of BESS, but in relatively large amounts. Especially in the Flex scenarios, NL32
and NL33, the regions with relatively large amounts of BESS and demand, while also being connected
to offshore wind generation, have large amounts of complementary PV. The other regions have more
uncertainty, and the deployment of rooftop PV changes with either Central or Flexible deployment of
BESS and the demand scenario.

In terms of utility PV, except for IA, deployment is larger in the Flex scenarios. The additional capacity
spikes in NL33, NL32, and NL31 in different scenarios. In other regions, the capacity of Utility PV is nearly
constant.

There are almost no increases in onshore wind capacity in the results. Except for the ND scenarios,
where onshore wind is deployed in Groningen. The deployment of offshore wind in this area might be
biased because the capacity factor for onshore wind also accounts for the offshore potential connected
to coastal regions.
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Technology Central ND Flex ND Central KA Flex KA Central IA Flex IA
BESS 13.02 12.03 13.02 12.15 13.02 10.59
Gas CCGT 19.66 16.92 20.89 18.12 15.55 14.550
Rooftop PV 49.01 39.95 45.94 41.17 35.08 28.104
Utility PV 15.79 18.16 13.43 16.02 18.18 13.428
Onshore wind 7.60 7.620 6.99 6.99 6.99 6.99

Table 4.2: Installed capacities by technology (in GW) for each scenario.

The capacities described in Table 4.2 are presented in a diagram in Figure I.1 for easier comparison
of the total generation capacity. The results indicate a significant increase compared to historical capac-
ities (growth can be found in Table I.1). BESS increases from a few hundred MW to double digit GWs.
At the same time, gas CCGT capacity increases, especially in the Central KA and ND scenarios. It is
questionable whether such large investments in gas-fired power plants are feasible. Finding investors
may be difficult due to regulatory and policy risk with respect to climate, making long-term investments in
CCGT plants less attractive. Long-term assurances would be needed. At the same time, Carbon Cap-
ture Storage might address the environmental concerns of additional gas-fired power plants. However,
as mentioned in Section 2.4.1, although ongoing projects show promise, the practical implementations
and the potential of combining CCS with gas-fired power plants remains uncertain. The projected gas
generation capacity is quite similar to the projections in the IP2024 scenarios, except for the Central
ND and Central KA, where the installed capacity exceeds the maximum found in the IP2024 scenarios
significantly (Netbeheer Nederland, 2023). Rooftop PV increases with 159% in the Flex IA scenario up
to 352%. The range is roughly similar to the range of rooftop PV that is needed according to the quan-
tification of the IP2024 scenarios for 2030. Utility PV stays within the range of the IP2024, but is more
conservative than the IP2024 projections. Onshore wind projections are also conservative compared to
the IP2024, with none to 600 MW of additional capacity.

Line loading
The next part of the analysis presents the line loading of interregional transmission lines in the scenarios.
Figure 4.17 and Figure 4.17 show the line loading in the KA scenarios.
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Figure 4.17: Average line loading for the Central KA
scenario.
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Figure 4.18: Average line loading for the Flex KA
scenario.

In terms of line loading, Flexible allocation of BESS does not necessarily results in lower line utiliza-
tion. In contrast, the lines connecting the North to the South via Flevoland and Groningen to Drenthe
seem to have higher line loadings. The lines with the highest average line load are the lines between
Zeeland and Noord-Brabant and the lines between Noord-Brabant and Zuid-Holland, and depending on
the demand scenario the line between Utrecht and Zuid-Holland. Line loading in the IA and the ND
scenarios is plotted in Figure I.4 and Figure I.3.

Table I.2 shows that the line connecting Groningen and Drenthe is in fact more overloaded in the
Flex scenarios. Although the line connecting Flevoland and Friesland has a higher average line load in
the Flex KA scenario, the congested line hours are higher in the Central scenarios. Further analysis of



42 4. Results

the table shows that the line connecting Zuid-Holland to Noord-Brabant is the most congested line by
a large margin. The lines connecting Flevoland and Noord-Holland, Utrecht and Zuid-Holland, Zeeland
and Noord-Brabant and Groningen and Drenthe are also subject to relatively large amounts of congested
hours.

Trade-offs in cost-optimal system designs

Scenario Total costs
(BN. EUR)

Emission
reduction (%
w.r.t. 1990)

Installed
BESS (GW)

Avg. line load Congested
line hours

Capacity
factor BESS

Imports
(TWh)

Central ND 42.577 55 13.02 20.1% 6,891 9.4% 12.33
Flex ND 41.307 55 12.03 19.3% 6,402 5.4% 20.34
Central KA 41.113 60.5 13.02 19.2% 6,823 9.6% 7.34
Flex KA 39.898 57.1 12.15 20.2% 6,820 6.2% 9.01
Central IA 39.518 66.7 13.02 19.5% 6,953 10.5% 7.87
Flex IA 38.174 59.8 10.59 20.6% 6,176 5.0% 10.44

Table 4.3: Comparison of key metrics across different scenarios.

Table 4.3 displays the key metrics. First, there is a trend in the costs, the larger the load in the sce-
nario, the larger the costs. In addition, Flexible configurations result in lower costs (approximately 3%)
compared to the Central alternative under the same load assumptions.

In terms of CO2, the Flexible scenarios tend to result in higher emissions, except in the ND scenarios,
where the emissions are equal to the allowed maximum in both cases. A potential explanation could be
that in the Flexible KA and IA scenarios, there is a smaller amount of BESS in the North and East of the
country. During hours with large renewable supply, the grid connecting the North and East to the South
and West (or the grid in the south and west) might be overloaded. Insufficient BESS capacity in small
demand areas results in excess renewable electricity during peak renewable hours in the North and East
that cannot be stored. The results indicate larger exports in the Flex designs compared to the Central
designs by approximately 10%, indicating that this excess power is exported in this case. In reality, it
might not be possible to export this power, which might result in the waste of renewable power. The lack
of storage in these regions could be an explanation for the increased dependence on gas power plants.
This could also explain the smaller amounts of renewable technologies installed in the Flex scenarios
compared to the Central scenarios in the North and East. The emissions increase with the demand and
import in KA and IA are similar, while in ND the imports rise more severely because gas generation is
constraint by the emission cap, indicating that either gas or imports can provide flexible power supply. In
general, Flex scenarios include relatively high electricity imports from other countries.

The table confirms the larger deployment of BESS observed in the Central scenarios compared to
Flex scenarios. However, the table also indicates that the capacity of the BESS systems is utilized more
in the Central scenarios than the Flex scenarios.

Looking at the line loading statistics, in terms of averages, Flexible deployment does not necessar-
ily lead to lower values. However, looking at the congested line hours, Flexible deployment results in
significant improvements in the ND (-7%) and IA (-11%). The BESS capacity factor is lower in the Flex
scenarios, pointing out that BESS focuses more on shaving local peaks in areas with large renewable
output when the grid is congested. This illustrates the benefit of storing electricity locally at the source,
i.e. before the meter (BTM). BESS in the Central scenarios is used more frequently. The output of BESS
during the peak gas supply hours (90th quantile) in the ND scenario confirms the different application
of BESS in the Flex and Central scenario, with the Flex scenario generating an above-average output
during peak hours and a below-average output in the Central designs. This last observation is important,
because to maximize profit BESS operators seek to discharge during hours where electricity prices are
highest. This observation highlights a potential conflict of interest for BESS operators looking to maxi-
mize profit and TenneT looking to maintain a balanced grid. A BESS buys low and sells high to make
a profit. This of course has implications for the business model of the BESS. As mentioned, TenneT
imposes tariffs based on the utilization of a connection. The more batteries load and unload, the higher
the costs of the grid connection, weakening the business case of BESS and reducing the investment
incentives.

Table 4.4 describes the ouput per technology for each scenario. The table confirms the larger gas
generation and imports and the lower BESS output in the Flex scenarios and the higher rooftop PV output
in the Central scenarios.
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Scenario Import Nuclear Gas BESS Wind Offshore Wind Onshore Utility PV Rooftop PV
Central ND 12.33 4.49 52.72 10.37 50.89 16.98 16.47 53.60
Flex ND 20.34 4.49 52.72 5.67 51.07 16.94 18.73 43.52
Central KA 7.34 4.49 46.41 10.29 50.13 15.15 14.02 50.26
Flex KA 9.01 4.49 50.25 7.12 50.22 14.95 16.09 44.83
Central IA 7.87 4.49 38.98 10.84 49.71 15.12 18.05 38.42
Flex IA 10.44 4.49 47.08 4.83 50.41 15.12 13.99 30.78

Table 4.4: Technology output by scenario (in TWh).

Figure 4.19 shows the total output of BESS in the six scenarios. In general, the Central scenarios
tend to produce higher BESS outputs at nodes in the North and East compared to the Randstad area
where BESS output is larger during the Flex scenarios. The model thus indicates, that a different allo-
cation of BESS is more beneficial in terms of costs than the Central design, particularly when large solar
deployments in the Flex scenario benefit from additional storage. Figures 4.15, 4.16, 4.13, 4.14, 4.11
and 4.12 illustrate this trend, with sizeable solar and BESS capacities in Noord-Holland, Utrecht, and
Zuid-Holland.

However, one could argue whether the allocation of such large amounts of solar capacity at these
nodes is feasible in terms of land use and habitability. The results show that the need for flexibility is
affected by the amount of renewables that is allocated to a node. Groningen (NL11) stands out, as the
region has significantly more BESS output in the Central scenarios. Meanwhile, Zeeland (NL34) shows
comparatively less variation across scenarios, suggesting that demand scenarios impact the utilization
of BESS here less. The smaller variation can be explained by the relatively small demand and the large
amount of offshore wind capacity that is connected to the region (3.5 GW). In hours with large renewable
generation, Zeeland’s generation exceeds the demand, while the grid might also not be able to handle
the transportation of electricity from Zeeland to Zuid-Holland. BESS provides an alternative for export
and curtailment of the abundant renewable supply, so that excess power can either be used locally or
transported to large demand areas at a later time. With some certainty, it can be concluded that the
overall system would benefit from BESS in Zeeland.
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Figure 4.19: Output of BESS per NUTS2 region

Figure 4.20 shows the gas-fired output per node under the six scenarios. NL11, NL31, NL32 and
NL33 have the largest variation in output. At most nodes, especially in the North and East (except for
NL11), the spread in scenarios is relatively small. In NL11 the gas output is larger in the Flex scenarios.
Looking at Figure 4.15, 4.16, 4.13, 4.14, 4.11 and 4.12 we can see that at this node the BESS capacity is
lower in the Flex scenarios, which is an explanation for smaller BESS output in Figure 4.19. Gas output
in NL31, NL32 and NL33 is larger in the Central scenarios, this can also be explained by the smaller
BESS capacities at these nodes in the Central scenarios.
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Figure 4.20: Output of CCGT power plants per NUTS2 region

A closer look at the data also reveals variations in the spread of total gas outputs for different loca-
tions. Some nodes, e.g. NL31, NL32 and NL33, show substantial spreads between scenario outcomes,
indicating that changes in policy or market drivers have a significant effect on gas utilization in those
regions. Meanwhile, other nodes, such as NL12, NL13, NL41 and NL42, show a smaller spread, imply-
ing that local system designs limit the impact of differing scenarios. Overall, these results highlight the
importance of both geographic factors and scenario design when evaluating the role of gas-fired power
in the Dutch electricity system.

Overall, assuming that there is no transmission capacity expansion, it can be concluded that the
power system would benefit in terms of cost and congestion from larger deployment of BESS, especially
in Zeeland, Zuid-Holland, Utrecht and Noord-Holland and less so in Noord-Brabant and the North and
East of the country (which is, instead, what the TenneT design describes). However, looking at the
increased dependence on gas generation and imports to balance the grid, one could argue whether this
design is indeed desirable. To be less dependent on gas and ETS prices and balancing via import and
export, BESS in the small demand areas can provide emission-free flexibility.

4.5. Minimal line load
By leveraging the total system costs of the cost-optimal solutions to create a near cost-optimal solution
space in the line load minimization, it is possible to gain insights in potential options to reduce congestion
on the high-voltage grid. Overall, Table I.3 shows that minimizing the line load results in larger gas
generation, smaller rooftop PV, and higher utility PV capacities. BESS capacities depend on the demand
size whereas onshore wind is equal or lower depending on the demand. First, lets focus on the results in
Table 4.5. When optimizing for line load, the installed BESS capacity in the Flex scenarios is even larger
than in the cost-optimal solution, again confirming the potential benefit of large amounts of storage. At
the same time, the emissions are lower than in the cost-optimal solutions, even though smaller amounts
of renewable capacity is installed. This implies that the absolute output of BESS compared to the output
of gas plants is relatively large under line load optimization compared to cost optimization, which is
confirmed by Table I.4. This results in additional emissions reductions compared to the cost-optimal
objectives. However, this may also be explained by the large increase in imports, for which the model
does not consider emissions. The table does emphasize that there is a potential of using imports to
reducing congestion, which decreases by approximately 50% in all scenarios.

Scenario Total costs
(BN. EUR)

Emissions (%
w.r.t. 1990)

Installed
BESS (GW)

Avg. line load Congested
line hours

Capacity
factor BESS

Imports
(TWh)

Central ND 43.00 55.0 13.02 14.4% 3,397 11.2% 15.34
Flex ND 41.72 55.0 13.39 14.9% 3,530 7.8% 20.35
Central KA 41.52 62.0 13.02 14.4% 3,112 10.8% 13.12
Flex KA 40.30 56.2 11.54 14.1% 3,251 7.7% 13.13
Central IA 39.91 69.6 13.02 14.9% 3,134 11.5% 13.24
Flex IA 38.56 62.2 8.27 15.3% 2,810 6.9% 14.85

Table 4.5: Comparison of key metrics across different scenarios.
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Figure 4.21 shows the allocation of the generation capacity for rooftop solar, onshore wind, BESS
and gas. The orange triangles show the capacity for the cost-optimal solution whereas the red circles
indicate line-load-optimal solutions. The first thing that stands out, is the spread arround the maximum
allowed capacity per node of 5.15 GW. Especially at nodes NL31, NL32 and NL33, where the cost-
optimal solutions tend to be close to the maximum. NL31, however, shows smaller capacities when
minimizing for line load, indicating that a share of the rooftop PV capacity is installed to supply the high-
demand areas. NL32 and NL33 are among regions with the largest annual load. The results thus indicate
that in terms of costs the system benefits from allocating significant amounts of solar in these high load
areas. On another note, the results show that NL11 does not have any variation across the runs and
is equal to approximately 0.5 GW, potentially because of the large amount of offshore wind (2.7 GW)
connected to the region and the relatively small annual load. In NL13, where the initial installed capacity
of rooftop solar is low, there also is a relatively small spread. The other areas, which had a relatively
low initial capacity such as NL12, NL21, NL34 and and NL23 show a larger spread. In NL12 and NL34
the line-load-optimal solutions tend to be more concentrated and smaller compared the the cost-optimal
capacities which have a larger spread.

Onshore wind seems to be stable across all the scenarios. Except for NL11 and NL32, which both
have one outlier.

The BESS capacities show similar patterns at most nodes in the cost-optimal solutions and the line-
load optimal solutions. The figure shows that the minimal line load and cost-optimal designs result in
similar distributions of capacities in the Flex scenarios. NL31, NL32 and NL33 each have solutions in
the Flex scenarios that include a significantly larger BESS capacity to minimize the line load in the system.
NL11 and NL34 also have storage in all scenarios. This highlights the benefit of additional BESS in these
key areas in terms of line loading and costs compared to the Central scenarios, while the need for BESS
in NL13, NL21, NL22, NL23 and NL42 is less beneficial in terms of line load and costs.

Gas generation capacity in NL31, NL32, NL33 and NL22 shows themost variation, indicating a certain
degree of uncertainty in the decision whether or extra gas capacity would be beneficial. With the gas
generation capacity at the other nodes remaining constant and the total gas capacity being higher in the
Central scenarios, it is possible to conclude that the additional gas capacity in the Central scenarios is
mainly built in Zuid-Holland, Utrecht and Noord-Holland as they lack the BESS capacity that is deployed
in the Flex scenarios. It might not be feasible to gain new investments in gas generation capacity due
to regulatory risks related to climate policies. While some of these risks can be mitigated by investing in
the development of combined CCGT and CCS, the viability of large-scale deployment remains unclear.
Consequently, prioritizing BESS in these key areas might be a more reliable approach for increasing
system flexibility without jeopardizing climate objectives. Where in NL22 there is more spread and larger
capacities in the line loading-optimal solution compared to the cost-optimal, in the other nodes the spread
is similar for cost- and line load optimal results. With some certainty, it can be said that additional gas
capacity at NL22 would help reduce the average line load.
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Figure 4.21: Comparison of installed capacity per technology when optimizing for line load
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However, it is important to reflect on whether a low line utilization is indeed ”optimal”. Although limiting
congestion would be beneficial, barely using lines might not be desirable. First, because of TenneT’s
business model. TenneT’s revenue is based on fixed and variable tariffs. The fixed tariff is based on
the contracted annual transport rights. The variable tariff is based on the peak use of the connection to
the grid. Second, more extreme usage of the lines could also have implications for the wear an tear of
the lines, potentially resulting in larger maintenance needs and earlier replacements. Lastly, because in
principle it is not efficient to not use the transmission lines even though it would not cause congestion
issues when there is sufficient transmission capacity and it is the most cost-efficient solution. The focus of
the line load minimization should thus not be on limiting the overall line load but on limiting the congested
hours.

It can be argued that the formulation of the line loading objective function in this study does not cut
congested hours, but increases them. More specifically, this way of minimizing the line load causes a
bias towards lines with relatively high NTCs, where it is more beneficial to transport an additional MWh
on a line with a large NTC than on a line with a low NTC. This has to do with the way that the line
load is defined, namely as the transported electricity on a line divided by the line’s NTC. As observed in
Figure 4.22, in the line load optimization certain lines are not used at all while others operate near 100%,
especially in the Central ND and KA scenarios. At the same time, transporting power from Drenthe to
Zuid-Holland is relatively costly in terms of line load, because four different lines are used. Imports, only
requiring transport on a single line, are thus used more often. Table I.4 shows that indeed the model
prefers to import more electricity, underlining the potential role of imports in balancing the system and
reducing congestion. Also, while the total capacities of utility PV are larger, the output does not grow at
the same rate and even declines in some cases, indicating that to minimize line load, less productive
generation sites are used. Line load minimization thus also comes at the expense of productivity and
cost efficiency. Instead, the objective in minimizing line load should be focused on limiting the hours in
which lines are used at their (almost) full capacity. In this way, the model utilizes the transmission lines
in the most cost-efficient way, while decreasing the total congested line hours.
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Figure 4.22: Line loading per line in the line load optimum.

4.6. Sensitivity analysis
The sensitivity analysis’s goal is to highlight the potential of different system designs by making changes
to the model’s input. Two changes are proposed: A higher limit to solar PV per region, and allowing the
model to expand the transmission capacity.

4.6.1. Loose solar solar
In this case, the maximum allowed capacity per region for solar generation technologies is increased.
The max capacity of rooftop solar is equal to 7.725 GW per region, this is equal to 15% of the maximum
installed capacity as per the IP2024 scenarios for 2030. As described in Section 2.4.1, in the original
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scenario runs, rooftop solar was allowed to increase up to a maximum of 5.15 GW per region. In this
analysis, the model thus has more freedom to allocate rooftop PV in the most cost-efficient way. The
goal is to see whether the constraint has a large impact on the model results. This is done by comparing
the results from Central KA cost optimal with loose PV constraints to the results from the Central Central
KA cost optimal case with strict PV constraints.

In the loose PV case, there is an increased rooftop PV capacity. You can find the total installed
rooftop PV capacity per region in Table J.1. Table J.2 shows that relaxing the maximum PV constraint
has a minimal effect on total costs (-0. 03%), emissions (-0. 061%) and BESS utilization (+0. 08%)
while the capacity of local rooftop PV in some areas of high demand increases strongly (approximately
50%). The generation capacity in other regions, such as in Utrecht, decreases. Figure J.1 compares the
pressure on land use, clearly showing a reduced pressure on land use in Utrecht. In the case of strict PV,
rooftop solar is in some cases deployed to supply high-demand areas in close proximity. However, as
costs and emissions increase only slightly, the benefit of additional local generation and storage in high-
demand areas may not be linear. This is a relevant insight for infrastructure planning and the distribution
of generation and storage technologies.

4.6.2. Transmission expansion
In the Central scenarios, the transmission capacity is expanded on the same two lines across demand
scenarios. These are NL23:NL32 and NL33:NL41. The same lines undergo expansion in the Flex IA
scenario. In the two other Flex scenarios many lines are targeted for capacity expansion, NL11:NL12,
NL11:NL13, NL23:NL32, NL33:NL41, NL34:NL41 and NL41:NL42. Table J.3 displays key metrics to
evaluate the impact of possible transmission expansion. While decreasing cost with 0.24% and 0.45%,
the congested hours also decrease between 12,41% and 33,26%. In the Central scenarios the emis-
sions decrease slightly, whereas the emissions grow in the Flex scenarios. In the Flex scenarios smaller
amounts of BESS are deployed, illustrating the reduction in local flexible generation needs when in-
creasing interconnectedness of the regions connected to the offshore wind generation. The geograph-
ical location of BESS however, does not change, again concentrating on deploying BESS in Zeeland,
Zuid-Holland, Noord-Holland, Utrecht and Groningen.
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Discussion

The goal of this research is to identify the tradeoffs in decentralized electricity system designs to make
grounded recommendations for future infrastructure decision making. The final research question is:

’What are the trade-offs for future decentralized Dutch electricity system designs in the face of future
load growth?’

The goal of this research is threefold. The first part is about finding the most accurate method for
calculating NTCs to account for physical constraints such as resistances and voltages. This is highlighted
in the first sub-question. The first sub-question also includes an assessment of the benefit of using grid
data from PyPSA-EUR in the multi-node model. This step flows into the second sub-question, where
the multi-node model is validated using the SGM and the PyPSA-EUR grid data. The validated model is
then used in the phase of finding the trade-offs in designing a decentralized Dutch power system. The
sub-questions are defined as follows:

• How can we calculate Net Transfer Capacities and how can we integrate correction factors for
resistances and voltages and transferring it to a Net Transfer Capacity?

• How well does the model reflect the real electricity system’s operation?

• What are potential decentralized design options for relieving congestion in the Dutch electricity
system considering different scenarios for future load development?

5.1. Conclusions and recommendations
5.1.1. Methods for calculating NTCs
Nominal ratings provide a decent approximation of NTCs within the line length range included in this re-
search. Nonetheless, this method provides overly optimistic NTCs as it does not account for resistances.
In an effort to approximate line ratings, while accounting for physical constraints, the St. Clair approxi-
mation is applied. The St. Clair approximation, as in (Martin et al., 2017), resulted in an unpredictable
bias in the case of relatively short lines. Even though the approximation is used to avoid overly optimistic
NTC estimation for long transmission lines, the validation in Section 4.1 points out that the NTCs of the
relatively long lines in the dataset are underestimated. This underlines the findings of the authors in terms
of short transmission lines and provides a new perspective by showing the underestimation of NTCs of
long transmission lines when using the St. Clair approximation. The efficiency per kilometer offers an
alternative to find resistance-based losses using the nominal rating, line length and an efficiency rating
per line type. This proves to be the most accurate method to approximate NTCs and is thus used further
in this research. This abstract yet accurate method of capturing complex physics in NTCs is easily imple-
mented in existing and new NTC based models to avoid overly optimistic NTC estimations. It enriches
NTC based models by incorporating physical constraints, enabling more robust and realistic analyses of
power systems, helping policymakers and system operators assess infrastructure needsmore accurately
without having to use computationally heavy and complex power-flow optimization models.

5.1.2. Using clustered grid data
The results indicated that the systemwide interregional capacity estimates throughout the system are
relatively similar using CSGM and PyPSA-EUR grid data. Comparing the PyPSA-EUR clustered data to
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the data in the SGM it is evident that clustered and simplified grid data in this case is not properly aligned
to actual local grid characteristics. The cluster fails to identify the voltages of the lines in some cases
(i.e. 380kV instead of 220kV), which is an essential parameter in the proposed methods for calculating
NTCs.

Moreover, the number of line crossings does not always align with the actual system. This also has
a large impact on the approximation of interregional NTCs and thus on the infrastructure needs at each
individual region. In short, using the grid data from this particular model will results in biased results in
terms of infrastructure needs on a local level. Taking another perspective, as the systemwide NTC aligns
quite well with the systemwide NTC as computed per the CSGM, the PyPSA-EUR data can, for example,
be used in a model to evaluate system behavior, market dynamics, and the impact of policy alternatives.

5.1.3. Trade-offs for the design of decentralized systems
When designing the least-cost design, the Flex scenarios result in smaller total amounts of BESS in
all demand scenarios. In Zeeland, Zuid-Holland and Noord-Holland however, there is a relatively large
capacity of BESS in all scenarios. Showing that with a relatively high degree of certainty, the system
would benefit from additional storage capacity in these regions. However, what is most beneficial in
terms of costs might not be the most desirable. The tradeoffs are highlighted here.

During high renewable hours, the grid in the South-West is congested, this lies at the basis of
the first trade-off: either store renewable generation in low-demand areas for later consumption at
potentially higher costs, or store renewable power predominantly in locations with high weather
dependent output and demand to reduce congestion. The latter involves more frequent export
of excess renewable power from low demand areas to balance the grid, which in turn increases
reliance on gas-generated power and imports during periods of low renewable output. While in
the Flex scenarios renewable power form the North-East is more often exported or wasted at times that
the grid in the high demand areas is congested, instead of stored, as in the TenneT design. This results
in a larger share of gas generation in the generation mix and thus higher emissions (up to 7%). This
indicates that, when optimizing for costs, the most optimal system designs do not always result in lower
emissions. Because of the larger share of gas generation in the mix, the exposure to gas and ETS prices
is larger. Besides a larger reliance on gas more imports and exports are needed to balance the grid in
the Flex designs. When the BESS is allocated according to the TenneT estimations, the emissions are
lower because they reduce the total need for gas output during low renewable hours. At the same time,
all potential designs stay within the limits of the projected 55% reduction.

The geographical location of BESS has implications for the role of gas-fired power plants and
the business case for BESS. BESS operators use price volatility to make profits, buying during times
of excess renewable supply and selling during low renewable hours when prices are set by more expen-
sive technologies such as gas. The TenneT estimates result in a higher overall utilization of the BESS
capacity and larger total outputs during high gas output hours than BESS near offshore wind farms. How-
ever, the output during the peak gas generation hours is below the annual average for BESS in these
designs, indicating a conflict between balancing requirements of TenneT and the profits of BESS opera-
tors. Consults should take place between TenneT, battery providers and DSOs to work out efficient and
dynamic tariff design that considers the operators needs i.e. balancing responsibility and the business
model while also strengthening the business case for BESS operators. At the same time, these parties
should combine forces with local governments to smoothen permitting processes and identify precise
locations that integrate BESS in public space, the distribution system as well as the transmission system
to ensure smooth distribution of the storage systems.

Interconnectedness vs. decentralized balancing. The results indicate that increasing the capac-
ity of transmission bottlenecks reduces congested line hours, significantly (up to 33.26%), while also
slightly decreasing total system costs and storage needs. Thus, grid reinforcements and storage play
a subsidiarity role to some extend. Although storage can reduce the need for transmission capacity
and vice versa, they do not exclude one another. Indeed, the need for local storage in areas with large
amounts of weather-dependent resources lessens with increased interconnectedness during hours with
large renewable output, the need for emission-free flexible power output during low renewable hours
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remains.

The benefits of local generation in high-demand areas vs. land use. The results also showed
that in order to decrease congestion, local PV generation capacity is important. Especially, in areas
with large offshore capacities and demand (Noord-Holland and Zuid-Holland). However, once a certain
threshold is reached, adding more PV in high-demand areas yields only marginal reductions in both
congestion hours and total system costs. Where transmission capacity permits, reallocating some PV
deployments to regions with lower demand for example Utrecht, despite slightly less productivity, can
help reduce pressure on the land availability in high-demand areas while costs are only estimated to
increase with 0.03-0.17%.

Double down on renewable generation and storage or continue to rely on fossil fuels. The
results indicated that significant investments are needed in renewable generation and storage infras-
tructure. In particular, large amounts of rooftop photovoltaic are deployed in all scenarios, concentrating
on high-demand areas, emphasizing the logical thought that it is efficient to allocate supply close to
demand. With current incentives for rooftop PV being scaled down in the Netherlands, new incentive
schemes are needed to support the uptake of rooftop PV systems while also considering grid local con-
straints and the time-value of electricity. Such schemes potentially involve time- and spatial-differentiated
tariffs for power transport and promote local and smart electricity consumption. If the projected renew-
able and storage capacities are not realized, the system will rely on fossil generation for a longer period.
This involves keeping the coal plants operational. At the same time, the results already indicate the
need for additional investments in gas-fired generation capacity. The feasibility of such investments is
questionable. Regulatory and policy risks with respect to climate objectives make long-term investments
in CCGT plants less attractive without robust long-term guarantees. Continued investment in Carbon
Capture and Storage could help address climate-related concerns related to gas-fired power.

5.2. Limitations and suggestions for future research
This final section is dedicated to highlighting the limitations of this research and potential directions for fu-
ture research. First, the NTC calculations do not use the actual capacitance of the lines, as this data is not
available in the SGM. Instead the typical values from PyPSA are used while results indicated that using
clustered data to estimate NTCs in on a high spatial resolution can lead to inaccurate estimates because
of discrepancies caused by simplifications and clustering. Future research could look into the accuracy
of the applied standard value in the case of the Netherlands. At the same time, internal transmission and
the distribution network ar assumed to have unlimited capacity, which is of course not realistic. Using
an even higher resolution grid could capture the limits and possibilities of internal transmission within
NUTS2 regions, to make a more realistic representation of the bottlenecks of the grid. This could give
more accurate insights to the bottlenecks in the high-voltage grid, that can directly be translated into
infrastructure additions.

The allocation of demand is based on current population density. The question remains to what
extend population density is an accurate proxy for the load distribution. Other proxies could lead to
different results. For example, future population and using different types of demand such as industrial
and household demand. In future research it would be interesting to see if the demand disaggregation
with Gregor can be complemented with an industrial proxy. By splitting the total demand in household and
industrial demand and then performing two disaggregation, more accurate results might be achieved. It
is evident that the research results are highly dependent on input data.

Also, the research did not include innovative technologies such as, long term storage options in hy-
drogen, other battery technologies, the cost developments of BESS and the development of CCS. Gas
CCGT combined with CCS could provide an alternative to BESS as it offers flexible generation with less
emissions to the atmosphere than regular CCGT. To evaluate the impact of promising technologies such
as CCGT with CCS, hydrogen or other BESS technologies, future research could include such technolo-
gies. Although the study indicates that BESS in the South and West would be particularly valuable in
terms of minimizing costs and congestion, especially where projected offshore wind is brought ashore,
there is uncertainty about the extent to which hydrogen production could reduce the need for battery
storage. Industrial parties in these regions may utilize offshore wind for electrolysis to produce green
hydrogen, where the energy is stored chemically and later used in industrial processes or potentially
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reconverted to electricity. Further research into the role of hydrogen production is therefore needed to
better assess the business case and the required amount of BESS in these areas. Nevertheless, while
hydrogen may complement or partially displace battery storage in certain situations, BESS still provides
short-term flexibility, indicating that it will likely continue to play an important role in these areas. Also,
even though the research does not include combined CCGT and CCS, BESS is already being deployed
on a utility scale whereas large-scale CCGT and CSS combinations are not proven. At the same time,
current cost estimates are used for BESS system while, innovation could strengthen the case for decen-
tralized system designs with large amounts of BESS.

The results showed different annual utilization rates of BESS in the different scenarios. The model
does not include the balancing market and is unable to account for the balancing services that batteries
can provide to the TSO, whereas that could be an important role and business opportunity for BESS
in energy systems with large shares of renewables. In other words, this study focusses on finding the
least-cost system design, without a reference to the different strategies that storage operators could have
in different markets. In future research, this could be used to asses the contribution of BESS in each
scenario to the balancing requirements of the whole system using different strategies. However, the
results did indicate different charging and discharging moments for BESS, which lies at the basis of the
recommendation regarding the dynamic tariff design that accounts for both the frequent charging and
discharging rates of BESS and the business case, while also accounting for the balancing responsibility
of TenneT.

Another potential limitation of the research is the definition of line loading optimization. In the current
state the model tries to find the minimal line load by limiting the total system’s line utilization, whereas
minimizing the maximum load hours i.e. hours at which a line uses more than 99% of it’s capacity might
be more in line with the goal of limiting congestion. An option would be to create a binary condition
where the line load cost in the model is equal to 1 if the line load is equal to or higher than 99% of the
capacity and 0 if the line load is lower than 99%. By minimizing the line load cost the model will limit the
congested line hours without refraining from high line utilization that is still beneath the congestion limit.
However, this research took a step towards congestion minimization, highlighting the potential of storage
and imports in reducing congestion and opening the door to more accurate congestion minimization in
electricity system modeling.



Bibliography

Agency, E. E. (2024). Use of auctioning revenues generated under the eu emissions trading sys-
tem. Author. Retrieved from https://www.eea.europa.eu/en/analysis/indicators/
use-of-auctioning-revenues-generated?activeAccordion=546a7c35-9188-4d23
-94ee-005d97c26f2b

Aryanpur, V., O’Gallachoir, B., Dai, H., Chen, W., & Glynn, J. (2021, September). A review of spatial res-
olution and regionalisation in national-scale energy systems optimisation models. Energy Strategy
Reviews, 37, 100702. doi: 10.1016/j.esr.2021.100702

Bogdanov, D., Oyewo, A. S., & Breyer, C. (2023). Hierarchical approach to energy system modelling:
Complexity reduction with minor changes in results. Energy, 273. doi: 10.1016/j.energy.2023
.127213

Brown, T., Hörsch, J., Hofmann, F., Neumann, F., Zeyen, L., Syranidis, C., … Parzen, M. (2017). PyPSA:
Python for Power System Analysis. doi: 10.5334/jors.188

Brown, T., Victoria, M., Zeyen, E., Hofmann, F., Neumann, F., Frysztacki, M., … Seibold, T. (2024).
Pypsa-eur: An open sector-coupled optimisation model of the european energy system (version
0.13.0). (Computer misc)

CBS. (2023). Van 9 naar 15 procent hernieuwbare energie in vier jaar tijd. Retrieved
from https://www.cbs.nl/nl-nl/nieuws/2023/50/van-9-naar-15-procent
-hernieuwbare-energie-in-vier-jaar-tijd?_ga=2.187993896.1646128170
.1708944928-1162185979.1704877451

CBS. (2024, November). Zonnestroom; vermogen en vermogensklasse, bedrijven en wonin-
gen, regio. Retrieved from https://opendata.cbs.nl/portal.html?_la=nl&_catalog=
CBS&tableId=85005NED&_theme=292

CBS Statline. (2025). Cbs statline open data. Retrieved from https://opendata.cbs.nl/#/CBS/
nl/dataset/84575NED/table?ts=1743520721984 (Accessed: 2025-01-28)

Centraal Bureau voor de Statistiek. (2023, March). Biomassa regionaal, 2021. Centraal Bureau voor
de Statistiek. Retrieved from https://www.cbs.nl/nl-nl/maatwerk/2023/12/biomassa
-regionaal-2021

Centraal Bureau voor de Statistiek. (2024). Welke sectoren stoten broeikasgassen uit? Re-
trieved from https://www.cbs.nl/nl-nl/dossier/dossier-broeikasgassen/welke
-sectoren-stoten-broeikasgassen-uit- (Accessed: 2025-02-04)

Circuits, A. A. (2014). True, reactive, and apparent power. Author. Retrieved from
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-11/
true-reactive-and-apparent-power/ (Power Factor)

Colbertaldo, P., Parolin, F., & Campanari, S. (2023). A comprehensive multi-node multi-vector multi-
sector modelling framework to investigate integrated energy systems and assess decarbonisation
needs. Energy Conversion and Management, 291. doi: 10.1016/j.enconman.2023.117168

Economics, M. (2024). Pypsa-rsa: An open optimisation model of the south african power system.
Retrieved from https://pypsa-rsa.readthedocs.io/en/latest/index.html

ENTSO-E. (2023). Installed capacity per production unit. Transparency Platform. Retrieved from
https://newtransparency.entsoe.eu/generation/actual/perType/generation

ENTSO-E. (2024). Installed capacity per production type. Retrieved from https://transparency
.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
(Transparency Platform)

(ETSO), E. T. S. O. A. (2000, March). Net transfer capacities (ntc) and available transfer
capacities (atc) in the internal market of electricity in europe (iem) (Tech. Rep.). Author.
Retrieved from https://eepublicdownloads.entsoe.eu/clean-documents/pre2015/
ntc/entsoe_NTCusersInformation.pdf

Fleischer, C. E. (2020, November). Minimising the effects of spatial scale reduction on power system
models. Energy Strategy Reviews, 32, 100563. doi: 10.1016/j.esr.2020.100563

52

https://www.eea.europa.eu/en/analysis/indicators/use-of-auctioning-revenues-generated?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b
https://www.eea.europa.eu/en/analysis/indicators/use-of-auctioning-revenues-generated?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b
https://www.eea.europa.eu/en/analysis/indicators/use-of-auctioning-revenues-generated?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b
https://www.cbs.nl/nl-nl/nieuws/2023/50/van-9-naar-15-procent-hernieuwbare-energie-in-vier-jaar-tijd?_ga=2.187993896.1646128170.1708944928-1162185979.1704877451
https://www.cbs.nl/nl-nl/nieuws/2023/50/van-9-naar-15-procent-hernieuwbare-energie-in-vier-jaar-tijd?_ga=2.187993896.1646128170.1708944928-1162185979.1704877451
https://www.cbs.nl/nl-nl/nieuws/2023/50/van-9-naar-15-procent-hernieuwbare-energie-in-vier-jaar-tijd?_ga=2.187993896.1646128170.1708944928-1162185979.1704877451
https://opendata.cbs.nl/portal.html?_la=nl&_catalog=CBS&tableId=85005NED&_theme=292
https://opendata.cbs.nl/portal.html?_la=nl&_catalog=CBS&tableId=85005NED&_theme=292
https://opendata.cbs.nl/#/CBS/nl/dataset/84575NED/table?ts=1743520721984
https://opendata.cbs.nl/#/CBS/nl/dataset/84575NED/table?ts=1743520721984
https://www.cbs.nl/nl-nl/maatwerk/2023/12/biomassa-regionaal-2021
https://www.cbs.nl/nl-nl/maatwerk/2023/12/biomassa-regionaal-2021
https://www.cbs.nl/nl-nl/dossier/dossier-broeikasgassen/welke-sectoren-stoten-broeikasgassen-uit-
https://www.cbs.nl/nl-nl/dossier/dossier-broeikasgassen/welke-sectoren-stoten-broeikasgassen-uit-
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-11/true-reactive-and-apparent-power/
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-11/true-reactive-and-apparent-power/
https://pypsa-rsa.readthedocs.io/en/latest/index.html
https://newtransparency.entsoe.eu/generation/actual/perType/generation
https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://eepublicdownloads.entsoe.eu/clean-documents/pre2015/ntc/entsoe_NTCusersInformation.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/pre2015/ntc/entsoe_NTCusersInformation.pdf


53

Frysztacki, M. M., Hörsch, J., Hagenmeyer, V., & Brown, T. (2021, June). The strong effect of network
resolution on electricity system models with high shares of wind and solar. Applied Energy, 291,
116726. doi: 10.1016/j.apenergy.2021.116726

Frysztacki, M. M., Recht, G., & Brown, T. (2022). A comparison of clustering methods for the spatial
reduction of renewable electricity optimisation models of europe. Energy Informatics, 5(1). doi:
10.1186/s42162-022-00187-7

Gunkel, P. A., Koduvere, H., Kirkerud, J. G., Fausto, F. J., & Ravn, H. (2020). Modelling transmission
systems in energy system analysis: A comparative study. Journal of Environmental Management,
262, 110289. doi: 10.1016/j.jenvman.2020.110289

Hatton, L., Johnson, N., Dixon, L., Mosongo, B., De Kock, S., Marquard, A., … Staffell, I. (2024). The
global and national energy systems techno-economic (gneste) database: Cost and performance
data for electricity generation and storage technologies. Data in Brief , 55, 110669. Retrieved from
https://www.sciencedirect.com/science/article/pii/S235234092400636X doi:
10.1016/j.dib.2024.110669

Hu, Z., Cao, Q., Zhang, R., Zhou, H., Wang, W., & Du, Z. (2021, January). Integrated energy system plan-
ning of distribution network considering load timing coupling characteristics. IOP Conference Se-
ries: Earth and Environmental Science, 645(1), 012015. doi: 10.1088/1755-1315/645/1/012015

Jaya Mabel Rani, A., Parthipan, L., & Jothi Swaroopan, N. M. (2014). Clustering methods, data mining,
fuzzy logic, optimization, power system. International Journal of Applied Engineering Research, 9,
10171–10183.

JRC. (2014). Etri 2014 – energy technology reference indicator projections for 2010-2050 (Tech.
Rep.). Joint Research Centre (JRC). Retrieved from https://ec.europa.eu/jrc/en/
science-update/etri

Klemm, C., Wiese, F., & Vennemann, P. (2023). Model-based run-time and memory reduction for a
mixed-use multi-energy system model with high spatial resolution. Applied Energy, 334. doi:
10.1016/j.apenergy.2022.120574

Klimaatmonitor. (2025). Dashboard energieverbruik. Klimaatmonitor Databank. Retrieved from
https://klimaatmonitor.databank.nl/dashboard/dashboard/energieverbruik

KNMI. (2020). Jaaroverzicht klimaat nederland 2019. Koninklijk Nederlands Meteorologisch Instituut
(KNMI). Retrieved from https://www.knmi.nl/nederland-nu/klimatologie/maand-en
-seizoensoverzichten/2019/jaar

Kost, C., Junne, T., Senkpiel, C., Hartmann, N., Schlegl, T., Zampara, M., & Capros, P. (2015, May).
Renewable energy expansion and interaction in europe: High resolution of res potentials in energy
system modeling. In 2015 12th international conference on the european energy market (eem).
IEEE. doi: 10.1109/EEM.2015.7216677

Kueppers, M., Perau, C., Franken, M., Heger, H. J., Huber, M., Metzger, M., & Niessen, S. (2020,
August). Data-driven regionalization of decarbonized energy systems for reflecting their changing
topologies in planning and optimization. Energies, 13(16), 4076. doi: 10.3390/en13164076

Launer, J. (2024). Gregor (version 0.0.3.dev) [computer misc]. Retrieved from https://github.com/
jnnr/gregor

Li, T., Liu, P., & Li, Z. (2020, February). A multi-period and multi-regional modeling and optimization
approach to energy infrastructure planning at a transient stage: A case study of china. Computers
& Chemical Engineering, 133, 106673. doi: 10.1016/j.compchemeng.2019.106673

Lombardi, F., Pickering, B., Colombo, E., & Pfenninger, S. (2020). Policy decision support for renewables
deployment through spatially explicit practically optimal alternatives. Joule, 4(10). doi: 10.1016/
j.joule.2020.08.002

Loustau, J., Lepour, D., Terrier, C., & Maréchal, F. o. (2023). Clustering and typification of urban districts
for energy system modelling. In 36th international conference on efficiency, cost, optimization,
simulation and environmental impact of energy systems (ecos 2023) (pp. 3206–3217). Las Palmas
De Gran Canaria, Spain: ECOS 2023. doi: 10.52202/069564-0288

Martin, H., Hamacher, T., Deetjen, T. A., & Webber, M. E. (2017). Reduced transmission grid rep-
resentation using the st. clair curve applied to the electric reliability council of texas. In 2022
18th international conference on the european energy market (eem) (pp. 1–5). doi: 10.1109/
EEM.2017.7981961

Ministerie van Algemene Zaken. (2023). Data sources. https://www.rijksoverheid.nl/
onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol

https://www.sciencedirect.com/science/article/pii/S235234092400636X
https://ec.europa.eu/jrc/en/science-update/etri
https://ec.europa.eu/jrc/en/science-update/etri
https://klimaatmonitor.databank.nl/dashboard/dashboard/energieverbruik
https://www.knmi.nl/nederland-nu/klimatologie/maand-en-seizoensoverzichten/2019/jaar
https://www.knmi.nl/nederland-nu/klimatologie/maand-en-seizoensoverzichten/2019/jaar
https://github.com/jnnr/gregor
https://github.com/jnnr/gregor
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%20uitbreiden,het%20stroomnet%20uit%20te%20breiden.
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%20uitbreiden,het%20stroomnet%20uit%20te%20breiden.


54 5. Discussion

-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%
20uitbreiden,het%20stroomnet%20uit%20te%20breiden.

Netbeheer Nederland. (2023). Ip2024 scenario rapportage. Retrieved from https://www
.netbeheernederland.nl/publicatie/ip2024-scenario-rapportage (Accessed:
2024-02-04)

Netbeheer Nederland. (2024). Capaciteitskaart - netbeheer nederland. Retrieved from https://
capaciteitskaart.netbeheernederland.nl (Accessed: April 2, 2025)

Patil, S., Kotzur, L., & Stolten, D. (2022, December). Advanced spatial and technological aggregation
scheme for energy system models. Energies, 15(24), 9517. doi: 10.3390/en15249517

Pavičević, M., Kavvadias, K., Pukšec, T., & Quoilin, S. (2019, October). Comparison of different model
formulations for modelling future power systems with high shares of renewables – the dispa-set
balkans model. Applied Energy, 252, 113425. doi: 10.1016/j.apenergy.2019.113425

Pfenninger, S., & Pickering, B. (2018). Calliope: A multi-scale energy systems modelling framework.
Journal of Open Source misc, 3(29). doi: 10.21105/joss.00825

Pfenninger, S., & Staffell, I. (2016). Long-term patterns of european pv output using 30 years
of validated hourly reanalysis and satellite data. Energy, 114, 1251-1265. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0360544216311744 doi:
https://doi.org/10.1016/j.energy.2016.08.060

Pickering, B., Lombardi, F., & Pfenninger, S. (2022). Diversity of options to eliminate fossil fuels and
reach carbon neutrality across the entire european energy system. Joule, 6(6). doi: 10.1016/
j.joule.2022.05.009

Quintel. (2023). Energy transition model. Retrieved from https://energytransitionmodel.com/
scenario/data/data_export/overview

Rauner, S., Eichhorn, M., & Thrän, D. (2016, December). The spatial dimension of the power system:
Investigating hot spots of smart renewable power provision. Applied Energy, 184, 1038–1050. doi:
10.1016/j.apenergy.2016.07.031

Rijksoverheid. (2022). Energietransitie op de noordzee. Retrieved from https://
www.noordzeeloket.nl/functies-gebruik/windenergie/energietransitie
-noordzee/ (Accessed: 2025-01-29)

RVO. (2023). Dashboard - hernieuwbare energie per techniek. Retrieved from https://
klimaatmonitor.databank.nl/dashboard/dashboard/hernieuwbare-energie
-per-techniek

RVO. (2023). Verkenning aanlanding wind op zee (vawoz) 2030. Rijksdienst voor Onderne-
mend Nederland (RVO). Retrieved from https://www.rvo.nl/onderwerpen/bureau
-energieprojecten/vawoz-2030

RvO. (2024). Duurzame mobiliteit, personenauto’s. Retrieved from https://duurzamemobiliteit
.databank.nl/mosaic/nl-nl/elektrisch-vervoer/personenauto-s

Schnidrig, J., Li, X., Slaymaker, A., Nguyen, T.-V., & Marechal, F. (2022, July). Regionalisation in high
share renewable energy system modelling. In 2022 ieee power & energy society general meeting
(pesgm) (pp. 1–5). IEEE. doi: 10.1109/PESGM48719.2022.9917062

Shykinov, N., Rulko, R., & Mroz, D. (2016). Importance of advanced planning of manufacturing for
nuclear industry. Management and Production Engineering Review, 7(2), 42–49. doi: 10.1515/
mper-2016-0016

TenneT. (2023, January). Overview of 380kv and 220kv grid components. Retrieved from https://
www.tennet.eu/node/585

TenneT. (2024). Tennet ziet grote rol voor batterijen voor stabiel elektriciteitsnet 2030. Retrieved from
https://www.tennet.eu/nl/nieuws/tennet-ziet-grote-rol-voor-batterijen
-voor-stabiel-elektriciteitsnet-2030

Tröndle, T. (2020). Euro-calliope: Pre-built models (1.0.0). Retrieved from https://doi.org/10
.5281/zenodo.3949553 (misc) doi: 10.5281/zenodo.3949553

Van Ouwerkerk, J., Gils, H. C., Gardian, H., Kittel, M., Schill, W., Zerrahn, A., … Bußar, C. (2022).
Impacts of power sector model features on optimal capacity expansion: A comparative study. Re-
newable and Sustainable Energy Reviews, 157, 112004. doi: 10.1016/j.rser.2021.112004

Wiese, F., Bökenkamp, G., Wingenbach, C., & Hohmeyer, O. (2014). An open source energy system
simulation model as an instrument for public participation in the development of strategies for a

https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%20uitbreiden,het%20stroomnet%20uit%20te%20breiden.
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%20uitbreiden,het%20stroomnet%20uit%20te%20breiden.
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/kabinet-neemt-maatregelen-tegen-vol-elektriciteitsnet-netcongestie#:~:text=Het%20stroomnet%20sneller%20uitbreiden,het%20stroomnet%20uit%20te%20breiden.
https://www.netbeheernederland.nl/publicatie/ip2024-scenario-rapportage
https://www.netbeheernederland.nl/publicatie/ip2024-scenario-rapportage
https://capaciteitskaart.netbeheernederland.nl
https://capaciteitskaart.netbeheernederland.nl
https://www.sciencedirect.com/science/article/pii/S0360544216311744
https://energytransitionmodel.com/scenario/data/data_export/overview
https://energytransitionmodel.com/scenario/data/data_export/overview
https://www.noordzeeloket.nl/functies-gebruik/windenergie/energietransitie-noordzee/
https://www.noordzeeloket.nl/functies-gebruik/windenergie/energietransitie-noordzee/
https://www.noordzeeloket.nl/functies-gebruik/windenergie/energietransitie-noordzee/
https://klimaatmonitor.databank.nl/dashboard/dashboard/hernieuwbare-energie-per-techniek
https://klimaatmonitor.databank.nl/dashboard/dashboard/hernieuwbare-energie-per-techniek
https://klimaatmonitor.databank.nl/dashboard/dashboard/hernieuwbare-energie-per-techniek
https://www.rvo.nl/onderwerpen/bureau-energieprojecten/vawoz-2030
https://www.rvo.nl/onderwerpen/bureau-energieprojecten/vawoz-2030
https://duurzamemobiliteit.databank.nl/mosaic/nl-nl/elektrisch-vervoer/personenauto-s
https://duurzamemobiliteit.databank.nl/mosaic/nl-nl/elektrisch-vervoer/personenauto-s
https://www.tennet.eu/node/585
https://www.tennet.eu/node/585
https://www.tennet.eu/nl/nieuws/tennet-ziet-grote-rol-voor-batterijen-voor-stabiel-elektriciteitsnet-2030
https://www.tennet.eu/nl/nieuws/tennet-ziet-grote-rol-voor-batterijen-voor-stabiel-elektriciteitsnet-2030
https://doi.org/10.5281/zenodo.3949553
https://doi.org/10.5281/zenodo.3949553


55

sustainable future. Wiley Interdisciplinary Reviews Energy and Environment, 3(5), 490–504. doi:
10.1002/wene.109

World Resource Institute. (2024, October). Global power plant database - miscs. Retrieved from
https://miscs.wri.org/miscs/global-power-plant-database (Accessed: February
9, 2025)

WorldPop. (2020). Population density. WorldPop Project. Retrieved from https://hub.worldpop
.org/geodata/summary?id=42733

Xiong, B., Fioriti, D., Neumann, F., Riepin, I., & Brown, T. (2024). Modelling the high-voltage grid using
open data for europe and beyond. arXiv (Cornell University). Retrieved from https://doi.org/
10.48550/arxiv.2408.17178 doi: 10.48550/arxiv.2408.17178

Zerrahn, A., Gaete-Morales, C., Kittel, M., Roth, A., & Schill, W. (2021). Introduction to the model
— dieterpy 0.3.3 documentation. Retrieved from https://diw-evu.gitlab.io/dieter
_public/dieterpy/model/model_intro.html#documentation

Zomerdijk, W., Gusain, D., Palensky, P., & Cvetkovic, M. (2022). Open data based model of the
dutch high-voltage power system. In Proceedings of the 2022 ieee pes innovative smart grid
technologies conference europe (isgt-europe) (Vol. 2022-October, pp. 1–6). IEEE. doi: 10.1109/
ISGT-Europe54678.2022.9960703

https://miscs.wri.org/miscs/global-power-plant-database
https://hub.worldpop.org/geodata/summary?id=42733
https://hub.worldpop.org/geodata/summary?id=42733
https://doi.org/10.48550/arxiv.2408.17178
https://doi.org/10.48550/arxiv.2408.17178
https://diw-evu.gitlab.io/dieter_public/dieterpy/model/model_intro.html#documentation
https://diw-evu.gitlab.io/dieter_public/dieterpy/model/model_intro.html#documentation


A
Appendix: Literature review

The database used in the literature review was Scopus. On Scopus the following search query resulted
in a total of 130 documents that were initially reviewed:
( ”electricity system” OR ”power system” OR ”electricity system” ) W/10 model* AND optim* AND (
sub-national OR region* ) AND ( cluster* OR resolution )
Out of these 130 documents, 22 were published before 2014. These documents were filtered before
the initial scan. During the initial scan documents were selected on the title and abstract. In figure A.1
the selection procedure is visualized.
After the initial scan, 33 documents were reviewed based on a scan of the contents of the introduction
and conclusion. This research has a focus on electricity transition problems on national scale with a
high spatial resolution. The focus is thus to find documents describing similar research. The result, 17
documents to be reviewed. Snowballing from these documents led to an additional 4 documents for the
final selection of 21 documents.
The research question provided key concepts for the search query to look for electricity system
optimization models and approaches to use electricity system optimization models whilst accounting for
regional differences. Synonyms for electricity system provided a more complete overview of the
available literature and by adding the W/10 command results were narrowed down to literature about
electricity system models. Using region* or sub-national, the search resulted in documents referring to
the specific scale required in this research. The technique used for modelling the specific spatial
configuration was found by adding ”cluster*” and ”resolution” to the search query. Clustering is used to
combine multiple data points into a smaller number of points, so that the computational burden
decreases. With this search query different approaches for clustering grid data to build accurate and
computationally feasible models are found. Figure A.1 shows the process and selection criteria used to
select relevant articles.

Screening Eligibility IncludedIdentification

Title-Abs-Key (
"energy system" OR
"power system" OR
"electricity system" )
W/10 model* AND
optim* AND ( sub-

national OR region* )
AND ( cluster* OR

resolution ) on
Scopus ( n = 130) 

After removing
documents before

2014 
(n =108)

Excluded: duplicates
from the search

(n = 22)
Excluded: Outdated
documents (n=22)

Screening

Initial screening
based on inclusion of
key concepts in title

and abstract 
(n = 33)

Excluded due to lack
of relevance

(n = 75)

Included if: Case on national
sub-national energy system

optimization,
OR method for clustering to
reach required level of detail
is mentioned/used (n = 17)

Included in the
literature review

(n = 21)

Excluded
(n = 16)  

Snowballing from
eligible articles

(n = 4)

Eligibility

Figure A.1: Literature selection

A.1. Literature analysis
In the literature analysis you can find an overview of the relevant content of the selected
documents.The relevant content is based on the sub questions asked in the literature review. Table A.1
shows the references used in the analysis:
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Author
(Frysztacki et al., 2022)
(Lombardi et al., 2020)
(Pickering et al., 2022)
(Colbertaldo et al., 2023)
(Bogdanov et al., 2023)
(Klemm et al., 2023)
(Loustau et al., 2023)
(Patil et al., 2022)
(Schnidrig et al., 2022)
(Aryanpur et al., 2021)
(Frysztacki et al., 2021)
(Hu et al., 2021)
(Fleischer, 2020)
(Kueppers et al., 2020)
(Li et al., 2020)
(Pavičević et al., 2019)
(Rauner et al., 2016)
(Kost et al., 2015)
(Jaya Mabel Rani et al., 2014)
(Pfenninger & Pickering, 2018)
(Tröndle, 2020)

Table A.1: Literature table

Methods found in the literature
This section is dedicated to analyzing the literature based on methods to build high spatial resolution
electricity systems. Aryanpur et al. (2021) shows that heterogeneous areas require more
disaggregation than homogeneous areas, which might only need a single or a small number of model
regions. Research in 2020 applied the so called SPORES approach to the Italian energy system. This
system is divided by taking the country’s 20 political zones and placing them into 6 bidding zones.
SPORES is a method used to find different near-optimal solutions within a given solution space
(Lombardi et al., 2020). Whereas, Colbertaldo et al. (2023) dives into a scenario for Italy for 2050 at a
NUTS-2 resolution or regional level. Other work applied the SPORES approach in and energy system
optimization model to 35 European countries and regionalized these countries according to the
Seventh Framework Programme project e-HIGHWAY 2050 by the European Commission (Pickering et
al., 2022). Here, the high-voltage transmission network is modelled according to the e-highway 2050,
which conducted an analysis of the grid to generate simplified power capacities for connections
between regions. This includes future additional transport capacities. Another example of
regionalization is found in the work of Li et al. (2020), where the demand and supply of the Chinese
energy system are modelled using the 30 provinces. By applying a spatial resolution from community
perspective to a state perspective, Rauner et al. (2016) provided insights to spatial dissonance between
renewable generation and demand in Germany. Kost et al. (2015) improve large-scale optimization
models by integrating renewable generation and renewable potential in different areas, increasing the
geographical resolution for renewable energy deployment. This allows for a more precise assessment
of the impacts on conventional power plants, grid infrastructure, and regional transmission capacity
planning as renewable energy in the system increases. Regarding the Calliope framework, Tröndle
(2020) describes how the Euro-Calliope pre-built model work at three different spatial resolutions,
continent, country and regional whilst accounting for renewable capacities and load at each node.
Whereas the previously presented documents use political boundaries for regionalization, other
researchers try to divide the area of interest into regions based on other characteristics. For example,
Schnidrig et al. (2022) emphasizes the problem to form a global energy strategy due to the significant
differences among regions in demand, generation capacity and renewable potential. The paper uses
k-means clustering to cluster different regions within Canada into groups. Moreover, Frysztacki et al.
(2021) and Hu et al. (2021) also apply k-means clustering for regionalization. Jaya Mabel Rani et al.
(2014) applies a slightly different version, the Fuzzified Particle Swarm k-means clustering. Yet another
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k-means method is found in the work of Loustau et al. (2023) in the form of Gaussian mixture k-means.
The need for high spatial and temporal resolution in finding electricity system designs is often
emphasized in the existing literature. To achieve that, hierarchical clustering is mentioned frequently.
Bogdanov et al. (2023) uses hierarchical clustering for partial regionalization. The results showed no
significant differences compared to other models, meaning that the model is more efficient than the
base model whilst maintaining accuracy. On another note, to design a tool to help planning of
renewable generation sites within a country, Kueppers et al. (2020) made a framework for regionalizing
using hierarchical clustering based on demand, generation and renewable portfolio. They conclude that
this method is indeed more efficient than using political regions. Frysztacki et al. (2022) goes further,
and finds that, based on chosen parameters, hierarchical clustering based on a Brownfield capacity
expansion also performs better than any of the included k-means clustering methods.
Other methods found for clustering generation is per unit, per typical unit and per technology (Pavičević
et al., 2019). Fleischer (2020) applied max-p regions clustering algorithm based on population using
wind, solar and pumped hydro generation and finds that it performed better than regionalizing based on
political boundaries. Patil et al. (2022) takes another approach and advises to push aggregation on a
spatial resolution based on renewable time series until no improvements are made. Afterwards, try to
improve by using higher technological resolutions.
To compare different methods, Klemm et al. (2023) analyzed 12 models with different temporal
resolution, 9 with different technospatial resolutions and 5 combined models. The recommendations
are to run a pre-model to define technical boundaries, apply spatial submodelling on nodes in the
network and to only model each nth day.
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Method Validation

B.1. Comparison of NTC methods using the PyPSA-EUR data

Figure B.1: The NTC between regions using the St. Clair
approximation

Figure B.2: The NTC between regions using an efficiency
per kilometer

B.2. Overview of interregional NTCs using PyPSA-EUR data

Figure B.3: The NTC of interregional lines using the clustered PyPSA-EUR grid data
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Figure B.4: Comparison of interregional NTC

Figure B.4 compares the interregional NTCs produced by the PyPSA cluster data (blue bars) and
TenneT’s official data (orange bars) for a all cross border lines.
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Appendix: Timeseries data

Demand for electricity is based on historic demand and the IP2024 scenarios for 2030. In the future
demand scenarios, demand from other carriers and conversion technologies is neglected. Thus, the
demand does not account for reformers or hydrogen related demand for electricity.
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Figure C.1: Load duration curves electricity
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Figure C.2: Load duration curve gas

Cross border electricity prices are based on historic day-ahead prices from 2023.
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Figure C.3: Price duration curves 2023

Renewable capacity factors are retrieved from Renewables.ninja . This platform offers renewable
capacity factors on a NUTS2 level for many years. For the purpose of this research, the year 2019 is
selected. Within the wind timeseries, renewables.ninja accounts for both onshore and offshore wind
while calculating a capacity factor per NUTS2 region. For rooftop and utility solar capacity factors the
same timeseries is applied.
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Appendix: Cost assumptions

This appendix describes the technologies as provided by the TNO single-node model.

D.1. Included technologies
Technology Short name
Wind Offshore wind_offshore
Wind Onshore wind_onshore
Solar PV Rooftop pv_rooftop
Solar PV Utility pv_utility
Curtailment of electricity curtailment_elc
Biomass Power Plant pp_biomass_standalone
Hard Coal Power Plant pp_hard_coal
Nuclear Generation (Gen 3) pp_nuclear_gen3
Nuclear Small Modular Reactor pp_nuclear_smr
CCGT Gas pp_ccgt_gas
CCGT Gas CCS pp_ccgt_gas_ccs
Gas production fields production_gas_fields
Saltcavern gas storage saltcavern_gas
Import terminal for LNG import_lng_terminal
Battery Storage (Li-ion) bss_liion
HVAC transmission transmission_hvac
HVDC transmission transmission_hvdc
Gas pipelines free_gas_transmission
Import interconnector for NL import_elc_interconnector
Export interconnector for NL export_elc_interconnector

Table D.1: Technologies and their short names

D.2. Overview of cost assumptions
Different technologies have other levels of dispatch flexibility. Some can be freely adjusted across their
entire operational range, whereas others must respect a minimum output threshold. Moreover, privately
owned photovoltaic (PV) installations typically remain uncontrolled. To capture these differing control
requirements, the following categories are introduced:

• Must-run: Follows its predefined generation profile.

• Curtailed: Follows its profile, but output can be curtailed if needed.

• Minimum-run: Operates above a defined threshold or does not run at all.

• Free-run: Operates without dispatch constraints.
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• Cyclic-run: Applies to storage: the year-end energy level must match the year’s starting level.

• Disabled: Excluded from the model entirely.

Table D.2: Cost data and lifetime of technologies

Tech In Out Eff (%) CAPEX (M€/GW) OPEX (M€/GW/yr) IR (%) Lifetime (yr) Dispatch Ref
Offshore wind turbines – Electricity 100 3,487 110 10 25 Curtailed A [1]
Onshore wind turbines – Electricity 100 1,572 33 10 25 Curtailed A [1]
Solar PV - rooftop – Electricity 100 1,049 12 0 25 Must B [1]
Solar PV - utility – Electricity 100 478 8 10 25 Curtailed B [1]
Gas fired plants (CCGT + CCS) Natural gas Electricity 60 2,853 41 10 25 Free C [1]
Open Cycle Gas Turbine Natural gas Electricity 34 659 12.8 10 25 Free [1]
Hard coal power plant Coal Electricity 39.5 2,145.6 51.36 10 40 Free [1]
Biomass standalone Biomass Electricity 42 2,000 48 10 25 Free D [1]
Waste incineration Waste Electricity 42 2,000 48 10 25 Disabled D [1]
Nuclear (GEN 3) Uranium Electricity 32 9,571 165 10 60 Must E [1]
Small Modular Reactor Uranium Electricity 66 8,822 129 10 40 Free E [1]
Battery storage (Li-ion) Electricity Electricity 92 352 9.0 10 10 Cyclic F [1]
Gas storage (salt caverns) Natural gas Natural gas 95 88.4 4.74 10 30 Cyclic [2]

Table D.3: Cost data for additional technologies and emissions management

Tech Out CAPEX OPEX Var OPEX Comment Ref
LNG import Natural gas 946 M€/GW 28.4 M€/GW/yr 50 €/MWh TNO assumptions
Emissions ETS allowances - - - 300 EUR/ton CO2 TNO assumptions
ETS penalty - - - 500 EUR/ton CO2 TNO assumptions
Load shedding Electricity/gas - - 8000 EUR/MWh TNO assumptions
Imbalance market downregulation (curtailment) Electricity - - 5000 EUR/MWh TNO assumptions

[1] The global and national energy systems techno-economic (GNESTE) database (Hatton et al., 2024)
[2] TNO internal data
A: CAPEX and OPEX values are obtained from a database study, representing average costs for
onshore and offshore wind technologies during the period 2020–2024.
B: Data for CAPEX and OPEX are sourced from the TYNDP 2022 report, specifically the DE scenario
for 2025. Rooftop solar PV assumes private financing (0% interest rate).
C: The carbon capture efficiency is set at 85%
D: Specific data for biomass and waste incineration plants is unavailable, estimated values are adapted
from coal plants for the period 2020–2024.
E: Cost estimates for this category are applied to the 2020–2024 timeframe.
F: CAPEX estimates are calculated as the median of available projections for lithium-ion batteries in
2050. OPEX is derived as 2.55% of CAPEX annually, based on NREL data. Efficiency is from the DEA
dataset.
Fuel costs:
[1] Fuel costs coal: 14.8e-3 MEUR/GWh
[2] Fuel costs gasfields: 17e-3 MEUR/GWh
[3] Fuel costs LNG: 38e-3 MEUR/GWh, which is equal to the recent avg TTF price 2023 - 2024
[4] Uranium fuel price 69 EUR/kg assuming 3.456e6 MJ/kg

D.3. Zero-interest assumption
Immediately, the zero-interest assumption for rooftop PV stands out. Table D.4 illustrates a timeline that
shows the CAPEX, OPEX, expected generation for a capacity of 1 GW of rooftop PV. Using Excel,
these timelines are built for rooftop PV (including and excluding 10% interest), Utility PV and onshore
wind to calculate the Net Present Value (NPV) and the Levelized Cost Of Electricity (LCOE). In the
LCOE estimates, average capacity factors for 2030 from the Joint Research Center (JRC) are used
(JRC, 2014). The goal is to find what the impact of the zero-interest assumption is. LCOE is equal to
the NPV of the total costs of the generation technology being deployed divided by the NPV of the total
generation. The NPV is calculated using the timeline, where the NPV is equal to:

NPV =
𝑇

∑
𝑡=0

𝐶𝑡
(1 + 𝑟)𝑡 + 𝐶0
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Year 0 1 2 … 23 24 25
Generation 0 2000 2000 … 2000 2000 2000
Capex 1049 0 0 … 0 0 0
Opex 0 12 12 … 12 12 12

Table D.4: Example of timeline used to calculate NPV and LCOE and rooftop PV

where: 𝐶𝑡 is the costs in year 𝑡, 𝑟 is the interest rate and 𝑇 is the total period.
The NPV of OPEX and CAPEX is calculated using the formula above. The NPV of generation in year 𝑡
is calculated using the same formula, but instead of 𝐶𝑡 the dividend is equal to the generation in year 𝑡
and 𝐶0 is changed for the generation in year 0. The LCOE is equal to the sum of the NPV of OPEX and
CAPEX divided by the NPV of the generation. The resulting LCOE rooftop PV (including and excluding
10% interest), Utility PV and onshore wind are shown in Table D.5.

Technology LCOE (M€/GWh)
Rooftop PV (excluding interest) 0.039
Rooftop PV (including interest) 0.091
Onshore Wind 0.067
Utility PV 0.043

Table D.5: LCOE of renewable technologies.

D.3.1. Cross check with Euro-Calliope cost assumptions
Interest is 7,3% and lifetime 25 years. In terms of the Capex and Opex, Euro-Calliope, by default uses
the values from the JRC for 2050 (JRC, 2014). The LCOE calculations in Table D.6 are based on the
same average capacity factor used in Table D.5.

Technology CAPEX [M€/GW] OPEX[M€/GW/yr] LCOE (M€/GWh)
Rooftop PV 880.0 17.60 0.068
Onshore Wind 1,100.0 18.70 0.038
Utility PV 520.0 8.84 0.039

Table D.6: Capital and operational costs of renewable energy technologies Euro-Calliope default.
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Appendix: Historic NUTS2 capacities

Table E.1: Technologies and capacity sources

Technology Source

Wind Offshore Opgesteld vermogen as per the (Rijksoverheid, 2022)

Wind Onshore Opgesteld vermogen as per the Regionale klimaatmonitor (RVO,
2023)

Solar PV Rooftop Opgesteld vermogen per NUTS2 region (CBS, 2024)

Solar PV Utility Opgesteld vermogen per NUTS2 region (CBS, 2024)

Biomass Power Plant Estimate based on national installed capacity (ENTSO-E, 2024) and
the generation per region (Centraal Bureau voor de Statistiek, 2023)

Hard Coal Power Plant Data collected from the global power plant database (World Re-
source Institute, 2024), filtered for the Netherlands and for primary
fuel Coal.

Nuclear Generation (Gen 3) Single-node model

Nuclear Small Modular Reactor -

CCGT Gas Retrieved from the capacity per production unit from the ENTSO-E
Transparency Platform (ENTSO-E, 2023)

CCGT Gas CCS -

Gas production fields Single-node model

Saltcavern gas storage Single-node model

Import terminal for LNG Single-node model

Battery Storage (Li-ion) Energy Storage NL

Import interconnector for NL Single-node model

Export interconnector for NL Single-node model
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Appendix: Model formulation

In Figure F.1 you can see the formulation of the objective in the base case, where the focus is on
minimizing the monetary costs. Hence, monetary has the value 1 whilst the other cost classes are
assigned a value of 0.

Figure F.1: Optimization formulation - base.

The code snippet in Figure F.2 shows the formulation of the objective function in the model runs that
minimize line loading. This set up is complemented with a total system cost constraint so that the
model looks for designs that limit line loading whilst staying within the near cost optimal solution space.

Figure F.2: Optimization formulation - line loading.

The line load cost is defined per link as cost per produced GW times one over the line’s NTC. Figure
F.3 shows an example.

Figure F.3: Example of the definition of the line load cost.

Figure F.4 gives an example of the formulation of the total system cost constraints per the Central
scenarios, limiting the additional costs when minimizing the line loading to 10% of the costs in the cost
optimal solution.
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Figure F.4: System cost constraints for line loading optimization runs.



G
Formulas inductance and capacitance

The characteristic impedance of a line is calculated with the following formula:

𝑍0,𝑖 = √
𝐿𝑖
𝐶𝑖

(G.1)

With the data in the Static Grid model and the PyPSA, it is possible to calculate the inductance, using
this formula:

𝐿𝑖 =
2 ⋅ 𝑈𝑖
𝐼2𝑖

(G.2)

In high-voltage transmission systems, the capacitance per unit length is influenced by the spacing
between conductors and their physical properties. For long parallel transmission lines, the capacitance
per unit length (𝐶) can be determined using an expression derived from Gauss’s Law and electrostatic
principles:

𝐶 = 2𝜋𝜀0
ln(𝑑/𝑟) (G.3)

where:

• 𝐶 represents the capacitance per unit length, measured in farads per meter (F/m),

• 𝜀0 = 8.85 × 10−12 F/m is the permittivity of free space,

• 𝑑 denotes the distance between conductors in meters, and

• 𝑟 is the radius of each conductor in meters.
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Appendix: Model validation

Figure H.1 and Figure H.2 show the monghtly generation per technology for the PyPSA-network and
the TenneT network respectively. The network topologies results in an almost identical generation mix.
It can be concluded that on an aggregated level (summed over all the time steps and all the locations)
the network topology hardly impacts the generation mix of the mult-node model.
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Figure H.1: Monthly generation per technology PyPSA network
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Figure H.2: Monthly generation per technology TenneT network
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Figure H.3: Historic monthly generation per technology 2023

In terms of gas production, the TenneT and PyPSA models have no production during the largest
renewable hour. Thus, from this perspective they are similar during the max renewable hour. However,
in the highest load hour, the output is different as shown in Figure H.4.
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Figure H.4: Gas generation during largest load hour
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Appendix: Results scenarios analysis

I.1. Installed capacity in the cost optimum
Technology Central ND Flex ND Central KA Flex KA Central IA Flex IA
BESS 13.0 (+4671%) 12.0 (+4309%) 13.0 (+4671%) 12.2 (+4352%) 13.0 (+4671%) 10.6 (+3782%)
Gas CCGT 19.7 (+35.1%) 16.9 (+16.3%) 20.9 (+43.5%) 18.1 (+24.5%) 15.6 (+6.9%) 14.6 (+0.0%)
Rooftop PV 49.0 (+352%) 40.0 (+268%) 45.9 (+324%) 41.2 (+280%) 35.1 (+224%) 28.1 (+159%)
Utility PV 15.8 (+17.6%) 18.2 (+35.2%) 13.4 (+0.0%) 16.0 (+19.3%) 18.2 (+35.4%) 13.4 (+0.0%)
Onshore wind 7.6 (+8.7%) 7.6 (+9.0%) 7.0 (+0.0%) 7.0 (+0.0%) 7.0 (+0.0%) 7.0 (+0.0%)

Table I.1: Installed capacities by technology (in GW) for each scenario with percentage increase compared to historic capacity.
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Figure I.1: Installed capacity per technology and emission per demand scenario in the cost-optimization.

Figure I.2 shows that there is almost no variation in terms of land use between the Central and Flex
scenarios. Across demand scenarios, the differences are also relatively small. In Overijssel and
Gelderland the required land use does decrease in scenarios with smaller demands.
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Figure I.2: Land use of renewable technologies across scenarios

I.2. Line load in the cost optimum
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Figure I.3: Average line loading for ND scenarios.
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Figure I.4: Average line loading for IA scenarios.

Line (from, to) Central ND Central KA Central IA Flex ND Flex KA Flex IA
(NL11, NL12) 212 39 33 70 114 262
(NL11, NL13) 537 280 336 863 493 698
(NL12, NL23) 45 25 2 9 77 –
(NL13, NL21) 225 264 208 27 167 –
(NL21, NL22) 23 20 4 44 89 –
(NL21, NL23) 313 352 298 270 380 319
(NL22, NL41) 122 99 117 114 81 195
(NL23, NL32) 720 934 1406 550 844 973
(NL31, NL32) 7 74 504 1 1 45
(NL31, NL33) 634 442 629 542 395 –
(NL33, NL41) 3426 3850 3256 3150 3942 2620
(NL34, NL41) 627 444 160 759 234 395
(NL41, NL42) – – – 3 3 –

Table I.2: Overloaded line hours per line pair across six scenarios.

I.3. Installed capacity in the line load optimum
Technology Central ND Flex ND Central IA Flex IA Central KA Flex KA
BESS 0.0 11.3 0.0 -22.0 0.0 -5.0
Gas CCGT 7.0 6.4 9.9 13.3 5.7 16.0
Rooftop PV -15.6 -8.8 -10.7 -10.8 -16.8 -22.9
Utility PV 27.4 11.3 -0.3 0.0 8.9 1.5
Onshore wind -8.1 -1.8 0.0 0.0 0.0 0.0

Table I.3: Percentage change in installed capacity per technology compared to the cost-optimal solutions.

Scenario Import Gas BESS Onshore Wind Utility PV Rooftop PV
Central ND 24.4% 0.0% 17.6% -11.6% 18.2% -16.0%
Flex ND 0.0% 0.0% 59.9% -7.1% -4.2% -8.8%
Central KA 78.7% -4.2% 14.4% -1.9% 2.3% -17.1%
Flex KA 45.7% 2.1% 13.8% -3.3% -9.2% -22.8%
Central IA 68.2% -8.6% 9.3% -1.4% -6.6% -11.1%
Flex IA 42.2% -5.9% 11.9% -3.5% -10.2% -11.2%

Table I.4: Percentage change in technology output compared to base scenario (in TWh).
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Table J.1: Installed PV Rooftop Capacity and Percentage Change from Previous Values

Region Capacity (GW) % Change from Previous
NL11::pv_rooftop 0.45 0.00%
NL12::pv_rooftop 3.09 -5.23%
NL13::pv_rooftop 0.47 0.00%
NL21::pv_rooftop 0.88 -77.22%
NL22::pv_rooftop 7.39 43.49%
NL23::pv_rooftop 1.30 -29.26%
NL31::pv_rooftop 1.07 -79.24%
NL32::pv_rooftop 7.73 50.02%
NL33::pv_rooftop 7.14 38.58%
NL34::pv_rooftop 4.80 -6.75%
NL41::pv_rooftop 5.36 4.00%
NL42::pv_rooftop 6.89 33.75%

Scenario Total
costs (BN.

EUR)

Emissions
(Mton
CO2)

Installed
BESS
(GW)

Avg. line
load

Congested
line hours

Capacity
factor
BESS

Imports
(TWh)

Central KA 41.102 15.59 13.02 19.9% 7.195 9.7% 7.30
-0.03% -0.61% 0.00% 0.67% 5.45% 0.08% -0.49%

Table J.2: System performance indicators for the Central KA scenario, including percentage change from stricter PV design.
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Figure J.1: The land use in the Central KA scenario under strict and less strict rooftop PV scenarios.

Scenario Total costs
(BN. EUR)

Emissions
(Mton CO2)

Installed
BESS (GW)

Congested
line hours

Capacity
factor BESS

Imports
(TWh)

Central ND 42.43
(-0.34%)

17.82
(0.00%)

13.02 5.220
(24.25%)

9.3% 12.70

Central KA 40.96
(-0.38%)

15.73
(-0.26%)

13.02 5.246
(23.11%)

9.4% 7.09

Central IA 39.36
(-0.41%)

13.00
(1.32%)

13.02 6.090
(12.41%)

10.2% 8.58

Flex ND 41.17
(-0.34%)

17.82
(0.00%)

11.25 4.611
(27.98%)

5.2% 21.02

Flex KA 39.72
(-0.45%)

17.41
(-2.49%)

10.45 4.552
(33.26%)

6.1% 9.26

Flex IA 38.08
(-0.24%)

16.21
(-1.84%)

7.45 5.244
(15.09%)

5.7% 10.61

Table J.3: Scenario overview with transmission expansion including total costs, emissions, storage, grid congestion, and imports.
Reductions in costs, emissions, and congestion are shown in brackets.
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