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Abstract. In thermal processing of alloys, homogenization of the as-cast microstructure

by annealing at such a high temperature that unwanted precipitates are fully dissolved, is

required to obtain a microstructure suited to undergo heavy plastic deformation. This pro-

cess is governed by Fickian diffusion and can be modelled as a Stefan problem. In binary

alloys1, the interface concentration is the solid solubility predicted from thermodynamics.

In multicomponent alloys, the interface concentrations should satisfy a hyperbolic equation

and, therefore, have to be found as part of the solution. Geometrical reductions are nor-

mally taken in the numerical solution of vector-valued Stefan problems. The aim of this

work is to extend a level set method1 implemented for scalar Stefan problems, to higher

dimensional vector-valued Stefan problems. This extension is obtained by adding a nonlin-

ear coupling of the interface concentrations into the level set formulation. Computational

results will be given for one-, two- and three-dimensional problems.

1 INTRODUCTION

Heat treatment of metals is often used to optimize mechanical properties. During heat
treatment, the metallurgical state of the alloy changes. This change can involve the phase
present at a given location or the morphology of the various phases. Whereas equilib-
rium phases can be predicted quite accurately from thermodynamic models, there are
no general models for microstructural changes nor for the kinetics of these changes. In
the latter cases, both the initial morphology and the transformation mechanisms have
to be prescribed explicitly. One of these processes, which is both of large industrial and
scientific interest and amenable to modeling, is precipitate dissolution.
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Several physical models have been developed to describe the dissolution of precipitates.
The early models on particle dissolution, based on long-distance diffusion2, consisted of
analytic solutions in an unbounded medium under the assumption of local equilibrium
at the interface. Nolfi3 incorporates the interface reaction between the dissolving particle
and its surrounding phase. Addition of secondary elements can influence the dissolution
kinetics strongly6. Adding slower elements, i.e. elements with smaller diffusivities, will
delay the dissolution process, whereas adding faster elements will make the dissolution
process to proceed faster. Later modeling of particle dissolution has been extended to
the introduction of multi-component particles4,5. In these papers, particle dissolution
was viewed as a Stefan problem with a sharp interface separating the consecutive phases.
When attempting to simulate particle dissolution in multi-component alloys, symmetry
assumptions are used normally5. These assumptions are such that the problem can be
reduced to one-spatial dimension. Our aim is to develop a numerical method capable of
tackling dissolution of particles in multi-component alloys in higher dimensions.

Several numerical methods have been developed to solve Stefan problems. Front-
tracking methods use an explicit representation of the interface, given by a set of points
laying on the interface locations which should be updated at each time step. Juric and
Tryggvason7 combine a stationary mesh technique with a nonstationary curve or surface
that represents the moving interface. Segal and co-workers8 update the computational
mesh, connected to the moving interface by a number of nodal points, each time step by
means of an Arbitrary Lagrangian Eulerian (ALE) approach. Unfortunately, merging or
breaking up of interfaces might become laborious to implement. Front-capturing meth-
ods use an implicit representation of the interface, adding an artificial unknown into the
problem. Phase field methods9 use a diffusive interfacial region, where the phase trans-
formation occurs, and avoid applying explicitly the boundary conditions on the interface.
Sharp interface problems are recovered in the limit on vanishing the interface thickness10.
Adaptive mesh techniques11,12 are needed in order to resolve the interface region accu-
rately, which lead to small time steps. Level set methods13 capture the interface as the
zero level set of a continuous function, the so-called level set function. The motion of the
interface follows from an advection equation for the level set function. The velocity field
used for this advection should be a continuous extension of the front velocity14,15.

In this work we first introduce the physical model for particle dissolution in multi-
component alloys. Next, the level set method is described for vector-valued Stefan prob-
lems. A convenient extension of the front velocity onto the computational domain will
be given, together with the iterative procedure to solve the coupled diffusion problems.
After that, the numerical experiments will be presented, followed by the conclusions.
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2 THE PHYSICAL PROBLEM

After manufacturing, an alloy is cast into a mould. The state of the alloy is then referred
to as the as-cast state. The as-cast microstructure is simplified into a representative cell
Ω containing a stoichiometric particle Ωpart with a given shape surrounded by a diffusive
phase Ωdp in which the alloy elements diffuse. The boundary between the particle and the
diffusive phase is referred to as the interface Γ. Let p be the number of diffusive elements
in the alloy. The particle dissolves due to Fickian diffusion in the diffusive phase

∂ci

∂t
(x, t) = Di∆ci(x, t), x ∈ Ωdp(t), t > 0, i = 1, . . . , p, (1)

where Di denotes the diffusion parameter of the ith alloying element. Cross-diffusion
effects16 have not been considered in the present work. Therefore, the classical diffusion
equation is recovered for each element in the alloy. The particle is assumed to remain
stoichiometric during the entire dissolution process. Hence, the particle concentrations
remain constant

ci(x, t) = cpart
i , x ∈ Ωpart(t), t > 0, i = 1, . . . , p, (2)

and the concentrations csol
i on the interface Γ satisfy the hyperbolic relation17

p
∏

i=1

(

csol
i (x, t)

)ñi

= K(T ), x ∈ Γ(t), t > 0, (3)

which has been derived from the Gibbs-free-energy of the stoichiometric elements, where
the exponent ñi denotes the stoichiometric number of the ith alloying element and K(T )
denotes the solubility product which depends on temperature T . Since we consider an
isothermal process, K(T ) is a positive constant in our model. Note that the interface
concentrations csol

i may depend on time and/or space, which represents a significant gen-
eralization of the dissolution models in binary alloys1, where the interface concentration
is the solid solubility from the binary phase diagram.

Mass conservation of all the alloying elements implies that

(

cpart
i − csol

i (x, t)
)

vn(x, t) = Di

∂ci

∂n
(x, t), x ∈ Γ(t), t > 0, i = 1, . . . , p, (4)

where vn denotes the normal component of the interface velocity and n the unit normal
vector on the interface pointing outward with respect to Ωpart. Note that Eqs. (4)
implicitly impose that

Di

cpart
i − csol

i (x, t)

∂ci

∂n
(x, t) =

Di−1

cpart
i−1 − csol

i−1(x, t)

∂ci−1

∂n
(x, t), x ∈ Γ(t), t > 0, i = 2, . . . , p. (5)

The above-formulated problem falls within the class of Stefan problems, i.e., diffusion
with a moving interface. This problem is referred to as a vector-valued Stefan problem
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since diffusion of several elements takes place simultaneously. The concentrations in the
diffusive phase ci, the interface position Γ and the interface concentrations csol

i are to be
found. Note that p diffusion equations with coupled Dirichlet and Neumann interface
conditions (3) and (5) need to be solved.

3 THE COMPUTATIONAL METHOD

The level set method is used to tackle the moving interface. Finite difference schemes
are used to solve the hyperbolic equations inherited from the level set formulation, whereas
a finite element method is used for the solution of the diffusion problems. For this purpose,
a Cartesian mesh and a finite element triangulation are defined over Ω. Both meshes are
based on the same nodal points so information is available everywhere with no need of
interpolation. A similar method18 has been applied recently to dendritic solidification.

3.1 The Level Set Method

The moving interface Γ is identified with the zero level set of a continuous function φ,
the so-called level set function. Hence: φ(x, t) = 0 ⇐⇒ x ∈ Γ(t) ∀t ≥ 0. Furthermore,
φ is initialized as the signed distance function to the interface, being positive in Ωdp. The
motion of the interface is related to the level set function by

∂φ

∂t
(x, t) + v(x, t) · ∇φ(x, t) = 0, x ∈ Ω, t > 0, (6)

where v denotes a continuous extension of the front velocity onto Ω. On the moving
interface we prescribe

v(x, t) =
D1

cpart
1 − csol

1 (x, t)
∇c1(x, t), x ∈ Γ(t), t > 0. (7)

The Cartesian components of v are decoupled and extended independently by advection14

in the proper upwind direction










∂vk

∂τ
+ S(φφxk

) ∂vk

∂xk
= 0,

vk(x, 0) = D1

c
part
1

−csol
1

(x,t)

∂c
∂xk

(x, t), x ∈ Γ(t),
for k = 1, 2, 3, (8)

where τ > 0 denotes a pseudo-time and the notation x = (x1, x2, x3)
t and v = (v1, v2, v3)

t

has been embraced.

After advecting the interface using Eq. (6), the level set function is, in general, not
a distance function at the new time step. In order to prevent flat/steep gradients in the
neighbourhood of the interface, the level set function is reinitialized19 to a signed distance
function in a band around the interface whenever it is necessary.
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3.2 The diffusion problems

The diffusion equations (1) are solved with a standard Galerkin finite element method
using linear elements. The underlying triangulation is adapted to the interface location
each time step with the cut-cell method1. A temporary triangulation is created then, with
additional nodes on the interface and additional subelements in the elements that where
intersected by the interface. These extra nodes and elements are discarded, and hence
the background mesh is recovered, after the coupled diffusion problems are solved.

The nonlinear coupling in the interface conditions Eqs. (3) and (5) is reformulated as
the zero of a function f : IRp

+ → IRp given by



















f1(c
sol) =

p
∏

i=1

(

csol
i

)ñi −K(T )

fi(c
sol) =

Di

cpart
i − csol

i

∂ci

∂n
−

Di−1

cpart
i−1 − csol

i−1

∂ci−1

∂n
, i = 2, . . . , p

(9)

where the vectorial notation has been embraced for csol. Note that f is defined on the
interface, i.e. csol ≡ csol(x, t) along the interface points x ∈ Γ(t). A fixed-point iteration20

is used to approximate the root of f on all the interface points up to a prescribed tolerance.
Each iteration requires the simultaneous solution of p diffusion problems Eq. (1) with
prescribed interface concentrations csol

i , the computation of the normal fluxes ∂ci

∂n
along

the interface and the update of f .

4 NUMERICAL RESULTS

In this section we will give the results obtained with the numerical method presented
above for a set of test problems. Comparison with self-similarity and the steady-state
solutions will be carried out in the first test problem. In a second test, the evolution of
the interface concentration csol

1 will be studied for a two-dimensional problem. The last
problem will deal with the dissolution of a three-dimensional cementite plate in a binary
alloy, and will represent a more metallurgical problem. The other two problems will be
more academic.

4.1 Comparison with the similarity solution

As a first test problem, we consider the dissolution of a planar interface. Because of
the symmetry, this test problem is solved in one-spatial dimension only. We consider an
alloy with three diffusional species, i.e. p = 3. The parameters of the problem are: the
particle concentrations cpart = (5, 5, 5), the stoichiometric numbers ñ = (3, 1, 2), the dif-
fusion coefficients D = (1, 2, 3), the length of the domain L = 2.5 and K(T ) = 2. Initially,
the concentration of the diffusive species is uniform over the diffusive phase c0 = (0, 0, 0),
and the interface is located at Γ(0) = 1.25. The computational domain Ω = [0, L] is
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split into N = 100 mesh intervals (i.e. ∆x1 = L
N

). The evolution of the interface Γ(t)
and interface concentrations csol

i (t) are plotted in Figure 1. The self similarity solution5,
defined in the unbounded domain, is used for comparison purposes. The evolution of the
interface agrees with the similarity solution at the beginning of the dissolution process.
At later stages of the dissolution, both curves diverge due to the boundedness of the com-
putational domain. As time evolves, the interface position converges to the equilibrium
position (i.e. steady-state) Γ∞ = 0.88815. The interface concentrations agree, at t = 0,
with those in the similarity solution. As time evolves they converge to the equilibrium
values csol

i,∞ = 1.1225.
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Figure 1: Planar interface.

4.2 Evolution of csol
1 in a two-dimensional problem

As a second test case we consider the dissolution of a two-dimensional dumbbell-
shaped particle. The number of diffusive species is p = 2. The parameters of the
problems are: the particle concentrations cpart = (5, 5), the stoichiometric numbers
ñ = (1, 1), the diffusion coefficients D = (1, 2), the initial concentration in the diffu-
sive phase c0 = (0, 0) and K(T ) = 1. The computational domain is Ω = [−0.5, 0.5]2

and the initial interface position is zero level set of φ0(x) = min(φcirc(x), φbar(x)), where
φcirc(x) = min(

√

(x1 + 0.275)2 + x2
2 − 0.15,

√

(x1 − 0.21)2 + x2
2 − 0.2) corresponds to the

exterior circles and φbar(x) = max(|x1 + 0.0325| − 0.2425, |x2| − 0.05) corresponds to the
connecting bar. The mesh widths are ∆x1 = ∆x2 = 1

50
. Figure 2 shows the interface

concentration of the first specie csol
1 (red × marks) with the interface location (blue ♦

marks, which has been arbitrarily located at the plane csol
1 = 0.95) at the beginning of

the dissolution process. At the beginning, larger differences in csol
1 are observed along

the different parts (different geometries) of the interface. However, as time evolves, these
differences are smeared out and already at t = 0.024 a nearly constant value of csol

1 is
observed along the interface. At later stages of the dissolution process, Figure 3, the
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interface concentration csol
1 remains constant along the interface, and monotonously de-

creases towards its equilibrium value csol
1,∞ = 1.
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Figure 2: Interface position (blue ♦ marks) and c
sol
1

(red × marks) at the beginning of the dissolution.

4.3 Dissolution of a cementite plate

As a final test problem we consider a three-dimensional cementite plate surrounded
by a box-shaped ferrite matrix. Such a particle occurs often in a pearlite structure. The
lamellae structure of pearlite is simplified into one cementite plate for reasons of symmetry.
We assume a sinusoidal perturbation on the surface of the particle. Furthermore, we
assume that the voids in the perturbed shape are filled by the ferrite phase entirely. The
temperature has been chosen at 8000C > A1 = 727 0C and the plate dimensions of 0.1 × 1
× 5 µm3 have been used. The plate dissolves in a computational cell with dimensions 0.5 ×
2.4 × 5 µm3. Since our present three-dimensional model is not yet capable of dealing with
three phases that occur simultaneously, which will be a future extension, it is assumed
that the austenite-ferrite transformation occurs much faster than cementite dissolution.
Hence the austenite-ferrite transformation is not considered here. This gives diffusion of
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Figure 3: Interface position (blue ♦ marks) and c
sol
1

(red × marks) at later stages of the dissolution
process.

carbon in the austenite phase that surrounds the cementite particle. The concentration of
carbon within the cementite particle is given by cpart

C = 6.743 wt. %. Further, the initial
carbon composition in the austenite phase is set at c0

C = 0 wt. %. The concentration at
the interface between the cementite and austenite phases is set equal to the value that
follows from local equilibrium at T = 8000C, given by csol

C = 0.71719 wt. %, during the
entire dissolution process. For the diffusion coefficient the value DC = 2.98 µm2/s is
used21 (page 99), corresponding to the temperature of 8000C. The results at consecutive
times can be seen in Figure 4. It can be seen that the plate splits up into an array of
dissolving rounded particles.

5 CONCLUSIONS

The dissolution of precipitates during heat treatments in alloys has been studied here.
The physical problem has been modelled as a vector-valued Stefan problem, and the
well known level set method has been used to follow the moving interface. The compu-
tational method for precipitate dissolution in binary alloys1 has been extended here to
multi-component alloys. Such an extension handles a nonlinear coupling of the interface
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Figure 4: Dissolution of a cementite plate with a sinusoidal perturbation.

concentrations and concentration fluxes across the interface with a fixed-point iteration.
This technique deals with breaking up of particles in a natural way, and is readily im-
plemented in any spatial dimension. Numerical results have been given for one-, two-
and three-dimensional problems. Agreement with similarity solutions and convergence to
steady-state values have been obtained.
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