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Sensing and Reconstruction of 3D Deformation on
Pneumatic Soft Robots

Rob B.N. Scharff, Student Member, IEEE, Guoxin Fang, Student Member, IEEE, Yingjun Tian, Jun Wu,
Jo M.P. Geraedts, and Charlie C.L. Wang†, Senior Member, IEEE

Abstract—Real-time proprioception is a challenging problem
for soft robots, which have virtually infinite degrees-of-freedom in
body deformation. When multiple actuators are used, it becomes
more difficult as deformation can also occur on actuators caused
by interaction between each other. To tackle this problem, we
present a method in this paper to sense and reconstruct 3D
deformation on pneumatic soft robots by first integrating multiple
low-cost sensors inside the chambers of pneumatic actuators and
then using machine learning to convert the captured signals into
shape parameters of soft robots. An exterior motion capture
system is employed to generate the datasets for both training
and testing. With the help of good shape parameterization, the
3D shape of a soft robot can be accurately reconstructed from
signals obtained from multiple sensors. We demonstrate the
effectiveness of this approach on two soft robot designs – a robotic
joint and a deformable membrane. After parameterizing the
deformation of these soft robots into compact shape parameters,
we can effectively train the neural networks to reconstruct the
3D deformation from the sensor signals. The sensing and shape
prediction pipeline can run at 50Hz in real-time on a consumer-
level device.

Index Terms—Proprioception, 3D Deformation, Pneumatic Ac-
tuators, Soft Robotics

I. INTRODUCTION

Proprioception for soft robots is a challenging problem
because of the virtually infinite degrees of freedom (DOFs) of
the deformable bodies, and because there is no off-the-shelf
sensor available. However, accurate proprioception is crucial
for closing the loop of control. Existing solutions generally
conduct a simplified model according to a specific soft robot
design – e.g., sensing a single bending angle [1] or curva-
ture [2]. A general and easy-to-fabricate solution for sensing
3D deformation is needed. In this paper, we propose a method
using low-cost sensors to realize accurate proprioception and
real-time 3D shape reconstruction. Our approach is based on a
data-driven strategy that can be generally applied to different
designs based on their own shape parameterization.

A. Related Work

The literature is reviewed from three angles, namely sensors,
deformation acquisition and machine learning.
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1) Sensors for proprioception: A large variety of sensors
have been developed for proprioception in soft robotics. For
soft bending actuators, proprioceptive sensing is commonly
achieved by embedding paths of conductive materials that
change their resistivity upon deformation, such as liquid metal
[3], a 3D-printed carbon black/PLA compound [4], [5], com-
mercial flex sensors based on conductive ink [1], conductive
ionogel [6], PDMS impregnated with carbon nanotubes [7],
or laser-cut patterns from off-the-shelf conductive silicone
[8]. Proprioception can also be achieved by magnetic sensing
[9] and inductance-based sensing [10]. The inductance-based
sensing method can also be applied to a continuum joint [11].
However, most of the sensors mentioned above cannot accom-
modate very large strains or cannot capture multiple DOFs,
making them unsuitable for other types of actuators, such
as elongational actuators or three-dimensionally deforming
surfaces. Moreover, integrating these sensors into an actuator
is usually cumbersome during fabrication.

The use of optical sensing for proprioception in soft robots
has been shown to have great potential. Examples of optical
sensing for soft robots include the stretchable optical waveg-
uides for use in bending actuators [2], [12], macrobend optical
sensing for elongational actuators [13], optical distance sensors
on a helical flexible printed circuit board for a soft robotic
joint [14], fiber optics in a three-dimensionally deforming
surface [15], the use of fluidic channels in combination with
an external camera [16], and embedded cameras for tactile
sensing [17], [18], [19] and inflatable bellows [20]. However,
some of these approaches can only sense relatively simple
deformation (e.g., it is difficult to embed optical waveguides
and fluidic channels inside three-dimensionally deforming
surfaces or elongational actuators). Furthermore, the image-
texture-based methods can only be used in large actuators
because of the size of cameras.

In previous work, we demonstrated that accurate proprio-
ception of soft robots could be achieved by integrating a light
source, color sensors (photodiodes) and color patterns inside
the air chambers of pneumatic bending actuators [21], [22].
Deformation of the air chamber changes the reflection and
traveling distance of the light coming from the light source(s),
which lead to changes in the light intensity and the colors ob-
served by the optical sensors. A similar principle was applied
for a linear bellow by using only four phototransistors [23].
Following the same working principle, we demonstrate in
this paper that accurate proprioception of three-dimensionally
deformed soft robots can be realized by using only light-
dependent resistors (LDRs) and light-emitting diodes (LEDs).
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In contrast to existing solutions, this solution can be easily in-
tegrated into many different types of soft pneumatic actuators
while achieving highly accurate proprioception for soft robots
interacting with their environment.

2) Deformation acquisition: An important challenge in
sensing soft robot deformation is how to obtain accurate
ground truth information in deformation. Simplified infor-
mation has been sensed in prior research, including the
bending angle [1], the curvature [2] and the position of the
tip point [24], [25]. However, important information on the
shape of a soft robot is lost. A straightforward solution is to
increase the number of sensed points on the actuator. However,
the number of points is limited when physical manipula-
tors [25] or sensors (e.g., inertial measurement units [11] or
electromagnetic sensors [13], [26]) are used to determine the
position of each point. For these reasons, systems that capture
markers on a soft robot with one or more camera sensors are
a popular choice for capturing ground truth information of
soft objects (ref. [11], [15], [22], [27], [28]). The captured
marker coordinates on the robot can be used to reconstruct
the complete shape of a soft robot [29]. Therefore, we use this
approach to capture ground truth information for soft actuators
with different types of deformation.

3) Machine learning: Due to the highly nonlinear deforma-
tion presented on soft bodies, it is difficult to build an accurate
analytical sensing model for soft robots. Simplified analytical
models can only be applied to a specific type of design and
thus lack of generality. Machine learning methods, particularly
artificial neural networks, have proved to be a powerful tool
to learn these nonlinearities while being applicable to a wide
range of designs. Feedforward neural networks (FNNs) have
been used to learn the kinematics of soft robots [24], [30] and
to characterize various types of soft sensors [22], [25], [28],
[29], [31]. When sequential data is collected, a recurrent neural
network (RNN) or long short-term memory (LSTM) network
can be used to include time-variant effects such as hysteresis in
the sensing model [7], [8], [16], [32]. As a powerful tool when
working with camera data as sensor input, a convolutional
neural network (CNN) has been employed in combination with
an LSTM to calibrate a soft tactile sensor for detecting the
hardness of objects [33]. We employ neural networks in our
learning process to establish the mapping between the signals
from sensors and the shape parameters that are extracted from
the captured positions of markers.

B. Our Approach

Our approach endows soft pneumatic actuators with the
sensing capability for real-time 3D shape reconstruction
through four steps (see Fig. 1):

1) Embedding optical sensors and lamps into the air cham-
bers of soft robots to translate deformations of the air
chambers to the variation of light intensity;

2) Capturing the ground truth deformation of the soft robot
using markers placed on the robot;

3) Extracting shape parameters that can represent deforma-
tion more compactly from the positions of markers;

Fig. 1. Overview of our approach for enabling the sensing capability of 3D
shape on soft robots in four steps: (1) sensor integration, (2) data collection,
(3) shape parameterization, and (4) learning the mapping.

4) Learning the mapping between the signals captured on
sensors and the corresponding deformation represented
by shape parameters.

To the best of our knowledge, this is the first work that
provides a full pipeline for real time 3D reconstruction of
pneumatic soft robots consisting of multiple interacting actu-
ators. This was made possible due to the following technical
contributions:
• Accurate proprioception method for pneumatic soft

robots consisting of multiple interacting actuators under-
going 3D deformation;

• A method to efficiently reconstruct the three-
dimensionally deformed overall shape by directly
learning the mapping between the sensed signals and the
shape parameters.

Due to the small number of sensors as well as the efficient
mapping between the sensor readings and the shape parameters
used for reconstruction, both the sensing and the reconstruction
steps can run at 50 Hz on a consumer-level device.

Two vastly different robot designs – a robotic joint and
a deformable membrane – were selected to demonstrate the
flexibility of the proprioception method as well as the shape
parameterization. The robotic joint is composed of three
interacting bellows that can extend and bend to a great
extent without presenting large material strains. As the bellows
are connected to the same rigid body as end-effector, the
deformation can be parameterized as a transformation matrix
to compute the forward kinematics easily. On the other hand,
the deformable membrane is composed of four modules that
inflate the stretchable silicone layer to form a 3D freeform
surface. Real-time reconstruction of free-form surfaces is
challenging. In this work, shape of the deformable membrane
is parameterized by the control points of a Bézier surface.

II. SENSING DEFORMATION ON SOFT ACTUATORS

This section explains the importance of using multiple sen-
sors to capture the deformation of pneumatic actuators on soft
robots. Deformation of an actuator with one DOF can often
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be captured by a single sensor. However, the signals captured
by a single sensor cannot distinguish the configurations of
deformation in multi-DOF actuators. Attempts have been made
to increase the number of signals that can be captured by
using a camera instead of single (optical) sensors (ref. [16],
[17], [18], [19], [20]). For example, if images are taken at
the resolution of 1280 × 720, this method can capture up to
1280 × 720 × 3 = 2, 764, 800 different signals. However,
in practice, the number of sensors required for capturing
3D deformation is much smaller than this as redundancy
exists in sensing and computation. Besides the excessive
computing time, another downside of camera-based sensing
is the difficulty of integrating it into a narrow space, which
is quite common in many soft actuators. In our approach, we
place LEDs and LDRs inside each air chamber to capture
the deformation inside a chamber. The signals captured in all
chambers are later fused to reconstruct a 3D shape of the soft
robot driven by these chambers.

It is important to capture the deformation on each chamber.
As shown in the experiment of Fig. 2, the 3D transformation
can already be well reconstructed even if only one bellow
(i.e., the air chamber) is equipped with sensors. However, as
multiple configurations exist for which a single sensor gives
the same reading, a chamber should have multiple sensors
to make a distinction between these configurations – see the
difference between blue (only one LDR inside the bellow) and
light red (with four LDRs inside the bellow). As the ends of
the three bellows are connected to the same rigid frames, their
deformations are somewhat coupled. Therefore, the accuracy
obtained using four LDRs in one bellow already approaches
that of using four LDRs in every bellow (i.e., 4 × 3 = 12
LDRs in total). However, this is not the case for many other
soft robots with multiple actuators, such as the deformable
membrane shown in Figs.1 and 4.

III. SOFT ROBOT REALIZATION

In this section, we present the realization of our sensing and
reconstruction method on two different designs of soft robots.
Methods for data acquisition and shape parameterization are
also introduced. Lastly, we discuss the feasibility of using
different machine learning approaches. The process from data
acquisition to training the machine learning model is described
by the framework diagram shown in Fig. 3, which also presents
the pipeline for real-time reconstruction.

A. Two Soft Robots

1) Soft continuum joint: The design of a soft continuum
joint is indicated in Fig. 2. The soft continuum joint is
composed of three inflatable bellows, the top and bottom
of which are attached to two rigid frames. The centers of
these frames are connected by a cable that constrains the
longitudinal expansion of the bellows such that a multi-
directional bending motion can be generated upon inflating the
bellows. The maximum bending angle α (see Fig. 2) is at least
26 degrees in all directions and the operating pressure is in the
range of [0, 10] kPa. The top and bottom frame of the joint
are fabricated by using fused deposition modeling (FDM) with

Fig. 2. (Top row) The mean prediction errors generated by using different
numbers of light-dependent resistors (LDRs) inside either only one bellow
or inside all three bellows. (Bottom row) The predicted transformation is
already highly accurate when using four LDRs in one bellow (light red). For
the purpose of comparison, the predictions by using only one LDR in one
bellow (blue) and four LDRs in all three bellows (gray) are also given. The
ground truth transformation is calculated from markers located on the robot
by using a motion capture system, and displayed in dark red. The layout of
LDRs and light-emitting diodes (LEDs) and the illustration of their working
principle are also given in the bottom row.

Fig. 3. (Top) The framework diagram for training the neural network and
(bottom) the pipeline for real-time reconstruction.

black polyactic acid (PLA) filaments. The leads of the LEDs
and LDRs are fed through small holes in the frames and sealed
with epoxy glue. The bellows are off-the-shelf Freudenberg
V6-00400 bellows, which are sealed around the cylindrical
parts of the frame using cable ties. In each bellow, four
LDRs are mounted on the bottom frame to measure the light
intensity inside the bellow. This light is generated by three
LEDs mounted on the top frame of each bellow. Deformations
of the bellows result in variation of light intensity that is sensed
by the LDRs. The change of sensed light intensity is indicated
by the changed lengths of the black arrows illustrated in the
inset of Fig. 2. This information can be used to determine
the deformed shape of a bellow. As different external forces
are applied to the joint when the gripper mounted on top of
the arm holds different objects, rotation and translation of the
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Fig. 4. The hardware setup of the deformable membrane and its main
dimensions. An illustration of the inflated module and its inner layout is
shown in the bottom right.

joint cannot be determined from the pressure of air inside
the bellows. Sensors are needed to determine the rotation
and translation of the joint based on the shape variation of
the bellows. Due to the application of machine learning, an
accurate mapping between the sensor signals and soft robot
shape can be learned regardless of variations in the sensors or
their placement.

2) Soft deformable membrane: The design of a deformable
membrane is as shown in Fig. 4. This hardware setup is
composed of four chamber modules that can be inflated
separately. The bottom of each module is rigid and mounted
with three LEDs and three LDRs. The chamber is sealed by a
lid with a thin inflatable silicone layer. The modules have been
fabricated using a combination of FDM and silicone casting.
A mechanical interlocking structure, as proposed by Rossing
et al. [34], is used to create an airtight bond between the 3D-
printed part and the silicone. The silicone used is Smooth-
On Dragonskin with a shore hardness of 30A colored with
black silicone pigment. The filament used is black PLA. The
materials were selected for their opacity in order to eliminate
the influence of external lighting conditions on the sensor
readings. When the chamber of a module is pressurized,
the silicone layer inflates. This inflation results in a change
in reflection and traveling distance of the light emitted by
the LEDs, which is sensed by the LDRs. This information
can be used to determine the shape of the inflated silicone.
Four modules are mounted on a frame in a 2 × 2 layout
and covered by a thin layer of silicone to create a smooth
deformable membrane. The operating pressure is in the range
of [0, 15kPa]. The modules can be inflated to a height of up
to 40mm. Note that as all four inflatable modules interact
with the silicone layer and therefore are coupled, the shape
of each module cannot be determined from the air pressure
of each chamber. This effect is amplified by the highly non-
linear material behavior of the silicone. Therefore, sensors are
essential to determine the shape of the membrane.

B. Data Acquisition

This subsection introduces the method of generating the
dataset for training.

1) Setup for data acquisition: A motion capturing system
of Vicon was used to capture a number of strategically placed
markers on the soft robots. For the soft continuum joint,

markers were placed at the top and the bottom frame of
the joint (see Fig. 2). For the soft deformable membrane, a
layout of 7× 7 markers was placed on top of the membrane.
Additional markers were placed on the rigid frame as reference
points for sensing its orientation. These markers are illustrated
in Figs. 1 and 5. Upon data collection, the positions of markers
were collected at a frequency of 100 Hz, whereas data of all
12 LDRs was collected at a frequency of 1000 Hz. The data
was synchronized using the Vicon Lock Sync Box.

2) Sampling strategy: A good sampling scheme that spans
the robot’s workspace as well as a wide range of external loads
was found crucial to prevent overfitting in data-driven learning.
For the soft continuum joint, a range of weights were added
on top of the actuator to enable accurate predictions when
different external loads were applied to the joint. The weights
held by the gripper on top of the arm varied from 0 to 500g
in steps of 50g. A total of 242, 131 samples were collected
in 40m21s. Note that each sample refers to a collection of
the markers’ positions. The data collection was divided into
three batches. These batches were collected at different times
of a day and with an altered orientation and position of the
soft robot in the room to guarantee independence of external
lighting conditions and the calibration of the motion capturing
system. For the deformable membrane, the actuation sequence
was varied to ensure that samples can span the entire working
space. The data was collected in two batches with varying
positions and orientations of the robot as well as varying
lighting conditions. A total of 44, 403 samples were collected
in 7m24s for the soft deformable membrane.

3) Data Preparation: Before further processing of the data,
the captured marker positions were converted into a more
convenient system aligned with the robots. The origin of
the soft continuum joint was selected as the center of the
bottom triangle of the joint. The z-axis was aligned with the
triangle’s normal pointing upwards, the y-axis pointed from
origin towards one of the markers, and the x-axis was then
defined as orthogonal to these two axes (see Fig. 2). For the
soft deformable membrane, the centroid of the fixed markers
on the frame was selected as the origin. The axes were defined
such that the x- and y-axes aligned with the frame’s boundary
and z-axis pointed upwards.

C. Shape Parameterization

The most intuitive way to present the shape of a deformed
soft robot is to describe it by the predicted locations of
markers [22]. However, this approach is redundant in many
scenarios. Two shape parameterizations are introduced below
for the hardware setups employed in our work, which provides
a more compact and effective way to reconstruct the shape of
deformed soft robots.

1) Soft continuum joint: A parameterization with physical
meaning is demonstrated for this hardware setup. The collected
marker positions are converted to a rigid transformation rep-
resented by a rotation matrix R together with a translation
vector T, which describe the rotation and translation from the
bottom triangle of the joint to the top triangle of the joint. For
a set of points (i.e., markers) on the bottom triangle denoted as
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{mi} and the corresponding set of points on the top triangle
as {di}, the mapping between them can be described as

di = Rmi +T+ vi (1)

where vi is a noise vector to incorporate the errors of marker
placement and measurement. The best solution of R and T
can then be determined by the unit-quaternion approach in the
sense of minimizing a least-squares error (ref. [35]). The set of
(R,T) determined from motion capture are used as samples
for training and testing.

2) Soft deformable membrane: For the soft deformable
membrane, a parameterization based on Bézier surfaces is
conducted to represent its shape more compactly than by the
positions of markers on the robot. The positions of 7 × 7
(N = 49) markers are used to provide raw data for presenting
the shape of a deformed membrane. A surface fitting process
is conducted to generate the control points of a Bézier surface
patch for describing the shape. In general, a Bézier surface
maps parameters (u, v) to surface point coordinate p ∈ <3 as

p(u, v) =
m∑
i=0

n∑
j=0

Bi,m(u)Bj,n(v)ci,j (2)

where {ci,j} are control points of the surface and Bi,m(u)
and Bj,n(v) are Bernstein basis polynomials defined as

Bi,m(u) =
(
m
i

)
ui(1− u)m−i. (3)

For this hardware setup, the positions of markers can be
captured by the motion capture system. For a marker with
position pk, we can determine its parameters (uk, vk) by the
marker’s planar coordinate when the membrane is flat – that
is, before pumping air into the chambers. The control points
can be determined by minimizing the following energy, which
measures the square distances between the real coordinates of
markers (captured by cameras) and the positions obtained by
surface description

E =
N−1∑
k=0

(pk −
m∑
i=0

n∑
j=0

Bi,m(uk)Bj,n(vk)ci,j)
2. (4)

With the help of Bézier surface fitting, the deformable
membrane could be expressed as the linear combination of
several control points, thus removing the redundant infor-
mation embedded in the marker positions. Moreover, this
compact representation is more robust to noises and outliers.
The accuracy of the shape representation is dependent on the
number of control points of the Bézier surface. As the Bézier
surface is a special case of B-spline surface, the extension to a
B-spline surface is also straightforward. However, increasing
the number of control points means that more information
needs to be generated from the sensed signals. As a result, a
more complex machine learning model is needed, and such a
model generally must also be fed by more training samples.
As the dataset is obtained through physical experiments, the
collection of additional samples is time-consuming and thus
expensive. Figure 5 displays a comparison of the fitting of
a Bézier surface with 16, 25, and 36 control points. It can
be seen that a Bézier surface with 5 × 5 control points can
already describe the deformable membrane with accuracy at a
satisfactory level.

Fig. 5. Surface fitting for a deformed surface (top row) with 49 markers’
positions determined by a motion capture system. The results by using 4×4,
5×5, and 6×6 control points are given from left to right (bottom row). The
black points indicate the measured coordinates of markers, the blue points
present the control points obtained by surface fitting and the fitted Bézier
surfaces are visualized as the purple grids.

D. Machine Learning

Machine learning is applied to learn the relationship be-
tween the sensor data and the shape-oriented parameters.
We studied different learning models to determine the best
model for different hardware setups. For this purpose, accuracy
was tested on different trained models, including an LSTM
network, an FNN, a support vector regression (SVR), and a
multivariate linear regression (MVLR). The network design of
these models is presented below.
• The LSTM network has a hidden layer of 50 neurons with

tanh(·) as the activation function. In the output layer, a
linear function is used for learning the translation and
the control points of the Bézier surface, while tanh(·) is
employed for learning the rotation matrix.

• For the learning model by FNN, we also use a hidden
layer of 50 neurons with sigmoid as the activation func-
tion. The output layer is designed identical to the LSTM
network.

• For SVR, we chose standard radial basis functions (RBF)
as kernels and used 1.0 as the C-parameter for regular-
ization.

• An ordinary least squares multivariate linear regression
is used for MVLR.

For the soft deformable membrane, we obtained the datasets
for training, validation, and testing from the readings from 12
sensors in 10 subsequent time-steps at 1000 Hz, resulting in
12×10 = 120 readings as input for each prediction. Positions
of markers were captured by cameras and converted into
control points of a Bézier surface – specifically, we generated
different control polygons with 4×4, 5×5, and 6×6 to explore
the best result. To verify the generality of a learning model’s
performance, the actuation sequence that was used to generate
the dataset of the test must be different from the actuation
sequence used to generate the training dataset. For the soft
continuum joint, the datasets were also obtained from the
readings from 12 sensors and the captured positions of markers
in 10 subsequent time-steps at 1000 Hz, again resulting in
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TABLE I
DATASETS FOR MACHINE LEARNING

# Samples in Different Datasets
Hardware Setups Training Validation Test
Continuum Joint 168, 251 50, 510 23, 370
Deformable Membrane 21, 396 11, 503 11, 504

Fig. 6. Comparison of the mean prediction errors by using different learning
models for the soft continuum joint and the soft deformable membrane.

12 × 10 = 120 readings as input for each prediction. The
positions of markers were converted into a rotation matrix
and a translation vector to form a sample. The performance of
learning models was evaluated on the dataset captured while
external loads were applied. Note that these specific external
loads were not applied while generating training data so that
the generality of a learning model is well verified. The total
numbers of samples in different datasets and the comparison
of mean prediction errors are given in Table I.

IV. RESULTS

This section presents the experimental results of applying
our approach on the two hardware setups – the soft continuum
joint and the soft deformable membrane. Quantitative analysis
was conducted to verify the performance of our method. The
performance of different machine learning models is compared
and displayed in Fig. 6 for the soft continuum joint and the
soft deformable membrane. It is found that both LSTM and
FNN perform well in general. However, we did not find clear
indicators to predict which of these two networks will perform
better on a specific shape parameterization.

A. Soft Continuum Joint

To provide a more meaningful interpretation of the errors in
the rotation matrix, the prediction errors of a rotation matrix
are translated to Tait-Bryan Euler angles following the z−,
y′−, and x′′−-convention (intrinsic rotations) – referred to
as yaw, pitch, and roll respectively. The best performance was
achieved using the LSTM with mean prediction errors as 0.44,
0.63, and 2.76 degrees in yaw, pitch, and roll, respectively.
Prediction error of the translation vector is evaluated by the
error vector’s magnitude. According to the evaluation of the
test dataset, SVR gives the smallest error as 3.05 mm. LSTM’s
error is 3.53 mm, which is comparable to SVR. Therefore, by
combining rotation and translation, the LSTM learning model
provides the best performance. Mean prediction errors and
their distribution are shown in Fig. 7.

A side-by-side comparison of the reconstructed joint and
the real joint position for a time sequence of 16 seconds
is shown in Fig. 8 and also the supplementary video. This

Fig. 7. Histograms of the prediction errors for the rotation (left) and the
translation (right) of the soft continuum joint, where the prediction is generated
by the LSTM network.

Fig. 8. Comparison of the rotation and translation predicted by the LSTM
network on the continuum joint and the actual rotation and translation
(obtained from motion capture) for a sequence without external load (left) and
with external load (right). The transformation obtained from motion capture
is displayed in dark red, while the reconstructed transformation from LSTM
prediction is rendered in gray. LDRs sensor readings in different modules
throughout the time sequences are shown at the bottom. Bellows and their
corresponding set of LDR sensor readings are visualized in matching colors.

reconstruction is based on the predictions obtained from the
LSTM model, which demonstrate the capability of accurate
prediction regardless of the external load.

A prediction for the rotation and translation can be gener-
ated within 4 ms on a consumer-level device (i.e., a laptop
PC with 2.3GHz CPU + 16GB RAM), whereas the calcula-
tion of the forward kinematics is very fast. In practice, the
sensor readings can be obtained at the rate of 1000 Hz, and
each prediction is made by using readings from 10 time-
steps. Therefore, we can make a prediction in a single-thread
computation (see the bottom row of Fig. 3) every 14 ms, which
makes it possible to run the reconstruction in real-time (at the
rate of 50 to 70 Hz). The speed of visualizing deformed 3D
models as shown in Fig. 8 depends on the mesh density.
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Distance Errors 1 LDR 2 LDRs 3 LDRs
Mean Values 2.21mm 1.79mm 1.18mm

Standard Deviation 2.44mm 2.06mm 1.39mm

Fig. 9. Histogram showing the distribution of the distance errors between
the real and the predicted marker positions for the samples in the test dataset
when using different numbers of LDRs in each module.

Fig. 10. Comparison of the mean distance error for the fitted surface vs.
the captured markers, and the predicted surface vs. the captured markers on
Bézier surfaces with different numbers of control points.

B. Soft Deformable Membrane

The prediction error of the soft deformable membrane is
indicated on the right side of Fig.6. For each marker, its uv-
parameters can used to generate the marker’s position on the
predicted surface. The distance between the real position of
a marker (obtained from motion capture) and its predicted
position is employed as a metric to evaluate the error. When
comparing the mean errors, FNN gives the best result with
1.18 mm as the mean of distance errors. An error histogram
is given in Fig. 9. It is also interesting to study the influence
of different numbers of sensors. Therefore, we also generated
results by the test dataset using only two LDRs and one LDR
per module. Their corresponding error histograms are also
shown in Fig. 9. It can be observed that the mean distance
error by using only one LDR within each module is nearly
twice the error when using three LDRs.

We also studied the errors by using different numbers of
control points for Bézier fitting. The errors were measured
as the distances between the positions of markers and their
corresponding points on the resultant surface of fitting. It is
obvious that more control points lead to less fitting error (see
the left side of Fig. 10). However, the error of a surface (with
6 × 6 control points) predicted from sensor readings can be
larger than the error on a surface with 5 × 5 control points
(see the right of Fig. 10). The reason is twofold. First of all,
the surface fitting error of 5 × 5 is already very close to the
error of 6×6. Secondly, the information from 12 sensors is not
sufficient to predict 36 control points. Therefore, we used 5×5
control points to represent and reconstruct the soft deformable
membrane.

A visual comparison of the physically deformed membrane
and the reconstructed surface over a period of 29 seconds can
be found in Fig. 11 and also the supplementary video. The sur-

Fig. 11. Visual comparison of the FNN predicted surface represented by
5 × 5 control points and the physically deformed soft membrane during a
time sequence of 29 seconds. The positions of markers obtained from motion
capture are displayed in black dots, while their corresponding points on the
predicted surface are connected by red line segments. The errors between
the predicted surface and the captured surface (by fitting camera-captured
positions of markers) are visualized as color maps. The sensor readings of the
LDRs within the different modules throughout the time sequence are shown
in the bottom graph. Modules and their corresponding set of LDR sensor
readings are indicated in matching colors.

face is predicted by FNN from the light intensities captured by
LDRs in each module. The distance errors between the surface
predicted from sensor readings and the surface generated by
fitting camera captured positions of markers are visualized as
color maps.

Prediction of the control points from sensor readings can
be generated within 1 ms on a consumer-level device. Again
we made a prediction by using the readings from 10 time-
steps, which is captured at the rate of 1000 Hz. The speed
of visualization as shown in Fig. 11, strongly depends on the
density of the grid – for example, a visualization with a 30×30
grid can be generated within 6ms using a C++ implementa-
tion. Incorporating all these computations, our system can be
operated in real-time at the rate of more than 50 Hz.

V. CONCLUSION

In this paper, we presented a method to sense and recon-
struct 3D deformation on pneumatic soft robots composed
of multiple actuators. Our method is based on integrating
multiple low-cost sensors inside the chambers of pneumatic
actuators and then using machine learning to fuse the captured
signals into shape parameters of the soft robots. These shape
parameters can be used to efficiently reconstruct the 3D shape
of the soft robot. The sensing and shape prediction pipeline
can run at 50 Hz in real time on a consumer-level device.
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This is an important step towards the development of more
advanced closed-loop control for soft robots.

In this work, LDRs were chosen to capture the changes
in light conditions. It should be noted that the resistivity of
these semiconductors changes with temperature and humidity.
In our experiments, this did not raise any issues when testing
under mildly varying (room temperature) conditions. If a robot
is required to operate under severe temperature changes, it
is recommended to replace the LDRs with photodiodes as
our previous work [22] or to add a temperature sensor for
further calibration. Future research could investigate the use
of transfer learning to reduce the required number of new
training samples when a minor modification is applied to a
design. Lastly, the simulation of light variation inside the air
chambers could be a promising direction for optimizing the
placement of the optical sensors and the light sources inside air
chambers. This simulation could also be used for integrating
other effective signal generators, such as color patterns [21],
to further increase the accuracy of proprioception.
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