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Summary

As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to
go through flight simulator-based stall recovery training (Federal Aviation Administration,
2013). This implies that all aircraft dynamics models driving flight simulators must be up-
dated to include accurate pre-stall, stall, and post-stall dynamics. For this reason, the Control
and Simulation (C&S) division at the Faculty of Aerospace Engineering, Delft University of
Technology, has set up a task force to develop a new methodology for high-fidelity aircraft
stall behavior modeling and simulation. This research effort is twofold. First, the current sim-
ulation framework is to be upgraded together with the implementation of a newly developed
aerodynamic model identified from flight test data obtained from TU Delft’s Cessna Citation
II laboratory aircraft. In addition, the upgraded simulation framework will be tested and run
on the SIMONA research simulator, a 6 degree-of-freedom flight simulator. As second part
of this effort, a parallel MSc research effort will focus on the identification of an aerodynamic
stall model for the Citation II based on flight test data will be integrated into the upgraded
simulation framework(Van Horssen, 2016).

At this moment, the C&S division uses a simulation framework known as the Delft University
Aircraft Simulation Model and Analysis Tool (DASMAT) (Van Der Linden, 1998) as its
baseline model. This simulation framework was designed as standard Flight CAD package for
control and design purposes. The aerodynamic model integrated into the DASMAT simulation
framework is the result of an extensive flight test program(Mulder et al., 1987) and is based
on the Cessna Citation I. The DASMAT simulation framework, together with the Cessna
Citation I aerodynamic model, is known for a number of deficiencies. Most significantly, the
aerodynamic model does not match to the dynamics of the current laboratory aircraft, i.e.
the Cessna Citation II.

The main aim of this MSc research project is the identification, validation and integration
of a new high-fidelity aerodynamic model for the normal, pre-stall flight regime using flight
test data from the Cessna Citation II laboratory aircraft. In addition, as part of this thesis
work, this newly developed aerodynamic model is integrated into the upgraded simulation
framework, such that it will act as the new baseline model with a more accurate representation
of the Cessna Citation II’s dynamics. This framework also provides an interface for the
stall and post-stall models, resulting from a parallel MSc research project. Altogether, the
upgraded high-fidelity modular aircraft simulation framework will be used in future research
into (1) the investigation of pilot behavior during aerodynamic stall, and (2) the design of
advanced control algorithms.

Design, Identification and Implementation of a High-Fidelity

Cessna Citation II Flight Simulation Model
M.A. van den Hoek



vi Summary

This report is structure as follows. In Part I the final paper is presented. In this paper,
the results regarding the identification of a new high-fidelity aerodynamic model are pre-
sented. This includes an overview of the determined model structure, the estimated model
parameters and a validation and comparison of the DASMAT simulation model and the new
aerodynamic model. In Part II the preliminary thesis is presented containing an explanation
of the theoretical constructs and some initial off-line simulations together with a comparison
of different Kalman filter types. The appendices of the preliminary thesis can be found in
Part III. Lastly, paper appendices are included in Part IV.
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Identification and Implementation of a High-Fidelity

Cessna Citation II Simulation Model Based on Flight

Test Data

M.A. van den Hoek∗ , D.M. Pool† , C.C. de Visser†

and M. Mulder‡

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to

go through flight simulator-based stall recovery training. For this reason the Control and

Simulation division at Delft University of Technology has set up a task force to develop

a new methodology for high-fidelity aircraft stall behavior modeling and simulation. As

part of this research endeavor, the development of a new high-fidelity Cessna Citation II

simulation model, valid throughout the normal, pre-stall flight envelope, is presented in this

paper. The new simulation model will replace the current baseline model, which is based

on the Cessna Citation I, for an increased fidelity and representation of the dynamics of

the current laboratory aircraft, the Cessna Citation II. Aerodynamic model identification

was done by employing the Two-Step Method. New in this approach is the use of the

Unscented Kalman Filter for an improved accuracy and robustness of the state estimates.

For the first time, an explicit model structure is presented for the Citation II. Model

structure selection by an orthogonal regression scheme has indicated that most of the six

non-dimensional forces and moments can be parametrized sufficiently by a linear model

structure. It was shown that only the CY and CX models would benefit from the addition

of higher order terms relating to the aerodynamic angles. On balance, the models for the

non-dimensional forces were improved marginally in comparison to the existing simulation

model. Major improvements were made to the moment models, with an increase of the

explained variance of at least 35%.

Nomenclature

ax, ay, az Linear accelerations, m/s2

b Wing span, m
c̄ Mean aerodynamic chord, m
E {·} Expectation operator
f [·] Vector-valued non-linear state transition function
h [·] Vector-valued non-linear observation function
h Altitude, m
Ixx, Iyy, Izz Moments of inertia around body axes, kgm2

Ixz Cross-moment of inertia between Xb- and Zb-axis, kgm
2

K Kalman gain matrix
M Mach number
m Aircraft mass, kg
p, q, r Rotational rates around the body axes, rad/s
ṗ, q̇, ṙ Rotational accelerations around the body axes, rad/s
p̂, q̂, r̂ Dimensionless rotational rates around the body axes, rad/s

∗M.Sc. student, Department of Control and Simulation, Faculty of Aerospace Engineering.
†Assistant Professor, Department of Control and Simulation, Faculty of Aerospace Engineering.
‡Full professor, Department of Control and Simulation, Faculty of Aerospace Engineering.
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Q Process noise variance-covariance matrix
R Measurement noise variance-covariance matrix
S Wing surface area, m2

u, v, w Velocity components in the body-fixed reference frame, m/s
VTAS True airspeed, m/s
x, y, z Position in the Earth-Centered Earth-Fixed reference frame, m

Subscripts

E Variable expressed in the ECEF frame
m Measured value

Symbols

α Angle of attack, rad
β Angle of sideslip, rad
δe, δa, δr Elevator, aileron and rudder deflections, rad
δf flap deflection, rad
σ̂ (·) Estimated variance
λ Signal bias
φ, θ, ψ Euler angles, rad

I. Introduction

A
s a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through flight
simulator-based stall recovery training.1 This implies that all aircraft dynamics models driving flight

simulators must be updated to include accurate pre-stall, stall, and post-stall dynamics. For this reason,
the Control and Simulation (C&S) division at Delft University of Technology has set up a task force to
develop a new methodology for high-fidelity aircraft stall behavior modeling and simulation. This research
effort is twofold. First, the current simulation framework is to be updated together with the implementation
of a newly developed aerodynamic model identified from flight test data obtained from TU Delft’s Cessna
Citation II laboratory aircraft. In addition, the upgraded simulation framework will be tested and run on the
SIMONA research simulator, a 6 degree-of-freedom flight simulator.2 As second part of this research effort,
an aerodynamic stall model for the Citation II based on flight test data will be developed and integrated
into the upgraded simulation framework.3 Note that only the first part is presented in this paper.

At this moment, the C&S division uses a simulation model of the Cessna Citation I, known as the Delft
University Aircraft Simulation Model and Analysis Tool (DASMAT)4 as its baseline model. This simulation
model was designed as standard Flight CAD package for control and design purposes within the C&S
division of the Faculty of Aerospace Engineering, Delft University of Technology. DASMAT is known for a
number of deficiencies; most significantly is its unsatisfactory match with the current laboratory aircrafts
flight dynamics. The Citation I model is the result of a flight test program executed for the development of
mathematical models describing the aerodynamic forces and moments, engine performance characteristics,
flight control systems and landing gear.5 Earlier attempts at modeling the longitudinal forces and the
pitching moment were made by Oliveira et al.6 However, parameter estimates were only obtained for a
limited range of flight conditions with a very limited set of measurements. In addition, in the same paper
the authors state that dependency of the aerodynamic model from higher order terms, such as α2 and terms
relating to the time rate of change of the aerodynamic angles, such as α̇, are yet to be investigated.6

The estimation of stability and control derivatives from flight test data can be formulated in the framework
of maximum likelihood estimation.7 In the context of this paper, aerodynamic model identification will be
done by employing the Two-Step Method (TSM).8,9 This method effectively decomposes the non-linear model
identification problem into a non-linear flight path reconstruction problem and linear parameter estimation
problem, allowing the use of linear parameter estimation techniques for a significant simplification of the
latter procedure. This decomposition can be made under certain conditions concerning accuracy and type
of the in-flight measurements.9 New to the TSM approach is the use of the Unscented Kalman Filter10

(UKF) for an improved accuracy and robustness of the state estimates in the first step. The latter can be
seen as an elaboration to the work of Oliveira et al.,6 who stated that further improvements in the quality
of the parameter estimates obtained from the Two-Step Method can be achieved by improving the accuracy
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of the state estimation procedure. Methods for even further improving the state estimate obtained from a
KF approach exist in the form of Kalman smoothers.11,12 However, these methods were not employed in
the context of this research.

In this paper, the methodology regarding the identification of the aerodynamic model of the Cessna
Citation II is presented. This identification procedure is twofold. First, in Section III, the methods used for
flight path reconstruction are presented. Subsequently, in Section IV, the general methodology for model
structure selection and parameter estimation are outlined. For the first time, an explicit model structure
is presented for the Cessna Citation II together with the estimated parameters of the six non-dimensional
models. The results for the flight path reconstruction, model structure selection and parameter estimation
are given in Section V. The same section also features a model validation by applying the identified models
to validation data and a time-domain comparison between the measured data, the identified model and
DASMAT. In addition, a comparison between parameter estimates obtained from Koehler (3-2-1-1) and
Hardover maneuvers is presented. As a general introduction to the experimental vehicle, the Cessna Citation
II and the experimental procedures are first described in Section II.

II. Research Vehicle and Flight Data

In this paper, aerodynamic model identification was applied to the Cessna Citation II laboratory aircraft,
model 550, which is co-owned by Delft University of Technology (DUT) and the Netherlands Aerospace
Center (NLR). The Citation II is a twin-jet business aircraft, with two Pratt & Whitney JT15D-4 turbofan
engines. Both engines deliver a maximum thrust of 11.1 kN each. The maximum operating speed is limited
at 198.6 m/s, with a maximum operating altitude of approximately 13 km.13

Inflight test display

Gyrosyn compass
Autopilot computer

Aileron synchro

Rudder synchro

Magneto meter

Air data boom

Alpha vane

Alpha and beta vane

Pitot probe

Static portElevator synchro

Experimental FBW computer

Temperature probe

Flight director
ADC
AHRS

IMU

(a) Overview of the aircraft instrumentation systems

ZbXb

Yb

(b) Definition of the aircraft body-fixed reference
frame or coordinate system Fb

Figure 1. Aircraft instrumentation systems and reference frame

A. Dimensions and mass properties
Table 1. Dimensions and mass
properties of the aircraft

Dimensions

b 15.90 m

c̄ 2.06 m

S 30.00 m2

Mass properties

m 4,157 kg

Ixx 12,392 kgm2

Iyy 31,501 kgm2

Izz 41,908 kgm2

Ixz 2,252 kgm2

All values correspond to the basic
empty weight.

The Cessna Citation II has a total length of 14.4 m and the outer fuselage
diameter is 1.63 m. The sweepback of the main wings at 25% chord is
1.4 degrees, and it has a 4.0 degrees dihedral. The aircraft basic empty
weight (BEW) mass and elements of the inertia tensor are summarized
in Table 1. Furthermore, the distance between the angle of attack vane
and the aircraft nose is approximately 4 meters. The Attitude and Head-
ing Reference System (AHRS) is located beneath the floor of the nose
baggage compartment, in front of the forward pressure bulkhead. The
distance between the AHRS system, and the nose is approximately 1.9
m. Furthermore, for most of the flights the aircraft was equipped with a
highly accurate Inertial Measurement Unit (IMU).
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B. Instrumentation

The Flight Test Instrumentation System (FTIS) of the Cessna Citation II laboratory aircraft combines the
sensor measurements from a variety of instrumentation systems. Recently, this aircraft has been equipped
with a new FTIS system replacing the old one. Over the years, flight data from different experiments was
collected in a database. The contribution of this work comes in the form of a small set of dynamic maneuvers,
in addition to the existing collection, for the identification of a new aerodynamic model. For this reason, the
work presented in this paper combines the flight test data originating from the two different FTIS systems.
An overview of the instrumentation systems is highlighted in Figure 1(a) and summarized as follows:

• Most of the data that was obtained from previous experimental flights contains a highly accurate
measurement of both the linear accelerations (ax, ay, az) and rotational rates (p, q, r) obtained from
the Inertial Measurement Unit (IMU) at a rate of 100 Hz. However, since the upgrade of the FTIS
system one has to resort to the AHRS for the previously mentioned measurements. The AHRS system,
located below the nose baggage compartment, combines the linear accelerometer measurements and
rotational rates around the body-axes to obtain accurate attitude information, represented by the set of
Euler angles (φ, θ). In addition, the true heading, denoted by ψ, was processed and obtained from the
Flight Management System (FMS). By default, the linear accelerations in yb and zb were not corrected
for the gravity component. This correction can easily be applied by addition of the gravity component
expressed in Fb, i.e. TbE g. The AHRS also suffers from its displacement with respect to the center of
gravity for which a correction is required. AHRS measurements were obtained at a variable sampling
rate, averaged at 50 Hz.

• Altitude information h, the climb rate ḣ and true airspeed VTAS were obtained from the Digital Air
Data Computer (DADC) at a sampling frequency of 16.67 Hz.

• Position estimates (xE , yE , zE) together with the estimates of the time rate of change(ẋE , ẏE , żE)
were provided by a Differential Global Positioning System (DGPS). The position vector originating
from this series of measurements, expressed in longitude, latitude and altitude, was transformed to a
vector expressed in the ECEF frame under the assumption of a locally flat and non-rotating earth.
The DGPS system provides data at a rate of 1 Hz.

• Most of the measurements were obtained by making use of an air data boom, combining a set of two
synchros for an accurate and undisturbed measurement of the aerodynamic angles, i.e. the angle of
attack α and the sideslip angle β. In the absence of such a measurement device, use can be made of
the angle of attack vane located on the fuselage in front of the main wing. Its measurement should be
used with caution since it suffers from an upwash in the flow directly ahead of the leading edge of the
wing. Both devices sample at a frequency of 1000 Hz.

• Control surface deflections (δe, δa, δr) were obtained from a set of synchros sampled at a rate of 100
Hz.

C. Experimental Flight Data

In this paper, the identification of the aerodynamic model was done by combining the data from different
series of flight test measurements obtained over a time span of several years (2006-2016). Only a selection
of the total data collection was specifically obtained for the purpose of system identification. Some of these
measurements originate from flight tests to investigate the worst case scenarios for autopilot failures. During
the latter tests, a maximum control surface deflection was commanded resulting in a so-called hardover
maneuver14,15 (see Figure 4). These maneuvers have been proven to be of a specific interest because of
their ability to provide sufficient excitation of the aircraft’s dynamics.16 For this reason it was decided to
investigate their applicability in the framework of system identification. In addition, a large part of the total
data collection originates from demonstration flight tests for Aerospace Engineering students. Typically,
these sets contain time traces of the longitudinal and lateral dynamic eigenmodes of the aircraft.

The study into optimal inputs for aerodynamic model identification is a whole field of research standing
on its own.17,18 In the context of this research, it was chosen to employ a set of longitudinally and laterally
induced 3-2-1-1 maneuvers, also known as Koehler maneuvers, for a proper excitation of the Citation II’s
frequency band spanning the dynamic eigenmodes of the aircraft. This 3-2-1-1 input consists of 4 consecutive
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steps in alternating directions. In addition to a proper excitation of the aircraft’s dynamics, the latter type
of maneuver also allows for relatively straightforward application at different test points within a limited
amount of time. An example of a longitudinally induces 3-2-1-1 dynamic maneuver is depicted in Figure 3.

A proper selection of the test points, i.e. the conditions under which the identification maneuvers will
be performed, is essential to guarantee the widest possible coverage of the flight envelope. The design of
dynamic input maneuvers is specifically aimed at excitation of the variables belonging to the symmetric or
asymmetric state-planes under the assumption that both can be decoupled effectively. Because of the limited
non-linearity in the (M,h) state-plane, only few test points are required along the whole span of the plane,
removing the requirement to perform dynamic maneuvers at high altitude or velocity.19

As depicted in Figure 2, the current collection of test points for both longitudinally and laterally induced
dynamic maneuvers covers the flight envelope over the complete range of velocities while limited observations
at different altitude levels are available. At a total of 212 test points, more than 400 dynamic maneuvers
were performed.
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Figure 2. Overview of the location of the longitudinal and lateral test points inside the flight envelope.

III. Flight Path Reconstruction

In this section, the methodology for the flight path reconstruction procedure is presented. First, the data
preparation and filtering preliminaries are presented followed by a theoretical overview and motivation for
the use of the Unscented Kalman Filter.

A. Data Preparation

Prior to the Kalman filtering procedure, the collected flight data was pre-processed by applying a sequence
of corrections and conversions. Because of the inherent difference in sampling rates, a unification through
re-sampling is required before running the data through a Kalman filter (KF). Alternatively, multi-rate
implementations of the KF are available.20,21 However, application of this type of KF to simulated data
have indicated equivalent performance of the single-rate implementation on re-sampled data in an off-line
identification framework. For this reason, unification to a sampling rate of 100 Hz was performed.
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Figure 3. Typical control surface deflections, linear accelerations and rotational rates during a longitudinally
induced 3-2-1-1 dynamic maneuver in δe
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Figure 4. Typical control surface deflections, linear accelerations and rotational rates during a coupled hardover
maneuver
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Estimates of the elements of the inertia tensor (Ixx, Iyy, Izz and Ixz) aircraft mass m (for basis empty
weight values see Table 1) and fuel burn ṁ at every time step k were provided by an aircraft mass model
based on splines [19, Ch. 5.4.6]. This mass model takes into account the geometry of the fuel tank, remaining
fuel weight and weights and moments caused by the passengers and baggage. In addition, GNSS coordinates
were converted to their counterpart in the Earth-Centered-Earth-Fixed FE-frame.

As more extensively described in Section B, measurements were obtained from in-flight data collection
equipment.14–16 An a priori estimation of the sensor characteristics is tabulated in Table 2. In order to
reduce noise levels on the measurements, the linear and rotational accelerations were filtered through a
simple low-pass filter with a cutoff frequency of 6 Hz.

Table 2. Flight Test Instrumentation System sensor variables used in flight path reconstruction with their
associated 1σ standard deviation and sampling rate Fs.

Parameter Unit 1σ std Fs [Hz] * Source

Altitude m 3.00× 10−1 16.67 Static probe

Xb-axis rotation rad 8.70× 10−3 50 Sperry vertical gyro

Yb-axis rotation rad 8.70× 10−3 50 Sperry vertical gyro

Zb-axis rotation rad 1.73× 10−2 10 Gyrosyn compass

True airspeed m/s 1.00× 10−1 16.67 Pitot-static probe

Angle of attack rad 3.50× 10−3 1000 Alpha vane

Angle of sideslip rad 3.50× 10−3 1000 Beta vane

Xb-axis linear acceleration m/s2 2.00× 10−2 100 Q-Flex 3100 accelerometer

Yb-axis linear acceleration m/s2 2.00× 10−2 100 Q-Flex 3100 accelerometer

Zb-axis linear acceleration m/s2 3.00× 10−2 100 Q-Flex 3100 accelerometer

Xb-axis rotational rate rad/s 2.00× 10−3 100 LITEF µFORS rate gyro

Yb-axis rotational rate rad/s 2.00× 10−3 100 LITEF µFORS rate gyro

Zb-axis rotational rate rad/s 5.00× 10−3 100 LITEF µFORS rate gyro

* Sampling rate values correspond to the new FTIS. Data obtained from the old FTIS have different
sampling rates.

B. Kalman Filtering Preliminaries

1. State transition function and navigation equations

The set of stochastic differential equations, in the context of aircraft dynamics, can in general be described
by:

ẋ(t) = f [x(t),u(t), t] +G(x(t), t)w(t)

zn(t) = h [x(t),u(t), t]

z(t) = zn(t) + v(t)

(1)

where f [·] is the non-linear state transition function and h [·] the non-linear measurement function. The
process noise and (output) measurement noise are assumed to be zero-mean, white and uncorrelated and
can be parametrized by:

E {vv⊺} = Q E {ww⊺} = R E {wv⊺} = 0 (2)

where the diagonal elements of the process and measurement noise covariance matrices are composed of
the squared standard deviation as given in Table 2. The full kinematic model is given by combining the
differential equations for the flat earth position, body velocity components and the equations of rotational
motion. The whole set of differential equations is then given by:
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żE = −u sin θ + (v sinφ+ w cosφ) cos θ

u̇ = ax − g sin θ − qw + rv

v̇ = ay + g cos θ sinφ− ru+ pw

ẇ = az + g cos θ cosφ− pv + qu

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ (3)

ψ̇ =
sinφ

cos θ
+ r

cosφ

cos θ

In this set of kinematic equations, the IMU measurements are used as system input. In order to model the
noise characteristics and bias of the IMU signals, these were modeled as:

axm
= ax + λax

+ wx

aym = ay + λay
+ wy

azm = az + λaz
+ wz

pm = p+ λp + wp

qm = q + λq + wq (4)

rm = r + λr + wr

where λ indicates the bias of the associated signal and w indicates the process noise of the subscripted
variable.

In the context of this paper, some of the measurements regarding the linear accelerations were obtained
from the AHRS located in the nose section of the aircraft, at an offset location from the center of gravity
(see section B). Laban22 derived a model for the transformation of the linear accelerations to obtain the
true linear accelerations at the cg. The latter equation involves the derivatives of the rotational rates which,
in turn, contain a small bias: e.g. ṗm = d

dt
(p − λp). By safely assuming a time-invariant bias term of the

rotational rates in the calculation of the derivative term, a significant simplification can be made to the filter
structure. The kinematic relations for the time derivative of the body velocities can now be replaced by:

u̇ = (ax − λax
) + (xcg − x)

{

(q − λq)
2 + (r − λr)

2
}

− (ycg − y) {(p− λp)(q − λq)− ṙm}−
(zcg − z) {(p− λp)(r − λr) + q̇m} − g sin θ − (q − λq)w + rv

v̇ =
(

ay − λay

)

+ (ycg − y)
{

(r − λr)
2 + (p− λp)

2
}

− (zcg − z) {(q − λq)(r − λr)− ṗm} (5)

(xcg − x) {(q − λq)(p− λp) + ṙm}+ g cos θ sinφ− (r − λr)u+ (p− λp)w

ẇ = (az − λaz
) + (zcg − z)

{

(p− λp)
2 + (q − λq)

2
}

− (xcg − x) {(r − λr)(p− λp)− ṙm}
(ycg − y) {(r − λr)(q − λq) + ṗm}+ g cos θ cosφ− (p− λp) v + (q − λq)u

in which the time derivatives of the rotational rates can be obtained prior to filtering by a numerical differ-
entiation scheme capable of accounting for mediocre noise levels.

In the context of this paper, angle of attack and angle of sideslip measurements were primarily obtained
through the use of an intrusive nose boom (see Figure 1(a)). To this end, the set of observation equations was
extended by including the equation for the angle of attack and angle of sideslip as measured by the boom22

including the sensor biases.19 This model contains an unknown fuselage-upwash coefficient Cαup
together

with a kinematically induced angle of attack and angle of sideslip, under the assumption of a zero vertical
wind component and alignment of the boom with the Xb-axis. The complete set of observation equations,
or the navigation model, is given by:

hm = h+ vh

φm = φ+ vφ

θm = θ + vθ

ψm = ψ + vψ

VTASm
=

√

u2 + v2 + w2 + vVTAS

αv = (1 + Cαup
) tan−1 w

u
+

(q − λq)xvα√
u2 + v2 + w2

+ vα (6)

β = tan−1 v√
u2 + w2

− (r − λr)xvβ√
u2 + v2 + w2

+ vβ

where v is the standard notation for the measurement noise of the subscripted variable and xv denotes the
location of the boom along the Xb-axis for the alpha and beta vane.

For use in flight path reconstruction with a Kalman filter, the set of equations in Eq. (3) was extended
with the time derivatives of additional states that require reconstruction, i.e. sensor biases. Commonly, the
state transition function is simply assumed to be zero since the bias is constant in reality. For increased
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excitation of the sensor bias state, the state transition function for the linear accelerations and fuselage-
upwash coefficient was modeled as zero-mean unit-variance random walk scaled by a factor k, as earlier
applied in the work of Mulder et al.:14

λ̇ ∼ k · N (0, 1) (7)

The bias state transition function for the rotational rates was assumed to be zero for its usually very small
bias. On balance, the state vector together with the augmented bias terms is given by:

x =
[

h u v w φ θ ψ λax
λay

λaz
λp λq λr Cαup

]⊺

(8)

2. State Reconstructability

In the definition of non-linear observability, a distinction is made between local non-linear observability
and global non-linear observability. The first definition refers to the ability to observe a non-linear state
from a local Taylor expansion.23 Generalizing to non-linear systems, different methods to estimate the non-
linear observability exist, however, Walcott, Corless & Zak recommended the Lie-algebraic method under the
assumption that a priori knowledge about the dynamics of the system is precise.24 By applying the arithmetic
of the Lie dervative, an iterative procedure can be used to estimate the non-linear state observability. If
the observability matrix O reaches full rank within the first n − 1 Lie derivatives, non-linear observability
is guaranteed. If full rank is achieved within the first iteration, the system can also be considered as locally
observable. If additional iterations are required, local non-linear observability deteriorates. In this context,
reconstructability is directly related to the ability to observe the state vector in a Kalman filter procedure.
Rank deficiency in the observability matrix may directly result in the inability to reconstruct the state vector
from the sequence of measurement data. The presented state vector in Eq. (8) was confirmed to obtain full
rank within two iterations, confirming non-linear observability.

3. Additional non-linear air data observation equations

As stated before, the angle of attack in some of the measurement sequences was obtained from the alpha
vane - located alongside the aircraft fuselage - in the absence of more accurate measurement devices such
as the air data boom. To this end, Bennis developed an additional non-linear air data observation model
compensating for the viscous damper-mechanisms of the alpha vane.25 Augmentation of this model to the
non-linear state transition function should improve the filter’s innovation sequence and consistency

dαv
dt

=
1

τ

[{

tan−1

(

w − xαv
(q − λq)

u

)

+ Cαup
tan−1

(w

u

)

}

− αv

]

(9)

where τ indicates a time constant and αv the angle of attack as measured by the vane alongside the aircraft
fuselage.

C. Kalman Filtering Procedure

The application of the Kalman filter, which was originally designated for linear state-space,26 to systems with
non-linear dynamics can be enabled by linearization around state x for every time step k. Further improve-
ment can be reached by employing a local iteration scheme, effectively reducing the difference between the
reference trajectory and the estimate. However, for dynamic systems with moderate to severe non-linearities,
the use of this class of filters may expose the shortcomings of the linearization technique. Elaborating on
the latter statement, Julier & Uhlmann10 argue that the two major drawbacks of the (Iterated) Extended
Kalman Filter (IEKF) are related to this linearization:27

1. If the system demonstrates moderately to highly non-linear behavior within the time scale of the time
step, [tk, tk+1], the system cannot be assumed to show locally linear behavior.

2. The implementation of the Jacobian matrices is somewhat cumbersome and is error-prone as most
formulation errors originate from a wrongly defined Jacobian matrix.
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To effectively address these flaws, Julier & Uhlmann introduced an improved class of Kalman filters known
as the Unscented Kalman Filter (UKF).10 This class of filters is, instead of a linearization around a set point,
based on the unscented transform for calculating the statistics of a random variable undergoing a non-linear
transformation. In the same paper, the authors show that when using a state linearization approach, only
the second order statistical measures can be approximated whilst in many practical situations higher order
terms might be required to prevent the introduction of significant biases or errors. Additionally, Chowdhary
& Jategaonkar conclude from their research effort that the augmented version of the UKF for parameter
estimation is the fastest in terms of convergence at the cost of additional computational burden.28

The definition of the UKF begins with the selection of a so-called set of sigma points. These points can
be obtained from the unscented transformation of the augmented state vector and covariance matrix. In
the original definition of the UKF, the state vector and covariance matrix were only augmented with the
process noise.10 Hence, hereby it was also assumed that the states and corresponding errors are propagated
linearly through the measurement equations. In most cases, such an approximation is tolerated. However,
since the computational burden of an increased augmented state vector and covariance matrix is limited, it
was chosen to also augment the latter two quantities with the measurement noise characteristics.27,29

To begin with the formulation of the augmented UKF, the augmented state vector and covariance matrix
are defined as:

x̂a(k) = [x̂(k|k)⊺ v(k)⊺ w(k)⊺]
⊺

(10)

Pa(k) =







P(k) 0 0

0 Q 0

0 0 R






(11)

where v and w in the augmented state vector represent the means of the process and measurement noise;
these can therefore be assumed to have zero mean, hence their values will be zero. The augmented state
vector and covariance matrix can then easily be transformed to the unscented domain by:

X
a
i (k) =

[

x̂a(k) +
√

(L+ λ)Pa(k)
]

i = 1, 2, . . . , L

X
a
i (k) =

[

x̂a(k)−
√

(L+ λ)Pa(k)
]

i = L+ 1, L+ 2, . . . , 2L
(12)

This set of transformed points, indicated by X
a, is referred to as the set of sigma points. Parameters L and

λ are, respectively, the dimensionality of the state vector and a scaling factor defined as λ = α2(L+ κ)−L.
α is a parameter to reflect the spread of the sigma points around its mean, state vector x̂, and β is a factor
to account for any prior knowledge. The latter is set to a value of 2 for Gaussian distributions. κ is an extra
scaling factor which is usually set to zero. Subsequently, the weights for the set of transformed means and
covariances are defined as follows:

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i =W

(c)
i =

1

2(L+ λ)
i = 1, 2, . . . , 2L

(13)

From this point, the equations of the UKF become more trivial. Analogously to the EKF, the state vector
which is now expressed as sigma points are propagated through the system’s dynamics:

X
a(k + 1|k) = X

a (k|k) +
∫ tk+1

tk

f [X a,x(k|k),u(k),X a,v(k|k), τ ] dτ (14)

where X
a,x refers to the columns of the sigma points matrix related to the state and superscript v refers to

the sigma points related to the process noise. The one step ahead state estimation can be calculated by:

x̂ (k + 1|k) =
2L
∑

i=0

W
(m)
i X

a (k + 1|k) (15)
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and the one step ahead covariance matrix by:

P (k + 1|k) =
2L
∑

i=0

W
(c)
i (X a,x

i − x̂(k|k)) (X a,x
i − x̂(k|k))⊺ (16)

Again, similarly to the EKF, the sigma points representing the state vector and measurement noise are
propagated through the measurement equations and subsequently the transformed means for the measure-
ments are calculated:

Y(k + 1|k) = h [X a,x(k + 1|k),X a,w(k + 1|k)] (17)

with the transformed measurements given by taking the mean of the transformed sigma points:

ŷ =

2L
∑

i=0

W
(m)
i Yi(k + 1|k) (18)

The measurement covariance and measurement-state cross-covariance can be calculated by:

Pyy =

2L
∑

i=0

W
(c)
i (Y i(k + 1|k)− ŷ(k|k)) (Y i(k + 1|k)− ŷ(k|k))⊺ (19)

Pxy =

2L
∑

i=0

W
(c)
i (X a,x

i − x̂(k|k)) (Y i − ŷ(k|k))⊺ (20)

Finally, to complete the definition of the augmented UKF, gain matrix K, corrected state estimation
x̂(k + 1|k + 1) and corrected covariance matrix estimation P(k + 1|k + 1) are expressed as:

K(k + 1) = PxyP
−1
yy

(21)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K {y(k + 1)− ŷ(k + 1|k)} (22)

P(k + 1|k + 1) = P(k + 1|k)−K(k + 1)PyyK
⊺(k + 1) (23)

For additional numerical stability and guaranteed semi-definite state covariance matrix, the square-root
implementation of the UKF can be used.30 This type uses the Cholesky decomposition to address certain
numerical advantages in the calculation of the transformed statistical properties. Further extensions to the
UKF, e.g. the Sigma-Point Kalman Filter31 and its iterative counterpart32 were introduced later. However,
these filters populate the whole state-space with sigma points instead of only a selected optimal range.
Therefore, the computational burden of such filters do not outweigh the advantages and their application is
restricted.33

IV. Aerodynamic Model Identification

Different researches suggest the use of subspaces in the identification of multiple locally defined aerody-
namic models.34,35 These methods allow identification from several large-amplitude maneuvers, effectively
organizing the whole data set in subspaces of the dominant aerodynamic variable (α or β). By also applying
model structure selection to every subspace, any non-linearity in the horizontal or lateral state-plane can be
approximated by a set of ordinary polynomials. Despite this advantage, a requirement for this method is to
have sufficient data in every subspace. In addition, since the identification in this paper is applied to the
normal, pre-stall regime, most of the dynamics are sufficiently approximated by assuming linear dependence
of the model parameters with respect to the angle of attack or the sideslip angle. In the context of this
paper, a per-maneuver model identification scheme was applied followed by post-smoothing of the locally
identified models through regression of the identified parameters versus the Mach number and altitude.
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A. Preliminaries

If it is assumed that the aerodynamic force and moment coefficients are analytic functions of the corre-
sponding independent variables, they can be expressed in the form of a Taylor series.9 For the longitudinal
state-plane, there is a general consensus that the dependency of the model coefficients16,17 can be expressed
as:

Ca = Ca(α, α̇, q, δe, δf , δte , Te, M, h) ∈ R
8 for a = X, Z, m (24)

Analogously, the assumption can be made that the lateral non-dimensional forces and moments can be
parametrized as follows:

Ca = Ca(β, β̇, p, r, δa, δr, δta , δtr , M, h) ∈ R
10 for a = Y, l, n (25)

Because of the absence of flap and trim tab measurements, dependency of the model coefficients on the
corresponding variables cannot be assessed. For this reason, flap and trim tab deflection and their effect on
the non-dimensional forces and moments are neglected. The six non-dimensional forces and moments can
be calculated by:

CX =
m (ax − λax

)− Tx
qS

(26)

CY =
m

(

ay − λay

)

qS
(27)

CZ =
m (ax − λaz

)

qS
(28)

Cl =
Ixx
qSb

(

ṗ− Ixz
Ixx

((p− λp) (q − λq) + ṙ) +
Izz − Iyy
Ixx

(q − λq) (r − λr)

)

(29)

Cm =
Iyy
qSc

(

q̇ − Ixx − Izz
Iyy

(p− λp) (r − λr) +
Ixz
Iyy

(

(p− λp)
2 − (r − λr)

2
)

−MT

)

(30)

Cn =
Izz
qSb

(

ṙ − Ixz
Izz

(ṗ− (q − λq) (r − λr)) +
Iyy − Ixx

Izz
(p− λp) (q − λq)

)

(31)

where λ denotes the bias obtained from the flight path reconstruction procedure for each of the accelerations
and rotational rates. Since the derivatives of the rotational rates are not measured directly, these can
be obtained by numerical differentiation. Corrections to the non-dimensional force in Xb and the non-
dimensional pitch rate were made by making use of an engine model. The engine-produced thrust in Zb was
neglected and assumed to be approximately zero.

B. Parameter Estimation

The principles of regression analysis are well known and previously applied in many different researches
in the framework of aerodynamic system identification.35–37 The ordinary least squares (OLS) estimator,
defined as the minimum residual

ΘOLS = min
Θ∈R

‖X ·Θ− y‖ (32)

where ‖·‖ denotes the L2 norm in Euclidean space Rn. The well-known solution in terms of linear operations
is given by:

Θ̂OLS = (X⊺X)
−1

X⊺y (33)

According to the Gauss-Markov theorem, the OLS estimator is the best linear unbiased estimator under
the assumption that the variance of the residuals should be homoscedastic and the correlation terms should
vanish.38 In addition, under the assumption of a normally distributed residuals vector the OLS estimator is
identical to the maximum likelihood estimator, effectively attaining the Cramér-Rao lower bounds (CRLB).39
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The standard bounds of the parameter estimates are given by the diagonal elements of the variance-covariance
matrix:

Cov {Θ} = E

{(

Θ̂−Θ
)⊺ (

Θ̂−Θ
)}

= σ2 (X⊺X)
−1

(34)

where σ2 can be approximated by the mean squared error of the residuals. Using the estimated covariance,
pair-wise correlation of the estimated parameters can be assessed by:

Corr
{

Θ̂
}

=















1
σ(Θ̂1)

0 . . . 0

0 1
σ(Θ̂2)

. . . 0

...
...

. . .
...

0 0 . . . 1
σ(Θ̂p)















Cov
{

Θ̂
}















1
σ(Θ̂1)

0 . . . 0

0 1
σ(Θ̂2)

. . . 0

...
...

. . .
...

0 0 . . . 1
σ(Θ̂p)















(35)

Because aircraft parameter estimation is often associated with data collinearity,40 a biased parameter
estimation technique known as Principal Components Regression (PRC) was used. PCR is able to increase
the accuracy of the parameter estimates in case of multi-collinearity among the predictor variables.35

C. Model Structure Selection

Aerodynamic model structure selection is a non-trivial process. A literature study reveals an abundance of
different techniques, all arriving at a postulated aerodynamic model structure for the six non-dimensional
forces and moments. In the aerospace community there is a general consensus about the linear model
structure, formed by a linear combination of the independent variables in Eq. (24) and Eq. (25). However,
model structure selection remains an important step in order to capture second and higher order non-
linearities, including interaction of the independent variables.41

Stepwise regression34 is a method specifically aimed at data-driven selection of an appropriate model
structure from a set of candidate regressors. Later modifications to this approach restricted the selection of
candidate regressors to higher order terms, starting at a fixed linear model structure.41 The pool of candidate
regressors is to be formed by single terms, cross-interactions and higher order terms corresponding to the
independent variables in Eq. (24) and Eq. (25). The downside of the stepwise regression method is that
it includes addition and elimination criteria.42 In addition, regressors cannot be evaluated independently
because of their interaction with other regressors in the selected model structure.

More recently, Morelli36,43 and Grauer44 applied a multi-variate polynomial model obtained from an
orthogonal model structure selection to various aircraft. The latter model structure selection technique
transforms the full set of candidate regressors to the orthogonal domain in order to test the significance of
each parameter. By defining a predicted square error (PSE),44 selection of the orthogonal basis functions
can be done by minimization of the latter metric. Terms contributing less than a certain threshold value
can also be removed from the model structure.

The process of orthogonal basis functions model structure selection begins with the orthogonalization
process of the set of candidate regressors:

p0 = 1, pj = xj −
j−1
∑

k=0

γkjpk for j = 1, 2, . . . , n (36)

where xj is the j
th vector of independent variables and coefficient γkj is defined as:

γkj =
p⊺

kxj
p⊺

kpk
for k = 0, 1, . . . , j − 1 (37)

Orthogonal vectors p0,p1, . . . ,pn now form the columns of orthogonal regression matrix P. The parameter
estimate can now be obtained by the least squares estimator in Eq. (33). This can be done by subsequently
calculating the contribution to the total least-squares cost independently for each candidate regressor with:

J(âj) =

(

p⊺

jy
)2

p⊺

jpj
(38)
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a selection can be made based on the PSE, which is defined as:

PSE =
1

N
(y − ŷ)⊺ (y − ŷ) + σ2

max

n

N
(39)

The maximum model fit error variance can be obtained from:

σ2
max =

1

N − 1

N
∑

i=1

(yi − y)
2

(40)

In the context of efficiency, model structure selection by use of either orthogonal basis function or a
stepwise regression scheme allows the modeling of non-linearities in the horizontal and longitudinal state-
planes by including higher-order terms and cross-term interactions. It was chosen to generalize this scheme
to per-maneuver identification which can later be regressed versus the Mach number and altitude.

Collinearity amongst the regressors should be avoided at all costs when averaging the set of estimated
parameters over the (M − h) range. Correlation coefficients of over 0.9 should be avoided.35 However, in
aircraft problems correlation cannot always be avoided since, amongst others, control surface deflections are
closely related with their induced rotational velocities. Including highly correlated terms in the model will
induce relatively large variations of the estimated parameters, leading to difficulties in the generalization over
the Mach and altitude domain. For this reason, highly correlated terms should be removed from the final
model structure. Current model structure selection procedures do not account for high pairwise collinearity,
therefore manual analysis is required.

D. Model Parameter (M − h) fit

After obtaining the appropriate model structure selection and removing highly correlated terms, the esti-
mated parameters can be regressed with respect to the Mach number and altitude. By doing so, every iden-
tified parameter will be made a function of the Mach number and altitude. Because of the expected limited
non-linearities in the (M − h) state-plane, a linear regression function should provide adequate approxima-
tion power. Identification in subspaces of the Mach number and altitude reduces the model dependency by
removing the corresponding terms from Eq. (24) and Eq. (25). Alternatively, regression of the estimated
parameters versus the angle of attack or sideslip angle allows the estimated parameters to be described as
a function of the corresponding aerodynamic angle. However, because of the rather high excursion of the
aerodynamic angles, the latter variables cannot be assumed constant for the duration of the maneuver.

In order to allow regression of the Mach number and altitude versus the value or the corresponding
parameter, it was assumed that the Mach number and altitude are constant for the duration of the complete
dynamic maneuver. In order to obtain a smoothed relation of the model parameters with respect to the
Mach number and altitude, a robust least-squares fit routine was employed. By doing so, outliers in the
sets of estimated parameters can be eliminated. The resulting (M − h) plane fit will be used to describe the
parameters of the six dimensionless models in a look-up table.

V. Results

In this section the results of the flight path reconstruction, model structure selection and parameter
estimation procedure are presented. In addition, a comparison between parameter estimates by Koehler and
Hardover maneuvers is presented, followed by post identification smoothing of the locally identified models.

A. Flight Path Reconstruction

The results for the flight path reconstruction procedure comprises a total of more than 200 individually
reconstructed dynamic maneuvers, both longitudinally and laterally induced. For this reason, only a selection
of results is shown in this paper. For a typical 3-2-1-1 dynamic maneuver in elevator, the results are depicted
in Figure 5. In this figure, the state estimate by the UKF together with the bias estimate, innovation
sequences, filtered and reconstructed measurements and the control surface deflections during the maneuver
are shown. Innovation sequences are shown to confirm filter consistency.
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Figure 5. The state and bias estimate together with the innovation sequences, the reconstructed measurements
and control surface deflections for a typical δe induced longitudinal 3-2-1-1 dynamic maneuver obtained from
a flight path reconstruction procedure with the UKF.
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B. Aerodynamic Model Identification

The results from the model structure selection procedure and parameter estimation are presented in this
section together with a model validation by applying the identified least squares model to flight derived non-
dimensional forces and moments together with a comparison versus the currently implemented aerodynamic
model in the DASMAT simulation framework.

1. Model Structure Selection

By populating a pool of candidate regressors, up to and including degree 2 (e.g. α2) with first order cross-
interactions between different model parameters (e.g. αδe), the orthogonal least squares model structure
determination routine resulted in the model terms presented in Figure 6. As clearly indicated by the red
line, the threshold for including model terms was set at a percentage of 50. Note that model structure
selection for each of the six models was applied to a subset of the total number of data sets, selected on
basis of sufficient excitation of the corresponding state plane. In addition to selecting the model structure
with the lowest PSE, model terms in the final model contributing less than 1% in reduction of the root mean
square error were removed.

Candidate pools for the lateral models contain a larger set of candidate regressors because of their ex-
tended basis with respect to the longitudinal basis (see Eq. (24) and Eq. (25)). Note that the currently
selected candidate pool did not include terms related to the time rate of change of the angle of attack and
angle of sideslip. These terms were removed because of their high pair-wise correlation with rotational rates
around the body axis, an effect of multi-collinearity in the regression matrix. In effect, the estimated coeffi-
cients for the pitch rate and yaw rate can be considered to also include the effects of the time rate of change
of the angle of attack and sideslip angle. For the same reason, candidate regressors with degree 3 or higher
were neglected.
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Figure 6. Absolute number of model terms selected in the longitudinal and lateral models obtained from an
orthogonal least squares model structure selection procedure.
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2. Model Parameter Identification

The final model structure of the non-dimensional forces and moments in Xb, obtained from an orthogonal
least squares model selection scheme, consisted of a total of 5 terms, i.e. CX0

, CXα
, CXq

, CXδe
, CXα2 .

However, the term related to the squared angle of attack was removed from the model for its high pair-
wise correlation with the angle of attack term. Identified values for the parameters as tabulated in Table
3. Tabulated values represent the parameters in the total number of locally identified models. The mini-
mum, maximum and mean values for the estimated parameters and corresponding variance were included
as performance measure to indicate consistence of the estimates.

Model estimates for the CY model, presented in Table 4, do contain all linear terms from the earlier
proposed model structure. In addition, the squared angle of sideslip was indicated as final model regressor
from the model selection procedure. Identification of this parameter was successful because of the limited
correlation with the remaining model terms. However, from Table 4 it also becomes apparent that the
estimate of CY 2

β
lacks in accuracy, reflected by the its high variance.

In relation to the other longitudinal models, a deviation from the model terms obtained from model
structure selection procedure was made for the CZ (Table 5) and Cm (Table 7) models. In order to align the
model structures of the longitudinal models, same model terms were assumed as earlier determined for the
CX model. In general, the intercept term was assumed to be included in all models for its ability to act as
bin for any variance in the dependent variable that cannot be described by the selected set of independent
variables.

Selection of the model terms for the non-dimensional roll and yaw moment proved simple and straight-
forward: both models can sufficiently be parametrized by a model structure containing linear terms for the
lateral variables (see Table 6 and Table 8). On balance, the models for the 6 dimensionless forces and mo-
ments resulting from the model structure selection procedure and parameter estimation were parametrized
as follows:

CX = CX0
+ CXα

α+
✘

✘
✘✘CXα2α

2 + CXq
q̂ + CXδe

δe (41)

CY = CY0
+ CYβ

β + CYp
p̂+ CYr

r̂ + CYδa
δa + CYδr

δr + CYβ2β
2 (42)

CZ = CZ0
+ CZα

α+ CZq
q̂ + CZδe

δe (43)

Cl = Cl0 + Clββ + Clp p̂+ Clr r̂ + Clδa δa + Clδr δr (44)

Cm = Cm0
+ Cmα

α+ Cmq
q̂ + Cmδe

δe (45)

Cn = Cn0
+ Cnβ

β + Cnp
p̂+ Cnr

r̂ + Cnδa
δa + Cnδr

δr (46)

Table 3. Estimated parameters mean variance, minimum variance and maximum variance for the CX model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CX0
−0.051 −0.594 0.019 1.553× 10−5 4.134× 10−8 4.710× 10−4

CXα
0.862 −0.213 12.733 1.115× 10−3 2.059× 10−5 5.349× 10−2

CXq
−4.465 −100.213 17.117 8.591× 10−1 1.296× 10−2 8.320

CXδe
−0.172 −3.602 0.842 2.572× 10−3 3.688× 10−5 2.736× 10−2
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Table 4. Estimated parameters mean variance, minimum variance and maximum variance for the CY model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CY0
0.004 −0.056 0.059 8.638× 10−8 3.190× 10−10 8.079× 10−7

CYβ
−0.794 −2.258 −0.169 4.389× 10−4 1.362× 10−6 4.080× 10−3

CYp
−0.159 −4.163 2.583 1.403× 10−2 3.772× 10−5 1.152× 10−1

CYr
1.958 −1.813 13.569 2.199× 10−2 3.163× 10−5 1.496× 10−1

CYδa
−0.180 −4.305 1.397 2.083× 10−3 1.548× 10−6 2.282× 10−2

CYδr
0.839 −1.988 26.784 4.846× 10−2 1.152× 10−6 1.427

CYβ2 2.754 −14.888 48.476 1.028 2.795× 10−5 9.398

Table 5. Estimated parameters mean variance, minimum variance and maximum variance for the CZ model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CZ0
−0.213 −0.941 0.025 1.575× 10−4 1.075× 10−6 5.183× 10−3

CZα
−4.037 −8.231 2.868 8.074× 10−3 2.369× 10−4 4.290× 10−1

CZq
−57.766 −267.955 189.902 1.320× 101 2.363× 10−1 1.979× 102

CZδe
−0.836 −6.355 25.163 4.456× 10−2 7.952× 10−4 6.847× 10−1

Table 6. Estimated parameters mean variance, minimum variance and maximum variance for the Cl model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cl0 −0.002 −0.020 0.010 1.826× 10−8 1.182× 10−10 3.285× 10−7

Clβ −0.073 −0.143 −0.006 1.407× 10−6 9.575× 10−8 1.490× 10−5

Clp −0.494 −0.710 0.056 2.656× 10−5 1.727× 10−6 1.508× 10−4

Clr 0.376 0.024 0.785 6.498× 10−5 4.639× 10−7 4.298× 10−4

Clδa −0.178 −0.276 0.121 6.081× 10−6 1.585× 10−7 9.996× 10−5

Clδr 0.102 −1.309 2.314 6.865× 10−4 2.784× 10−8 1.619× 10−2

Table 7. Estimated parameters mean variance, minimum variance and maximum variance for the Cm model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cm0
0.021 −0.022 0.089 4.918× 10−7 1.252× 10−8 5.698× 10−6

Cmα
−0.488 −0.855 −0.253 2.509× 10−5 2.856× 10−6 1.904× 10−4

Cmq
−11.935 −22.066 −1.489 3.466× 10−2 2.968× 10−3 2.920× 10−1

Cmδe
−1.250 −1.508 −0.351 1.204× 10−4 9.907× 10−6 1.097× 10−3
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Table 8. Estimated parameters mean variance, minimum variance and maximum variance for the Cn model,
obtained from an orthogonal least squares model structure selection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cn0
0.000 −0.002 0.002 1.158× 10−8 2.084× 10−10 1.326× 10−7

Cnβ
0.079 −0.056 0.145 3.689× 10−6 1.548× 10−7 5.965× 10−5

Cnp
−0.142 −0.677 0.284 1.307× 10−4 5.361× 10−6 3.267× 10−3

Cnr
−0.295 −0.474 0.374 1.005× 10−4 3.055× 10−6 5.440× 10−4

Cnδa
−0.025 −0.155 0.073 4.720× 10−5 5.616× 10−7 1.049× 10−3

Cnδr
−0.065 −0.611 0.578 7.338× 10−4 1.783× 10−7 1.770× 10−2

3. Identification with Hardover Control Inputs

As already stated in Section C, a part of the experimental flight test data consists of the time traces of
coupled Hardover maneuvers. In order to assess the usefulness of these maneuvers in the framework of
aerodynamic model identification, a comparison between parameter estimates for all six non-dimensional
models obtained from Koehler (3-2-1-1) maneuvers and Hardover maneuvers is presented in Figure 7. The
estimates in this figure were obtained from averaging estimates from a set of Koehler and Hardover input
maneuvers at approximately the same flight conditions, where the error bars indicate 1σ standard deviation
of the averaged parameters.

In general it can be stated that parameter estimates for the longitudinal and lateral moments obtained
from a Hardover input are in agreement with estimates obtained from a Koehler input. Average values of
the parameter estimates obtained from both maneuvers only differ slightly.

In contrast to the moment model parameters, larger differences between the estimates obtained from
both maneuvers are observed. In particular for CZ , in Figure 7(c), where all of the estimates, except for
the bias term, differ in sign. For almost all of the parameters, estimates obtained from Koehler inputs show
smaller confidence intervals indicative of a higher accuracy.

C. Model Parameter (M − h) fit

After separate model parameter estimation for each of the 212 indicated test points, the obtained model
parameters were generalized as function of the Mach number and the altitude. The resulting robust least
square estimate for the (M − h)-plane fit of the Cm model is presented in Figure 8. Note that the Mach
number and altitude were assumed to be constant for the duration each maneuver such that the parameters
can be plotted versus the latter two variables. Plane fits for the parameters of the other five non-dimensional
models can be found in Appendix A. The plane fits are presented as curve fit as a function of the Mach
number and altitude at, respectively, the average altitude and average Mach number.

From Figure 8 it becomes evident that due to the rather large spread of the identified parameters of the
local models, indicated by the red cross symbol together with its confidence bounds, the prediction interval
of the obtained plane fit is also rather large. A cause for this large spread can be found by considering the
origin of the different measurements as most of the measurements originate from different flights, obtained
under different atmospheric conditions. Nevertheless, it is clear that a relationship between the estimated
parameters and the Mach number is present.

The same cannot be said for almost all of the estimated parameters with respect to the altitude (also see
Appendix A). Considering the relatively small slope of these estimates, a sufficient approximation can also be
given by assuming a constant parameter value. Also notice that the low information content, especially for
the lateral models, makes it hard to estimate dependency of the model parameters on the altitude which can
be seen from the limited number of locally identified models at different altitude ranges. Furthermore, the
linear trends of the longitudinal parameters show a clearer dependence on the Mach number in comparison
to the lateral model parameters. The convex hull, indicating the validity region of the models, of the (M,h)
plane together with the convex hull of some other parameters relating to the identified models can be found
in Appendix B.
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(b) Parameter estimates of the CY model terms at M =
0.35 to 0.40 and h = 5100 to 5200 m
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(d) Parameter estimates of the Cl model terms atM = 0.32
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(e) Parameter estimates of the Cm model terms at M =
0.20 to 0.25 and h = 5100 to 5200 m
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Figure 7. Comparison of the identified parameters for the six non-dimensional forces and moments by using
a 3-2-1-1 Koehler (K) input or Hardover (H) input on the control surfaces. The mean of the estimated
parameter, obtained from averaging a set of Koehler and Hardover maneuvers, is indicated by the x. The
error bars indicate the 1σ standard deviation of the averaged estimates.
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Figure 8. Estimated parameters of the pitch rate Cm model, obtained from a collection 106 of longitudinally
induced δe 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plot-
ted versus the Mach number M and altitude h together with the robust least squares fit and its corresponding
2σ confidence bounds on the predicted output.
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D. Model Validation

The identified models for all six non-dimensional forces and moments were applied to an independent vali-
dation data set consisting of 20% of the total data set. A comparison between the aircraft derived forces and
moments, the least squares model and the DASMAT model which is currently implemented in the simulation
framework is shown in Figure 9. In addition, fit statistics in terms of the coefficient of determination and
the relative root mean square error (RRMSE) are tabulated in Table 9.

The identified model for CX predicts the magnitude of the force more closely to the measured value than
the DASMAT model for all of the validation sets. Worst performance of the least-squares model is observed
during very large excitation of the CX force as can be seen from close-up one in Figure 9(a). The same
observation can be made for the CZ and Cm models, also indicated in the first close-up of Figure 9(c) and
Figure 9(e). In addition, the newly identified Cm model clearly performs better in terms of model bias.

Performance of the newly identified CY model and the DASMAT version is on par. However, the new
least-squares model performs slightly better in the presence of large excitations. The same can be said
about the Cl model. However, the new model performs better in predicting the bias of the output. On
average, the Cn model was increased significantly when considering the coefficient of determination in Table
9. This is mainly reflected by the increased ability to predict the yaw moment in the absence of large
excitation, especially because the current DASMAT model is well capable of predicting the magnitude of the
non-dimensional yaw moment in case of large excitation.

A time-domain comparison between the new least-squares model and DASMAT for a longitudinally
induced 3-2-1-1 maneuver is presented in Figure 10. The same can be found for a coupled Hardover maneuver
in Figure 11. Both figures indicate an increased fidelity of the predicted aircraft states by the new least-
squares model in comparison to the DASMAT model. Most significant is the better fit of the new model for
the velocity in the direction of the Xb axis and the Euler angles.

Table 9. Fit statistics for the least squares model and the existing DASMAT (D) model averaged over all
validation sets.

CX CY CZ Cl Cm Cn

R2 0.76 0.77 0.77 0.75 0.76 0.85

R2
D 0.60 0.55 0.64 0.25 0.00 0.50

RRMSE (%) 6.76 5.32 6.38 4.96 5.8 4.72

RRMSED (%) 8.79 7.34 7.97 8.65 12.65 8.50

VI. Discussion

In this paper a new high-fidelity aerodynamic model for the Cessna Citation II was identified using flight
test data. For the first time, an explicit model structure was formulated by employing an orthogonal least
squares model structure selection routine. Model identification was done by using the Two-Step Method.
New in this method is the use of the Unscented Kalman Filter for an improved accuracy of the state estimates.
After separate parameter estimation on more than 200 locally defined models, the resulting parameters were
smoothed by using a plane fit, such that the estimated parameters can be described as a function of the
Mach number and altitude. In addition, a comparison between the use of Koehler and Hardover control
inputs in the framework of aerodynamic model identification was presented.

The flight path reconstruction procedure was applied to a total of more than 200 individual dynamic
maneuvers. In general, the results obtained from the UKF in the framework of flight path reconstruction
are in good agreement with the presented raw data. As discussed in previous sections, the choice for the
UKF was made based on the ability of the UKF to cope with non-Gaussian noise in a better way than the
EKF by employing a set of sample points to represent the state mean and covariance. Standard bounds
for the state estimates show steady convergence, indicating high accuracy of the final estimate. Similarly,
the bias estimates achieve steady-state values together with converged confidence bounds. Consistency of
the filter estimates can be confirmed by the innovation sequences and their standard bounds. As observed,
most innovation sequences stay within the confidence bounds with the exception of the altitude. The latter
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Figure 9. The identified models for the six non-dimensional forces and moments (blue) applied to validation
data, consisting of 20% of the total data collection, in comparison with the currently implemented aerody-
namic model in the DASMAT simulation framework (green) and the flight derived non-dimensional forces and
moments (grey). For every model, three close-ups of interesting portions of the complete validation set are
presented below each subplot.
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Figure 10. Time domain response of the newly implemented aerodynamic model together with the currently
implemented aerodynamic model in the DASMAT simulation framework and the flight derived aircraft states
and control surface deflections for a longitudinally induced δe 3-2-1-1 maneuver.
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Figure 11. Time domain response of the newly implemented aerodynamic model together with the currently
implemented aerodynamic model in the DASMAT simulation framework and the flight derived aircraft states
and control surface deflections for a coupled δa, δe, δr Hardover maneuver.
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is caused by the rather high uncertainty of the altitude measurement.
The model terms obtained from the orthogonal least squares model structure selection procedure confirm

the earlier predicted non-linearities in the state-plane for longitudinal motion which are clearly more present
in the model for the non-dimensional Xb force in the form of a term relating to α2. Despite its clear presence
in the majority of all locally defined models, identification of such a parameter has been proven impossible
in terms of model parsimony. Due to collinearity of the squared regressor with its linear counterpart, which
results in a high pair-wise correlation (over 0.9 in terms of the correlation coefficient, see Eq. (35)), a
consistent identification of both parameters was impossible. This is a problem fully attributed to model
parameter estimation with least squares. From the perspective of the goodness of fit, this parameter should
be included as it marginally increased the fit statistic. However, from the perspective of parsimony, this
term should not be included because of its high variance, indicative of a low accuracy parameter estimate.
For the same reason, terms relating to the time rate of change of the angle of attack and the angle of sideslip
(α̇ and β̇) were not included in the model selection and parameter estimation procedures.

Similar observations can be made for the side force model CY . In contrast to the CZ and Cm models,
the CX , CY and, to a lesser extent, the Cl and Cn models all contain non-linear terms and cross-interactions
for some of the locally identified models. The latter observation confirms that significant non-linearities
are present for the earlier mentioned models. In this context, generalization by assuming a fixed model
structure for all locally defined models is not an appropriate measure in order to model small-scale dynamics
requiring a more refined model structure capable of capturing all higher order non-linear dynamics. However,
in the scope of this report and in the framework of aircraft simulation, the identification of a generalized
baseline aerodynamic model governs. For this reason, consistency of the model parameter estimates is more
important. In order to capture the higher order non-linearities more effectively, other modeling methods
such as model identification by multi-variate splines, might offer a solution.

The approach that was used in this paper provides an adequate engineering solution to aerodynamic
model identification from a series of flight test data. In addition, a form of continuity between the multiple
locally identified models was created by regressing the coefficients versus the Mach number and altitude.
It is important to realize that such an approach can only be used when the expected non-linearities in
the corresponding state-plane are limited. In addition, the variation in the Mach number and altitude per
identified local model should also be restricted in order to obtain valid results over the (M,h) range. Most of
the plane fits showed rather large prediction intervals and the slope of the trend w.r.t. the altitude indicated
that most of the parameters remain almost constant over altitude. However, drawing this conclusion might
be premature because of the absence of sufficient measurements at different altitudes for the lateral models.
These models can be improved by performing measurements at altitudes different than the ones presented
in this paper. Nevertheless, a clear dependence of the parameters on the Mach number was observed.

Hardover maneuvers are maneuvers that are not specifically designed nor performed for the purpose of
aerodynamic model identification. However, because of their large excitation of the aircraft’s dynamics these
maneuvers have potential to be used in the identification of a new model. Comparison of the estimated set
of parameters by Koehler and Hardover maneuvers has indicated that the latter maneuvers can be used in
an approach such as presented in this paper, i.e. a separate per maneuver identification followed by (M − h)
plane fit, because the average values of the Hardover maneuvers are close to the parameter estimates by
Koehler control inputs. Note however that the estimates obtained from the Hardover maneuvers for the
non-dimensional body forces show larger differences w.r.t. the estimates obtained from Koehler maneuvers
with, in some cases, even a difference in sign. Overall, estimates obtained from Hardover inputs show a much
larger uncertainty than their Koehler counterparts.

The main aim of this research project was to identify a new aerodynamic model for the Cessna Citation II
laboratory aircraft. At the same time, the applicability of the high-fidelity aerodynamic model implemented
in the existing simulation framework (Cessna Citation I) was investigated. Small differences between the
DASMAT model and the newly identified model were observed for the representation of the non-dimensional
body forces. The explained variance of these models was improved by at least 13%. More significant
improvements, in terms of the coefficient of determination, were made to the model representing the moments
around the body axes. These models were improved by an increase in the explained variance of at least
35%. Despite these clear improvements, it has also become evident that the available data is concentrated
around a limited number of altitudes. This becomes especially clear when considering the lateral models,
as data sets with sufficient excitation for aerodynamic model identification are focused around one altitude
range. In order to improve these models and increase the region of validity, data collection at altitudes
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other than the ones presented in this paper should be given priority in future work. In addition, trim tab
measurements should be performed during flight tests and parameters related to this measurement should
be investigation for identifiability in order to further increase the fidelity of the simulation model. The
simulation model presented in this paper will be used together with a stall and post-stall model, the result
from a parallel research project,3 in future research efforts into, e.g., pilot behavior during aerodynamic stall
and the development of new control algorithms.

VII. Conclusion

As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through
flight simulator-based stall recovery training. For this reason, the C&S division set up a task force for the
development of a new methodology for high-fidelity stall behavior and modeling. As part of this research
effort, the current simulation framework and baseline model are to be updated with new models for the
regular flight envelope and the stall and post-stall flight regimes for an increased fidelity and representation
of the Cessna Citation II laboratory aircraft.

In this paper, the methodology regarding the identification of an aerodynamic model for flight simulation
training from flight test data was developed for the normal post-stall flight envelope. By employing the Two-
Step Method (TSM), the Unscented Kalman Filter (UKF) was used in cooperation with linear parameter
estimation techniques. Results indicate that the state estimates and measurement reconstructions by the
UKF are in good agreement with the presented data.

This research effort results in a simple and parsimonious set of aerodynamic models describing the 6 non-
dimensional forces and moments. The model presented in this paper outperforms the current aerodynamic
model implemented in the DASMAT framework in terms of goodness of fit, in all 6 degrees of freedom, when
compared to the recorded forces and moments of the Cessna Citation II laboratory aircraft. The explained
variance of the non-dimensional forces was increased with at least 13%. More significant improvements were
made to the non-dimensional moments; an increase of the explained variance of at least 35% was achieved.

The work presented in this paper, together with the results from a parallel research project into the
identification of a stall and post-stall model, will be used in future research into, e.g., the behavior of pilots
during aerodynamic stall and the development of new control algorithms.
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Introduction

As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to
go through flight simulator-based stall recovery training (Federal Aviation Administration,
2013). This implies that all aircraft dynamics models driving flight simulators must be up-
dated to include accurate pre-stall, stall and post-stall dynamics. For this reason, the division
of Control and Simulation has recently set up a task force to develop a new methodology for
high-fidelity aircraft stall behavior modeling and simulation. This data is to be derived from
flight test data from our Cessna Citation II laboratory aircraft and tested in our SIMONA
simulator. At this moment, the C&S division uses a simulator model of the Cessna Citation
known as the Delft University Aircraft Simulation and Analysis Tool (DASMAT) model as
its baseline Citation aircraft model. This model does not include an accurate model for the
aircrafts stall behavior. As part of this stall modeling research, a new high-fidelity flight
simulation model of the Cessna Citation II laboratory aircraft will be developed, which will
replace the current DASMAT model as baseline model.

1-1 Flight Simulation

Since the early beginnings of aviation and the successful construction of the first fixed-wing
aircraft by the Wright brothers, the idea of learning to fly while remaining safely on the ground
existed. Especially in the early beginnings, while most aircraft did not show the expected
reliability, flight was a dangerous undertaking only reserved for true daredevils. The pilots
of the first powered aircraft were trained by a series of exercises on real aircraft (Baarspul,
1990). While gradually proceeding to higher powered aircraft and while gradually gaining
more control over the vehicle, one would ultimately become proficient in the art of flight. It
was not long before the first ground based training devices were introduced. In contrast to
the hydraulically driven full motion simulators these days, the first synthetic training devices
were driven manually by the muscle force of the instructors to generate the required roll,
pitch and yaw motion. After the beginning of the information age and with the availability
of more advanced and powerful computer systems, flight simulation really took off and the
modern simulator took form.
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Nowadays, flight simulation is one of the major means in the training of pilots. Subjective
fidelity, in other words, the sense of realism that is experienced by the subject, i.e. the pilot,
is essential in that matter (Baarspul, 1990). In general, the following main areas of flight
simulator applications can be identified (Baarspul, 1990; Allerton, 2010): (1) flight crew
training, (2) research on the human-machine interface, (3) aircraft and equipment design,
development, test and evaluation and (4) licensing, certification and accident investigation.

The replication of flight conditions in a simulator and the creation of subjective fidelity
requires the simulator to be able to accurately simulate certain components of the aircraft.
At the heart of every simulation are the equations of motion. These equations describe the
aircraft’s linear movement, rotations and orientation. The equations of motion are driven
by the forces and moments created by the aircraft’s aerodynamics, propulsion and inertia
characteristics. These three components are represented by, respectively, the aerodynamic
model, engine model and inertia characteristics of the aircraft which are determined by the
structural properties of the aircraft and the gravitation of the central body. The importance
of these models also stipulates the importance of aircraft model identification in the process
of designing high-fidelity flight simulations.

In general, the design of a simulation model can be divided into a couple of phases. Roughly,
these phases can be identified as: (1) simulation framework design, (2) identification and
integration of the aerodynamic model into the framework and (3) extension of the simulation
model by, e.g., an engine model and landing gear model. In the late 90s a similar flight
simulation model was developed by Delft University of Technology to provide a high-fidelity
representation of the Cessna Citation I (Van Der Linden, 1998). Since the upgrade of TU
Delft’s Cessna Citation I laboratory aircraft to the Citation II, the simulation model that was
setup by Van der Linden became outdated. Fortunately, the simulation framework is modular,
to a certain degree, and therefore allows for an easy upgrade of certain components such as
the aerodynamic model. The main objective of this research is to provide a high-fidelity
representation of the Citation II dynamics.

For this reason, the main contents of this report will be about the identification of a new
aerodynamic model which is valid over the whole flight envelope. From an academic point of
view, research into the aircraft dynamics is well-founded and therefore not interesting. New
challenges arise from the integration of a stall model into the identified regular flight envelope
aerodynamic model and the creation of a global, non-linear model.

1-2 Aircraft System Identification

The development of mathematical models for physical systems is of essential importance if we
want to analyse and improve the performance of these systems. Mostly, these mathematical
models are based on a limited number of observations. Experimental data is generally noisy
and thus presents a challenging problem. The development of mathematical systems from
input-output data is called system identification.

System identification, together with flight simulation and flight control, form the three gen-
eral problems in aerospace flight dynamics and control (Klein & Morelli, 2006). The set of
identification techniques available today can be used to characterize the aerospace vehicle’s
dynamics. The outcome of this identification process can be used for many ends, some of

M.A. van den Hoek
Design, Identification and Implementation of a High-Fidelity

Cessna Citation II Flight Simulation Model



1-2 Aircraft System Identification 35

them include: verification of theoretical prediction and the development of much more ac-
curate and comprehensive models for e.g. flight simulators which require extra accuracy or
expansion of the flight envelope. Many advanced modern day flight control and stability aug-
mentation techniques, such as fault-tolerant control (FTC) methods use system identification
to estimate the parameters of a mathematical model and update the on-board model during
flight. Hence, system identification can be considered as a very important in the branch of
aircraft control & simulation.

System identification basically consists of three parts: (1) state estimation, (2) model struc-
ture selection and (3) parameter estimation. In flight it is essential to know the current state
of the aircraft. State estimation is concerned with getting accurate estimates for the states.
However, in some cases direct measurement of some states is difficult or even impossible.
Reconstruction of these states from other sensor sources might provide a solution is such
cases, i.e. sensor fusion. State estimation might also provide a more accurate and less biased
estimate of the state vector and accompanying sensor biases.

Every mathematical models consists of a certain number of parameters. Parameter estimation
techniques assume a fixed (mathematical) model structure, the process now consists of finding
the unknown model parameters. This is done by estimators, functions of random variables
that produce an estimate of the parameter(s). Many different ways of organizing the search for
the best parameter exist. Difficulties that are encountered can include: evaluation of proper
model structure and candidate models, accuracy of the model, computational efficiency. The
first of these difficulties relates to the second general step of system identification: model
structure selection. A proper selection of the model structure leads to the definition of model
parameters, as used during the parameter estimation procedure.

Over the last decades, system identification has gained a lot of interest from industry and
many advanced methods have been developed, ranging from model identification with Kalman
filters (Klein & Schiess, 1977), maximum likelihood estimation (Klein, 1989) and stepwise
regression (Klein, Batterson, & Murphy, 1981). The latter three methods as mentioned
above have proven to be successful, however, these methods present the user with a complex
non-linear optimization problem potentially with many local optima. Delft University of
Technology made a major contribution to the collection of system identification methodology
by developing the Two-Step Method (TSM). This method effectively reduced the the system
identification problem into a non-linear state estimation problem and parameter estimation
problem (Mulder, Chu, Sridhar, Breeman, & Laban, 1999). The first step of TSM consists of a
flight path reconstruction by employing a Kalman filter. Since the introduction of the Kalman
filter in the late 60s by Kalman (1960), the application became widespread and many new
extensions were developed, e.g. (Julier & Uhlmann, 1997, 2004; Zhan & Wan, 2007; Armesto,
Chroust, Vincze, & Tornero, 2004).

In first instance, when thinking of model identification, one would think of a process that
is applied once. That is during the design of a mathematical model for any application.
However, more recently system identification has also become a major part of aircraft control
by utilizing recursive system identification methods such that the control system of the vehicle
is able to cope with changes in, for example, geometry (Lombaerts, Oort, Chu, Mulder, &
Joosten, 2010; Söderström, Ljung, & Gustavsson, 1978). The goal of system identification in
this scope is to identify an (aerodynamic) model that is able to predict the forces and moments
acting on the vehicle which can be used to define control laws. The application of system
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identification in recursive methods is not relevant to the research topic in this literature review
and can therefore be ignored in the remainder of this document. Nevertheless, the theoretical
constructs for both online and offline flight path reconstruction and parameter estimation are
similar.

In the remaining step, using the output of the flight path reconstruction, the parameters of a
model, whose structure is to be defined, are estimated. The latter procedure can be done by
using one of the many available parameter estimation methods. Many linear methods, such
as least-squares methods (Strejc, 1983), are available. However, these methods cannot always
be applied. In the case of large uncertainties in the measurement vector it might be better to
resort to methods which take the stochastic nature and accompanying probability density of
the measurement and uncertainty of the dynamics into account, such as maximum likelihood
methods (Lichota & Lasek, 2013; Klein, 1989).

In addition, the identification of a global aerodynamic model can be done by either (1)
partitioning the whole flight envelope into smaller subspaces and by organizing the local
models in look-up tables or by blending these subspaces together using, for example, spline
interpolation (Van Oort, Sonneveldt, Chu, & Mulder, 2010; Klein, 1989). Or by (2) the
more recently introduced global identification using multivariate splines (De Visser, Mulder,
& Chu, 2009).

1-3 Research aims and objectives

In this section the research aims and objectives for the work that is to be performed as part
of this thesis are presented. Additionally, the feasibility of this project within the given time
frame is discussed.

1-3-1 Project Aims

The aim of this graduation project is to provide an upgraded high-fidelity modular aircraft
simulation framework that can be used in future research to (1) investigate pilot behavior
over the whole flight envelope including the stall and post-stall regime, and (2) design new
advanced control algorithms. The development of the stall dynamics is part of another MSc
research project and out of the scope of this project. However, during the execution of
this project, the aim is provide an interface to fully integrate the post-stall dynamics from
the other research project into the simulation framework that will be setup. An existing
simulation framework for the Cessna Citation I aircraft was already designed in the late 90s
(DASMAT) (Van Der Linden, 1998). This project aims to use the existing framework and
upgrade or replace the individual components of the simulation program where necessary
while preserving the modularity of the current implementation.

1-3-2 Objectives

In order to design a high-fidelity simulation model of the Cessna Citation II a couple of
steps are required. As stipulated in Section 1, most research uses the so called Two-Step
Method (TSM). The same method will be used in this research, implying that a flight path
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reconstruction and parameter estimation procedure will be executed. At a later stage the
aerodynamic model must be integrated into the upgraded simulation framework together
with the stall and post-stall dynamics. In short, the objective and sub-objectives can be
stated as:

• Design a high-fidelity simulation model of the Cessna Citation II aircraft,
by validation of the existing aerodynamic model and identification of an
upgraded aerodynamic model from the provided experimental flight data,
which is valid over the normal, pre-stall flight envelope and integrate this
model into the (upgraded/extended) DASMAT framework.

1. Perform flight path reconstruction (FPR) using the provided experimental data of
the Cessna Citation II lab aircraft. For the FRP procedure, appropriate methods
should be selected for the data preparation and the filtering itself.

2. By selecting an appropriate model structure, the model parameters should be
estimated by using an appropriate model parameter estimation method and by
using the outcome of the flight path reconstruction procedure.

3. Upgrade the existing DASMAT simulation framework by upgrading the individual
components of the simulation framework such as the the equations of motion,
engine model, mass model (see Chapter 2).

4. Provide an interface for the extension of the baseline aerodynamic model with the
stall and post-stall aerodynamics to obtain an accurate aerodynamic model that
is able to simulate the stall and post-stall behavior.

5. By performing a validation of the DASMAT simulation model with Citation II
flight test data, the predictive capability of DASMAT w.r.t. the Citation II dy-
namics can be evaluated. Model components can be upgraded or replaced based
on the outcome of this procedure.

1-3-3 Motivation & Feasibility

Currently, the Control & Simulation department of Delft University of Technology uses DAS-
MAT as baseline simulation tool for the Cessna Citation I. The replacement of the Citation I
by the Citation II has rendered the DASMAT simulation model inaccurate for the prediction
of forces and moments, among others the suspected discrepancy between the predicted drag
and actual drag of the Citation II. In addition to the mismatch w.r.t. the laboratory aircraft’s
dynamics, the current model does not contain a stall and post-stall model nor the interface to
integrate such models into the simulation framework. The development of such stall models
is out of the scope of this thesis, however, an interface for the integration of these models
should be provided. For this reason, the current simulation framework is to be updated.

The motivation for the development of a high-fidelity Cessna Citation II simulation model is
given by the requirement to being able to accurately reproduce the aircraft’s dynamics over the
full flight envelope for future research into, for example, pilot behavior during stall maneuvers
and the design of advanced control algorithms. Up to this date, there is no (non-commercial)
high-fidelity simulation of the Cessna Citation II that is able to accurately reproduce post-
stall dynamics for the use in other research. Any stall model that is to be integrated into the
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updated framework will rely on a baseline model. A new aerodynamic model, representing
the Citation II’s dynamics is to be identified and validated by using flight test data. At the
same time, this new model will act as baseline model in the upgraded simulation framework.

Research into the modeling of the whole flight envelope and post-stall dynamics has been
a hot topic over the last few year, e.g. (Dias, 2015). With the availability of experimental
data from previously recorded flights, the data required for system identification was already
obtained. In addition, the existence of a simulation framework (DASMAT) should provide
feasibility to successfully perform the project in the given time-frame. This framework will
be discussed in more detail in Chapter 2.

Challenges that could affect the feasibility of this project concern the absence of flight test
data in certain parts of the flight envelope. Currently, recordings of the aerodynamic angles
are available within older data sets. However, large parts of the total data collection do
not include recordings of the aerodynamic angles. It should be investigated if this data is
usable for the purpose of aerodynamic model identification. In addition, recordings at only
a few discrete locations in the flight envelope are available. Data acquisition in parts of the
flight envelope with no previous recordings will aid in increasing the region of validity of
any identified model. At later stages during the project the possibility to collect new data
exists, however it is still unknown if there is enough budget to perform expensive and time
consuming experimental flights.
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Chapter 2

Simulation Framework - DASMAT

Currently, the baseline simulation framework that is being used in the Control & Simulation
(C&S) department of the faculty of Aerospace Engineering, Delft University of Technology
(DUT), is the Delft University Aircraft Simulation Model And Analysis Tool (DASMAT)
(Van Der Linden, 1998). As part of this thesis, a validation and upgrade of the existing
simulation framework will be performed. Mostly, this upgrade involves conversion of the old
Simulink model block structure to a more contemporary and clearer format. In this chapter
the current Simulation framework will be discussed together with a preliminary analysis of
the problems associated with this model structure.

2-1 Current Structure DASMAT

The DASMAT software package was introduced in 1996 as the baseline simulation model of
the C&S department of the faculty of Aerospace Engineering. While originally formulated
as a generic non-linear aircraft simulation model, extension with the aerodynamic model of
the Cessna Citation Ce500 and corresponding engine model allowed DASMAT to be used for
the analysis and design of new control algorithms. Despite originally being developed with
a Cessna Citation Ce500 aerodynamic model, DASMAT was intended to be extended with
a Cessna Citation II model (Van Der Linden, 1998). However, up to date this upgrade has
not been performed yet. The current Citation I model is the result of a flight test program
executed for the development of mathematical models describing the aerodynamic forces and
moments, engine performance characteristics, flight control systems and landing gear (Mulder
et al., 1987).

Currently, DASMAT roughly consists of 8 blocks, divided as follows: (1) Airdata, (2) Wind
model, (3) Aerodynamic Forces and Moments (AFM), (4) Engine Forces and Moments (EFM),
(5) Gravity, (6) Landing Gear, (7) Equations of Motion (EQM) and (8) Observation model.
An overview1 of the current structure of DASMAT can be found in Figure 2-1. In this figure,

1For a more thorough overview of the overall structure of the simulation models and its individual compo-
nents, the author suggests (Van Der Linden, 1998).
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the output of the model are denoted by y, where yatm and yad refer to outputs of the airdata
model containing information about the atmospheric conditions, ywind is the output of the
wind model containing the wind direction and velocities defined in the Earth-Centered Earth-
Fixed reference frame (ECEF) frame and yobs is the output vector of the observation model.
The state vector and its derivative are indicated by, respectively, x and ẋ Most notably is the
absence of a mass model, as currently DASMAT does not feature an accurate simulation of
the mass and inertia properties. Mass properties, denoted by m and I, are currently used as
constant input to the simulation model.

In addition to the lack of an accurate mass model, DASMAT suffers from the following
deficiencies:

1. Most importantly, there is a mismatch with the laboratory aircraft dynamics, i.e. Ci-
tation I versus Citation II.

2. The current model assumes constant mass and inertia properties.

3. Initial analysis has indicated problems with the lateral acceleration in coordinated turns
(see Section 2-2).

4. The model does not feature an accurate landing gear model and ground interaction
model.

5. Overall, the model structure is obscure and the structure of the individual components,
i.e. block-in-block, is outdated. Since its release in 1996, new functionality has been
added to Simulink, allowing for the design of clearer simulation model components.

6. Initial analysis has shown a mismatch of the aircraft engine model with respect to the
engine specification (see Section 2-3).

7. The drag model of the aerodynamic model incorporated into DASMAT is suspected to
not accurately resemble the Citation II drag well enough.

Despite these deficiencies, DASMAT provides an excellent base for any simulation model. The
general layout of the simulation framework is in agreement with standard conventions and
allows for modularity up to a certain degree. The latter property is an important requirement
that must be retained and possibly extended during the upgrade to a new framework.

In the following sections some of the deficiencies as listed above will be elaborated. In addition,
an overview of the current aerodynamic model will be presented in Section 2-4.

2-2 Gravitation and Accelerations

In order to assess discrepancies in the accelerometer readings, as outputted by the DASMAT
simulation model, an analysis of the accelerations is presented in this section. Currently
DASMAT contains three outputs giving the accelerometer read-off in the x, y and z body-
axis. The basic principle used in all accelerometers stems from the ability of the device to
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Figure 2-1: The current structure of the DASMAT simulation framework.

measure a force F required for preventing a proof mass from accelerating with respect to its
carrier. This can either be done mechanically or by means of a magnetic or electrostatic field.

According to classical Newtonian mechanics, the acceleration is given as the sum of the
acceleration of the proof mass and the gravitational force:

a =
F

m
+ g ≡ f + g (2-1)

in which f indicates the specific force. Note that in Eq. (2-1) g is the component of the
gravitational force. It now becomes evident that, in fact, accelerometers measure the specific
force or proper acceleration, i.e. the acceleration w.r.t. free-fall f (Stevens & Lewis, 2003):

sf = s (a− g) (2-2)

where s is some scaling factor which can be ignored for now.

Analysis of the current DASMAT model has indicated discrepancies in the output of the
accelerometer reading of the y-body axis, in other words, the specific force in y-body axis
shows errors. The following situations2 were identified:

1. When the aircraft is trimmed in a level turn, indicating non-wings-level constant-turn-
rate flight at a load factor larger than one, the accelerometer indicated a zero-g reading

2Both situations were identified at an altitude of 2000 meters with a true airspeed of 90 m/s and an aircraft
weight of 4500 kg.
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Figure 2-2: The time history of the specific force as output of the DASMAT simulation

in the y-body direction. The occurrence of this situation may be correct in case the
acceleration caused by the body forces approximately equals the lateral component of
the gravitational force. However, given the fact that the sideslip angle is not zero and
by considering force equilibrium conditions it becomes apparent that such a situation
cannot occur.

2. When steering the aircraft into a coordinated, zero-sideslip turn and while keeping the
sideslip at zero the specific force indicated by the accelerometer in the y-body axis
attains a non-zero value. By considering Eq. (2-2) it is expected for the accelerome-
ter to show a zero reading since the aerodynamic force and lateral component of the
gravitational force will cancel each other out. However, in reality anyb remains at an
offset.

A coordinated turn is defined as a zero lateral acceleration turn. In the case of a symmetric
aircraft this also implies zero sideslip angle. In the asymmetric case, the sideslip may not be
exactly zero because of asymmetric thrust and the effects of angular momentum of spinning
rotors (Stevens & Lewis, 2003). However, it can be verified that DASMAT simulates a
perfectly symmetrical aircraft such that the latter case can be ignored.

Knowing that the sideslip angle goes to zero, it is possible to write Eq. (2-1) by writing ay in
components that contribute to the total acceleration. By assuming that the contribution of
the aileron deflection to the accelerometer measurement in yb is approximately zero and that
the contribution of β goes to zero, the following equation is obtained:

fy =
✟

✟

✟

✟✟CYββ

m
qS +

✟

✟

✟

✟

✟CYδa δa

m
qS +

CYδr δr

m
qS +

CYrr

m
qS − g sinφ (2-3)

By plotting the total specific force in Figure 2-2a and the individual components of the body
acceleration in the Y -axis and the lateral component of the gravitational force, given by the
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terms from Eq. (2-3), in Figure 2-2b it becomes evident that the total specific force is not
zero while maintaining a zero-sideslip coordinated-turn. In general, it can be stated that
either the magnitude of the contribution of the rudder deflection to the y-body acceleration
remains too small or the magnitude of the contribution of the yaw rate remains too large.
Hence, the error causing the non-zero body acceleration is caused by a discrepancy in the
model parameters CYδr and CYr .

2-3 Engine Model

The original DASMAT simulation model features an aircraft specific engine model in com-
bination with a generic engine model extending the aircraft specific engine model with an
atmospheric model (Van Der Linden, 1998). The aircraft at the heart of this report, the
Cessna Citation II, is equipped with two small JT-15D turbofan engines built by the Pratt
& Whitney corporation.

The engine state is determined by the aircraft specific engine model and usually contains the
rotational rates of the fans and gas turbine. Inputs to the engine model are given by the full
aircraft state vector x and the power lever setting (angle).

After initialization of the full aircraft model a trim procedure is required. In DASMAT this
routine is performed by trim_citation.m and receives as input the desired aircraft’s altitude,
true airspeed or Mach number, desired flight path angle and other trim defining constraints
such as the initial mass and trim tab deflections. By using a minimization heuristic which
minimizes the value of the trim cost function, the final trim is obtained. During this procedure
a separate engine trim is performed giving, as output, the engine state, thrust setting and
thrust limit.

By defining a range of airspeeds and performing the exact same routine at different altitude
settings, the trim procedure was repeated with a step size of 0.5 Mach. Initially, it was
investigated if the trim procedure would choose an engine trim point below the maximum
available thrust at the current altitude. The Matlab function was designed in such a way
that any thrust demand above the maximum available thrust would result in a NaN return
indicating that the demanded setting is not available. Figure 2-3 shows the required thrust
Treq, following from the general aircraft trim, and the thrust limit as returned from the engine
trim routine Tlim. In the same figure, the chosen engine trim point, i.e. the highest available
thrust setting at the specific altitude, is indicated by the ’O’ marker. Note that due to the
limited resolution, for most entries this point lies well before the crossing point of the Treq
and Tlim lines. The indication as given by Figure 2-3 shows that the engine trim procedure
chooses the correct values of the thrust trim setting in terms of not returning values beyond
the engine’s limits.

Secondly, the thrust limit as returned by the engine trim procedure was compared with the
theoretically available thrust from the engine manufacturer’s specification (Pratt & Whitney
Canada Incorporated, 1996). A comparison between the latter two indicated relatively large
discrepancies. By evaluating Figure 2-4, the difference between the engine specification limit,
indicated by Tth, and the thrust limit from the engine model, indicated by Tlim, becomes
apparent. At all altitudes, except FL330, the maximum thrust produced by the engine model
lies well below the thrust limit as indicated by the engine specification. Note that specifically
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FL330 was included because problems were indicated at this flight level. Figure 2-4 indicates
that the actual available thrust exceeds the specified limit.

The latter conclusion is indicative of shortcomings with the internal engine model structure.
The identification of a new engine and propulsion model lies beyond the scope of this re-
search. In practice however, it should be relatively straightforward to quickly implement an
improved version of the engine model by using the data provided in (Pratt & Whitney Canada
Incorporated, 1996).

2-4 General Aerodynamic Model

Currently, the aerodynamic model incorporated into the DASMAT simulation framework is
a high-fidelity representation of the Cessna Citation I dynamics. A complete overview of this
aerodynamic model and its parameters is given in Table 2-1 and continued in Table 2-2. It
should be noted that the set of parameters is given in the wind axis reference frame. Hence,
the general formulation of the aerodynamic model can be expressed as follows:

FMae =
[

CD(xp) CY (xp) CL(xp) Cl(xp) Cm(xp) Cn(xp)
]

(2-4)

where xp is a predefined state vector combining the individual elements that are required as
input to the aerodynamic model. In DASMAT, this state vector required for the calculation
of the individual parameters is defined as:

xp =[p q r α β hE hcg δe δa δr

δte δta δtr δflap gear xcg M Veas] ∈ R
18

(2-5)

where hcg indicates the altitude of the center of gravity above the local surface, this is also
referred to as the radio altitude. Furthermore, the state vector also contains more conventional
variables such as the vector of rotational rates, aerodynamic angles, pressure altitude and
Mach number. It is important to realize that the state vector required for the calculation of
the parameters, i.e. interpolation from a set of look-up tables, differs from the general state
vector, which is denoted by:

x =
[

p q r VTAS α β hE xE yE
]

(2-6)

The drag model incorporates a total of 9 aerodynamic derivatives, each of these parameters
is a function of the indicated variables in the Dependency column. The Multiplier column
in Table 2-1 indicates the variable to multiply the parameter in order to obtain the non-
dimensional force or moment contribution. In addition, sometimes the parameter receives
a correction, for e.g. the ground effect, in such cases the name or value of these additional
multipliers are shown in the same column. In general, for the non-dimensional forces, KBASD
is a multiplier factor to account for the presence of the ground effect below a certain threshold
altitude in the intercept term of the model. KGEHDR applies the same correction to the flap
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effectiveness at near ground altitudes. KUUT is a correction factor to incorporate the effect
of a gear extension.

These correction factors can also be used to correct other parameters, as indicated in Table 2-1.
The model parameters for the non-dimensional pitching moment, Cm as indicated in Table 2-
2, have three more correction factors in addition to the earlier presented ones. AELPHA is a
correction factor to the elevator effectiveness to incorporate for mixed angle of attack and flap
effects. KEMEAS and KQXM are correction factors for, respectively, the equivalent airspeed
and changes in CG position.

From Table 2-1 and Table 2-2 it also becomes apparent that the current model structure
has been referred to as obscure and obsolete. In addition to multiple parameters that can
effectively be organized in single look-up tables, the aerodynamic model also features a series
of corrections. The use of the current model for the analysis of control algorithms is possible,
however, when considering the internal mechanics of the model, overview is quickly lost. In
addition, extensions to the current model structure are harder to incorporate.

2-5 DASMAT Upgrade

As part of this thesis work, a feasibility study was performed concerning the upgrade possibil-
ities of the DASMAT simulation framework. Despite the possibilities that come with model
development from scratch, such as a complete overhaul of the model’s internal mechanics,
trim procedure etc., this approach will also consume a large amount of time. In addition,
such an approach should also be questioned because it might not be necessary to completely
overhaul the given model. Given the limited time frame, upgrades of individual components
of the existing simulation framework seems like a more plausible option. Despite its obscurity
at some points, the overall structure of the model agrees with the general aerospace conven-
tions. In addition, the current structure allows for modularity, enabling the future integration
of additional components such as the post-stall aerodynamic model.

In order to facilitate the upgrade of the individual simulation framework components, a
classification was made based on the amount of work and importance of each block. An
overview of this classification is presented in Figure 2-5. Red indicates a high priority upgrade
and green a lower priority upgrade. Blue is the classification for a normal priority upgrade.

As mentioned before, DASMAT currently features a Cessna Citation I aerodynamic model.
In order to math the laboratory aircraft’s dynamics, an upgrade will be made to the existing
aerodynamic model using system identification techniques. The remain of this report will
elaborate on that subject. This upgrade must be considered as the most comprehensive part
of the upgrade process. For this reason, the AFM block is shown in red, indicating a high
priority upgrade.

Deficiencies with the EFM block were found in the analysis presented in the previous section.
However, the engine block forms it own set of subsystems and corresponding engine model.
A complete overhaul of this subsystem is therefore excluded from this thesis. In addition to
the upgrade of the general structure of some blocks, the same can be done for the engine
block allowing easier future upgrades of its subsystems. At the same time, if some spare
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time is available, any improvements to the engine block would be welcome. The other blocks
that have received the normal priority upgrade label are the airdata, gravity, observation
model and EQM blocks. In most cases, these blocks will only receive an upgrade to the
new embedded Matlab function block format. Re-routing of the wind data streams might
be a possibility when changing the aerodynamic model incorporated in DASMAT, since the
current AFM block requires inputs from the wind and turbulence models in the calculation
of gust derivatives.

In addition to the changes presented above, a readily-available mass model based on splines
(De Visser et al., 2009) will be integrated in the simulation framework. This upgrade depre-
cates the mass and inertia input port of the current model. The addition of an output port
enables the ouput of mass properties. The ouput of the mass model should also be redirected
to the AFM, EFM, Gravity and Landing gear blocks, since these block require mass proper-
ties for the calculation of forces and moments. The latter changes have also been depicted in
Figure 2-5.

The low-priority upgrade label, indicated in green, is given to the Wind and Landing Gear
blocks. The upgrade of the first block can be done parallel to any other upgrade process due
to its simplicity while the landing gear forms its own set of systems and subsystems and can
therefore be considered as out of the scope.

2-6 Conclusion

In this chapter an overview of the DASMAT simulation framework was presented. This frame-
work is currently being used at the C&S department of the faculty of Aerospace Engineering
as the baseline simulation model. This model is governed by a set of model parameters which
closely resemble the Cessna Citation I dynamics. Since the upgrade of the laboratory aircraft,
now a Cessna Citation II, there is a mismatch between the laboratory aircraft’s dynamics and
the model incorporated in DASMAT. For this reason an upgrade of the existing simulation
framework is required.

In order to facilitate the upgrade of the aerodynamic model and to make the simulation
framework future-proof, an overall upgrade of the framework is desired. As part of this
thesis, a feasibility study was performed into the possibilities for this upgrade. In addition,
early analysis has indicated problems with several components of the current framework.
Where the aerodynamic force and moments block requires a complete overhaul and newly
identified model, the engine forces and moments form its own set of systems and subsystems.
Any upgrades to the latter set of routines are out of the scope of this report, however,
they do require attention in future upgrades. Most importantly, as part of this thesis, all
simulation subsystems are planned to be converted to the new embedded Matlab function
block format, allowing for simple upgrades and greatly enhancing the general overview of the
model. Currently, DASMAT forms a set of complex systems and subsystems, in particular
the structure of the aerodynamic model is obscure and outdated.

Optionally, the state representation of the model will be changed as it is currently represented
by the true airspeed and the aerodynamic angles. The upgrade of the landing gear model
itself is considered out of the scope of this thesis, however, if any improved model is available,
integration of such a block will be included.
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Figure 2-3: The required thrust Treq and thrust limits Tlim obtained from the aircraft and engine
trim routine for different altitudes. The ’O’ marker indicates the actual thrust setting.
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Figure 2-4: The thrust limits obtained from the engine trim routine Tlim versus the theoretical
thrust limits as indicated in the engine specification manual Tth
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Estimator Parameter DASMAT ID Dependency Multiplier Comments

CD CDα,M CDAM α, M - Base drag coefficient
CDα,δflap

CDAF α, δflap KBASD Base drag coefficient

CDδe
CDEAF α, δflap δe Elevator effectiveness

CDα,δa
CDWAW α, δa - Constant

CDβ,δflap
CDBBF β, δflap - Constant

CDq CDQAF α, δflap
qc
V

CD
r2

CDRUAF α, δflap
rb
2V

2

CDgear CDUAF α, δflap [0, 1] (KUUT) gear Gear parameter
CDground

CDGAF α, δflap hradio (KGEHDR) Ground effect

CY CYβα,δflap

CYBAF α, δflap β

CYβα,β
CYBAB α, β β

CYδa CYWAF α, δflap δa Aileron effectiveness
CYδr CYRUAF α, δflap δr

LSFACT δr δr
CYr CYRAF α, δflap

rb
2V

CYgear CYBUAF α, δflap [0, 1] KUUT gear Gear parameter

CL CLα,M
CLAM α, M - Base lift coefficient

CLα,δflap
CLAF α, δflap - Base lift coefficient

CLδeα,M
CLEAM α, M δe

CLδeα,δflap

CLEAF α, δflap δe

CLqα,δflap

CLQAF α, δflap
qc
V

KQXL xcg
qc
V

CLgear CLUAF α, δflap [0, 1] (KUUT) Gear parameter

CLqgear
CLQUAF α, δflap

qc
V · [0, 1] (KUUT) Gear parameter, pitch

CLground
CLGAF α, δflap hradio Ground effect

CLGEAF α, δflap hradio Ground effect

Cl Clβα,δflap

CIBAF α, δflap β

ClβM,he
CIBMH M , he β

Clβα,β
CIBAB α, β, δflap β

Clδa CIWAF α, δflap δa
Clδrα,δflap

CIRUAF α, δflap δr

ClδrM,he
CIRUMH M , he δr

Cltrim CIWTAM α, M δta Aileron trim tab

Clpα,δflap

CIPAF α, δflap
pb
2V

ClpM,he
CIPMH M , he

pb
2V

Clr CIRAF α, δflap
rb
2V

Clground
LROLL δflap β · he Ground effect

Table 2-1: DASMAT aerodynamic model parameters
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Estimator Parameter DASMAT ID Dependency Multiplier Comments

Cm Cmα,M
CMAM α, M - Base moment

Cmα CMAF α, δflap - Base moment
Cmδeα,M

CMEAM α, M δe · EALPHA ·KEMEAS

Cmδeα,δflap

CMEAF α, δflap δe · EALPHA ·KEMEAS

Cmδr,β
CMRBR β, δr - Constant

Cmδte
CMETAM α, M δte

Cmβ,δflap
CMBBF β, δflap - Constant

Cmq CMQAF α, δflap
qc
V ·KQXM CG correction

Cmqα,δflap
CMQUAF α, δflap

qc
V ·KUUT Gear parameter

Cmδeα,δflap

CMEUAF α, δflap δe ·KUUT Gear parameter

Cmground
CMGAF α, δflap hcg Ground effect

Cmground
VDOMMYR38 δflap α · hcg Ground effect

Cmground
LFCMEGAF α δe · hcg Ground effect

Cmground
KGEMEAS VEAS δe · hcg Ground effect

Cn Cnβα,δflap

CNBAF α, δflap β

CnβM,he
CNBMH M , he β

Cnβα,β
CNBAB α, β β

Cnδaα,δflap

CNWAF α, δflap δa

CnδaM,he
CNWMH M , he δa

Cnδr
CNRUAF α, δflap δr

Cnδtr
CNRTAM α, M δtr

Cnpα,δflap
CNPAF α, δflap

pb
2V

CnpM,he
CNPMH M , he

pb
2V

Cnr CNRAF α, δflap
rb
2V

Table 2-2: DASMAT aerodynamic model parameters - Continued
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Figure 2-5: The structure of the current simulation framework DASMAT together with the
upgrade classification indicates per block, where red indicated a high priority upgrade, blue a
normal priority upgrade and green a low priority upgrade.
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Chapter 3

Equations of Motion

3-1 Introduction

The equations of motion form the heart of any simulation. These equations, describing the
vehicle’s motion with respect to any given reference frame, are subdivided into three smaller
sets of equations describing, respectively, (1) the translational motion, (2) the rotational
motion and (3) the attitude of the local frame with respect to the central frame. These frames
can be oriented in any given direction. However, for uniformity and simplicity it is common
to only use conventional aerospace reference frames. An overview of these frames is presented
in Appendix III, this provides a simplified derivation of the equations of translational motion,
rotational motion and the attitude equations.

3-2 Equations of Translational Motion

Starting with Newton’s laws of motion, the motion of a mass-varying non-rigid body can be
described as (Mulder, Van Staveren, & Van der Vaart, 2000):

FIext = m
d2rIcm
dt2

+ 2ΩI
bI ×

∫

m

δr̃

δt
dm+

∫

m

δ2r̃

δt2
dm (3-1)

where δ
δt (·) denotes a derivative of a vector quantity taken in the local frame, in contrast to

d
dt (·), which expresses the derivative of a vector quantity in inertial space FI . tilder is the
location of the mass element w.r.t. the center of mass and rIcm the location of the center of
mass with respect to the inertial frame. Note that vector quantities are indicated by bold
typesetting. The individual components of Eq. (3-1) can be identified as the total of the
external forces, the acceleration of the center of mass, the contribution of the Coriolis force
due to time variations in the mass distribution and the relative force.
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Eq. (3-1) gives the external force produced by the individual components of the force equation
with respect to inertial space. By considering a vehicle with a fixed mass, moving with velocity
VC with respect to the ECEF, denoted by FC , and at a distance rCcm from the origin of the
reference frame, i.e. the center of the rotating body, the translational motion of a point mass
with respect to rotating frame FC is given by:

FCext = m
d2rCcm
dt2

+ 2mΩC
CI ×

drCcm
dt

+mΩC
CI ×

(

ΩC
CI × rCcm

)

(3-2)

The position of the aircraft with respect to FC can easily be obtained by using the following
kinematic relationship:

drCcm
dt

= VC (3-3)

After reformulation and expressing the velocity vector, position vector, rotation vector and
external forces with respect to the navigation frame or North-East-Down reference frame
(NED) FE , the dynamic equations of translation motion are given by:

V̇N =
FEx
m

− 2ΩtVE sin δ − Ω2
tR sin δ cos δ − V 2

E tan δ − VNVD
R

V̇E =
FEy
m

+ 2Ωt (VD cos δ + VN sin δ) +
VE
R

(VN tan δ + VD)

V̇D =
FEz
m

+ 2ΩtVE cos δ − Ω2
tR cos2 δ − V 2

E + V 2
N

R

(3-4)

where Ωt denotes the angular velocity of the central body with respect to inertial space. In
this case the central body referred to is Earth which rotates with approximately 7.29× 10−5

radians per second. The location of the aircraft center of gravity relative to earth is expressed
in spherical polar coordinates with δ denoting the latitude.

By expressing the equations of translational motion in the body frame and using the identity
in Eq. (3-5) to express the time-rate of change of the velocity in the body frame

dVG

dt

∣

∣

∣

∣

b

E

=
dVG

dt

∣

∣

∣

∣

b

b

+Ωb
bE ×Vb (3-5)

where Vb is defined as (u, v, w)T , i.e. the aerodynamic velocity components expressed in
the body frame. Expansion and simplification of Eq. (3-5) finally results in the the set of
equations relation the force components in the body frame to the rotational rates and angular
orientation of the body. This set of equations is given by:

X = m (u̇+ qw − rv) +mg sin θ

Y = m (v̇ + ru− pw)−mg cos θ sinφ

Z = m (ẇ + pv − qu)−mg cos θ cosφ

(3-6)
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3-3 Equations of Rotational Motion

The general formulation of the equations of rotational motion, for a vehicle which is moving
w.r.t. to an inertial frame, is given by (Mulder et al., 2000):

Mb
cm =

∫

m

r̃×
(

dΩb
bI

dt
× r̃

)

dm+

∫

m

r̃×
[

Ωb
bI ×

(

Ωb
bI × r̃

)]

dm+

2

∫

m

r̃×
(

Ωb
bI ×

δr̃

δt

)

dm+

∫

m

r̃× δ2r̃

δt2
dm

(3-7)

Knowing that the angular momentum for a rigid body around the center of mass can also be
written as:

Bcm = I ·Ω (3-8)

the time-derivative of Eq. (3-8) then gives the rotational motion vector

Mcm =
δBcm

δt
+Ω×Bcm (3-9)

Expansion of the first term on the right-hand side of Eq. (3-9) results in

δBcm

δt
=
δI

δt
·Ω+ I · δΩ

δt
= I · δΩ

δt
(3-10)

and by substituting Eq. (3-10) into Eq. (3-9) and reapplying the equation for angular mo-
mentum in Eq. (3-8), finally, the equation of rotational motion for a mass-varying rigid body
is obtained and is written as:

Mcm = I · Ω̇+Ω× I ·Ω (3-11)

According to the Principle of Solidification, Eq. (3-11) can also be used to describe the
rotational motion of a non-rigid body. By re-writing the general formulation in Eq. (3-11)
and expressing the components in the body-axis, the full set of non-linear equations is obtained
as:

Ω̇b
bI = I−1

(

Mb
cm −Ωb

bI × I ·Ωb
bI

)

(3-12)

With the Euler equations, the external moments are related to the inertial angular acceler-
ations. By expressing the variables in Eq. (3-12) as vectors in the body frame Fb and by
assuming that the aircraft has a plane of symmetry aligned with the Xb-Zb plane such that
these cross-products of inertia drop, the Euler equations simplify to:





ṗ
q̇
ṙ



 =





Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz





−1








L
M
N



−





p
q
r



×





Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz









p
q
r











(3-13)
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The set of first-order differential equation rotational dynamics for an aircraft with a geomet-
rical plane of symmetry are given by solving Eq. (3-13) for the vector of total aerodynamic
moments. This operation results in the following simplification of the equations of rotational
motion which will be used throughout the remainder of this report:

L = Ixṗ− (Iy − Iz) qr − Ixz (ṙ + pq)

M = Iy q̇ − (Iz − Ix) rp− Izx
(

r2 − p2
)

N = Iz ṙ − (Ix − Iy) pq − Izx (ṗ− qr)

(3-14)

Note that from this point the notation of the products of inertia with a single subscript for
non-cross products has been adopted for simplicity.

3-4 Attitude Equations

The Euler angles, i.e. roll angle φ, pitch angle θ and yaw angle ψ, are used to define the
orientation of the body frame Fb with respect to the navigation frame FE . The three Euler
angles arise from three successive rotations of the NED frame to the body frame. By using
this procedure on the angular velocity vector, the angular velocity vector of the body frame
w.r.t. the NED frame can be found by subtracting the rotation of NED frame with respect
to the inertial frame from the rotation of the body frame with respect to the inertial frame.
Without further elaboration, the non-linear kinematic relations for an aircraft navigating on
a spherical, rotating earth are given by (Mulder et al., 1999):

φ̇ = p+ q sinφ tan θ + r cosφ tan θ −
(

VE
R

+Ωt cos δ

)

cosψ

cos θ
+
VN sinψ

R cos θ

θ̇ = q cosφ− r sinφ+

(

VE
R

+Ωt cos δ

)

sinψ +
VN cosψ

R

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
+

(

VE
R

+Ωt cos δ

)

tan θ cosψ +
VN tan θ sinψ

R
+

VE tan δ

R
+Ωt sin δ

(3-15)

A full derivation of these equations is given in (Mulder et al., 2000). By neglecting the
rotation of the earth and using a flat earth approximation, the full set of non-linear equations
of rotational motion reduces to the well-known set of first-order differential equations for the
Euler angles, i.e. φ, θ and ψ. By assuming two planes of symmetry, these equations are given
by:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ =
sinφ

cos θ
+ r

cosφ

cos θ

(3-16)
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These equations are also referred to as the attitude equations. Despite the radical assump-
tions, such as flat and non-rotating earth, these simplified equations can still be used for most
applications of flight simulation (Baarspul, 1990).

3-5 Non-linear Kinematic Model

Kinematic models of aircraft motion consist of a set of first order ordinary differential equa-
tions in which not the physical inputs (e.g. control surface deflections, engine thrust) but
rather measured variables such as body accelerations and body rotation rates appear as forc-
ing functions (Mulder, Sridhar, & Breeman, 1994). The body accelerations in this context
are the accelerations measured by accelerometers with respect to the body’s center of gravity,
i.e. Ax, Ay and Az which denote the components of the acceleration in the x, y and z body
axis. Using Newton’s second law of motion, the body accelerations can be related to the body
forces by:

X = mAx

Y = mAy

Z = mAz

(3-17)

It is important to realize that although the physical inputs are not distinctively shown in
Eq. (3-17), these quantities do serve as input to the set of kinematic equations since they
are included as independent variables in the aerodynamic model, relating the control surface
inputs and engine thrust to the produced aerodynamic forces and moments. Substitution of
the formulation of the body forces in Eq. (3-17) into the derived equations relating the body
forces to the rotational rates and orientation of the body in Eq. (3-6) results in the following
formulation that will be used throughout the flight-path reconstruction procedure:

u̇ = Ax − g sin θ − qw + rv

v̇ = Ay + g cos θ sinφ− ru+ pw

ẇ = Az + g cos θ cosφ− pv + qu

(3-18)

If the body accelerations and angular rates are known from, e.g., measurements from an
Inertial Measurement Unit (IMU), the kinematic equation can be solved numerically resulting
in the time histories of the translational velocity components and the body orientation angles.

The velocity of the aircraft’s center of gravity w.r.t. the navigation frame can be found by
rotating the body velocities using rotation matrix TEb which is defined as:

TEb =





cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ cosψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ



 (3-19)

The velocity components in the navigation frame are then found by adding the atmospheric
wind components expressed along the axes of FE :
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



ẋE
ẏE
żE



 = TEb





u
v
w



+





WxE

WyE

WzE



 (3-20)

Note that the position of the center of gravity relative to the local earth frame and the body
velocities can be found by, respectively, numerical integration of Eq. (3-18) and Eq. (3-20).

M.A. van den Hoek
Design, Identification and Implementation of a High-Fidelity

Cessna Citation II Flight Simulation Model



C&S

STALL MODELING

CITATION

Chapter 4

Flight Path Reconstruction

In this chapter the methodology for the reconstruction of a flight path from a recorded series of
measurements is presented. This is the first step of the TSM. Most often, these measurements
originate from different sources and therefore, inherently, possess different noise characteris-
tics. Kalman filters have been used extensively, in the past and present, as navigation filter.
These can effectively combine information from different sources, i.e. sensor fusion, and make
an accurate state estimation by comparing the actual and estimated measurement. Over the
years many different types of Kalman filters have been presented. In this chapter, an overview
of the most important types of Kalman filters, applicable to off-line flight path reconstruction
has been presented together with a comparison of the different types obtained from applica-
tion to the DASMAT simulation framework. In addition to the analysis of different Kalman
filter types, state reconstructability will be discussed in detail together with an application
of different smoother types to the filtered simulation data.

4-1 Literature Review

Flight path reconstruction is the process of reconstructing the original sequence of states
as a function of time given a series of measurements. These measurements can originate
from different sources: (1) computational fluid dynamics (CFD) simulations, (2) wind tunnel
measurements and (3) experimental flight test data. These methods do not necessarily have to
be used in isolation, a combination of methods is also possible. In industry it is usual practice
to make an initial model using CFD and wind tunnel data. This model can then be refined by
using data originating from experimental flights. However, in practice, the first two methods
have major shortcomings. While wind tunnel experiments are very expensive to perform and
do not have to ability to reach certain states, CFD does often not have enough approximation
power in non-linear regions of the flight envelope. To this extent, model identification by
using flight test data has been used predominantly. Due to process and measurement noise
inherently associated with flight test data, the use of the Kalman filter was introduced for
use in the flight path reconstruction problem.
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Since the introduction of the Kalman filter in the late 60s by Kalman (1960), the application
became widespread and many new extensions were developed, e.g. (Julier & Uhlmann, 1997,
2004; Zhan &Wan, 2007; Armesto et al., 2004; Sarkka, 2008). In the original paper by Kalman
(1960) a new look at optimal estimation and models for random processes was presented. In
this paper Kalman stated that a Gaussian signal will not lose its properties by propagation
through a linear system. By inverse logic, it would then also become evident that a Gaussian
observation would be caused by propagation of the Gaussian signal from the source through
a linear system. Hence, the system itself would not contribute to the random nature of
the signal. Furthermore, Kalman derived its optimal filtering strategy by assuming that
the system dynamics are time-invariant and stationary. The assumptions mentioned before
allowed for a simplified solutions to the optimal filtering problem, however, at the same
time these assumptions also highlight the major downside of this approach. Most systems
in real life have a non-linear nature, especially aircraft dynamics, which can be classified as
moderately to highly non-linear. Under these circumstances, the filter loses its optimality.
Therefore this type of filter will not be applicable to flight path reconstruction with non-linear
state transition and observation functions.

For this exact application, an extension to the Kalman filter was developed (Mulder et al.,
1999), referred to as the extended Kalman filter (EKF). The working principle of this type
of Kalman filter is based on a truncated first order Taylor expansion of the non-linear state
transition and observation function, effectively leading to a linearized system. To even further
improve the performance of the extended Kalman filter, an iterative procedure with local
iterations on an individual time interval. This method is referred to as the iterated extended
Kalman filter (IEKF). Due to the linearization of the dynamics in the first few steps of this
approach it is directly applicable to non-linear systems. The latter method has been applied,
for example, by Chowdhary and Jategaonkar (2010) and Teixeira et al.(2011). When taking
a closer look at the exact mechanics behind the Kalman filter, it becomes evident that the
IEKF, uses local iterations around a linearized state transition and observation function.
The same procedure as in (Kalman, 1960) can then be applied to obtain an estimated state.
However, in the latter situation the estimated state cannot be called optimal anymore, at
best sub-optimal. This is due to the linearization about a certain set-point. In this case,
if the system shows linear to moderately non-linear behavior, the linearization about the
set-point does not produce very large errors. In turn, the Kalman filter reaches optimality
in the state estimation. However, as described before, most systems are of moderately to
highly non-linear nature and do therefore not allow for linearization about any point in the
state-space. These arguments were also given in (Julier & Uhlmann, 2004) to plead for the
use of a more robust approach. Since aircraft dynamic are usually moderately non-linear,
a more robust approach to Kalman filtering might be beneficial for a more accurate state
estimation, ultimately leading to a more accurate model.

It was much later when a new extension to the existing Kalman filtering techniques was
proposed by Julier and Uhlmann (1997). Instead of making use of a linearization of the
system’s dynamics, a set of discretely sampled points was used to represent the mean and
covariance of the state. Above all, in theory, this method should have the advantage over
the previously mentioned methods for being able to work with non-Gaussian distributions.
The latter might be especially useful when working with data of unknown distribution. In
this specific research, state reconstruction will be done by using experimental flight test data.
While in theory this data will be normally distributed, in practice it will often contains noise of
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unknown source and can therefore not be treated as Gaussian anymore. Later work by Julier
and Uhlmann (2004) revealed that, after a thorough analysis of the IEKF, the standard IEKF
implementation has some benefits over other filters. The most important finding was that
the EKF forms a successful compromise between computational complexity and applicability.
However, at the same time it was also found that the approximation of a non-linear system
by linearization is only reliable if the error-in-error-out relationship is also linear. In addition,
for large systems the calculation of the Jacobian can be a difficult and error-prone operation.
To address these deficiencies Julier and Uhlmann developed the Unscented Kalman Filter
(UKF). The basic idea behind the UKF is that the approximation of Gaussian distribution is
easier than the approximation of a non-linear function (Julier & Uhlmann, 1997, p. 5). With
this approach, a set of so-called sigma points are chosen around the current state representing
the state’s mean and covariance. Subsequently, all these points are propagated through the
systems dynamics to estimate the predicted mean and covariance of the one-step-ahead state.
The UKF uses a deterministic approach to select appropriate points around the current state
to represent the mean and covariance. From this point it is easy to arrive at methods taking
into account the statistical properties of the whole state-space. In fact, the UKF was derived
from the Sigma-Point Kalman Filter (SPKF), which populates the whole state-space with
sigma points before propagation through the system’s dynamics (Van Der Merwe & Wan,
2004). Despite the improved representation of the mean and covariance, the computational
burden of such a method would not weigh against its advantages because the number of
computational operations per time step increases dramatically. The nature of the problems
itself is also of a different order. Due to the high uncertainties in the measurement of a GPS
signal, as presented in the paper of Van der Merwe and Wan (2004), population of samples
over the whole state-space can be beneficial. This in contrast to the problem presented in
this work, where sensor measurements are assumed to have a relatively high accuracy.

A comparative study between the (I)EKF and UKF was performed in many researches. A
comparison for the application in flight path reconstruction was performed by Chowdhary and
Jategaonkar (2010) and later by Teixeira et al. (2011). The concluding remarks of the last
paper were that a significant increase of performance, in terms of mean squared error, was not
observed by using the UKF instead of the EKF while computational costs were much higher.
Furthermore, Chowdhary and Jategaonkar applied the filter-before-estimation method and
argued that the UKF shows faster convergence which, in this specific case did not come at
much higher computational costs. However, the simplified set of kinematic equations used in
(Chowdhary & Jategaonkar, 2010) reveals why this conclusion was drawn. This in contrast
to the set of equations that was used in (Teixeira et al., 2011). The latter will also be used
in this research. It should be noted however that both papers do not discuss the influence
of body induced velocities on the aerodynamic angles. The validity of this assumption does
not hold at higher angles of attack, i.e. stall model identification, something that is not very
relevant to this research.

The analysis of flight test data is often subjected to working with data from different sources
sampled at different rates. These systems are called multi-rate systems. Adapted versions
of the IEKF and UKF have both been employed to directly use this data. This so-called
multi-rate Kalman filter (MR-KF) was first introduced by Armesto et al. (2004) and later
applied in many different application (Smyth & Wu, 2007; Armesto, Tornero, & Vincze,
2008). To overcome the problems associated with multi-rate data, this type of filter can
directly be applied in the flight path reconstruction problem for this research. However,
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direct interpolation of this data and the use of a regular Kalman filter might suffice. The fact
that the multi-rate implementation of the Kalman filter comes without extra computational
costs might be a reason for the preference of such a filter. In the work by Armesto, the
MR-KF was applied for different ends than earlier presented works. However, its application
has successfully shown the applicability of such a filter.

The following sections will elaborate on the elements that were discussed in this introduction.
To start off, the definition of a general linear and non-linear set of stochastic differential
equations is given in Section 4-2. Subsequently an overview of the kinematic equations and
observation model is given in Section 4-3 followed by the introduction of different types of
Kalman filters. These concepts will be applied to a non-linear simulation model of the Cessna
Citation II to show the performance of the different theoretical constructs in a flight path
reconstruction problem.

4-2 Stochastic Differential Equations

The basic linear Kalman filter (Kalman, 1960) is based on a set of linear, Stochastic Differ-
ential Equations (SDEs) given by:

ẋ(t) = Ax(t) +Bu(t) +Gw(t)

zn(t) = Cx(t) +Du(t) + v(t)

z(tk) = zn(tk) + v(tk) k = 1, 2, . . .

(4-1)

with A the state transition matrix, B the deterministic input distribution matrix and G the
stochastic input distribution matrix. The observation or measurement z is a linear combina-
tion of output matrix C, feedforward matrix D and process noise vector v(t). Vector-valued
and matrix-valued quantities are indicated by a boldface typesetting. The initial state of the
state space model in Eq. (4-1) is given by x(t0) = x0 and is a random vector with a known
mean value of µ0 = E {x0} and covariance matrix P0 = E {(x0 − µ0) (x0 − µ0)

⊺}.
The stochastic differential equations presented in Eq. (4-1) describe a linear system. However,
in most cases the system and measurement equations are of non-linear nature. In addition,
in Eq. (4-1) it was assumed for the system noise to be purely additive whilst in reality noise
can also be propagated through the system’s dynamics. The set of stochastic differential
equations for a general non-linear system is given by:

ẋ(t) = f [x(t),u(t), t] +G(x(t), t)w(t)

zn(t) = h [x(t),u(t), t]

z(tk) = zn(tk) + v(tk)

(4-2)

where f [·] is the non-linear state transition function and h [·] the non-linear measurement
function. The process noise and (output) measurement noise are assumed to be zero-mean,
white and uncorrelated and can be parametrized by:

E {vv⊺} = Q E {ww⊺} = R E {wv⊺} = 0 (4-3)
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4-3 Kinematic and Navigation Model

The full kinematic model is given by combining the differential equations for the flat earth
position in Eq. (3-20), body velocity components in Eq. (3-18) and the equations of rotational
motion Eq. (3-16). The whole set of differential equations is then given by:

ẋE = (u cos θ + (v sinφ+ w cosφ) sin θ) cosψ − (v cosφ− w sinφ) sinψ +WxE

ẏE = (u cos θ + (v sinφ+ w cosφ) sin θ) sinψ + (v cosφ− w sinφ) cosψ +WyE

żE = −u sin θ + (v sinφ+ w cosφ) cos θ +WzE

u̇ = Ax − g sin θ − qw + rv

v̇ = Ay + g cos θ sinφ− ru+ pw (4-4)

ẇ = Az + g cos θ cosφ− pv + qu

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ =
sinφ

cos θ
+ r

cosφ

cos θ

In this set of kinematic equations, the IMU measurements are used as system input. In order
to model the noise characteristics and bias of the IMU signals, these were modeled as:

Axm = Ax + λAx + wx

Aym = Ay + λAy + wy

Azm = Az + λAz + wz (4-5)

pm = p+ λp + wp

qm = q + λq + wq

rm = r + λr + wr

where λ indicates the bias of the associated signal and w(·) indicates the process noise of
the subscripted variable. For use in flight path reconstruction with a Kalman filter, the set
of equations in Eq. (4-4) needs to be extended with the time derivatives of any additional
states that required reconstruction, e.g. the sensor biases. In this case, the state transition
function can simple be assumed to be zero since the bias is constant in reality. Alternatively,
as Lubbers applied in his work (Lubbers, 2009), sensor biases can be modeled as random walk
for an increased state excitation and, theoretically, better convergence to the true state. In
either of the two cases, the augmented state vector then becomes:

xaug = [x λ]⊺ ∈ R
n (4-6)

where n indicates the dimensionality of the system. Note that in this context, the λ only indi-
cates the augmented states related to the sensor biases, however, these can be any additional
states.
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Observation data can be acquired from different sources. In general, the position and velocities
in FE are acquired from GPS measurements. In addition, the aircraft’s attitude can also
be acquired from GPS measurements but a more common source would be the Attitude
and Heading Reference System (AHRS). The complete set of observation equations, or the
navigation model, is given by:

xgpsm = x+ vx

ygpsm = y + vy

zgpsm = z + vz

ugpsm = [u cos θ + (v sinφ+ w cosφ) sin θ] cosψ − (v cosφ− w sinφ) sinψ +WxE + vu

vgpsm = [u cos θ + (v sinφ+ w cosφ) sin θ] sinψ + (v cosφ− w sinφ) cosψ +WyE + vv

wgpsm = −u sin θ + (v sinφ+ w cosφ) cos θ +WzE + vw (4-7)

φm = φ+ vφ

θm = θ + vθ

ψm = ψ + vψ

VTASm =
√

u2 + v2 + w2 + vVTAS

α = tan−1 w

u
+ vα

β = tan−1 v√
u2 + w2

+ vβ

where v(·) is the standard notation for the measurement noise of the subscripted variable.
Note that in Eq. (4-7), the set of equations depends on the velocity components expressed in
the body frame Fb, however, the resulting velocity components are expressed in the navigation
frame FE , emphasized by the (·)gps subscript.

4-4 Extended Kalman Filter

As already stated before, many different types of Kalman filters exist. The original Kalman
filter as introduced by Kalman (Kalman, 1960) was designated for linear systems. A simple
extension to allow this type of filter, defined in linear state-space, to work with non-linear
equations was introduced by local linearizations of the non-linear state transition function
and measurement equations around the set-point defined by the state k, where k is the
current time step. The latter extension became a widespread application and is known as the
Extended Kalman Filter (EKF) (Mulder et al., 1999).

A high level overview of the Kalman filtering procedure is given in Figure 4-1. From this
figure it becomes apparent that the Kalman filter works by (1) making an estimation of the
dynamic system’s current state x̂(k + 1|k) by a predication step performed with an internal
model of the system’s dynamics and (2) comparison of the predicted measurements vector ŷ
with the actual measurements vector. The difference between the latter two vectors is referred
to as the innovation of step k and is subsequently used as input to the estimator where the
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u(k)
Dynamics Observer

+ + z(k + 1)

Model
− +

Estimator
x̂(k + 1|k + 1)

v(k + 1)w(k)

x̂(k + 1|k)

x̂(k + 1|k + 1)

Figure 4-1: High level overview of the general Kalman filtering sequence.

vector of innovations is weighted with the Kalman gain K to arrive at the state estimate
x̂(k + 1|k + 1).

The complete set of equations for state estimation with the EKF are summarized in Eqs.(4-
8)-(4-12). All classes of Kalman filters require some a priori information about the state and
state covariance vector known as the initial state x0 and initial covariance matrix P0. In
addition, sensor noise characteristics are parametrized by the process noise covariance matrix
R, containing the IMU or equivalent linear and rotational acceleration measurement device’s
variances on the diagonal. Equivalently, the noise characteristics of the measurement sensors,
such as the airdata systems and GPS, are parametrized by Q. It should be noted that these
quantities are to be provided a priori, this means that appropriate values should either be
provided in the form of a sensor noise specification of they should be estimated from stationary
measurements.

To briefly elaborate on the functions of the specific EKF filter equations, Eq. (4-8) is at the
basis of all classes of Kalman filters as it defines the one step ahead prediction of the state
variables using previous state x̂(k) that is either obtained from the previous filter step or
defined as the initial state.

x̂(k + 1|k) = x̂(k|k) +
tk+1
∫

tk

f [x̂(k|k),u(k),v(k), τ ] dτ (4-8)

An initial estimate of the covariance matrix of the step ahead can then be made by using Eq.
(4-9). Similarly, the Kalman filter gain can be calculated by Eq. (4-10), this quantity is only
calculated once and not updated recursively, hence the notation only includes the current
step.

P(k + 1|k) = Φ(k + 1|k) ·P(k|k) ·Φ⊺(k + 1|k) + Γ(k + 1|k) ·Q(k) · Γ(k + 1|k) (4-9)

K(k + 1) = P(k + 1|k) · ∇h⊺

x · (∇hx ·P(k + 1|k) · ∇h⊺

x +R(k + 1))−1 (4-10)
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Finally, Eqs.(4-11)-(4-12) describe the recursive update to the state estimate and covariance
matrix estimate for the step ahead.

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1) · (z(k + 1)− h [x̂(k + 1|k),u(k + 1)]) (4-11)

P(k + 1|k + 1) = P(k + 1|k)−K(k + 1) · ∇hx ·P(k + 1|k) (4-12)

where ∇fx and ∇hx are the Jacobian matrices of the state transition and measurement
function with respect to state estimate x̂ at time-instant k, which are functions of the current
state and input, defined as:

∇fx =
∂

∂x
f (x(t),u(t), t) ≡







∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn






(4-13)

in which the number of states is equal to the number of state transition functions per def-
inition. Similarly, the Jacobian matrix for the measurement equations can be formed by
applying Eq. (4-13) to a system of n states and m equations. Note that in Eq. (4-10), Φ
and Γ are the discretized state transition matrix, earlier found by ∇fx, and the discretized
stochastic input distribution matrix G. These quantities can be found by:

Φ(k) = I+
∞
∑

n=1

∇fnx
1

n!
(tk − tk−1)

n (4-14)

Γ(k) ∼=
[

1

(n+ 1)!
· I+

∞
∑

n=1

∇fnx (tk − tk−1)
n

]

×G(tk − tk−1) (4-15)

Together, these steps, when used in recursive fashion, formalize the definition of the EKF.

4-5 Iterated Extended Kalman Filter

Despite its simplicity and effective local linearization of the non-linear state transition func-
tions, the EKF lacks from poor performance in the presence of significant non-linearities in
the system’s dynamics. In addition to the recursive prediction and update of the state vector
and covariance matrix, the introduction of a local iteration scheme provides a better approx-
imation of the non-linear equations. As Mulder et al. argues in (Mulder et al., 1999), the
purpose of these iterations is to improve the reference trajectory and with that also the final
estimate of the state vector.

In comparison to the standard implementation of the EKF, the Iterated Extended Kalman
Filter (IEKF) iteratively determines the one step ahead prediction of the state vector by
re-evaluating the linearized measurement equations and gain matrix. The following scheme
can be used for the local iteration when integrated in an EKF framework:
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ζi+1 = x̂(k + 1|k) +K(ζi) ·
{

z(k + 1)− h [ζi,u(k + 1)]−∇hζi
· (x̂(k + 1|k)− ζi)

}

i = 1, 2, . . . , l ζ1 = x̂(k + 1|k) (4-16)

where ∇hζi
denotes the matrix of linearized measurement equations expressed at iteration

i as Jacobian matrix obtained from partial derivatives of the measurement equations with
respect to the elements of the temporal state vector ζi. Note that this quantity is required
to be determined for every iteration, the same holds for the measurement equations and the
gain matrix. The number of maximum iterations l can be chosen depending on the type of
application.

4-6 Unscented Kalman Filter

As argued in the previous subsections, the application of the Kalman filter, which was origi-
nally designated for linear state-space (Kalman, 1960), to systems with non-linear dynamics
can be enabled by linearization around state x for every time step k. Further improvement can
be reached by employing a local iteration scheme, effectively reducing the difference between
the reference trajectory and the estimate. However, for dynamic systems with moderate to
high non-linearities, the use of this class of filters may expose the shortcomings of the lineariza-
tion technique. In addition, Julier & Uhlmann argue that the use of the EKF class of Kalman
filters has led to the general concensus that the filter is difficult to implement and difficult
to tune (Julier & Uhlmann, 1997). Elaborating to the latter statement, Julier & Uhlmann
argue that the two major drawbacks of the EKF/IEKF are related to this linearization, these
are (Julier & Uhlmann, 2004):

1. If the system demonstrates moderately to highly non-linear behavior within the time
scale of the time step, [tk, tk+1], the system cannot be assumed to show locally linear
behavior.

2. The implementation of the Jacobian matrices is somewhat cumbersome and is error-
prone as most formulation errors originate from a wrongly defined Jacobian matrix.

To effectively address these flaws, Julier & Uhlmann introduced an improved class of Kalman
filters known as the Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997). This class of
filters is, instead of a linearization around a set point, based on the unscented transform for
calculating the statistics of a random variable undergoing a non-linear transformation. In the
same paper, the authors show that when using a state linearization approach, only the second
order statistical measures can be approximated whilst in many practical situation higher order
terms might be required to prevent the introduction of significant biases or errors.

Additionally, Chowdhary & Jategaonkar conclude from their research effort that the aug-
mented version of the UKF for parameter estimation is the fastest in terms of convergence at
the cost of additional computational burden (Chowdhary & Jategaonkar, 2010).

The definition of the UKF begins with the selection of a so-called set of sigma points. These
points can be obtained from the unscented transformation of the augmented state vector and
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covariance matrix. In the original definition of the UKF, the state vector and covariance
matrix were only augmented with the process noise (Julier & Uhlmann, 1997). Hence, hereby
it was also assumed that the states and corresponding errors are propagated linearly through
the measurement equations. In most cases, such an approximation is tolerated. However, since
the computational burden of an increased augmented state vector and covariance matrix is
limited, it was chosen to also augment the latter two quantities with the measurement noise
characteristics (Julier & Uhlmann, 2004; Wan & Van Der Merwe, 2002). This UKF filter is,
hereafter, referred to as the augmented UKF.

To begin with the formulation of the augmented UKF, the augmented state vector and co-
variance matrix are defined as:

x̂a(k) = [x̂(k|k)⊺ v(k)⊺ w(k)⊺]⊺ (4-17)

Pa(k) =





P(k) 0 0
0 Q 0
0 0 R



 (4-18)

where v and w in the augmented state vector represent the means of the process and mea-
surement noise, these can therefore be assumed to have zero mean, hence their values will be
zero. The augmented state vector and covariance matrix can then easily be transformed to
the unscented domain by:

X a
i (k) =

[

x̂a(k) +
√

(L+ λ)Pa(k)
]

i = 1, 2, . . . , L

X a
i (k) =

[

x̂a(k)−
√

(L+ λ)Pa(k)
]

i = L+ 1, L+ 2, . . . , 2L
(4-19)

This set of transformed points, indicated by X a, is referred to as the set of sigma points.
Parameters L and λ are, respectively, the dimensionality of the state vector and a scaling
factor defined as λ = α2(L + κ) − L. α is a parameter to reflect the spread of the sigma
points around its mean, state vector x̂, and β is a factor to account for any prior knowledge.
The latter is set to a value of 2 for Gaussian distributions. κ is an extra scaling factor
which is usually set to zero. Subsequently, the weights for the set of transformed means and
covariances are defined as follows:

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i =W

(c)
i =

1

2(L+ λ)
i = 1, 2, . . . , 2L

(4-20)

From this point, the equations of the UKF become more trivial. Analogously to the EKF,
the state vector which is now expressed as sigma points are propagated through the system’s
dynamics:
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X a(k + 1|k) = X a (k|k) +
∫ tk+1

tk

f [X a,x(k|k),u(k),X a,v(k|k), τ ] dτ (4-21)

where X a,x refers to the columns of the sigma points matrix related to the state and super-
script v refers to the sigma points related to the process noise. The one step ahead state
estimation can be calculated by:

x̂ (k + 1|k) =
2L
∑

i=0

W
(m)
i X a (k + 1|k) (4-22)

and the one step ahead covariance matrix by:

P (k + 1|k) =
2L
∑

i=0

W
(c)
i (X a,x

i − x̂(k|k)) (X a,x
i − x̂(k|k))⊺ (4-23)

Again, similarly to the EKF, the sigma points representing the state vector and measurement
noise are propagated through the measurement equations and subsequently the transformed
means for the measurements are calculated:

Y(k + 1|k) = h [X a,x(k + 1|k),X a,w(k + 1|k)] (4-24)

with the transformed measurements given by taking the mean of the transformed sigma points:

ŷ =
2L
∑

i=0

W
(m)
i Y i(k + 1|k) (4-25)

The measurement covariance and measurement-state cross-covariance can be calculated by:

Pyy =

2L
∑

i=0

W
(c)
i (Y i(k + 1|k)− ŷ(k|k)) (Y i(k + 1|k)− ŷ(k|k))⊺ (4-26)

Pxy =

2L
∑

i=0

W
(c)
i (X a,x

i − x̂(k|k)) (Y i − ŷ(k|k))⊺ (4-27)

Finally, to complete the definition of the augmented UKF, gain matrix K, corrected state
estimation x̂(k + 1|k + 1) and corrected covariance matrix estimation P(k + 1|k + 1) are
expressed as:

K(k + 1) = PxyP
−1
yy (4-28)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K (y(k + 1)− ŷ(k + 1|k)) (4-29)

P(k + 1|k + 1) = P(k + 1|k)−KPyyK
⊺ (4-30)
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For additional numerical stability and guaranteed semi-definite state covariance matrix, the
Square-Root Unscented Kalman Filter (SRUKF) implementation of the UKF can be used
(Van Der Merwe & Wan, 2001). This type uses the Cholesky decomposition to address certain
numerical advantages in the calculation of the transformed statistical properties. Further
extensions to the UKF, e.g. the Sigma-Point Kalman Filter (Van Der Merwe & Wan, 2004)
and its iterative counterpart (Sibley, Sukhatme, & Matthies, 2006), were introduced later.
However, these filters populate the whole state-space with sigma points instead of only a
selected optimal range. Therefore, the computational burden of such filters do not weight
against the advantages and their application is restricted (Armesto et al., 2008).

4-7 Multi-rate systems and Kalman Filtering

The different classes of Kalman filters presented in the previous sections have different internal
mechanics, however, it was assumed that the IMU data and measurement data are available at
the same base sample rate. In many applications, and more importantly in the identification
of aircraft models, data often originates from different equipment devices and can therefore be
obtained at different sample rates (Mulder et al., 1994; Smyth & Wu, 2007), hence these kinds
of systems are referred to as multi-rate systems. The latter violates the basic assumption of
the earlier mentioned classes of Kalman filters. In order for these filters to work with multi-
rate samples, a basic interpolation scheme can be set up to re-sample the data. However,
for data with an inherently low sample rate, such as GPS measurements which are often
obtained with less than 20 samples a second, interpolation might affect the accuracy of the
state estimate.

A more structural solution to the problem as presented above is by making use of a multi-
rate implementation of the Kalman filter. While firstly introduced to fuse data available
from visual and inertial sensors by Armesto et al. (2004), the multi-rate implementation
can potentially also be succesfully applied to multi-rate systems in flight path reconstruction
problems.

Before the equations of the multi-rate Kalman filte implementation are given, a general multi-
rate system is to be defined. A multi-rate stochastic model is given as:

ẋ (k|k) = f [x (k|k) ,u (k) ,w (k)]

ys (k + 1) = hs [x(k|k)] + vs (k)
(4-31)

where f [·] is the standard notation for the vector-valued state transition function, equivalent
to the state transition matrix in the case of a linear system. Similarly, h [·] represents the
vector-valued measurement equation. Subscript (·)s indicates a time-varying vector or matrix
quantity where the size depends on the number of available samples at time-instant k. The
formulation of the multi-rate IEKF is analogous to the formulation of the conventional (single-
rate) IEKF (Armesto et al., 2008, 2004; Smyth & Wu, 2007) and is given by:

x̂(k + 1|k) = x̂(k|k) +
tk+1
∫

tk

f [x̂(k|k), û(k), t] dt (4-32)
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P(k + 1|k) = ∇fx ·P(k|k) · ∇f⊺x +G ·Q(k) ·G (4-33)

Ks(k + 1) = P(k + 1|k) · ∇h⊺

x,s ·
(

∇hx,s ·P(k + 1|k) · ∇h⊺

x,s +Rs(k + 1)
)

−1
(4-34)

x̂(k + 1|k + 1) = x̂(k + 1|k) +Ks(k + 1) · (zs(k + 1)− hs [x̂(k + 1|k), û(k + 1)]) (4-35)

P(k + 1|k + 1) = P(k + 1|k)−Ks(k + 1) · ∇hx,s ·P(k + 1|k) (4-36)

where ∇fx and ∇hx,s are the Jacobian matrices of the state transition function and the
size-varying measurement function with respect to state estimate x̂ at time-instant k. The
Kalman gain, innovation and covariance of the innovation are time-varying. Hence, the
number of elements in these quantities will be given by the number of observations available
at the current step.

Multi-rate Kalman filters exist in different forms, including the UKF (Armesto et al., 2004,
2008). In this report, only the multi-rate implementation of the EKF will be shown. Hereby
it will be assumed that any increase in filter performance, i.e. the ability of the filter to
effectively reduce the difference between the true state and the state estimate, of the multi-
rate implementation for, e.g., the IEKF will show a similar increase in performance for other
classes of filters.

4-8 Kalman Smoothers

In order to even further improve the accuracy of the state estimate obtained from any class
of Kalman filter, the Kalman smoother may be employed in offline state estimation (Teixeira
et al., 2011). In contrast to the forward recursive scheme of the earlier presented classes of
Kalman filters, Kalman smoothers use future measurements in a backwards recursive scheme.

In this report, three types of Kalman filters are considered. The Rauch-Tung-Striebel
Smoother (RTSS), Unscented Rauch-Tung-Striebel Smoother (URTS) (Sarkka, 2008) and
Forward-backward Kalman Smoother (FBKS) (Teixeira et al., 2011). The first two can, in
terms of internal mechanics, be compared to their forward recursive Kalman filter schemes.
The FBKS is a simple forward-backward recursion of the standard implementation of the
EKF.

Without going into the derivation of each of these smoother types, it was concluded that filters,
in general, can improve the accuracy of the estimate significantly for offline state estimation
problems. For a comparison of the different types, the author suggests, e.g., (Teixeira et al.,
2011).

However, Mulder et al. argue that the use of these types of algorithms should be limited to
systems with serious non-linear behavior (Mulder et al., 1999).
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4-9 Additional Non-Linear Air Data Observation Models

In this section additional observation models are presented which can be used in cooperation
with the earlier presented observation equations, see Section 4-3. The set of observation
equations, see Eq. (4-7), can directly be applied in any aircraft flight path reconstruction
problem under the assumption that the aerodynamic angles can be measured directly at the
location of the CG. However, in reality this is not possible in most of the cases. Due to the
wing-fuselage interaction and changes in the direction of the airflow caused by interaction
of the wing with the air, i.e. upwash, sensor readings can be influenced dramatically. For
this reason, the angle of attack and sideslip angle are preferred to be measured in front
of the aircraft, in undisturbed flow. Since these types of devices do not measure the true
geometrical aerodynamic angles but a combination of the true angle, a kinematically induced
angle, fuselage induced angle and vertical wind component contribution (De Visser, 2011),
the measurement equations need to be extended with the following set of equations for the
angle of attack and sideslip angle (Laban, 1994):

αv =
(

1 + Cαup

)

α+
(q − λq)xvα√
u2 + v2 + w2

+ Cα0
(4-37)

βv = (1 + Cβsi)β − (r − λr)xvβ√
u2 + v2 + w2

+
(p− λp)zvβ√
u2 + v2 + w2

+ Cβ0 (4-38)

where x and z, respectively, denote the position of the corresponding boom-mounted vane.
By using these models, the state vector is to be augmented with the coefficients that are to
be estimated, i.e. Cαup

, Cα0
, Cβsi and Cβ0 .

In some cases, the availability of additional measurement devices, such as the angle of attack
and sideslip boom, is unlikely. In these cases, only raw data obtained from the angle of attack
or sideslip (boom-mounted) vane can be used. To this end, Bennis developed a model to more
accurately compensate for the viscous damper-mechanism of the vanes (Bennis, 1998). This
model can be augmented to the state transition function:

dαv
dt

=
1

τ

[{

tan−1

(

w − xαv(q − λq)

u

)

+ Cαup
tan−1

(w

u

)

+ Cα0

}

− αv

]

(4-39)

With the introduction of new states and the additional of new state-transition equations,
the observability of the dynamic system can be affected. A short investigation into the
observability of such systems is presented in Section 4-10.

4-10 State Observability and Reconstructability

Extensions to the most basic formulation of the state-transition and measurement equations
sometimes comes at the cost of reduced observability of the dynamic system. Observability,
defined as the measure to indicate the ability to observe the internal state of a dynamic system
from a series of external measurements, can become even more tedious for systems described
by a set of non-linear equations. For linear systems, the observability matrix can easily be
obtained (Ljung, 2002), while for non-linear systems use can be made of Lie derivatives.
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In the definition of non-linear observability, a distinction is made between local non-linear
observability and non-linear observability. The first definition refers to the ability to observe
a non-linear state from a local Taylor expansion (Sontag, 1984), such as applied in the IEKF.

Different methods to estimate the non-linear observability exist, however, Walcott, Corless
& Zak found the Lie-algebraic method very attractive despite the requirement that a priori
knowledge about the dynamics of the system should be precise (Walcott, Corless, & Zak,
1987). The Lie-algebraic method can be summarized as follows:

O(x) =

















∇
(

L0
fh
)

x

∇
(

L1
fh
)

x
...

∇
(

Ln−1
f h

)

x

















(4-40)

where n indicates the state vector dimensionality and Lfh defined as:

L0
fh = ∇hx

L1
fh = ∇hx · f

L2
fh = ∇

(

L1
fh
)

x
· f

...

Ln−1
f h = ∇

(

Ln−2
f h

)

x
· f

(4-41)

By applying the above arithmetic, an iterative procedure can be used to estimate the non-
linear state observability. If the observability matrix O reaches full rank within the first n−1
Lie derivatives, non-linear observability is guaranteed. If full rank is achieved within the first
iteration, the system can also be considered as locally observable. Any additional iterations
deteriorate the local non-linear observability.

In this context, reconstructability is directly related to the ability to observe the state vector
in a Kalman filter procedure. Rank deficiency in the observability matrix may directly result
in the inability to reconstruct the state vector from the sequence of measurement data.

4-11 Comparison Different KF and KS types

In the previous sections, the theoretical concepts of several types of Kalman filters and
smoothers have been elaborated, accompanied by additional theoretical insight into, e.g.,
non-linear observability and extensions to the collection of non-linear state transition and
measurement equations.

A comparative study was performed between the different types of Kalman filters and
smoothers in the framework of a non-linear Cessna Citation I simulation model1. To this

1The DASMAT simulation model, for more information see Section 2 or (Van Der Linden, 1998)
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end, an observation model was constructed inside the simulation framework to obtain a set
of corrupted measurements for both the IMU and air data systems. In order to realistically
mimic the noise characteristics of a real air data system, the following noise characteristics
were used:

σ (λm) = 0.001 [m/s2]/[deg/s]

σ (xgps,m) = s (ygps,m) = s (zgps,m) = 10 [m/s]

σ
(

Vxgps,m
)

= s
(

Vygps,m
)

= s
(

Vzgps,m
)

= 0.1 [m/s]

σ (φm) = s (θm) = s (ψm) = 0.1 [deg]

σ (VTAS,m) = 0.1 [m/s]

σ (αm) = s (βm) = 0.1 [deg]

Additionally, wind speed was initialized at WE =
[

10 6 1
]⊺

expressed in the navigation
frame and a sensor bias for the IMU measurements was set to the same level as the noise
standard deviation.

The state vector for the simulations runs was defined as:

x =[xgps ygps zgps u v w φ θ ψ

Wx,E Wy,E Wz,E λAx λAy λAz λp λq λr]
⊺ ∈ R

18
(4-42)

Note that the state is augmented with both the sensors biases and wind velocity components.
The state transition equation for both quantities was modeled as zero. Furthermore, recon-
structability analysis has shown to converge to full rank within two iterations, hence the first
degree Lie derivative.

4-11-1 Iterated Extended Kalman Filter

The IEKF was applied to the non-linear simulation model with the state vector and noise
levels as indicated. The results for the IEKF are shown in Figures 4-2 to 4-5.

Figure 4-2 shown the state estimate resulting from the Kalman filter recursion together with
the real state and the 2 standard deviations bound. As becomes clearly evident from this
figure, the estimates of the asymmetrical states suffer from the absence of appropriate exci-
tation in lateral motion. However, the estimates of the lateral states stay within acceptable
error margin as is confirmed by Figure 4-6. Similarly, the same conclusion can be drawn for
the symmetrical states resulting from an aileron or rudder input, exciting the asymmetrical
states.

Similarly, the bias estimates show a more accurate prediction for the symmetrical states which
can be explained by the same reasoning. See Figure 4-3 and Figure 4-7.

In addition to the reconstructed states, the filtered measurements can be reconstructed by
running the state estimates through the non-linear measurement equations. The resulting
filtered measurements are shown in Figure 4-4 along with the raw measurements.

It is common practice to validate the Kalman filter sequence by inspection of the innovation
sequences, produced by the differences between predicted and actual measurement for each
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recursion. These innovation sequences should stay within the 2 sigma bounds while adopting
white noise characteristics. From Figure 4-5 it becomes apparent that this Kalman filter
recursion clearly stays within the 2 sigma bounds and the innovation signals resemble white
noise. To confirm the last statement, the autocorrelation of the innovations clearly indicates
an uncorrelated signal, see Figure 4-8. Note that the dirac delta at lag zero, indicative for an
uncorrelated signal, is not shown in the figure for practical reasons. Overall, in terms of Root
Mean Square (RMS), the IEKF achieved a score of 0.285.

4-11-2 Unscented Kalman Filter

In order to test the performance of the UKF, this class of Kalman filter was also applied to
data obtained from a non-linear Cessna Citation I simulation. Again, similar to the IEKF, all
states converge to their nominal value. The state estimates for the lateral states suffer from
appropriate excitation is lateral direction, however, these states still stay within the 2 sigma
standard bounds. In terms of the convergence rate and uncertainty of the state estimate and
bias estimate, see Figure 4-9 and Figure 4-10, no clear difference can be UKF and IEKF can
be distinguished.

Analogously, as follows from the consistency of the state and bias estimate, no clear difference
is visible in terms of the error and its standard bounds for the state and bias estimate, see
Figure 4-11 and Figure 4-12. From the autocorrelation of the innovation sequences, it can be
stated that the UKF is also consistent.

4-12 Performance of KF and KS types

For a more in depth comparison between the IEKF and the UKF applied to simulation
data, the EKF filter was used as reference. In addition to the earlier mentioned filter classes,
smoothers were also applied in cooperation with the different Kalman filter types. It should be
noted that the smoothers work according to a backwards recursion scheme, hence a forward
recursion should first be provided by the Kalman filter. The different types of smoothers
can be applied in combination with the forward recursion from any type of Kalman filter.
However, for consistency, in this report the different types of smoothers were applied only in
combination with their forward recursion Kalman counterpart, e.g. the URTS was applied
to data obtained from the forward pass of the UKF. The FBKS combines the forward and
backward recursion of the IEKF to obtain a smoother state estimate.
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Figure 4-2: IEKF state reconstruction on data obtained from a non-linear Cessna Citation I flight
simulation model together with the 2σ confidence bounds (red) and the real aircraft state (blue).
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State estimate 2σ std bound
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Figure 4-3: Estimated IMU sensor biases obtained with the IEKF on data obtained from a non-
linear Cessna Citation I flight simulation model together with the 2σ confidence bounds (red) and
the real bias (blue).
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Measurement Filtered
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Figure 4-4: Measurement data used in the observation equations together with the measurements
reconstructed by using the filtered data (blue).
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Innovation 2σ std bound
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Figure 4-5: The set of innovation sequences of the IEKF when applied on data obtained from a
non-linear Cessna Citation I simulation model.
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State Error 2σ std bound
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Figure 4-6: Error sequences, defined as the difference between the reconstructed state and the
true state, when applying the IEKF to non-linear Cessna Citation I simulation data.
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Bias Error 2σ std bound
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Figure 4-7: Error sequences for the IMU sensor biases, defined as the difference between the
reconstructed sensor bias and the true sensor bias, when applying the IEKF to non-linear Cessna
Citation I simulation data.
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Figure 4-11: Error sequences, defined as the difference between the reconstructed state and the
true state, when applying the UKF to non-linear Cessna Citation I simulation data.
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The performance of the different Kalman filter and smoother types is shown in Figure 4-14
in terms of the magnitude of the RMS of the error indicated per state. As becomes evident
from Figure 4-14, the position estimates show the largest RMSE, however, this can directly
be related to the high noise intensity of the corrupted signals. For a better comparison of
the low RMSE state estimates, Figure 4-15 shows the relative RMSE for each state. The
latter figure clearly shows the deterioration in the state estimate by the use of an additional
smoother. However, in absolute terms, this increase in RMSE is only marginal and therefore
the performance can be said to be approximate the same level. It can be stated though that
the additional computational costs of the application of a backward recursion smoother do
not weight against the improvement in some state estimates.

For the identification of an aerodynamic model, clearly the position estimates do not play any
role of significance. The altitude however is important in the defining the non-dimensional
forces and moments. Clearly, the most important states are the body velocity components
and the Euler angles. The estimated sensor biases are also important in order to obtain a
corrected set of IMU measurements. Focusing on these states, it becomes evident that only
in some cases the use of a smoother provides a slightly more accurate state estimate. In most
cases, the use of a single-pass IEKF suffices and shows best performance in terms of the RMSE.
In some cases, especially for the estimated sensor biases, the UKF provides a slightly better
estimate. Overall, the performance of the IEKF and UKF can be considered similar. When
applying the UKF to real flight test data, performance metrics might differ from the metrics
presented in this work. In fact, results might be pointing towards an increased accuracy of
the state estimates as obtained from the UKF. This can be stated by following the earlier
presented reasoning and by considering the level of non-linearities in the simulation model.
Since the simulation model itself is driven by a series of first order Taylor approximations
of the non-dimensional forces and moments, the state estimation procedure does not benefit
from any additional capability of approximating non-linearities in the presented data.

4-13 Sensitivity to Initial Conditions

In addition to the performance of the IEKF and UKF on a set of data with different noise
realizations, the performance of both filter classes for different random initializations of the
state vector was tested and averaged over a series of 50 Monte Carlo simulations. Random
initializations points for each state were chosen around the true state with a standard deviation
equal to two times the standard deviation of the noise (offset factor of 1). In addition, a
deteriorated initialization of 20 standard deviations is shown in Figure 4-18 and Figure 4-19.

From Figure 4-16 and Figure 4-17 it becomes evident that for an offset factor of 1 of the
initial state, a difference between the IEKF and UKF cannot be observed as both filters at
approximately the same rate to the steady state error of the estimate.

Figure 4-18 and Figure 4-19 show different results for an initialization of the state vector
at an offset factor of 10. In these figure, the inability of the IEKF to produce an accurate
state estimate at some recursions due to observability problems is not reflected. However,
on average the IEKF does show faster convergence to the steady state error. Yet again the
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Figure 4-14: Comparison between different types of Kalman filters and smoothers applied to data
obtained from a non-linear Cessna Citation I simulation model in terms of the RMSE indicated
separately for each estimated state. Each index is the average of a 50 run Monte Carlo simulation.
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Figure 4-15: Comparison between different types of Kalman filters and smoothers applied to
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IEKF and UKF converge to the same value after more than 40 iterations except for the state
estimate of the x position and v body velocity despite the marginal difference.

4-14 Multi-rate versus Interpolation

The multi-rate implementation of the Kalman filter offers a structural solution if flight data
is obtained at different sample rates. However, the data can simply be resampled at a specific
rate. In order to investigate the difference between the two methods a comparison was made.

To mimic a multi-rate system, data from different sources, such as AHRS and IMU, was
collected at different sample rates from the Citation I simulation. Since in realistic scenarios,
elementary data such as the linear and rotational accelerations and body attitude angles are
always collected at high sample rates, an investigation into the influence of sensor fusion in
a multi-rate Kalman filter is of minor importance since linear interpolation techniques can
already give a reasonable estimate because of the small time scale. More realistically, the
collected set of measurements suffers from the low update rate of the GPS measurements.
For this reason it was chosen to investigate the effect of medium and low sample rate GPS data
on the performance of the Multi-Rate Iterated Extended Kalman Filter (MRIEKF) versus
the IEKF applied to data obtained from spline interpolation.

When GPS data is obtained at a medium sample rate of 10 Hz, the difference between MR-
IEKF and the regular IEKF with interpolation is small for most states. As expected, the
MR-IEKF shows a marginal improvement or equal performance to the regular IEKF for the
position estimates. More surprisingly, the sensor bias estimates show a relative improvement
in performance in terms of the RMSE when the data is first resampled to the same base rate,
see Figure 4-20.

In the scenario of the 1 Hz GPS sample rate, it clearly becomes evident that the interpolation
approach offers increased accuracy over the multi-rate implementation, see Figure 4-21. This
can be explained by the fact that the components of the GPS position can, in most cases, be
approximated relatively well by a linear function. Therefore, it can be stated that interpo-
lation techniques are well suited when applied to resample low-rate GPS data. AHRS data
and IMU data, in this case study, were considered to have a fixed sample rate. In reality, it
is very unlikely that the latter two systems provide samples at low rates.

In terms of overall RMSE, the multi-rate implementation of the IEKF scored slightly better
in both cases: 0.72 versus 0.79 at 10 Hz and 1.51 versus 2.06 at 1 Hz.

4-15 Conclusion

In this chapter the theoretical constructs regarding flight path reconstruction were introduced
and elaborated. In the context of this work, Kalman filter techniques will be used for flight
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Figure 4-16: Convergence rate of the state estimate, expressed in terms of the error RMS, of
the IEKF versus the UKF for N = 50 random initializations with an offset factor of 1.
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Figure 4-17: Convergence rate of the bias estimate, expressed in terms of the error RMS, of the
IEKF versus the UKF for N = 50 random initializations with an offset factor of 1.
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Figure 4-18: Convergence rate of the state estimate, expressed in terms of the error RMS, of
the IEKF versus the UKF for N = 50 random initializations with an offset factor of 10.
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Figure 4-19: Convergence rate of the bias estimate, expressed in terms of the error RMS, of the
IEKF versus the UKF for N = 50 random initializations with an offset factor of 10.
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Figure 4-20: Comparison between the performance of the multi-rate IEKF and the regular IEKF
with single-rate data obtained from spline interpolation for a GPS sample rate of 10 Hz
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Figure 4-21: Comparison between the performance of the multi-rate IEKF and the regular IEKF
with single-rate data obtained from spline interpolation for a GPS sample rate of 1 Hz
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path reconstruction and data compatibility checking in order to use a collection of flight path
data for the identification of a new aerodynamic model of the Cessna Citation II.

During the years, many different classes of Kalman filter have been developed for different
applications. The most used Kalman filter up to date is the extended Kalman filter, which
employs a local linearization technique to allow application to non-linear systems. The latter
type of filter was improved by a minor extension in the form of local iterations. These
iterations reduce the difference between the state estimate and the reference trajectory, hence
the IEKF. Despite their sub-optimality in non-linear flight path reconstruction problems,
these filters are still widely used for these types of problems.

As a more recent innovation, the UKF was introduced as a new class of Kalman filter with
its own internal dynamics. Instead of relying on (iterative) state linearization, the stochastic
properties of the underlying dynamics are now represented by a set of sigma points obtained
from the unscented transformation of the state vector. In theory, this approach should be
able to capture the second and higher order statistical properties of the system with greater
accuracy than the traditional approaches. Furthermore, different researches also confirm
the superiority of the UKF in terms of convergence rate when applied to non-linear state
estimation problems.

The choice of state transition functions and measurement equations plays a significant role
in the performance of any type of Kalman filter. Additions to the standard set of equations
can improve the performance of the filter in terms of a smaller magnitude of some innovation
sequences. Despite these improvements, extensions to the state equations must be made
with caution as the set of measurements must provide enough information for a successful
reconstruction. Observability is a measure to indicate the ability to obtain information about
the internal state from an external set of measurements. For non-linear systems, this is
reflected by the Lie derivatives.

In this chapter, an investigation into the performance of different Kalman filter and smoothers
was performed in the framework of a non-linear Cessna Citation I simulation model. This
investigation reveals no significant improvement in the state estimate by the UKF versus
the IEKF. In terms of sensitivity to initial conditions, the IEKF performed slightly better
for a large offset from the nominal state. However, this large offset may be considered as
unrealistic. In most cases, application of additional Kalman smoothers do not improve the
accuracy of the state estimates.

In reality, data is often obtained at different sample rates. A more structural solution to this
problem is the use of a multi-rate Kalman filter. Analysis has also indicated that the use of
such types of Kalman filters only improve the estimates of certain states. Moreover, in most
cases the estimate of the states obtained at higher sample rates deteriorate in comparison
to the state estimate obtained from a regular KF with a spline interpolation approach to
resample the data.

On balance, the IEKF and UKF show comparable performance when applied to the Cessna
Citation I simulation framework. The choice between the two types of filters can therefore
be based on the computational efficiency and the theoretical prospects of both filter classes.
When considering the, theoretical, improved ability of the UKF to process data corrupted
with non-Gaussian noise, the latter class of KF receives slight preference above its counterpart.
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Chapter 5

Parameter Estimation

In aerospace system identification, parameter estimation is an essential step in the determi-
nation of a model. Often these model parameters are obtained from experimental data, i.e.
flight test data. As already mentioned in previous chapters, the TSM was chosen as base
method for this work. By effectively decomposing the non-linear identification problem into
two steps, linear parameter estimation techniques can be used to identify the parameters
of the selected model structure. Therefore, linear parameter estimation techniques will be
discussed in particular.

In this chapter, parameter estimation methods and the methodology in model structure selec-
tion will be elaborated in a framework applied to the identification of an aerodynamic model
from flight test data. In addition, the selected methodology will be applied to data acquired
from a non-linear Cessna Citation I simulation model.

5-1 Introduction

Parameter estimation is an essential part in the identification of an aerodynamic model from
flight test data. Many different techniques are described in literature, of which the most
applied methods in the domain of parameter estimation are the least-squares methods (Strejc,
1983). This collection of methods tries to find the best fit to the presented data by minimizing
the sum of squared residuals, the difference between the estimated model output and data.
From a theoretical perspective, these methods have efficiently reduced parameter estimation
from a non-linear to a linear optimization problem. The assumption that was taken for
this approach is that the residuals of the observation should be uncorrelated and that the
variance should be stationary. For raw flight data these assumptions do not often hold.
Minor extension to the original least-squares approach can help in these cases, however,
this requires the covariance matrix to be known beforehand. These methods include weighted
least-squares and generalized least-squares (Klein, 1989). In theory, the best possible estimate
of the parameters, i.e. the parameters that did most likely produce the set of data presented,
is found by application of maximum likelihood estimation. This method was applied in a lot
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of different research (Lichota & Lasek, 2013; Kumar & Ghosh, 2011; Chu, Mulder, & Van
Woerkom, 1995) and many applications were derived from this theory (Chu, Mulder, & Van
Woerkom, 1996; Rauch, Striebel, & Tung, 1965). Despite its theoretical estimation of the
asymptotic covariance matrix, and therefore also a set of parameters with the least variance,
this method also presents a non-linear optimization problem. This in contrast to the least-
squares routines. Altogether, maximum likelihood estimation is a more robust method when
working with stochastic data. Its application should be preferred when considering the use
of the equation-error and filter-error methods. In case of decomposition of the equation-error
method into a flight path reconstruction problem and parameter estimation problem (TSM)
its usefulness depends on the covariance of the residuals. In the latter case, least squares
methods can also give an accurate estimate of the model parameters under the assumption
that the residuals of the model are uncorrelated.

Least squares methods exist in many forms, all of which have the Ordinary Least Squares
(OLS) method at their basis. Before going into the derivation of the OLS method, it is
important to know that all linear least squares methods build upon the assumption that any
function can be expressed in terms of an algebraic basis. Given a set of any arbitrary number
N of observations of independent variable x and the same number of dependent variable
y = f(x), the data can be approximated by a function of the type:

φ(x) =

m
∑

i=1

θiϕi(x) (5-1)

where ϕ(fx) denotes any basis function. In least squares, it is common practice to use an
algebraic polynomial basis function which, in turn, can be expressed as:

ϕi(x) = xi−1 (5-2)

Substitution of Eq. (5-2) into Eq. (5-1) yields univariate polynomial basis P (x):

P (x) =
m
∑

i=1

θi−1x
i−1 = θ0 + θ1x+ θ2x

2 + . . .+ θm−1x
m−1 (5-3)

where the degree of the polynomial is denoted by m − 1. Most frequently, the polynomial
basis is a function of more than one variable which can be formulated by superimposing the
different independent variables related to the dependent variable. A generalized description
of a bi-variate polynomial of degree m− 1 = 2 is given as following:

P (x1, x2) = θ0 + θ1,0x1 + θ0,1x2 + θ2,0x
2
1 + θ1,1x1x2 + . . . =

n+m=d
∑

i=1

θn,m
d!

n!m!
xn1x

m
2 (5-4)

where n and m indicate, respectively, the degree of independent variables x1 and x2. The
total degree is given by n+m = d.
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5-2 Principles of Regression Analysis

Usually for regression analysis it is assumed that the model is linear in the parameters.
Hence, the parameters of the model only appear in linear fashion, e.g. parameters appear
as multiplicative factors for every term or cross-term of independent variables. By having
defined a model structure such as described in Section 5-1, it is possible to collect the set
of N independently collected observations in regression matrix or design matrix X. For a
polynomial of degree m the design matrix is given by:

X =











1 x(1) x2(1) . . . xm(1)
1 x(2) x2(2) . . . xm(2)
...

...
...

. . .
...

1 x(N) x2(N) . . . xm(N)











(5-5)

The regression model can now be formulated as follows:

y = Xθ + ε (5-6)

where θ is a vector of parameters and ε the vector of model residuals. The independent
variables in the rows of X are also often referred to as regressors. The least squares estimation
of the model parameters is found by, as the name implies, minimizing the sum of squared
residuals. By defining a criterion or cost function J as follows:

J =

N
∑

i=1

εi =

N
∑

i=1

(yi −X(xi)θ) (5-7)

where X(xi) is the ith row of the design matrix. The convex cost function has a minimum
when the partial derivative of the cost function with respect to the parameter vector θ is zero

∂J (x,θ)

∂θ
=

ε⊺ε

∂θ
= 0 (5-8)

The set of parameters for which the convex cost function is minimized is obtained by solving
for argminθ J . Without a full derivation, the least squares estimator for the parameters of a
linear in the parameters model is given by (Strejc, 1983; Ljung, 2002):

θ̂ = (X⊺X)−1X⊺y (5-9)

The predicted outcome of the ordinary least squares estimator is then given by:

ŷ = Xθ̂ (5-10)

Subsequently, the residuals and Mean Squared Error (MSE) can be defined as:

ε = y − ŷ (5-11)
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MSE =
1

N

N
∑

i=1

(y − ŷ)2 (5-12)

The OLS estimator is a very simple and straightforward procedure to obtain an estimate of
the model parameters, however, it should be used with caution. The OLS estimator was
derived with the following assumptions which should also be met for the OLS estimator to
be a Best Linear Unbiased Estimator (BLUE):

1. The model is linear in the parameters, i.e. the dependent variable is a function of a set
of superimposed independent variables multiplied by their coefficients with, in addition,
an error term describing the error of the regression model with respect to the real model.

2. The expected value for the model residuals is equal to zero: E {εi} = 0.

3. The variance of the residuals is constant Var (εi|xi) = σ2. This assumption implies
that all diagonal terms of the residuals covariance matrix are equal to each other:
Cov (ε1, ε1) = Cov (ε2, ε2) = . . . = Cov (εN , εN ) = σ2.

4. The last assumption states that the correlation terms in the covariance matrix of the
residuals should be equal to zero, these terms correspond to the off-diagonal terms of
the residuals covariance matrix: E (ε⊺i εj) = Cov (εi, εj) = 0 ∀ i 6= j.

The latter two conditions imply that the covariance matrix of the residuals should be ho-
moskedastic, i.e. a constant term in the diagonal and all other elements equal to zero. The
above mentioned assumptions are the Gauss-Markov assumptions, summarized in the Gauss-
Markov theorem.

As already mentioned earlier in previous chapters, the main advantage of the use of the TSM
is an effective decomposition of the non-linear parameter estimation problem into a non-linear
state estimation or reconstruction problem and a linear parameter estimation problem. For
this reason, the use of OLS in the parameter estimation procedure suffices in most cases.
However, depending on the performance of the Kalman filter and nature of the system’s
dynamics, which is always (moderately to highly) non-linear in aircraft state estimation, the
residuals resulting from the parameter estimation problem, in the practical case, might be
heteroskedastic. In other words, the off-diagonal terms of the residuals covariance matrix are
not equal to zero indicating correlation between the residuals. In addition, the variance of
the residuals might vary in time resulting in non-homogeneous variance over the residuals
covariance matrix. In these cases, the use of a Generalized Least Squares (GLS) method
offers a solution.

The fundamental model assumptions for GLS are analogous to the assumptions for the OLS
model but differ in the assumption of the residual covariance matrix. In the OLS case, the
covariance matrix can simply be written as σ̂2I, where the covariance matrix under GLS
differs in terms of non-homogeneous variance on the diagonal and non-zero elements off the
main diagonal:

Cov {ε} = E {ε⊺ε} = Σ (5-13)
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Analogously as in the OLS case, a convex cost function can be defined as:

JGLS = (y −Xθ)⊺Σ−1 (y −Xθ) (5-14)

Without further derivation, we arrive at the generalized least squares estimate of parameter
vector θGLS (Ljung, 2002; Klein & Morelli, 2006):

θGLS =
(

X⊺Σ−1X
)

−1
X⊺Σ−1y (5-15)

At this point it also becomes apparent that, for this regression approach, an a priori estimate
of the error covariance matrix Σ must be available. However, in reality this matrix is often
unknown. Many authors, including Klein & Morelli (Klein & Morelli, 2006), suggest the use
of a hybrid or two-step approach. This method estimates an a priori residuals covariance
matrix with the use of the OLS estimate. This matrix is then estimated as follows:

Σ = Cov {ε} = E {ε⊺ε} = R̂εε (5-16)

where R̂εε indicates the autocorrelation matrix of the residuals. For a zero mean and weakly
stationary random process (Klein & Morelli, 2006), the autocorrelation of the residuals can
be estimated by:

R̂εε =
1

N

N−k
∑

i=1

= v(i)v(i+ k) k = 0, 1, 2, . . . , r (5-17)

where r indicates the maximum lag index.

The hybrid or two-step GLS method should be used with caution. Maddala argues that in
the case where there are no lagged dependent variables used as regressors, the GLS estimate
obtained from a covariance estimation by OLS have the same asymptotic distribution as the
estimate based on the true residuals covariance matrix (Maddala, 1971). However, if this is
not the case, the efficiency of the GLS estimator is lost. In such cases, the OLS estimator
would still be more efficient, i.e. estimates from OLS would have a better agreement with the
asymptotic lower bounds of the variance.

5-3 Aerodynamic Model Formulation

The general formulation of the aerodynamic model follows from a linearized set of forces and
moments. The dependence of the longitudinal coefficients and input variables is expressed as

Ca = Ca (α, β, q, δe) a = X, Z or m (5-18)

Similarly, this dependence for the asymmetrical or lateral variables is expressed as

Ca = Ca (β, α, p, r, δa, δr) a = Y, l or n (5-19)

Clearly, for large-amplitude deviations and disturbances, it cannot be assumed that the sym-
metric and asymmetric degrees of freedom are completely decoupled. For this reason, the
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angle of attack and sideslip angle should be included in both the lateral and longitudinal
equations. However, from the perspective of input maneuver design (Mulder, 1986) it can be
said that when performing longitudinal maneuvers there is little to no excitation among the
lateral states and vice versa. Therefore it is safe to assume that other lateral states do not
have to be included in the longitudinal model and longitudinal states in the lateral model.

The model is made independent from mass, velocity and aircraft dimensions by using non-
dimensional rotational rates. Different model representations are possible. The stability and
control derivatives can be expressed in either the stability frame or body frame. In the
context of aerodynamic model identification from flight test data, the use of a representation
in the aircrafts body frame is more appropriate (Klein & Morelli, 2006). If it is necessary
to compare the estimated set of parameters with an a priori model from windtunnel data,
it might be more convenient to express the parameters in the stability frame, however, this
approach requires translational accelerations in both Xb and Zb. The use of the ensemble of
noisy measurements for the translational accelerations to calculate the accelerations in the
direction of the lift and drag vector can lead to significant amplification of the noise levels
(Klein & Morelli, 2006).

Considering the preceding discussion, it was chosen to use the following set of equations to
represent the aerodynamic model. Note however that this set is a base model that can later
be expanded by including higher order terms.

CX = CX0
+ CXαα+ CXβ

β + CXq̂

qc

V
+ CXδe

δe (5-20)

CY = CY0 + CYββ + CYαα+ CYp̂
pb

2V
+ CYr̂

rb

2V
+ CYδa δa + CYδr δr (5-21)

CZ = CZ0
+ CZαα+ CZβ

β + CZq̂

qc

V
+ CZδe

(5-22)

Cl = Cl0 + Clββ + Clαα+ Clp̂
pb

2V
+ Clr̂

rb

2V
+ Clδa δa + Clδr δr (5-23)

Cm = Cm0
+ Cmαα+ Cmβ

β + Cmq̂

qc

V
+ Cmδe

(5-24)

Cn = Cn0
+ Cnβ

β + Cnαα+ Cnp̂

pb

2V
+ Cnr̂

rb

2V
+ Cnδa

δa + Cnδr
δr (5-25)

where subscript (̂·) relates to the non-dimensional rotational acceleration.

Note that the stability derivatives corresponding to the engine forces and moments are not
included in the equations presented above. This will also be reflected in the calculation of
the non-dimensional forces and moments from the linear and rotational accelerations, where
the thrust components will be subtracted. The latter quantities cannot be measured directly
in flight and require to be computed with the help of the following equations (Morelli, 2012):

CX =
mAx − Tx

qS
, CY =

mAy
qS

, CZ =
mAz − Tz

qS
(5-26)
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Cl =
Ixx
qSb

(

ṗ− Ixz
Ixx

(pq + ṙ) +
Izz − Iyy
Ixx

qr

)

(5-27)

Cm =
Iyy
qSc

(

q̇ − Ixx − Izz
Iyy

pr +
Ixz
Iyy

(p2 − r2)−MT

)

(5-28)

Cn =
Izz
qSb

(

ṙ − Ixz
Izz

(ṗ− qr) +
Iyy − Ixx

Izz
pq

)

(5-29)

The results from Eqs. (5-26)-(5-29) form the set of N dependent variables. Note that the
subtraction of the thrust from the force in the Xb axis is straightforward, however, in order
to calculate the pitching moment due to thrust, some more accurate information about the
positioning of the engines with respect to the center of gravity is required. Most commonly
this quantity is assumed to be zero, the same holds for the thrust force along the Zb axis.
The change in rotational rate per unit time can be obtained from smoothed differentiation of
the rotational rates when not measured directly (Klein & Morelli, 2006).

5-4 Diagnostic for Regression Analysis

In this section an overview will be given of the methods that will be used during the diagnostic
of the selected regression model. First, in Section 5-4-1 methods to determine the goodness
of fit in terms of different quantities will be presented and, subsequently, in Section 5-4-2 an
overview will be given of a collection of methods to analyze the significance of the overall
model and the model parameters independently.

5-4-1 Statistical Measures

In linear regression, the estimated parameter, as mentioned before, is given by:

θ̂ = (X⊺X)−1X⊺y

The estimated output of the regressor is then given by substituting Eq. (5-4-1) into ŷ = Xβ̂,
analogously to Eq. (5-10)

ŷ = X (X⊺X)−1X⊺

︸ ︷︷ ︸

H

y (5-30)

In the equation above, H is often referred to as the hat matrix and plays an important role
in diagnostics for regression analysis. It should be noted that the hat matrix is symmetric
and idempotent, implying that H⊺ = H and H2 = H, allowing for many simplifications. The
error, or residuals, can be expressed by linear combinations of the observed response variable
as follows:

ε = y − ŷ = y −Hy = (I−H)y (5-31)
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The covariance of the residual can be found by making use of the idempotency property of
the hat matrix and by knowing that σ2 {y} = σ2 {ε} = σ2I:

σ̂2 {ε} = (I−H)σ2 {y} (I−H)⊺ = σ2 (I−H) (5-32)

in which σ2 {·} indicates the variance of the stochastic variable. This approach requires the
variance of the residual to be known beforehand, however, in most cases this does not apply.
An estimation of the variance can be made by making use of the MSE and by knowing that
the MSE is the sum of the variance and the squared bias term. Hence, if it is assumed that
the bias term is small, it is safe to make an estimation of the residuals variance by using
σ2 ≈ σ̂2 = MSE. The latter can be done by:

σ̂2 =
ε⊺ε

n− p
=

(y −Xθ)⊺ (y −Xθ)

n− p
(5-33)

where n is the number of elements in the error vector and p the number of parameters in the
estimator. The quantity n − p is also referred to as the degrees of freedom of the residual.
Note the difference in the correction term of Eq. (5-12) with respect to Eq. (5-33), where the
latter equation provides an unbiased estimate of the variance of the stochastic variable.

Analogously to the estimation of the covariance matrix of the residuals, the covariance matrix
of the estimated parameters can be calculated with the help of the estimated variance σ̂2:

Cov
{

θ̂
}

= σ̂2 (X⊺X)−1 (5-34)

The 95% confidence interval, for large sample sizes, of the estimated parameters is then given
by:

θ̂c = θ̂ ± 2 · diag
(

Cov
{

θ̂
})

(5-35)

In the same fashion as the confidence interval for the estimated parameters, the confidence
interval for the estimated output as estimator and confidence interval for the estimated output
as predictor can be estimated. The first interpretation of the variance of the estimated output
is a quantity to analyze the performance of the regression model on its training data. Its value
can be found by:

y(i) = ŷ(i)± 2s {ŷ(i)} (5-36)

where s {·} is the standard symbol for the standard deviation of the stochastic variable and
the variance of the estimated output can be estimated by:

Var {ŷ(i)} = σ̂2x⊺(i) (X⊺X)−1 x(i) (5-37)

Similarly, the variance of the predicted output is given as:

Var {y − ŷ(i)} = σ̂2
(

1 + x⊺(i) (X⊺X)−1 x(i)
)

(5-38)
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In the case of a GLS estimate, the covariance matrix of the estimated parameters can be
found in the same way as for the OLS case by also including the weights matrix, i.e. the
inverse of the estimated covariance of the residuals:

Cov
{

θ̂
}

GLS
=

N
∑

i=1

x(i)
N
∑

j=1

R̂εε(i− j)x⊺(j) (5-39)

In order to account for the inaccuracy of the estimated weights matrix, Klein & Morelli
(2006) suggest the use of a sandwich estimator for a more robust estimate of the parameter
covariance matrix:

Cov
{

θ̂
}

GLS
= (X⊺X)−1





N
∑

i=1

x(i)
N
∑

j=1

R̂εε(i− j)x⊺(j)



 (X⊺X)−1 (5-40)

More importantly, Grauer & Morelli state that for the identification of aerodynamic models,
simplified version of Eq. (5-40) should not be used because they tend to underestimate the
uncertainty of the estimates (Grauer & Morelli, 2014). The use of Eq. (5-40) is therefore
recommended and can also be used in the estimation of the uncertainties for OLS.

Finally, as an additional tool to analyze the correlation of the estimated parameters, the
correlation matrix can be calculated by normalizing the diagonal terms in the covariance
matrix:

Corr
{

θ̂
}

=















1
s(θ̂1)

0 . . . 0

0 1
s(θ̂2)

. . . 0

...
...

. . .
...

0 0 . . . 1
s(θ̂p)















Cov
{

θ̂
}















1
s(θ̂1)

0 . . . 0

0 1
s(θ̂2)

. . . 0

...
...

. . .
...

0 0 . . . 1
s(θ̂p)















(5-41)

Generally, in addition to the statistical tools presented above, an inspection of the models
residuals should be performed. Both visually and statistically. The developed equation for
the determination of the residuals autocorrelation in Eq. (5-17) should again be assessed. For
a completely uncorrelated population of residuals, the autocorrelation should remain between
the 2 standard deviation bounds as the number of lags increases. The standard deviation, for
large sample sizes, can be approximated by (Box & Jenkins, 1994):

s
{

R̂εε

}

≈ R̂εε(0)√
N

(5-42)

5-4-2 Hypothesis Testing

Once a least square routine is applied to a set of data with a predetermined model structure,
the significance of the overall model can be tested with a so-called F-test. By applying this
statistic, the selected model can be tested against the null hypothesis which is defined as:

H0 : θ1 = θ2 = . . . = θp = 0 (5-43)
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If the null hypothesis is rejected at a certain confidence level, it is safe to assume that one
or more parameters in the model describe a reasonable part of the variance in the observed
variables. Therefore, the model is said to be significant. The F-statistic itself can be calculated
with:

F0 =
θ⊺X⊺y −Ny2

pσ̂2
(5-44)

The null hypothesis is rejected if F0 > F (α, p,N − p) in which α denotes the selected signifi-
cance level. Usually, the latter quantity is set to 0.05.

The Fisher Information matrix is defined as follows:

I
(

θ̂
)

= −E

(

∂2 lnL(y|θ̂)
∂θ2

)

(5-45)

where L

(

y|θ̂
)

indicates the maximum likelihood value of y given the estimated set of pa-

rameters θ̂. A reasonable estimate of the covariance matrix of parameter θ̂, for large sample
sizes, is given by the inverse of the Hessian matrix.

From asymptotic theory of maximum likelihood, the difference between the parameter esti-
mation and some parameter of interest, say θ0, approaches a normal distribution with zero
mean. Normalization by the standard deviation should in that case result in a zero mean, unit
variance distribution. This statistic is referred to as the Wald statistic and can be formulated
as follows:

W =
θ̂ − θ0

σ(θ̂)
∼ N (0, 1) (5-46)

In most cases, the parameter of interest would be the zero vector because we want to test
whether the estimated parameter differs from zero or not, hence whether the parameter is
relevant. In the Wald test, the null hypothesis is rejected if the test statistic is larger than a
pre-determined critical value: Wn > z. This critical value can be any value, however usually
the value is an indication of the certainty level. Since the Wald test asymptotically converges
to the χ2-distribution, a confidence interval of, e.g. 95%, can be found by taking the inverse
of the χ2-distribution.

z = F−1(1− α) (5-47)

In an analogous fashion as the F-statistic for the overall model structure, the statistical
significance of the individual parameters can be tested by the partial F-statistic. This statistic
is used in model selection which will be further discussed in Section 5-5. The partial F-statistic
can be calculated by:

F0 =
θ̂
2

Var(θ̂)
(5-48)
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5-5 Model Structure Selection

The aforementioned methods for statistical analysis, see Section 5-4 and in particular Section
5-4-2, can also directly be applied in the process of model structure selection. By assuming an
initial (linear) model structure, significant terms can be added until the regression equation is
satisfactory. Several techniques for the selection of regression models have been developed, of
which stepwise regression is considered as the preferred method (Klein, 1989). This method
is a so called forward method because terms are added at each step. Alternatively, backward
elimination can be used by removing terms from a full-term model.

5-5-1 Modified Stepwise Regression

The application of a forward stepwise regression method in aerospace applications (Klein et
al., 1981) was adjusted to, as initial condition, always include the linear part of the baseline
model as defined in Section 5-3. This modified stepwise approach (Mulder et al., 1994;
Klein, 1989; Batterson & Klein, 1989) was successfully applied in numerous researches and
works by testing the significance of each added parameter which are obtained from a pool of
candidate regressors. Klein, Batterson and Murphy argue that models obtained from modified
stepwise regression can determine regression models closer to the true physical model or with
better prediction capabilities than stepwise regression without constraints and, in addition,
the modified stepwise regression routine can directly be applied to large amplitude maneuvers
(Klein et al., 1981). However, for this approach to work, the regression data should be
partitioned according to the variables which influence the existence of non-linear terms in the
aerodynamic model (Klein, 1989; Batterson & Klein, 1989).

In summary, the modified stepwise regression approach consists of the following steps:

1. Formulation of the initial model. For a modified stepwise approach, these models form
the constraints as all linear terms included in the initial model should also be included
in the final model. In addition, a pool of candidate regressors should be defined. Most
commonly, this pool includes all linear, quadratic and terms with cross interaction, such
as αβ.

2. Calculate the parameter estimate of the selected model structure through the normal
equations. Note that for this step any regression routine can be used, however, in most
cases OLS is applied.

3. Calculation of common statistical measures, such as the sum of squares, parameter
covariance matrix and variance of the residuals.

4. With the metrics obtained from the previous step, the F-statistic for testing the rele-
vance of the model can be calculated. In addition, the significance of each parameter
can be tested separately with the partial F-test. Parameters that are found to be in-
significant will be removed from the model.

5. The choice of new parameters to enter the model will be based on (1) the significance of
the parameter to enter the model, where the selected parameter should pass the selected
significance level and (2) the improvement of the models overall F-statistic, where the
newly introduced parameter should improve the value of the corresponding metric.
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In general, models that result from the aforementioned procedure often contain non-linear
pure quadratic terms and terms with cross-interactions. These terms do not directly have a
true physical meaning, however, it can be stated that these additional terms allow the model
to resemble the given data more closely by reducing the model residuals to an uncorrelated
random sequence. These properties make the modified stepwise regression an excellent tool
to analyze and create an appropriate model structure for large-amplitude dynamic maneuvers
(Klein et al., 1981).

5-5-2 Multivariate Orthogonal Functions

As alternative to the modified stepwise regression approach, Klein used a method to trans-
form the set of regressors to the orthogonal domain (Klein, 1989). This method was later
described and repeated by different authors to assess the influence of different regressors on
the regression model (Lombaerts et al., 2010; Grauer & Morelli, 2014; Morelli, 2012). An
additional benefit that follows from the transformation of the set of regressors to a set of
orthogonal regressors is that data collinearity can be dealt with effectively. A more in depth
description of data collinearity will be presented in the next section.

Different methods to obtain a set of orthogonal regressors exist. In practice, computer software
often allows a relatively easy computation of the principal components of a regression matrix.
The procedure used by Klein in (Klein, 1989) transforms the set of original regressors X to
the orthogonal space by:

Z = XT (5-49)

where T is the transformation matrix from the ordinary to the orthogonal domain. The
regression model now becomes:

y = Zγ + ε (5-50)

Straightforward application of the earlier presented principles of least squares regression re-
sults in the following set of estimated parameters:

γ̂ = (Z⊺Z)−1 Z⊺y (5-51)

Regular statistical measures and procedures as described in Section 5-4 can be used to assess
the performance of the estimated regression model. The estimated parameters γ̂ can be
transformed back to the ordinary domain by again employing transformation matrix T:

θ̂ = Tγ̂ (5-52)

The transformed set of regressors Z can, in principle, easily be obtained by using the pca

routines in the Matlab computer software package. This matrix corresponds to the coefficients
found from this routine. Transformation matrix T corresponds to the principal components
score matrix. Note that this routine automatically centers the variables and orders then in
the transformed regression matrix according to the size of the eigenvalue (decreasing). The
latter corresponds to the the variance of the principal component.
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The main advantage of this approach is that regressors can be tested for their significance
independently from the model due to the orthogonal nature of the resulting set of regressors,
where in the stepwise regression approaches the significance of the independent parameters
can be tested, however, this is not independent of the model. From the above mentioned
procedure, a simple threshold can be set to only include principal components that explain
more than a preset amount of the total variance. Alternatively, Grauer & Morelli use an
approach where we start with one principal component. Subsequently, principal components
are added up until the point where the Predicted Square Error (PSE) attains a minimum.
This number of principal components will be used in the transformation matrix. The PSE is
defined as (Morelli, 2012):

PSE =
1

N
(y − ŷ)⊺(y − ŷ) + σ2max

n

N
(5-53)

where n is the number of principal components and the maximum variance of the model fit
error can be estimated by:

σ2max =
1

N − 1

N
∑

i=1

(y(i)− y) (5-54)

The PSE in its current form is a convex function with a global minimum, allowing for a
very straightforward selection of the number of principal components to be used in Principal
Components Regression (PCR).

5-6 Data Collinearity

Using ordinary regression routines as described in Section 5-2 applied in the framework of
aerodynamic model identification can often lead to badly scaled or singular matrices. As a
result of these numerical deficiencies, the accuracy of the estimated set of parameters can
reduce significantly. This problem, in most cases, is closely related to collinearity, a near
linear dependency, in the given set of variables of the linear regression model.

Near linear dependencies in the regression matrix, i.e. amongst the the independent variables,
are data problems which are often related to the model specification. For example, pitch rate
q and the change in angle of attack over a unit time interval dα/dt = α̇ are closely related
and therefore simultaneous use of these variables in linear least squares regression often leads
to ill conditioned design matrices.

The solution to these aforementioned problems can often be solved relatively easy by leaving
out one of the correlated variables. However, this approach is not always tolerated, e.g. when
a given fixed model structure is to be fit with a set of data. A more structural solution
might be the use of PCR. By selecting the appropriate amount of principal components for
the regression, the variance of the estimated parameters can be reduced. However, PCR is
not an unbiased estimator since it trades off excessive variance of the OLS estimator for a
slight increase in the bias of the parameter. The total sum of squares, which is the sum of
the squared bias and variance, will be reduced as effect of this tradeoff, arguably, leading to a
better approximation of the given data. Therefore, the accuracy of the parameter estimates
in the case of data collinearity can be increased by the use of PCR.
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5-7 Model Globalization

The earlier presented methods prove to be excellent tools in the identification of an aerody-
namic model using the TSM. However, in most cases model identification is only required for
local models, describing the dynamics only in a sub-space of the total state-space. In contrast
to the last approach, the aerodynamic model that will be identified as part of this thesis must
cover the whole flight envelope as denoted in the requirements.

Several methods exist for the creation of global aerodynamic models, however only a selection
of these methods has shown to exercise sufficient approximation power over the whole domain.
Over the last few years, a small collection of advanced techniques have been proposed and
succesfully applied in the identification of a global aerodynamic model. Most notably, the
global non-linear identification method with multivariate splines, introduced by De Visser
(2009), show great theoretical potential. However, at the same time this method suffers from
its increased complexity in terms of the theoretical basis w.r.t. methods such as presented in
this paper. Therefore, a successful identification with this method requires perfect theoretical
understanding of the applied concepts. Something that might not be possible within the given
time frame.

Other methods, such as the identification of a global model with a neural network also show
great potential (De Weerdt, Chu, & Mulder, 2005). However, neural networks have a complex,
nontransparent and obscure internal structure. In addition, physical interpretation of the
identified model coefficients is not possible. Therefore this method is less attractive for off-
line models that will be used in future research endeavor into control algorithms.

In order to successfully use the proposed set of techniques summarized as the TSM, a method
is sought after to identify a global model by using linear regression techniques. In general,
the application of least squares to identify a global model lacks sufficient approximation
power over the whole domain (De Visser et al., 2009). Especially when only considering the
conventional linear model. Extension of the model structure, such as described in Section
5-5, with non-linear terms can already enhance the fit over the whole domain (Morelli, 2012;
Grauer & Morelli, 2014). Grauer argues that the use of multivariate orthogonal functions
can successfully be applied to a set of candidate regressors to efficiently identify a global
model, however this approach requires a specific set of input maneuvers to be executed. In
order to further increase the ability to successfully capture the aerodynamics over the whole
flight envelope, different authors have suggested the identification of local models in so called
hyperboxes, subspaces of the prevailing aerodynamic angle (De Weerdt et al., 2005; Klein,
1989; Van Oort et al., 2010).

The latter method shows the greatest potential for successful identification of a global model
from flight test data, applied in combination with the TSM and within the given time frame.
The selection of the number of subspaces and the appropriate model structure can be seen as
the challenges of this method.

5-8 Conclusion

As second major part in the methodology of the Two Step Method, linear parameter esti-
mation techniques play a significant role of importance. Many different techniques have been
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described in literature, however, the most used class of methods is the collection of least square
methods. Ordinary least squares is the most basic type of least squares regression. However,
for this approach to remain unbiased and efficient, the presented set of regression data must
suffice to a number of conditions. Most importantly, the expected value of the residuals must
be equal to zero and the residuals should be homoscedastic, indicating a stationary variance
in the diagonal elements and very small correlation terms. In addition, the presented data set
must contain sufficient excitation of the aircraft’s dynamic states for a successful application
of least-squares parameter estimation methods.

When the basic assumptions of OLS are violated, one must resort to a more appropriate
method. In most cases, the use of a generalized least squares method suffices. However, in
reality a priori information about the residuals covariance matrix is not available. In such
cases, a hybrid method can be applied to estimate the latter quantity by OLS and subsequently
using this information to for the weights matrix for GLS regression. This approach should be
used with caution because if there are lagged dependent variables present in the regression
matrix, the two-step GLS approach loses its optimality and regular OLS will be more efficient.

For the formulation of the aerodynamic model there is a general consensus in literature
about the basic structure. In principle, the longitudinal and lateral motion can be decoupled
resulting 6 equations to describe the forces and moments around the three reference axes.
In general, for simulation design, identification of the parameters in the aircraft body axis is
preferred because conversion to the stability axes requires all three acceleration components
which greatly amplifies noise levels. The identification of an global aerodynamic model can
be done with a collection of advanced identification methods. Despite their great potential,
application of such methods is not straightforward and should also be possible within the
given time. For this reason, the creation of an initial global model by the interpolation of
multiple local models, identified in subspaces of the prevailing aerodynamic variable, is the
preferred approach.

In general two different methods are available to automate the model structure selection.
Modified stepwise regression assumes that the model always contains the linear terms and
adds terms from a pool of candidate regressors if they pass a certain significance level. In
addition, these terms should be uncorrelated from existing terms in the model. Alternatively,
model terms can be chosen from a pool of candidate regressors by using an orthogonal basis
functions approach. The advantage of this approach is that all regressors can be analyzed
for their significance independently in contrast to the iterative stepwise regression method.
Both methods should be used with caution as higher order terms and cross interactions
increase the chances of ill conditioned regression matrices, indicative for data collinearity.
For this problem, the orthogonal basis functions approach should be the most robust solution
in theory.
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Chapter 6

Conclusion

As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go
through flight simulator-based stall recovery training. This implies that all aircraft dynamics
models driving flight simulators must be updated to include accurate pre-stall, stall and post-
stall dynamics. For this reason, the division of Control and Simulation has recently set up
a task force to develop a new methodology for high-fidelity aircraft stall behavior modeling
and simulation. This data is to be derived from flight test data from our Cessna Citation
II laboratory aircraft and tested in our SIMONA simulator. At this moment, the C&S
division uses a simulator model of the Cessna Citation known as the Delft University Aircraft
Simulation and Analysis Tool (DASMAT) model as its baseline Citation aircraft model. This
model does not include an accurate model for the aircraft’s stall behavior. As part of this
stall modeling research, a new high-fidelity flight simulation model of the Cessna Citation
II laboratory aircraft will be developed, which will replace the current DASMAT model as
baseline model.

In order to facilitate the upgrade of the old simulation framework, a preliminary feasibility
study was presented in this report. Early analysis has indicated several problems with the
current model of which the most important can be identified as follows: (1) the model suffers
from the lack of an accurate mass and inertia simulation, (2) the model does not include an
accurate landing gear problem, (3) the overall model structure of the simulation framework
is obscure and outdated, (4) most importantly, the current simulation framework features
a Cessna Citation I aerodynamic model, which is a mismatch from the current laboratory
aircraft, the Cessna Citation II. Despite these deficiencies DASMAT forms an excellent basis
to further build upon because it is in agreement with the general conventional simulation
model structure and, in addition, its modularity allows for easy extension with future mod-
ules. The latter property should be retained at any cost. Furthermore, deficiencies were
established within the engine model. However, this model forms its own collection of systems
and subsystems. Above all, any improvement of the engine model would require an indi-
vidual identification procedure which cannot be fit into the given time frame for this thesis
assignment.

To streamline the upgrade process, the individual components of the DASMAT simulation
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framework were classified by their importance in the same process. By far the most important
upgrade has to be made to the aerodynamic model that is implemented at current. This
upgrade is classified as the only high priority upgrade. In addition, the integration of a mass
model is highly desirable and should therefore be prioritized. Other blocks, such as the engine
block, equations of motion and the observation model do not require too much work on their
own. Currently these blocks, like all subsystems of DASMAT, are represented by a block-
in-block structure and urgently require an upgrade to the new embedded Matlab function
representation. The latter will be done as part of this thesis work.

The most urgent upgrade of the simulation framework comes in the form of the identification
and implementation of a new aerodynamic model. The latter is to be done with a set of
techniques referred to as system identification techniques. System identification is develop-
ment of mathematical systems and equations from a set of measurement data. Therefore, the
main objective of this work was formulated as follows: Design a high-fidelity simulation model
of the Cessna Citation II aircraft, by the identification of an aerodynamic model from the
provided experimental flight data, which is valid over the whole flight envelope and integrate
this model into the upgraded or extended DASMAT simulation framework. The collection of
such a dataset is out of the scope of this thesis, however, opportunities to collect new data
may arise.

In literature, many different approaches have been described to identify such an aerodynamic
model. However, most promising for application to the problem presented in this thesis is the
Two-Step Method. This method effectively decomposes the non-linear parameter estimation
problem into a non-linear flight path estimation problem and a linear parameter estimation
problem.

Originally, the Kalman filter was introduced for application to problems defined in linear state
space. It was not much later when an extension with effective local linearization allowed the
application of the Kalman filter to non-linear equations. In first instance the Kalman filter
was primitively meant as navigation filter, combining the information from different sensors
to generate a state estimate with the highest degree of accuracy. The latter approach was
also applied to offline state reconstruction problems, in order to generate an accurate state
estimate. Over the past few years, many extensions to the popular Kalman filter were intro-
duced. However, the (Iterated) Extended Kalman Filter can still be considered as the prime
class. In theory, this filter suffers from a great lack of approximation power for moderately to
highly non-linear systems as it uses a first order Taylor expansion to approximate the non-
linear trajectory. For this reason, different methods of representing the stochastic properties
of the system in question were sought after. For this reason the Unscented Kalman Filter was
introduced.

The Unscented Kalman Filter uses a different method to approximate the stochastic properties
of the non-linear system. Instead of a linearization approach, the formulation of a set of sigma
points should in theory capture the statistics of the mean and covariance up to the third degree
and higher. Therefore, from a theoretical perspective, the Unscented Kalman Filter would be
well suited for applications to systems of non-linear nature.

In this report, a comparison has been made between the IEKF and the UKF when applied in
the framework of a non-linear Cessna Citation I simulation model. This comparison was done
in terms of performance, defined as the ability to reconstruct the real state and sensitivity
to initial conditions. In addition, the theoretical prospects of both filter types should be
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taken into account. When comparing the average of a 50 run Monte Carlo simulation, the
performance of both filter types is very similar. In some cases, such as the estimation of
the sensor biases the UKF performs slightly better while the position components are better
approximated by the IEKF. Some attention is also given to the performance of selected
filters with the addition of Kalman smoother, which should theoretically lead to a smoother
approximation of the true state. The latter class of backward recursive Kalman filters does
not lead to a significant increase in the accuracy of the estimate. In contrast, in most cases
the application of smoothers increases the difference between the true state and the state
estimate.

In terms of sensitivity to initial conditions both filter types also show similar performance
when applied to the Citation I model. In this context a remark should be given to the
performance of the IEKF in cases with large noise intensity corruption of the data. The
latter might lead to problems with the observability of the internal state. The UKF is less
sensitive because of its different state representation. Theoretically the UKF should also give
a better approximation when working with data corrupted by non-Gaussian noise.

Experimental flight data is often obtained from different instruments and therefore inherently
misaligned due to differences in the sample rate of the measurements. A more structural
solution to this problem was presented in the form of a multi-rate Kalman filter. However,
in this report it was also shown that this type of filter does in most cases only lead to an
improvement of the state estimate of which the sample rate is low. Other state estimates
will deteriorate from such an approach and therefore resampling by interpolation offers an
excellent alternative for offline flight path reconstruction.

In the last chapter of this report, a collection of linear parameter estimation methods for use in
the second step of the Two-Step Method was presented. In cases where the basic assumptions
for the Ordinary Least Squares estimator are violated, use can be made of the Generalized
Least Squares method. In reality, a priori information about the residuals covariance matrix
is not available, for this reason a hybrid two step method should be employed to obtain the
latter matrix. This should be done with caution, as in some cases such estimates are less
efficient than the standard OLS method.

In literature there is a general consent about the standardized linear structure of the aerody-
namic model expressed in terms of the non-dimensional forces and moments. In most cases,
this linear structure does not have enough approximation power over the whole domain. For
this reason, a modified stepwise regression approach was proposed to come up with a higher
accuracy model structure. Alternatively, one can resort to the orthogonal domain with the
use of multivariate orthogonal basis functions to select a set of regressors from a candidate
pool. When an appropriate model structure has been selected, globalization can be applied
by identification of multiple locally defined models, identified in subspaces of the prevailing
aerodynamic variable. This approach is well suited for the model to be identified as part
of this thesis, since it can more easily be extended by a model for the stall and post-stall
dynamics at higher angles of attack.

Altogether, with the methods discussed in this preliminary thesis, an aerodynamic model
will be identified that will cover the regular, pre-stall flight envelope of the Cessna Citation
II. When incorporated into the upgraded or extended DASMAT simulation framework, this
model can successfully form the basis for future research endeavor into numerous fields.
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Reference Frames

This appendix features an overview of the aircraft body fixed, stability and ECEF or naviga-
tion reference frames.
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Figure 1: Overview of the orientation of the body fixed reference frame Fb
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Figure 2: Overview of the orientation of the stability reference frame Fs
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Figure 3: Overview of the orientation of the navigation or Earth Centered Earth Fixed (ECEF)
reference frame FE
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Sensor Bias Estimation

During this MSc research project, an a priori estimation of the sensor biases was made for use
in the Kalman filter routines. Measurements were obtained from (1) a stationary and balanced
ground measurement, and (2) in-flight measurements. The in-flight measurements - for e.g.
the determination of the variance of the angle of attack signal - were obtained by choosing
a relatively steady part during the flight, i.e. very limited variation in the corresponding
measurement.



128 Sensor Bias Estimation

Measurement Bias Std Unit Instrument Source

ϕ - 4.4582× 10−6 deg arinc/GPS 20151007_074445

λ - 2.5609× 10−6 deg arinc/GPS 20151007_074445

z - 0.1869 m arinc/Dadc1 20151007_074445

ż - 0.0471× 10−5 m/s arinc/Dadc1 20151007_074445

φ - 0.0013 rad arinc/Ahrs1 20150317_083328

θ - 0.0019 rad arinc/Ahrs1 20150317_083328

χ - 0.0027 rad arinc/Fms1 20150317_083328

VTAS - 0.2086× 10−5 m/s arinc/Dadc1 20151007_074445

α - 0.2086× 10−5 rad analog/vane 20151007_074445

p −1.15× 10−5 0.0013 rad/s arinc/Ahrs1 20150317_083328

q −2.1896× 10−5 5.6528× 10−4 rad/s arinc/Ahrs1 20150317_083328

r −3.0848× 10−5 2.2982× 10−4 rad/s arinc/Ahrs1 20150317_083328

Ax 0.1253 0.0095 m/s2 arinc/Ahrs1 20150317_083328

Ay 0.1642 0.0247 m/s2 arinc/Ahrs1 20150317_083328

Az 0.0306 0.0581 m/s2 arinc/Ahrs1 20150317_083328

δe - 0.0011 rad synchro 20150317_083328

δa - 6.937× 10−4 rad synchro 20150317_083328

δr - 4.7028× 10−4 rad synchro 20150317_083328

Table 1: An overview of the a priori estimation of the bias and standard deviation determined
from smooth parts in the flight data.
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Flight Test Cards

In this appendix the flight test cards that were made for the collection of new experimental
flight test data during this thesis project are presented. Only a small selection of the test
conditions as shown on these cards have been performed due to time restrictions. For future
data collection, is is encouraged to collect data at the points specified on these test cards.
More specifically, the current database has little data in altitude ranges FL50-FL80 and
FL110-FL150, corresponding to test points 1-11 and 23-28. In addition, flight test data with
flap, trim tab and gear measurements are scarce if not unavailable. Extra attention should
be provided to these conditions for the extension/improvement of the current flight model.
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FLIGHT TEST CARD
Flight Department

PROJECT : Design, Identification and 

Implementation of a High-Fidelity 

Cessna Citation II Flight Simulation 

Model

TEST CARD NUMBER : 1a

SUBJECT : Model identification conditions

REFERENCE :

NOTES :

EST. DURATION OF TEST POINT: -- min

HAZARD CATEGORY : ROUTINE / LOW / MEDIUM / HIGH

INITIAL CONDITIONS

ALT/FL : >FL50-FL80< ENGINE SETTING: Level flight

IAS : As required FLAP SETTING : As required

MACH : LANDING GEAR : As required

MASS : OTHER : AP/YD off

C.G. :

EXPERIMENT PROCEDURE

# Check ALT/FL IAS Flap setting Landing gear

1 � >FL50 – FL80< 120 0 degrees Up

2 � >FL50 – FL80< 120 15 degrees Up

3 � >FL50 – FL80< 120 40 degrees Up

4 � >FL50 – FL80< 120 40 degrees Down

5 � >FL50 – FL80< 160 0 degrees Up

6 � >FL50 – FL80< 160 15 degrees Up

7 � >FL50 – FL80< 160 40 degrees Up

8 � >FL50 – FL80< 160 40 degrees Down

9 � >FL50 – FL80< 200 0 degrees Up

10 � >FL50 – FL80< 200 15 degrees Up

11 � >FL50 – FL80< 250 0 degrees Up

For each experimental condition, perform the series of 

identification inputs as indicated on card 2.
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FLIGHT TEST CARD
Flight Department

PROJECT : Design, Identification and 

Implementation of a High-Fidelity 

Cessna Citation II Flight Simulation 

Model

TEST CARD NUMBER : 1b

SUBJECT : Model identification conditions

REFERENCE :

NOTES :

EST. DURATION OF TEST POINT: -- min

HAZARD CATEGORY : ROUTINE / LOW / MEDIUM / HIGH

INITIAL CONDITIONS

ALT/FL : >FL80-FL110< ENGINE SETTING: Level flight

IAS : As required FLAP SETTING : As required

MACH : LANDING GEAR : As required

MASS : OTHER : AP/YD off

C.G. :

EXPERIMENT PROCEDURE

# Check ALT/FL IAS Flap setting Landing gear

12 � >FL80 – FL110< 130 0 degrees Up

13 � >FL80 – FL110< 130 15 degrees Up

14 � >FL80 – FL110< 130 40 degrees Up

15 � >FL80 – FL110< 130 40 degrees Down

16 � >FL80 – FL110< 160 0 degrees Up

17 � >FL80 – FL110< 160 15 degrees Up

18 � >FL80 – FL110< 160 40 degrees Up

19 � >FL80 – FL110< 160 40 degrees Down

20 � >FL80 – FL110< 200 0 degrees Up

21 � >FL80 – FL110< 200 15 degrees Up

22 � >FL80 – FL110< 250 0 degrees Up

For each experimental condition, perform the series of 

identification inputs as indicated on card 2.
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FLIGHT TEST CARD
Flight Department

PROJECT : Design, Identification and 

Implementation of a High-Fidelity 

Cessna Citation II Flight Simulation 

Model

TEST CARD NUMBER : 1c

SUBJECT : Model identification conditions

REFERENCE :

NOTES :

EST. DURATION OF TEST POINT: -- min

HAZARD CATEGORY : ROUTINE / LOW / MEDIUM / HIGH

INITIAL CONDITIONS

ALT/FL : >FL110-FL150< ENGINE SETTING: Level flight

IAS : As required FLAP SETTING : As required

MACH : LANDING GEAR : As required

MASS : OTHER : AP/YD off

C.G. :

EXPERIMENT PROCEDURE

# Check ALT/FL IAS Flap setting Landing gear

23 □ >FL110 – FL150< 140 0 degrees Up

24 □ >FL110 – FL150< 140 15 degrees Up

25 □ >FL110 – FL150< 180 0 degrees Up

26 □ >FL110 – FL150< 180 15 degrees Up

27 □ >FL110 – FL150< 220 0 degrees Up

28 □ >FL110 – FL150< 250 0 degrees Up

For each experimental condition, perform the series of 

identification inputs as indicated on card 2.
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FLIGHT TEST CARD
Flight Department

PROJECT : Design, Identification and 

Implementation of a High-Fidelity 

Cessna Citation II Flight Simulation 

Model

TEST CARD NUMBER : 2

SUBJECT : Model identification inputs

REFERENCE :

NOTES :

EST. DURATION OF TEST POINT: -- min

HAZARD CATEGORY : ROUTINE / LOW / MEDIUM / HIGH

INITIAL CONDITIONS

ALT/FL : See 1a ENGINE SETTING: Level flight

IAS : FLAP SETTING : See 1a

MACH : LANDING GEAR : See 1a

MASS : OTHER : AP/YD off

C.G. :

TEST PROCEDURE REC. NRS

Safety pilot:

1. Perform 3211 maneuver on elevator (15 [s] total)

2. Perform 3211 maneuver on aileron (15 [s] total)

3. Perform 3211 maneuver on rudder (15 [s] total)

FTE:

1. Make recording during maneuvers
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Simulation Framework Upgrade

As part of this thesis work, an upgraded simulation framework has been presented. In addition
to the integration of a new aerodynamic model, as presented in accompanying paper, the
individual components of the DASMAT simulation framework have been upgraded. In this
appendix, a short overview of the new model is presented including some notes that can be
used in further development of the new framework.

In Figure 4 an overview of the upgraded DASMAT framework is presented. As can be seen
from this figure, changes have been made to the overall layout of the model by the addition
of a mass model. After the equations of motion block, outputs are collected in a bus signal
containing: (1) the state vector, (2) state derivative vector, (3) mass model vector and (4) a
vector containing the forces and moments defined in the body frame.

The Airdata block, Aerodynamic model block, gravity block and equations of motion block
have received full upgrades to be represented by Matlab function blocks. The Airdata block
and Aerodynamic block are still shown as subsystems as these blocks contains more than one
sub-system. In general, no changes have been made to the Engine model and Landing gear
model. The only change required for these blocks was a conversion or the old state vector,
i.e. V, α, β representation, to the new state vector, i.e. u, v, w representation.

Overall, the following additional changes have been made:

• Input vector for the control surface deflections is now aligned with the general aerospace
definition, i.e. elements of the vector are now organized as δa, δe, deltar.

• Airdata block does now contain a discrete wind gust model, Von Karman wind turbu-
lence model and Wind Shear model (standard Matlab implementation). The turbulence
and wind model parameters are initialized in the initcit.m script.

• The aerodynamic model block is designed to contain the base aerodynamic model and
additional models, such as the stall model. The base aerodynamic model itself uses the
interp2 function to extract the aerodynamic parameters from the model look-up tables.
These look-up tables have a fixed structure and are organized as depicted in Figure 5.
Note that the dimension of the actual data table corresponds to the dimension of the
altitude and Mach vectors. The dimension of the data table is (m× n× k), where m is
the length of the Mach vector, n is the length of the altitude vector and k is the number
of parameters in the table.
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Figure 4: Overview of the upgraded simulation framework. Model inputs are shown in green and
outputs are indicated by the red color.
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C<X>table.mat
Name .....................................Model name, e.g. N for the yaw moment
Coeff ..............................................Model coefficient names, e.g.
Alt ..............................Altitude range corresponding to the table values.
Mach ...............................Mach range corresponding to the table values.
Data ...........................................................Actual data table

Figure 5: File structure of the Matlab aerodynamic model database file.

• The Environment input variable has been removed. Environmental variables are now
initialized in the initcit.m script and loaded into the Matlab function blocks as masked
variable. If any older application or template requires these inputs, they can easily be
added to the framework and connected to a ground block to prevent errors.

• The mass model is initialized by the initmass.m script, also executed as part of the
initcit routine. The mass model makes use of a structure containing entities such
as the basic empty weight, passenger locations, passenger weights, basic empty weight
inertia etc. This structure is automatically created and loaded into the mass model
block. The output of the mass model block only contains the mass, cg location and
elements of the inertia tensor.

• The observation function is now presented as a Matlab function block. Currently, the
following outputs are produced: (1) state vector, (2) derivative state vector, (3) airdata
vector, (4) engine state vector for both engines, (5) mass model output, (6) accelerations
and load factor, (7) flight path information and (8) a misc vector. The latter vector
allows for additional outputs to be created inside the observation model. Note however
that a bus creator should be placed on the output of the Matlab function block.

• Trim has been moved to a pass-through block before the ua input. The trim simply
consists of addition of the trim values to the current control surface deflection.

• Note that the currently implemented aerodynamic model is always defined in the center
of gravity because of limitations during the identification process. For this reason, shifts
in the cg cannot be simulated properly. It can be chosen to assume a fixed position for
the definition of the forces and moments, allowing for the simulation of shifts in the cg.
However, it should be noted that the fidelity of the forces and moments as predicted by
the aerodynamic model is lost in that case.

• Model (mask) initialization is done by initcit.m. In this script, the following data
and settings are created: (1) load aircraft and aux data, (2) initialize turbulence scales,
gust settings, wind in ECEF frame etc., (3) load aerodynamic model databases/tables,
(4) initialize aircraft trim, (5) load landing gear parameters.

• The folder structure of the Citation simulation model is presented in Figure 6
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|Main folder

|acdata Name .........................Folder containing aircraft and engine data
|library Name Folder containing C routines for the engine and landing gear model
|massmodel ...........................Folder containing the mass model routines
|modeltables .........................Folder containing the model database files
gearparams .................................................Gear parameters file
initcit ............................................Citation initialization routine
initmass ...............................Citation mass model initialization routine
CitationMain.mdl ...............................Main Citation simulation model

Figure 6: Simulation framework folder structure.
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A. Model Parameter (M − h) fit
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Figure 12. Estimated parameters of the CX model, obtained from a collection of 52 longitudinally induced
δe 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plotted
versus the Mach number M and altitude h together with the robust least squares fit and its corresponding 2σ
confidence bounds on the predicted output. 29 of 36
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(b) CY parameters versus h at an average Mach number of 0.34

Figure 13. Estimated parameters of the CY model, obtained from a collection of 61 laterally induced δa and
δr 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plotted
versus the Mach number M and altitude h together with the robust least squares fit and its corresponding 2σ
confidence bounds on the predicted output.
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Figure 14. Estimated parameters of the CZ model, obtained from a collection of 112 longitudinally induced
δe 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plotted
versus the Mach number M and altitude h together with the robust least squares fit and its corresponding 2σ
confidence bounds on the predicted output.
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(a) Cl parameters versus M at an average altitude of 5100 m
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Figure 15. Estimated parameters of the roll rate Cl model, obtained from a collection 107 of laterally induced
δa and δr 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plotted
versus the Mach number M and altitude h together with the robust least squares fit and its corresponding 2σ
confidence bounds on the predicted output.

32 of 36

American Institute of Aeronautics and Astronautics



Parameter Fit 2σ std

Θ = 0.07+ 0.07MΘ = −0.00+ 0.00M

Θ = −0.06− 0.02MΘ = −0.04+ 0.08M

Θ = −0.35+ 0.13MΘ = −0.17+ 0.23M

C
N

r

Mach [-]

C
n
δ
r

C
n
δ
a

C
n
p

C
n
0

C
n
β

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

-2

0

2
×10−3

0.05

0.1

0.15

-0.6
-0.4
-0.2

0
0.2

-0.6

-0.4

-0.2

0

-0.2

-0.1

0

0.1

-0.3

-0.2

-0.1

0

(a) Cn parameters versus M at an average altitude of 5100 m

Parameter Outlier Fit 2σ std

Altitude [m]

C
n
δ
r

C
n
δ
a

C
n
p

C
n
β

C
n
r

C
n
0

Θ = −0.36 + 1.02 × 10−5
h

Θ = −0.03 + 3.15 × 10−6
h Θ = −0.05−4.02 × 10−6

h

Θ = −0.17 + 1.47 × 10−5
h

Θ = 0.01 + 1.42 × 10−5
hΘ = 0.00−9.58 × 10−7

h

3000 4000 5000 6000 3000 4000 5000 6000

3000 4000 5000 6000 3000 4000 5000 6000

3000 4000 5000 6000 3000 4000 5000 6000

-2

0

2

4
×10−3

0

0.05

0.1

0.15

-0.6
-0.4
-0.2

0
0.2

-0.5

-0.4

-0.3

-0.2

-0.2

-0.1

0

0.1

-0.3

-0.2

-0.1

0

0.1

(b) Cn parameters versus h at an average Mach number of 0.33

Figure 16. Estimated parameters of the yaw rate Cn model, obtained from a collection 82 of laterally induced
δa and δr 3-2-1-1 and hardover maneuvers with the error bars indicating the uncertainty of the estimate, plotted
versus the Mach number M and altitude h together with the robust least squares fit and its corresponding 2σ
confidence bounds on the predicted output.
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B. Region of Validity
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Figure 17. Sample point used in the identification of the CX model together with its convex hull 〈X〉 and the set
of validation points.
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Figure 18. Sample point used in the identification of the CY model together with its convex hull 〈X〉 and the set
of validation points.
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Figure 19. Sample point used in the identification of the CZ model together with its convex hull 〈X〉 and the set
of validation points.
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Figure 20. Sample point used in the identification of the Cl model together with its convex hull 〈X〉 and the set of
validation points.
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Figure 21. Sample point used in the identification of the Cm model together with its convex hull 〈X〉 and the set
of validation points.

Sample point Validation point Convex hull 〈X 〉

p
[r
ad
/s
]

α
[r
ad

]

β [rad]

M
[-
]

r [rad/s]

β [rad]

h
[m

]

M [-]

-0.5 0 0.5-0.2 -0.1 0 0.1 0.2

-0.2 -0.1 0 0.1 0.20.2 0.3 0.4 0.5

-0.4

-0.2

0

0.2

0.4

0.2

0.3

0.4

0.5

-0.1

0

0.1

0.2

3000

4000

5000

6000

Figure 22. Sample point used in the identification of the Cn model together with its convex hull 〈X〉 and the set
of validation points.
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