
 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 

Mo A11
Monotone Multiscale Finite Volume Method for
Flow in Heterogeneous Porous Media
Y. Wang (Stanford University), H. Hajibeygi* (Delft University of
Technology) & H.A. Tchelepi (Stanford University)

SUMMARY
The MultiScale Finite-Volume (MSFV) method is known to produce non-monotone solutions. The causes
of the non-monotone solutions are identified and connected to the local flux across the boundaries of
primal coarse cells induced by the basis functions. We propose a monotone MSFV (m-MSFV) method
based on a local stencil-fix that guarantees monotonicity of the coarse-scale operator, and thus the
resulting approximate fine-scale solution. Detection of non-physical transmissibility coefficients that lead
to non-monotone solutions is achieved using local information only and is performed algebraically. For
these `critical' primal coarse-grid interfaces, a monotone local flux approximation, specifically, a Two-
Point Flux Approximation (TPFA), is employed. Alternatively, a local linear boundary condition is used
for the basis functions to reduce the degree of non-monotonicity. The local nature of the two strategies
allows for ensuring monotonicity in local sub-regions, where the non-physical transmissibility occurs. For
practical applications, an adaptive approach based on normalized positive off-diagonal coarse-scale
transmissibility coefficients is developed. Based on the histogram of these normalized coefficients, one
can remove the large peaks by applying the proposed modifications only for a small fraction of the primal
coarse grids. Though the m-MSFV approach can guarantee monotonicity of the solutions to any desired
level, numerical results illustrate that employing the m-MSFV modifications only for a small fraction of
the domain can significantly reduce the non-monotonicity of the conservative MSFV solutions.
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 1. Introduction

Increasing demand for efficient and accurate simulation of multiphase flow in large-scale heterogeneous

porous media has motivated the development and extension of the MultiScale Finite Volume (MSFV)

method. MSFV, which was first proposed for heterogeneous elliptic pressure equations by Jenny et al.

(2003), can be viewed as a locally conservative extension of the MultiScale Finite Element (MSFE)

method by Hou and Wu (1997). Recent developments of the MSFV method allow for compositional

effects and complex wells, making it a promising approach for the next-generation of reservoir flow

simulators (Jenny et al. (2006); Lee et al. (2008); Zhou et al. (2011); Zhou and Tchelepi (2008); Ha-

jibeygi and Jenny (2009); Hajibeygi and Tchelepi (2014); Hajibeygi et al. (2011); Wolfsteiner et al.

(2006); Jenny and Lunati (2009); Lee et al. (2009); Hajibeygi et al. (2012)).

Compared with MSFE, the MSFV method has the advantage of being locally mass conservative. This ad-

vantage, however, comes with strong sensitivity to large contrasts in the local permeability and anisotropy

in the transmissibility. To improve the quality of the reconstructed fine-scale solution, iterative MSFV

(i-MSFV) strategies have been developed (Hajibeygi et al. (2008); Zhou and Tchelepi (2012); Wang

et al. (2014)). In the development of the Algebraic Multiscale Solver (AMS) by Wang et al. (2014),

the coarse-scale symmetric-positive-definite system of MSFE is used to reduce the error norm to arbi-

trarily small values, while MSFV is employed only at the final stage to obtain a conservative velocity

field. Having a velocity field that is conservative is a critical requirement for solving the nonlinear

transport equations accurately and efficiently. Moreover, local mass conservation allows for adaptive

computations and the use of relatively loose tolerances as a function of time (Hajibeygi et al. (2012,

2008); Hajibeygi and Jenny (2011)). Thus, in the context of a multiscale linear solver, the final step

of using MSFV to ensure local conservation must be performed in a manner that minmizes the degree

of nonmonotonicity in the reconstructed fine-scale pressure solution. To improve the quality of the

MSFV solutions for slightly heterogeneous and grid-aligned anisotropic coefficients, a Compact-MSFV

(C-MSFV) operator was proposed by Hesse et al. (2008). While the C-MSFV was effective for many

grid-aligned anisotropic problems, it does not overcome the problem with nonmonotonicity for highly

heterogeneous anisotropic fields. For heterogeneous problems, some improvements were observed by

changing the Boundary Conditions (BC) for all local problems (Lunati and Jenny (2007)).

In this work, the cause of the non-physical peaks associated with the MSFV operator for highly het-

erogeneous problems is identified clearly and resolved. The peaks are associated with the discretization

stencil of coarse nodes that are surrounded by low-permeability regions. It is shown that for these critical

coarse nodes, integration of the flux induced by the dual basis functions can result in negative transmis-

sibilities for the coarse-scale pressure system. A monotone MSFV (m-MSFV) method is devised on

the basis of local stencil-fix approach, which guarantees the monotonicity of the MSFV solution. The

critical interfaces with non-physical transmissibility values for the coarse-scale system are detected alge-

braically. Then, a local Two-Point-Flux-Approximation (TPFA) scheme is used to calculate the coarse-

scale entries for the critical coarse faces only. In addition, the Linear Boundary Condition (LBC) can be

employed for the basis function calculations of the critical regions. The LBC-based m-MSFV reduces

the norm of non-physical peaks (reducing nonmonotonicity). In contrast to the TPFA-based approach,

however, the LBC-based m-MSFV cannot remove all the negative (non-physical) transmissibilies from

the coarse-scale system.

The local nature of m-MSFV allows it to be employed adaptively in space and time. In this paper,

a histogram of the critical interfaces is calculated based on a normalized value of the non-physical

transmissibility coefficients. Then, based on a threshold value, only critical interfaces with large values

are detected and fixed. This threshold-based approach allows for minimizing the trade-off between the

accuracy and monotonicity of the solutions.

The paper proceeds as follows. After a short review of the MSFV method, in Section 2, the MSFV



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 coarse-scale operator (system) is described in detail. In Section 3, the m-MSFV method is presented.

Numerical results are shown in Section 4, followed by Section 5 where the paper is concluded.

2. Multiscale Finite Volume Method

The elliptic equation for pressure, p, can be written as

−∇ · (λλλ ·∇p) = q, (1)

where the highly heterogeneous mobility (assumed diagonal) tensor and the source terms are denoted

with λλλ and q, respectively. The problem (1) is well-posed for a d-dimensioanl computational domain

Ω ⊂ ℜd , subject to proper boundary conditions at ∂Ω ⊂ ℜd−1. The discrete form of (1) at the given fine-

scale (denoted here on by superscript f ), where the coefficients λλλ are computed using a finite-volume

Two-Point-Flux-Approximation (TPFA) scheme (Aziz and Settari (2002)), can be written as

A f p f = q f , (2)

where entries of the transmissibility matrix A f are a f
i j|i�= j =− λ̄λλ i j·�ni j

δxi j
·�ni jδAi j. Here, λ̄λλ i j, δAi j and δxi j are

the harmonically averaged permeability, differential element cross section area and the distance between

the computational nodes i and j, respectively. Also, the normal unit vector �ni j points out of volume i
at its cross section with cell j. Note that a f

i j = a f
ji and a f

ii = −∑Nf
j=1, j �=i a f

i j, where Nf is the number of

fine-scale finite volumes, also hold. In our implementation, the positive definite mobility tensor leads to

non-positive off-diagonal (a f
i j|i�= j ≤ 0) and non-negative diagonal (a f

ii ≥ 0) entries for the transmissibility

matrix.

The MSFV method employs primal- (Ω̆c) and dual- (Ω̃h) coarse grids superimposed on the given fine

grid (Fig. 1). The fine-scale pressure field is constructed as follows:

p f ≈ pMS =
Nc

∑
k=1

Φk p̆k, (3)

where Nc represents the number of coarse-scale control volumes. The locally computed basis functions

Φk are used to prolong the coarse-scale solution p̆k onto the fine-scale resolution. Basis functions are first

computed on dual-coarse cells, Ω̃h, and then assembled for all dual cells, Nd , i.e., Φk = ∑Nd
h=1 Φh

k . Note

that the precomputed correction term at the fine-scale, Ψ, can be used to improve this approximation,

leading to p f ≈ p′ = pMS +Ψ. The correction term is an independent stage to improve the multiscale

solution, pMS. Note that the correction term does not modify the coarse-scale system matrix; hence, we

do not consider it in our analysis. For more detailed analysis of the correction term, we refer to Wang

et al. (2014).

The basis functions are local solutions of the governing equation (1), i.e.,

−∇ · (λλλ ·∇Φh
k) = 0 on Ω̃h (4)

Φh
k(xxxi) = δki ∀xxxi, (5)

where δki is the Dirac delta function, i.e., δki|k=i = 1 and δki|k �=i = 0. Equation (4) subject to (5) at the

corner vertices is solvable if a proper boundary condition is imposed on ∂ Ω̃h. The reduced-dimensional

problem condition can be stated as

−∇⊥ · (λλλ ·∇Φh
k)⊥ = 0 at ∂ Ω̃h, (6)

which has been widely used in the multiscale literature. The subscript ⊥ denotes the normal projection

(operator or vector) with respect to the boundary. Alternatively, if one ignores the mobility variation

along the boundary, i.e., λλλ = III at ∂ Ω̃h, the formulation reduces to the Linear Boundary Condition (LBC).
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Figure 1 Illustration of the MSFV primal- and dual-coarse grids imposed on the given 2D computational
domain Ω. Zoomed on the right and the left, a primal-coarse Ω̆k (coarse control volume) and a dual-
coarse Ω̃h (local domain) cells are shown, respectively. A coarse node, xxxk, here chosen the central cell
inside Ω̆k, is also shown. Boundary cells of local domains (dual-coarse cells) are also highlighted in
gray.
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Figure 2 Illustration of the basis function Φh
1 solved on dual-coarse cell Ω̃h subject to reduced-

dimensional boundary condition. Note that the basis functions are always monotone and satisfy
0 ≤ Φh

k ≤ 1, provided that the mobility tensor λλλ is positive definite.

Note that the basis functions computed with either of the two local boundary conditions are monotone

with numerical values between 0 and 1, i.e., 0 ≤ Φk(x)≤ 1 ∀x ∈ Ω,k = {1,2, ...,Nc}, provided that the

fine-scale mobility coefficients λλλ are positive definite. Therefore, in the superposition pMS = ∑Φk p̆k,

pMS would violate the monotonicity property if and only if the p̆k violates this property. Hence, all the

non-physical peaks are associated with non-physical p̆k values. This important fact guides us to the

cause of the non-physical peaks in the MSFV solution, pMS. That is, the properties of the coarse-scale

system control the monotonicity behavior.

The superposition expression is substituted into Eq (1), and integrated over coarse-control volume

boundaries. After applying the Gauss integral rule, one obtains the coarse-scale system as

Ac p̆ =
∫

Ω̆
q dΩ, (7)

where the coarse-scale transmissibility matrix entries ac
i j are

ac
i j =−

∫
∂ Ω̆i

(λλλ ·∇Φ j) ·�ni dΓ. (8)

Here, �ni is the unit normal vector pointing out of the control volume (coarse-cell) i. Note that Φ j =

∑Nd
h=1 Φh

j . Mass conservation leads to

ac
ii =−

Nc

∑
j=1,i�= j

ac
i j =−

∫
∂ Ω̆i

(λλλ ·∇Φi) ·�ni dΓ, (9)
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Figure 3 (left): Illustration of a 3 × 3 coarse- and 21× 21 fine- grid domain. The coarse cell i is
highlighted in red, neighboring k and j on its South and South-West sides. Also shown are the induced
fluxes by the Φ j (middle) and Φk (right). Note that only the overlapping part of the basis functions are
plotted, and that for simplicity of the illustration a homogeneous problem is used.

since ∑Nc
j=1 Φh

j = 1. A coarse-scale system that has positive-definite mobility tensors at the fine scale

is expected to yield negative off-diagonal, ac
i j ≤ 0, and positive diagonal, ac

ii ≥ 0 values. Note that the

coarse-scale system in MSFV is not guaranteed to be symmetric, i.e.,

ac
i j =−

∫
∂ Ω̆i

(λλλ ·∇Φ j) ·�ni dΓ �= ac
ji =−

∫
∂ Ω̆ j

(λλλ ·∇Φi) ·�n j dΓ, (10)

since the coefficients are integrals of different functions over different control volume boundaries. This

is in contrast to the symmetric-positive-definite MSFE coarse-scale operator.

Next, we study the integrals (8) and investigate the situations that may violate this condition.

Coarse-scale Transmissibility Coefficients

In order to study the coarse-scale transmissibility coefficients, a 3× 3 coarse-grid problem in 2D is

considered in Fig. 3. We study the transmissibility coefficients between cell i and two of its neighboring

cells j and k.

For the South-West neighboring cell, i.e., j, the flux induced by the basis function Φ j, ac
i j, satisfies

the physical property of ac
i j ≤ 0 due to the fact that the both boundary segments of control volume i

experience incoming fluxes. Note that the total induced flux (for any heterogeneous field) from j to i
needs to be nonnegative.

On the other hand, the fluxes induced by the basis function associated with cell k, Φk, must be computed

along many (four in 2D) overlapping segments. For cell i, some of these fluxes are incoming and some

others are outgoing. For many heterogeneous cases, the net incoming flux to the control volume i is

positive, which would lead to a negative off-diagonal entry, which is desirable. Figure 4 shows the SPE

10 bottom layer permeability field which consists of 220×60 fine cells. The MSFV coarse grid is also

shown in the figure for a coarsening ratio of 11×5.

Figure 5 shows an extracted rectangular subdomain from Fig. 4, Ω̃h1, between (88,5)≤ (x,y)≤ (121,20).
The location of this extracted domain is highlighted in Fig. 4. Figure 5 also shows that the central coarse

cell (10,3) of this subdomain has a net incoming flux induced by the basis function of its southern

neighboring cell (10,2), together with the interpolated pressure field only for the associated local do-

main, i.e., pMS in Ω̃h1. To obtain this interpolated solution, a test case is solved subject to no-flow

Neumann condition on all boundaries and Dirichlet condition of p = 1 and p = 0 at fine cells (1,60) and
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Figure 4 Logarithm of permeability field for the SPE 10 bottom layer (Christie and Blunt (2001)). The
domain consists of 220×60 fine- (not shown) and 20×12 coarse- (shown) grid cells. Two subdomains
of the size 3×3 coarse cells are highlighted.
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Figure 5 (top-left): Logarithm of permeability field with coarse grid and coarse nodes, extracted from
Fig 4. (top-right): part of the basis function Φk overlapping with coarse cell i (coarse cell (10,3) in Fig.
4). (bottom-left): basis function Φi; (bottom-right): superimposed MSFV pressure field, pMS = ∑Φk p̆k,
obtained for Ωh1.

(220,1), respectively. Note that due to the positive diagonal and negative off-diagonal coarse-system

entries corresponding to this local subregion, the interpolated solution is physical.

If for a heterogeneous field, the net incoming flux to the cell i is negative, then positive off-diagonal

entries ac
ik are computed. This situation happens when the coarse node xxxi lies in a low-permeability

region, compared with the other boundary cells between i and k. There are other scenarios that would

cause the same situation, e.g., if a shale layer (with very low permeability) crosses the boundary cells

between i and k. Note that in such cases, the reduced-problem local boundary condition, between the

cells i and k, would lead to a solution with a constant value of one (since the Dirichlet condition at

node k is not effective). This constant unity solution, which is then used as a Dirichlet condition for the

internal cells, leads to a non-physical outgoing induced flux from the control volume. An example of

such a case is illustrated in Fig. 6, where the domain Ωh2 is extracted again from (and highlighted in)

Fig. 4 for cells belonging to (33,20) ≤ (x,y) ≤ (66,35) interval. The integral incoming flux induced

by Φk over the faces of the control volume i is negative, which leads to a positive off-diagonal value of

ac
ik = 222.5 for the coarse-scale system. The total outgoing fluxes induced by the basis function of i, i.e.,
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Figure 6 (top-left): Logarithm of permeability field with coarse grid and coarse nodes, extracted from
Fig 4, Ωh2. (top-right): part of the basis function Φk overlapping with coarse cell i (coarse cell (5,6)
in Fig. 4). (bottom-left): basis function Φi; (bottom-right): superimposed MSFV pressure field, pMS =

∑Φk p̆k, obtained for Ωh2. Note that a non-physical positive off-diagonal value of ac
ik = 222.5 and small

positive value of ac
ii = 0.65 are calculated for coarse-system entries, which also clearly shows the i-th

coarse-system row is not diagonally dominant.

Φi, over its own control volume is too small (ac
ii = 0.65), which indicates that the corresponding row

in the coarse-scale system is not diagonally dominant. This is closely related to the fact that the coarse

node lies in a region with very low permeabilities (blue contour plot in Fig. 6). Note that the other cells

(especially the boundary cells) have higher permeability values. As a result, the superimposed MSFV

solution entails non-physical peaks (as shown in Fig. 6).

Figure. 7, which is for the SPE 10 bottom layer, indicates that the original MSFV strategy leads to non-

physical solutions at several locations. From this figure, it is clear that the peaks are located in regions

with high contrasts in the permeability between the neighboring cells. In the next section, we describe a

monotone MSFV method.

3. Monotone MSFV (m-MSFV) Method

In this section, to ensure the monotonicity of the MSFV solution, two approaches are proposed. The first

one is a local TPFA approach, which automatically detects the interfaces with non-physical transmis-

sibility coefficients for the coarse-scale system. Only for these critical coarse-scale interfaces, a local

stencil-fix is employed, where the more stable TPFA stencil is used to calculate the connectivity of the

adjacent cells. The second approach is based on employing a Linear Boundary Condition (LBC) to solve

the basis functions. Similarly to the local TPFA approach, after detecting the critical coarse-scale in-

terfaces, a LBC is locally applied for the dual-coarse cell boundaries perpenticular to the critical coarse

control volume interfaces, while the reduced boundary condition is still used for the other interfaces.

Local TPFA approach

This approach is based on local utilization of a physical flux calculation only for critical faces to ensure

monotonicity of the MSFV solution. First, the coarse cell interfaces with negative transmissibility val-
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Figure 7 Fine-scale reference (left) and MSFV (right) solutions for the SPE 10 bottom layer hetero-
geneous test case. There exist 220 × 60 fine- and 20 × 12 coarse- grid cells. Note that the MSFV
superimposed solution entails several non-physical peaks. The permeability field is also partly shown in
the plots under the pressure solution.

ues, i.e., ac
ik �≤ 0, are detected. Then, instead of using the basis functions to provide the ac

ik values with

Eq. (8), the transmissibility field between the cell i and k are calculated with TPFA which guarantees

that ac
ik ≤ 0. Figure 8 shows the highlighted pink region used to obtain an effective transmissibility

coefficient at the interface between i and k. The procedure to calculate TPFA-based ac
ik is as follows.

First, harmonically averaged transmissibility factors among columns of the highlighted pink cells are

calculated. Then, the values are summed to compute ac
ik. To ensure conservation, the symmetric entry

ac
ki is also updated with the same value as for the ac

ik. Here, the new coarse-scale transmissibilities for

the critial faces is computed based on averaging the fine-scale permeability field. Other options such as

flow-based upscaling are also possible and can be incorporated into our monotone strategy. In this paper,

we focus on our permeability-based strategy. In fact, a slightly positive value ac
i j does not necessarily

lead to non-monotone solutions, and only the ac
i j with relatively large positive values matter. Thus, only

those critical ac
i j have to be modified. In order to quantify the critical ac

i j, an indicator ηi j for each positive

off-diagonal entry ac
i j of the coarse-scale coefficients matrix Ac is used. We defined ηi j = ac

i j/ωi, where

ωi represents the maximum absolute value of all the negative off-diagonal ac
i j in row i. The coarse node

with an interface with ηi j > ε is considered critical, where ε is a user-specified threshold value. Then,

all the neighbouring interfaces associated with the critical coarse node are replaced by TPFA stencils.

Algorithm 1 summarizes how the local TPFA approach is integrated in the MSFV procedure.

Local linear BC approach

In addition to the local TPFA approach, the non-monotonicity of the MSFV pressure solution can be

mitigated by locally using a linear BC instead of the reduced BC. For this local linear BC approach, once

the critical interface (i.e., the one with ηi j > ε) is detected, a linear BC is used for the corresponding

dual coarse grid boundary perpenticular to the detected interface. For the remaining boundaries, the

reduced BC is still used. Then, the basis functions affected by the linear BC are recomputed, and the

coarse-scale system is reconstructed. Afterwards, the fine-scale solution is obtained by interplating the

coarse-scale solution with the modified basis functions. Finally, the conservative fine-scale velocity field

can be constructed by solving local problems with Neumann BC.

The local TPFA approach can guarantees monotonicity of the solution, since the TPFA flux is used

over the coarse interfaces. The local linear BC approach can reduce the degree of non-monotonicity;
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Figure 8 Automatically detected critical interface (shown in bold red) where ac
ik �≤ 0. The highlighted

region with a pink rectangle shows the local domain, where the transmissibility is calculated using
summation of harmonically averaged values to replace with ac

ik and ac
ki.

Figure 9 Critical coarse node i and its neighboring faces Fi j (indicated by red solid lines) and edges
Ei j (indicated by yellow dash lines), j = 1,2,3,4 for 2D domain. The black lines indicate the coarse
volumes.
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 Algorithm 1 local TPFA approach integrated with MSFV classical procedure

1: Construct coarse and dual-coarse grids

2: Compute basis functions Φi and, if needed, correction terms Ψ
3: Construct coarse-scale system, Eq. (7)

4: Specify a threshold value ε
5: for i = 1 to Nc do
6: if ηi j > ε then
7: Cancel the coarse-scale flux through the faces Fi j, j = 1,2,3,4 as illustrated in Fig. 9

8: Calculate TPFA transimissibilities for the faces Fi j as T c
i j

9: Use TPFA transmissibilities for these faces:

10: ac
i j ← ac

i j −T c
i j

11: ac
ii ← ac

ii +T c
i j

12: ac
ji ← ac

ji −T c
i j

13: ac
j j ← ac

j j +T c
i j

14: end if
15: end for
16: Solve this modified coarse-scale system

17: Obtain prolongated solution by Eq. (3)

18: Reconstruct conservative fine-scale velocity field, account for the critical interfaces consistently

however, it cannot guarantee a monotone solution. In addition, the choice of the threshold value, ε , is a

trade-off between the computational effort and the degree of monotonicity in the pressure field.

4. Numerical Results

In this section, several test problems are used to illustrate the proposed m-MSFV method. To quantify

the accuracy of m-MSFV, relative errors of pressure, velocity and residuals, in terms of L2 and L∞ norms,

are used. These norms are defined as,

‖ep‖= ‖pm − p f ‖/‖po − p f ‖, (11)

‖ev‖= ‖vm − v f ‖/‖vo − v f ‖, (12)

‖er‖= ‖rm −b‖/‖ro −b‖, (13)

where pm, vm and rm denote the pressure, velocity and residual from m-MSFV; po, vo and ro denote

pressure, velocity and residual from original MSFV; p f , v f and b represent the fine-scale reference pres-

sure, velocity, and RHS vector (source term). All the pressure plots are scaled by the boundary pressure

condition. The local TPFA approach and Linear BC approach are referred to as m-MSFV(TPFA) and

m-MSFV(LBC), respectively.

Case 1: SPE 10 bottom layer

The first example is the SPE 10 bottom layer case with 220×60 fine cells and 22×6 coarse cells. The

pressure is fixed at (220, 0) and (0, 60) with the values of 1 and 0, respectively; no-flow boundary condi-

tions are specified on all the boundaries. The threshold value ε = 0 indicates the coarse-scale interfaces

with positive indicators ηi j are all considered as critical interfaces. The permeability and fine-scale

reference pressure solution are shown in Fig 10. Since the problem is elliptic, the pressure should be

bounded by the pressure values at boundaries (i.e., 0 and 1). However, as shown in Fig 11(a), the origi-

nal MSFV pressure exceeds these bounds at several locations, which indicates that the obtained solution

is nonmonotone. A strictly monotone MSFV pressure can be obtained by using m-MSFV(TPFA), as

shown in Fig 11(b). In this case, the m-MSFV(LBC) can also reduce the level of nonmonotonicity sig-

nificantly as shown in Fig. 11(c); however, this approach cannot guarantee that the solution is monotone.
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(a) Natural logarithm of the permeability
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(b) Fine-scale reference pressure

Figure 10 Natural logarithm of the permeability (a) and fine-scale reference pressure (b) for the SPE 10
bottom layer.
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(a) Original MSFV (‖ep‖2= 0.197; ‖ep‖∞= 3.815)
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(b) m-MSFV(TPFA) (‖ep‖2= 0.035; ‖ep‖∞= 0.071)
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(c) m-MSFV(LBC) (‖ep‖2= 0.052; ‖ep‖∞= 0.122)

Figure 11 Original MSFV and m-MSFV pressure solutions for the SPE 10 bottom layer, and the relative
errors ep. The coarse-scale grids are indicated by black lines.

Figure 12 shows the streamlines based on the reconstructed velocity fields associated with fine-scale ref-

erence pressure obtained using the original and monotone MSFV schemes. As shown in Fig 12(b), the

non-physical MSFV pressure leads to circulations in the velocity field, which can decrease the stability

of the entire nonlinear simulation procedure. On the contrary, there are no circulations in the velocity

field reconstructed by the monotone MSFV pressure. In addition, as seen from the pressure errors, the

m-MSFV method can deliver a monotone pressure solution without sacrificing accuracy.

Figure 13 shows the histogram for indicators ηi j of the coarse-scale system Ac for the original MSFV

and reconstructed coarse-scale system for both m-MSFV approaches. Note that the original coarse-scale

system Ac (Fig. 13(a)) has many positive indicators and spans a wide range. These positive values lead

to severely non-monotone pressure solution. With the modification of m-MSFV(TPFA), the positive

indicators are reduced to a limited range of small values, which is acceptable to obtain a monotone

solution. If zero indicators are desired, additional loops of detection and modification can be performed

as described in Algorithm 1. On the other hand, with the modification of m-MSFV (LBC), even though

this approach can eliminate some positive indicators, many areas with long-range indicator values still

remain. These values may result in a non-monotone solution. Note that the remaining indicators cannot

be eliminated by additional modification loops. That is the reason why m-MSFV(LBC) can reduce the

level of non-monotonicity, but cannot guarantee to fully resolve the issue for all the problems.

For practical purposes, strictly monotone pressure may not be required; therefore the threshold value

ε provides a way to balance the degree of monotonicity and the computational cost of the m-MSFV

method. Figure 14 shows that m-MSFV (TPFA) with ε = 0 guarantees that the pressure solution is

strictly monotone. When the threshold is loosened to ε = 0.7, the pressure solution still does not en-

counter severe non-monotone regions, while the computational effort is reduced by 50% compared with

the ε = 0 case. Figure 15 shows the accuracy of the m-MSFV method with respect to different strategies

and indicates that both m-MSFV(TPFA) and m-MSFV(LBC) have comparable error norms for pressure
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Figure 12 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and
m-MSFV pressure solutions for the SPE 10 bottom layer. The coarse-scale grids are indicated by black
lines.
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Figure 13 Histogram of ηi of the coarse-scale system Ac for original MSFV (a), the reconstructed
coarse-scale system for m-MSFV (TPFA) (b) and m-MSFV (LBC) (c), respectively.
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(c) m-MSFV (TPFA) with ε = 0
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(d) m-MSFV (TPFA) with ε = 0.7

Figure 14 Pressure surface plots for fine-scale reference (a), original MSFV (b), m-MSFV (TPFA) with
ε = 0 (c) and ε = 0.7 (d), respectively
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 and velocity. The m-MSFV(LBC) approach results in slightly better residual estimates.
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Figure 15 Error measurements in pressure (a), velocity (b), residual (c) and the computational complex-
ity (d) with different threshold ε for the SPE 10 bottom layer

Case 2: SPE 10 layers with stretched grid

In this case, both SPE 10 top and bottom layers with stretched grid are examined. The fine-scale and

coarse-scale grids are 220× 60 and 22× 6, respectively. The global boundary conditions are the same

as Case 1. The fine-scale grid has an aspect ratio of 10, i.e., Δx = 10Δy. First, for SPE 10 top layer,

the permeability field, fine-scale reference, original MSFV and m-MSFV pressure solutions are shown

in Figs. 16 and 17. Even though there are no significant peaks in the original MSFV pressure solution,

the resulting streamlines of the original MSFV still have circulations. Also, in this case, the m-MSFV

(TPFA) approach is using TPFA for almost the entire domain. Therefore, the pressure solution is not

accurate. However, m-MSFV(TPFA) can guarantee monotonicity of the pressure distribution, which

can be indicated by the circulation-free streamlines (Fig. 19(c)). Circulations can be observed in the

streamlines of m-MSFV (LBC) as shown in Fig. 19(d), which implies that m-MSFV (LBC) cannot

guarantee a monotone solution in this case. Moreover, the non-monotone solution for original MSFV

and m-MSFV (LBC) can be identified by Fig. 18, which indicates that the long-range positive indicators

of the coarse-scale system may lead to unphysical multiscale solutions.

Similarly, as shown in Fig. 21, the original MSFV is severely nonmonotone for the SPE 10 bottom layer

with stretched grids, and the m-MSFV (LBC) mitigates the issue. However, it cannot fully resolve it.

The m-MSFV (TPFA) becomes a global TPFA scheme; therefore, it loses accuracy as indicated in the



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 

 

 

0 500 1000 1500 2000

10

20

30

40

50

60 −5

0

5

(a) Natural logarithm of the permeability

 

 

0 500 1000 1500 2000

10

20

30

40

50

60 0

0.2

0.4

0.6

0.8

1

(b) Fine-scale reference pressure

Figure 16 Permeability and fine-scale pressure solution for the SPE 10 top layer with stretched grids.
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(a) Original MSFV (‖ep‖2= 0.015; ‖ep‖∞= 0.148)
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(b) m-MSFV(TPFA) (‖ep‖2= 0.252; ‖ep‖∞= 0.407)
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(c) m-MSFV(LBC) (‖ep‖2= 0.034; ‖ep‖∞= 0.169)

Figure 17 Original MSFV and m-MSFV pressure solutions for the SPE 10 top layer with stretched grids,
and the relative errors ep
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Figure 18 Histogram of ηi of the coarse-scale system Ac for original MSFV (a) and the reconstructed
coarse-scale system for m-MSFV (LBC) (b), respectively, for the SPE 10 top layer with stretched grids.
Note that m-MSFV (TPFA) eliminates all the positive indicators, therefore the histogram is not shown.



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 

0 500 1000 1500 2000

0

20

40

60

(a) Fine-scale reference (b) Original MSFV

(c) m-MSFV (TPFA) (d) m-MSFV (LBC)

Figure 19 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and
monotone MSFV pressure solutions.
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Figure 20 Error measurements in pressure (a), velocity (b), residual (c) and computational complexity
(d) with different threshold ε for the SPE 10 top layer with stretched grids.
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 streamline plots shown in Fig. 22. In addition, Figs. 20 and 23 show the accuracy of the m-MSFV

method with respect to different strategies and indicate that both m-MSFV(TPFA) and m-MSFV(LBC)

have comparable error norms for pressure and velocity.
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Figure 21 Original MSFV and m-MSFV pressure solutions for the SPE 10 bottom layer with stretched
grids, and the relative errors ep.

(a) Fine-scale reference (b) Original MSFV

(c) m-MSFV (TPFA) (d) m-MSFV (LBC)

Figure 22 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and
m-MSFV pressure solutions for the SPE 10 bottom layer with stretched grids. The coarse-scale grids
are indicated by black lines.

Note that the streamlines given by m-MSFV(LBC) honor the fine-scale reference quite well for the

region where no circulations occur. Therefore, it is beneficial to apply m-MSFV(LBC) first, then em-

ploy m-MSFV(TPFA) for the places where m-MSFV(LBC) fails to resolve non-physical peaks. Hence,

combining both m-MSFV(LBC) and m-MSFV(TPFA) can achieve circulation-free and conservative

fine-scale velocity fields without losing accuracy for anisotropic problems. For the SPE 10 top layer

with stretched grids, m-MSFV(LBC) is applied first resulting the pressure and velocity distributions as

shown in Fig. 17(c) and Fig. 19(d). From Fig. 19(d), m-MSFV(LBC) cannot fully resolve the circula-

tions for some particular regions but results in streamlines that are quite close to fine-scale reference in

most regions. In order to remove the circulations, the m-MSFV(TPFA) approach can be employed for

the regions where m-MSFV(LBC) is not adequate. With the combination of both approaches, we can

obtain the fine-scale pressure and velocity fields shown in Figs. 24 and 25. In additional, the pressure,

velocity, and residual errors with respect to the fine-scale reference are given in Table. 1, where we can

see that the hybrid m-MSFV delivers the most accurate velocity field.
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Figure 23 Error measurements in pressure (a), velocity (b), residual (c) and computational complexity
(d) with different threshold ε for SPE 10 bottom layer with stretched grids.
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Figure 24 Pressure distributions for fine-scale reference (a) and obtained by hybrid m-MSFV method
(b) for the SPE 10 top layer with stretched grids, i.e.,Δx = 10Δy.

(a) (b)

Figure 25 Velocity distributions for fine-scale reference (a) and obtained by hybrid m-MSFV method (b)
for the SPE 10 top layer with stretched grids, i.e.,Δx = 10Δy.
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 Error ‖ep‖2 ‖ep‖∞ ‖ev‖2 ‖ev‖∞ ‖er‖2 ‖er‖∞
hybrid m-MSFV 0.034 0.187 0.926 0.585 0.059 0.019

m-MSFV(TPFA) 0.252 0.407 8.165 8.816 0.309 0.052

m-MSFV(LBC) 0.034 0.169 3.349 8.119 0.051 0.017

original MSFV 0.015 0.148 8.115 7.507 0.122 0.022

Table 1 Relative errors of hybrid m-MSFV, m-MSFV(TPFA), m-MSFV(LBC) and original MSFV for the
SPE 10 top layer with stretched grids, i.e.,Δx = 10Δy.

5. Conclusions

In this paper, a monotone MultiScale Finite Volume (m-MSFV) Method was proposed. The m-MSFV is

based on automatic detection of the local interfaces with negative coarse-scale transmissibilities obtained

from the integration of fluxes induced by the dual basis functions. Two approaches were developed to

fix the non-physical coarse-scale transmissibility, namely, local TPFA and local linear BC approaches.

For the first approach, a local TPFA method for the critical interfaces only is used to calculate a posi-

tive transmissibility and replace the original MPFA stencils on the coarse-scale system. For the second

approach, a linear BC is employed as the local boundary assumption to solve the basis function only

for the dual-coarse cells associated with the critical coarse nodes. Then, the coarse-scale system is

reconstructed and solved. The local TPFA approach can guarantee monotonicity of the reconstructed

fine-scale solution. The local linear BC can mitigate the level of non-monotonicity, but without a guaran-

tee to remove all local pressure oscillations. Therefore, a hybrid strategy that combines both approaches

may be effective, whereby the local linear BC approach is used to reduce the degree of non-monotonicity

and local TPFA approach is used to achieve the monotonicity for the regions where the linear BC cannot

help. Since this m-MSFV method only employs a local fix for critical coarse-cell interfaces that lie in

low-permeability regions, the transmissibility values have a small impact on the flow activity. This helps

the m-MSFV solution be quite accurate with respect to the fine-scale reference. Moreover, the m-MSFV

method is able to optimize the efficiency-monotonicity tradeoff adaptively. Using the m-MSFV method

is expected to improve the overall efficiency of sequential fully implicit simulations, which is the focus

of our current research.
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