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Exploring and modeling the spreading process of rumors have shown great potential in improving rumor detection performance.
However, existing propagation-based rumor detection models often overlook the uncertainty of the underlying propagation
structure and typically require a large amount of labeled data for training. To address these challenges, we propose a novel rumor
detection framework, namely, the Uncertainty-Inference Contrastive Learning (UICL) model. Specifcally, UICL innovatively
incorporates an edge-wise augmentation strategy into the general contrastive learning framework, including an edge-inference
augmentation component and an EdgeDrop augmentation component, which primarily aim to capture the edge uncertainty of
the propagation structure and alleviate the sparsity problem of the original dataset. A new negative sampling strategy is also
introduced to enhance contrastive learning on rumor propagation graphs. Furthermore, we use labeled data to fne-tune the
detection module. Our experiments, conducted on three real-world datasets, demonstrate that UICL can not only signifcantly
improve detection accuracy but also reduce the dependency on labeled data compared to state-of-the-art baselines.

1. Introduction

Over the past decade, the rise of online social networks (OSNs)
like Twitter, Weibo, Facebook, and Instagram has revolu-
tionized the information-sharing landscape, bringing un-
paralleled convenience to our daily lives. However, the
proliferation of baseless rumors on OSNs has made it in-
creasingly challenging to distinguish fact from fction, turning
these platforms into potential weapons that can harm society
[1, 2]. For instance, during the ongoing COVID-19 pandemic,
false assertions have circulated, claiming that fsh tank cleaning
products can cure the virus or that 5G networks are responsible
for its spread. In light of this, it has become imperative to
promptly and accurately detect rumors, as it represents
a crucial social responsibility tomitigate the detrimental impact
of such misinformation on individuals and society as a whole.

Motivated by the achievements of deep learning in
computer vision (CV) and natural language processing
(NLP), researchers have shifted their focus towards

developing deep learning-based models for rumor detection
[3]. Unlike conventional approaches that heavily rely on
manual feature engineering [4, 5], deep learning-based
methods ofer a promising alternative. While most exist-
ing models in this domain are content-based [6, 7], the
resemblance of rumor content to real news poses a signif-
cant challenge for detection solely based on content features.
To tackle this issue, recent studies have emphasized mod-
eling the underlying propagation structure of rumors. For
instance, Vosoughi et al. [8] revealed that rumors spread
faster, wider, and deeper than the truth, providing a theo-
retical basis for leveraging propagation structure in de-
veloping efective rumor detection models. Tis line of
research aims to enhance the detection accuracy by in-
corporating the dynamics of rumor spread into the learning
process.

Propagation-based models aim to detect rumors by
extracting difusion patterns from the propagation threads
of rumors. Ma et al. [9] employed a tree-structured RNN to
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capture the underlying rumor representation from propa-
gation structures and reply text for efective rumor detection.
Subsequent works, including BiGCN [10], MMRD [1],
AGWu-RF [11], and CNFRD [12], have further enhanced
performance by incorporating graph neural networks
(GNNs) into the detection models. GNNs excel at extracting
global structural relationships in rumor dispersion, making
them a powerful tool in improving detection accuracy. By
leveraging the capabilities of GNNs, these models efectively
capture the complex interdependencies within the propa-
gation network, thereby enhancing the ability to identify and
classify rumors.

While propagation-based models have shown im-
provements over content-based approaches, they still have
signifcant limitations. One limitation is that the adjacency
matrix they construct only captures the presence or absence
of edges, ignoring the changes in edge strength. Tis
oversight fails to account for the diversity and variability of
user relationships in social networks, resulting in limited
consideration of the uncertainty present in the constructed
propagation graphs. In real social networks, the relation-
ships among rumor spreaders are variable, leading to un-
certainty in the propagation process. Additionally, training
propagation-based models often requires a substantial
amount of labeled data, which is obtained through manual
eforts and is time-consuming. Hence, overcoming these
limitations is crucial for developing more robust and ac-
curate rumor detection models.

To address the aforementioned limitations, we present
the Uncertainty-Inference Contrastive Learning (UICL)
model. Our model builds upon the approach proposed by Li
et al. [13], emphasizing its enhanced capability to capture the
inherent uncertainty and diversity within rumor propaga-
tion structures, as well as facilitating meaningful compari-
sons with nonrumors. UICL introduces an innovative edge-
wise augmentation module that efectively captures un-
certainty in constructed propagation graphs through the
utilization of prior probability and adaptive edge weight
adjustment. Tis module seamlessly integrates into a com-
prehensive graph contrastive learning framework, enabling
the acquisition of accurate rumor representations. More-
over, UICL undergoes a fne-tuning process using a minimal
amount of labeled data to optimize model training. By in-
corporating uncertainty-aware augmentation and contras-
tive learning, UICL ofers a promising solution to overcome
limitations and enhance the performance of rumor detection
models. In sum, the main contributions of our work are

(i) We propose the UICL framework, which can cap-
ture the uncertainty of rumor propagation structure
and alleviate the dependency on labeled data at the
same time.

(ii) We design a novel edge-wise augmentation strategy
to replace the conventional enhancement strategy in
graph contrastive learning, ensuring the model’s
ability to capture the edge uncertainty of the
propagation structure. In addition, we employ
a new negative sampling strategy to obtain dis-
criminative negative samples.

(iii) We conducted extensive experiments on three real-
world benchmark datasets, demonstrating that
UICL can outperform state-of-the-art baselines and
achieve signifcant improvements in detection
accuracy.

Te paper is organized as follows: in Section 2, we
provide a review of the related work in the felds of rumor
detection and graph contrastive learning. Section 3 for-
malizes the problem of rumor detection and introduces
relevant defnitions. In Section 4, we delve into the details of
our proposed UICL model. Te results of our experimental
evaluations, quantifying the advantages of our approach, are
presented in Section 5. Finally, in Section 6, we draw
conclusions based on our fndings and discuss potential
future directions in the feld.

2. Related Work

In this section, we provide a brief review of the related works
for rumor detection and graph contrastive learning.

2.1. Rumor Detection. In recent years, deep learning
methods have made signifcant strides in the feld of rumor
detection by automatically learning and extracting valuable
semantic information, surpassing traditional methods
[5, 14] that heavily rely on hand-designed features and
gradually becoming state-of-the-art methods. Tese deep-
learning-based rumor detection models commence by uti-
lizing Recurrent Neural Networks (RNNs) [15] and Con-
volutional Neural Networks (CNNs) [16] to extract rich
contextual and semantic features from input microblog
posts. Subsequently, with the rapid development in the feld
of deep representation learning, researchers are recognizing
the limitations of textual features and have begun exploring
the potential of diverse feature perspectives for rumor de-
tection. Simultaneously, they are dedicated to developing
bespoke methods using advanced technologies. For instance,
Ma et al. [9] established a connection between semantic
content and propagation cues, utilizing Recursive Neural
Networks (RvNN) for rumor detection. Similarly, Liu et al.
[17] combined recurrent and convolutional networks to
capture both global and local variations in user character-
istics throughout the propagation path, signifcantly en-
hancing detection accuracy. Besides, with the merits of the
attention mechanism [18] in distinguishing feature impor-
tance, Khoo et al. [19] employed attention mechanisms at
both the post and token levels to predict the veracity and
types of rumors in microblogs, simultaneously ofering
comprehensive explanations of the predictions. Further-
more, an increasing number of researchers are beginning to
explore the fusion of diverse semantics from images and text
to enhance rumor detection performance. For example, Zou
et al. [20] proposed the CMAC fusion strategy that employs
adversarial and contrastive paradigms to align distributions
of text and image features, generating modal-invariant
multimodal fusion representation. Sun et al. [21] in-
troduced the KDCN model, consisting of two subnetworks,
which is utilized to detect cross-modal and content-
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knowledge inconsistencies, thus supporting robust multi-
modal learning even with missing visual data. Zheng et al.
[22] introduced MFAN for social media rumor detection,
integrating textual, visual, and social graph features through
multimodal fusion and adversarial training. Some re-
searchers also underscore the importance of user feature
information, gaining valuable insights from a user’s per-
spective by incorporating user-related features along with
other data sources [23].

Te discovery that the difusion processes of fake and
real news vary [8] has led to a series of propagation-based
works. Since the emergence of graph neural networks
(GNNs) has revolutionized the extraction of features from
unstructured data, these works often integrate GNNs into
their models. Bian et al. [10] frst incorporated top-down and
bottom-up GNNs to gain a holistic view of rumor spread.
Wei et al. [24] proposed a Fuzzy Graph Convolutional
Network (FGCN) model that enhances the representation of
complex interactions in an information cascade by con-
structing a heterogeneous graph structure and an edge
fuzzifcation module. Chen et al. [1] build on the concept of
GNN-basedmodels and further incorporate RNNs into their
model architecture to simultaneously extract both macro-
scopic and microscopic difusion features. Distinct from
prior studies, Lin et al. [25] proposed a claim-guided graph
attention network that extracts multilevel rumor-indicative
features from an undirected conversation-based graph.

Besides that, some researchers have combined techniques
such as transfer learning, and few-shot learning, enabling the
performance of rumor detection models to be maintained with
limited knowledge. Lin et al. [26] proposed a zero-sample
rumor detection framework that uses a hierarchical cue cod-
ing mechanism and domain-invariant propagation features to
detect rumors across various languages and domains. Ran et al.
[27] proposed an unsupervised cross-domain rumor detection
method that enhances performance by generating pseudolabels
through clustering and learning domain-invariant features
with a cross-attention mechanism. Additionally, some works
seamlessly integrate the self-supervised concept into their
models to reduce dependency on labeled data. Qian et al. [28]
proposed the GACL model, combining graph contrastive
learning and adversarial learning, efectively capturing event-
specifc features and reducing noise impact. Li et al. [29] in-
troduced noise and utilized contrastive learning with asym-
metric structure construction for rumor detection, enhancing
robustness and accuracy. Te latest works also focus on
addressing the low-resource problem in rumor detection. For
instance, Lin et al. [30] proposed an adversarial contrastive
learning-based rumor detection method that adapts to diverse
domains and languages, enhancing robustness through lan-
guage alignment and supervised contrastive training. Fur-
thermore, they enhanced model performance by introducing
undirected topology to represent propagation and employing
multiscale GCNs for representing propagation structures [31].

Tese studies showcase diverse and innovative ap-
proaches, leveraging network analysis, attention mecha-
nisms, multitask learning, graph-based techniques, etc., to
gain deeper insights and improve detection accuracy in the
challenging feld of rumor detection.

2.2. Graph Contrastive Learning. Graph Contrastive
Learning (GCL) is a promising technique that combines
graph-based structures and contrastive learning algorithms
to improve rumor detection, and its key idea is to enhance
the similarity between similar graph elements by mapping
them into similar embedding spaces. By maximizing the
similarity between positive samples while minimizing the
similarity between negative samples, GCL can learn more
discriminative graph representations. Common techniques
in the study of GCL can be categorized into three key aspects:
data augmentation, contrast level, and negative sample
sampling strategies.

2.2.1. Data Augmentation Methods. Data augmentation
methods not only enhance the robustness and generalization
ability of graph contrastive learning but also enable the
model to capture the underlying patterns and relationships
within the graph more efectively. Early research eforts
focused on designing heuristic algorithms [32–35] to aug-
ment graphs. Later, Qiu et al. [32] employ stochastic sub-
graph sampling as a data enhancement strategy, combined
with contrastive learning, to learn intrinsic and migratable
structural representations. Zhu et al. [34] proactively select
Dropedge as a data enhancement strategy and supplement it
with node centrality to compensate for randomly deleted
edges. By integrating such strategies with contrastive
learning, researchers can achieve more robust and accurate
models that can efectively capture the complex patterns and
relationships present with fewer graphs. Yang et al. [36]
augmented the collaborative fltering paradigm with two
adaptive contrasting view generators, a graph generation
model and a graph denoising model. Mei et al. [37] used
variational graph reconstruction to estimate Gaussian dis-
tributions for nodes and based on the learned distribution to
generate comparison views.

2.2.2. Contrastive Levels. Contrastive levels determine the
hierarchy at which graph elements are compared, encom-
passing diferent levels such as node-to-node, graph-to-
graph, and node-to-graph comparisons. You et al. [35] put
forth a model within the graph-graph contrastive learning
category, which aims to generate graph representations that
exhibit similar or improved levels of generalization, trans-
ferability, and robustness. Zhu et al. [34] prioritize node-
node contrastive learning and employ a strategy of in-
troducing supplementary noise to unimportant node fea-
tures, intentionally corrupting the representations of those
nodes. Hassani et al. [33] employ node-graph contrastive
learning to acquire richer representations, facilitating sep-
arate node and graph classifcation tasks. By considering
these varying levels, GCL can efectively capture diverse
aspects of the graph structure and interactions, leading to
a more comprehensive analysis and understanding of
the data.

2.2.3. Negative Samples Sampling. Negative samples sam-
pling plays a critical role in optimizing the contrastive
learning process. Te negative sample sampling strategy
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determines how dissimilar graph element pairs are chosen as
negative samples, allowing the model to efectively dis-
criminate between similar and dissimilar graph elements.
Early studies [38–41] initially utilized the removal of positive
samples as negative samples, but this approach often led to
false negatives. To address this challenge, researchers pro-
posed alternative strategies, such as combining clustering
[42] or curriculum learning [43], for sample selection.
Additionally, some studies [44–46] introduced the concept
of no-negative samples, which yielded promising results in
enhancing the efectiveness of contrastive learning.

Tese techniques improve contrastive learning by
expanding graph data, and identifying suitable levels of
comparison, and selecting pertinent negative samples. Tis
comprehensive approach enhances the accuracy and per-
formance of rumor detection systems, facilitating a pro-
found comprehension of graph structure and dynamics.

3. Preliminaries

Suppose we have a rumor detection dataset
M � mi􏼈

􏼌􏼌􏼌􏼌i ∈ [1, M| |]}, where mi represents the i-th event.
Each event consists of a source post p0 and a set of relevant
forward posts Pi � p1, p2, · · ·􏼈 􏼉. For each event mi, according
to its difusion threads, we can construct a propagation

graph Gi � Vi,Ei􏽮 􏽯, where Vi � p0, p1, . . . , p Vi| |−1􏼚 􏼛 and

Ei � ejk􏽮
􏼌􏼌􏼌􏼌􏼌j, k ∈ Vi} is the corresponding directed edge list,

where ejk � 1 if pk is a comment or retweet of pj, otherwise,
ejk � 0. Although our work mainly focuses on analyzing the
potential commonality of propagation structures, to achieve
better rumor detection performance, we compute extra
TF-IDF values for each post within mi to form the initial
node feature matrix, which is denoted as

Xi � x0i , x1i , . . . , x Vi| |−1
i􏼚 􏼛 ∈ R Vi| |×d, where d is the di-

mensionality of node feature.
In this paper, the rumor detection task aims at training

amodel to allocate label 􏽢y for a specifc eventmi, which can be
regarded as amulticlassifcation problem. Here, 􏽢y takes one of
the four fner-grained classes: NR, FR, TR, and UR (i.e.,
nonrumor, false rumor, true rumor, and unverifed rumor).

4. Methods

In this section, we introduce our rumor detection mod-
el–UICL (Uncertainty-Inference Contrastive Learning-
based Rumor Detection model), which frst utilizes con-
trastive learning, along with edge-inference and edge-
dropping augmentation techniques, to train an efcient
graph encoder in an unsupervised manner while also pre-
serving the authenticity of the rumor propagation structure.
Ten, UICL further improves model performance in the
rumor detection task by fne-tuning with labeled data.
Figure 1 shows the overall framework of UICL, which
mainly consists of two stages: (1) contrastive pretraining and
(2) model fne-tuning. We will describe these in detail in the
following subsections.

4.1. Propagation Graph Encoder. To extract structural in-
formation from the propagation graph, we are inspired by
the recent success of graph neural networks (GNNs) in
unstructured data learning. Specifcally, in our experiments,
we utilize multiple GNN layers as our propagation graph
encoder (GEN), and a single GNN layer can be defned as

H(k)
� MLP 􏽢AH(k−1)

􏼐 􏼑, (1)

where 􏽢A and H(k−1) � h(k−1)
0 , h(k−1)

1 , . . . , h(k−1)
i , . . . , h(k−1)

V| |−1􏽮 􏽯

represent the normalized adjacency matrix of A and node
features at k-th layer, respectively. MLP(·) is a multilayer
perceptron with nonlinear activation function. Te initial
node features are H(0) � MLP(X), and the fnal node em-
bedding H is the output of the last GNN layer H(k) in GEN.
To obtain the global representation of the propagation graph
hG, we apply a mean-pooling READOUT operation on H:

hG
� MEAN(H). (2)

Note that the output of GEN can be either node rep-
resentation H or graph representation hG, depending on
what we need to extract local or global information from the
propagation graph of an event.

4.2. Edge-Wise Augmentation. As we introduced in Section
2.1, the main idea behind contrastive learning is to maximize
mutual information (MI) between positive samples, while
minimizing it among negative samples [47]. Specifcally, the
positive samples of an instance are generated by augmenting the
original instances. Existing graph augmentation methods either
randomly remove nodes/edges, or randomly mask node/edge
features in graphs [13], which will destroy the semantics of the
propagation graph. Furthermore, the “echo chamber efect” and
unreliable relationships can exist in the propagation graph due
to the deceptive tactics of rumor producers, as well as the
limited social context data available. To overcome these chal-
lenges, we propose two edge-wise augmentation strategies: (1)
an edge-inference augmentation module to overcome the
uncertainty issue by considering edges’ importance in the
propagation graph, in this work, we defne the edge importance
as its weight in a graph. And (2) an edge-drop augmentation
module aims at alleviating the echo chamber efect by randomly
removing a portion of edges from the propagation graph.

4.2.1. Edge-Inference Augmentation. For a propagation
graph G, we frst defned an intensity function Int(·) to
compute the intensity score rij of edge eij ∈ E between two
nodes vi and vj, which is calculated as

rij
� Int hi − hj

�����

�����􏼒 􏼓, (3)

where Int(·) can be any type of nonlinear neural network (in
our experiments, we employ a convolutional layer as Int(·)).
hi and hj are embeddings of nodes vi and vj, respectively,
which are calculated through feeding the original node
feature matrix X to GEN layer. Assume we have T types of
diferent relations, such as friends, followers, and
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forwarding-only. Ten, the corresponding weighted adja-
cency matrix AEI is updated as follows:

AEI
� 􏽘

T

t�1
σ WtR + bt( 􏼁 · A, (4)

whereWt and bt are learnable parameters for the relation t,
R � rij􏼈

􏼌􏼌􏼌􏼌(i, j) ∈ E} is the intensity score matrix, and AEI and
A are updated and original adjacency matrices, re-
spectively. σ refers to Sigmoid(·). After the edge-inference
augmentation module, we denote the augmented graph
as GEI.

4.2.2. DropEdge. Suppose the dropping rate is pdrop, the
original adjacency matrixA after edge-drop augmentation is

AED
� A − Adrop, (5)

where Adrop is contrasted by randomly sampling E| | × pdr

edges from the original edge set. Te created edge-drop view
is represented as GED.

4.3.Negative Samples. Most of the existing graph contrastive
learning methods select negative samples using random
strategies [13], which are not appropriate for our rumor
detection task since the complexity of the propagation
structure for diferent events varies [47]. Events with a high
forwarding activity frequency may have more complex
propagation structures. In addition, tweets that share the

same label may not necessarily discuss the same events or
themes. Terefore, we employ a curriculum learning-
inspired strategy for sampling negative samples [43]. Spe-
cifcally, we introduce a Similarity Function and a Pacing
Function to select negative samples for training from a list of
candidates.

4.3.1. Similarity Function. For a propagation graph Gi in
a training batch B, we place the rest of the data except itself as
its candidate negative samples GCAN

i � Gj≠i, j ∈ [1, B| |]􏽮 􏽯.
We frst feed all candidate negative samples into GEN fol-
lowed by an MLP projection layer and output a set of

candidate representations – HGCAN
i

� hG

j≠i, j ∈ [1, B| |]􏼚 􏼛.

Specifcally, for each candidate, we have

hG
j � GEN Gj􏼐 􏼑, (6)

hG

j � MLP hG
j􏼐 􏼑. (7)

Ten, we utilize a cosine similarity function to measure
the diference between each candidate negative sample and
the original graph Gi:

Sim Gi,G
CAN
i􏼐 􏼑 � cos hG

Gi
, hG

Gj
􏼒 􏼓, Gj ∈ G

CAN
i􏼚 􏼛. (8)

Te cosine similarity between hG

Gi
and hG

Gj
is computed as

follows:

Figure 1: Overview of UICL. UICL consists of two main parts: (1) pretraining via edge-wise augmentation contrastive learning and (2) fne-
tuning with labeled data.

International Journal of Intelligent Systems 5
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cos hG

Gi
, hG

Gj
􏼒 􏼓 �

hG

Gj
· hG

Gi

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

hG

Gj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 · hG

Gi

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

. (9)

Usually, the higher the cosine similarity value, the less
the diference.

4.3.2. Pacing Function. After calculating the similarity score
between Gi and all candidate negative samples, we sort
candidates by their similarity score in ascending order.Ten,
we employ a pacing function [43] s(t) to select the negative
samples with the lowest similarity scores. More specifcally,
the pacing function is used to specify the number of negative
samples at a specifc epoch t, which is defned as follows:

s(t) �
t

C
􏼒 􏼓

λ
· K, (10)

where K and C are the number of candidates and training
epochs, respectively. λ is an adjusting parameter, which can
be 1/2, 1, 2. Finally, at epoch t, the list of negative samples
consists of s(t) lowest scored samples from the candidates.

4.4. Pretraining with Contrastive Learning. In this section,
we present the details of how UICL completed the pre-
training phase, starting with introducing the training loss
function, followed by a concise description of the training
procedure. In UICL, we propose two distinct yet jointly
trained loss functions: one derived from the edge-inference
augmentation module and another employed for propaga-
tion graph contrastive learning.

4.4.1. Unsupervised Edge-Inference Loss. We were inspired
by the work [48] and utilized the unsupervised learning loss
LEI to train the edge-inference augmentation module:

L
i
EI � E DKL p AEI

i Ri

􏼌􏼌􏼌􏼌􏼐 􏼑 q AGAU
i

􏼌􏼌􏼌􏼌􏼌Ri􏼒 􏼓

������ 􏼓􏼒 􏼕,􏼔 (11)

where AGAU is Gaussian sampling edge weights sampled
from

AGAU
i � N μi, δ

2
i􏼐 􏼑, (12)

μi � fμ Ri( 􏼁, δ2i � fδ Ri( 􏼁, (13)

where μ and δ2 are means and variances, respectively. fμ and
fδ are transformation layers. Note that, we model the prior
distribution of each latent relation t independently.

4.4.2. Contrastive Learning Loss. We accomplish contrastive
learning by maximizing the mutual information [47] over
the rumor propagation graph dataset, which is computed as

L
i
CL � E − log 1 + e

−F H G
pos
i( ),hG Gi( )( )􏼒 􏼓􏼔 􏼕

− E log 1 + e
F H G

neg

i( ),hG Gi( )( ))􏼒 􏼓􏼔 􏼕,

(14)

where F is the discriminator (in our implementation, we
compute the dot product between vectors, which is a stan-
dard method for measuring similarity in machine learning).
G
pos
i and G

neg
i are the positive and negative samples of input

event graph sample Gi, respectively.

4.4.3. Total Loss. Ten, the fnal loss function in the con-
trastive learning part is defned as a summation of the
unsupervised loss LEI and the contrastive loss LCL, i.e.,

L �
1
B

􏽘

B

i�1
(1 − α)L

i
EI + αLi

CL, (15)

where B is the batch size, α is a balance parameter, which is
used to control the contribution of each loss term, and can be
adjusted manually. Te whole procedure of the pretraining
phase is shown in Algorithm 1.

4.5. Rumor Detection with Fine-Tuning. In the fne-tuning
step, we frst initialize the model’s parameters with the
pretrained parameters from the contrastive learning phase,
i.e., GEN and the edge-inference augmentation module.
Ten, we train the detection module using labeled data.
Specifcally, for a given event mi, we obtain its adjusted
weight graph GEI from the pretrained edge-inference aug-
mentation module. We then compute the event represen-
tation by feeding GEI into the pretrained GEN.Te acquired
event representation is denoted as hG(GEI

i ). In addition, we
also calculate the averaged textual features ai for mi by
averaging the original features of all related posts P, i.e.,

ai � (1/ Vi
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌)􏽐
Vi| |−1

j�0 xj. Finally, we concatenate h
G(GEI

i ), ai,
and the source tweet feature xi

0 to form the input to feed into
the prediction module. Te prediction module consists of an
MLP layer with a softmax activation function.

􏽢yi � Softmax MLP hG
G
EI
i􏼐 􏼑⊕ xi

0 ⊕ ai􏼐 􏼑􏼐 􏼑, (16)

where ⊕ is a concatenate operation. We calculate the cross-
entropy loss between the predictions 􏽢Y and ground truth Y
for all events involved in the dataset, which is defned as

L(Y, 􏽢Y) � −
1
B

􏽘

B

i�1
yi log 􏽢yi + λ Θ‖ ‖

2
2, (17)

where Θ‖ ‖22 is the L2 regularizer over all the model pa-
rametersΘ and λ is the trade-of coefcient. In this work, we
use Adam [49] as optimizer. Te fne-tuning algorithm of
our UICL model is summarized in Algorithm 2.

5. Experiments

In this section, we frst introduce the datasets used in ex-
periments. Ten, we give a brief introduction to the related
experimental settings. Finally, we provide a detailed analysis
of the experimental results. To explain the experimental
results more clearly, we would aim to provide a quantitative
characterization of the following research-related questions:

6 International Journal of Intelligent Systems
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RQ1. How does UICL perform on rumor detection
compared with the state-of-the-art baselines?
RQ2. What is the efect of each component of UICL?
RQ3. Can UICL detect rumors in the early stages?

5.1. Experimental Settings

5.1.1. Datasets. To assess the efectiveness of UICL, we
conduct our experiments on three publicly available real-
world datasets: Twitter15, Twitter16 [50], andWeibo [7]. All

of these datasets are derived from existing mainstream
online social networks, i.e., Twitter in the US and Weibo in
China. Specifcally, Twitter15 and Twitter16 were collected
in 2015 and 2016, respectively. Each event in these datasets
comprises a source tweet and its corresponding series of
subsequent retweets, replies, or social engagements. Besides
that, each event is also associated with a specifc label from
the following four categories: nonrumors, false rumors,
unverifed rumors, and true rumors. Similar to Twitter
datasets, the Weibo dataset comprises the original posts of
specifc events and all their retweets/replies obtained

Inputs:A set of propagation graphsG, where eachGi ∈ G corresponds to an initial node feature matrixXi, the number of relation
t, edge dropping rate dp, propagation graph encoder-GEN, and edge-inference augmentation module-EIA.
Outputs: Trained model parameters θGEN and θEIA for GEN and EIA, respectively.

(1) Initialize θGEN and θEIA with random weight values;
(2) for epoch from 1 to maxEpoch do
(3) for each mini-batch G1, G2, . . . , GB􏼈 􏼉 of G do
(4) for each Gi in the mini-batch do
(5) Store other graphs from the same mini-batch as Gi’s candidate negative samples GCAN

i ;
(6) Calculate local node representation H(Gi) and global graph representation hG(Gi) based on equations (1) and (2),

respectively;
(7) Generate two augmented views GEI and GED based on equations (3)–(5), respectively;
(8) Compute propagation graph representation H(GEI

i ) and H(GED
i ) based on equation (1);

(9) Compute global graph representation for all candidates from GCAN
i based on equations (6) and (7);

(10) Generate negative samples G
neg
i based on equations (8)–(10);

(11) Compute unsupervised edge-inference loss Li
EI for Gi via equation (11);

(12) Compute contrastive learning loss Li
CL for Gi via equation (14);

(13) end for
(14) Compute total loss L via equation (15);
(15) Update θGEN and θEIA to minimize loss L;
(16) end for
(17) end for
(18) return Trained model parameters θGEN and θEIA.

ALGORITHM 1: Pretraining contrastive learning procedure.

Inputs:A set of event propagation graphsG, where eachGi ∈ G corresponds to an initial node feature matrixXi and ground truth
label yi; GEN; EAI; rumor prediction layer-RPL.
Outputs: Trained model parameters θGEN, θEAI, and θRPL.

(1) Initialize θGEN, θEAI with the pretraining parameters, and θRPL with random weight values;
(2) for epoch from 1 to maxEpoch do
(3) for each mini-batch of G do
(4) for each graph Gi in mini-batch do
(5) Generate edge-inference graph GEI

i via EAI.
(6) Compute event representation hG(GEI

i ) via feeding GEI
i , Xi to GEN;

(7) Calculate averaged node feature ai � 1/ Vi
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽐
Vi| |−1

j�0 xj;
(8) Concatenate hG(GEI

i ), xi
0 and ai, and feed it to RPL and make prediction 􏽢yi based on equation (16);

(9) end for
(10) Calculate the cross-entropy loss L(Y, 􏽢Y) using equation (17)
(11) Update θGEN, θEAI and θRPL to minimize loss L(Y, 􏽢Y);
(12) end for
(13) end for
(14) return Trained model parameters θGEN, θEAI and θRPL.

ALGORITHM 2: Fine-tuning procedure.

International Journal of Intelligent Systems 7
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through the Weibo API. Te only diference is that in the
Weibo dataset, there only exist rumors and nonrumors.
Table 1 shows the statistics of three datasets.

5.1.2. Baselines. We compare our UICL with the following
state-of-the-art baselines, including

(i) GRU [7]: A gated recurrent unit-based rumor
detection model that utilizes recurrent neural
networks to understand the sequential impact of
tweets over time and extract high-level features
from relevant posts.

(ii) RvNN [9]: A neural rumor detection framework
employing tree-structured recursive neural net-
works (RvNN) is introduced. It seeks to correlate
content semantics and propagation cues, en-
hancing the detection of rumors in
microblog posts.

(iii) PPC [17]: A model that integrates a recurrent
neural network (RNN) and convolutional neural
network (CNN) to efectively capture global and
local variations in user characteristics along the
propagation paths and further use the learned
features to detect rumors.

(iv) StA-PLAN [19]: A postlevel rumor detection
model, which utilizes multitask learning and at-
tention mechanisms to concurrently predict both
the veracity and the type of an event.

(v) BiGCN [10]: Captures the patterns of rumor
propagation and the structures of wide dispersion
through its dual operation on both top-down and
bottom-up rumor propagation processes via
bidirectional GCN.

(vi) RDEA [13]: RDEA is the frst rumor detection
model that attempts to employ contrastive learning
for rumor detection based on propagation graphs.

(vii) CCFD [51]: Utilizes curriculum learning tech-
niques to improve negative sample sampling in
contrastive learning-based rumor detection.

(viii) GACL [28]: A rumor detection model that in-
tegrates both contrastive learning and adversarial
learning mechanisms to capture event-invariant
features for efective rumor detection.

5.1.3. Evaluation Metrics. Diferent evaluation protocols are
employed to assess the model’s performance on Twitter and
Weibo datasets. For Twitter datasets, we report accuracy
(ACC) over four classes, along with F-measure (F1) cal-
culated for each class. As for the Weibo dataset, we evaluate
the ACC, F1, precision, and recall results over the two
categories.

5.1.4. Implementation Details. Te proposed UICL model is
implemented using PyTorch (https://pytorch.org/). Fol-
lowing previous work [10], we randomly divide the datasets
into fve parts and conduct 5-fold cross-validation to ensure

the reliability of the results. In our experiments, the di-
mension value (d) of the word embedding vector is set to
5000. We employ a 2-layer Graph Convolutional Network
(GCN) with both hidden and output features of each node
set to 64.Te learning rate is established at 0.0005.We defne
the number of latent relations (T) as 2. To enhance model
performance, the DropEdge technique is applied with a drop
rate of 0.2. Te training involves 200 epochs, each com-
prising 100 iterative updates. However, training may be
stopped earlier if the validation loss fails to decrease after 10
epochs. Moreover, we set the weight decay coefcient to 1e −

4 and the dropout rate is 0.2.

5.2. Overall Performance (RQ1). Tables 2, 3, and 4 report the
performance comparison among UICL and baselines on
three datasets, from which we have the following
observations:

(O1) GRU exhibits the worst performance among all
baselines based on the results across all datasets. Tis is
attributed to its only focus on extracting textural fea-
tures and ignoring other important features, such as
difusion features and user profles. RvNN and PPC
outperform GRU, which demonstrates the importance
of propagation structure and temporal information for
rumor detection. Although PLAN employs transformer
architecture to augment the model’s capacity in
extracting textual features, its performance improve-
ment over RvNN and PPC is insignifcant due to the
neglect of the structural features inherent in rumor
propagation.
(O2) BiGCN, RDEA, CCFD, and GACL, these GNN-
based models outperform other baselines owing to the
advantage of GNNs in extracting structural features
from the propagation graph. In addition, the results
further prove the importance of potential information
about the propagation structure for rumor detection.
While RDEA utilizes BiGCN as its backbone, it
markedly outperforms BiGCN. Tis improvement is
achieved by incorporating contrastive learning into the
BiGCN framework, which alleviates the infuence of
limited labeled data. CCFD outperforms RDEA by
introducing a curriculum learning-based negative
sample sampling strategy. Besides that, GACL, in turn,
demonstrates superior performance over CCFD, due to
its success in the incorporation of adversarial learning.
Tis enables the modeling of sociological principles
inherent in real social networks, coupled with the
utilization of labeled explicit selection methods for
sampling negative instances.
(O3) Our proposed model, UICL, achieves the best
performance across a majority of metrics evaluated on
the three datasets. In contrast to the top-performing
baselines, i.e., CCFD and GACL, while all three models
show competitive performance, UICL consistently
achieves a higher detection accuracy than both CCFD
and GACL.Tis is because our UICL not only mitigates
label infuence through the incorporation of contrastive

8 International Journal of Intelligent Systems
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Table 1: Statistics of the datasets.

Description Twitter15 Twitter16 Weibo
Events # 1,490 818 4,664
Nonrumors # 374 205 2,351
False rumors # 370 205 —
Unverifed rumors # 374 203 —
True rumors (rumors) # 372 205 2,351
Posts # 331,612 204,820 3,805,656
Avg. # Posts of event 223 251 816
Max # posts of event 1,768 2,765 59,318
min # posts of event 55 81 10

Table 2: Overall performance comparison of rumor detection on Twitter15.

Method Acc.
F1

NR FR UR TR
GRU 0.641 0.684 0.634 0.571 0.688
RvNN 0.723 0.682 0.758 0.654 0.821
PPC 0.697 0.689 0.760 0.696 0.645
PLAN 0.787 0.775 0.807 0.775 0.768
BiGCN 0.836 0.791 0.842 0.801 0.887
RDEA 0.855 0.831 0.857 0. 03 0.816
CCFD 0.856 0.848 0.861 0.816 0.8 3
GACL 0.866 0.820 0.8 8 0.843 0.837
UICL 0.868 0.882 0.878 0.831 0.890
“NR”: nonrumor; “FR”: false rumor; “UR”: unverifed rumor; “TR”: true rumor. Te best method is shown in bold, and the second best is shown as italic.

Table 3: Overall performance comparison of rumor detection on Twitter16.

Method Acc.
F1

NR FR UR TR
GRU 0.636 0.617 0.715 0.527 0.577
RvNN 0.737 0.662 0.743 0.708 0.835
PPC 0.702 0.608 0.711 0.664 0.816
PLAN 0.799 0.754 0.821 0.779 0.836
BiGCN 0.864 0.788 0.859 0.864 0.886
RDEA 0.880 0.823 0.878 0.875 0.927
CCFD 0.886 0.819 0.884 0.892 0. 54
GACL 0.896 0.862 0.869 0.886 0.926
UICL 0. 07 0.858 0.882 0. 33 0.934
“NR”: nonrumor; “FR”: false rumor; “UR”: unverifed rumor; “TR”: true rumor. Te best method is shown in bold, and the second best is shown as italic.

Table 4: Overall performance comparison of rumor detection on Weibo.

Method Acc. Prec. Rec. F1
GRU 0.732 0.738 0.715 0.726
RvNN 0.788 0.819 0.746 0.737
PPC 0.765 0.746 0.781 0.762
PLAN 0.857 0.842 0.881 0.861
BiGCN 0.867 0.870 0.860 0.865
RDEA 0.867 0.870 0.860 0.865
CCFD 0.892 0.880 0.901 0.890
GACL 0.910 0.876 0. 56 0.914
UICL 0. 20 0. 15 0.918 0. 16
Te best method is shown in bold, and the second best is shown as italic.

International Journal of Intelligent Systems 9
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learning but also considers edge uncertainty in the
propagation graph. From the results of F1 metrics,
CCFD excels in detecting nonrumors, while UICL
demonstrates superior performance in identifying the
rest types of rumors, i.e., false rumor, unverifed rumor,
and true rumor. However, UICL achieves the highest
F1 score in identifying true rumors within the Twit-
ter16 dataset. On the Weibo dataset, UICL distin-
guishes itself with the highest accuracy, precision, and
a robust overall F1 score. In summary, UICL dem-
onstrates outstanding performance across various
metrics, demonstrating its efcacy in rumor detection
on Online Social Networks.
(O4) UICL demonstrates markedly improved per-
formance on Weibo as opposed to the results on
Twitter15 and Twitter16. Several potential factors
account for this discrepancy: (1) a substantial portion
of posts in the Twitter15 and Twitter16 datasets lack
textual content, resulting in limited input features. (2)
Te detection task on the Weibo dataset can be
regarded as a binary classifcation task, which is
naturally easier compared to multiclass classifcation
tasks using the same inputs.

5.3. Ablation Study (RQ2). In this section, we conduct ex-
tensive ablation studies to evaluate the efectiveness of each
component in the UICLmodel, including propagation graph
augmentation and negative mining strategies, as well as the
balance value α in the loss function. We conclude with
a discussion on UICL’s detection performance when trained
on limited labeled data.

5.3.1. Augmentation Strategies. Specifcally, we derive the
following ten variants of UICL with diferent augmentation
strategies:

(i) D: In variant D, only the Edge-drop augmentation
in UICL is used to generate the positive view.

(ii) I: In variant I, we only retain edge-inference
augmentation and deactivate Edge-drop
augmentation.

(iii) SI: Variant SI substitutes UICL’s Dropedge aug-
mentation with subgraph augmentation, while
retaining edge-inference augmentation.

(iv) NI: In variant NI, nodemasking replaces Dropedge
augmentation, with edge-inference augmentation
remaining intact.

(v) SD: Variant SD employs subgraph augmentation
in place of edge-inference augmentation in UICL,
yet maintains Dropedge augmentation.

(vi) ND: For ND, node masking supersedes edge-
inference augmentation, while keeping Dropedge
augmentation in efect.

(vii) SN: Variant SN integrates both subgraph aug-
mentation and node masking, replacing UICL’s
edge-wise augmentation strategy.

(viii) SDI: SDI enhances UICL’s edge-wise augmenta-
tion strategy with an additional subgraph
augmentation.

(ix) NDI: In NDI, an additional node masking method
is combined with the original edge-wise aug-
mentation strategy in UICL.

(x) SNDI: Variant SNDI amalgamates node masking
and subgraph augmentation with UICL’s original
edge-wise augmentation strategy.

In Figure 2, we visually explain diferent augmentation
strategies mentioned in variants D to SNDI. Te perfor-
mance of the original UICL and its variants, each employing
diferent augmentation strategies, is depicted in Figure 3,
from which we can observe that (O1) UICL outperforms all
other variants. (O2) Te results of I and D reveal that single
view augmentation improves detection performance to
some degree when compared to the state-of-the-art
propagation-based method–BiGCN. However, it remains
signifcantly behind variants that employ various augmen-
tation strategies to generate multiple views of the original
graph, which possess stronger representation learning ca-
pabilities. (O3) Te performance of NI and ND marginally
surpasses that of SI and SD, respectively. Tis can be at-
tributed to the more comprehensive structural features
introduced by node masking, whereas subgraph augmen-
tation, by focusing on localized subsets of the graph, po-
tentially neglects important global structural contexts. (O4)
Comparing SDI, NDI, and SNDI with our UICL, we observe
that edge-wise augmentation is sufciently efcient for
modeling the underlying structure of the propagation graph.
However, incorporating additional augmentation strategies
can lead to a decrease in model performance. Especially,
SNDI performs the worst among these methods.Tis decline
is attributed to the introduction of noise into the propa-
gation structure and an increase in the model’s computa-
tional complexity. (O5) From the results of SI, NI, and UICL,
we can fnd that among the various combinations, Dropedge
is more compatible with edge-inference augmentation. Tis
compatibility is due to Dropedge’s ability to capture efective
features from the potentially diverse network structures, as
well as both of these augmentation methods operating
on edges.

5.3.2. Negative Mining Strategies. Te way to sample neg-
ative samples afects both the training speed and detection
accuracy of the model [52]. To demonstrate the efectiveness
of the negative mining strategy in UICL, we derived two
variants NR and NA. Te NR randomly selects a portion of
propagation graphs from other events within the same batch
as negative samples, whereas NA treats all propagation
graphs from other events in the same batch as negative
samples. Te experimental results are shown in Figure 4. We
observe that our UICL, which incorporates a curriculum
learning-inspired strategy for sampling negative samples,
not only outperforms the other two variants in detection
accuracy but also signifcantly reduces training time. Tis
demonstrates that the introduction of the similarity function

10 International Journal of Intelligent Systems
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and pacing function can efectively select the most dis-
criminative negative samples, thereby enhancing themodel’s
representation learning ability, as well as reducing the
number of required samples. Additionally, comparing NA to
NR, we fnd that introducing more negative samples fails to
enhance the model’s performance and signifcantly increases
the model’s training time.

5.3.3. Model Sensitivity to α. We conduct experiments using
varying values of α across three datasets, with α ranging from
0 to 1. Te results are illustrated in Figure 5. We can see that
the optimal value for α across all datasets is 0.6. UICL’s
performance initially improves with increasing values of α,
gradually reaching saturation after 0.2. Beyond 0.6, the
performance slightly decreases.

5.3.4. Data Imbalance. Data imbalance is a common yet
unresolved problem. To demonstrate our model’s superi-
ority in addressing this issue, we conducted experiments
with Limited Labeled Data during the fne-tuning phase, and
the results are presented in Figure 6. Te performance of the
models improves as the amount of labeled data increases. In

cases where the labeled dataset is small, all models exhibit
relatively lower performance. However, the UICL model
maintains a signifcant advantage, which can be potentially
attributed to its ability to capture structural uncertainty
features. Furthermore, it is observed that labeled data has the
most signifcant impact on the performance of the GACL
model. With only a 5% labeled dataset, the detection ac-
curacies for the Twitter15, Twitter16, andWeibo datasets are
approximately 41.3%, 37.4%, and 69.2%, respectively.
However, when the labeled dataset is increased to 20%, the
corresponding detection accuracies improve to 63.3%. Tis
pattern demonstrates that the GACL model heavily relies on
labeled data, particularly in the sampling phase of positive
and negative samples within its supervised comparative
learning framework, where insufcient labeled data can limit
the model’s ability to learn potential features in negative
samples, resulting in lower detection accuracy.

5.4. Early Detection (RQ3). Detecting rumors at an early
stage is crucial to hinder the spreading of false information
and to mitigate the harmful impact on individuals. Here, we
select the following detection deadlines, i.e., 5, 20, 30, . . .,
90minutes. Specifcally, we utilize the posts published before

Original Graph

N - Node masking Augmentation I - Edge-inference Augmentation D - Dropedge AugmentationS - Subgraph Augmentation

Edge-wise Augmentation

0.5

0.6 0.4 0.42

0.19 0.330.10.680.22

0.36

Figure 2: Augmentation strategies in variants.
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Figure 3: Ablation studies on diferent augmentation strategies. (a) Twitter15. (b) Twitter16. (c) Weibo.
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Figure 4: Performance comparison of diferent negative samples sampling methods. (a) Twitter15. (b) Twitter16. (c) Weibo.
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these defned deadlines to construct the initial input
propagation graph. In this experiment, we select Bi-GCN,
CCFD, and GACL to compare with our model.

Figure 7 shows the performance comparison on early-
stage rumor detection between UICL and selected baselines
on three datasets. We observe a drop in performance for all
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Figure 6: Fine-tuning results with diferent label fractions. (a) Twitter15. (b) Twitter16. (c) Weibo.
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Figure 7: Results of rumor early detection on three datasets. (a) Twitter15. (b) Twitter16. (c) Weibo.
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Figure 8: Visualization of the propagation structure and edge weight distribution after augmentation for a selected rumor event from the
Twitter15 dataset. (a) Original propagation graph. (b) Augmented propagation graph. (c) Edge weight distribution.
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models when only a limited number of posts are tracked
(within the 5-minute time window). Nevertheless, our UICL
consistently outperforms other models, achieving accuracy
of 83%, 81%, and 89% on Twitter15, Twitter16, and Weibo,
respectively. Te reason why UICL only needs a short time
to identify rumors is that it can adaptively correct edge
weights to learn more accurate structural features from the
propagation graph. Furthermore, we can also observe that
the performance of all methods improves over time,
stemming from the increasing abundance of textual and
structural information in the input propagation graph.
However, the detection accuracy gradually becomes satu-
rated due to the introduction of redundancy and noise.

5.5. Case Study. To demonstrate that the edge-inference
augmentation module indeed enhances rumor detection
accuracy, we conducted a case study by visualizing the
reallocated edge weights after inference using edge-inference
augmentation. Specifcally, we randomly selected an event
labeled as TR (ID 504131654810877952) from Twitter15 for
further analysis. Tis event comprises 200 tweets, including
the original post and its corresponding comments and
retweets. Figure 8(a) plots its original propagation graph,
which consists of 119 edges, each of them with an edge
weight of 1, indicating that all edges are equally important
for rumor detection. After edge-inference augmentation, the
new propagation graph is generated with varying edge
weights, as depicted in Figure 8(b), where diferent colors
represent the various edge weight values.

Figure 8(c) depicts the specifc distribution of edge
weights. We fnd that a majority of the edges are denoted as
less important, i.e., with an edge weight below 0.5. Tus, we
conducted three experiments to verify the accuracy of the
reallocated edges’ importance by assessing the detection

probability across diferent labels. Specifcally, the settings
for these three experiments are as follows: (1) Only: flters
out edges with a weight less than 0.5, resets the weight of the
remaining edges to one, and then uses them for detection.
(2) UICL: utilizes all edges but with augmented edge weights.
(3) Original: employs the original propagation graph, where
each edge has the same edge weight of one for detection.Te
experimental results are illustrated in Figure 9. We observe
that UICL achieves a higher probability value for TR, while
yielding trivial probability distributions for other labels,
demonstrating the efectiveness of the adjusted edge weights
in rumor detection. Additionally, the results only further
support this fnding that using only the selected important
edges, based on the adjusted weights from the edge-
inference augmentation module, signifcantly improves
model performance compared to Original.

6. Conclusion and Future Work

Te critical role of graph structure in understanding and
managing social network user behavior is fundamental. In
this study, we introduce a novel deep learning framework,
UICL, designed for efective rumor detection. UICL pro-
poses an edge-wise augmentation strategy, comprising edge-
inference and Dropedge augmentations. Edge-inference
augmentation dynamically adjusts edge weights to refect
the inherent uncertainty in the propagation structures of
real-world social networks. Specifcally, it produces an
augmented graph view by adaptively adjusting edge weights
during the pretrained contrastive learning phase. Addi-
tionally, UICL utilizes DropEdge to generate another aug-
mented graph view, enabling the capture of diverse graph
structures in training samples. During the contrastive
learning phase, UICL also introduces a tailored fltering
mechanism for selecting more informative negative samples.
Finally, we fne-tune the pretrained model with labeled data
to enhance its predictive accuracy. Our experimental results
demonstrate that UICL efectively reduces instability in
social network propagation and outperforms other baseline
methods in rumor detection. In future work, we aim to focus
on advancing model interpretability within the rumor
detection model.
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