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Abstract

We tracked the largest volunteer security information shar-

ing community known to date: the COVID-19 Cyber Threat

Coalition, with over 4,000 members. This enabled us to ad-

dress long-standing questions on threat information sharing.

First, does collaboration at scale lead to better coverage? And

second, does making threat data freely available improve the

ability of defenders to act? We found that the CTC mostly

aggregated existing industry sources of threat information.

User-submitted domains often did not make it to the CTC’s

blocklist as a result of the high threshold posed by its au-

tomated quality assurance using VirusTotal. Although this

ensured a low false positive rate, it also caused the focus of

the blocklist to drift away from domains related to COVID-19

(1.4%-3.6%) to more generic abuse, such as phishing, for

which established mitigation mechanisms already exist. How-

ever, in the slice of data that was related to COVID-19, we

found promising evidence of the added value of a community

like the CTC: just 25.1% of these domains were known to

existing abuse detection infrastructures at time of listing, as

compared to 58.4% of domains on the overall blocklist. From

the unique experiment that the CTC represented, we draw

three lessons for future threat data sharing initiatives.

1 INTRODUCTION

For years now, research has consistently found that threat data

feeds each cover just a fraction of the landscape. Numerous

comparisons have been made among different threat intelli-

gence sources and they all find very little overlap: feeds are

dominated by data points that appear only in a single source

and in no other one. This holds across the spectrum of threat

data, from freely available blocklists and abuse feeds [1, 2]

to closed industry sources [3], all the way up to the most

expensive feeds at the high end of the market [4]. It points

to poor coverage of the threat landscape, a problem for the

industry and – more importantly – for its customers. To il-

lustrate: anti-phishing companies missed a large portion of

the phishing sites targeting their customers, while those sites

were being discovered by their competitors [5].

While prior work on threat intelligence sources demon-

strated the problem of low coverage, it does not discuss how

it could be overcome. One obvious and often proposed so-

lution is more data sharing. This typically takes place in

informal trusted communities of specialists or in formalized

sharing agreements among firms, such as the Cyber Threat

Alliance [6] and the Anti-Phishing Working Group [7], which

often demand reciprocity, or ‘quid pro quo’, in order to avoid

free-riding behavior. This forms a high entry barrier for access

to the shared data, as not everyone has enough to contribute

in order to gain access, and so benefits are typically limited

to corporate entities. Non-participants can only get access to

the separate services of these firms. In economic terms, such

sharing arrangements create club goods, not public goods.

A potentially more effective form of information sharing

would go beyond these boundaries: open to any contribu-

tor, with free access for anyone to the pooled data. Under

normal conditions, market incentives would prevent such a

public good from emerging. Generating quality threat in-

formation costs money and firms have to recoup their in-

vestments. However, the 2020 global pandemic gave rise

to a real-world experiment that temporarily suspended nor-

mal economics in data sharing: the COVID-19 Cyber Threat

Coalition (CTC) [8]. The CTC was a volunteer-based re-

sponse where firms and individuals shared threat intelligence

on pandemic-related threats posed by cybercriminals as well

as nation states [9]. The coalition’s mission was “to operate

the largest professional-quality threat lab in the history of

cybersecurity” and reduce gaps in availability and coverage

of existing defense mechanisms [8, 10]. After 3 months, over

4,000 individuals and organizations had signed up, with com-

panies like Symantec, Microsoft and Cofense contributing

data [11, 12]. Contrary to sharing based on quid pro quo, the

resulting blocklist was freely available to anyone.

Does such large-scale open data sharing actually improve

our defenses against threats? To the best of our knowledge, re-

search on the effectiveness of large data-sharing arrangements
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is extremely sparse. More than a decade ago, Moore and Clay-

ton studied the inner workings of crowdsourcing at PhishTank,

but not its impact on mitigation [13]. Thomas et al. found that

a Google-based threat exchange could have more impact than

existing standalone anti-abuse pipelines [14] but access to the

pooled data in the exchange was restricted. A recent study on

VirusTotal did not analyse the information-sharing aspects of

the service nor its impact, but evaluated the aggregation of

detection results of the participating vendors [15].

In this paper, we set out to extend the literature on data-

sharing arrangements by learning from the CTC experiment.

We investigate two questions: (i) By pooling data from its

community, did the CTC improve coverage of COVID-19-

related threats over existing defenses? And (ii) Did publishing

threat data in a freely available blocklist improve the ability

of defenders to act against threats, compared to the existing

abuse mitigation infrastructure? To answer these questions,

we first describe the organizational setup of the CTC and ob-

serve how the community pooled data and conducted quality

assurance. We then evaluate the blocklist through manual clas-

sification of a sample and by identifying false negatives for

COVID-19-related domains. Next, we conduct longitudinal

measurements to infer who acted when against domains on the

CTC blocklist: registry, registrar, browser vendor, or security

provider? We end by identifying key lessons for improving

the impact of open large-scale data sharing mechanisms.

In sum, our contributions are:

• We present the first empirical evaluation of a large and open

threat sharing community, the COVID-19 Cyber Threat

Coalition, and describe its mechanisms for producing and

vetting threat intelligence.

• We find that user contributions were heavily skewed, with

just 10 users making 90% of contributions. Further, the

high threshold posed by the indicator vetting process, which

relied on VirusTotal, resulted in a mere 5.14% of user-

contributed indicators actually being propagated to the

blocklist. Instead, most data came from commercial firms,

and at least part of this was vetted against a lower threshold.

• We show that the CTC list went well beyond the scope of

just COVID-19-related threats. Generic phishing made up a

large portion of the blocklist: domains containing the word

whatsapp (2.8%) outnumbered those containing keywords

related to COVID-19 (2.6%).

• Based on longitudinal measurements, we demonstrate that

for 58.4% of the domains on the CTC blocklist, existing

abuse-mitigation mechanisms were faster: domain-level or

client-side interventions had already taken place before the

domains appeared on the blocklist. For COVID-19-related

domains, this share is smaller: 25.1%, which is evidence

of added value of the community. The remaining portion

was intervened against later or not at all. This means that

the blocklist improved the ability of defenders to protect

themselves. Its impact could have been larger, if it had not

depended as much on VirusTotal for vetting indicators.

2 THE CTC COMMUNITY

The CTC started as a Slack community on March 19 – a week

after the WHO declared COVID-19 a pandemic. Joshua Saxe,

a security specialist at Sophos, founded the community out

of a “personal sense of alarm”, conceiving it as a “crisis com-

mons model” where “traditional competition and grievance

[were] set aside in a moment of exceptional need” [16]. The

CTC founders articulated objectives for the community and

then set up community support services for volunteers to join

and participate. We also joined and revealed ourselves as

researchers interested in learning more about how the com-

munity was functioning. The CTC’s mission was threefold:

fostering collaboration across organizations to uncover other-

wise missed threats, producing professional-grade output that

the community can rely on, and prioritizing the public good

over the interests of individual actors [8].

2.1 Information products

The CTC set out to publish an open high-quality blocklist

containing COVID-19-themed abuse to “supplement the ex-

isting defensive structure” by setting up a “separate threat

intelligence platform dedicated just to pandemic-related cy-

ber activity” [10, 17]. Blocklist data was published on the

CTC’s website from March 29, 2020 onwards [18]. In May,

it reported that over 60,000 distinct IP addresses had been

consuming the blocklist [19]. Initially, they offered two types

of lists: one with vetted indicators of compromise (IOCs) and

a larger list with unvetted IOCs submitted by the community.

The latter was eventually discontinued to “produce the highest

quality feeds with the least amount of false positives possi-

ble” [20]. Within the vetted category, four blocklist files were

available: for domains, URLs, IP addresses and file hashes.

The latter two, however, have remained empty at all times.

Our analysis focuses on what is arguably the main list, i.e.,

the domain list.

The technical indicators were supplemented by threat ad-

visories and community meetings. The advisories featured

themes like phishing and ransomware related to COVID-19,

trends in pandemic-related domain registrations, and the se-

curity challenges of remote work. They were published on

the CTC website1 and sent out via a mailing list every week

from April 6 until May 26. From April 16 onward, commu-

nity leaders also organized online community meetings or

‘town halls’ hosted on Zoom and archived on YouTube [21].

These webinars were intended to disseminate findings from

the reports, to update the community on changes to the CTC

procedures and infrastructure, to interview representatives

of security companies, and to allow for Q&A with the com-

munity leaders. For the first two months, town halls were

organized weekly; after June 11, the CTC planned to organize

them every two weeks, but no town halls took place since.

1https://www.cyberthreatcoalition.org/advisories
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Figure 1: Member activity on the CTC Slack workspace

peaked 1.5 weeks after the community was founded [19].

2.2 Community structure

The primary means of collaboration in the Cyber Threat Coali-

tion was a Slack workspace. The aim of this Slack workspace,

which anybody could join, was for members of the secu-

rity community to share information and make the necessary

contacts for interventions [22]. After a brief period of un-

structured posts, the workspace was organized into themed

channels for posting community updates, IOCs per topic (e.g.,

web, email, malware), and region-based networking. Mem-

bership grew to 1,500 in one week [23] and to over 4,000

after 3 months [24]. Members were requested to add their

affiliation and job title to their screen name, although this

information was not validated. Of the users who indicated

a country in their username, around half came from North

America, around a third from Europe (mainly the United

Kingdom and the Netherlands), 3% from Australia, with the

rest scattered around the world. Based on stated affiliations,

the CTC counted representatives of security vendors, health-

care providers, CERTs, financial institutions, domain name

infrastructure providers, major technology firms and law en-

forcement agencies among its members. Activity peaked at

the end of March and then slowly decreased (Figure 1). By

July, the public channels saw much less activity, with daily

posts in the single digits, and no official announcements were

made except for a single update in February 2021 stating that

the CTC was in “low battery mode” but “evolving”.

The community had a simple organizational structure [19]:

a ‘steering committee’ functioned as administrators for the

community, with its members committed to “sacrificial” time

contributions [22], leading teams for various tasks like vetting

process development, advisory writing, and media outreach.

Within the larger community, over 100 ‘vetted volunteers’

[25] underwent identity verification via their social media

profiles to obtain access to private channels, where more

sensitive data could be shared [22].
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Figure 2: Counts of unique domains newly seen in the CTC

AlienVault OTX group and on the CTC blocklist (logarithmic

scale), and the proportion of AlienVault OTX domains that

were propagated to the CTC blocklist.

3 PRODUCTION OF THE BLOCKLIST

In this section, we describe how the CTC’s prime information

product was sourced and vetted. Four sources fed the CTC

blocklist: (i) user contributions on Alienvault OTX; (ii) user

contributions via a Slackbot; and industry lists from both (iii)

named and (iv) unnamed vendors.

Initially, TI sharing was ad hoc, consisting of community

members posting free-form IOCs, first in the general Slack

channel and soon after in field-specific channels (e.g., for

email and domains). After one week, the CTC set up groups

for machine-readable TI sharing on AlienVault OTX [23].

Users could submit IOCs to the CTC Slack workspace. After

they had been checked for maliciousness , indicators were

published on the ‘vetted’ list [22]. In June, the CTC intro-

duced a Slackbot that let users contribute indicators as well

as vet indicators supplied by other users [11]. We describe

these two vetting mechanisms in subsection 3.2. Further, com-

mercial security providers contributed “hundreds of millions

of indicators per day” [22] outside of the AlienVault group,

although these were also subject to the same vetting proce-

dure. These indicators appear to represent the vast majority

of domains on the final vetted blocklist, as demonstrated in

Figure 2. Known industry contributors to the CTC are Syman-

tec [12], Microsoft and Cofense [11], but other vendors have

asked to remain anonymous [22].

3.1 User contributions on AlienVault OTX

We analyze the indicators contributed to the CTC group on

AlienVault OTX, using the API to gather all submissions over

time. By July 2020, 738 users had been accepted into the

CTC’s closed AlienVault OTX group. Only 47 users actually

contributed IOCs – 10 of whom made 90% of all contribu-

tions (Figure 3). The two heaviest contributors did so on a

fixed schedule, and described drawing on newly registered

domains and certificate transparency for their lists. Others

added more opportunistically, with a downward trend over

time. In general, recipients were often left guessing as the

source or method behind the contributed indicators.
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Figure 3: Daily count of unique domain indicators contributed

to the CTC AlienVault OTX group, with the top 10 and other

contributors ranked on the total number of contributions over

time.

In other words, even though the community has over 4000

members, only 1–2% of them contributed indicators, with 10

users contributing the bulk. This skewed distribution resem-

bles the pattern found in the PhishTank community project,

where volunteers collect and classify phishing sites [13]:

there, the top 10 contributors made 69.9% of submissions

and 57.4% of votes [26]. It also resembles free and open

source software (FOSS) development, where a tiny fraction

of contributors supplies most code and most others only con-

tribute once, typically in the form of a bug report [27]. As we

discuss in the next section, most user contributions to the CTC

never made it past the vetting stage (see also subsection 3.2).

At the outset, a large proportion of AlienVault submissions

made it to the CTC blocklist, but after the list was reset on

April 12 (subsection 4.2), domains added to the CTC block-

list came mostly from named and unnamed industry sources.

Over the entire period of our data collection, just 1.23% of

domains on the blocklist came from user contributions on

OTX.

3.2 Quality assurance

The community admins instituted vetting mechanisms for sub-

mitted indicators, in order to “provide reasonable assurance

that what we re-share with the public are examples of truly

malicious artifacts” [16]. Initially, vetting consisted of a pool

of volunteers manually verifying maliciousness of submitted

indicators. The workflow was eventually automated using a

security orchestration service that integrated VirusTotal: if a

domain received 10 or more hits, this would lead to a domain

being marked as malicious and propagated to the blocklist.

A domain with between 4 and 10 hits would require manual

review, while for fewer than 4 hits, it would be marked as

“clean” [11] and dropped.

Although automation allowed for higher volumes of in-

dicators to be processed, this workflow left the community

with three problems. First, only indicators that were already

known to be malicious by many VirusTotal scanners could be

added to the blocklist. Earlier research has consistently found

very low overlap among TI sources [1, 4], so requiring that

indicators are found by 10 scanners imposes a high threshold

to propagation. It meant that just 5.14% of domains from the

AlienVault OTX group made it onto the blocklist. Moreover,

VirusTotal aggregates labels from 84 established automated

scanners, negating the community contribution aspect of the

CTC. The second problem: some of the contributed industry

sources, in particular Cofense [11], were seen as reliable, yet

their indicators did not appear on the vetted blocklist as too

few VirusTotal scanners flagged them. As a solution, the CTC

admins lowered the thresholds for these trusted sources [11].

The third problem was how to evaluate the indicators that

fell in-between the thresholds for ‘clean’ or ‘malicious’. At

first, this was done manually by a small pool of volunteers. It

is unlikely that they could keep up with the overall volume,

so probably these indicators did not make it onto the vetted

list. On June 11, the CTC admins announced a new Slackbot

that would allow all members to contribute to vetting [11].

Upon request, the bot would serve a domain or URL to an

individual user for evaluation. It resembled crowdsourcing

mechanisms like PhishTank, albeit without the built-in val-

idation of multiple users checking the same indicator. The

bot potentially increased the scalability of manual vetting and

would allow indicators to be included long before VirusTotal

would provide enough ‘hits’. The downside was that vet-

ting might be done by members with unverified expertise or

even potentially adversarial motives. Unfortunately, when the

crowdsourcing functionality arrived by June, the peak of user

activity had already passed, so it came too late to actually

change the vetting process. Despite this process, some false

positives slipped through, leading domain owners to join the

CTC Slack workspace and request removal from the blocklist.

4 EVALUATION OF THE BLOCKLIST

In this section we address our first research question: By

pooling data from its community, did coverage of COVID-

19-related threats improve over existing defenses? First, we

manually label a sample of domains to evaluate the nature of

new IOCs appearing on the CTC blocklist. Second, we track

the evolution of the blocklist composition, and measure its

focus on COVID-19-related abuse. Third, we measure the role

and impact of VirusTotal on the vetting process. Fourth, we

estimate the coverage of COVID-19-related domains through

a comparison with external sources.

4.1 Manual classification of domains

Our first assessment of the blocklist content is to manually

inspect a sample of domains. Over the course of 5 days (17-22

May 2020), we took a daily sample of 50 domains that were

newly added to the CTC blocklist. We visited those within 4

hours of their appearance on the list, in order to minimize the

1152    31st USENIX Security Symposium USENIX Association
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Figure 4: Manual classification of 500 domains, visited at

two moments in time.

chance that the domain would already be affected by a coun-

termeasure. We navigated to the site with Microsoft Internet

Explorer 11 in a virtual machine on a computer located in the

Netherlands. If necessary, we translated page contents using

Google Translate. After one week, we visited each site again

to see if anything had changed. As a reference, we carried

out this process not only for the CTC blocklist but also for a

COVID-19 blocklist published by DomainTools [28].

We based our label taxonomy on existing classifications

[29, 30]. In many cases, the labeling could be applied in a

straightforward manner, such as with parked domains. Some

categories contain more ambiguity. When we were uncertain

about what the appropriate label was, we took a conservative

approach and counted them as true positives, giving the block-

list publishers the benefit of the doubt. As shown in Figure 4,

out of 250 domains visited from the CTC list, we encountered

just 5 cases of COVID-19 related abuse (2%), including phish-

ing sites themed with the pandemic and sites selling dubious

protective materials. The CTC list also included 21 examples

(8%) of internet abuse that was not visibly tied to COVID-19,

such as generic phishing sites, counterfeit products and phar-

maceuticals – although it is conceivable that these domains

were in fact used in a campaign that somehow played upon

COVID-19, for example in a spam run. We deemed 3 web-

sites as legitimate – and therefore false positives on the list

(1%). The majority of domains were unavailable (71%).

The DomainTools list contained more examples of actual

COVID-19 related abuse (6%), but at the cost of more false

positives (13%), many of which had in common that they

contained keywords related to the pandemic, such as a Wuhan-

based welding hardware supplier.

When revisiting the domains after one week, we saw minor

changes (4% overall), most of which were previously unavail-

able domains becoming reachable as parking pages. We saw

seven examples (1.5% overall) of generic abuse not related to

COVID-19 becoming active in this interval of one week.
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Figure 5: Evolution of the composition of the CTC vetted

domain blocklist.

4.2 Composition of the blocklist

Where subsection 4.1 analyzed a sample, further analysis in

this paper is based on the full CTC blocklist of vetted do-

mains from March 31 up to July 1, 2020, during the peak of

community activity. We retrieved this list once a day starting

March 31, every hour starting April 4, and every five min-

utes from April 15 onward. Over time, the vetted domain

blocklist steadily grew (Figure 5), reaching 46,103 domains

on July 1, 2020. Cumulatively, 46,832 fully qualified do-

main names (FQDNs) on 27,096 unique second-level domain

names (SLDs; i.e., domains that can be bought from a reg-

istrar) appeared on the vetted list by July 1, 2020. Domain

removals were rare, except when the list was reset on April 12

due to the shift towards automated vetting [24] which suggests

that stale entries were not purged from the list, potentially

generating false positives after cleanup or takedown of a ma-

licious domain2. Further, we suspect that back-end changes

caused a temporary eight-day blockage in updates, followed

by the addition of 5,918 domains on June 22, as users reported

download issues around the same time [24]. The list contin-

ued to be updated until December 6, 2020, albeit without

much community input, after which the list remained avail-

able, but no longer changed, indicative of dwindling efforts

in the CTC.

Given the CTC’s objective to track COVID-19-related

abuse, we examine the coverage of the blocklist in this area.

For this purpose, we generated 370 COVID-19-related key-

words in 15 languages (see Appendix A). At its peak, over

5,000 domains containing such keywords were registered

every day [31]. However, over our measurement period,

only 1,229 (2.6%) out of the 46,832 domains seen on the

CTC blocklist contain at least one keyword. The share of

COVID-19-related domains was stable between 1.4% and

3.6% throughout time, except before the list reset on April

12, when up to 73% of the (much shorter) list was COVID-

19-related3.

21,140 domains were removed; of these domains, 38.8% re-emerged at

some later point in time.
3Out of the 1,140 domains removed then, 826 were COVID-19-related,

of which 474 would never return.
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Provider Phishing (%) Malware (%) Other (%) Total flagged

GSB* 27 462 (96.8) 1 017 (3.6) 364 (1.3) 28 383

VirusTotal** 40 132 (85.7) 6 680 (14.3) 20 (0.0) 46 832

* Domains may be assigned to multiple abuse types.

** By majority vote over engines with a specific abuse classification.

Table 1: Abuse types for domains on the CTC list as identified

by Google Safe Browsing (GSB) and VirusTotal.

Overall, generic phishing was much more frequent: 17.3%

of domains matched a brand tracked by PhishTank4: the

keyword whatsapp occurred in 2.8% of domains, making

it more prevalent than all pandemic-related keywords com-

bined. Likewise, Google Safe Browsing and VirusTotal clas-

sify 96.8% and 85.7% of flagged domains respectively as

engaging in phishing (Table 1).

Our findings contrast with the CTC’s stated goal of sharing

“high quality threat intelligence related to the COVID-19 pan-

demic” [32]. The small share of COVID-19-related domains

suggests that the collected TI goes beyond COVID-19-specific

abuse, and instead captures any abuse observed during the

pandemic. This could be the result from automated submis-

sion processes, with generic TI sources being redirected to

the CTC instead of curated and targeted feeds. It also seems

directly related to the decision to move to vetting based on

VirusTotal. Before that shift, the proportion of COVID-19-

related domains was much higher. Afterwards, the list relied

on the ability of existing scanners to detect the abuse and

therefore it converged on conventional forms of abuse, po-

tentially discarding highly relevant IOCs on new threats. We

revisit this issue in subsection 4.4.

4.3 Effect of VirusTotal scanners on vetting

We independently replicated the CTC’s vetting procedure

based on VirusTotal, in order to gain insight into the effects

on the outcomes. We requested VirusTotal data once a day

for all domains that up to that date had appeared on the CTC

blocklist, from April 28 until July 1, 2020.

Any domain with more than 10 detections in VirusTotal

was automatically considered to be vetted as malicious. We

indeed observe that domains meeting that criterion make up

the large majority (88.7–97.2%) of domains throughout our

measurement period (Figure 6). We also see a smaller set

(2.8%–11.3%) of domains with between 4 and 10 detections,

which suggests that they either went through the manual re-

view process or they came from trusted industry feeds that

were vetted against a lower threshold (subsection 3.2). The

share of domains with fewer than 4 detections is negligible,

which indicates that the industry sources contributed only do-

4https://www.phishtank.com/target_search.php; the list was

pruned to reduce the likelihood of false positives, and no lookalike terms

were added.
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Figure 6: Evolution of the proportion of domains with a given

detection count by VirusTotal domain scanners at the time of

presence in the CTC blocklist.
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Figure 7: Distribution of domains that were (not) detected by

Google Safe Browsing (GSB) over the number of detections

by VirusTotal engines.

mains that were already known to multiple security vendors

in VirusTotal.

No domain was marked as malicious by more than 27 of

VirusTotal’s 84 domain scanning engines; this low ratio is

consistent with that found by Peng et al. [15]. Among the 84

scanners, only 23 detected over 5% of vetted domains, and 21

scanners detected over 5% of the domains with COVID-19-

related keywords in them. In other words, the CTC threshold

for vetting is quite high: 10 detections means that a domain

is already known to nearly half of all engines that contribute

a non-trivial amount of detections.

As an external corroboration, we determine whether do-

mains on the CTC list were also flagged by Google Safe

Browsing (GSB). We find that the more VirusTotal engines

detect a domain, the more likely it is to also be flagged by

GSB (Figure 7). We confirm with a χ
2 test that the distribu-

tions of VirusTotal engine counts for domains that are and are

not detected by GSB significantly differ (χ2
= 14595, critical

value at α = 0.05: 40.113, p < 0.0001). The CTC’s threshold

of 10 detections is close to the crossover where more domains

are flagged by GSB than are not (11 detections). While this

supports a low false positive rate, the threshold also makes it

very hard for the CTC to contribute new threat intelligence

beyond that of existing anti-abuse infrastructure.
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Figure 8: Detection rates for the top 10 engines in VirusTotal

sorted by maximum detection rate.

Overall, slightly fewer scanners tend to detect malicious

domains as our measurement period progresses (Figure 6).

Among the top 10 engines (Figure 8), most have a consistent

detection rate and therefore contribution over time. AegisLab

WebGuard achieved a high detection rate only after mid May:

this is a possible indicator that they may have then started

ingesting the CTC blocklist, instead of proactively flagging

domains and therefore contributing to the vetting process.

Decreasing detection rates for Avira and ESET may translate

into a decreased contribution to the vetting process over time.

Once a domain was included on the vetted blocklist, few ad-

ditional engines marked it as malicious (Figure 9), even as its

listing duration increased; a larger increase was only visible

for the earliest listed domains. This suggests that the vetting

decision by the CTC was based on stable detections by the

scanners, so domains warrant their near-indefinite presence

on the vetted list (subsection 4.2).

In summary, the CTC vetted list comprised (only) domains

where a relatively large proportion of security scanners agree

on their maliciousness, making false positives unlikely. How-

ever, it is also required that at least 10 VirusTotal scanners

flag a domain. Unless these scanners successfully adapt to the

novel COVID-19-related abuse, this strict threshold causes

many false negatives. This led to a problem for the CTC:

their whole rationale was to “supplement the existing defen-

sive structure”. If the existing scanners were to adapt, then

the CTC no longer supplemented them. If they did not adapt,

then using them for vetting while maintaining a high threshold
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Figure 9: Proportion of domains with a given detection count

by VirusTotal domain scanners given the duration a domain

has been present on the vetted list.

also meant that the CTC no longer supplemented them. This

reaffirms our observation in subsection 4.2 that instead of cap-

turing COVID-19-related abuse not seen in other TI sources,

as was the CTC’s primary target, the CTC list rather contained

primarily ‘generic’ TI on which many existing sources (here

VirusTotal scanners) agreed. While the TI may therefore

conform to the CTC’s goal of being of “high quality” (few

false positives), the trade-off is that coverage of the threats for

which it was set up is undermined (many false negatives). To

empirically evaluate this trade-off, we explore the coverage

of COVID-19-related domains in the next subsection.

4.4 Coverage of COVID-19 related malicious

domains

What COVID-19-related malicious domains were missed by

the CTC? For this question, we use passive DNS data from

DNSDB by Farsight Security, produced through passive, real-

time collection and aggregation of DNS query-response traffic

between authoritative servers and recursive resolvers around

the world [33]. In particular, we expect higher coverage

through DNSDB where discovery of malicious domains may

be harder: subdomains as well as top-level domains (TLDs)

without available registry zone files (usually ccTLDs).

In order to evaluate the CTC blocklist quality, for each

day between March 1 and June 30, 2020, we extracted from

DNSDB all FQDNs that match our COVID-19-related key-

words from subsection 4.2. In total, we obtain 3,011,717

COVID-19-related domains that contain at least one keyword.

We want to know which of these domains are flagged by

security vendors as being malicious. In total, 188,305 do-

mains were flagged by at least 1 VirusTotal scanner; however,

162,406 of these are flagged by only one scanner (Fortinet).

As presented in Figure 10, 5,767 domains were flagged by

4 to 10 scanners, while only 610 domains were flagged by

USENIX Association 31st USENIX Security Symposium    1155



1 2 3 4 5 6 7 8 9 10111213141516171819
Number of VT detections

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f d
om

ai
ns

2 4 6 8 10 12 14 16 18
0.90

0.95

1.00

Figure 10: Proportion of COVID-19 keyword domains of sub-

section 4.2 detected by a given number of VirusTotal domain

scanners. The CTC vetting process used a threshold of 10.

the CTC’s threshold of 10 or more scanners. Of these, 535

domains were on the CTC blocklist. According to Google

Safe Browsing, the majority of these domains were related to

social engineering (562 – 92.13%) followed by malware (33 –

5.40%) and unwanted software (15 – 0.24%). Recent work

reported similar patterns in keyword-matched COVID-19 do-

mains [34, 35].

We found 75 COVID-19-related domains in DNSDB that

had more than 10 detections on VirusTotal and therefore met

the inclusion criterion of the CTC’s vetting process, yet were

not included on the CTC vetted list. These missed domains

are therefore false negatives of the CTC vetted list. In Table 2,

we compare how false negatives and domains on the CTC

vetted list are distributed across TLDs. While there are no sig-

nificant differences per TLD type, we can observe differences

in how ccTLDs are represented. For instance, .gg is the most

prominent ccTLD among the false negatives, whereas it does

not appear in the top 10 ccTLDs for domains on the CTC list.

TLD Type # False Negatives # CTC domains

gTLD 99 (80.49%) 1,042 (84.78%)

grTLD 3 (2.44%) 3 (0.24%)

ccTLD 21 (17.07%) 183 (14.89%)

gg 3 (14.29%) ru 41 (22.40%)

ga 2 (9.52%) cl 20 (10.93%)

eu 2 (9.52%) cc 18 (9.84%)

ru 2 (9.52%) tk 14 (7.65%)

pl 2 (9.52%) br 9 (4.92%)

tk 2 (9.52%) gd 7 (3.83%)

de 2 (9.52%) ml 6 (3.28%)

su 1 (4.76%) gq 6 (3.26%)

co 1 (4.76%) ca 5 (2.73%)

us 1 (4.76%) in 4 (2.19%)

Table 2: Number of false negatives versus CTC vetted do-

mains per TLD.

In sum: the CTC blocklist contained false negatives on

COVID-19-related abuse, possibly because of the CTC set-

ting a high threshold of 10 detections on VirusTotal. Fur-

thermore, that threshold caused an extreme reduction in how

many COVID-19-related domains made it onto the blocklist,

resulting in more false negatives compared to using lower

thresholds. Of course, all of this underlines again the more

fundamental problem that the CTC’s reliance on VirusTotal

undermines its goal to cover threats that are not well covered

by existing anti-abuse infrastructure.

5 IMPACT OF THE CTC BLOCKLIST

In this section we address our second research question: Did

publishing threat data in a freely available blocklist improve

the ability of network defenders to act against threats, com-

pared to the existing abuse mitigation infrastructure? We

combine various data sources to understand which, how and

when actors intervene to take down domains on the blocklist,

and produce a longitudinal measurement of these countermea-

sures. We look specifically at domain-level interventions and

client-side interventions. Registrars, registries and hosting

providers are responsible for domain-level interventions. This

method protects all users, as it prevents them from access-

ing the domain, but is relatively invasive, as the intervention

cannot be circumvented; it may therefore be applied more

cautiously [36]. Client-side interventions inherently only pro-

tect those clients who enable the intervention, but may be able

to respond more quickly and aggressively to threats. For the

blocklist of the CTC to improve the ability of defenders to act

against COVID-19-related threats, it should flag domains that

existing defenses do not act against or it should flag domains

more quickly than existing defenses.

5.1 Domain-level interventions

A core countermeasure is the takedown of a website. This is

requested by law enforcement agencies, by targeted organi-

zations, or specialized – e.g., brand-protection – companies

acting on their behalf [37–39]. The takedown can subse-

quently be implemented at (sub)domain level by registries,

registrars and/or hosting providers. We measure takedowns

by registrars and registries primarily through ‘Extensible Pro-

visioning Protocol’ (EPP) status codes [40, 41] within the

WHOIS domain registration data: we consider a domain as

taken down when the EPP status codes CLIENTHOLD for reg-

istrars and SERVERHOLD for registries respectively are set,

which indicates that the domain is not delegated, i.e., activated

in the DNS [40, 42] 5. We retrieve historical WHOIS domain

registration data for all vetted domains through VirusTotal,

on July 6 and 7.

In total, 6,635 (30.8%) out of the 21,524 distinct second-

level domains where we could obtain WHOIS data saw either

5As noted by Alowaisheq et al. [38] and confirmed by our own observa-

tions, other status codes (in particular *PROHIBITED) are at best unreliable

indicators of takedown, and often reflect registry- or registrar-specific behav-

ior (e.g., default configurations).
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Intervention by

TLD type # domains Registry Registrar p-value Any ▽

New gTLDs 4 714 45.2% 20.6% < 0.0001 56.3%

Legacy gTLDs 14 604 2.7% 23.9% < 0.0001 26.0%

ccTLDs 2 206 3.9% 4.7% 0.181 8.3%

Total 21 524 12.1% 21.2% < 0.0001 30.8%

Table 3: Registry and registrar interventions on second-level

domains from the CTC blocklist, grouped by TLD type, with

p-value given for χ
2 test.

a registrar or a registry intervention6. The coverage and actors

of domain-level interventions depends on the type of TLD

(Table 3). The intervention rate was the highest among new

gTLDs (56.3%), with most enacted by registries as they must

comply with the most stringent requirements [43]. Mean-

while, on legacy gTLDs (com/net/org), intervention is less

prevalent (26.0%) and rather fell to registrars, as this has his-

torically been their responsibility [44, 45]. Finally, ccTLDs

saw relatively little intervention (8.3%), potentially owing to

their independence in setting (abuse) policies [46–48]. Conse-

quently, assuming the CTC list contained useful TI, it could

have acted as a complementary defense where other interven-

tions were less common, in this case especially for ccTLDs.

0.0 0.2 0.4 0.6 0.8 1.0

Number of days between first appearance on CTC list and intervention

0.0

0.2

0.4

0.6

0.8

1.0

%
 d

o
m

a
in

s
 (

c
u

m
u

la
ti
v
e

)

-90 -60 -30 0 30 60 90
0

20

40

60

80

100
All domains

Registry
(N=2593)

Registrar
(N=4539)

GSB
(N=26856)

-90 -60 -30 0 30 60 90
0

20

40

60

80

100
COVID-19 domains

Registry
(N=41)

Registrar
(N=148)

GSB
(N=202)

Figure 11: Delay between the first appearance of a domain on

the CTC blocklist and interventions by registries, registrars

or Google Safe Browsing (GSB).

Next, we measure if appearance on the CTC list is more

timely than these interventions, as this would provide those

using the blocklist with an advance warning of a live threat

before it is intervened upon. We find that if an intervention

did take place, it was usually faster than the CTC: 61.3% of

registry and 77.1% of registrar interventions already occurred

before the domain appeared on the vetted CTC list (Figure 11).

In cases where the CTC blocklist does predate the interven-

tion, the delay tends to be small.This therefore suggests that

for the share of domains that registrars and registries do in-

tervene upon, their malicious contents were mostly already

unavailable by the time the domains appeared on the CTC

vetted list, so end users would not need the CTC’s blocklisting

to be protected from those domains.

6For 35 domains, we ignore the intervention as it occurred before January

1, 2020 and is therefore unlikely to be COVID-19- or CTC-related.
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Figure 12: Empirical survival function for domains on the

CTC blocklist where WHOIS registration data is available.

We measure lifetime from domain creation until registry or

registrar intervention or first appearance on the CTC list.

Another way to see this effect is that for newly registered

domains, interventions by registries and in particular regis-

trars tend to occur closer to the registration time than CTC

blocklisting (Figure 12). This may indicate close monitoring

of new and suspicious domains by registrars and registries

that results in more immediate action than the publication of

the malicious domain on the CTC blocklist. However, the

CTC list covers many more domains, suggesting that reg-

istrars and registries may be more careful in taking action

against domains, especially once they are older, while the

CTC captures TI more broadly. Moreover, the CTC list may

also include more novel threats that registrars and registries

are not well able to detect and take down. This is further

supported by interventions across domains on the blocklist

that contain any of the COVID-19 keywords from subsec-

tion 4.2: we see registry or registrar interventions for 185

out of 821 COVID-19-related second-level domains (22.5%),

lower than the 30.8% seen across the whole list (χ2
= 32.591,

p < 0.0001) even though multiple registries and registries

had subjected COVID-19-related domains to additional veri-

fication [49–51]. The CTC list is therefore even more com-

prehensive for this novel abuse type: 68.3% and 49.3% of

domains appear on the CTC blocklist before a registry or

registrar intervention respectively, meaning the CTC blocklist

is also more proactive and therefore more useful in flagging

COVID-19 domains than domains overall.

5.2 Client-side interventions

Client-side solutions such as domain scanning engines, fire-

walls, DNS-based filters and browser interstitials provide a

complementary countermeasure by blocking access to mali-

cious content, although only for their users. These solutions

typically generate or ingest threat intelligence – such as the

CTC blocklist – in order to determine if a resource should be

considered as malicious [1, 4]. Note that VirusTotal, which

the CTC used to confirm maliciousness, and its constituent

scanners also serve as client-side solutions. We discussed

in subsection 4.3 how only 23 of its 84 engines succeed at

detecting at least 5% of domains on the CTC blocklist, rein-
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Figure 13: NXDOMAIN responses (i.e., blocking interventions)

by the Quad9 DNS resolver, indicating ingestion of the CTC

blocklist on May 6.

forcing the blocklist’s utility, as it can be ingested separately

to complement the other engines’ protection.

Browser-based intervention Major browsers check every

URL that a user navigates to against the Google Safe Brows-

ing (GSB) service, and display a warning interstitial when

the URL is known to be malicious [52], which therefore has

the potential to protect a large user base. We use the Google

Safe Browsing API7 to receive hash prefixes of detected mali-

cious URLs8. We retrieved an initial state on April 17, 2020,

and afterwards collected updates every half hour until July

15, which allowed us to determine when a domain was first

flagged. Throughout our measurement period, 28,383 do-

mains on the CTC list (60.6%) were flagged at some point,

meaning that the CTC list provides some complementary pro-

tection. However, as discussed in subsection 4.3, the domains

that GSB fails to flag tend to have fewer detections by Virus-

Total engines (Figure 7), suggesting that their malicious status

is less agreed upon. By the end, 20,962 domains (44.8%) re-

mained flagged: it is unclear whether GSB removes domains

because they are no longer considered malicious, or automati-

cally after a certain delay. Importantly, GSB performs worse

on COVID-19-related domains, at some point flagging 302

out of 1,229 domains (24.6%, χ
2
= 713.858, p < 0.0001).

This might reflect that these COVID-19-related domains con-

tain more scams and forms of abuse outside of the normal

scope of GSB, which is focused on the conventional abuse

categories of phishing, malware and spam. The CTC list may

therefore provide greater benefits for these domains. While

GSB does not achieve full coverage, if it flags domains, it

does so before the CTC in 96.3% of general cases, and 98.0%

of COVID-19 domains (Figure 11), with remaining domains

being added quickly to GSB after their first appearance on

the CTC list. The CTC list therefore leaves users vulnerable

for longer across the domains that GSB detects, and would

only be useful if its additional domains consisted of novel TI.

DNS-based intervention Quad9 is a public DNS resolver

that blocks malicious domains by responding to queries with

7https://developers.google.com/safe-browsing/v4
8Discrepancies exist between the output of the Google Safe Browsing API

and actual browser interventions, a.o. due to “data sharing restrictions” [53].

Our data are therefore an approximation of the latter interventions.

NXDOMAIN [54]. We retrieved DNS records for all vetted

domains from Quad9 [55] once a day from April 10 until

June 21. Quad9 relies on threat intelligence from at least 18

providers [55] and was reported to include the CTC blocklist

from May onward [19]. This inclusion proved beneficial:

before May 6, Quad9’s detection rate was 30% at its lowest

point (70% for COVID-19-related domains), but from then

onward Quad9 included almost all of the blocklist (Figure 13).

This shows that the CTC blocklist managed to incorporate

threat intelligence that was unknown to at least some security

service providers.

In summary, did the CTC improve the ability of defenders

to act against threats, compared to existing abuse mitigation

infrastructures? We find that for 58.4% of the FQDNs on the

CTC blocklist, existing abuse mitigation pipelines at the do-

main level or in the browser were all faster than the CTC at in-

tervening. For these domains, the pooling and sharing of data

in a public blocklist then provided little additional value. For

the remaining 41.6%, defenders – such as public and private

organizations or managed security service providers – who

ingested the open CTC blocklist did however improve their

ability to defend themselves, compared to relying on existing

anti-abuse pipelines. This advantage was even more sizeable

for COVID-19-related domains, at 74.9% additional coverage,

showing once again that the CTC was more effective when

focusing on its original goal of collecting COVID-19-related

abuse. One additional indication of the CTC’s utility occurred

in May 2021, when the DNS provider Quad9 started ingest-

ing the CTC list. This created an almost complete overlap

between the CTC blocklist and Quad9’s client-side interven-

tions, leading to better protection for its users. To put it briefly:

if actors in abuse mitigation intervened, they tended to do so

more quickly than the CTC, but often they didn’t intervene,

so the list improved the ability of defenders to act, especially

on COVID-19-specific threats.

6 ETHICS

Our study describes a threat information sharing community

that anyone could join [32] but was nevertheless not public:

information was TLP:GREEN, i.e., restricted to the community

[56]. Throughout this work, we adhere to the CTC’s Code

of Conduct [57]. In accordance with the cited “Chatham

House Rule”, we take great care to prevent identifying any

community members because this might impact them profes-

sionally, except for the founder, who has publicly stated his

role. Further, we do not cite from observed conversations,

as this might impede trust in the confidentiality of this and

future threat information sharing initiatives. To still provide

a rich image of the community, we rely on public sources

such as the CTC’s webinars [21] and interviews with steering

committee members [10, 16, 17, 58, 59]. The blocklist that

we analyze in-depth has been made fully public by the CTC
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[18]. The lead author’s institutional review board (IRB) has

approved this study design.

7 DISCUSSION

We have described collaboration in the Cyber Threat Coali-

tion community, which removed many of the entry barriers

normally present on threat information sharing arrangements.

The CTC relied on Slack and AlienVault OTX groups to

pool threat information, then vetting it through VirusTotal

before making the resulting blocklist freely available. To

learn whether this unique arrangement led to improved threat

defenses, we investigated two questions.

First, by pooling data from its community, did the CTC

improve coverage of COVID-19-related threats over existing

defenses? We find that the CTC primarily consolidated ex-

isting sources, rather than produce or propagate new threat

intelligence. Just 10 users contributed most of the domains in

the CTC’s AlienVault group and over time, user contributions

on the blocklist were outstripped by data from named and un-

named security firms. The community drifted away from its

initial goal of tracking pandemic-related abuse: on the CTC

blocklist, domains with COVID-19-related keywords (2.6%)

were overshadowed even by those with simply the keyword

whatsapp (2.8%). General phishing domains eventually made

up most of the CTC blocklist. This drift was caused by the

reliance of the CTC on VirusTotal for vetting domains to be

propagated on its blocklist: it required 10 detections by Virus-

Total engines. This high threshold meant that the resulting list

tended to reproduce the detection of conventional abuse by an-

tivirus engines, rather than contribute new threat intelligence

focused on COVID-19. In terms of coverage of these latter

threats, we found 75 false negatives – domains that should

have been on the list according to the standards of the CTC

itself, yet were missing. Thousands more COVID-19-related

domains might have been missed by the CTC, with the exact

number depending on what threshold one chooses in terms of

VirusTotal detections.

Second, did publishing threat data in a freely available

blocklist improve the ability of network defenders to act

against threats, compared to the existing abuse mitigation

infrastructure? Our analysis presents a dual view on who

acted on domains listed by the CTC and when. On the one

hand, no actor achieved full coverage in their interventions –

be it at domain-level or client-side – meaning that the CTC

vetting process succeeded in delivering an aggregated, more

complete set of malicious domains warranting action. This is

perhaps best demonstrated by its inclusion in the Quad9 DNS

service. On the other hand, where actors in abuse mitigation

did intervene, they were usually faster. For 58.4% of the

FQDNs on the blocklist, the CTC lagged in incorporating the

indicators in its list. Here, they provided little added value –

in particular because other interventions such as domain take-

downs or browser interstitials typically have a much wider

reach. For the small fraction of COVID-19-related domains,

the CTC blocklist was more effective in terms of coverage

and improving existing defenses. Here, the apparent lack of

focus of the CTC on COVID-19-related abuse impaired the

overall utility of its blocklist.

Based on our findings, we draw three lessons for future

open source threat information sharing initiatives. Our first

lesson is that scaling up the community does not automat-

ically lead to better pooling of threat information. In just

a few weeks’ time, the CTC managed to set up a pipeline

for collecting, vetting, and disseminating threat intelligence.

Throughout its progression, CTC admins repeatedly pressed

members to “signal boost our social media posts”, inviting

more people to join the community [22]. Possibly, the admins

had assumed that network effects would only increase as the

community grew, and did not anticipate the dynamics of a vol-

unteer organization. The CTC did not capitalize as much as it

could have on its pool of 4,000 volunteers: contributions on

AlienVault were made by just a fraction of community mem-

bers. This is in line with earlier research on open source soft-

ware development (subsection 3.1). However, that research

also found that open-source communities have a long-tail of

members with small contributions, like a bug report. Along

the same lines, the CTC could have benefited from indicator

vetting by its members (our second lesson). Scaling up the

CTC community may also have disincentivized threat infor-

mation sharing, because it exacerbated the free-rider problem:

having a large number of untrusted participants may have

discouraged some contributors from sharing indicators that

were sensitive or that they feared would be used commercially

by other firms.

The second lesson is that openness of the community re-

quires a scalable quality assurance process for the con-

tributed indicators. The CTC chose to fulfill that need via

VirusTotal, but thereby undid some of the benefits of pooling

new threat information in the first place. As described in

subsection 3.2, indicators had to meet a threshold level of

10 scanners in VirusTotal before they were propagated to the

CTC blocklist. Only 21 scanners were able to detect more

than 5% of the indicators on the blocklist, so a threshold of

10 means that half of the dominant scanners need to already

detect the indicator before it was shared and published. Al-

though this workflow is scalable and produced a blocklist with

a low number of false positives, it also meant that valuable

indicators that were not yet known to the dominant Virus-

Total engines were discarded because they did not meet the

threshold. In light of the CTC’s mission, it was ironic that this

particularly affected indicators related to COVID-19. Had the

CTC’s solution for manual vetting of indicators, the Slackbot,

come earlier, then it might have prevented the impact of re-

lying on VirusTotal. Crowdsourced vetting of indicators can

be successful, as PhishTank has shown [13]. User participa-

tion had already tapered off, however, when the Slackbot was
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introduced, so the transition away from VirusTotal was not

successful.

The CTC was founded on the premise that existing abuse

and threat information sharing mechanisms were unsuit-

able or unprepared for the risks posed by COVID-19-related

abuse [10] and that a new response was needed. Our third

lesson is that existing threat intelligence and abuse mitigation

structures are actually quite resilient and able to adapt to

‘new’ types of threats. Where the existing anti-abuse pipelines

intervened, they did so faster than the CTC could detect the

domain and include it on its blocklist. For example, 96% of

the client-side interventions through Google Safe Browsing

occurred before the domains were featured on the CTC list

(subsection 5.2). Another way to read these findings is that

due to its loss of focus on COVID-19-related domains, the

CTC was forced to ‘compete’ with general-purpose abuse

sharing mechanisms, a battle it was unlikely to win.

8 LIMITATIONS

The fast-paced evolution of the CTC and its operational pro-

cesses introduces inherent limitations for our study. Changes

to the CTC vetting process and our own data collection, as

well as blocklist hosting issues, caused temporal gaps in our

data. Moreover, where we do not have access to historical

data, in particular for VirusTotal detections and active DNS

records, we only collect data starting from the moment when

a domain was first included on the blocklist. Finally, certain

improvements to the vetting process, such as the Slackbot or

the preferential treatment of curated third-party sources, were

only introduced by the time community participation had

dwindled. Given the low number of contributions, we could

therefore not investigate if these would have had a significant

impact on the blocklist.

As VirusTotal is the main driver of the CTC vetting pro-

cess, our analyses are inherently biased by its classifications.

Figures 6-10 provide some insight into how these classifica-

tions are distributed for our data. However, researchers have

questioned the reliability of VirusTotal [15, 60] and other

(phishing) blocklists [61]. These shortcomings may be exac-

erbated by the novelty of COVID-19-related abuse, as well as

the semantic discussion on whether tactics such as scams or

price gouging constitute ‘maliciousness’ at all. Nonetheless,

VirusTotal provides us with objective and independent detec-

tion metrics across a large set of domain scanning engines,

serving as a strong signal for maliciousness, meaning that

domain-level and client-side interventions can be expected.

We attribute these interventions based on indicators that carry

a level of uncertainty, as also observed in previous work [38].

In particular, the availability of sufficiently detailed WHOIS

data is skewed towards gTLDs [39], and we assume correct

parsing of its non-standard format by VirusTotal. Our re-

sults in section 5 therefore serve as a lower bound to actual

interventions. Similarly, the count of COVID-19-specific abu-

sive domains is a lower bound, as we assume the presence

of pandemic-related keywords. However, other domains in

section 4 may have only carried COVID-19-related content

on their web page, or have been propagated within a COVID-

19-related context (e.g., a spam email). Where we quantify

potential false negatives, we equally did not contend to do so

exhaustively.

Our research focused on the CTC blocklist. We evaluated

it through its fit for purpose to inform real-time enforcement

actions, in line with the CTC’s mission, but the list of COVID-

19 related abuse material could conceivably also be used in

retrospect to evaluate security controls or even as training data

for machine learning purposes. Finally, although the blocklist

was an important and visible outcome of the community’s

efforts, it was not the only one. The CTC produced threat

advisories and community meetings, and facilitated commu-

nication between members of the security community. We

refrain from analyzing the posts in the CTC Slack workspace

due to our adherence to the CTC code of conduct [57]. These

conversations likely continued in private messages between

members, where we would not have visibility on their out-

comes, such as takedowns or law enforcement intervention.

Indeed, an important added value of the CTC may be not in

the data that they output, but in the network of peers that they

managed to bring together at short notice, and as a showcase

for what open source threat sharing might look like.

9 RELATED WORK

The performance of blocklists as sources of threat intelligence

has been the topic of previous studies, which raised questions

about the coverage of relevant threats by open sources [1,

2, 62, 63] as well as closed, commercial threat intelligence

sources [4]. Peng et al. [15] found that even the best engines

on VirusTotal missed 30% of submitted phishing sites and

Oest et al. [64] managed to evade being blocklisted for 55% of

phishing domains using simple cloaking techniques. Metcalf

and Spring [3] hypothesized such problematic coverage to be

an artefact of the collection method of abuse infrastructures,

with each using disparate methods to detect threats from their

specific vantage points. Notably in the blocklist literature,

Li et al. [1] proposed metrics by which to understand threat

intelligence and calculated those metrics for a set of open

source blocklists. We draw on its coverage and timeliness

metrics and our study also describes a blocklist, that of the

CTC, but we go beyond descriptive metrics and measure the

blocklist’s ability to inform countermeasures. More generally,

where Li et al. and other studies take blocklists as-is for their

analysis, we conduct measurements on the CTC blocklist to

shed light on the open source threat sharing process by which

it was produced.

The open source threat sharing model is not entirely new:

security information has always propagated through “informal

networks of trusted security professionals that exist across
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[organizations]” [65] and earlier research has described initia-

tives that share the CTC’s objective to pool threat information,

but do not match it in terms of access and scale. Thomas et

al. described aggregating data from within Google services,

in a lab environment and with access restricted to the authors

[14]. Another aggregator, Facebook ThreatExchange, was

included in the set of feeds analyzed by Li et al. [1], who

described it as a “closed-community platform” of “hundreds

of companies and organizations”. Here, access is based on

being involved in software development for the Facebook

platform. Outside of academic research, we see the Cyber

Threat Alliance, an industry partnership of 33 firms that share

reports and indicators with each other ahead of publication

on the basis of quid pro quo, and therefore not available to

the public [6]. VirusTotal combines scan engine logic to clas-

sify files and URLs [60], and ingests external data feeds as

inputs [15]. Despite the fact that users can also contribute

binaries and URLs as inputs on a limited free plan, VirusTo-

tal is not a community but a commercial service. Probably

most approximate to the CTC, PhishTank is an aggregator

of domains and URLs suspected of phishing that provides a

practical, real-world example of the promise of collaboration

to identify threats. It has a crowdsourcing capability to let

users validate maliciousness and like the CTC blocklist, its

feed is shared free of charge. It is an older initiative, with

the last study of it from 2008, which did not evaluate the

ability to inform countermeasures [5]. New user registration

on PhishTank has been closed since 2020. Three properties

set the experiment of the CTC in threat information sharing

apart from these initiatives. First, the low barriers to entry.

Formalizing a threat information sharing community has not

been attempted before at the scale of thousands of volunteers

[23]. Second, the community’s efforts were documented in

open sources such as webinars and interviews [10, 16, 17, 21,

58, 59]. And third, it produced information goods that were

made freely available – potentially magnifying the impact of

the threat information [18]. Because of these properties, the

CTC approached what Benkler [66] called peer production:

open creation and sharing performed an online groups. In this

case, peer production of security information. We conclude

that the scale at which threat information sharing occurred

in the CTC in response to the pandemic offered a unique

opportunity to investigate the collaborative model.

More generally, authors have recently described internet

abuse related to COVID-19, which the CTC also tracked.

They have pointed to signs of coordinated campaigns [67,

68] and drew attention to the risk of overzealous filtering of

COVID-19-related material [34, 69]. Bitaab et al. investigated

examples of phishing related to COVID-19 and concluded

that the existing anti-phishing ecosystem fell short, based on

the sheer volume of COVID-19 related fraud reported on by

the FTC [70]. Our measurements support their finding that

for the niche of COVID-19 related material, an organization

like the CTC could play a valuable supplementary role.

10 CONCLUSIONS

The Cyber Threat Coalition had the aim to “break down

traditional barriers to intelligence sharing [and] produce a

professional-quality threat feed that the broad IT security pub-

lic [could] rely upon” [8]. We found that by pooling data

from its community, the CTC managed to improve coverage

of threats related specifically to COVID-19 over that of ex-

isting defenses, and we found evidence that the CTC was

faster than other defenses to list such domains. Therefore

the community improved the ability of network defenders to

take action by publishing its threat data in a freely available

blocklist. Over time the CTC lost focus, until it aggregated

mostly generic abuse information. We described how this

can be traced back to choices that the community made in

scaling up its quality assurance processes using VirusTotal.

This prevented the CTC from delivering some of its value,

as it relied on a threshold number of scanners to recognize

a domain as malicious, dropping valuable new indicators in

the process and causing it to lag behind established defense

mechanisms.

Looking back on his experiences, founder Joshua Saxe

said: “We had a lot of [volunteering] energy, but we didn’t

have the right organizational machinery to funnel that en-

ergy.” [19]. Given that no open source threat sharing com-

munity of this kind previously existed, it is unsurprising that

the Cyber Threat Coalition went through growing pains. Al-

though we have examined its impact critically, it is only as a

result of the hard work of the members of this community that

we have been able to investigate the principles of open source

threat information sharing at all – and such a community may

have impact in subtle ways that are not easily observed or

quantified, such as building trust and facilitating contact. We

dedicate this paper to the volunteers of the CTC and hope that

the lessons discussed in this work may contribute to future

threat information sharing.
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A COVID-19 KEYWORD LIST

We selected COVID-19-related keywords starting from a set

of English keywords, which we then translated into 14 ma-

jor languages: Arabic, Bengali, Mandarin Chinese, Dutch,

French, German, Hindi, Italian, Japanese, Malay, Portuguese,

Russian, Spanish and Turkish. Finally, we generated lookalike

terms using techniques from typosquatting [71] and homo-

glyphs [72].

self-isolation eovid covic1 cocvid
corona co-vid covld st1mulus
pandemic fovid pandemid pandernic
mask eovib timulus pandemiic
ncov vovid pondemic pawndemic
vaccine pademic pandemec panndemic
virus covix cov8d pandemmic
hydroxychloroquine landemic vccine panderic
quinacrine covoid cov1d vacvine
chloroquine ocvid tsimulus chloraquine
remdesivir pandmic stimlus cokvid
plaquenil xovid vaccione eovicl
azithromycin stimulis covjd coviud
metformin cuvid copvid vadcine
favipiravir stimulas vaccien pandemci
interferon stimuls vaccne pandem1c
lopinavir covdi cpovid stiumulus
ritonavir stemulus covbid stimullus
arbitol stimulu pandimic stimul8s
stimulus clovid vacclne stumulus
infection cov-id pundemic covid1
n95 stimulos stimul-us cov9d
respirator coivd c-ovid covuid
testkit cpvid pandeic covjid
distance covicl pandemif cov8id
quarantine c0vid vaecinc cobvid
lockdown baccine vaccone cov9id
covis vaccirc chloroquini cofvid
covic clvid caccine coivid
cvid ciovid stimulous eovld
coved covvid cloroquine c0vld
covir vaccime stimilus covcid
dovid covkid pansemic pandermic
cevid coviid vaxcine cov1b
covib coovid colvid covid
cavid chloroquin panemic sars-cov
covd pandemoc pandernie sarscov
coviel mandemic stimulys ivomec
cobid covud stikulus ivermectin
civid covi-d covibl mectizan
covici stimulux pandemc iver-dt
cvoid vacccine cogvid ivexterm
accine pandemix pandepic scabo-6
vacine covilb stimuus sklice
andemic stimuluz voccine stromectol
covod pamdemic stipulus soolantra
pandemi vaccie pandomic mk-933
ffp2 ffp3 c19

Table 4: List of English keywords and homoglyphs
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