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A B S T R A C T

This paper aims at assessing the effect of dry friction on the dynamic behaviour of a damped
mechanical system subject to harmonic forcing. Previous work on friction damped systems
highlighted that not including other forms of damping in the dynamic analysis can lead to
unrealistic results such as the presence of infinite resonances. In this contribution, an exact
solution is derived for the continuous steady-state response of multi-degree-of-freedom systems
with a contact between one of the masses and an external wall, using Coulomb’s law to model
the friction force and a modal damping model to account for the system’s damping. Closed-
form expressions are also derived for the amplitude and phase of the continuous responses,
while stick–slip responses are investigated by using an ad-hoc numerical approach. In addition,
analytical and numerical results are used for exploring the features and the motion regimes
of the dynamic response, leading to the following conclusions: (i) system’s damping has a
limited effect on low- and high-frequency behaviours, on the presence of invariant points and
inversions across the transmissibility curves and can therefore be neglected, in non-resonant
conditions, in the analysis of structures where dry friction is the main source of dissipation;
(ii) when the damping of the system is accounted for in the mechanical models along with
Coulomb damping, finite resonant peaks are also obtained in continuous sliding regime and
their amplitude decreases linearly with the friction force generated in the contact.

. Introduction

The presence of dry friction in vibrating structures can be associated to either beneficial or detrimental effects. In fact, on
he one hand, friction is known to cause problems such as noise, wear, loss of efficiency and even more serious consequences
uch as structural damage and component failures [1,2]. However, on the other hand, friction can improve the performance of
ngineering structures by dissipating energy and reducing vibration amplitudes [3,4]. For example, friction dampers are commonly
sed in turbomachinery [5,6], civil engineering [7,8], suspension systems [9,10], robotic devices [11,12], energy harvesters [13],
irplane taxing systems [14] and satellites [15]. Nonetheless, even in structures relying on friction dampers as the main source of
issipation, the overall damping usually results from multiple causes. These can include other localised sources of dissipation, such
s viscous dampers or shock absorbers, or the general dissipation occurring, for instance, internally in the material or in loose joints.
n particular, the latter form of damping is present, to some extent, in all real structures. Therefore, it is essential to understand
ow the damping levels of a structure can affect the dynamic performance of a friction damper.
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Independently of the presence of other forms of damping, the dynamic analysis of friction damped systems is complicated by the
onlinear nature of the friction forces. Even when the simplest and most widely used model of dry friction, the Coulomb model, is
onsidered, exact solutions for the forced vibration problem are difficult to obtain and are only available in a limited number
f cases. Different techniques, including time integration, harmonic and multi-harmonic balance methods, have been proposed
uring the years to deal with complex systems (see review [16] for further details). However, the computational costs related to
umerical approaches make them impractical for purposes such as parameter space investigations [17]. Even high-order harmonic
alance methods, which are extremely popular in the analysis of friction damped systems and offer a good approximation of their
teady-state response [16], operate in the frequency domain and cannot easily be used to predict the motion regimes (continuous,
tick–slip, permanent sticking) of the dynamic response across the parameter space. Therefore, the research of analytical solutions
s of paramount importance for performing parameter space investigations and optimisations with a reduced computational cost, as
ell as for exploring the motion regimes and the response features of friction damped systems.

In some studies, closed-form solutions have been derived for the steady-state forced vibration of Coulomb friction oscillators
ssuming dry friction as the only source of damping. In particular, Den Hartog [18,19] and Hong and Liu [20,21] proposed exact
olutions for the response of single-degree-of-freedom (SDOF) mass–spring systems with a contact between the mass and a fixed
all. More recently, analytical solutions have also been proposed by the authors for SDOF systems with a contact between the mass
nd an oscillating wall [22] and multi-degree-of-freedom (MDOF) systems with a friction contact [23,24]. Further investigations on
he features and stability of the response of Coulomb friction oscillator were also presented in [25,26]. Experimental investigations
arried out on single-storey [27] and two-storey [28] frame setups have shown that most of the behaviours described by these
orks can also be observed in laboratory conditions. Nonetheless, assuming Coulomb friction as the only source of dissipation in a
ibrating system could lead to unrealistic results. In particular, it has been observed that Coulomb damped systems always present
nfinite resonant peaks, unless stick–slip or permanent sticking occur at resonance [19,24,25]. Since one of the main goals of the
se of friction dampers is to avoid large stresses at resonance [5], it is necessary to further investigate the resonant behaviour of
hese systems, also accounting for the damping levels of the structure in the mechanical model.

The dynamic behaviour of SDOF systems with mixed damping has been investigated by several authors throughout the years. In
articular, since the exact nature of general dissipation in real structures is often unknown [29], the viscous damping has usually
een considered in combination with Coulomb damping in the investigation of the SDOF behaviour. The seminal work in this
rea was performed by Den Hartog, who extended his studies on SDOF systems with Coulomb friction to also include viscous
amping in [19]. Den Hartog’s results include the exact solution for the steady-state time response to forced harmonic excitation,
s well as closed-form expressions for the response amplitude and phase and for the boundary between continuous and stick–slip
otion regimes. Shaw [30] extended Den Hartog’s solution to address different static and kinetic friction forces, also accounting

or positive and negative viscous damping, where the latter can be viewed as a crude model of destabilising aerodynamic forces.
urthermore, he carried out a stability analysis of the periodic response of these systems, showing that instability can arise for
egative values of the viscous damping coefficient. Further works concerned with the stability of systems with mixed viscous and
oulomb damping can also be found in [31,32]. Different SDOF models have also been explored in the literature: Hundal [33]
xtended Den Hartog’s solution to address base-excited systems, while the response of support-excited systems was investigated by
evitan [34]. Various approaches have been proposed to identify the damping parameters from the vibration of systems with mixed
amping: Tomlinson and Hibbert [35,36] determined the amplitude of the friction force and the hysteretic loss factor by observing
he Nyquist plots of the frequency response function, while Liang and Feeny [37] were able to identify the Coulomb and the viscous
amping parameters of lightly-damped SDOF systems by comparing experimental results with the analytical results obtained by
en Hartog [19] and Hundal [33]. During the last years, the fundamental research on SDOF oscillators has mostly focused on the
xploration of asymmetric and chaotic solutions [38,39], the introduction of more complex friction models [39,40] or different
ypes of damping [41] in the dynamic analysis and the investigation of the energy dissipation [42–44].

Differently from the SDOF case, little information is available in the literature regarding the dynamic behaviour of MDOF systems
ith mixed damping. Yeh [45] extended Den Hartog’s approach [19] to deal with a harmonically base excited 2DOF system with two
iscous dashpots and a Coulomb friction contact between the first mass and the wall. Sachs [46] proposed an analytical approach
ased on a recurrence scheme to determine the transient and the steady-state response of MDOF systems with mixed damping
ubjected to periodic loading. While these approaches can in theory be applied to any systems with viscous and Coulomb damping,
oth methods become unpractical for larger numbers of DOFs and do not lead to closed-form solutions, thus offering a limited
nsight on the mixed damping effects on dynamic behaviour of these systems.

In Ref. [24], the authors derived a closed-form solution for the continuous steady-state response of MDOF systems with a Coulomb
riction contact subjected to harmonic loading by using a modal superposition procedure in those time intervals where the governing
quations of the problem are linear. Although the introduction of viscous damping does not alter the piecewise nature of the problem,
t can lead, in general, to non-diagonal modal damping matrices and, therefore, to coupling between the normal modes of the system.
his is typically the case when viscous damping is generated by localised sources, such as the shock absorbers in a car suspension,
r when it is used for modelling the dissipation in structures with highly non-homogeneous damping levels, e.g., the building
odels accounting for the soil–structure interaction [29]. However, the coupling between the normal modes is usually negligible
hen viscous damping is used to model the damping resulting in structures by internal dissipation in the materials, junctions or

nterfaces between parts of the structure and non-structural elements [29,47]. These latter forms of damping are sometimes referred
o as “boundary damping” and, in built-up structures, they are commonly found to be at least an order of magnitude higher than
2

he intrinsic material damping [48]. Material and boundary damping are usually defined at a system level rather than in terms of
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Fig. 1. 𝑁-dimensional MDOF system with a Coulomb friction contact between the mass 𝑚𝑗 and fixed wall subjected a harmonic load acting on the mass 𝑚𝑙 .

individual element properties [29] and can be modelled using specific damping models, such as modal damping, where the damping
of each vibrating mode is expressed by a modal damping ratio, assigned by measurement or based on experience [47].

In this paper, a more general solution is derived for the continuous steady-state response of MDOF systems with a friction contact,
also accounting for the damping of the structure in the mechanical model. The dry friction force generated by the sliding between
one of the masses of the system and an external wall is modelled according to Coulomb’s law, including different static and kinetic
friction coefficients, while the system’s damping is introduced using the modal damping model. This analytical solution, along with
the numerical results obtained with an ad-hoc approach for stick–slip response, is used to investigate the overall damping effect on
the features and the motion regimes of their dynamic response. In particular, this contributions aims at establishing: (1) the Coulomb
friction effect on the response amplitudes and the motion regimes displayed by damped vibrating systems in resonant conditions; (2)
how the damping of the system can alter features of the dynamic response such as the low- and the high-frequency behaviours, the
presence of invariant points across the displacement transmissibilities and the stick–slip behaviour with respect to those described
in [24] for MDOF systems with Coulomb damping only. The presented results are particularly relevant for engineering systems such
as friction dampers in buildings [8], car suspensions [9], energy harvesters [13] and taxing of airplanes models [14], which can be
modelled as MDOF mass–spring systems with a friction contact during the early design stages.

The analytical solution for the continuous steady-state response of damped MDOF systems with a friction contact between one of
the masses and a grounded wall is derived Section 2, along with closed-form expressions for the displacement transmissibility and
phase angle of each mass. Furthermore, an analytical formulation is provided for the boundary between continuous and stick–slip
regimes. In Section 3, an ad-hoc numerical approach is used for validating the analytical results and providing an insight on the
behaviour of these systems in stick–slip regime. Finally, the resonant, low- and high-frequency behaviours, as well as the dynamic
response in permanent sticking regime, are explored in Section 4.

2. Analytical evaluation of the continuous steady-state response

2.1. General formulation and assumptions

Let us consider a damped MDOF mass–spring system with a friction contact subjected to harmonic excitation, as shown in Fig. 1.
This system is characterised by the 𝑁 ×𝑁 mass and stiffness matrices:

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚1 0 … 0
0 𝑚2 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 𝑚𝑁

⎤

⎥

⎥

⎥

⎥

⎦

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘1 + 𝑘2 −𝑘2 0 … 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … −𝑘𝑁 𝑘𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(1)

he harmonic load 𝑃 cos(𝜔𝑡) is applied to the mass 𝑚𝑙 of the system and a friction contact occurs between the 𝑚𝑗 mass and a fixed
wall, generating the friction force:

𝐹𝑓 = −𝐹 sgn(�̇�𝑗 ) (2)

where:

sgn(�̇�𝑗 ) ∈

⎧

⎪

⎨

⎪

⎩

1 if �̇�𝑗 > 0
[−𝜇, 𝜇] if �̇�𝑗 = 0
−1 if �̇�𝑗 < 0

(3)

The so-defined sgn() function can assume any value between −𝜇 and 𝜇, with 𝜇 > 1, when the relative velocity in the contact is zero.
The actual value will be such that the static friction force, whose amplitude is 𝜇𝐹 , is equal and opposite to the sum of the other
non-inertial forces acting on the mass in contact. The relation between friction force and velocity expressed by Eqs. (1) and (2) is
epicted in Fig. 2. The governing equation of the system shown in Fig. 1 can be written as:

𝐌�̈� + 𝐂�̇� +𝐊𝐱 + 𝐹 𝐞𝑗sgn(�̇�𝑗 ) = 𝑃 𝐞𝑙 cos(𝜔𝑡) (4)

here 𝐂 is the linear damping matrix of the system, 𝐱 is the 𝑁-dimensional displacement vector and 𝐞𝑖 is the unit vector of the 𝑖th
oordinate. It is worth mentioning that Eq. (4) could also be used to describe a MDOF mass–spring system of more general topology,
3
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Fig. 2. Friction force versus relative velocity in the contact according to Coulomb’s law.

provided that the matrices 𝐌 and 𝐊 of the system are specified and that a single contact is acting on the linear motion of a mass
in a specified direction. Introducing the non-dimensional time and displacement vector as:

𝜏 = 𝜔𝑡 𝐱 =
𝑘1
𝑃

𝐱 (5)

and dividing all terms by 𝑃 , it is possible to rewrite Eq. (4) in a non-dimensional form, as:

𝐌�̄�′′ + 𝐂�̄�′ +𝐊�̄� + 𝛽𝐞𝑗sgn(�̄�′𝑗 ) = 𝐞𝑙 cos 𝜏 (6)

where:

𝐌 = 𝜔2

𝑘1
𝐌 𝐂 = 𝜔

𝑘1
𝐂 𝐊 = 1

𝑘1
𝐊 (7)

In particular, the non-dimensional mass matrix can also be written as:

𝐌 = diag
(

𝜔2𝑚1
𝑘1

𝑚𝑖
𝑚1

)

= diag
(

𝛾𝑖𝑟
2) (8)

where:

𝛾 =
𝑚𝑖
𝑚1

(9)

is the 𝑖th mass ratio of the system and:

𝑟 = 𝜔
√

𝑚1
𝑘1

(10)

will be denoted as frequency ratio. In Eq. (6), the friction ratio 𝛽 has also been introduced as:

𝛽 = 𝐹
𝑃

(11)

Due to the presence of the sgn() function, Eq. (6) is a piecewise linear equation. In Ref. [24], it was observed that, in the absence
of the linear damping term, a continuous steady-state solution of this equation can be determined by using a generalised version of
Den Hartog’s approach for SDOF systems with Coulomb friction [19]. Let us assume that the continuous steady-state is symmetric,
in particular that the second half of response period matches the negative of the first half. Under this assumption, the solution of
Eq. (6) can be derived by considering the half-period included between any pairs of subsequent stationary points of the displacement
of the mass in contact. In fact, in each of these intervals, the sign of the velocity is constant and the governing equations become
linear. For instance, if the non-dimensional time interval [0, 𝜋] included between a maximum and a minimum of �̄�𝑗 is considered,
Eq. (6) reduces to:

𝐌�̄�′′ + 𝐂�̄�′ +𝐊�̄� = 𝛽𝐞𝑗 + 𝐞𝑙 cos(𝜏 + 𝜙𝑗 ) (12)

In the above equation, it has been assumed that a phase lag is generated between the excitation and the response �̄�𝑗 by Coulomb
damping. Since the response is not assumed to be monoharmonic, it is worth underlining that the phase angle 𝜙𝑗 is referred to the
maxima of these two functions. To solve Eq. (12), the following coordinate transformation is introduced:

̄

4

𝐱 = Ψ𝜼 (13)



Journal of Sound and Vibration 535 (2022) 117085L. Marino and A. Cicirello

R

N

w
i
o
b
d
g
e
a

w
k

where the modal matrix:

Ψ =
[

𝝍1 … 𝝍𝑁
]

(14)

is obtained from the eigenvalue problem [29]:

(𝐊 −𝛺2
𝑖𝐌)𝝍 𝑖 = 𝟎 (15)

ewriting Eq. (12) in modal coordinates yields:

�̂�𝜼′′ + �̂�𝜼′ + �̂�𝜼 = 𝝍 𝑗𝛽 + 𝝍 𝑙 cos(𝜏 + 𝜙𝑗 ) (16)

onetheless, while the modal mass and stiffness matrices:

�̂� = Ψ𝑇𝐌Ψ = 𝐈 �̂� = Ψ𝑇𝐊Ψ = diag(𝛺2
𝑖 ) (17)

are diagonal, the same is not generally true for the modal damping matrix �̂� = Ψ𝑇𝐂Ψ. When �̂� is fully populated, as it is usually
the case when viscous damping is generated by localised physical elements [29], Eq. (16) represents a system of coupled equations,

hich cannot be solved separately. However, when the linear damping matrix is only associated with the damping of the system,
t is common in the engineering practice to use damping models leading to a diagonal modal damping matrix [29]. This can be
btained, for instance, by expressing the physical damping matrix as a linear combination of the mass and the stiffness matrices or
y simply neglecting the off-diagonal terms of the modal damping matrix [49]. In general, a physical damping matrix 𝐂 leads to a
iagonal modal damping matrix if it satisfies the condition 𝐊𝐌−1𝐂 = 𝐂𝐌−1𝐊, derived in Refs. [50,51]. It is worth noting that the
overning equations can also be decoupled when this condition is not verified, by introducing complex valued mode shapes (see,
.g., [52]); however, this case is not dealt within the present contribution. In this paper, the damping of the system will be modelled
ccording to the modal damping model, i.e., it will be assumed that the matrix 𝐂 is such that:

�̂� = Ψ𝑇𝐂Ψ = diag(2𝜁𝑖𝛺𝑖) (18)

here 𝜁1,… , 𝜁𝑁 represent the modal damping ratios of the 𝑁 vibrating modes of the system. When the modal damping ratios are
nown, the non-dimensional physical damping matrix 𝐂 can be obtained from �̂� using the following relationship [29]:

𝐂 = Ψ−𝑇 �̂�Ψ−1 =
𝑁
∑

𝑖=1
2𝜁𝑖𝛺𝑖(𝐌𝝍 𝑖)(𝐌𝝍 𝑖)𝑇 (19)

It is worth mentioning that the modal damping assumption can also be justified mathematically by using perturbation calculus,
provided that the system is lightly damped and its natural frequencies are well-separate [52].

2.2. Modal superposition procedure

Since the modal damping matrix �̂� has been diagonalised, Eq. (16) now represents a set of 𝑁 uncoupled equations and the
generic 𝑖th equation of the system can be written as:

𝜂′′𝑖 + 2𝜁𝑖𝛺𝑖𝜂
′
𝑖 +𝛺

2
𝑖 𝜂𝑖 = 𝜓𝑗𝑖𝛽 + 𝜓𝑙𝑖 cos(𝜏 + 𝜙𝑗 ) (20)

The general solution of Eq. (20) can be obtained as:

𝜂𝑖 = 𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

𝐴𝑖 cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+ 𝐵𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

+ 𝜓𝑗𝑖𝑅2
𝑖 𝛽 + 𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖 cos(𝜏 + 𝜙𝑗 ) (21)

where the modal frequency ratio 𝑅𝑖 is defined as:

𝑅𝑖 =
1
𝛺𝑖

= 𝜔
𝜔𝑖

(22)

and:

𝑣𝑑𝑖 =
1

1 − 𝑅2
𝑖 + 𝑖2𝜁𝑖𝑅𝑖

(23)

is the complex response function of the 𝑖th vibrating mode of the system in the absence of Coulomb damping. In Eq. (21), the
integration constants 𝐴𝑖 and 𝐵𝑖 can be evaluated from the initial conditions for the 𝑖th modal displacement and velocity within the
half-period [0, 𝜋], which can be introduced as:

{

𝜂𝑖(0) = 𝜂𝑖0
𝜂′𝑖 (0) = 𝜂′𝑖0

(24)

where the initial values 𝜂𝑖0 and 𝜂′𝑖0 are still unknown at this stage. Due to the symmetry of the steady-state response, the final
conditions can be written at 𝜏 = 𝜋 as:

{

𝜂𝑖(𝜋) = −𝜂𝑖0
′ ′ (25)
5

𝜂𝑖 (𝜋) = −𝜂𝑖0
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These further conditions can be used to determine a relation between the phase angle 𝜙𝑗 and the initial values 𝜂𝑖0 and 𝜂′𝑖0. This
procedure is similar to that introduced in [24] for MDOF systems with Coulomb damping only and is therefore reported in detail
in Appendix. The resulting expressions for cos𝜙𝑗 and sin𝜙𝑗 can be written as:

cos𝜙𝑗 =
𝜂𝑖0 + 𝜓𝑗𝑖𝑅2

𝑖 𝑔𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 𝑣𝑑𝑖

(26)

sin𝜙𝑗 = −
𝜂′𝑖0 + 𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 𝑣𝑑𝑖

(27)

where the functions:

𝑢𝑑𝑖 =

sin

⎛

⎜

⎜

⎜

⎝

𝜋
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

𝑅𝑖
√

1 − 𝜁2𝑖

⎡

⎢

⎢

⎢

⎣

cosh
(

𝜁𝑖𝜋
𝑅𝑖

)

+ cos

⎛

⎜

⎜

⎜

⎝

𝜋
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(28)

and:

𝑔𝑖 =

sinh
(

𝜁𝑖𝜋
𝑅𝑖

)

−
𝜁𝑖

√

1 − 𝜁2𝑖

sin

⎛

⎜

⎜

⎜

⎝

𝜋
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

cosh
(

𝜁𝑖𝜋
𝑅𝑖

)

+ cos

⎛

⎜

⎜

⎜

⎝

𝜋
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

(29)

are hereby introduced as the first and the second damping functions of the 𝑖th mode of the system. In particular, in the limit case
of 𝜁𝑖 = 0, the first damping function reduces to the damping function formulated for the 𝑖th mode of a MDOF system with Coulomb
damping only in [23,24], while 𝑔𝑖 = 0. When 𝑁 = 1, the formulations of both damping functions reduce to those derived by Den
Hartog for SDOF systems with combined viscous and Coulomb damping [19].

2.3. Response amplitude and phase of the mass in contact

Multiplying by 𝜓𝑗𝑖 the numerators and the denominators of Eqs. (26) and (27), considering their sums from 1 to 𝑁 and
introducing the initial conditions for the displacement and the velocity of the mass in contact:

{

�̄�𝑗 (0) =
∑𝑁
𝑖=1 𝜓𝑗𝑖𝜂𝑖0 = 𝑋𝑗

�̄�′𝑗 (0) =
∑𝑁
𝑖=1 𝜓𝑗𝑖𝜂

′
𝑖0 = 0

(30)

it is possible to express cos𝜙𝑗 and sin𝜙𝑗 as:

cos𝜙𝑗 =

∑𝑁
𝑖=1 𝜓𝑗𝑖𝜂𝑖0 + 𝛽

∑𝑁
𝑖=1 𝜓

2
𝑗𝑖𝑅

2
𝑖 𝑔𝑖

∑𝑁
𝑖=1 𝜓𝑗𝑖𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖

=
𝑋𝑗 + 𝛽𝐺𝑗

𝑉𝑑𝑗
(31)

and:

sin𝜙𝑗 = −

∑𝑁
𝑖=1 𝜓𝑗𝑖𝜂

′
𝑖0 + 𝛽

∑𝑁
𝑖=1 𝜓

2
𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖

∑𝑁
𝑖=1 𝜓𝑗𝑖𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖

= −
𝛽𝑈𝑑𝑗
𝑉𝑑𝑗

(32)

In the above equations, 𝑋𝑗 denotes the non-dimensional amplitude of the response of the mass 𝑚𝑗 . Following the definition of non-
dimensional displacement given in Eq. (5)(b), this quantity also coincides with the 𝑗th displacement transmissibility of the system.
Furthermore, the generic 𝑘th complex response function, the first and the second damping functions of the MDOF system have been
introduced as the modal superpositions of the expressions provided for the 𝑖th mode in Eqs. (23), (28) and (29) respectively:

𝑉𝑑𝑘 =
𝑁
∑

𝑖=1
𝜓𝑘𝑖𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖 (33)

𝑈𝑑𝑘 =
𝑁
∑

𝑖=1
𝜓𝑘𝑖𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖 (34)

𝐺𝑘 =
𝑁
∑

𝜓𝑘𝑖𝜓𝑗𝑖𝑅
2
𝑖 𝑔𝑖 (35)
6

𝑖=1
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It is necessary to observe that, due to the presence of the function 𝑉𝑑𝑗 , the expressions derived for cos𝜙𝑗 and sin𝜙𝑗 are complex.
owever, expressing the complex response function as 𝑉𝑑𝑗 = |𝑉𝑑𝑗 |𝑒

𝑖∠𝑉𝑑𝑗 and performing some algebraic manipulations, it is possible
to rewrite Eqs. (31) and (32) as:

cos(𝜙𝑗 + ∠𝑉𝑑𝑗 ) =
𝑋𝑗 + 𝛽𝐺𝑗

|𝑉𝑑𝑗 |
(36)

nd:

sin(𝜙𝑗 + ∠𝑉𝑑𝑗 ) = −
𝛽𝑈𝑑𝑗
|𝑉𝑑𝑗 |

(37)

Using the relation cos2(𝜙𝑗 +∠𝑉𝑑𝑗 ) + sin2(𝜙𝑗 +∠𝑉𝑑𝑗 ) = 1, it can be obtained that the non-dimensional response amplitude of the mass
n contact 𝑚𝑗 is given by:

𝑋𝑗 = −𝛽𝐺𝑗 +
√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 (38)

It can be observed that this expression is formally identical to that derived by Den Hartog for a SDOF system with combined viscous
and Coulomb damping [19] and reduces to that formulation when 𝑁 = 1. The phase angle 𝜙𝑗 can finally be obtained from Eqs. (36)
nd (37) or, more synthetically, from:

𝜙𝑗 = atan2
⎛

⎜

⎜

⎝

−
𝛽𝑈𝑑𝑗
|𝑉𝑑𝑗 |

,

√

√

√

√1 −
( 𝛽𝑈𝑑𝑗
|𝑉𝑑𝑗 |

)2 ⎞
⎟

⎟

⎠

− ∠𝑉𝑑𝑗 (39)

here the function atan2 is defined according to the expression used in [53].

.4. Steady-state time response of all masses

In Appendix, the following expression has been derived for the 𝑖th modal displacement:

𝜂𝑖 = (𝜂𝑖0 + 𝜓𝑗𝑖𝑅2
𝑖 𝑔𝑖𝛽) cos 𝜏 + (𝜂′𝑖0 + 𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖𝛽) sin 𝜏

+ 𝛽𝜓𝑗𝑖𝑅
2
𝑖

⎧

⎪

⎨

⎪

⎩

1 − (1 + 𝑔𝑖)𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

− 𝑢𝑑𝑖𝑅𝑖
1

√

1 − 𝜁2𝑖

𝑒
−
𝜁𝑖𝜏
𝑅𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

(40)

The time response of the generic mass 𝑚𝑘 of the system in the non-dimensional time interval [0, 𝜋] can be obtained from Eq. (40),
by multiplying both sides by 𝜓𝑘𝑖 and introducing the 𝑘th equation from Eq. (13), as:

�̄�𝑘 = (�̄�𝑘0 + 𝛽𝐺𝑘) cos 𝜏 + (�̄�′𝑘0 + 𝛽𝑈𝑑𝑘) sin 𝜏

+ 𝛽
𝑁
∑

𝑖=1
𝜓𝑘𝑖𝜓𝑗𝑖𝑅

2
𝑖

⎧

⎪

⎨

⎪

⎩

1 − (1 + 𝑔𝑖)𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

− 𝑢𝑑𝑖𝑅𝑖
1

√

1 − 𝜁2𝑖

𝑒
−
𝜁𝑖𝜏
𝑅𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

(41)

The response of the mass in contact 𝑚𝑗 is completely known at this stage, since the initial values of its displacement and velocity are
equal to 𝑋𝑗 and to zero respectively, as expressed in Eq. (30). However, these values are still unknown for all the other masses of
the system. In order to determine them, let us multiply by 𝜓𝑘𝑖 the numerators and denominators of Eqs. (26) and (27) and consider
their sums from 1 to 𝑁 . The following relationships are obtained:

cos𝜙𝑗 =
�̄�𝑘0 + 𝛽𝐺𝑘

𝑉𝑑𝑘
(42)

sin𝜙𝑗 = −
�̄�′𝑘0 + 𝛽𝑈𝑑𝑘

𝑉𝑑𝑘
(43)

Comparing Eqs. (42) and (43) with Eqs. (31) and (32) respectively, it can be obtained that:

�̄�𝑘0 = −𝛽𝐺𝑘 +
|𝑉𝑑𝑘|
|𝑉𝑑𝑗 |

√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 𝑒

𝑖(∠𝑉𝑑𝑘−∠𝑉𝑑𝑗 ) (44)

nd:

�̄�′𝑘0 = 𝛽
[

|𝑉𝑑𝑘|
|𝑉𝑑𝑗 |

𝑈𝑑𝑗 𝑒
𝑖(∠𝑉𝑑𝑘−∠𝑉𝑑𝑗 ) − 𝑈𝑑𝑘

]

(45)

Introducing these expressions into Eq. (41) and considering the real part only, the response of the generic mass 𝑚𝑘 can be finally
written as:

�̄�𝑘 =
|𝑉𝑑𝑘|

[
√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 cos(𝜏 + ∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) + 𝛽𝑈𝑑𝑗 sin(𝜏 + ∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )

]

7

|𝑉𝑑𝑗 |
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)

)

+ 𝛽
𝑁
∑

𝑖=1
𝜓𝑘𝑖𝜓𝑗𝑖𝑅

2
𝑖

⎧

⎪

⎨

⎪

⎩

1 − (1 + 𝑔𝑖)𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

− 𝑢𝑑𝑖𝑅𝑖
1

√

1 − 𝜁2𝑖

𝑒
−
𝜁𝑖𝜏
𝑅𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

(46)

2.5. Response amplitude and phase of the masses not in contact

The amplitude and the phase angle of the response of the generic mass 𝑚𝑘 cannot be determined in a closed form from Eq. (46)
for the masses not in contact with the external wall, i.e. for 𝑘 ≠ 𝑗. In general, it is possible to calculate them numerically, determining
the amplitude as the maximum absolute value of �̄�𝑘 and the phase angle as:

{

𝜙𝑘 = 𝜙𝑗 + 𝜏𝑘,max if �̄�𝑘(𝜏𝑘,max) ≥ 0
𝜙𝑘 = 𝜙𝑗 + 𝜏𝑘,max + 𝜋 if �̄�𝑘(𝜏𝑘,max) < 0

(47)

where 𝜏𝑘,max is the time instant where such a maximum is reached. Nonetheless, in Ref. [24] it was shown that, when 𝜁𝑖 = 0,
approximated closed-form expressions for these quantities can be obtained by considering the monoharmonic approximation of the
response:

�̄�𝑘 ≅ �̄�𝑘0 cos 𝜏 + �̄�′𝑘0 sin 𝜏 (48)

It has been verified that Eq. (48) also offers a very good approximation of the response �̄�𝑘 when the damping of the system is
taken into account. In fact, it can be observed that, in continuous non-sticking regime, modal damping further reduces the non-
monoharmonic effects introduced by Coulomb friction. While these effects can still be significant for the response of the mass in
contact, they become mostly negligible for the masses not in contact. Substituting Eqs. (44) and (45) into Eq. (48), it can be obtained
that:

�̄�𝑘 ≅ Re{�̄�𝑘0 cos 𝜏 + �̄�′𝑘0 sin 𝜏} = Re{(�̄�𝑘0 − 𝑖�̄�′𝑘0)(cos 𝜏 + 𝑖 sin 𝜏)} = 𝑋𝑘𝐶 cos 𝜏 +𝑋𝑘𝑆 sin 𝜏 (49)

where:

𝑋𝑘𝐶 =
[

|𝑉𝑑𝑘|
|𝑉𝑑𝑗 |

√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 cos(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) + 𝛽𝑈𝑑𝑗 sin(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )

]

− 𝛽𝐺𝑘 (50)

and:

𝑋𝑘𝑆 =
|𝑉𝑑𝑘|
|𝑉𝑑𝑗 |

[

𝛽𝑈𝑑𝑗 cos(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) −
√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 sin(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )

]

− 𝛽𝑈𝑑𝑘 (51)

Therefore, the response amplitude can be obtained as:

𝑋𝑘 ≅
√

𝑋2
𝑘𝐶

+𝑋2
𝑘𝑆

=
{

|𝑉𝑑𝑘|
2 + 𝛽2(𝐺2

𝑘 + 𝑈
2
𝑑𝑘) − 2𝛽

|𝑉𝑑𝑘|
|𝑉𝑑𝑗 |

[
√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2

(

𝐺𝑘 cos(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )

+𝑈𝑑𝑘 sin(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )
)

+𝛽𝑈𝑑𝑗

(

𝐺𝑘 sin(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) + 𝑈𝑑𝑘 cos(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 )
) ]}

1
2

(52)

hile the phase angle between the maxima of the displacements of 𝑚𝑗 and 𝑚𝑘 within the time interval [0, 𝜋] is given by:

cos𝜙𝑘𝑗 =
𝑋𝑘𝐶

𝑋𝑘

sin𝜙𝑘𝑗 =
𝑋𝑘𝑆

𝑋𝑘

(53)

The phase angle of the response of the generic 𝑘th mass can be finally calculated as 𝜙𝑘 = 𝜙𝑗 + 𝜙𝑘𝑗 , where 𝜙𝑗 is obtained from
Eq. (39). It can be demonstrated that Eq. (52) reduces to Eq. (38) when 𝑘 = 𝑗.

2.6. Domain of validity of the solution

As specified in Section 2.1, the solutions derived in the current section only hold if the steady-state response of the system is
continuously non-sticking. In order to obtain a closed-form expression for the domain of validity of these solutions, it is therefore
required to impose that the sticking conditions are never simultaneously verified in the half period [0, 𝜋]. It is worth recalling that
a stop occurs in the response of a Coulomb friction oscillator when the relative velocity in the contact is zero and the amplitude of
the overall dynamic loading (including spring forces and external excitation) acting in such a contact does not exceed the value of
the static friction force [24]. In the current investigation, it has been assumed that �̄�′𝑗 < 0 in all the internal points of the half-period
[0, 𝜋], while the velocity is zero by definition at the ends of this time interval. Therefore, it will be necessary to explicitly impose
that the second condition is not verified in these points. However, due to the symmetry of the steady-state response, it is sufficient
to write this condition for 𝜏 = 0. Thus, it can affirmed that stops will not occur if the following conditions are met:

⎧

⎪

⎪

⎨

⎪

⎪

�̄�′𝑗 < 0 if 0 < 𝜏 < 𝜋 (54a
|

|

|

|

|

|

𝑁
∑

𝑘=1
𝐶𝑗𝑘�̄�

′
𝑘 +

𝑁
∑

𝑘=1
𝐾𝑗𝑘�̄�𝑘 − 𝛿𝑙𝑗 cos(𝜏 + 𝜙𝑗 )

|

|

|

|

|

|

> 𝜇𝛽 if 𝜏 = 0 (54b
8
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where 𝛿𝑗𝑙 is the Kronecker delta. In order to express the domain of validity in terms of the friction ratio, let us substitute Eq. (46)
into Eq. (54)a. The following inequality is obtained:

𝑋𝑗 + 𝛽𝐺𝑗 > 𝛽𝑆𝑑𝑗 (55)

where:

𝑆𝑑𝑗 =
𝑁
∑

𝑖=1
𝜓2
𝑗𝑖𝑠𝑑𝑖 (56)

and:

𝑠𝑑𝑖 = max
0<𝜏<𝜋

1
sin 𝜏

⎧

⎪

⎨

⎪

⎩

(1 + 𝑔𝑖)𝑒
−
𝜁𝑖𝜏
𝑅𝑖

𝑅𝑖
√

1 − 𝜁2𝑖

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

− 𝑢𝑑𝑖𝑅2
𝑖 𝑒

−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(57)

From Eqs. (38) and (55), it can be obtained that the condition expressed in Eq. (54)a is verified when:

𝛽 <

√

√

√

√

|𝑉𝑑𝑗 |
2

𝑈2
𝑑𝑗 + 𝑆

2
𝑑𝑗

(58)

In order to derive a similar expression from Eq. (54)b, it is possible to rewrite it in modal terms by introducing the coordinate
transformation in Eq. (13) and considering the generic 𝑖th modal coordinate:

|2𝜁𝑖𝛺𝑖𝜂
′
𝑖0 +𝛺

2
𝑖 𝜂𝑖0 − 𝜓𝑙𝑖 cos𝜙𝑗 | > 𝜓𝑗𝑖𝜇𝛽 (59)

It is useful to express the term cos𝜙𝑗 as a function of 𝜂𝑖0 and 𝜂′𝑖0. From Eqs. (26) and (27), it is obtained that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos(𝜙𝑗 + ∠𝑣𝑑𝑖) =
𝜂𝑖0 + 𝜓𝑗𝑖𝑅2

𝑖 𝑔𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 |𝑣𝑑𝑖|

sin(𝜙𝑗 + ∠𝑣𝑑𝑖) = −
𝜂′𝑖0 + 𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 |𝑣𝑑𝑖|

(60)

Furthermore, it is easily obtained from the definition of 𝑣𝑑𝑖, provided in Eq. (23), that:
{

cos(∠𝑣𝑑𝑖) = |𝑣𝑑𝑖|(1 − 𝑅2
𝑖 )

sin(∠𝑣𝑑𝑖) = −|𝑣𝑑𝑖|(2𝜁𝑖𝑅𝑖)
(61)

hus, it follows that:

cos𝜙𝑗 =
𝜂𝑖0 + 𝜓𝑗𝑖𝑅2

𝑖 𝑔𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖

(1 − 𝑅2
𝑖 ) +

𝜂′𝑖0 + 𝜓𝑗𝑖𝑅
2
𝑖 𝑢𝑑𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖

(2𝜁𝑖𝑅𝑖) (62)

Introducing Eq. (62), it is possible to rewrite Eq. (59) as:
|

|

|

𝜂𝑖0 − 𝛽𝜓𝑗𝑖[(1 − 𝑅2
𝑖 )𝑔𝑖 + 2𝜁𝑖𝑅𝑖𝑢𝑑𝑖]

|

|

|

> 𝜓𝑗𝑖𝜇𝛽 (63)

et us now consider the sums of both sides of Eq. (63), multiplied by 𝜓𝑗𝑖. Introducing the function:

𝐻𝑗 =
𝑁
∑

𝑖=1
𝜓2
𝑗𝑖(𝑔𝑖 + 2𝜁𝑖𝑅𝑖𝑢𝑑𝑖) (64)

nd considering that, from Eqs. (8) and (17) it is obtained that:
𝑁
∑

𝑖=1
𝜓2
𝑗𝑖 =

1
𝛾𝑗𝑟2

(65)

it is possible to rewrite the above inequality as:

|

|

|

𝑋𝑗 + 𝛽𝐺𝑗 − 𝛽𝐻𝑗
|

|

|

>
𝜇𝛽
𝛾𝑗𝑟2

(66)

he condition expressed in Eq. (66) is verified if:

𝛽 <

√

√

√

√

√

√

√

√

|𝑉𝑑𝑗 |
2

𝑈2
𝑑𝑗 +

(

𝐻𝑗 +
𝜇
𝛾 𝑟2

)2
(67)
9
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or:

𝛽 >

√

√

√

√

√

√

√

√

|𝑉𝑑𝑗 |
2

𝑈2
𝑑𝑗 +

(

𝐻𝑗 −
𝜇
𝛾𝑗𝑟2

)2
(68)

In order to obtain a continuous non-sticking response, the inequalities expressed in Eq. (58) and one between Eq. (67) and (68)
must be simultaneously verified. However, it has been observed that Eqs. (58) and (68) never occur concurrently. Therefore, the
domain of validity of the mathematical solution presented in this section can be expressed as:

𝛽 <

√

√

√

√

√

√

√

√

|𝑉𝑑𝑗 |
2

𝑈2
𝑑𝑗 +

[

max

(

𝑆𝑑𝑗 ,𝐻𝑗 +
𝜇
𝛾𝑗𝑟2

)]2
(69)

where the RHS represents the value 𝛽lim of the friction ratio at the boundary between continuous and stick–slip regimes. It is worth
noting that, although the analytical solutions derived in this section for the continuous steady-state response are independent of the
ratio 𝜇 between the static and the kinetic friction forces, this parameter now appears in the boundary expressed in Eq. (69). This
implies that, despite having no effect on the dynamic response in continuously sliding regime, larger values of the static friction
force can affect (and reduce) the region of the parameter space where continuous motions are observed.

Due to the presence of the function 𝑆𝑑𝑗 , the evaluation of the boundary described by Eq. (69) requires the numerical calculation
f the maximum of the time-dependant expression in Eq. (57) for each sets of parameters. In order to reduce the computational
ost associated to this procedure, the following approximation can be considered. It has been observed numerically that, in most

ases, the maximum value of the function 𝑠𝑑𝑖 occurs at 𝜏 = 0. This effect is due to the presence of the exponential term 𝑒
−
𝜁𝑖𝜏
𝑅𝑖 in the

expression of 𝑠𝑑𝑖 and, therefore, exceptions are only observed when 𝜁𝑖 is nearly zero. Thus, a first-order expansion of the function
𝑠𝑑𝑖 around 𝜏 = 0 can be considered:

𝑠𝑑𝑖 ≅
1
𝜏

{

(1 + 𝑔𝑖)
(

1 −
𝜁𝑖𝜏
𝑅𝑖

)

𝜏 − 𝑢𝑑𝑖𝑅2
𝑖

[

1 −
(

1 −
𝜁𝑖𝜏
𝑅𝑖

)2
]}

(70)

Neglecting the second-order terms in the above equation, it is obtained that:

𝑠𝑑𝑖 ≅ 1 + 𝑔𝑖 + 2𝜁𝑖𝑅𝑖𝑢𝑑𝑖 (71)

and, by substituting this expression into Eq. (56), it is possible to write an approximated expression of the function 𝑆𝑑𝑗 as:

𝑆𝑑𝑗 ≅ 𝐻𝑗 +
1
𝛾𝑗𝑟2

(72)

Introducing this approximated formulation into Eq. (69), it can be observed that the RHS of Eq. (72) coincides with 𝑆𝑑𝑗 for 𝜇 = 1,
and becomes larger than 𝑆𝑑𝑗 if 𝜇 > 1. Therefore, Eq. (67) can directly be considered as an approximation of the boundary between
continuous and stick–slip regimes. In particular, it has been observed that discrepancies between the exact and the approximated
expressions can arise at low frequency ratios only when the modal damping ratios are nearly zero, consistently with the above
observations. The case 𝜁𝑖 = 0, discussed in [24], is therefore the case where the most significant disagreement is observed between
the exact and the approximated boundary.

3. Numerical investigation of the steady-state response

This section introduces a numerical approach for the evaluation of the time response, displacement transmissibility and phase
angle of damped MDOF systems with a Coulomb friction contact, with the scope of providing a numerical validation of the solutions
presented in the previous section and achieving a complete overview of the dynamic behaviour of these systems, including stick–slip
responses.

3.1. Description of the numerical approach

The main challenge in the numerical time integration of the set of governing equations reported in Eq. (6) is doubtlessly related
to the occurrence of stick–slip in the response. In fact, while continuous responses can be calculated with standard numerical solvers,
stick–slip motions are characterised by the presence of rapid variations due to the transitions between the sticking and the sliding
phases and lead to numerical stiffness in the problem [3]. The approach proposed in this section consists in using standard integration
methods by setting explicit conditions to account for the transition between different regimes. A schematic representation of the
implemented numerical algorithm is given in Fig. 3 and the major steps are detailed in what follows.
10
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h

Fig. 3. Flowchart of the numerical algorithm implemented for the calculation of the response of a damped MDOF system with a Coulomb friction contact under
armonic excitation.

• The minimum number of input parameters required to determine the response of the MDOF systems investigated in this paper
is equal to 3𝑁 + 1, i.e. the frequency ratio 𝑟, the friction ratio 𝛽, the ratio 𝜇, the 𝑁 modal damping ratios, the 𝑁 − 1 mass
ratios (𝛾1 = 1 by definition) and the 𝑁 − 1 stiffness ratios:

𝜅𝑖 =
𝑘𝑖
𝑘1

(73)

where 𝜅1 = 1 by definition. The non-dimensional matrices 𝐌, 𝐂 and 𝐊 can be evaluated from the input parameters by
implementing Eqs. (8), (19) and (7) or, alternatively, they can directly be specified by the user. The latter option is particularly
practical when the dimensional mass, damping and stiffness matrices of the system are known; in this case, the mass, stiffness
and frequency ratios will not be needed. Finally, the user can specify the number of DOFs of system, the masses in contact
and under harmonic excitation respectively, the initial conditions for the displacement and the velocity and the number of
excitation periods 𝑁𝑐𝑦𝑐 . Since the length of each period is equal to 2𝜋 in the current formulation, the final time will be equal
to 2𝜋𝑁𝑐𝑦𝑐 .

• As a first step, the algorithm checks if the sticking conditions:
{

�̄�′𝑗 = 0
𝛴𝑗 ≤ 𝜇𝛽

(74)

are verified. In the above equations, the function:

𝛴 =
|

|

|

|

|

|

𝑁
∑

𝑘=1
𝐶𝑗𝑘�̄�

′
𝑘 +

𝑁
∑

𝑘=1
𝐾𝑗𝑘�̄�𝑘 − 𝛿𝑙𝑗 cos 𝜏

|

|

|

|

|

|

(75)

denotes the amplitude of the sum of the overall dynamic loading acting in the contact. A sticking or a sliding phase will take
place depending on whether these conditions are met or not.

• During the sliding phases, the motion of all masses is continuous and the solution is nonstiff. Therefore, the governing equations
are integrated by using a variable-step Runge–Kutta (4, 5) method, implemented in the Matlab function ode45 [53]. These
phases are terminated by the event condition �̄�′𝑗 = 0; when this happens, the algorithm checks if the second sticking condition
from Eq. (74) is also verified to determine if the following phase will be sticking or sliding.

• During the sticking phases, the displacement of the mass in contact will remain constant and its velocity will be equal to zero.
However, all the other masses will keep oscillating and, therefore, numerical integration will also be needed at this stage.
11
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Fig. 4. Steady-state time response of a 5DOF system with equal masses and springs where a friction contact and a harmonic load are applied to 𝑚1 for 𝜇 = 1,
𝛽 = 0.2, 𝑟 = 0.9 and modal damping ratios 0.01 (a) and 0.1 (b): comparison between analytical (continuous lines) and numerical (round markers).

Fig. 5. Steady-state time response of a 5DOF system with equal masses and springs where a friction contact occurs on 𝑚3 and a harmonic load is applied to 𝑚1
for 𝜇 = 1, 𝛽 = 0.2, 𝑟 = 0.9 and modal damping ratios 0.01 (a) and 0.1 (b): comparison between analytical (continuous lines) and numerical (round markers).

Although the motion of 𝑚𝑗 during the stop is already known, it is convenient to integrate all the 𝑁 equations of the system,
disregarding the friction force, and imposing that �̄�𝑗 = �̄�𝑗0 at each step, as shown in Fig. 3. In fact, this approach allows the
use of the same mass and stiffness matrices used during the sliding stages. The stop will end when the dynamic force acting
in the contact exceeds the static friction force, i.e. when 𝛴 > 𝜇𝛽; this is again imposed as an event condition in the function
ode45.

• The simulation will end when the final time 2𝜋𝑁𝑐𝑦𝑐 is reached. The response amplitudes can be determined as the maximum
absolute values assumed by each mass displacement within the time interval [2𝜋(𝑁𝑐𝑦𝑐 − 1), 2𝜋𝑁𝑐𝑦𝑐 ], corresponding to the
last excitation period. Similarly, given that the lower bound of this interval corresponds to a maximum of the excitation, the
phase angle of each mass motion can be determined as the non-dimensional time instant corresponding to the maximum mass
displacement. However, it is worth nothing that, when stick–slip occurs, the maximum displacement of the mass in contact
usually coincides with a sticking phase rather than a single point. While this do not affect the evaluation of the response
amplitude, in this case it is not possible to evaluate the phase angle between the maxima of the excitation and of �̄�𝑗 . Therefore,
the numerical phase angles will only be evaluated for continuous responses.

3.2. Numerical validation of the analytical results

This subsection presents a numerical validation of the analytical solutions derived in Section 2. In particular, the validation of the
continuous steady-state response is addressed in Section 3.2.1, considering as example a 5DOF system with equal masses and springs
for two different locations of the friction contact. In Section 3.2.2, the closed-form expressions obtained for the response amplitude
12

and phase are also validated for varying frequency and friction ratios, considering for simplicity the cases of a SDOF system and of



Journal of Sound and Vibration 535 (2022) 117085L. Marino and A. Cicirello
Fig. 6. Displacement transmissibility and phase angle of a damped SDOF system with a Coulomb friction contact under harmonic excitation for 𝜇 = 1 and
varying frequency, friction and modal damping ratios: analytical vs numerical.

Fig. 7. Motion regimes of a damped SDOF system with a Coulomb friction contact under harmonic excitation in the parameter space 𝑟 − 𝛽 for 𝜇 = 1 and three
different modal damping ratios.

a 2DOF system with excitation and friction contact applied to different masses. For both systems, the analytical boundaries of the
motion regimes are also shown in the parameter space 𝑟 − 𝛽.

3.2.1. Steady-state time response
The steady-state mass motions described by Eq. (46) have been compared to the numerical results obtained by using the algorithm

introduced in Section 3.1 for different parameters sets. In particular, the numerical responses have been evaluated setting a number
of cycles equal to 𝑁𝑐𝑦𝑐 = 200 and zero initial conditions for the relative displacement and velocity. It has been observed that most
responses converge to a steady-state solution for a significantly lower number of cycles. During the integration process, the absolute
tolerance was set to 10−6. An excellent agreement has been observed for all the cases investigated. Figs. 4 and 5 show the comparison
between analytical and numerical results for a 5DOF system with equal masses and spring for 𝑟 = 0.9, 𝛽 = 0.2, 𝜇 = 1 and for two
different modal damping ratios. In particular, in Fig. 4 the harmonic excitation and the friction contact are both applied to the mass
13
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𝑚1, while in Fig. 5 the contact occurs between 𝑚3 and a fixed wall. For simplicity, in both cases equal modal damping ratios have
een considered for the all vibrating modes, but it is worth remembering that different values can be taken into account within the
roposed analytical and numerical formulations.

In Ref. [24], it was observed that the dynamic behaviour of MDOF systems with a Coulomb friction contact is mostly affected
y the location of the harmonic and of the friction forces and, more specifically, different behaviours are observed depending on
hether these forces are applied or not to the same mass. The phenomenon can be briefly explained as follows:

• when 𝑗 = 𝑙, all the masses oscillate in phase or in phase-opposition and, therefore, behave similarly to the mass in contact;
• when, for instance, 𝑗 > 𝑙, the masses 𝑚𝑗 ,… , 𝑚𝑁 will still oscillate in phase or in phase-opposition, while the masses 𝑚1,… , 𝑚𝑗−1

will exhibit different phase angles and, in general, a richer dynamic behaviour.

In Figs. 4a and 5a, it can be observed that this property is substantially maintained when 𝜁𝑖 = 0.01. Differently, in Figs. 4b and 5b,
where all modal damping ratios have been set to 0.1, each mass oscillate with a different phase angle. Hence, it can be concluded
that modal damping alters the phase angle among the mass motions, but this effect only becomes relevant for significant damping
levels in the system.

3.2.2. Response amplitude, phase and motion regimes for varying frequency ratio
A numerical validation has also been carried out for the transmissibility and phase angle curves by using the algorithm presented

in Section 3.1. As mentioned, different dynamic behaviours are observed in MDOF systems depending on whether the friction contact
occurs on the excited mass or a different one. Since the MDOF behaviour has already been extensively investigated in [24], the
purpose of this study is to explore how these curves are affected by Coulomb friction when the damping of the system is also taken
into account. To this end, the simplest case-studies reflecting these two different configurations are considered in what follows: (i)
a SDOF system and (ii) a 2DOF system with a contact on 𝑚2 and a harmonic loading on 𝑚1.

Fig. 6 presents the transmissibility and phase angle curves for the SDOF case, obtained for the values [0.001, 0.01, 0.1] of
the damping ratio 𝜁 , while Fig. 7 shows the variation of the analytical boundaries of the motion regimes in the parameter space
𝑟 − 𝛽. In the latter figure, the boundary between continuous and stick–slip response has been evaluated from Eq. (69), while the
boundary between sliding and permanent sticking regimes has been obtained using the approach introduced in Section 4.3. The
response amplitude and phase of the 2DOF systems are plotted in Figs. 8 and 9 for the masses 𝑚1 and 𝑚2 respectively, while
Fig. 10 shows the evolution of the boundaries of the motion regimes for increasing modal damping ratios. In this case, the values

Fig. 8. Displacement transmissibility and phase angle of the mass 𝑚2 for a 2DOF system with equal masses and springs, a Coulomb friction contact on 𝑚2 and
a harmonic excitation on 𝑚1 for 𝜇 = 1 and varying frequency, friction and modal damping ratios: analytical vs numerical.
14
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Fig. 9. Displacement transmissibility and phase angle of the mass 𝑚2 for a 2DOF system with equal masses and springs, a Coulomb friction contact on 𝑚2 and
a harmonic excitation on 𝑚1 for 𝜇 = 1 and varying frequency, friction and modal damping ratios: analytical vs numerical.

Fig. 10. Motion regimes of a 2DOF system with equal masses and springs, a Coulomb friction contact on 𝑚2 and a harmonic excitation on 𝑚1 in the parameter
space 𝑟 − 𝛽 for 𝜇 = 1 and three different modal damping ratios.

𝜁𝑖 = [0.001∕𝑟𝑛,𝑖, 0.01∕𝑟𝑛,𝑖, 0.1∕𝑟𝑛,𝑖], where 𝑟𝑛,𝑖 is the 𝑖th natural frequency ratio, have been considered in order to observe a similar
damping effect for both vibrating modes in each case.

A very good agreement can be observed from the comparisons between the analytical and the numerical transmissibilities and
phase angles presented in Figs. 6, 8 and 9. In the same figures, the numerical transmissibilities have also been represented for stick–
lip responses to provide a more complete insight of the dynamic behaviour of these systems across the different motion regimes. It
as also been verified that continuous, stick–slip and permanent sticking regimes occur in the numerical response as predicted by
igs. 7 and 10. The results presented in Figs. 6–10 will be further discussed in the following section, where the response features
f these systems are explored.
15
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4. Features of the dynamic response

In this section, the main features characterising the dynamic response of damped MDOF systems with Coulomb friction will be
iscussed. These features include the resonant, the low- and the high-frequency behaviours, the presence of invariant points and
nversions across the transmissibility curves and the behaviour of these systems in permanent sticking regime. Although the results
resented in the previous section and illustrated in Figs. 6–10 will be referred to as example, this discussion will concern the more
eneral case of the MDOF system of 𝑁 masses, a contact on the mass 𝑚𝑗 and a harmonic forcing applied to the mass 𝑚𝑙 depicted
n Fig. 1. In particular, this section aims at describing how the response features of a MDOF system with Coulomb damping only,
ealt within [24], evolve when the damping of the structure is also taken into account.

.1. Resonant behaviour

In the absence of other forms of damping, Coulomb friction cannot provide finite resonant peaks in discrete mechanical systems
nless stick–slip or permanent sticking occur at resonance [24]. However, the resonant behaviour of these systems is deeply affected
y modal damping. In fact, in Figs. 6, 7 and 9, it can be observed that damped systems with Coulomb friction also present finite
esonances in continuous motion regime. A procedure for determining an approximated expression for the amplitude of these finite
esonant peaks is presented in what follows.

According to Craig [29], the values of the modal damping ratios typically lie in the range 0 ≤ 𝜁𝑖 ≤ 0.1; therefore, it can generally
be assumed that 𝜁𝑖 ≪ 1. Based on this consideration, it can also be assumed, at this stage, that resonant peaks occur in correspondence
of the undamped natural frequencies of the system. Under these assumptions, an approximated expression can be derived for the
amplitude of the 𝑖th resonant peak of the response of the generic mass 𝑚𝑘 by evaluating Eq. (52) for 𝑅𝑖 → 1 and 𝜁𝑖 ≪ 1. As a
first step, let us determine how the complex response function 𝑉𝑑𝑘 and the damping functions 𝐺𝑘 and 𝑈𝑑𝑘 are affected by these
assumptions.

• Regarding the complex response function, in proximity of the 𝑖th resonant peak, the 𝑖th term of the summation in Eq. (33)
becomes significantly larger than the other 𝑁 − 1 terms. Therefore, it can be written that:

𝑉𝑑𝑘 ≅ lim
𝑅𝑖→1

𝜓𝑘𝑖𝜓𝑙𝑖𝑅
2
𝑖 𝑣𝑑𝑖 = −𝑖

𝜓𝑘𝑖𝜓𝑙𝑖
2𝜁𝑖

(76)

where the expression of 𝑣𝑑𝑖 is provided in Eq. (23). When the 𝑖th resonance occurs, the amplitude of the complex response
function is therefore given by:

|𝑉𝑑𝑘| ≅
|𝜓𝑘𝑖𝜓𝑙𝑖|
2𝜁𝑖

(77)

while the phase of this function will be equal to −𝜋∕2 or 𝜋∕2 depending on the sign of the product 𝜓𝑘𝑖𝜓𝑙𝑖. Thus, it can be
demonstrated that, in Eq. (52):

{

cos(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) = sgn(𝜓𝑘𝑖𝜓𝑗𝑖)
sin(∠𝑉𝑑𝑘 − ∠𝑉𝑑𝑗 ) = 0

(78)

• Let us now evaluate the second damping function of the 𝑖th vibrating mode for 𝑅𝑖 → 1. If 𝜁𝑖 ≪ 1, it is obtained from Eq. (29)
that:

𝑔𝑖 =
sinh(𝜁𝑖𝜋)

cosh(𝜁𝑖𝜋) − 1
(79)

It can be demonstrated that the above expression tends to infinity when 𝜁𝑖 → 0. Therefore, since 𝜁𝑖 ≪ 1, the 𝑖th term of the
summation in Eq. (35) will also grow much larger than the other terms when 𝑅𝑖 → 1. Thus, in proximity of the 𝑖th resonance,
the second damping function will assume the value:

𝐺𝑘 ≅ lim
𝑅𝑖→1

𝜓𝑘𝑖𝜓𝑗𝑖𝑅
2
𝑖 𝑔𝑖 = 𝜓𝑘𝑖𝜓𝑗𝑖

sinh(𝜁𝑖𝜋)
cosh(𝜁𝑖𝜋) − 1

(80)

• Finally, the first damping function 𝑈𝑑𝑘 does not present any peculiar behaviours at resonance. In fact, although it can be shown
from Eq. (28) that 𝑢𝑑𝑖 = 0 for 𝑅𝑖 → 1, the other 𝑁 − 1 terms of the summation from Eq. (35) will generally have different
values. Nonetheless, since the response functions 𝑉𝑑𝑘 tend to assume large amplitudes in proximity of the resonances, it will
be assumed in what follows that

√

|𝑉𝑑𝑗 |
2 − (𝛽𝑈𝑑𝑗 )2 ≅ |𝑉𝑑𝑗 |.

Considering this assumption and substituting Eq. (78) into Eq. (52), it is obtained that, for 𝑟 = 𝑟𝑛,𝑖:

𝑋𝑘 ≅
[

|𝑉 2
𝑑𝑘 + 𝛽

2(𝐺2
𝑘 + 𝑈

2
𝑑𝑘) − 𝛽(2|𝑉𝑑𝑘‖𝐺𝑘| − |𝑈𝑑𝑗‖𝑈𝑑𝑘|)

]

1
2 (81)

Since at resonance, as previously stated, the functions |𝑉𝑑𝑘| and 𝐺𝑘 become much larger than the damping functions 𝑈𝑑𝑘, the above
equation can be approximated as:

𝑋 ≅ |𝑉 − 𝛽|𝐺 |

| (82)
16
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Fig. 11. Non-dimensional amplitude of the resonant peak of a SDOF system in continuous non-sticking regime for varying friction and modal damping ratio.

Finally, substituting Eqs. (77) and (80) into Eq. (82), it is possible to write:

𝑋𝑘 ≅
|𝜓𝑘𝑖𝜓𝑙𝑖|
2𝜁𝑖

− |𝜓𝑘𝑖𝜓𝑗𝑖|
sinh(𝜁𝑖𝜋)

cosh(𝜁𝑖𝜋) − 1
𝛽 (83)

Eq. (83) can be used for estimating the response amplitude of each mass of the system in correspondence of each resonant peak
of the system. The most important implication of this expression is that, when 𝜁𝑖 ≠ 0, Coulomb friction also reduces the resonant
amplitudes without introducing stick–slip in the response. Furthermore, it can be observed that, for given modal damping ratios, the
amplitude of these peaks decreases linearly with the friction ratio. To the best of the author’s knowledge, this latter phenomenon has
never been discussed in previous publications. However, it is worthwhile mentioning that Den Hartog investigated experimentally
the response amplitude at resonance for a SDOF system with Coulomb friction and a small amount of viscous damping; in his results,
the resonant amplitude shows an approximatively linear reduction with the friction ratio [19].

The dependence of the resonant peak amplitude on 𝜁 and 𝛽 is shown in Fig. 11 for the SDOF case; similar patterns have also
been observed for the resonances of more complex systems. For a SDOF system, Eq. (83) reduces to:

𝑋 = 1
2𝜁

−
sinh(𝜁𝜋)

cosh(𝜁𝜋) − 1
𝛽 (84)

In Fig. 11, a boundary has also been represented to delimit the domain of validity of this formula, which is only valid in continuous
motion regime. Based on the above observations regarding the response and damping functions, an approximated expression of this
boundary can be determined by evaluating Eq. (69) for 𝑅𝑖 → 1. After some algebraic manipulations, it is obtained that the response
is continuous at the 𝑖th resonance when the friction ratio is smaller than:

𝛽𝑛,𝑖 ≅
|

|

|

|

|

𝜓𝑙𝑖
𝜓𝑗𝑖

|

|

|

|

|

cosh(𝜁𝑖𝜋) − 1
2𝜁𝑖 sinh(𝜁𝑖𝜋)

(85)

consistently with the value 𝛽𝑛,𝑖 = |𝜓𝑙𝑖∕𝜓𝑗𝑖| (corresponding to 𝜋∕4 in the SDOF case) derived in [24] for 𝜁𝑖 = 0. Fig. 11 shows how the
value of 𝛽𝑛,𝑖 remains approximatively constant for 𝜁 ≤ 0.01 and only decreases significantly for larger values of the modal damping
ratio. Therefore, while it is important to take the damping of the system into account when evaluating the amplitude of the resonant
peaks, the aforementioned boundary expression from [24] can be considered a good estimation of the minimum value of the friction
ratio for which stick–slip occurs at resonance in lightly-damped systems.

In Fig. 12, the estimation of the resonant amplitude provided by Eq. (83) is compared to the amplitude of the response at 𝑟 = 1
nd to the actual resonant amplitude evaluated from Eq. (52), showing an excellent agreement with both quantities. It can also be
bserved that, in proximity of the boundary between continuous and stick–slip regimes, the actual value of the resonant amplitude
ecomes slightly larger than the estimated one. In Figs. 6, 8 and 9, it can be seen that, for large amounts of the friction ratio, the

resonant peak is slightly shifted to the left and, therefore, it can be underestimated by Eq. (83). Nonetheless, the actual and the
estimated values of the resonant peak have been compared for several MDOF systems and for different modal damping ratios; their
agreement was very good in all the cases investigated. The linear dependency of 𝑋𝑘 on the friction ratio is also shown in Fig. 12b
for different values of the damping ratio. It can be observed that the slope of the curves decreases with 𝜁 ; however, the rate of
variation of this slope also becomes smaller as the damping ratio is increased.

4.2. Low- and high-frequency behaviours

In Figs. 6–10, it is possible to observe that the dynamic behaviour of SDOF and MDOF systems at low and high frequency ratios
is not significantly affected by the system’s damping.
17
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Fig. 12. Non-dimensional amplitude of the resonant peak of a SDOF system in continuous non-sticking regime for varying friction ratio: comparison between
he estimated and the actual amplitudes (a) and estimated value for varying modal damping ratio (b).

Regarding the low-frequency behaviour, it can be easily verified that the boundary expressed in Eq. (69) tends to zero for 𝑟 → 0;
herefore, the quasi-static behaviour of damped systems with Coulomb friction will also be characterised by the occurrence of
tick–slip in the response. However, as shown in Fig. 13, modal damping can have a smoothing effect on the quasi-static response
f these systems; this is particularly evident from the curve corresponding to 𝜁 = 0.1. The patterns displayed in the transmissibility
urves in Figs. 6, 8 and 9 at low frequencies do not generally show significant differences for varying damping ratios. This implies
hat, in most cases, modal damping can reduce the number of stops but does not change significantly the amplitude of the stick–slip
esponses, in agreement with Fig. 13.

The behaviour of these systems at high frequency ratios is also similar to that observed in systems with Coulomb damping only
n [23,24]. In the above figures, it can be clearly observed that the transmissibilities always tend to zero when 𝑟→ ∞, as expected.
herefore, also in this case, the discussion focuses on determining if stick–slip or permanent sticking can occur in these systems
t high frequencies. By evaluating the limit of Eq. (69) for 𝑅𝑖 → ∞, it can be verified that the boundary between continuous and
tick–slip regimes tend to the same value determined in [24]:

𝛽∞ =

⎧

⎪

⎨

⎪

⎩

2
√

4𝜇 + 𝜋2
if 𝑗 = 𝑙

0 if 𝑗 ≠ 𝑙
(86)

This means that only systems with the harmonic and the friction forces applied to the same mass can display a continuous response
at high frequencies. This can also be observed from Fig. 7, where all the boundaries between continuous and stick–slip regimes
displayed for varying 𝜁 tend to the asymptotic value 𝛽∞ = 0.537. Conversely, in Fig. 10 these boundaries tend to zero and, therefore,
stick–slip is always expected for high frequency ratios.

4.3. Invariant points and stuck configurations

In Fig. 8, it is possible to observe how the inversion process of the transmissibility curves and the onset of the resonant peaks of
the stuck configuration are not heavily affected by the system’s damping. From a mathematical point of view, it can be observed that
invariant points are not admitted by Eq. (52) unless 𝜁𝑖 = 0. However, it can be observed that the inversions of the transmissibility
urves still occur in a small region located in proximity of the invariant points of MDOF systems with Coulomb damping only, which
an be determined from [24]:

1 − 2
𝑉𝑘
𝑉𝑗

𝑈𝑗
𝑈𝑘

= 0 (87)

where 𝑉𝑘 and 𝑈𝑘 are the response and the first damping functions evaluated for 𝜁𝑖 = 0. Therefore, the points determined from the
above equation can also be considered, with good approximation, for damped systems.

Permanent sticking between the mass and the wall in contact occurs in mechanical systems with a Coulomb friction contact when
the maximum amplitude of the overall dynamic loading acting in the contact is not sufficient to overcome the static friction force. In
MDOF systems, even when a contact is permanently stuck, some masses of the systems can still be excited by the dynamic loading;
the subsystem which keeps oscillating in permanent sticking regime is usually defined as stuck configuration or mode [23,24]. In
the 2DOF case discussed in Section 3.2, the mass 𝑚1 will also respond to the harmonic excitation when 𝑚2 is stuck. The resonant
18

peak associated to the stuck configuration of this system can be observed in Fig. 8, where it is represented by a black dotted line.
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Fig. 13. Steady-state stick–slip response of a damped SDOF system with a Coulomb friction contact for 𝑟 = 0.1, 𝛽 = 0.2 and 𝜇 = 1.

Although the procedure for evaluating the response of system in stuck conditions and the boundary between the sliding and the
ermanent sticking regimes is similar to that described in [23], it must be considered that modal damping will also be present in
he stuck configurations. Let us consider, for instance, the case of a MDOF system with 𝑗 > 𝑙. When permanent sticking occurs, the

masses 𝑚1,… , 𝑚𝑗−1 will keep oscillating. Therefore, the response of the system can be determined from the linear equation:

𝐌∗�̄�∗′′ + 𝐂∗�̄�∗′ +𝐊∗�̄�∗ = 𝐩∗

with a standard modal superposition procedure. In the above equation, the stuck mass, damping and stiffness matrices are determined
considering the first 𝑗−1 rows and columns of the matrices 𝐌, 𝐂 and 𝐊. If needed, the modal damping ratios 𝜁∗1 ,… , 𝜁∗𝑗−1 of the stuck
configuration can be determined by using Eq. (18), after that the stuck natural frequencies and mode-shapes have been determined
from Eq. (15), referring to the matrices 𝐌∗ and 𝐊∗. Finally, the boundary 𝛽∗lim can be evaluated from [24]:

⎧

⎪

⎨

⎪

⎩

𝛽 < (𝜅𝑗𝑋∗
𝑗−1)∕𝜇 if 𝑗 > 𝑙

𝛽 < (𝜅𝑗+1𝑋∗
𝑗+1)∕𝜇 if 𝑗 < 𝑙

𝛽 < 1∕𝜇 if 𝑗 = 𝑙

(88)

The same procedure can be used for the case 𝑗 < 𝑙, taking into account the masses 𝑚𝑗+1,… , 𝑚𝑁 , while the system will be fully stuck
if 𝑗 = 𝑙. From Figs. 8 and 10, it can be observed that modal damping only affects 𝑋∗

𝑘 and 𝛽∗lim at resonance, while the starting values
t 𝑟 = 0 and the asymptotic behaviour at high frequencies remain unchanged.

. Concluding remarks

In this paper, an analytical solution has been derived for the continuous response of damped MDOF systems with a friction
ontact subject to harmonic excitation, modelling the friction force according to Coulomb’s law (with different static and kinetic
riction coefficients) and the damping of the system according to the modal damping model. In particular, closed-form expressions
ave been obtained for the steady-state time response, the displacement transmissibility and the phase angle of all the masses of the
ystem. Furthermore, exact and approximated formulations have been provided for the boundary between continuous and stick–slip
egimes.

The results obtained from these analytical solutions have been validated with a numerical approach, taking into account: (i) a
DOF system; (ii) a 2DOF system excited on 𝑚1 and with a contact on 𝑚2; (iii) a 5DOF system with excitation and contact on 𝑚1;
iv) a 5DOF system excited on 𝑚1 and with a contact on 𝑚3. For the systems (i) and (ii), a very good agreement has been observed
or the transmissibilities and the phase angles, and the cases (iii) and (iv) have shown that an excellent agreement can be obtained
etween the analytical and the numerical time responses even when several DOFs are involved.

The features and the motion regimes exhibited by the dynamic response of these systems have been investigated, including the
esonant, low- and high-frequency behaviours, the presence of invariant points and inversions of the transmissibility curves and
he stuck configurations determined by the occurrence of permanent sticking. This investigation has revealed that, while most of
he response features are not significantly altered by modal damping, the resonant behaviour is very different from that observed
n SDOF and MDOF systems with Coulomb damping only. In fact, when the system’s damping is accounted for in the mechanical
odels, the resonant peaks are also finite in continuous motion regime. An approximated expression was derived for the amplitude

f the resonant peaks of a MDOF system with mixed damping. Besides enabling a quick estimation of the resonant amplitudes, this
ormula also highlights that, for given modal damping ratios, such amplitudes decrease linearly with the friction ratio and, therefore,
ith the intensity of the friction force. This implies that, in systems with non-negligible damping levels, dry friction can avoid large

esonant peaks without introducing stick–slip or permanent sticking in the response.
Overall, the present investigation has shown that mechanical models with Coulomb damping only can provide an acceptable
19

escription of lightly-damped structures where a friction contact is the predominant source of damping. Even in the presence of
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𝑖

higher levels of damping, certain features such as the high-frequency behaviour and inversions across the transmissibility curves
can still be studied referring to the formulations derived in [24]. However, in the latter case, the damping of the system should also
be taken into account in the investigation of the resonant behaviour.
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Appendix. Step-by-step modal solution

This appendix presents a step-by-step solution of the modal problem introduced in Section 2.2. The governing equation of the
th modal coordinate of the MDOF system has been written in Eq. (20) as:

𝜂′′𝑖 + 2𝜁𝑖𝛺𝑖𝜂
′
𝑖 +𝛺

2
𝑖 𝜂𝑖 = 𝜓𝑗𝑖𝛽 + 𝜓𝑙𝑖 cos(𝜏 + 𝜙𝑗 ) (A.1)

This equation holds in the non-dimensional time interval [0, 𝜋], included between a maximum and the subsequent minimum of the
continuous steady-state response of the mass in contact 𝑚𝑗 . The general solution of Eq. (A.1), also reported in Eq. (21), is:

𝜂𝑖 = 𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

𝐴𝑖 cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+ 𝐵𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

+ 𝜓𝑗𝑖𝑅2
𝑖 𝛽 + 𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖 cos(𝜏 + 𝜙𝑗 ) (A.2)

In the above solution, the integration constants 𝐴𝑖 and 𝐵𝑖 and the phase angle 𝜙𝑗 between the excitation and the displacement �̄�𝑗
of the mass in contact are unknown. These values can be determined by imposing the following initial and the final conditions on
𝜂𝑖 and on its derivative 𝜂′𝑖 in the interval [0, 𝜋]:

{

𝜂𝑖(0) = 𝜂𝑖0
𝜂′𝑖 (0) = 𝜂′𝑖0

(A.3)

and:
{

𝜂𝑖(𝜋) = −𝜂𝑖0
𝜂′𝑖 (𝜋) = −𝜂′𝑖0

(A.4)

where the assumption of symmetry of the steady-state response has been taken into account. Substituting Eq. (A.3) into Eq. (A.2)
and rearranging the terms, the expressions of 𝐴𝑖 and 𝐵𝑖 can be obtained as:

⎧

⎪

⎨

⎪

⎩

𝐴𝑖 = 𝜂𝑖0 − 𝜓𝑗𝑖𝑅2
𝑖 𝛽 − 𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖 cos𝜙𝑗

𝐵𝑖 =
𝑅𝑖

√

1 − 𝜁2𝑖

(𝜂′𝑖0 + 𝜓𝑙𝑖𝑅
2
𝑖 𝑣𝑑𝑖 sin𝜙𝑗 ) +

𝜁𝑖𝐴𝑖
√

1 − 𝜁2𝑖

(A.5)

Introducing these expressions, Eq. (A.2) can be rewritten as:

𝜂𝑖 = 𝑑𝑖𝜂𝑖0 + 𝑅𝑖𝑞𝑖𝜂′𝑖0 + 𝜓𝑗𝑖𝑅
2
𝑖 (1 − 𝑑𝑖)𝛽 + 𝜓𝑙𝑖𝑅

2
𝑖 𝑣𝑑𝑖[(cos 𝜏 − 𝑑𝑖) cos𝜙𝑗 + (𝑅𝑖𝑞𝑖 − sin 𝜏) sin𝜙] (A.6)

and, therefore, 𝜂′𝑖 will be equal to:

𝜂′ = −𝑑′𝜂 + 𝑅 𝑞′𝜂′ − 𝜓 𝑅2𝑑′𝛽 − 𝜓 𝑅2𝑣 [(sin 𝜏 + 𝑑′) cos𝜙 + (cos 𝜏 − 𝑅 𝑞′) sin𝜙] (A.7)
20

𝑖 𝑖 𝑖0 𝑖 𝑖 𝑖0 𝑗𝑖 𝑖 𝑖 𝑙𝑖 𝑖 𝑑𝑖 𝑖 𝑗 𝑖 𝑖
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In the above equations, the functions:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑖(𝜏) = 𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

𝑞𝑖(𝜏) =
1

√

1 − 𝜁2𝑖

𝑒
−
𝜁𝑖𝜏
𝑅𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

(A.8)

and their derivatives:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑′𝑖 (𝜏) = −
𝑞𝑖
𝑅𝑖

𝑞′𝑖 (𝜏) =
1
𝑅𝑖
𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

−
𝜁𝑖

√

1 − 𝜁2𝑖

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(A.9)

have been introduced. Substituting the final conditions from Eq. (A.4) into Eqs. (A.6) and (A.7), a system of algebraic equations is
btained in the form:

{

A cos𝜙𝑗 +B sin𝜙𝑗 + C = 0
P cos𝜙𝑗 + Q sin𝜙𝑗 + R = 0

(A.10)

here:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A = −𝜓𝑙𝑖𝑅2
𝑖 𝑣𝑑𝑖[1 + 𝑑𝑖(𝜋)]

B = 𝜓𝑙𝑖𝑅3
𝑖 𝑣𝑑𝑖𝑞𝑖(𝜋)

C = [1 + 𝑑𝑖(𝜋)]𝜂𝑖0 + 𝑅𝑖𝑞𝑖(𝜋)𝜂′𝑖0 + 𝜓𝑗𝑖𝑅
2
𝑖 [1 − 𝑑𝑖(𝜋)]𝛽

P = 𝜓𝑙𝑖𝑅𝑖𝑣𝑑𝑖𝑞𝑖(𝜋)
Q = 𝜓𝑙𝑖𝑅2

𝑖 𝑣𝑑𝑖[1 + 𝑅𝑖𝑞
′
𝑖 (𝜋)]

R = −
𝑞𝑖(𝜋)
𝑅𝑖

𝜂𝑖0 + [1 + 𝑅𝑖𝑞′𝑖 (𝜋)]𝜂
′
𝑖0 + 𝜓𝑗𝑖𝑅𝑖𝑞𝑖(𝜋)𝛽

(A.11)

he solutions of the system in Eq. (A.10) can be obtained as:

cos𝜙𝑗 =
BR − CQ

AQ −BP
sin𝜙𝑗 =

CP −AR

AQ −BP
(A.12)

resulting in the following expressions:

cos𝜙𝑗 =
𝜂𝑖0 + 𝜓𝑗𝑖𝑅2

𝑖 𝑔𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 𝑣𝑑𝑖

(A.13)

and:

sin𝜙𝑗 = −
𝜂′𝑖0 + 𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖𝛽

𝜓𝑙𝑖𝑅2
𝑖 𝑣𝑑𝑖

(A.14)

as reported in Eqs. (26) and (27). The functions 𝑢𝑑𝑖 and 𝑔𝑖 introduced in the above expressions have been defined in Eqs. (28) and
(29)

Introducing Eqs. (A.12) and (A.14) into Eq. (A.6), it is also possible to obtain the following expression for 𝑖th the modal
coordinate:

𝜂𝑖 = (𝜂𝑖0 + 𝜓𝑗𝑖𝑅2
𝑖 𝑔𝑖𝛽) cos 𝜏 + (𝜂′𝑖0 + 𝜓𝑗𝑖𝑅

2
𝑖 𝑢𝑑𝑖𝛽) sin 𝜏

+ 𝛽𝜓𝑗𝑖𝑅
2
𝑖

⎧

⎪

⎨

⎪

⎩

1 − (1 + 𝑔𝑖)𝑒
−
𝜁𝑖𝜏
𝑅𝑖

⎡

⎢

⎢

⎢

⎣

sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

+
𝜁𝑖

√

1 − 𝜁2𝑖

cos

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

− 𝑢𝑑𝑖𝑅𝑖
1

√

1 − 𝜁2𝑖

𝑒
−
𝜁𝑖𝜏
𝑅𝑖 sin

⎛

⎜

⎜

⎜

⎝

𝜏
√

1 − 𝜁2𝑖
𝑅𝑖

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

(A.15)

which has also been written in Eq. (40) and represents the solution of the modal problem dealt within this appendix. It is worth
observing that the initial values 𝜂𝑖0 and 𝜂′𝑖0 are not known at this stage. Nonetheless, they can be obtained by imposing further
conditions on the initial displacements and velocities of the masses, after considering the transformation from modal to physical
coordinates written in Eq. (13). This is done in Sections 2.3 and 2.4.
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