GROWING UNCERTAINTY

Finding suitable methods of
uncertainty propagation for
agricultural Life Cycle Assessment
In developing countries

W.S. ten Bosch







GROWING UNCERTAINTY

Finding suitable methods of uncertainty propagation
for agricultural Life Cycle Assessment in
developing countries

Wisse ten Bosch

Master’s thesis

Author: Wisse ten Bosch

1st examiner: Dr. S. Cucurachi (Leiden University)

2nd examiner: Prof. dr. ir. C.A. Ramirez Ramirez (Delft University of Technology)

Supervisor case study: Prof. dr. S.H. Gheewala (King Mongkut’s University of Technology
Thonburi)

Master’s programme: Industrial Ecology

Course: Thesis Research Project

Institution: Leiden University (Faculty of Science) & Delft University of
Technology (Faculty of Technology, Policy & Management)

Student number: s1582003 & 4410866

Date: November 10th, 2017

%
den TU Delft




Doubt is not a pleasant condition, but certainty is absurd.

- VOLTAIRE, 1694-1778



Acknowledgements

During the writing of this thesis I have received the help of several people, without whom this
thesis would not have been realised. First of all, I wish to thank Shabbir Gheewala for hosting me
at JGSEE in Bangkok, and for providing me with valuable insight in common LCA practice in
Thailand. My time in Bangkok wouldn’t have been as much fun without my friends at JGSEE,
especially Ply Pongpat, who showed me the best of Thai culture and food. I would like to thank
my examiners Stefano Cucurachi and Andrea Ramirez for their guidance and feedback during the
research process, and Jeroen Guinée for helping me narrow down the research topic. Reinout
Heijungs has been a great help in understanding the complex subject of uncertainty propagation.
[ also wish to thank Evelyne Groen for providing the scripts for running different propagation
methods and her help with adapting them to my work.



Abstract

Life cycle assessment (LCA) has been the primary tool for the quantification and
comparison of the environmental impact of product systems. Despite ongoing
development of the LCA methodology, uncertainties are often not adequately
addressed in LCA research. The large variety of approaches to treat uncertainties and
the lack of uniform guidelines prevent a widespread adoption of uncertainty analysis,
while its importance is generally acknowledged. Especially in the agricultural sector,
where LCA is often used as policy support, uncertainties are of great importance. This
thesis aims to provide guidelines for practitioners of agricultural LCA in developing
countries, as agriculture is often an important sector there. To this end four different
method of uncertainty propagation are tested on a case study of sugarcane
cultivation methods in Thailand. These methods are compared and evaluated on their
suitability for agricultural LCA in developing countries, complemented by an expert
survey in a Thai LCA research network. The results show that there is a general lack
of knowledge among LCA practitioners on uncertainty analysis, while primary data
is often abundant. Also, sampling methods can provide great insight into the output
uncertainties, but are also complex and data intensive. Analytical or fuzzy interval
methods could be a good alternative when knowledge or resources are lacking. LCA
practitioners should be better guided in choosing and performing the most suitable
propagation method for their situation. To this end, a decision tree for choosing the
most suitable method depending on the user and the type of study closes this thesis.

Keywords: life cycle assessment, uncertainty analysis, propagation, agriculture
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1. Introduction

1.1 Background

In the light of climate change and environmental threats there has been a growing interest in
sustainable development to improve environmental conditions for present and future
generations. The challenges that this implies are arguably large, especially for developing
countries as economic growth has been priority there, and climate change has only recently
become a topic in policy development (Markandya & Halsnaes, 2002). At the same time
developing countries often lack the scientific capacity and institutional support for tackling
environmental problems (Kates et al.,, 2001). It has been argued that decision support tools for
environmental policy, often developed in developed countries, can provide the basis for a shift
towards sustainable development in developing countries (Cash et al., 2003). To this end, there
has been growing interest from environmental scientists in tools to quantify and compare
environmental impacts of products and services. The primary tool to do so is life cycle
assessment (LCA), which aims to assess the environmental impacts and resources used
throughout a product’s life cycle (Finnveden et al., 2009). This comprehensive assessment
enables, through its holistic approach, the comparison of product functions in terms of
environmental impact (Guinée et al., 2002). LCA can therefore be used for a wide range of product
types, including consumer products, industrial products and agricultural products (Bauman &
Tillman, 2004). When considering environmental impacts in developing countries, agricultural
products are especially important because the economies of many developing countries are
largely dependent on agriculture (Tilman, 1999). LCA has proven to be a valuable tool to assess
environmental impacts of agricultural products in developing countries, such as biofuels and
renewable energy from biomass (Paolotti et al., 2017).

While early LCA studies, termed ecobalances or product environmental profiles, were conducted
without a uniform methodology or harmonisation, standardisation efforts in the 1990s led to
uniform guidelines for LCA practices (Klopffer, 2006). The International Organisation for
Standardisation (ISO) developed the first complete series of LCA standards with the ISO 14040
series (IS0, 2006). The ISO standard divides the LCA procedure into four phases (as described in
Guinée et al., 2002):

1. Goal and scope definition; initial choices for the working plan are made, including
definition of a research question, research scope and functional unit.

2. Inventory analysis; in this phase the product system is defined, including system
boundaries, unit processes and data, allocations and final calculations. The main result is
the inventory table presenting a list of quantified inputs and outputs.

3. Impact assessment; in this phase the results of the inventory analysis are interpreted in
terms of environmental impact.

4. Interpretation; in this final phase the results from the impact assessment are evaluated in
terms of completeness, consistency and robustness, and overall conclusions are
formulated.

Over the last decade LCA methodology has seen an ongoing development and harmonisation,
especially regarding consistency, data quality, and addressing uncertainty (Finnveden et al,,
2009). Uncertainty of outcomes is one of the main issues recently discussed around LCA
methodology (Finnveden et al., 2009). The acknowledgement that LCA research intrinsically
includes a certain level of uncertainty is not new, and assessing these uncertainties has been
named an essential part of LCA research (Ciroth, 2006). In an LCA context, uncertainty has been
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described by Finnveden et al. (2009, p. 14) as “the discrepancy between a measured or calculated
quantity and the true value of that quantity”.

Existing LCA studies often do not address uncertainties, as is the case with many decision support
tools (Finnveden et al., 2009). While the importance of addressing uncertainty has been
acknowledged by many (e.g. Guo & Murphy (2012) and Payraudeau & Van Der Werf (2005)),
uncertainties are often not properly addressed in LCA studies (Zamagni et al., 2009). Arguably
this is a troublesome finding, especially when considering the potential impact of LCA studies in
decision-making. As LCA can offer decision support aiming at sustainable development,
uncertainties within LCA studies should not be neglected (Tillman, 2000).

The fact that many LCA studies do not address uncertainties properly has been ascribed by
Geisler et al. (2005) to the lack of an ‘integrative’ approach, where uncertainties are transparently
addressed according to uniform guidelines throughout LCA practices. Also, quantifying
uncertainty through uncertainty analysis can be very time consuming, making it difficult to
implement in LCA by default (Sonnemann et al., 2003). These issues are underlined by the large
variety of approaches to treat uncertainty seen in LCA research. Many different quantitative
methods are used to assess uncertainty in life cycle inventory (LCI) data. While generally only one
of those methods is used, different methods might yield different outcomes (Lloyd & Ries, 2007).
The suitability of different methods of uncertainty analysis for different types of LCA studies, and
different ways of presenting their results has been subject of scientific debate in recent years.
Henriksson et al. (2015a) state that the outcomes of uncertainty assessment need to fit the
purpose of the study. For example, not all uncertainty analysis methods are suitable for
comparative analysis of alternatives (Heijungs et al,, 2017). The inappropriate use of uncertainty
assessment methods for comparative purposes has been subject of recent debate, which has not
yet led to a consensus among practitioners.

In the light of decision support for sustainable development in developing countries, agricultural
LCA research can be very beneficial. For the purpose of assessing the environmental impact of
e.g. biofuels and renewable energy, LCA has proven to be a valuable tool that enables the
comparison of e.g. different functions of biomass (Paolotti et al,, 2017). In terms of decision
support, LCA outcomes can underline the significance of policy targets for environmental
management. For example, LCA can be used to guide sustainable production of food products
through comparison of different food products in terms of environmental impact (Mungkung &
Gheewala, 2007). At the same time, it can be argued that uncertainty assessment in agricultural
LCA is becoming increasingly important when LCA-based research on agricultural products is
used in a comparative way as decision-making support. Nevertheless, scientific expertise and
financial support for adequate LCA research is often lacking in developing countries, hindering
adequate use of LCA studies for the benefit of sustainable development (Chiu & Yong, 2004).
Moreover, the non-uniformity of uncertainty assessment approaches in LCA methodology does
not promote an effective integration of LCA in national policies, especially considering the
importance of uncertainty assessment in a decision-making context. Developing or adopting a
uniform procedure for uncertainty assessment in agricultural LCA could improve the value of
such research for sustainable development in developing countries.
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1.2 Aim & research questions

Based on the issues discussed above, a twofold problem statement can be made:

1. The multiplicity of methods to assess uncertainty in LCA makes it difficult to treat
uncertainties in an appropriate, uniform manner in a decision-making context, while
consequences can be considerable. Research on the different outcomes that different
methods might yield and their suitability for agricultural LCA purposes is yet to be
conducted.

2. Developing countries can benefit significantly from agricultural LCA research to promote
sustainable development, but the lack of a uniform procedure to assess uncertainties
impedes appropriate use of such research.

The aim of this research is to address these two issues as follows: to provide guidelines for LCA
practitioners in the field of agricultural LCA in developing countries on how to appropriately
apply uncertainty assessment in their work. The research question is therefore:

What methods of uncertainty analysis are most suitable to use in agricultural life cycle
assessment in developing countries in terms of procedure and outcomes?

To answer the main research question, the following sub-questions will be answered:

1. What are the drivers and barriers for practitioners of agricultural LCAs in developing
countries for applying uncertainty analysis?

2. What methods for assessing uncertainty in LCI data are available?

3. What are the differences in outcomes when applying different methods of uncertainty
propagation on agricultural LCI data?

4. How can the results be used to guide practitioners of agricultural LCA to appropriately
apply uncertainty assessment in their work?

1.3 Structure & case study

This thesis is structured as follows. First, the theoretical approach to this study will be presented
in chapter two, as well as the theoretical framework in which the study is carried out. In the third
chapter the methodology will be discussed. The fourth chapter will consist of the results of the
methods used, and the sub-questions will be answered. The main research question can be
answered based on the answers to the sub-questions. The final chapters will contain a discussion
of this study and the final conclusions. To adequately address the problem statement, which is
focussed on LCA research in developing countries, data from a real LCA research from the Thai
King Mongkut’s University of Technology Thonburi (KMUTT) in Bangkok will be used to compare
different methods of uncertainty analysis by means of a case study. This LCA research, on
different sugarcane cultivation practices, provides field data and an LCA model suitable for
performing uncertainty analysis. The Thai LCA study is introduced here, the actual case study that
will be performed as part of this thesis is explained in the methodology.

The LCA study was carried out in 2013-2014 by researchers from KMUTT’s Joint Graduate School
for Energy and Environment (JGSEE), in cooperation with partners from the sugarcane industry
and different research institutions. The project was funded by the Thai National Science and
Technology Development Agency and the Thailand Research Fund under the Royal Golden Jubilee
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Ph.D. program (grant PHD/0101/2557). The LCA study discusses the environmental impacts of
the sugarcane industry in Thailand, as part of a larger sustainability research project on the Thai
sugar industry. Aside from the environmental impact assessment the project includes economic
objectives regarding production efficiency and economic security, and social objectives regarding
fair trading and safety and health issues.

The LCA study comprises the environmental impact the processes of cultivation of sugarcane and
the refining of sugarcane into raw sugar, bio-ethanol and by-products. The goal of the study was
to provide baseline environmental impact information of the Thai sugarcane industry, as well as
providing recommendations for both competitive and sustainable practices in the sugarcane
industry based on different scenarios. The main distinction between the scenarios was the
cultivation practice (either conventional cultivation including pre-harvest field burning or ‘green’
cultivation with mechanical harvesting), and the production and use of different by-products
from the sugar milling process (e.g. for electricity production and fertilizer). The results of the
different scenarios were used to construct a roadmap to set targets for sustainable practices in
the sugarcane industry. Publications resulting from the LCA study cover environmental impacts
of different harvesting practices (Pongpat et al, 2017) and environmental sustainability of
sugarcane biorefineries (Silalertruksa et al., 2017). For this thesis only the research on the
cultivation of sugarcane will be used in the case study, thereby not considering the use of by-
products in other processes. The main conclusions regarding the environmental impact of
sugarcane cultivation practices include that green cultivation results in less greenhouse gas
(GHG) emissions than conventional cultivation, because emissions from harvesting machinery
are lower than from pre-harvest field burning. Also, most GHG emissions occur during the land
treatment stage rather than during the harvesting stage (Pongpat et al,, 2017).

Uncertainty analysis was not performed during the LCA study. The only information regarding

data quality was given by the standard deviations of the input data of several parameters in the
LCA model, but not all.
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2. Theoretical approach

2.1 Theory

In order to assess the uncertainty propagation methods as mentioned in the research aim, it is
necessary to elaborate on the theoretical background of uncertainty in LCA and types of methods
that can be used to assess uncertainty. In this chapter, the state-of-the-art of scientific work on
uncertainty analysis in LCA is presented. Subsequently a framework is presented within which
this study is conducted.

2.1.1 Uncertainty in LCA

Before discussing uncertainty assessment it is essential to understand the concept of uncertainty
in the context of LCA. As mentioned before, uncertainty describes the discrepancy between a
measured value and a real value. Fundamentally, uncertainty is present in all stages of LCA, and
is the result of data incompleteness due to a variety of causes (Heijungs & Lenzen, 2014). It is
important here to make the distinction between variability and uncertainty. Variability is
described by Huijbregts (1998, p. 273) as “stemming from inherent variations in the real world”.
Uncertainty, as stated by Bjorklund (2002, p. 64), is the result of “a lack of knowledge about the
true value of a quantity”. Uncertainty is connected to variability in the sense that inherent
variability in e.g. input data leads to so-called stochastic uncertainty, while uncertainty due to
imperfect knowledge and modelling choices is called epistemic uncertainty (Walker et al., 2003).
Stochastic uncertainty is therefore always present in LCA research, because variability is always
present in a real-world situation. Unfortunately this means that epistemic uncertainty is also
unavoidable, as modelling a real-world situation requires a certain degree of generalisation to
handle this variability. As for uncertainty in LCA, epistemic uncertainty is most interesting,
because this type of uncertainty can be analysed with the aim of reducing it, whereas stochastic
uncertainty cannot be reduced other than redefining the scope of the study.

Within epistemic uncertainty, three types of uncertainty can be discerned: parameter
uncertainty, scenario uncertainty and model uncertainty. Huijbregts et al. (2003) describes those
as follows. Parameter uncertainty is described as the lack of knowledge about the true value of a
parameter, i.e. due to imprecise measurement and assumptions. Scenario uncertainty is caused
by normative choices in LCA modelling, e.g. in choosing the functional unit, allocation methods or
impact categories. Model uncertainty refers to the validity of the model in relation to the real-
world situation, i.e. how simplifications and assumptions affect the validity of the model
predictions. Although other classifications of epistemic uncertainty are possible, these three are
the most widely used in LCA research and will therefore be adopted in this study (Lloyd & Ries,
2007). The relation between stochastic and epistemic uncertainty in LCA is depicted in Figure 1.
Considering that the aim of this research is focussing on the life cycle assessment part of Figure 1
(the middle box), the focus of this research will be on epistemic uncertainty.
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Real world
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A 4

LCA outcomes

Figure 1: Uncertainty and variability in LCA. Adapted from: Huijbregts, 1998, p. 274

2.1.2 Uncertainty analysis

In general uncertainty analysis refers to the qualitative or quantitative assessment of the
uncertainties in an LCA study. Different types of uncertainty ask for different assessment
methods, although quantitative assessment is the preferred option when possible. Qualitative
assessment generally requires little data (it usually includes expert judgement or data quality
indicators), but this represents data quality rather than the amount of uncertainty (Lloyd & Ries,
2007, p. 170). Quantitative assessment is therefore more common in LCA studies (Lloyd & Ries,
2007). Parameter uncertainty can be quantified into an uncertainty distribution of the output
variable, with the help of propagation methods. Uncertainty propagation can be seen as the
quantitative part of uncertainty analysis, as it addresses the way uncertainties propagate into the
output uncertainty of the LCA model (Heijungs & Lenzen, 2014, p. 1446). This is usually done
through stochastic sampling, using Monte Carlo or Latin Hypercube simulations, or through
analytical uncertainty calculation (Huijbregts, 1998). Stochastic sampling uses parameter
distributions as input, making it widely applicable to life cycle inventory (LCI) data, while
analytical methods require only uncertainty estimations. Scenario and model uncertainty are
more difficult to quantify because they involve the assessment of normative choices, that are
intrinsically not quantitative and therefore have no distributions. It was suggested by Huijbregts
et al. (2003) that these uncertainties can be quantified by first explicitly naming all the normative
choices in the different stages of the LCA, followed by a quantification of the resulting output
uncertainty using nonparametric bootstrapping. This involves assigning probability values to
each normative choice that is made concerning an alternative. A recent study by Mendoza Beltran
et al. (2016) suggests a method that enables propagation of uncertainty due to allocation choices
as well as uncertainty in unit process data. The authors call this a ‘pseudo-statistical’ method,
because normative choices cannot be assessed in a truly statistical way. Considering the
discussed difficulties of assessing scenario and model uncertainty, only parameter uncertainty
will be considered in this study.

As shown by Lloyd and Ries (2007, p. 166), who conducted a survey of approaches to quantitative
uncertainty analysis, parameter uncertainty was by far the most studied in the 24 LCA studies
that the surveyed. The most used method to assess uncertainty was stochastic modelling,
occurring in 67% of the studies (Lloyd & Ries, 2007, p. 167). Although most LCA studies use a
purely stochastic method, yielding only absolute results, recent studies suggest using such
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quantitative propagation methods in a correlated way, yielding relative results that are necessary
when comparing alternatives in LCA (Henriksson et al., 2015). Henriksson et al. (2015a) provide
an example of this notion by comparing GHG emissions from the production of Pangasius fish in
large or small farms, and expressing the uncertainty of each alternative’s impact both in an
absolute and a relative way. The absolute uncertainty, visually represented as a box-and-whisker
plot, seem to indicate that the uncertainty around each alternative is too large to draw
conclusions on the preferability of one alternative over the other. However, by subtracting the
MCS output of one alternative from the other for each run the uncertainty around shared
processes is disregarded, because MCS samples the same value for shared processes in the same
run. This leaves the relative uncertainty, i.e. the uncertainty of the difference between two
alternatives. In the example this showed that the relative uncertainty was in fact much smaller
than the difference in GHG emissions from both alternatives, indicating that the impact of small
Pangasius farms is indeed significantly larger than that of large farms. Also, it has been argued
that possible correlations between among input parameters cannot be neglected (Bojaca &
Schrevens, 2010). Studies on quantitative uncertainty propagation (Heijungs & Huijbregts, 2004;
Lloyd & Ries, 2007) and comparing different quantitative methods (Benetto et al., 2008; Clavreul
et al.,, 2013; Heijungs & Lenzen, 2014) are sometimes contradictory in their recommendations.
For example: while Lloyd & Ries (2007) suggest focussing on qualitative uncertainty analysis
when information on uncertainty is scarce, Clavreul et al. (2013) propose to draw ‘optimistic’ and
‘pessimistic’ scenarios and compute distributions in all cases. Based on such fundamental
discussions, it can be stated that uncertainty propagation in LCA is a developing field of study.

2.1.3 Uncertainty propagation

As this study focusses on quantitative parameter uncertainty, only methods used to describe that
are considered here. Within quantitative uncertainty analysis, the procedure where uncertainty
information is analysed is called uncertainty propagation. Different methods for uncertainty
propagation will be discussed here. Within the propagation phase of uncertainty analysis there
are two main aspects to be considered. First there is the actual propagation method, or modelling
technique. Several techniques are available, and as identified by Lloyd and Ries (2007) the most
common techniques are stochastic modelling (e.g. with Monte Carlo simulation), analytical
propagation (e.g. with Taylor series expansion) and fuzzy set-based techniques. Stochastic
modelling was found by Lloyd & Ries (2007) to be most commonly used, although the reasons for
choosing a specific technique in an LCA study often remain unclear. Stochastic modelling involves
sampling a large number of times from a dataset to identify a range of possible outcomes for each
parameter and thereby describe the output uncertainty. Monte Carlo (MC) sampling has been
extensively covered in literature as an uncertainty propagation method in LCA, and adaptations
and extensions of the method have been identified (e.g. Groen et al., 2014a; Heijungs & Huijbregts,
2004). Other MC-based methods include Latin hypercube sampling, metropolis sampling and
quasi-MC sampling (Helton et al., 2006). The detailed differences between these methods will not
be discussed here, for a detailed description the reader is referred to Groen et al. (2014a).
Analytical uncertainty propagation is the technique of expressing output uncertainty as a function
of the variances of all input parameters in an LCA model. This can be done using a first order
Taylor series expansion of the LCA model, where only the variance of each parameter needs to be
known (Groen et al.,, 2014a). Fuzzy set-based methods make use of a possibility function to
describe the output uncertainty of an LCA model. By assigning a value of one to the most plausible
value (i.e. the mean, or core value) and zero to the least plausible values, intervals for the output
values can be created based on the likelihood of a value in the possibility function (Groen et al.,
2014a). Larger intervals will therefore describe output values that are less likely to occur, while
more plausible values will have small intervals. This method makes it possible to give insight in
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the distribution of the model output with limited uncertainty information, as only the boundaries
of the possibility function need to be known.

The second important aspect is the uncertainty representation, or characterisation as referred to
by Lloyd & Ries (2007). This involves describing the way parameters are distributed, for which
there are several methods. Two main categories of uncertainty characterisation can be discerned
(aside from analytical uncertainty propagation, for which no distribution type is needed): using
a probability distribution (for sampling methods) or a possibility distribution (used in e.g. fuzzy
interval methods). Simply put, probability distributions describe how probable the occurrence of
different possible outcomes are, while possibility distributions give an estimation of the
possibility that any given value will occur in the parameter based on intervals within the
parameter (Clavreul et al., 2013). In LCA probability distributions have been the preferred option
to represent uncertainty in input parameters, as they can give an accurate indication of
uncertainty when many data points are available (Lloyd & Ries, 2007). The main disadvantage is
that probability distributions become inaccurate when information is scarce, as is the case with
e.g. expert judgement (Clavreul et al., 2013). Also, the preferable characterisation method can
depend on the type of uncertainty: it has been argued that epistemic uncertainty is better
described by possibility distributions, while for stochastic uncertainty probability distributions
are preferred (Heijungs & Tan, 2010). The details of the different distributions will not be
discussed here, but in Table 1 an overview of the most commonly used distributions relating to
probability and possibility characterisation is given.

Table 1: Uncertainty characterisation types and relating distributions commonly used
in LCA. Adapted from Lloyd & Ries (2007, p.168).

Uncertainty characterisation Common distributions
Normal
Lognormal
Probability Uniform
Beta
T-distribution
Triangle
Possibility Intervals
Uniform

2.1.4 Sensitivity analysis

Parameter uncertainty in principle encompasses the uncertainty around all parameter values in
the LCA model. However, due to the complexity of the systems that many LCA models aim to
describe, a large number of input parameters is often included in the model. While it would be
ideal to propagate uncertainties of all input parameters in a model, this would be very time
consuming. Moreover, the output uncertainty of an LCA model can often be explained by the
variance of just a few parameters (Groen, 2016; Koning et al., 2010). Therefore, the number of
input parameters included can be limited to those that contribute most to the model output, both
in terms of uncertainty and in terms of environmental impact. The assessment of the contribution
of input parameters to the model output is done using sensitivity analysis, where the model
output is tested on sensitivity to changes in the input parameters (Saltelli et al., 2006). In LCA
modelling, sensitivity analysis has been acknowledged as being essential to the interpretation of
the LCA results, because it can help identify priorities for data refinement and model
simplifications - such as limiting the number of input parameters included in uncertainty
propagation (Groen et al., 2014b; Saltelli et al., 2008).
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Within sensitivity analysis three main types of analysis can be discerned: local sensitivity analysis
(LSA), screening and global sensitivity analysis (GSA) (Groen et al., 2014b). Local sensitivity
analysis refers to assessing the change in the model output when input parameters are changed.
A common way to do this is via a one-at-a-time (OAT) approach, where parameter values are
changed one at a time with a specific factor (Groen et al., 2014b). Screening involves identifying
important contributors to the output uncertainty using basic sample information such as the
range (Lloyd & Ries, 2007). In global sensitivity analysis, the contribution of the uncertainty
around each input parameter to the output variance is assessed based on more specific
uncertainty information, such as parameter distributions. GSA can be performed either before or
after uncertainty propagation, respectively to find important parameters and to find additional
information on the behaviour of the model (Anderson et al., 2014; Cucurachi et al., 2016).

From the above it follows that the most important parameters in a model are those that
contribute to both the model output (in the case of LCA: environmental impact) and the output
uncertainty. In literature such important parameters are also called ‘key issues’, described by
Heijungs (1996) as model parameters that are strongly contributing to the outcomes and that are
uncertain. A parameter that makes only little contribution to the outcomes and is fairly certain is
considered not a key issue (Heijungs, 1996). This approach has been adopted by several authors,
most notably by Saltelli et al. (2008). They describe importance in terms of contribution to the
outcomes of the model as influence, and importance in terms of contribution of a parameter’s
uncertainty to the total output uncertainty as importance. Key issues are both influential and
important (see Figure 2).

High
Important parameters Key issues
Importance
Not key issues Infuential parameters
Low
Low Influence High

Figure 2: Identification of key issues based on influence and importance. Adapted from Groen (2016).

The analysis described above is referred to by Heijungs (1996) as key issue analysis (KIA), while
the same analysis is called uncertainty importance analysis by Bjorklund (2002), and simply
named ‘sensitivity analysis’ by Saltelli et al. (2008). For this research, the term sensitivity analysis
is used to describe the procedure of assessing both influence and importance as described above.

2.2 Framework

While the theory discussed above provides a background of uncertainty analysis in LCA4, it also
shows that there is a large diversity of approaches to the assessment of uncertainties in LCA. In
respect to the research questions of this study, it is necessary to combine several techniques that
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allow for a comparison of propagation methods that is feasible within time frame of this thesis.
This means that from the multiplicity of techniques a selection needs to be made, and
operationalised for this study. A procedure that incorporates the necessary elements for
addressing the research question, and that serves as a framework for this study, is presented here.
It is aimed at providing guidelines for the methodology presented in the next chapter.

As part of their research on uncertainty in product carbon footprints, Henriksson et al. (2015a)
presented a procedure for analysing uncertainty in LCA data and presenting the results. This
procedure starts with the collection of unit process data and distributions needed for sampling-
based propagations methods (e.g. Monte Carlo simulation), followed by a propagation step and
statistical testing of the results. The final step involves communication of the results for the aim
of the LCA study. The procedure is applicable to this study in the sense that it provides a
procedure for assessing uncertainties in LCA studies in general. Also, it allows for the comparison
of outcomes of different methods, as steps two and three can be repeated with different methods.
However, as discussed above, it might be necessary to select only those parameters in the LCA
model of the case study that are key issues. Therefore an additional step in this procedure is
needed before the uncertainty propagation, where the most important parameters are selected.
Sensitivity analysis, as discussed above, can be used to do so.

An operationalisation of this framework for this study shows how the different steps can
contribute to answering the research questions (depicted in Figure 3). Step one of the framework
is data collection, essentially covering the life cycle inventory analysis. From the LCI data,
sensitivity analysis can be used to select the key issues from the set of parameters. Of these
parameters the distributions can be obtained with statistical analysis if the sample size is great
enough, and if the propagation method requires that. These distributions are used in step two,
where uncertainty propagation is done. Here the actual quantification of uncertainty takes place.
In the case of this research, the propagation step can be repeated for each method that is being
compared. The results of the propagation step can be tested statistically, e.g. to express the
significance of the results. The outcomes of the different methods can be compared after this step.
In the final step of the procedure the LCA outcomes are communicated to the target audience.
Because the focus of this research is on methods for uncertainty propagation, the first and last
step of this procedure are left out of the scope of this study (represented by the dashed line in
Figure 3). The LCA research on which the case study is based provides the necessary data to
continue with the sensitivity analysis. The communication step is excluded because it is not
relevant for the purpose of this study.
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Step 1 Data collection

LCI data

Step 2 Sensitivity analysis

Parameter distributions

Propagation results

E Step 3 Propagation

Step 4 Statistical testing
Conclusions
Y
Step 5 Communication

v

LCA outcomes

Figure 3: Procedure for propagating uncertainty in LCA data (adapted from: Henriksson et al, 2015a, p. 5).
The dashed line indicates the scope of this study.
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3. Methodology

The methodology of this study is divided into four phases:

Literature review
Expert survey
Case study
Evaluation

B W=

In this chapter the methodology for each phase will be presented in detail. For each phase, the
outcome of the phase and how this contributes to answering the research questions is described.

3.1 Literature research

In the firsts phase of this research, a literature review will be done to provide input for answering
the first two research questions, on drivers and barriers for uncertainty analysis and on the
available methods. Where the previous chapter provided the elementary principles of
uncertainty analysis in LCA, the literature review will explore what the arguments for and against
uncertainty analysis are based on literature. Also, the available methods for uncertainty
propagation are further explored.

3.1.1 Phase 1A: drivers and barriers from literature

To answer the first sub-question, it is necessary to understand the arguments from a scientific
perspective for LCA practitioners in developing countries to include or exclude uncertainty
analysis in their research, as well as their own motivations to do so. In this phase scientific
literature will be reviewed to assess the arguments that can be found in literature.

Outcome phase 1A: an overview of drivers and barriers for uncertainty analysis found in
literature.

3.1.2  Phase 1B: methods for uncertainty propagation

In order to perform and compare different analysis methods, a selection of methods needs to be
made. Existing LCA studies and evaluation research on uncertainty analysis provide a large set of
methods, some of which are commonly used (e.g. Monte Carlo analysis), while others are less
commonly found in literature (e.g. fuzzy set methods and Taylor series expansion) (Benetto et al.,
2008; Heijungs & Lenzen, 2014). In the literature review a selection of uncertainty propagation
methods will be made to be used in the case study. The selection will be made based on
applicability on parameter uncertainty and on the availability of documentation concerning the
application of the method in LCA research.

Outcome phase 1B: a selection propagation methods to include in the case study. Considering

the available time for this study, a minimum of three and a maximum of five different propagation
methods will be included for comparison in the case study.
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3.2 Expert survey

3.2.1 Phase 2: drivers and barriers from expert survey

In addition to the drivers and barriers for uncertainty analysis found in literature, experiences
from practitioners in a developing country can contribute to a better understanding of their
motivations to include or exclude uncertainty analysis in their work. To this end, LCA
practitioners from Thailand - as an example of a developing country where LCA research is taking
place - will be surveyed. The survey will be performed online and distributed to members of the
Research Network on Food, Fuel, and Climate Change (FFCC) in Thailand. This research network
includes LCA practitioners from five Thai universities and is financially supported by the Thailand
National Science and Technology Development Agency’s (NSTDA).

The survey consists of three sections: a general information part about the background and
experience of the participant, a section with questions for those who have experience with
uncertainty analysis and one for those who don’t have experience with uncertainty analysis, and
a final part with two finishing questions. The survey will be answered anonymously to gain the
best results, as there are certain questions that participants could feel might harm their work or
reputation (e.g. on research choices and knowledge). The questions of the survey can be found in
Appendix II.

The processing of the survey results will be quantitatively, meaning that the results are
summarised based on the number of times each answer was chosen. For open questions, the
answers will either be grouped (if there are recurring answers) or included in the results in full
(if they are unique). From this table of results, a qualitative assessment will be done to analyse
the results in relation to the sub-question of drivers and barriers for uncertainty analysis.

Outcome phase 2: drivers and barriers from expert survey. The qualitative assessment of the
survey results will lead to a number of conclusions that can be drawn concerning the first sub-
question.

3.2.2  Evaluation criteria

To be able to compare the outcomes of different uncertainty propagation methods in the final
phase of this study, criteria on which the outcomes are compared are needed. In the literature
review an overview of driver and barriers for uncertainty analysis in LCA will be given. These can
be complemented by the conclusions from the expert survey, to formulate criteria to which an
appropriate uncertainty propagation method should comply. To operationalise these criteria for
use in the final evaluation, a scoring method will be described for each criterion, based on three
possible scores: scores of 1, 2 or 3, where 1 represents the least desirable situation in terms of
suitability of the method for agricultural LCAs in developing countries, and 3 represents the ideal
situation. For each criterion the requirements for all scores will be described. The scores of 1 to
3 indicate valuation on an ordinal scale, meaning that 3 is better than 1, but 3 is not three times
better than 1. When the propagation methods included in the case study are evaluated in the final
phase, this scoring method will help identify the strengths and weaknesses of each method.

Outcome phase 1 and 2: criteria for evaluation. The result of this step is a table with criteria in

which the selected propagation methods will be scored. The scoring of the studied methods will
be done after the propagation step.

22



3.3 Case study

To answer the third sub-question about different outcomes of different uncertainty propagation
methods, a case study will be done. Following the framework described in chapter 2, the
procedure to perform uncertainty analysis with several propagation methods includes two main
parts: sensitivity analysis and uncertainty propagation. How these steps will be performed is
explained in this chapter. For this case study the existing LCA research that was introduced in the
theoretical approach will be used. However, considering the extensiveness of the original study,
it is necessary to define a clear scope as to which parts of the original research will be subject of
the case study. How the original research is translated to a case study to be used in this thesis is
explained here. For the sake of clarity, the preparatory steps that are needed prior to performing
sensitivity analysis and uncertainty propagation with the LCI data from the original study are
discussed here as well.

3.3.1 Case study scope

As the original LCA research covers many different topics and can be seen as multiple LCA studies
combined, a scope must be determined for the use of this project as a case study. In agreement
with the project leader, prof. S.H. Gheewala, it was decided that the focus of this case study should
be on the environmental impact occurring during the cultivation stage of sugarcane. The
cultivation stage includes all product flows and processes that occur from the planting of the crop
to the harvesting of sugarcane. This means that other subjects that were part of the original study,
i.e. the processing of sugarcane into raw sugar, bio-ethanol and by-products, are excluded in this
case study. The main distinction in the original LCA study for the cultivation stage was made
between conventional cultivation and ‘green’ cultivation, identifying environmental issues
related to pre-harvest field burning in conventional practices (Pongpat et al., 2017). Therefore,
the scenarios from the original study can be adapted to this case study with a focus on these two
cultivation practices. This distinction will be kept throughout the case study. Within sugarcane
cultivation, four stages can be discerned: land preparation, crop planting, land treatment and
harvesting. Land preparation covers ploughing the land to prepare it for the planting of the crop.
The planting stage includes planting of cane stubbles (‘setts’) and fertilising the land. The
treatment stage comprises application of fertiliser and pesticides and irrigation. The harvesting
stage includes the harvesting of the sugarcane (either mechanically or manually) and
transporting the harvested sugarcane stems to a central point at the farm. Conventional
cultivation includes pre-harvest field burning, while green cultivation involves only mechanical
harvesting. The main differences between the two scenarios are listed in Table 2.

Table 2: Main differences between the two cultivation practices per stage of cultivation.

Stage Conventional cultivation ‘Green’ cultivation

Land preparation Mechanical ploughing Mechanical ploughing

Planting Manual planting and application | Mechanical planting and
of fertiliser application of fertiliser

Treatment Manual application of fertilizer Mechanical application of
and pesticides fertilizer and pesticides
Irrigation Irrigation

Harvesting Pre-harvest field burning Mechanical harvesting
Manual harvesting
On-site transporting of On-site transporting of
harvested cane by truck harvested cane by truck
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3.3.2 Data preparation

For this case study two data types from the original LCA project are needed: the LCA model that
contains the connections between goods, products and emissions, and the raw data as collected
in the field. The LCA model is needed to perform the first analysis (i.e. a sensitivity analysis to find
the most important parameters), while the raw data contains all the sample data which is needed
to identify ranges and distributions for uncertainty propagation. The following section addresses
first the data as it was used in the original study, followed by the preparatory steps that were
needed to use this data in this case study.

Original data structure

Primary data was collected by researchers from KMUTT through questionnaires of sugarcane
farmers and sugar milling companies in Thailand. A total of 1,652 farms and 20 sugar milling
companies were surveyed in different regions of Thailand in 2013 and 2014. The raw data
collected in the field was digitalised and saved in spreadsheets by the KMUTT researchers. These
contain both qualitative data (e.g. harvesting method) and quantitative data (e.g. fertilizer input).
To be able to use this data in an LCA model, the Thai researchers extracted average parameter
values for all farms linked to one sugar milling company, followed by an average value for the 20
sugar milling companies. This averaging was done to obtain a single value to be used in the LCA
model, but thereby the uncertainty information (i.e. the variance and distribution of the collected
data points) was not incorporated in the model. Secondary data from the Thai national LCI
database and the Ecoinvent v3 database was used for background processes in the model, which
was constructed in the SimaPro LCA software. The distinction between conventional and green
practices was maintained throughout the modelling process. This model structure is depicted in
the flowcharts in

Figure 4 and Figure 5. The original model structure was maintained for the case study in order to
obtain comparable results (and therefore useful for the KMUTT researchers). The stages of
cultivation were structured in the original model as separate processes that deliver the input for
the overall cultivation process. The output of each cultivation stage is then one hectare of
cultivated land, so that the overall cultivation process delivers the amount of sugarcane produced
on one hectare of land. The functional unit of the LCA study is 1 tonne of sugarcane output, which
requires approximately 0.015 of a hectare to produce (the average yield of one hectare of
sugarcane field is 68 tonnes of sugarcane). Input economic flows include different types of
fertilizer, pesticide, diesel fuel, water for irrigation and transport of the harvested sugarcane to
the factory. While different types and brands of fertilizer are used in sugarcane cultivation, for
implementation in the model these were aggregated into N-fertilizer (ammonium sulphate), P-
fertilizer (phosphate as P;0s), and K-fertilizer (potassium chloride), as well as urea fertilizer.
Three types of pesticide were discerned: glyphosate, atrazine and unspecified pesticides. The
process of cane trash burning, which is essentially the burning of pure biomass, leads to methane
emissions in the model, while CO; emissions are omitted. The reason that CO; is omitted from the
equation is that this is seen as biogenic CO», which has no (long-term) impact on climate change.
Methane is included because biomass burning has been found to be an important source of
atmospheric methane due to incomplete combustion. While CO; is mostly emitted during the
flaming phase, methane is mostly emitted during the smoldering phase afterwards (Hao & Ward,
1993). In green cultivation, cane trash is not burned but disposed of as bio-waste. In Ecoinvent
disposal is modelled as an input to the process where the waste is created (even though waste is
actually an output of the harvesting process), which is why disposal is depicted as in input in
Figure 5 as well.
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Limitations of the original LCA model

While the original LCA model serves the purpose of this study well by providing LCI data on which
uncertainty analysis can be performed, there are some limitations to the original model that need
to be pointed out. As can be seen in the flowcharts of the LCA model, there are several processes
that do not seem to adequately cover the chemical processes they represent. There seem to be no
sulphur emissions from diesel combustion in Thai machinery, which is not expected (Bond et al.,
2004). Also, methane (CH4) emissions from diesel combustion are included, while methane is not
one of the main components of emissions from diesel combustion (Hesterberg et al., 2008).
However, because methane is a strong greenhouse gas (about 20 times stronger than CO;), small
emission quantities will still have a considerable impact, which explains why it is included in this
model. There are also limitations related to modelling choices. Firstly, a distinction is made
between urea and N-fertilizer, while ammonia is the main component of urea, and urea is
therefore also an N-fertiliser. Secondly, the N-fertiliser product, ammonium sulphate was chosen
from the database, but it remains unclear why this product was chosen over ammonium nitrate
or calcium ammonium nitrate. A possible explanation is that ammonium sulphate is better suited
for alkaline soil conditions (Bakker, 2012). Thirdly, the P-fertiliser product in the LCA model was
wrongly chosen from the Ecoinvent database. For the phosphate fertiliser that is used on the land,
the P,0s content of di-ammonium phosphate was chosen. However, this product should never be
chosen without the simultaneous use of di-ammonium phosphate as N-fertiliser, because they are
physically the same product and only split for the purpose of energy allocation (Moreno Ruiz et
al,, 2013, p. 15). A possible implication of this error is an underestimation of the environmental
impact related to P-fertiliser use, as only part of the impact related to di-ammonium phosphate
production is allocated to P-fertiliser. Lastly, it can be argued that there is a negative feedback
loop between cane trash burning and fertiliser use, because burned field will become more fertile,
leading to a lower fertiliser demand. These are suspected to be human errors in the modelling
process. Because the main goal of the case study is not to deliver a perfect LCA, but rather to use
an existing agricultural LCA study for uncertainty analysis, the original LCA model is adopted in
full, including the suspected errors.
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Figure 4: Flowchart of the conventional cultivation of sugarcane.
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Figure 5: Flowchart of the green cultivation of sugarcane.
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Data translation

In order to use the required data in this case study, several translation steps are required. Firstly,
all qualitative data, including variable names, was written in Thai language and had to be
(digitally) translated to English. The translated version has been checked with the Thai
researcher concerned to prevent misinterpretations. Secondly, the original study was conducted
with a set of 12 environmental impact categories from the ReCiPe v1.1 indicator set (at the
midpoint level, from the hierarchical perspective). Due to time limitations for this thesis, only the
ReCiPe climate change indicator of global warming potential (GWP100) will be used in this case
study. Thirdly, the original model was built in the SimaPro software using the Ecoinvent v3
database, which has two main disadvantages. For one, SimaPro does not include extensive
sensitivity analysis options, which means that the selected sensitivity analysis is not possible in
this software. Another disadvantage is that the Ecoinvent v3 database contains two options in
terms of modelling approach: either based on unit processes including uncertainty data, or based
on system processes, using aggregated datasets and without uncertainty data. For the original
LCA model the system-based approach was used, and because of the lack of uncertainty data any
uncertainty-based analysis would be meaningless. Considering these disadvantages, the original
LCA model had to be converted to alternative software.

As an alternative to the SimaPro software CMLCA was chosen because of the extensive options
that it provides in terms of data handling, sensitivity analysis and uncertainty analysis. Because
the Ecoinvent v3 database was not available in CMLCA, Ecoinvent v2.2 was used (which does not
make the distinction between a unit-based and system-based approach, and therefore does
include uncertainty data). The original model was manually copied to the CMLCA software and
linked to corresponding goods and processes in the v2.2 database. The same impact categories
that were used in the original model (ReCiPe v1.1) were available used in the CMLCA model. In
all probability, this conversion step has consequences for the behaviour of the model, both in
terms of outcomes and relative performance of the processes. To give a superficial indication of
the way the two models compare, they were both run with the same functional unit (1 tonne of
sugarcane output, conventional cultivation) and compared on impact for all 10 ReCiPe impact
categories (see Table 3). It shows that for some categories the models are show a large difference
(50-95%), while for others the models are relatively similar. For this case study however, the only
indicator that will be used is climate change, GWP100. On this category the CMLCA model shows
an 8.7% larger score than the SimaPro model, which was considered acceptable for the purpose
of this study. The implications of this model conversion step will be further covered in the
discussion.
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Table 3: Comparison of impact scores for the two LCA models (ReCiPe v1.1). The impact category that is used in this study
is highlighted.

Impact category Unit SimaPro CMLCA Difference
model model

Natural land transformation, NLTP m2 6.11E-03 1.19E-02 +94.8%
Particulate matter formation, PMFP kg PM10-Eq 1.27E-01 1.35E-01 +6.3%
Marine ecotoxicity, METPinf kg 1,4-DCB-Eq 4.31E-01 2.11E-01 -51.0%
Terrestrial acidification, TAP100 kg SO2-Eq 3.24E-01 3.76E-01 +16.0%
Terrestrial ecotoxicity, TETPinf kg 1,4-DCB-Eq 4.71E-03 5.04E-03 +7.0%
Metal depletion, MDP kg Fe-Eq 5.36E+00 2.02E+00 -62.3%
Fossil depletion, FDP kg oil-Eq 1.22E+01 1.38E+01 +13.1%
Photochemical oxidant formation, kg NMVOC 7.95E-01 8.03E-01 +1.0%
POFP

Climate change, GWP100 kg CO2-Eq 6.01E+01 6.53E+01 +8.7%
Ionising radiation, IRP_HE kg U235-Eq 3.33E+00 3.40E+00 +2.1%
Freshwater ecotoxicity, FETPinf kg 1,4-DCB-Eq 4.55E-01 1.48E-01 -67.5%
Urban land occupation, ULO m2a 7.72E-01 2.80E-01 -63.7%
Human toxicity, HTPinf kg 1,4-DCB-Eq 9.93E+00 8.26E+00 -16.8%
Ozone depletion, ODPinf kg CFC-11-Eq 6.11E-06 5.63E-06 -7.9%

3.3.3  Phase 3A: sensitivity analysis

For the first phase of the case study, specific methods of sensitivity analysis need to be selected.
For the selection of the most essential parameters (key issues) in the case study LCA model two
aspects are important: the influence and the importance of the parameters (as defined in chapter
2). The influence can be best assessed with a local sensitivity analysis, as the interest here is in
the specific influence that a change in a parameter has in the model output. One widely used
method for local sensitivity analysis in LCA is matrix perturbation (Groen et al., 2014b; Heijungs,
2010). This method, which is based on several matrix calculations, is also called perturbation
analysis, operationalised for life cycle impact assessment by Heijungs (2010). Using first-order
partial derivatives, the influence of each parameter in the model is estimated. The main equation
can be formulated as (Heijungs, 2010, p. 513):

A—aZA +AZA
2= o X Ay Y

where the sensitivity is expressed, using the partial derivatives, as the change in the result (Az),
determined by a marginal change in parameter x (Ax) and in parameter y (Ay). The full
calculations are covered in the paper by Heijungs (2010). The outcome of this perturbation
analysis is a list of parameters and their sensitivity coefficients (multipliers). This method will be
used to find the most essential parameters in terms of influence. Concerning importance of
parameters, a screening method fits best, because an estimation of contributions to the output
uncertainty can be obtained without first going through uncertainty propagation (Groen et al,
2014b). As in this case study this sensitivity analysis will be done before the uncertainty
propagation, screening can provide the necessary information on importance. One screening
method is the method of elementary effects (MEE), which uses the lower and upper boundaries
of an input parameter’s range to estimate the importance (Groen et al., 2014b). As this
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information will be available in the case study, MEE will be used to find the importance of input
parameters. Contrary to perturbation analysis, which uses the default values of parameters, in
MEE the ranges of parameters are used to measure the change of the model output based on
changes in the input parameter (Groen, 2016). The elementary effect of a parameter is expressed
as the change in the model outcome caused by changing a parameter within its range, defined by
lower and upper values. By selecting random values within the parameter range the change
compared to the default outcome can be determined. The outcome of the analysis is the measure
of importance p* which is the absolute mean of the average elementary effects of a parameter.
This is expressed as (Groen, 2016, p. 33):

h(Aij + 84;;) — h(Ai))
A

EE(A, L)) =

where A is a parameter in the model that is changed with predefined steps of 2/3 of the range (A)
of that parameter, defined by boundaries i and j. The elementary effect EE is then calculated by
dividing the output change by the step size A. By repeating this procedure R number of times, the
measure of importance p* is found (Groen, 2016, p. 33):

R
1
AL = o ZlEE(A, i)l
T

One of the benefits of this method is that it is not necessary to define distributions, and
uncertainty propagation is not needed. This is also its main disadvantage, as a range is a very
limited measure to describe the nature of a parameter. More extensive background on the MEE
including the full mathematical formulations can be found in Groen (2016), Saltelli et al. (2008)
and Campolongo et al. (2007).

Outcome phase 3A: selection of parameters. The perturbation analysis will result in a list of
important parameters. Because key issues are both important and influential, the MEE can be
limited to those parameters that have already been found in the perturbation analysis. To fit the
parameter selection to the time constraints of this research, a maximum of ten parameters to be
included in the propagation step will be kept as a guideline.

3.3.4  Phase 3B: uncertainty propagation

The second stage of the case study consists of the actual uncertainty propagation. With the
methods that are selected from the literature study, the output uncertainty of the parameters
selected in phase 3A will be propagated. The outcomes of the propagation step will be evaluated
and compared in the next phase. Because the methods possibly require different types of input
(e.g. parameter distributions or general uncertainty information), the required inputs will have
to be determined from the available data. The model parameters selected in the previous phase
will be used to run the uncertainty propagation.

Outcome phase 3B: uncertainty quantifications. Depending on the type of output from each
propagation method, the results will be presented graphically and by means of statistical
information. This includes at least the estimated mean value and the available expression of
uncertainty (e.g. variance, standard deviation or confidence interval).
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3.4 Evaluation

In this final phase the results from the literature study, uncertainty propagation and expert
survey will be combined. The results of the uncertainty propagation will be evaluated based on
the criteria for evaluation formulated after the second phase. Based on this evaluation, where the
strengths and weaknesses of each method are identified, the most suitable method for assessing
parameter uncertainty in agricultural LCAs in developing countries will be discussed. The full
methodology is presented schematically in Figure 6. For each expected outcome (dashed boxes)
is indicated how it is used in the process, either by serving as input for another phase or by
directly answering a sub-question.
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Figure 6: Research phases and expected outcomes (dashed boxes). Arrows indicate what information is used to answer
each research question.
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4. Results

4.1 Literature research

In this first phase of the study scientific on uncertainty analysis in LCA literature is reviewed.
Drivers and barriers for uncertainty analysis are assessed in phase 1A to answer the first sub-
question from a scientific perspective. An overview of the found drivers and barriers is given in
Table 4. In phase 1B existing methods of uncertainty propagation are discussed in order to select
a minimum of three and a maximum of five propagation methods to be used in the case study.

4.1.1 Phase 1A: drivers and barriers for uncertainty analysis

The importance of addressing the reliability of the outcomes of LCA research, especially in a
decision-making context, has been stressed by many authors, most notably by Huijbregts (2002)
and Geisler et al. (2005). Nevertheless, uncertainty analysis is far from common practice in LCA
research. In order to understand the considerations of LCA practitioners whether or not to
incorporate uncertainty analysis in their work (if they even deliberately make this choice),
literature on this topic is reviewed and evaluated here.

Drivers

First of all, there are obvious arguments for performing uncertainty analysis related to scientific
reliability. These arguments can be called scientific drivers, as they present a reason for LCA
practitioners to include uncertainty analysis in their research to increase (or at least explain) the
reliability of their work. Decisions, at least from a scientific perspective, are not supposed to be
random, and should therefore be based on (scientific) data with credible sources. Regarding LCA
studies, the outcomes can be significantly influenced by uncertainty, as discussed in chapter 1.1.
LCA models are often based on single-point values, which can give a false sense of accuracy when
the actual value can vary greatly (Koning et al., 2010). Considering this, as stated by Bjorklund
(2002), the results of LCA studies must be accompanied by uncertainty analysis, otherwise the
credibility can (and must) be questioned. The ISO 14040 guidelines for LCA mention the
importance of uncertainty analysis to better explain and support the LCI conclusions (ISO, 2006).
Scientific drivers for uncertainty analysis arguably become more important when LCA research
is conducted in a decision-making context.

Secondly, there are drivers for uncertainty analysis related to the decision-making context in
which LCA research is often conducted. When used to support decision-making, LCA is often
comparative in nature, and not properly dealing with uncertainties may results in
counterproductive decisions (Henriksson et al, 2015a). When comparing alternatives, the
uncertainty of the outcomes may be larger than the difference between the alternatives, meaning
that it is close to impossible to compare them in terms of environmental impact. An example of
this issue was provided by Mal¢a & Freire (2010), who performed a comparative LCA on rapeseed
biofuel replacing fossil fuel. They found that while the outcomes suggest a significant advantage
of the biofuel alternative, the high uncertainties in GHG emissions limit the conclusions to the
point that appointing a preferred alternative becomes virtually impossible. Moreover the same
authors state that decision-makers are often not qualified to judge comparative LCA results, and
supporting information on uncertainty is required to guide them in the process (Mal¢a & Freire,
2010). Uncertainty information can also contribute to a more informed discussion among
stakeholders in a decision-making context (McManus et al., 2015).
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Thirdly, there are regulatory drivers, referring to national or international requirements for
scientific support of e.g. policy decisions. In the field of environmental impact assessment (EIA)
in general, to which LCA is related, there is extensive national and international regulation and
mandatory procedures that need to be followed. However, the specific field of LCA does not know
such requirements (Jay et al, 2007). Nevertheless, there are countries where requirements
concerning reliability of LCA research are explicitly formulated. In the United States for example,
it is mandatory to communicate scientific uncertainty for important policy decisions based on
LCA (Cohen, 2013). This requires at least some level of uncertainty analysis in LCA research. Still
this seems to be an exception to the rule, while such legal requirements can be considered a
powerful tool to encourage uncertainty analysis in LCA (Ross et al.,, 2002).

A fourth type of driver is related to practical availability of uncertainty analysis methods. It is
easily argued that a prerequisite for LCA practitioners to perform uncertainty analysis in their
work is that a way to do so needs to be available to them, preferably within their software of
choice. All major LCA software tools, including SimaPro, CMLCA and OpenLCA, facilitate
uncertainty analysis to some extent (at least provide the option of a Monte Carlo simulation)
(Lloyd & Ries, 2007). This means that, apart from the question of data availability, the resources
to perform at least some form of uncertainty analysis are readily available. This can be seen as a
driver for uncertainty analysis.

Barriers

While the need for uncertainty analysis in LCA has been laid out above, there are many different
reasons why it is not included in most LCA studies. Barriers for performing uncertainty analysis
are related to different issues. First of all, barriers can relate to a lack of knowledge of the real-
world phenomena that the LCA study is dealing with. Uncertainty analysis requires a certain
amount of information on the uncertainty of input data, while this is often simply not available.
According to Huijbregts et al. (2001) quantifying uncertainty can be ‘extremely hard’ when
dealing with temporal or spatial variability in input data. This is underlined by Bjoérklund (2002),
who argues that deriving the necessary information for uncertainty analysis (e.g. parameter
distributions) can be very difficult when insufficient data is available. Moreover, when
considering qualitative assessment of data quality, LCA practitioners have to make a judgement
on data accuracy while they often don’t have this information (May & Brennan, 2003).

Secondly, there are methodological barriers related to uncertainty analysis. According to
Heijungs & Lenzen (2014) there is a general lack of knowledge among LCA practitioners on the
content of different types of uncertainty analysis, which is also a result of conflicting explanations
of these methods in literature. Also, while standardisation efforts (e.g. ISO 14040) may have led
to a commonly accepted framework for LCA research in general, these guidelines fail to provide
an adequate framework for incorporation of uncertainty analysis in LCA studies (Heijungs &
Huijbregts, 2004). Another methodological barrier exists in the quantification of uncertainty
types other than stochastic uncertainty. Model and scenario uncertainty are much more difficult
to assess and quantify, and methods to do so are less commonly known than e.g. Monte Carlo
simulation (Mendoza Beltran et al.,, 2016). Including these types of uncertainty in uncertainty
analysis requires a combination of methods, complicating the procedure significantly. A final
barrier is related to available software to deal with uncertainties. Firstly, computation time can
be significant for sampling techniques like Monte Carlo simulation when dealing with large LCA
models (Heijungs & Lenzen, 2014). Secondly, as mentioned earlier, most LCA software tools
include methods for uncertainty analysis, but these are generally still limited in terms of scientific
validity, ignoring important aspects like correlation between parameters (for a more thorough
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investigation of this issue see recent studies by Henriksson et al. (2015b) and Heijungs et al.
(2017)).

A third type of barrier for uncertainty analysis is related to interpretation of the results. Heijungs
& Huijbregts (2004) argue that LCA research is already a complicated procedure, and both data
collection and interpretation of the outcomes is even further complicated when uncertainty
analysis is included. This poses a problem when the results have to be understood by decision-
makers without the scientific background to understand them. Technical jargon and uncertainty
results require a high level understanding, which complicates applicability in policy-related
research (Cowell et al., 2002; Heijungs & Huijbregts, 2004). Outcomes of uncertainty analysis can
also be wrongly interpreted when the methods used were incomplete (Bjorklund, 2002). This
may give a false sense of credibility of the LCA results. Interpretation of uncertain results may
also lead to pessimism. When LCA outcomes have a large uncertainty they may lead to a
pessimistic view of the research, interpreting it as meaningless (Heijungs & Huijbregts, 2004). A
final barrier related to interpretation is found in political use of LCA research. Political actors may
tend to use the uncertainty of LCA results to their benefit, i.e. emphasising the uncertainty when
the outcomes are not in line with their views (Bras-Klapwijk, 1998). This also goes for results that
are in line with their views, when political actors may suppress or deny the uncertainty of the
research.

Table 4: Drivers and barriers for uncertainty analysis found in literature

Drivers Barriers

Uncertainty analysis is included in LCA because... Uncertainty analysis is excluded from LCA because...

... it increases scientific reliability ... there is a lack of uncertainty information of
input data

... a false sense of accuracy can be avoided ... there is a lack of knowledge among LCA
practitioners of uncertainty analysis methods

... counterproductive decisions due to a lack of ... there is a lack of an adequate framework for

uncertainty information can be avoided uncertainty analysis in international standards
(e.g. ISO)

... it can guide decision-makers in the ... it is complicated to assess model and scenario

interpretation of LCA results uncertainty

... it may be necessary in order to comply with ... sampling methods require a significant

(inter)national LCA requirements computation time for large LCA models

... options for uncertainty analysis are available in | ... the options for uncertainty analysis in LCA

all LCA software tools software tools are limited in terms of available

methods and scientific validity

... the results of uncertainty analysis are too
complex to interpret by decision-makers

... the results of uncertainty analysis may lead to
pessimism about the LCA outcomes

... the results of uncertainty analysis may be used
to the benefit of political actors
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4.1.2  Phase 1B: selection of propagation methods

In this study uncertainty propagation methods are compared in terms of outcomes and their
appropriateness for agricultural LCA in developing countries. Because many different
propagation methods for parameter uncertainty propagation exist, and this study will focus on
only a selection of propagation methods, an overview of existing methods will be given here. From
this overview, a selection of three to five methods will be made based on availability (application
examples should be available), input requirements (the case study should provide the necessary
data) and technical feasibility (the method can be performed with the available time and
resources).

As introduced in the theoretical approach, uncertainty propagation methods can be classified by
modelling technique (stochastic, analytical or fuzzy techniques), while the characterisation of
parameter uncertainty depends on the modelling technique and the type of data. For the sake of
completeness, the commonly used modelling techniques should be represented in the selection
of propagation methods used in this study. Comparing methods that are fundamentally different
from each other also contributes to the aim of this study, as the most appropriate propagation
method should be sought within the full spectrum of available method. The starting point is
therefore to include one propagation method from each modelling technique that is most
common: Monte Carlo simulation (MCS) for stochastic sampling, Taylor series expansion for
analytical uncertainty propagation (AUP) and fuzzy interval arithmetic (FIA) for fuzzy
techniques. In terms of the availability of examples in literature, all three modelling techniques
have been covered in literature with multiple studies. While stochastic, or sampling methods are
most common (especially MCS), analytical methods are included in numerous studies as well
(Lloyd & Ries, 2007). Fuzzy techniques are less common, but recent studies have provided
sufficient information on possible methods of this type (Clavreul et al., 2013; Groen, 2016).

Considering the recent discussion on uncertainty analysis in comparative LCA, and its
implications for the procedure of sampling-based analyses (see Henriksson et al,, 2015), two
types of sampling techniques will be included. While the importance of dependent sampling has
been acknowledged, the way the sampling results are analysed is still debated. Therefore, two
sampling-based methods are included: one using independent analysis, and one using dependent
analysis.

Depending on the type of propagation method, different inputs are required to quantify
parameter uncertainty. Sampling-based methods require the distribution function of each
parameter to be specified, together with a central value and a parameter of dispersion (e.g. the
standard deviation) (Groen et al.,, 2014a). The specific expression of this parameter of dispersion
depends on the distribution type. For analytical methods much less information is required, only
the standard deviation is needed. Possibilistic methods require three values: a core value, the
upper and lower bounds of the possibility function and the type of possibility function of each
input parameter (Groen et al., 2014a). The input requirements for each method should be feasible
for this study. As it is expected that the available data in the case study is sufficient to determine
both probability and possibility distributions, no methods need to be excluded based on
feasibility. The final selection of propagation methods is listed in Table 5.
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Table 5: Selected uncertainty propagation methods. The input requirements are adapted from Groen et al. (2014a).

Modelling Characterisation | Propagation method | Inputrequirements

technique

Sampling Probabilistic Monte Carlo, 1. Distribution function [pdf]
dependent analysis 2. Central value [u]
Monte Carlo, 3. Parameter of dispersion [m]
independent analysis

Analytical Probabilistic First order Taylor 1. Standard deviation [o]
approximation

Fuzzy Possibilistic Fuzzy interval 1. Core value [vs]
arithmetic 2. Upper and lower bounds [§+ and 6-]

3. Possibility function [S]
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4.2 Expert survey

4.2.1 Phase 2: drivers and barriers from expert survey

A total of 21 members of the research network participated in the survey. Among them were three
researchers, three PhD-students, two lecturers and a government official (twelve did not give
their current occupation). Most of them had experience in more than six LCA projects. The full list
of answers can be found in Appendix II. This section will be focussed on the conclusions that can
be drawn from those answers.

1. There is a general lack of knowledge among participants on how to perform uncertainty
analysis.
The answers show that one third of the participants is not familiar with the concept of uncertainty
analysis, and more than half of the participants has no experience with performing uncertainty
analysis. The most named reason for this was that they don’t know how to perform uncertainty
analysis. Consequently, more knowledge on the subject was named as the most important
requirement for participants to include uncertainty analysis in their work.

2. While parameter uncertainty is named as the most interesting uncertainty type, scenario
analysis is the most used method.

When asked which type of uncertainty is the most interesting for their work, most participants
chose parameter uncertainty (although this does not mean that they have experience in assessing
parameter uncertainty). However, this is not reflected by the answers to the question which
methods they have used is their work. Scenario analysis was used the most (by eight
participants), while five participants used sampling or analytical methods. One reason for the
discrepancy between the most important uncertainty type and the methods that are being used
could be that scenario analysis is less resource and knowledge intensive to perform.

3. Theimportance of uncertainty analysis is generally acknowledged by participants

Of all participants, two stated that uncertainty was not interesting for their work. This indicates
that the importance of uncertainty analysis is generally acknowledged by participants. Moreover,
the question if the participants wanted to learn more about uncertainty analysis if they had the
opportunity was unanimously answered positively. Although this doesn’t necessarily mean that
they think uncertainty analysis is important, there seems to be a willingness to gain more
knowledge on the subject, which is a necessary first step to tackle the lack of knowledge discussed
above.

4. Most researchers use SimaPro for scientific research, or only spreadsheet software.
The SimaPro software by Pré Consultants shows to be the most used software tool for LCA
research of the participants. SimaPro is one of the leading software tools in LCA, but there are
limitations to its use (Herrmann & Moltesen, 2015). There are limited options for uncertainty
analysis in SimaPro, and the tool is primarily aimed at business and education purposes (Pré-
Consultants, 2017). This can be seen as a barrier for the further development of uncertainty
analysis in the LCA research of practitioners in Thailand.

5. Guidance and knowledge development would support an increase in application of
uncertainty analysis
Considering the suspected general lack of knowledge by LCA practitioners of uncertainty analysis,
knowledge development would support an increase in application of uncertainty analysis. This is
underlined by the answers to the question what the participants without experience un
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uncertainty analysis would need in order to include it in their work. There, knowledge is
mentioned by 75% of the participants. Furthermore, the lack of consequent guidelines for
uncertainty analysis is mentioned in the final question on suggestions for how LCA practitioners
could be encouraged to include uncertainty analysis in their research. A step-by-step manual or
international guidance would help practitioners to include uncertainty in their research,
preferably from the start of the study. Finally, of all LCA studies by participants who performed
uncertainty analysis, the results of uncertainty analysis were included in the final report or
publication. This means that increasing the use of uncertainty analysis would indeed lead to an
increase of application of uncertainty analysis in scientific reporting.

4.2.2  Evaluation criteria

From the literature overview given in the previous chapter, together with the findings from the
expert survey, several observations can be made regarding the conditions to which an
appropriate method for uncertainty analysis should comply. By translating these observations to
concrete criteria of suitable methods uncertainty analysis in agricultural LCA, the results of the
case study can be evaluated in the final phase of this study. In this section these criteria are
formulated, and the scoring procedure for each criterion is explained. The final list of criteria and
the scoring methods are depicted in Table 6.

From the results of the previous sections, the aspects of importance to a suitable method of
uncertainty analysis can be categorised into three categories: resources (related to the required
inputs and tools), procedure (related to the required activities during the analysis), and
understanding (to what extent the analysis contributes to a better understanding of the LCA
outcomes).

Resources

Although LCA studies tend to be data-intensive, uncertainty analysis may require large amounts
of sample data that was initially not gathered. Sampling techniques require multiple data points,
while an LCA study is sometimes based on single point estimates of parameter values (Bjorklund,
2002). The amount of primary data required for an uncertainty propagation method can be a
limiting factor in the procedure of uncertainty analysis. When secondary data with uncertainty
estimations suffice (like the pedigree matrix in Ecoinvent), or expert judgement can be used to
quantify parameter uncertainty, this is seen as an advantage in terms of resource requirements.
Therefore, the first criterion addresses the primary data requirement of the method.

Criterion 1: Primary data requirements

When many primary data points are required for uncertainty propagation, this is seen as a
limiting factor. Conversely, when no primary data is needed this is an advantage in terms of
suitability to all research types. Following the reasoning of Henriksson et al. (2014) that at
least eight primary data points are needed to determine a distribution for an input parameter,
the scoring for this criterion is as follows:

1. More than eight primary data points are required;

2. Atleast one, but less than eight primary data points are required;

3. No primary data points are required.

A second aspects related to resources refers to the time that is needed to complete the uncertainty

propagation. As seen in the literature review, the available time to complete an uncertainty
analysis (or an LCA study in whole) is sometimes limited. Therefore, it is seen as an advantage
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when uncertainty propagation is not very computationally demanding, and it can be completed
fast.

Criterion 2: Computation time

The scoring of this criterion is based on how much time is required to complete the
uncertainty propagation step for two alternatives in an LCA model. Computation time is
considered ‘short’ when it takes less than ten minutes to complete, and it thereby doesn’t
influence the planning of the study and it can be repeated several times if needed. A maximum
of three hours is set for the calculation time to be considered ‘long’, because the calculation
can then be completed within half a day. If the calculation takes longer than three hours, it is
considered ‘very long’, and it will influence the planning of the study.

1. Calculation time is more than three hours;

2. Calculation time is between ten minutes and three hours;

3. Calculation time is less than ten minutes.

The third aspect related to resources refers to the software that is required for the uncertainty
propagation. The expert survey shows that most participants use only one software tool in their
work, which may limit the possibilities for uncertainty propagation: when a method is not
available in the preferred software tool (SimaPro, following the majority of participants in the
survey), the practitioners has to use another tool, or even multiple tools. Therefore, the third
criterion describes if, and if so how many software tools are required.

Criterion 3: Software requirements

If the full propagation step can be performed within the preferred software tool (SimaPro)
this is seen as an advantage. When a different tool is required this is seen as a barrier, and the
lowest score is given to methods that require multiple software tools.

1. Multiple software tools are required;

2. One software tool different from the preferred software is required;

3. The full uncertainty propagation can be performed within the preferred software tool.

Procedures

Due to the general lack of knowledge about uncertainty analysis that was found both from the
literature review and the expert survey, uncertainty analysis is not widely used in LCA research.
The question whether this knowledge should simply be increased, or if the methods should be
simplified can be subject of further research, but for this study the focus is on the application of
uncertainty analysis in the current environment of LCA research. In relation to the lack of
knowledge of uncertainty analysis, the complexity of the procedures is important when
discussing the suitability of propagation methods. While the core calculations of uncertainty
propagation are generally made by software tools, additional procedures may be required, either
in data preparation or after the main calculations. As stated in the literature review, the
specification of distributions for input parameters may be required, depending on the method
and available data. Because specifying distributions requires thorough understanding of
statistical concepts related to uncertainty, it can be expected that LCA practitioners with limited
knowledge of uncertainty analysis will have difficulties with this preparatory step. Therefore the
fourth criterion describes the need to specify distributions for the input parameters in the LCA
model.

Criterion 4: Data preparation
When no distributions need to be specified for the uncertainty propagation method, this is
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seen as an advantage. Because it is either necessary to do so or it isn’t, this criterion can only
be scored 1 or 3.

1. Specification of distributions is necessary

3. No distributions need to be specified

Another procedure that may be required in addition to the core calculations in the propagation
stage is statistical testing of the outcome of the uncertainty propagation, or ‘post-processing’.
When a propagation method directly delivers uncertainty information, such as variance, no
additional procedures are necessary. When a result is presented that is not directly interpretable
however (e.g. a number of sampling results), statistical testing may be necessary to gain
interpretable results. The fifth criterion therefore describes the need for post-processing.

Criterion 5: Post-processing

Because post-processing in the form of statistical testing requires additional knowledge, the
need for post-processing operations is seen as a disadvantage. It is also possible that post-
processing is not strictly necessary, but can be used for more insight (e.g. when sampling
results are translated to a measure of variance by the software tool). Ideally post-processing
is not necessary, so this case is assigned the highest score.

1. Statistical testing of the outcomes is crucial for interpretation

2. Statistical testing can be used for more insight, but not crucial for interpretation

3. Statistical testing of the outcomes is not necessary

Understanding

Uncertainty analysis methods should present results that lead to a better understanding of the
LCA outcomes, both in terms of comparison and in terms of absolute significance of the results.
In terms of comparison the outcomes should present insight in the actual extent to which one
alternative is preferred over another in terms of environmental impact, considering the
uncertainties. As shown in the literature reviews, comparing alternatives in a relative way is
preferred over comparing in an absolute way, because it allows for the comparison of the specific
uncertainty for each alternative by disregarding uncertainty around shared processes. However,
this is only possible when the shared processes can be separated from the alternative-specific
flows, which could be a problem a propagation method only provides a single uncertainty value.
The results from the expert survey show that when uncertainty analysis is performed, the results
are always incorporated in the reporting. This notion underlines the importance of this criterion,
because if the results do not provide a better understanding of the results, but are presented
anyway, this might give a false sense of accuracy (or at least a meaningless presentation of
uncertainty). The sixth criterion describes whether relative comparison is possible: the
comparative power.

Criterion 6: Comparative power

Because alternatives either can or cannot be compared in a relative way, only two scores are
possible for this criterion. When relative comparison is possible this automatically means that
absolute comparison is also possible, because relative comparison requires only a further
specification of uncertainty information.

1. Alternatives can only be compared in an absolute way

3. The results allow for relative comparison of alternatives

In addition to the comparative power of the propagation method, practitioners should be able to
understand and interpret the outcomes of uncertainty analysis. However, the interpretability of
the results depends on the amount and type of uncertainty information that is presented. When
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more information on uncertainty is provided, a better interpretation of the output uncertainty is
possible. When the presented uncertainty information is limited to single values (e.g. variance)
or only graphs (e.g. a distribution of output uncertainty), this is seen as a disadvantage. The last
criterion addresses the possibilities for interpretation, based on the type of uncertainty
information that is presented through the propagation method.

Criterion 7: Interpretation

The highest score for this criterion is assigned when confidence intervals can be determined
with the uncertainty information presented by the propagation method, because this is the
most valuable uncertainty information when comparing alternatives. Single uncertainty
values (e.g. variance values) are deemed less desirable, because it doesn’t tell how the
outcomes are distributed. When a graphical interpretation is necessary to understand the
results (i.e. when no representative uncertainty values are given, but only an indication of the

distribution of the outcomes) this is seen as a disadvantage.
1. Limited uncertainty information is presented, graphical interpretation is necessary
2. The results are presented as single uncertainty values (variance)
3. The results can be presented as confidence intervals

Table 6: Matrix for evaluating uncertainty analysis methods.

Scores
Category Criterion 1 2 3
Primary data More than 8 Less than 8 No primary data
requirements | primary data primary data required
points points
Computation Very long - Long - calculation | Short - calculation
time calculation time is | time between 10 time is less than
Resources more than 3 hours | minutes and 3 10 minutes
hours
Software Multiple software | One software tool | Full analysis
requirements | tools are required | - different from possible within
the software of LCA software of
choice - is choice
required
Data Specification of No distributions
preparation distributions is are required
necessary
Procedure Post- Statistical testing | Statistical testing | Statistical testing
processing of the outcomes is | can be used for of the outcomes is
crucial for more insight, but | notnecessary
interpretation not crucial for
interpretation
Comparative Alternatives can The results allow
power only be compared for relative
in an absolute way comparison of
alternatives
Interpretation | Limited The results are The results can be
Understanding uncertainty presented as presented as
information is single uncertainty | confidence
presented, values (variance) | intervals
graphical
interpretation is
necessary
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Criteria weighting

While all seven criteria are important for the suitability of propagation methods for agricultural
LCAs in developing countries, some are arguably more important than others. Because the aim of
uncertainty analysis is to gain a better understanding of the uncertainty around LCA outcomes, it
can be stated that the two criteria on comparative power and interpretation are of primary
importance. Also, the abundancy of available primary data from the original LCA study suggests
that primary data requirements will be of lesser importance in this type of LCA study. Assigning
values to these criteria based on their relative importance can be done by weighting: more
important criteria will be assigned higher values, making them count higher in the final
evaluation. While this procedure is common practice for numerical variables that can be added
and multiplied (e.g. impact categories in the normalisation phase of LCA), it is harder to
implement for ordinal variables such as the evaluation criteria here. Because the scores of 1 to 3
are ordinal, meaning that 3 is not three times better than 1, the scores cannot be added or
multiplied. Choosing a numerical scale for the scoring of the propagation methods would imply
that the preferred option for each criterion would be ‘three times better’ than the least preferable
option. Because of the qualitative nature of the criteria this numerical scale would not make sense.
Quantitative weighting of the criteria is therefore not possible. Nevertheless, acknowledging that
the two criteria on comparative power and interpretation are the most important criteria, and
that primary data requirements are of lesser importance will steer the evaluation of the case
study results in a way that reflects the importance of each criterion in the context of this study.
This ‘qualitative weighting’ will be maintained throughout the final evaluation.

42



4.3 Case study

4.3.1 Sensitivity analysis

The first stage of the case study is dedicated to selecting a set of the most important parameters
in the model in terms of contribution to the model outcomes and the uncertainty of these
outcomes. First, a perturbation analysis is performed to find the sensitivity of the model outcomes
to changes in the input parameters. Secondly, using the most influential parameters found in the
previous analysis, an MEE is performed to find the importance of these parameters in terms of
contribution to the model output uncertainty.

Perturbation analysis

In CMLCA, a perturbation analysis can be performed on the process level, elementary flow level,
or the category level. As the focus of this study is on the ReCiPe climate change indicator (as
explained in chapter 3), the perturbation analysis on the category level seems to be sufficient.
However, by performing the analysis on the elementary flows that contribute to climate change,
the individual contributions of the different GHGs to the multiplier value of each parameter can
be discerned. This can provide additional insight in the specific role that each parameter plays in
its contribution to the model outcome. Therefore, the perturbation analysis is repeated for the six
elementary flows that contribute most to the resulting score on the climate change category
(listed in Table 7). As 99% of the total impact score is explained by these six flows, it is justified
to ignore other contributing flows. A general side note to the perturbation analysis in CMLCA is
that elementary flows have to be converted to input products in the model in order to be included
in the analysis. This does not affect the results, but it is contradictory to the main principles of the
way CMLCA works.

Table 7: Elementary flows contributing to the climate change impact category (ReCiPe 1.1 climate change
[GWP100]).

Elementary flow Value [kg COz-eq.] | Contribution [%)]
N20 emissions to air 21.2 33

CO2 emissions to air (high population density) 16.8 26

COz emissions to air (low population density) 11.8 18

Methane emissions to air (unspecified) 7.59 12

CO2 emissions to air (unspecified) 6.29 10

Methane emissions to air (low population density) | 1.33 2

Explained by listed flows 65 99

Total impact score 65.3 100

The result of the perturbation analysis is a table of the most influential parameters in the model,
i.e. with a multiplier value higher than the cut-off value of +0.01 (or below -0.01). The multiplier
value indicates the magnitude of a change of 1% in the parameter on the output. For example, a
multiplier value of +0.02 indicates that by increasing the parameter value with 1%, an increase
in GWP of 0.02% will be observed. The multiplier value can also be negative, indicating a decrease
in GWP when the parameter value is increased. A parameter can either be an input or an output
flow, or an emission. Because the multiplier values represent the contribution to the climate
change impact of the output flow of sugarcane, the sugarcane output flow has a multiplier value
of -1.00 (as a 1% increase of the yield of sugarcane would lead to a 1% decrease of the climate
change impact).
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While a total of 386 parameters was found above the cut-off value, most of those are background
processes with a fixed value and uncertainty data from the Ecoinvent database. Because the focus
of this case study is on the parameters that are directly related to the cultivation of sugarcane (i.e.
that were obtained in the field by KMUTT researchers), these background parameters will be
excluded from further analysis. Table 8 lists the remaining parameters directly related to the
model foreground processes (stages). Because the different parameters and their associated
multiplier values may be hard to interpreted intuitively, an explanation of what each parameter
means is added.

Table 8: Multipliers of the most influential parameters of conventional sugarcane cultivation.

Stage Flow Multiplier = Explanation

Sugarcane cultivation | Sugarcane output [kg] -1.000 Yield of sugarcane (kg/ha)

(total) Land preparation input +0.040 Land preparation intensity (ha/kg
[ha] output)
Planting input [ha] +0.032 Planting intensity
Treatment input [ha] +0.612 Treatment intensity
Harvesting input [ha] +0.215 Harvesting intensity
Transport input [tkm] +0.100 Transport (load * distance)

Land preparation Diesel input [kg] +0.040 Diesel use (kg/ha)

Planting Diesel input [kg] +0.024 Diesel use (kg/ha)

Treatment N-fertilizer input [kg] +0.112 N-fertilizer use (kg/ha)
P-fertilizer input [kg] +0.050 P-fertilizer use (kg/ha)
Urea input [kg] +0.139 Urea fertilizer use (kg/ha)
N20 emissions from +0.289 -
treatment

Harvesting Cane trash burning [kg] +0.152 Cane trash burning (kg/ha)

CH4 emissions from cane | +0.116 -
trash burning
N20 emissions from cane | +0.036 -
trash burning

Diesel input [kg] +0.063 Diesel use (kg/ha)
Transport Transport output [tkm] -0.183 Efficiency of transport (tkm/input)
Production of input Diesel output [kg] -0.056 Efficiency of diesel production
materials (kg/input)
(background N-fertilizer output [kg] -0.116 Efficiency of N-fertilizer production
processes) P-fertilizer output [kg] -0.044 Efficiency of P-fertilizer production
K-fertilizer output [kg] -0.012 Efficiency of K-fertilizer production
Urea output [kg] -0.134 Efficiency of urea production

The multiplier table still shows several parameters that are not directly important to this study.
The inputs to the total sugarcane cultivation can be interpreted as ‘intensity’ of cultivation
practices, in hectare per kilogram of sugarcane produced. These are in fact the different stages in
the cultivation process (aside from transport), and are therefore not relevant in the next step of
this case study of uncertainty propagation. Also, the production of input materials is not relevant
for the uncertainty analysis because these values are fixed in the database. Lastly, the parameter
‘cane trash burning’ constitutes of CHs and N20 emissions, but as these parameters cannot be
changed (as the chemical process of burning cane trash is fixed), only the total of the parameter
‘cane trash burning’ is of interest here. This leaves a total of nine parameters of potential
relevance to uncertainty propagation in terms of influence, presented in Figure 7. The figure
displays the parameters with the absolute multiplier value, because the relative magnitude of the
multipliers is of interest here (i.e. how large the contribution of each parameter is compared to
the others), and for visual interpretation this is best presented in an absolute way.
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Absolute multiplier value |n|
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

N20 emissions (treatment) [N 0.289

Cane trash burning (CH4 + N20) I 0.152

Input of urea fertilizer (treatment) NN 0.139

Input of N-fertilizer (treatment) NN (0.112
Transport (load - distance) I (0.100
Input of diesel (harvesting) NI 0.063

Input of P-fertilizer (treatment) [ 0.050

Input of diesel (land preparation) I 0.040

Input of diesel (planting) M 0.024

Figure 7: Selected relevant parameters and their corresponding multiplier values. For the sake of comparison of
magnitude the absolute values are given.

Method of elementary effects

The MEE is performed for the nine parameters that were selected in the perturbation analysis in
the previous section, in order to describe their importance in terms of their contribution to the
output uncertainty. To perform an MEE, uncertainty information of the model parameters is
needed in the form of ranges. As this case study is based on the sample data for one sugar mill,
the ranges for each parameter are taken from this sample set (88 data points per parameter).
While these ranges can be seen as indicative for the full dataset of 1,652 farms, the results may
be different for other sugar mills due to a different geographical location, climate conditions and
so on. Therefore, the results should be interpreted as only indicative. Also, for one parameter a
range is not available (cane trash burning), as it was derived from literature. It was therefore
excluded from the results.

The MEE analysis is performed with MatLab, using a script written by Groen (2016), who used
MEE in her PhD thesis on uncertainty and sensitivity analysis in agricultural LCA. The required
input data for an MEE are three matrices from the LCA model (technology matrix 4, intervention
matrix B and final demand matrix f), which are extracted from the CMLCA software. They are
adapted to fit to the software, i.e. cut off at the foreground processes and aggregating impacts
from background processes to foreground input parameters. The range of each parameter is
defined in separate matrices (one for the upper values, one for the lower values). The MatLab
script and the adapted matrices can be found in the electronic supplementary material.

The results of the MEE can be combined with the results from the perturbation analysis in a

diagnostic diagram, as suggested in Figure 2. In Figure 8 the importance of the parameters is
plotted on the y-axis, and the influence (as the absolute multiplier value) is plotted on the x-axis.
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Influence and importance of parameters
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Figure 8: Combined results of the perturbation analysis and MEE analysis. Circles indicate parameters for which a range
was available, triangles represent parameters for which the range is unknown. The parameter of diesel input in harvesting
is indicated by an arrow, because its importance value is too high to fit on this scale.

The combined results of the perturbation analysis and MEE show that the diesel consumption
during harvesting is by far the most important parameter in terms of uncertainty, but its influence
on the model outcome is not exceptional. Also, urea and N-fertilizer use during treatment are
significantly important while also scoring high on influence. N,0 emissions during the treatment
stage are highly influential, but not exceptionally important in terms of uncertainty. Cane trash
burning does not have a score on importance because a range was not available, but will be used
in the propagation step because it is the second most influential parameter.

4.3.2  Phase 3B: uncertainty propagation

In this phase, the uncertainty of the nine parameter that were selected in the previous section is
propagated using the methods selected in section 4.1. However, the data that is needed for the
propagation step needs additional preparation. Errors in the full dataset (where in the previous
phase only data from one sugar mill was used) need to be removed. Also, as described in the
methodology, the required input for each propagation method needs to be obtained from the
dataset. This is explained here.
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Data errors

While preparing the raw data for the uncertainty propagation, it became apparent that the dataset
contained several errors and missing values. This includes extremely high values (> 100 times
the average value) and zero-values where zero is simply not possible. The parameters where
zero-values are not allowed are transport (transport from the farm to the sugar mill is always
necessary) and cane trash burning for conventional cultivation (assuming that conventional
cultivation always includes cane trash burning). Also, some farms were listed with the cultivation
method zero, which is considered an error as well. For the purpose of this study it is not necessary
to remove all the farms containing errors from the dataset, but only the values containing errors
are removed (except for the cultivation method errors).

The original dataset contained 1346 farms for conventional cultivation and 189 farms for green
cultivation, adding up to a total of 13,815 data points for nine parameters. This excludes the farms
containing an error for cultivation method. Table 9 lists the numbers of errors removed from the
dataset for each error and alternative. A total of 606 data points were removed from the dataset,
which corresponds with 4.3% of the data points values.

Table 9: Number of data errors removed from the dataset.

Error Number of errors
Conventional | Green Total
cultivation cultivation
More than ten times the average value | 20 3 23
Transport =0 183 22 205
Cane trash burning = 0 46 - 46
Cultivation method = 0 42 farms 378
Total 249 25 606

Descriptive statistics

Several of the required inputs described in Table 5 can be easily generated from the available
dataset. These descriptive statistics, including the mean, median and standard deviations can be
obtained through simple calculations, without setting additional parameters. The bounds of the
possibility functions are based on a pre-defined distance from the core value, for which the mean
is taken. The upper and lower bounds are set to a distance of +40% from the core value. This
choice is further explained in the FIA results. The results of the descriptive statistics calculations,
which were performed in R, are depicted in Table 10.
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Table 10: Descriptive statistics of the parameters of conventional and green cultivation of 1 tonne of sugarcane.

Parameter Unit N Mean Median | SD Cv Lower | Upper
bound | bound

Conventional cultivation

Cane trash tha 4300 7072 | 6591 | 1804 026 4950  91.94
burning

Inputofdieselin | kg/ha 13,5 4316 3125 4671 | 1.08 3021 | 56.11
land preparation

Inputofdieselin | kg/ha | 1550 | 1433 425 1757 | 1.23 10.03 | 18.63
planting

Input of N- kg/ha

fertilizer in 1345 | 17481 | 150.00  137.90 | 0.79 122.37 | 227.25
treatment

Input of P- kg/ha

fertilizer in 1345 9939 | 9375 | 7924 | 0.80 69.57 | 129.21
treatment

Inputofureain | kg/ha 15,0 | 12101 | 0.00 185.77 | 1.54 8471 | 157.31
treatment

Inputofdieselin | kg/ha | 15,4 | 1455 (00 4915 | 3.38 10.19 | 18.92
harvesting

Transport tkm 1161 | 1096.03 | 700.0 | 1256.50 | 1.15 767.22 | 1424.84
N20 emissions | kg/ha | 1505 4 46 1.32 1.17 0.80 1.02 1.90
from treatment

Green cultivation

[nputof dieselin | kg/ha | ;4 4458 | 3750 3564  0.80 31.21 | 57.95
land preparation

Inputof dieselin | kg/ha | ;g4 2137 | 2500 | 1629 | 0.76 1496 | 27.78
planting

Input of N- kg/ha

fertilizer in 189 16854 | 14844 | 12459 | 0.74 117.98 | 219.10
treatment

Input of P- kg/ha

fertilizer in 189 7272 | 6563 | 5820 | 0.80 50.90 | 94.54
treatment

[nputofureain | kg/ha | 4gq 137.74 | 0.00 220.72 | 1.60 96.42 | 179.06
treatment

[nputof dieselin | kg/ha | g, 6.56 0.00 1311 | 2.00 4.59 8.53
harvesting

Transport tkm 166 1051.84 | 875.00 | 84632 | 0.80 73629 | 1367.39
N20 emissions | kg/ha  gq 1.34 1.13 1.23 0.92 0.94 1.74

from treatment

Distributions

One of the required inputs for uncertainty propagation with a sampling method is the distribution
function that can be used to describe each parameter. In the sampling procedure, this function is
used to estimate the probabilities of all values within the distribution function, and sample from
this function according to these probabilities. When little data and time resources are limited, it
is possible to assume a certain distribution (e.g. lognormal) for all parameters (Henriksson et al,,
2014). When sufficient data is available (more than eight data points), Henriksson et al. (2014)
argue that the best fitting distribution should be determined in order to avoid increasing data
uncertainty by assuming one distribution. In this case study, because much primary data is
available, the best fitting distribution will be determined for all parameters. However, the best
fitting distribution must still present a truthful depiction of the way the parameter is distributed.
This means that a normal distribution with the probability density function (pdf) stretching
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below zero is only possible for parameters where negative values can occur. In this case study, all
nine parameters do not allow for negative values: negative fuel consumption, fertiliser use,
transport or emissions are not possible in this system. This means that when the best fitting
distribution implies a pdf that stretches below zero, it has to be adjusted to a distribution that
does not allow for negative values (the lognormal distribution). Although this is arguably an
assumption that affects the outcomes, it is necessary to avoid negative outcomes.

When determining the best fitting distribution for a parameter, the sample data is compared to
theoretical fitted distribution functions, as where they perfectly following a distribution function.
A goodness-of-fit (GOF) test determines the extent to which is does so, by testing the hypothesis
that the sample data follows a certain distribution. If the null-hypothesis that the data does not
follow a certain distribution is rejected, the data can be assumed to follow this distribution.
Common GOF test methods that can be used to determine this information for several
distributions include the Anderson-Darling (AD) test and the Kolmogorov-Smirnov (KS) test.

However, if the null-hypothesis is not rejected for any distribution, additional measures are
needed to determine the best fitting distribution relative to the others. The AD and KS tests also
give a specific value for each distribution when compared to the sample data. This information
can be used to compare the fitting distributions in a relative way, when no conclusions can be
drawn from the hypothesis-testing alone. This method may be required when using large sets of
sample data, because it is not likely that primary data closely follows the theoretical distribution
function. The GOF-tests are performed in R, and the results are listed in Table 11 and Table 12.

Table 11: Goodness-of-fit results for green cultivation parameters. The best fitting distributions for each parameter are
highlighted. For the uniform distribution, the AD statistic and AIC criterion are not available.

Parameter Distribution AD statistic KS statistic AIC criterion | Explaining
graphs

Input of diesel | Normal 3.21 0.124 1890.1 CDFs

in land Lognormal 21.65 0.289 1898.2 P-P plot

preparation Uniform 0.421 p

Input of diesel | Normal 10.27 0.197 1594.0

in planting Lognormal 24.53 0.273 1612.5 None
Uniform 0.352

Input of N- Normal 5.74 0.154 2363.2

fertilizer in Lognormal 20.36 0.271 2436.9 All

treatment Uniform 0.474

Input of P- Normal 2.95 0.110 2075.5

fertilizer in Lognormal 20.47 0.273 2094.6 All

treatment Uniform 0.487

Input of urea Normal 20.65 0.279 2579.4

in treatment Lognormal 26.43 0.361 1869.8 None
Uniform 0.665

Input of diesel | Normal 33.72 0.387 1496.0

in harvesting Lognormal 33.26 0.430 980.0 None
Uniform 0.696

Transport Normal 8.80 0.165 2712.1
Lognormal 1.23 0.091 2595.5 All
Uniform 0.681

N20 emissions | Normal 6.90 0.146 617.0

from Lognormal 2.02 0.095 5271 All

treatment Uniform 0.616
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Table 12: Goodness-of-fit results for conventional cultivation parameters. The best fitting distributions for each parameter
are highlighted. For the uniform distribution, the AD statistic and AIC criterion are infinite and not available respectively.

Parameter Distribution AD statistic KS statistic AIC criterion | Explaining
graphs

Cane trash Normal 28.44 0.132 11212.3

burning Lognormal 16.72 0.124 11080.3 All
Uniform 0.570

Input of diesel | Normal 57.43 0.178 14128.6

inland Lognormal 118.44 0.241 12714.9 CDFs

preparation Uniform 0.557

Input of diesel | Normal 100.65 0.291 11452.5

in planting Lognormal 167.20 0.336 9578.7 None
Uniform 0.668

Input of N- Normal 37.20 0.146 17072.2 Histoeram

fertilizer in Lognormal 117.62 0.239 17348.3 CDFsg

treatment Uniform 0.605

Input of P- Normal 29.38 0.157 15582.0

fertilizer in Lognormal 126.10 0.254 15802.8 All

treatment Uniform 0.586

Input of urea Normal 139.30 0.302 17887.2

in treatment Lognormal 197.82 0.370 12978.8 None
Uniform 0.683

Input of diesel | Normal 0.384 14286.7

in harvesting Lognormal 218.71 0.409 7966.5 CDFs
Uniform 0.885

Transport Normal 0.192 19867.8
Lognormal 15.70 0.106 18724.0 P-P plot
Uniform 0.690

N20 emissions | Normal 32.41 0.130 4233.1

from Lognormal 7.32 0.082 3756.1 All

treatment Uniform 0.578

The information from the GOF-tests implies that most of the parameters in the model are
normally distributed. However, when looking at the descriptive uncertainty information from
Table 10, it becomes clear that all of these parameters will have a pdf that stretches below zero,
implying the possibility of negative values. As this must be avoided, lognormal distributions are
assumed for all parameters. It is acknowledged that the best procedure to handle the
impossibility of negative values is by truncating the normal distributions at the zero value,
thereby avoiding all values below zero. However, due to time restrictions the parameters were
simply assumed to be lognormal. Still it is important to understand the best fitting distributions
when interpreting the uncertainty propagation results, as the assumption of a different
distribution influences the result. This will be discussed in the discussion chapter.

Using the information from this section, the CMLCA model can be supplemented with uncertainty
information. In CMLCA parameter uncertainty for lognormally distributed parameters is
expressed as the mean value and a parameter of dispersion phi. This parameter expresses the
dispersion based on the coefficient of variation as follows (Heijungs & Frischknecht, 2005, p.
252):

phi = {/In(CV?) + 1

where CV is the coefficient of variation. This formula is applied to the mean values and CVs from
Table 10, and the resulting values that are put into CMLCA are listed in Table 13.
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Table 13: Parameter uncertainty information as input in the CMLCA model.

Parameter Distribution Mean value Parameter of
dispersion (¢)

Conventional cultivation Value
Cane trash burning Lognormal 70.72 0.256
Input of diesel in land preparation Lognormal 43.16 0.879
Input of diesel in planting Lognormal 14.33 0.960
Input of N-fertiliser in treatment Lognormal 174.81 0.696
Input of P-fertiliser in treatment Lognormal 99.39 0.703
Input of urea in treatment Lognormal 121.01 1.102
Input of diesel in harvesting Lognormal 14.55 1.587
Transport Lognormal 1096.03 0.918
N20 emissions from treatment Lognormal 1.46 0.703
Green cultivation

Input of diesel in land preparation Lognormal 44.58 0.703
Input of diesel in planting Lognormal 21.37 0.675
Input of N-fertiliser in treatment Lognormal 168.54 0.661
Input of P-fertiliser in treatment Lognormal 72.72 0.703
Input of urea in treatment Lognormal 137.74 1.127
Input of diesel in harvesting Lognormal 6.56 1.269
Transport Lognormal 1051.84 0.703
N20 emissions from treatment Lognormal 1.34 0.783

Correlations and common processes

One important aspect of assessing parameter uncertainty is the presence of correlations between
parameters. The outcomes of comparative LCA studies often depend on both common and
correlated parameters; common in the sense that alternatives often share part of the processes in
the product system, and correlated in the sense that some parameters in the model may be fully
or partly dependent on other parameters ‘upstream’ in the product chain (Lloyd & Ries, 2007).
For example, in the sugarcane cultivation case study both alternatives include the production of
fertiliser, which is therefore a shared process. Correlated parameters could be for example
emissions (e.g. CO2) directly related to another parameter (e.g. diesel combustion).

In the context of uncertainty, correlation between parameters is important because the results of
uncertainty analysis can present wrong conclusions when correlation is ignored (Bojaca &
Schrevens, 2010). Because the variance in a correlated parameter can be explained partly or fully
by the variance in another parameter, including the variance of both parameters in uncertainty
propagation would lead to an overestimation of the output uncertainty (Groen & Heijungs, 2017).
In other words, this would be ‘double counting’ of parameter uncertainty, and should be
accounted for during uncertainty propagation. Groen and Heijungs (2017) studied the effect of
ignoring correlations between parameters, and found that the magnitude of over- or
underestimation of uncertainty is determined by the variance in the parameter and by the
correlation coefficient. Small parameter variance and a large correlation coefficient have a large
effect on the output variance; depending on the type of correlation (technical parameter-
emission, emission-emission or technical parameter-technical parameter), the output variance
decreases or increases when correlations are ignored (Groen & Heijungs, 2017). Consequently,
the importance of parameters in terms of their contribution to the output uncertainty (as can be
quantified with a global sensitivity analysis) is underestimated when correlation is ignored.
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Although correlations between input parameters can have a significant effect on the output
uncertainty, incorporating them in uncertainty analysis in LCA is far from common practice
(Lloyd & Ries, 2007). Groen and Heijungs (2017) name two main requirements that need to be
met: the procedure for uncertainty propagation needs to be adapted, and knowledge about the
correlation coefficients is needed. Most common LCA software tools do not provide for adapted
procedures to handle such correlations within uncertainty propagation, and knowledge about
this subject is not widespread. Because the focus of this research is on the comparison of
uncertainty analysis methods, the application or even development of new methods for
incorporating correlations in uncertainty analysis is beyond the scope of this study. However,
understanding the correlations between parameters in the case study and interpreting the
uncertainty propagation results accordingly (although limited to a qualitative assessment) is
possible without the use of such new methods. Within the nine parameters under study for each
alternative, considering the flowcharts of both product systems, three correlations are found. The
emission of N;O in the treatment phase is possibly directly linked with the application of N-
fertiliser and urea fertiliser, as nitrogen is the main component of N-fertiliser and urea. Also, it is
expected that N-fertiliser and urea are correlated, because both fertilisers are used nitrogen
fertilisers providing the same service to the soil. When more N-fertiliser is used, less urea would
be needed to provide the same amount of nitrogen to the soil. The correlation between
parameters can be tested with Pearson’s correlation coefficient r, found by

X -XNDE-1
(X — X)2 XY — V)22

where X and Y are the parameters tested (Rodgers & Nicewander, 1988, p. 61). Although this
measure does not say anything about causality, it gives an indication of the magnitude of
correlation. A correlation coefficient of 1 indicates perfect correlation, while 0 means no
correlation.

N-fertiliser and N»O emissions have a correlation coefficient of 0.91, suggesting a strong
correlation. An implication of this correlation is that in the uncertainty propagation, the outcome
may be an overestimation of the actual uncertainty. This because the uncertainty stemming from
the N-fertilizer and urea fertiliser use is also propagated in the uncertainty N,O emissions. Urea
fertiliser and N»,O emissions however have a correlation coefficient of only 0.04, suggesting a very
weak or no correlation. Urea fertiliser and N-fertiliser also have a correlation coefficient of 0.04,
and therefore don’t suggest any correlation. Based on the chemical properties of urea fertiliser
the lack of correlation with both N;O emissions and N-fertiliser is not expected. A possible
explanation is that the relationship between urea and N>O emissions was not properly modelled
in the original model (i.e. the emission factor of N>O from urea fertiliser was not incorporated).
The lack of correlation with N-fertiliser use suggests that either farmers don’t take into account
the chemical properties of the fertiliser products when applying them, or that the primary data
on fertiliser use is incorrect. While this notion is important for the interpretation of the LCA
results, it does not necessarily complicate matters for uncertainty propagation in this case study,
because there is no correlation incorporated in the model.
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Results: Monte Carlo simulation

The result of the MCS is a list of 3000 possible outcomes of the model for both alternatives.
Regarding uncertainty, descriptive statistics can be given of this sample set. The mean and median
values, CV, SD and the 95% confidence interval (as the lower and upper bounds) are listed in
Table 14.

Table 14: Results of the Monte Carlo simulation (3000 runs).

Alternative Mean Median SD CVv 2.5% 97.5%
Conventional cultivation 39.6 37.0 12.6 0.318 23.2 72.7
Green cultivation 32.8 30.5 11.7 0.357 17.7 61.6

Graphically the results are presented as histograms (Figure 9 and Figure 10), in a bar chart
(Figure 12) and in box-whisker plots (Figure 11).
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Figure 9: Histogram of the MCS results for green cultivation. The dashed lines represent the 2.5t and 97.5th percentile.
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Figure 10: Histogram of the MCS results for conventional cultivation. The dashed lines represent the 2.5th and 97.5th
percentile.
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The dependent analysis of the MCS is done using the method presented by Henriksson et al.
(2015a). Because the resulting graphs for each alternative separately are the same for this
method as for the independent analysis, this part will be focussed on the additional options that
this method provides for the relative uncertainty of both alternatives. To assess the relative
uncertainty (i.e. comparing the alternatives on uncertainty caused parameters specific to each
alternative), the values for green cultivation obtained in the MCS are subtracted from those for
conventional cultivation. The resulting sample set can be analysed in a similar way to the
independent analysis. The descriptive statistics are given in Table 15.

Table 15: Results of the MCS dependent analysis.

Alternative Mean Median | SD Ccv 2.5% 97.5%
Conventional - green cultivation | 6.85 6.40 16.8 2.46 -25.4 41.4

Because of the negative values in the 95% confidence interval, this result is graphically best
presented as a histogram (Figure 13) and a box-and-whisker plot (Figure 14).
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Figure 13: Histogram of the MCS dependent analysis results. The dashed lines represent the 2.5th and 97.5th percentile.
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Figure 14: Box-and-whisker plot of the dependent
analysis of the MCS results. The black line indicates the
median, the box represents the 25th and 75th percentile,
and the whiskers represent the 10th and 90th percentile.
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Results: analytical method

The AUP was performed in CMLCA. The required inputs (standard deviations from the parameter
mean) are not directly put into the model, but calculated on the background from the uncertainty
information used in the MCS. As discussed earlier, a first order Taylor expansion was used to
express the output uncertainty. The resulting output is given by the baseline and mean values (i.e.
with and without including uncertainty information, which are the same for AUP), the standard
deviation, variance and coefficient of variance. The results are listed in Table 16.

Table 16: Results of analytical uncertainty propagation.

Variance
Name Baseline Mean SD (unit"2) CV
Conventional cultivation 39.7 39.7 14.4 208 0.36
Green cultivation 33.1 33.1 12.9 166 0.39

Because this method is based on a single calculation, no distribution or confidence interval can
be provided. Therefore, the results are presented in a bar chart with error bars representing the
standard deviation (Figure 15).
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Figure 15: Bar chart of the results of the AUP method. The bars indicate the mean values, the error bars represent the
standard deviation from the mean.

Results: fuzzy interval arithmetic method

The FIA was conducted in MatLab, using a script adapted from Evelyne Groen (2016) that can be
found in the electronic supplementary material. This matrix-based approach (which is similar to
the script used in the sensitivity analysis) requires the input of the mean values in the technology
matrix, the intervention matrix and the final demand matrix. The script calculates a possibility
function where the core value is set to one, and the lower and upper bounds are both zero. A
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number of alpha cuts is used to describe the levels of possibility between zero (least plausible
value) and one (most plausible value). Here 11 alpha cuts are used, as this yields steps of 0.1. The
interval between the lower and upper values at the alpha cuts give the range in which the values
are estimated to be for a certain possibility. The result is a possibility function where the base
represents the largest interval, and the top represents the most plausible value.

The intervals are described by the lower and upper bounds at +40% from the core value, which
is implemented in the model by setting the parameter range to 0.4. This range has to be chosen
somewhat arbitrarily, as generally no expression of variance is known when only this method is
used. An alternative is to use the actual ranges of the available data, but because of the very large
data set these ranges will be very large, most likely resulting in an overestimation of the actual
uncertainty. This is so because the possibility function does not allow for the specification of the
probability that a given value will occur within the range, thereby assuming all values equally
likely. Therefore, an estimation of the variance (in this case the rather arbitrary 40%) would give
a better indication of the parameter uncertainty. Uncertainties around the intervention matrix
are disregarded, as these are not subject of this study.
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Figure 16: Results of the FIA method.

As it is not possible to determine a confidence interval or variance from the triangular fuzzy
interval in Figure 16, the expression of uncertainty in this method is limited to the graphical
interpretation and an estimated range around the core value (corresponding to the base of the
triangle). This information is presented in

Table 17: Results of the FIA method.

Name Baseline Core value | Lower limit | Upper limit
Conventional cultivation 39.7 39.7 28.3 66.1
Green cultivation 33.1 33.1 23.9 55.7
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4.4 Evaluation

In this final phase, the results from the uncertainty propagation are evaluated with the criteria
selected earlier. The scoring guidelines formulated in section 4.2.2 are used to determine the
score of each method per criterion. The final scores are listed in Table 17.

MCS - independent analysis

Primary data requirements:

Computation time:

Software requirements:

Data preparation:

Post-processing:

Comparative power:

Interpretation:

MCS - dependent analysis

Primary data requirements:

Computation time:

Software requirements:

Data preparation:

Post-processing:

Because a sampling method requires a significant amount of data
points to be available, this method will not yield representative
results when only a few data points are available. The score is
therefore 1.

The computation time of this sampling method is very long
(around 24 hours for 3000 runs). The score is therefore 1.

Monte Carlo simulation with independent analysis is available in
most LCA software tools, including SimaPro. No additional
software is required, therefore the score is 3.

For this method it is necessary to specify distributions for all
parameters in the model. The score is therefore 1.

Because the output of this method is given on a per-run basis, the
essential uncertainty information can be easily determined within
the software tool. However, additional testing can be done to find
the confidence intervals for the alternatives, which provide more
insight in the significance of the results. The score is therefore 2.
Because the per-run output of this method is analysed
independently, the output uncertainty can only be quantified in an
absolute way. The score is therefore 1.

Post-processing can be used to find confidence intervals, allowing
for a better interpretation of the results. The score is therefore 3.

The data requirements for this method are the same as those for
MCS with independent analysis, demanding enough data points to
determine a distribution. The score is therefore 1.

The computation time for this method is the same as for MCS with
independent analysis, taking around 24 hours for 3000 runs. The
score is therefore 1.

While the Monte Carlo sampling can be done within most LCA
software tools, the procedure of dependent analysis requires the
difference between both alternatives on a per-run basis to be
known. This is not possible within SimaPro alone, the subtraction
needs to be done in different software (e.g. spreadsheet software).
The score is therefore 1.

For this method it is necessary to specify distributions for all
parameters in the model. The score is therefore 1.

Other than with the MCS with independent analysis, post-
processing is necessary for a dependent analysis. The outcomes of
the MCS (3000 outcomes for each alternative) have to be
subtracted and analysed (whereas in the independent analysis the
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Comparative power:

Interpretation:

basic uncertainty information can be presented by the LCA
software). The score is therefore 1.

Because the results of the MCS are analysed dependently, this
method provides insight in the relative uncertainty of the LCA
outcomes. This means that the comparative power of this method
is high, as the specific uncertainty information for each alternative
(i.e. not the shared processes) can be assessed. The score is
therefore 3.

Confidence intervals can be determined for the dependently
analysed results because the output is again given on a per-run
basis. The score is therefore 3.

Analytical uncertainty propagation

Primary data requirements:

Computation time:

Software requirements:

Data preparation:

Post-processing:

Comparative power:

Interpretation:

Fuzzy interval arithmetic

Primary data requirements:

Computation time:

Software requirements:

Data preparation:

Post-processing:

The required input for this method is limited to a core value and
standard deviation for each parameter. As the standard deviation
can be determined with less than eight data points (although more
would increase the reliability), the score on this criterion is 2.
The computation time for this method is very short: less than one
minute. The score is therefore 3.

Analytical uncertainty propagation can be performed within a
single software tool, but not in SimaPro. Therefore another tool is
needed (e.g. CMLCA), so the score for this criterion is 2.

It is not necessary to define distributions for the model
parameters for analytical uncertainty propagation. The score is
therefore 3.

The output of this method gives the essential uncertainty
information, where post-processing is not necessary (nor
possible). The score is therefore 3.

Relative comparison of two alternatives is not possible, because
the uncertainty around each alternative is calculated
independently from each other. The score is therefore 1.

As this method provides single uncertainty values (variance and
standard deviation), confidence intervals cannot be determined.
Graphical interpretation is possible in addition to the uncertainty
information, but not required. The score is therefore 2.

Only very limited uncertainty information is required to perform
this method, as an estimation of the parameter uncertainty is
sufficient. The score on this criterion is therefore 3.

The computation time for this method is very short, less than one
minute. The score is therefore 3.

FIA can currently not be performed within any LCA software tool.
A different tool is therefore required (MatLab was used for this
case study). The score is therefore 2.

No distributions of input parameters are required for this method.
The score is therefore 3.

The output of this method gives the uncertainty information by
means of a possibility distribution, where post-processing is
would not lead to additional insights. The score is therefore 3.
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Comparative power:

Interpretation:

The uncertainty information that is presented by this method
allows only for an absolute comparison of alternatives. The score
is therefore 1.

The possibility distribution that is presented as the outcome of
this method provides only the upper and lower limits for each
alternative. The uncertainty information is therefore limited, and
graphical interpretation is necessary. The score is 1.

Table 18: The scores of each propagation method on the evaluation criteria.

Category

Criterion

Monte Carlo Monte Carlo | Analytical Fuzzy
simulation simulation uncertainty interval
(independent | (dependent propagation | arithmetic
analysis) analysis)

Resources

Primary data
requirements

Computation
time

Software
requirements

Procedure

Data
preparation

Post-
processing

Understanding

Comparative
power

Interpretation
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5. Discussion

5.1 Discussion of results

In this chapter, the insights from the case study evaluation are discussed in relation to the
research questions and the situation of agricultural LCA research in developing countries. The
research sub-questions are:

1. What are the drivers and barriers for practitioners of agricultural LCAs in developing
countries for applying uncertainty analysis?

2. What methods for assessing uncertainty in LCI data are available?

3. What are the differences in outcomes when applying different methods of uncertainty
propagation on agricultural LCI data?

4. How can the results be used to guide practitioners of agricultural LCA to appropriately
apply uncertainty assessment in their work?

The literature review and expert survey show that the drivers for applying uncertainty analysis
in LCA are related to increasing scientific reliability, better guiding decision-makers, and (to a
lesser extent) compliance with international regulations. Especially when an LCA is comparative,
uncertainty analysis is crucial to determine the significance of the difference in impact between
alternatives, and to avoid counterproductive decisions. This underlines the importance of
assessing the relative uncertainty of LCA alternatives, which has been subject of recent scientific
debate. The most important barrier was found in the fact that there is a lack of knowledge among
LCA practitioners of uncertainty analysis methods, which hampers a widespread and adequate
implementation of uncertainty analysis in LCA practices. Scientific research on methods for
uncertainty analysis to this date has been focussed on the scientific validity and adequacy of
different propagation methods, thereby neglecting the fact that some methods are far too
complex for LCA practitioners to perform. Further research is needed on the integration of
adequate uncertainty propagation methods in LCA software tools, in such a way that users with
limited knowledge of uncertainty analysis are able to perform them. Other barriers are related to
the lack of an adequate framework and guidance for uncertainty analysis, and the need for
sufficient uncertainty information of the input data.

Answering the second sub-question showed that there many different methods for uncertainty
analysis in LCA. The methods for assessing parameter uncertainty are sampling methods,
analytical methods or possibilistic methods, where sampling methods are by far used the most.
This is in part due to the fact that Monte Carlo simulation is available in most LCA software tools,
while other methods require additional tools. The fact that most propagation methods that have
been studied in the context of LCA are rarely used in practice underlines the need for further
implementation of such methods in LCA software tools.

The differences in outcomes of different uncertainty propagation methods, obtained in the case
study of this thesis, were evaluated. This evaluation has provided insight in the advantages and
disadvantages of the uncertainty propagation methods under study. The evaluation shows that
the primary goal of uncertainty analysis - to gain a better understanding of the uncertainty
around LCA outcomes - is best served using sampling methods. Including Monte Carlo-based
uncertainty propagation in an LCA study allows the practitioner to draw reliable conclusions
about the representativeness of the LCA results. Using MCS with dependent analysis allows for a
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comparison of two alternatives in a relative way, which is not possible with the other methods,
and therefore has a high comparative power. However, the results also show that in terms of data
requirements and knowledge of procedures, the sampling methods perform significantly worse
than the analytical and fuzzy interval methods. For sampling methods to yield representative
results, many primary data points are required. Less data is required for AUP (more than one data
point) and FIA (no primary data required), but these methods contribute to a (far) lesser extent
to a better understanding of the results. When FIA would be used for research where sufficient
primary data is available, a considerable and ‘unnecessary’ simplification of the uncertainty
information is needed. While the variance of each parameter could be used to estimate a
representative range, there is no methodology available that allows for the implementation of
such information in FIA. Using AUP would then be a ‘second best’ option in terms of quality of the
results, because at least the variance of the alternatives is given.

The answer to the final sub-question, how the results can be used to guide LCA practitioners in
developing countries in applying uncertainty analysis in their work, follows from the evaluation
of the case study results. The evaluation has shown that data availability, knowledge of
practitioners, and available time and software determine the most suitable method for
uncertainty propagation in an agricultural LCA. However, the availability of primary data was not
found to be an issue in Thai agricultural LCA research, where primary data was abundantly
available. This implies that primary data requirements are of lesser concern for this type of LCA
research in developing countries, where time investment in data collection is relatively large.
Nevertheless, data availability may differ among developing countries regardless of the time
investment by the LCA practitioners (e.g. due to limited data sources). Computation time and
software requirements are still issues, depending on the resources available to the LCA
practitioner. The specification of distributions and post-processing operations, which are
required for the sampling methods, involve intricate procedures that complicate the uncertainty
analysis as a whole. Because of the lack of knowledge of uncertainty analysis that was found in
the expert survey, the required procedures for an adequate use of sampling-based uncertainty
propagation is too complicated for most LCA practitioners to become common practice. The most
suitable method of uncertainty propagation for agricultural LCA in developing countries should
therefore be chosen based on the characteristics of study and the knowledge of the LCA
practitioner.

5.2 Reflection

While the results presented in this study provide new insight into the suitability of different
methods for uncertainty analysis for agricultural LCA in developing countries, there are some
remarks that need to be made regarding the representativeness of the results for the situation it
aims to describe. Or, to stay within this study’s terminology: the uncertainty around this study.
Several research choices and limitations have arguably influenced the result, and should
therefore be discussed.

Firstly, choices regarding the case study LCA model have been made in order to fit the purpose of
this study. While the original LCA model was constructed in the SimaPro software, the case study
was performed based on an LCA model converted to CMCLA. While the implications of this
conversion step have been discussed, it is still possible that the CMLCA model behaves differently
than the SimaPro model. It is assumed that the two models are adequately corresponding, but it
is not possible to rule out the possibility of discrepancy between the models, simply because the
options required for this study are not available in SimaPro. This also emphasises that SimaPro
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does not provide enough options for adequate uncertainty analysis. Another point of discussion
concerning the LCA model is the question whether the original model was an adequate
representation of sugarcane cultivation in Thailand. While data was collected locally and the
geographical spread of the data was preserved in the dataset, this information was not
implemented in the LCA model. Several averaging steps were needed to provide an overall
presentation of environmental impact in the sugarcane sector. This study has not addressed
geographical differences because of time limitations, but the neglection of those is arguably a
simplification that should be avoided. Also, the LCA model that was used in the case study of this
thesis is rather imperfect and taken from a larger study that includes processes after the
cultivation stage as well (see also section 3.3.1). While this model serves the purpose of this thesis
well, no reliable conclusions can be drawn regarding the actual situation of Thai sugarcane
cultivation practices.

Secondly, due to time limitations the extensiveness of the issues discussed in the case study is
limited. This includes the selection of nine parameters for uncertainty propagation, the
comparison of four methods, and the limited inclusion of the effect of correlation between
parameters. Starting with the selection of parameters, the selection of parameters included in the
uncertainty propagation can be seen as representative because they account for almost all
uncertainty estimated in the LCA model. However, it must be acknowledged that all parameters
in the model have some degree of uncertainty. Therefore the actual uncertainty around the model
outcomes will be slightly larger. It should also be noted that the uncertainty of the background
processes (i.e. the processes and flows from the Ecoinvent database) is included in the analyses
performed in CMLCA. The discussion around the representativeness of these quantifications
(stemming from data quality indicators) is not part of this study, but it should be noted that not
all software tools allow for the convenient propagation of these ‘background’ uncertainties.
Another issue that was encountered is that of assuming lognormal distributions to avoid negative
values, while normal distributions fit some parameter data better. Although this is a recurring
issue in all uncertainty propagation methods where distributions for input parameters need to
be defined, there does not seem to be a uniform method to handle this problem. Also, while there
are many methods for uncertainty analysis available, this study is limited to the comparison of
four methods. Including more methods was not feasible in terms of available time, but it is
recommended that other methods (e.g. other sampling or analytical techniques) are assessed
similarly to this study to complement the results of this research. Lastly, the effect of correlation
between parameters is only shortly discussed. Because the focus of this research was kept at the
comparison of methods, the effect of including or excluding correlations was not studied here.
However, this topic has been the subject of recent discussion in literature and is highly relevant
for the way uncertainty analysis is performed. Therefore, the effect of correlation on the output
uncertainty of different propagation methods should be part of further research, also, but not
limited to the context of agricultural LCA in developing countries.

Thirdly, choices and limitations regarding the scope of this research need to be discussed. While
choosing an adequate scope for this research is necessary, it also limits the extent to which the
results can be generalised. This study aims at providing guidelines for LCA practitioners in
developing countries on how uncertainty analysis is most appropriately applied. Because the case
study was performed under the supervision of one of Thailand’s leading LCA researchers, and 21
LCA practitioners across Thailand have been surveyed, the results can be considered as
representative for the situation of LCA research in Thailand. However, it can be argued that one
case study in Thailand is not sufficient to make general statements about developing countries.
More research in other developing countries is needed to make such statements. A second
discussion point regarding the scope of this research is the fact that only parameter uncertainty
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is discussed, while model uncertainty and scenario uncertainty are not necessarily of lesser
importance. Especially considering the number of participants in the survey that have experience
with the assessment of scenario uncertainty, it can be stated that more research on the suitability
of uncertainty analysis methods for model and scenario uncertainty for LCA in developing
countries would be valuable. Nevertheless, the availability of methods for assessing parameter
uncertainty and large input datasets provide large potential for quantification of parameter
uncertainty and its interpretation in LCA research in agricultural LCA.

Lastly, it can be stated that the LCA result of this case study, i.e. the environmental impact of
sugarcane cultivation, is highly uncertain. Where the other methods give a strong suggestion that
the output uncertainty is larger than the difference between both alternatives, the MCS with
dependent analysis shows that this is indeed the case. The confidence interval of the difference
between both alternatives stretches far below zero, indicating that the difference is not
significant. Therefore, based solely on the cultivation stage, it cannot be concluded that green
cultivation should be preferred over conventional cultivation. This underlines the need for
uncertainty analysis to be included in this type of LCA research, as it may influence the
conclusions drawn based on the LCA outcomes.
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6. Conclusion

Considering the discussion above and the final evaluation, the main research question can be
answered. The research question is:

What methods of uncertainty analysis are most suitable to use in agricultural life cycle
assessment in developing countries in terms of procedure and outcomes?

The comparison of methods in the case study has provided insight in the advantages and
disadvantages of each method in terms of suitability for agricultural LCA in developing countries.
Some elements of comparison are specifically important for developing countries, including data
availability and application of the research in policy-making. Considering this and the final
evaluation, the following conclusions can be drawn.

It can be argued that the extent to which each method provides a better understanding of the LCA
results is the most important criterion, as that is the primary goal of uncertainty analysis. In
situations where LCA research is used for policy support, as is often the case in Thailand, an
understanding of the uncertainties around the LCA results is crucial. A dependent analysis of a
Monte Carlo simulation has shown to meet this criterion best, as this is the only method that
allows for a relative comparison of two alternatives. This advantage is only valid in a comparative
context however, and limited to two alternatives. When not comparing alternatives, e.g. in a
hotspot LCA, the independent analysis of an MCS performs only slightly better than other
methods in terms of providing better understanding of the LCA results. The FIA however provides
only limited understanding, as the uncertainty information it uses is very limited. In terms of
resource requirements both sampling methods score low, while the AUP and FIA provide more
possibilities. This is an advantage when limited time or data is available. However, in most
agricultural LCA research much primary data is collected (as was the case in the case study), and
data requirements are easily met. Therefore this issue becomes less important for such research,
at least when sufficient time is available. In terms of difficulty of procedures, there are large
differences between the studied methods. The AUP procedure is least complicated due to the
single calculation that is used, and no post-processing is necessary. The independent analysis of
the MCS and the FIA are more complicated, as several steps are needed to gain a result. Still, the
final calculations can be performed within the LCA software. The dependent analysis of the MCS
is most complicated, because several additional steps need to be performed manually, and in-
depth understanding of the way this analysis works is needed. Considering the results from the
expert survey concerning the found general lack of knowledge of uncertainty analysis among Thai
LCA practitioners, this criterion is arguably very important. Lastly, the best interpretation of the
uncertainty propagation results is possible with sampling methods, as this provides reliable
information that can intuitively interpreted with confidence intervals. The outcomes of AUP are
also easily interpreted with bar charts with error bars, but because the error bars are limited to
variance-based information (standard deviations), the information is less valuable than
confidence intervals. The FIA method is harder to interpret than the other methods, as a
possibility distribution can be confusing for those without experience in possibilistic methods,
and the outcomes are arguably less valuable when based on simply an estimation of uncertainty.

The conclusions above suggest that there is no single answer to the main research question, as all
methods have advantages and disadvantages regarding suitability for agricultural LCA in
developing countries. In any case, a first step towards a more widespread implementation of
uncertainty analysis in LCA research would be to provide practitioners with extensive guidelines
on how to perform uncertainty analysis, as well as the implementation of more methods in
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different LCA software tools. While such extensive guidelines can be subject of future research,
based on the results of this study recommendations can be made regarding the choice for a
specific method of uncertainty propagation. Based on the findings in this study, a decision tree is
presented here for choosing the most suitable propagation method (see Figure 17).

Concludingly, it can be stated that ideally, in a comparative context MCS with dependent analysis
of the alternatives in an LCA study should be used. However, there may be several reasons why
this method is not preferred or possible. If the study is not comparative, MCS with independent
analysis may suffice. Also, if the study includes more than two alternatives, dependent analysis is
not possible (with the existing methodology), and independent analysis is best option. Other
issues may be a lack of knowledge of uncertainty analysis, limited time available for the study, or
that only few primary data points are available. In those cases, analytical uncertainty propagation
is recommended. Only when no primary data points are available, FIA should be considered,
because of the very limited contribution to better understanding the LCA outcomes it provides.

START
No primary data o - i )
How many > Fuzzy interval arithmetic
primary data points 1 to 8 data points
i ?
are available? > Analytical uncertainty
propagation
> 8 data points
h 4
. . . No Yy
Is sufficient time available?

Yes

Y
Does the user have No )
extensive knowledge of
uncertainty analysis?

Yes MCS

A4 y—) independent analysis
Is the LCA
study comparative, with two Yes MCs
alternatives? > dependent analysis

Figure 17: Decision tree for selecting the most suitable uncertainty analysis method.

This decision tree provides guidance for selecting the most suitable method depending on the
user and the type of study. It is also clear however that both knowledge development among LCA
practitioners and extensive step-by-step guidelines for uncertainty analysis would greatly
support an increase of the use of uncertainty analysis in LCA research. This would allow for a
greater contribution of the LCA method to sustainable development in both developing and
developed countries.
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II. Questionnaire for LCA practitioners

This questionnaire is part of a Master thesis research on uncertainty analysis in agricultural Life
Cycle Assessment. One of the topics of interest is the way that LCA practitioners see uncertainty
analysis, and why they do or do not incorporate uncertainty analysis in their research. The goal
of this questionnaire is to gain understanding of the challenges for LCA practitioners related to
uncertainty analysis, in order to give recommendations for methodological improvements.

Wisse ten Bosch
Graduate intern at King Mongkut’s University of Technology Thonburi, Thailand
Master’s student at Leiden University & Delft University of Technology, The Netherlands

1. What is your current occupation?
Open question

2. What is your experience with LCA research (how many and what kind of projects were
you involved in)?

Less than 3 projects

3 to 6 projects

6 to 10 projects

More than 10 projects

OO we

3. Are you familiar with the concept of uncertainty analysis in LCA?
A. Yes
B. No

4. What kind of LCA projects have you been you involved in?
Open question

5. Which of the following LCA software tools have you used in your work?
SimaPro

GaBi

CMLCA

OpenLCA

I don’t use LCA software

Other...

mTRo O W

6. Are you familiar with the concept of uncertainty analysis?
A. Yes

7. Regarding uncertainty in LCA research, which type of uncertainty is most interesting for
your work?

Parameter uncertainty

Scenario uncertainty

Model uncertainty

Uncertainty is not interesting for my work

I don't know

Mo Ows
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8. Do you have any experience with performing uncertainty analysis?
A. Yes

B. No
a. Ifso:

Which of the following methods have you used in your work?
A. Sampling methods
B. Analytical methods
C. Scenario analysis
D. Fuzzy set methods
E. Idon’t know

Where did you learn how to perform uncertainty analysis?
A. In a university course
B. From a colleague
C. Self-study
D. From LCA software instructions
E. Other...

Did you encounter any challenges when performing uncertainty analysis?

Open question
In what way did you use the results from the uncertainty analysis in your
research?
A. Uncertainty was included in conclusions and recommendations
B. Uncertainty was analysed, but not included in conclusions and
recommendations
C. The results were not included in the final report/publications
b. Ifnot:

What were the main reasons for you not to perform uncertainty analysis in
your LCA research?

I don’t know how to perform uncertainty analysis

My LCA software does not support uncertainty analysis

I didn’t have enough data

I didn’t have enough time

Uncertainty is not interesting for my work

Uncertainty analysis is not mandatory

Uncertainty analysis would undermine my results

Other...

TOmmDO W

What would you need in order to include uncertainty analysis in your
future research (e.g. more time, resources, knowledge, etc.)?
Open question

Would you like to learn more about uncertainty analysis in LCA if you had

the opportunity?
A. Yes
B. No

83



9. Regarding uncertainty analysis methods, how important are the following aspects to you
(scale 1 to 5)?

The method is easy to use

The method does not require many data points

The method gives very accurate results

The method is very fast in calculation

The analysis can be performed within my LCA software

mo 0w

10. Do you have any suggestions on how LCA practitioners could be encouraged to include
uncertainty analysis in their research?
Open question

Thank you for participating in this study. If you have any questions or comments regarding this
questionnaire or my research, please contact me at w.s.tenbosch@tudelft.nl.
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II1. Result of the questionnaire for LCA practitioners

Question Answers N %
General information (N = 21)
What is your current occupation? Lecturer 2 9.5%
Researcher 3 14.3%
Government official 1 4.8%
Student 3 14.3%
Missing 12 57.1%
What is your experience with LCA Less than 3 projects 3 14.3%
research? 3 to 6 projects 7 33.3%
6 to 10 projects 6 28.6%
More than 10 projects 5 23.8%
What kind of LCA projects have you Agriculture 16 76.2%
been you involved in? (Bio)energy 14 66.7%
Transport & fuels 16 76.2%
Raw materials 8 38.1%
Consumer products 12 57.1%
Service 1 4.8%
LCA policy 1 4.8%
Water footprinting 1 4.8%
Waste management 1 4.8%
Which of the following LCA software SimaPro 15 71.4%
tools have you used in your work? GaBi 1 4.8%
CMLCA 0 0.0%
OpenLCA 2 9.5%
I don’t use LCA software 8 38.1%
Spreadsheet 1 4.8%
Are you familiar with the concept of Yes 14 66.7%
uncertainty analysis? No 7 33.3%
Regarding uncertainty in LCA research, | Parameter uncertainty 8 38.1%
which type of uncertainty is most Scenario uncertainty 6 28.6%
interesting for your work? Model uncertainty 4 19.0%
Uncertainty is not interesting for | 2 9.5%
my work
I don't know 1 4.8%
Do you have any experience with Yes 9 42.9%
performing uncertainty analysis in No 12 57.1%
your work?
For those with experience in uncertainty analysis (N = 9):
Which of the following methods have Sampling methods 3 33.3%
you used in your work? Analytical methods 2 22.2%
Scenario analysis 8 88.9%
Fuzzy set methods 0 0.0%
I don’t know 0 0.0%
Where did you learn how to perform In a university course 2 22.2%
uncertainty analysis? From a colleague 2 22.2%
Self-study 6 66.7%
From LCA software instructions | 2 22.2%
From my advisors 1 11.1%
Did you encounter any challenges when | Yes 2 22.2%
performing uncertainty analysis? Yes, the interpretation 1 11.1%
Yes, lack of data 1 11.1%
Yes, misleading data collected 1 11.1%
Missing 7 77.8%

85



In what way did you use the results
from the uncertainty analysis in your
research?

Uncertainty was included in
conclusions and
recommendations

Uncertainty was analysed, but
not

included in conclusions and
recommendations

The results were not included in
the final report/publications

For those without experience in uncertainty analysis (N = 12):

What were the main reasons for you
not to perform uncertainty analysis in
your LCA research?

What would you need in order to
include uncertainty analysis in your
future research (e.g. more time,
resources, knowledge, etc.)?

Would you like to learn more about
uncertainty analysis in LCA if you had
the opportunity?

Final questions (N=21)

Regarding uncertainty analysis
methods, how important are the
following aspects to you (scale 1 to 5)?

Do you have any suggestions on how
LCA practitioners could be encouraged
to include uncertainty analysis in their
research?

[ don’t know how to perform
uncertainty analysis

My LCA software does not
support uncertainty analysis

[ didn’t have enough data
[ didn’t have enough time

Uncertainty is not interesting for
my work

Uncertainty analysis is not
mandatory

Uncertainty analysis would
undermine my results

I asked someone else to do it
Knowledge

Time

Resources

Guidelines

Yes

No

The method is easy to use

The method does not require
many data points

The method gives very accurate
results

The method is very fast in
calculation

The analysis can be performed
within my LCA software

8 88.9%
1 11.1%
0 -

6 50.0%
2 16.7%
3 25.0%
1 8.3%
1 8.3%
2 16.7%
0 -

1 8.3%
9 75.0%
1 8.3%
3 25.0%
1 8.3%
12 100%
0 -

1

1 7 8
113853
03 58 4
0/4 /583
21356 4

Av.
3.7

3.3

3.6

3.4

3.4

An international guidance published by UNEP/SETAC or
other well-known international institutions would
encourage the research in this area.
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Results will be affected if not considering uncertainty
issues

Without uncertainty analysis, the results may alternate
the fact and influence on decision making process, which
will not support one of the reasons in doing LCA.

The uncertainty and data analysis should be one of
important topic for LCA since the beginning. Therefore
the method and of uncertainty is necessary to apply
along with the LCA steps. So the LCA practitioners can
understand that where do they can apply uncertainty for
their work and how can they analyse it.

A methodology of uncertainty analysis need to be
developed with a consistency of all aspect of sustainable
data regarding environmental, economic and social
aspects.

Having a rigorous, step-by-step method on how it is to
be done; a manual. So far, there seem only to be
available only intellectual exercises performed sitting at
a computer. Nothing really for real, field data.
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Electronic supplementary material

E1l

CMLCA model of sugarcane cultivation
File: E1_LCSAL.ca

E2

MatLab script for the method of elementary effects, adapted from Groen (2016).
File: E2_MEE_LCA.m

E3

Adapted matrices used in the MEE analysis

Files: A-matrix (technology matrix): E3_Amatrix.csv
B-matrix (intervention matrix): E3_Bmatrix.csv
f-matrix (final demand matrix): E3_fvector.csv

E4

Results of 3000 Monte Carlo runs
File: E4 results_ MC3000.xlsx

E5

MatLab script for the fuzzy interval arithmetic method, adapted from Groen et al. (2016)
File: E5_FIA_LCA.m
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