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Abstract

A well-functioning democracy depends on an in-
formed population. To help informing citizens,
summaries of arguments in political transcripts can
be made. An approach to argument summarization
is the creation of summaries through distillation of
the arguments into higher-level key points. In this
approach, mapping arguments to key points is an
important subtask. This study examines how model
selection, prompting strategy, choice of domain,
and input batching influence the performance of
large language models (LLMs) in matching argu-
ments to key points. We introduce a self-annotated
dataset from U.S. Congress committee transcripts
and evaluate both generative and embedding-based
models on this task. Generative LLMs (GPT-3.5-
turbo, 04-mini) outperform both untuned and fine-
tuned RoBERTa in zero-shot argument-to-keypoint
mapping (up to 0.880 macro-F1), while sparse two-
shot prompting yields no gains. Moderate batch-
ing (n=32) boosts throughput without losing ac-
curacy. These results show that a fully auto-
mated KPA pipeline—argument extraction, key-
point generation, and mapping—is achievable with
current LLMs.

1 Introduction

In a good democratic system, the population needs to access
accurate, up-to-date information about politics. This is im-
portant to critically evaluate policies. Recently, with the rise
of the internet, a lot of political data has become available.
The noise created by the abundance of data makes it harder to
stay informed as citizen, and may result in a lack of political
engagement. Therefore, it might be useful to summarize po-
litical arguments such that the amount of information is con-
densed. This can be addressed by automatic summarization
of arguments.

In general, the analysis of human texts is part of the field of
Natural Language Processing (NLP). Argument summariza-
tion is a subfield of NLP focused on the automatic processing
and analysis of argumentative discourse.

One approach in the argument summarization subfield is to
distill arguments into a list of key points, in a task called Key
Points Analysis (KPA) [1]. This approach allows readers to
efficiently understand the core arguments without having to
read full-length texts.

The Bar-Haim et al. paper described key points in the fol-
lowing way: "Key points may be viewed as high-level argu-
ments. They should be general enough to match a significant
portion of the arguments, yet informative enough to make a
useful summary." One of the subtasks in KPA is argument-
to-keypoint mapping (KPM). In this step, some number of
arguments from the text are mapped to some number of key-
points. In most papers on this topic, the KPM subtask is exe-
cuted using a BERT model, such as plain BERT or RoBERTa
[11[91[101.

Due to recent advancements in generative Large Lan-
guage Model (LLM) technology and size, and because of the

strength of generative LLMs in text-based tasks, it is proba-
ble to suppose that the KPM task could be performed by a
generative LLM. This has been done in a recent study[10],
using GPT-3.5-turbo. In the paper, GPT-3.5-turbo performed
poorly on the KPM subtask.

Since the published of that paper, multiple generative
LLMs with significantly improved performance on general
and complex benchmarks have been released [8]. Using
newer generative LLMs may contribute to a better perfor-
mance on the KPM task due to an increase in semantical un-
derstanding of the relation between argument and keypoint.

Using more accurate generative LLMs and using a prompt-
ing strategy that results in a higher accuracy makes research
into the use of generative LLMs in the KPM subtask valuable.

Main Research Question

The aim of the study is as follows: How do model choice,
prompting strategy, domain, and input batching influence
LLM performance on argument-to-keypoint matching?

While the scope of this research question is broad, it can be
reduced depending on time constraints, uninteresting results
or other considerations. Therefore the following sub ques-
tions are:

Sub-Questions

1. Model Comparison How does accuracy differ between
generative LLMs and (fine-tuned) embedding models?

2. Prompting Strategy Which prompting strategy
(zero-shot or few-shot) performs best for each LLM?

3. Domain Transfer How well do models and prompts
tuned on the Congress data set perform on the ArgKP
data set?

4. Input Batching Effects Is it better, in terms of accu-
racy and cost, to send multiple single-pair prompts or
one multi-pair prompt?

In this thesis, we will investigate LLM performance on
summarization via KPA. In particular, we experimentally
evaluate the performance on some generative LLMs on the
KPM substep of the process proposed by Bar-Haim et al.
(2020) [1].

We will start by giving a background of the problem and a
summarization of the existing literature. Next to this, we will
define important terms and dive into language models that can
be used for this mapping task. After that, we will introduce a
novel manually annotated data set from US House committee
transcripts and describe the annotation process and outcomes.
We will be performing the arguments-to-key-points mapping
task using this data set. Thereafter, we will explain the exper-
imental setup and its evaluation by F1 macro. Lastly, we will
discuss the results.

2 Background

2.1 Definitions

We will start out by giving some definitions related to the
context of KPM. Van der Meer et al. propose that "[a]n argu-
ment needs to at least (1) contain (informal) logical reason-
ing, (2) address a why question, and (3) have a non-neutral



stance towards the issue being discussed[10]. A topic in the
most general sense is the subject of what is being discussed.
In the context of this research, we narrow the definition of a
topic down to a policy proposal, e.g. "Abortion should be il-
legal". We will take both topic and policy proposal to mean
the same thing from this point. Additionally, we define argu-
ments to only be policy-related. Using these definitions we
can summarize that, in the context of this research, the con-
nection of a related policy proposal, argument and stance is
that each argument provides the reasoning for the stance to-
wards the policy proposal. Next, we define a key point to be a
higher-level argument that has the ability to cover a multitude
of arguments. An argument and a key point are matching if
the argument is a more specific version of the key point.

2.2 Related Work

One approach to summarization of argumentative texts, such
as parliamentary proceedings, is to present a list of argumen-
tative Key Points.

Bar-Haim et al. [1] laid the groundwork for this approach,
named Key Point Analysis (KPA). In order to execute the key
points summarization, a three-step approach was proposed.
In the first two steps, the arguments and key points are ex-
tracted from the text and in the third step, an arguments-to-
key-points mapping (KPM) is made. This last step will be the
focus of our experiment. The authors created the aptly named
ArgKP dataset, containing 24 093 argument—key point pairs
(6515 arguments and 243 key points) across 28 controversial
topics. Additionally, the authors showed that a domain ex-
pert can create set of key points per topic cover a significant
portion of the arguments.In their experiments, unsupervised
BERT-embedding similarity reached an F; of 0.403. A fine-
tuned BERT-large on ArgKP attained an F; score of 0.684.

Van der Meer et al. [10] examine three dimensions Key
Point Analysis across three datasets. They find that GPT-
3.5-turbo, while strong at Key Point Generation, achieves
only a mean Average Precision (mAP) of 0.17-0.46 in KPM,
whereas a ROBERTa model reaches mAP up to 0.82. In the
paper, GPT-3.5-turbo was queried for a valid JSON object.
If the JSON syntax was invalid, the answer by the model was
deemed incorrect. Having to create a JSON object using valid
syntax next to performing the KPM subtask could explain the
low performance of the model in the paper. Secondly, the
model was given a batch prompt. In a batch prompt, mul-
tiple yes/no questions are asked simultaneously in the same
prompt, instead of separately for each yes/no question. This
approach has been shown to decrease accuracy when using
large batch sizes [5].

2.3 Models and Prompting

We frame argument-to-keypoint mapping as a task for both
(fine-tuned) embedding models and prompt-driven genera-
tive models. RoBERTa [6] is a large, pre-trained embedding
model with a masked-language objective, meaning it seeks to
find the best substitute for a masked placeholder in a text. It
can be fine-tuned to certain tasks, causing better performance
in that context. Generative Pre-trained Transformer (GPT)
models (ChatGPT-3.5-turbo, 03, o4-mini) generate next to-
kens and do not rely on fine-tuning for performance.

Instead, performance can be tailored to a specific context
based on the input structure. The model’s input is called a
prompt. Zero-shot prompts consist solely of a query without
examples, whereas few-shot prompts include examples in the
input. These added examples have been shown to improve
performance [2]. Newer, larger models can perform Chain-
of-Thought reasoning, in which models such as OpenAI’s 03
and o4-mini publicly or internally note intermediate reason-
ing steps, increasing performance [11].

3 Methodology & Experimental Setup
3.1 Data

We created a data set from House Committee Hearing tran-
scripts from the United States House of Representatives,
hereafter referred to as the House Hearing Transcripts (HHT)
data set. The representatives take part in committees or sub-
committees that hold (generally public) hearings. In these
hearings, witnesses are interviewed and discussions take
place in relation to new or current operational legislation, or
in relation to the functioning of the government'. The tran-
scripts of the hearings are released to the public.

The following workflow was used for creating the dataset:
The dataset was created in three phases; the argument-
extraction phase, the key-point-generation phase and the key-
point-mapping annotation phase.

In order to create the HHT data set, transcripts from 11
hearings out of a total of 1015 hearings from the 117th
Congress (2021-2022) were selected. A list of selected hear-
ings can be found in the Appendix (see Table 5).

In the first phase, each transcript was appended to a prompt
(see Appendix A.1), and given to OpenAl 03 version XXXXX.
Included in the prompt instructions were definitions of topic
argument keypoint etc., and requested output of policy pro-
posals, arguments, and stances. This resulted in 66 policy
proposals and a total of 269 arguments.

An extracted argument is included if it satisfies the follow-
ing criteria:

* The extracted argument exists verbatim in the transcript

* The argument follows our definition of an argument (See
Section 2.2)

* The subject of argument is the related policy proposal
* The extracted stance is in accordance with the argument

Out of the 269 arguments, 143 arguments relating to 60 topics
satisfied the criteria.

In the second phase, OpenAl 03. was prompted (See Ap-
pendix A.2) to give, for each of the 60 policy proposals, a
response containing 4 key points with a Pro-stance and 4 key
points with a Con-stance, resulting in 480 key points. Each
key point was checked for following the definition for an ar-
gument and relating to the policy proposal. All 480 key points
satisfied this criterion.

In the final phase, 3 students interested in politics were
asked to write down per argument to which subset of the 4
topic/stance key point(s) it corresponds. This can either be 0,

"https://web.archive.org/web/20210602142207/https:
/Iwww.senate.gov/reference/glossary_term/hearing.html
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1 or multiple key points. A Venn diagram showing the over-
lap of annotator choices can be found in Figure 1.

Due to the use of more than 2 annotators, Fleiss’ x [3] was
used to assess inter-annotator agreement, resulting in a x of
0.609, which corresponds to a moderate-to-substantial agree-
ment [4].

Arguments were assigned to key points if the majority,
at least 2 out of 3 annotators, mapped it that way. The re-
sult in 119 matchings between an argument and a keypoint.
To create the final data set, each of the 143 topic-argument-
stance data point was appended once for each of the 4 stance-
corresponding key points of the related topic, resulting in
572 data points. Each of the 119 data points with match-
ing argument and key point was given a label of 1, and each
non-matching row a label of 0. The resulting data set thus
consists of two imbalanced classes; 119 matching (label 1) to
453 non-matching (label 0) data points.

3.2 Experiment Setup

We begin by partitioning the House Hearing Transcripts
(HHT) dataset—572 argument—keypoint pairs—into an 80%
test split (to evaluate in-domain performance), a 10% train-
ing split (for fine-tuning RoBERTa), and a 10% validation
split (for early stopping during fine-tuning) and with strati-
fied class labels.

Each argument—keypoint pair is presented to the model
with a prompt in which it is asked to determine if the pair is
a match (see Appendix Table 4); outputs “yes” and “no” are
mapped to labels 1 and 0, respectively, and compared against
the ground-truth label to compute accuracy and macro-F1
scores. We investigate the following variables:

Model Choice We compare RoBERTa-large in two con-
figurations; out-of-the-box and fine-tuned. Additionally, we
compare the performance of generative LLMs GPT-3.5-turbo
and o4-mini. Generative models are queried with temperature
set to 0.

Prompting Strategy Generative models were queried with
zero-shot and few-shot prompts and asked to provide a yes/no
decision on the matching of an argument-keypoint pair. Em-
bedding models were queried with an analogous zero shot
prompt, instead being asked to substitute a decision for a
masked token. For the prompts, see Appendix Table 4

Domain Each model is assessed on two distinct domains:
the HHT test set (80% of total, 95 positive, 362 negative ex-
amples) and a random balanced subset of 1 000 pairs drawn
from the ArgKP dataset. The HHT test set has an average
amount of 44.61 words per argument, the ArgKP subset has
an average of 18.63 words per argument.

Batching To isolate the impact of grouping multiple argu-
ment-keypoint queries into a single prompt, we make the fol-
lowing distinction. Single—pair: (n=1) Each API call contains
exactly one argument—keypoint pair. This condition estab-
lishes our baseline performance and is used in both zero-shot
and few-shot prompts. Multi-pair: (n>1) We concatenate
n independent argument—keypoint pairs into a single prompt,
numbered by index. Next, the model is to provide a “yes”
or “no” answer for each index. We evaluate batch sizes

n € {32,64,128,256} for HHT, reusing the same prompt
template described in Appendix Table 4 for each sub—query.
After analysing the results, a selection of batching sizes will
also be applied to the balanced ArgKP subset. The experi-
ment will be performed by o4-mini, the only model with a
large enough context window.

Fine-tuning We reformulate argument—keypoint pairs as a
zero-shot prompt by injecting topic, argument text, key point
text, and stance (“Pro”/*Con”) into the template in Table 4.
We load CSV splits into pandas, apply the template per row,
and convert to a Hugging Face Dataset with a labels column.
We tokenize all examples to a fixed length of 512 tokens
(padding/truncation). The model is fine-tuned as a binary
classifier. For fine-tuning, we use Hugging Face Trainer over
5 epochs with per-device batch size 8, learning rate 5e-05,
weight decay 0.01, and 500-step linear warm up. We evalu-
ate (accuracy + macro-F1), and apply early stopping after two
non-improving validations.

Evaluation For every combination of model, prompt type,
batching style, and domain, we report macro F1 and accuracy.
As the HHT dataset has a large class imbalance, macro F1
score is the most important metric.

4 Results
4.1 Impact of Model Choice

Comparing model performance in Table 1, o4-mini decidedly
outperforms GPT-3.5-turbo and the untuned RoBERTa-large
model, achieving the highest macro F1 of 0.734 and accuracy
of 0.803 under zero-shot prompting.

As noted earlier, given the pronounced class imbalance in
the HHT dataset, the F1 score should be taken as the pri-
mary evaluation metric. Illustrating the need for this, the ac-
curacy of the fine-tuned RoBERTa-large model rivals that of
o4-mini. Inspecting the output data reveals that the fine-tuned
model assigned only no (match) to every argument-keypoint
pair, explaining the low macro F1 score of 0.442. In contrast,
GPT-3.5-turbo attains a macro F1 of 0.531 (acc. 0.604), and
vanilla RoBERTa-large performed worst with F1 0.387 (acc.
0.385).

4.2 TImpact of Prompting Strategy

Investigating the same Table 1, neither generative model
shows consistent performance improvement using the few-
shot prompting strategy. GPT-3.5-turbo’s macro F1 and ac-
curacy both decrease slightly in the few-shot condition with
F1 0.521 compared to the zero-shot F1 of 0.531 (acc. 0.595
vs. 0.604). Next, o4-mini also sees a small drop using the
few-shot strategy (F1 0.707 vs. 0.734; Acc. 0.777 vs. 0.803),
still showing the best performance out of all models.

4.3 Domain Transfer

Using the zero-shot prompting strategy on a balanced ArgKP
sample, Table 1 again shows 04-mini’s superior performance,
scoring highest in both macro F1 and accuracy with a score
of 0.880. GPT-3.5-turbo performs moderately well (F1 0.685,
acc. 0.687).



Model — GPT-3.5-turbo 04-mini RoBERTa-large Fine-tuned RoBERTa-large
Strategy | Macro F1 ~ Accuracy Macro F1 ~ Accuracy MacroF1 ~ Accuracy Macro F1 Accuracy
Zero-shot 0.531 0.604 0.734 0.803 0.387 0.385 0.442* 0.792*
prompt

Few-shot 0.521 0.595 0.707 0.777

prompt

Table 1: Performance of models by prompting strategy for both generative and discriminative models on the HHT test set (95 positive, 362
negative examples). *The fine-tuned model classified every pair as not matching.

Model Macro F1  Accuracy
GPT-3.5-turbo 0.685 0.687
04-mini 0.880 0.880
Base RoBERTa-large 0.506 0.516
Fine-Tuned RoBERTa-large 0.333* 0.500%*

Table 2: Comparison of zero-shot KPM performance on balanced
ArgKP sampled data set (n=1000; class balance is 50/50). *The
fine-tuned model classified every pair as not matching.

In contrast, base RoBERTa-large attains only F1 0.506
(acc. 0.516), an increase compared to its performance on the
HHT data set. The fine-tuned RoBERTa-large model once
again classified every pair as not matching, explaining the low
F1 of 0.333 despite a 0.500 accuracy. The difference in ac-
curacy compared to its HHT performance is completely ex-
plained by the difference in class balance between datasets.
These results show that generative LLMs, particularly o4-
mini, deliver superior performance for argument-to-keypoint
mapping compared to discriminative models.

4.4 Input Batching Effects

Batching Macro F1  Accuracy
HHT (n=1) 0.707 0.777
HHT (n=32) 0.739 0.796
HHT (n=64) 0.712 0.777
HHT (n=128) 0.718 0.768
HHT (n=256) 0.602 0.630
ArgKP (n=1) 0.880 0.880
ArgKP (n=32) 0.885 0.885
ArgKP (n=256) 0.858 0.860

Table 3: Effect of single pair (n=1) prompting vs. batching (n >1)
for 0o4-mini on both HHT and ArgKP datasets.

Finally, the influence of batching multiple argu-
ment-keypoint pairs in a single prompt was investigated
using o4-mini and both datasets (see Table 3). On HHT, a
small batch of 32 examples results in the highest macro F1
(0.739) and accuracy (0.796), improving over single-pair
prompting (F1 0.707, Acc. 0.777). Larger batches (n < 64),
see diminishing returns. For n = 128 the F1 drops to 0.718
(acc. 0.768), and for n = 256 performance decreases even
further (F1 0.602, acc. 0.630).

A similar but less pronounced trend appears on ArgKP. A
batch size of 32 slightly outperforms single-pair prompting
(F1 0.885 vs. 0.880; acc. 0.885 vs. 0.880), while very large
batches (n = 256) again see diminishing results (F1 0.858,
acc. 0.860). These results indicate that modest batching
can stay accurate while boosting throughput, but overly large
batch sizes show lower performance.

5 Responsible Research

We reflect on the ethical consideration related to using lan-
guage models for the KPM task.

Firstly, using KPM for summarizing political arguments
must be done carefully to avoid misrepresenting politicians’
statements, as inaccuracies could wrongly influence public
opinion.

Secondly, generative LLMs, such as the models used in
this study, have significant environmental impacts due to high
energy consumption and substantial COy emissions during
training [7]. Running models locally for tasks like KPA and
other NLP tasks would reduce environmental costs. However,
suitable models are currently too large to run in typical local
setups.

Regarding reproducibility, outputs from LLMs inherently
include randomness, primarily introduced through parame-
ters like temperature settings. Consequently, even though
temperature was set to zero, randomness persists. Experi-
mental results are thus not fully reproducible.

The data set creation process was thoroughly documented
to facilitate transparency and reproducibility.

6 Discussion

6.1 Data and Annotation

Our self-annotated House Hearing Transcripts (HHT) dataset
exhibits an inherently low argument density: only 143 of the
269 extracted spans met our formal criteria for arguments,
yielding 572 argument—keypoint pairs after replication (119
positive, 453 negative). This sparsity reflects the nature of
congressional hearings, where much of the discourse consists
of procedural remarks, witness testimony, or claims without
explicit informal logical reasoning. Consequently, the dataset
contains a high proportion of non-matching pairs, introducing
severe class imbalance.

Additionally, the lack of a debate format in subcommit-
tee hearings causes many extractable policy proposals to only
be related to a single argument. Topic—argument—keypoint
groups with only one relevant argument cannot be used in



this experiment, as there would be little use of summariza-
tion. The moderate-to-substantial inter-annotator agreement
(Fleiss’ k =0.609) points to some subjectivity in key-point as-
signment, suggesting that the used dataset is not of the highest
quality. The employment of more annotators, the exclusion of
annotators with low pair-wise agreement, and the inclusion of
control questions with a pre-determined answer all could have
contributed to a higher Fleiss’ k. An argument in support of
the quality of the dataset could be made, as the possibility of
consistently high performance by o4-mini points to a lack of
noise and the existence of structure in the data. Finally, our
reliance on ChatGPT (03) for initial extraction and key-point
generation may propagate model biases into the ground-truth
labels, in turn biasing later evaluation by related (04-mini)
models.

6.2 Experiments and Results

Contrary to the expectation that few-shot demonstrations clar-
ify mapping criteria, our two-shot setup (one positive, one
negative exemplar) did not improve performance over zero-
shot prompting. Both GPT-3.5-turbo and o4-mini showed
slight performance drops in the few-shot condition (Table 1).
The cause of this could be the low amount of examples
(two; one positive and one negative). In the literature, few-
shot prompts with tens of examples show a performance in-
crease [2].

Generative LLMs outperformed discriminative RoBERTa
variants across domains. In zero-shot on HHT, o4-mini
achieved the highest macro-F1 (0.734) and accuracy (0.803),
while fine-tuned RoBERTa collapsed to majority-class pre-
dictions, and untuned RoBERTa performed worse than its
fine-tuned counterpart. On the balanced ArgKP sample, 04-
mini further showed superior performance (F1 = 0.880), in-
dicating its strength in zero-shot generalization. These re-
sults imply that generative LLMs have greater semantic un-
derstanding than task-specific fine-tuned models, and outper-
form them on small, imbalanced datasets.

We also observed modest benefits from batching multiple
pairs in a single prompt, which aligns with the findings in
[5]. For 04-mini on HHT, a batch size of 32 increased macro-
F1 from 0.707 to 0.739 and accuracy from 0.777 to 0.796,
though larger batches suffered diminishing returns. A sim-
ilar effect appeared on ArgKP. This indicates that moderate
batching can improve throughput without sacrificing quality,
but overly large context windows lower matching-task perfor-
mance.

Bar-Haim et al. [1] showed that fine-tuned BERT-large on
ArgKP reached an F; of 0.684, which is comparable to our
RoBERTa baseline on a subset of the same data set. The zero-
shot performance of 04-mini (F; of 0.734) is an improvement.

Overall, our findings highlight both the promise and limita-
tions of generative LLMs for argument-to-keypoint mapping.
Both generative LLMs performed in zero-shot settings, yet
their in-context learning requires sufficient examples to yield
few-shot gains. The superior performance of 04-mini, and its
tolerance to moderate batching shows its usefulness for NLP
tasks such as argument-to-keypoint mapping.

7 Conclusion and Future Work

We investigated the feasibility of fully automated argument-
to-keypoint mapping (KPM) using state-of-the-art large lan-
guage models. Our zero-shot experiments showed that gener-
ative models (GPT-3.5-turbo and o4-mini) substantially out-
perform (fine-tuned) discriminative baselines (RoBERTa) on
both our House Hearing Transcripts (HHT) and the balanced
ArgKP sample, achieving up to 0.880 macro-F1. Moderate
batching (up to 32 pairs) further improved performance with-
out degrading accuracy. In contrast, our minimal two-shot
few-shot setup failed to yield gains, indicating that reliable
in-context learning demands substantially more examples.

These findings answer our core research questions: (1)
generative LLMs can perform KPM effectively in zero-shot
settings even on small, noisy, and imbalanced argument
corpora; (2) sparse few-shot prompts may introduce noise
rather than clarity; (3) generative LLMs use their deeper se-
mantic understanding to generalize effectively across diverse
datasets; and (4) modest batching increases throughput and
maintains quality;

In sum, our work demonstrates that a fully automated
KPA pipeline is within reach: argument extraction, key-point
generation, and mapping can all be handled by competitive
LLMs.
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A Prompts
A.1 Argument extraction prompt:

You now are ArgMineGPT. Your goal is to exhaustively find every arguable statement in a transcript, assign it a clear policy “topic,” and
tag each argument’s stance toward that single proposal.

“*Definition of an “arguable statement (argument):**

1. Contains informal logical reasoning (e.g., “because,” “therefore,” “so that”).
2. Addresses a why/should question (explicitly or implicitly).

3. Takes a non-neutral stance (Pro or Con) on exactly one policy proposal.

### Step 1: Verbatim Extraction & Stance Tagging
1. Scan the text in sequence and identify each contiguous span (up to 2 sentences) that meets criteria 1-3.
2. For each such span:
- Output the **exact raw text** (letter-for-letter, in straight quotes).
- Immediately append ° (Speaker: <name/role>; Stance: Pro/Con) -decide whether the speaker is arguing **for** or **against** the exact
policy proposal.
- If a speaker recommends adopting or strengthening that policy, tag “Pro.” If they argue against or reject that policy, tag “Con.”

### Step 2: Cluster by Single, Directional Policy Topics

1. After extracting all arguments (verbatim + stance), group them into at most eight (8) distinct topics-**each topic must name one
single policy proposal**, e.g.:

- “Mandatory COVID-19 Vaccination Policy”

- “Prioritize Federal Funding for Rail Infrastructure”

- “Maintain or Increase Federal Highway Spending”

- “Expand Federal Grants for Rural Broadband”

- “Strengthen Encryption Standards for Government Agencies”

2. **Ensure each topic has at least three (3) arguments total** (Pro + Con combined). If you find more than eight potential proposals,
merge any that refer to the same underlying policy (e.g. “Rural broadband grants” + “Rural Internet funding” » “Expand Federal Grants
for Rural Broadband”).

3. **Do not** use any “vs.” comparison or procedural label. Each topic must be a single actionable policy that one can be Pro or Con to.

### Step 3: Output Format
Produce your answer exactly in this format (no extra commentary):

Topic 1: <Exact Policy Proposal>

e Argument 1.1 (Speaker: <name/role>; Stance: Pro) - “<Full raw text of argument 1.1>”
e Argument 1.2 (Speaker: <name/role>; Stance: Con) - “<Full raw text of argument 1.2>”
e Argument 1.3 (Speaker: <name/role>; Stance: Pro) - “<Full raw text of argument 1.3>”

(You can have more than 3 arguments under a given topic.)

Topic 2: <Exact Policy Proposal>

e Argument 2.1 (Speaker: <name/role>; Stance: Con) - “<Full raw text of argument 2.1>”
e Argument 2.2 (Speaker: <name/role>; Stance: Pro) - “<Full raw text of argument 2.2>”
e Argument 2.3 (Speaker: <name/role>; Stance: Con) - “<Full raw text of argument 2.3>”

(You can have more than 3 arguments under a given topic.)
(up to Topic 8, each with 3 arguments)

- Number each argument as "Argument X.Y' , where X = topic number, Y = argument index within that topic (starting at 1).
- Always put the raw text in straight quotes (*“...” ) for exact copying.
- Ensure each topic label names one single policy proposal so “Pro” means “for that proposal” and “Con” means “against that proposal.”

### Step 4: Continuation & Exhaustiveness

- Process the transcript strictly in the order it appears to avoid skipping any arguable spans.

- Include **all** arguments, even minor or repeated ones-as long as they meet criteria 1-3.

- If your output exceeds one response, continue seamlessly in the next completion beginning at “Topic N+1:” where N is the last topic
number you used.

“*Now process the full transcript below:**
[PASTE FULL TRANSCRIPT HERE]



A.2 Keypoint generation prompt:

You will be given a policy proposal, and you need to think of Key Points in the sense of the Bar-Haim paper which is given together with
this prompt. You need to create 4 Key Points that are for the proposal (Pro), and 4 Key Points that are against (Con)

**Do this for the policy proposal below:**

[Policy proposal]



A.3 KPM Prompts

Table 4: Overview of the language models and corresponding prompts for the KPM task

Model base & fine-tuned RoBERTa-large | GPT-3.5-turbo & 04-mini
Zero-
shot <s>Determine if the key point Determine if the key point summarizes (part of) the argument:
Prompt summarizes (part of) the You’ll only respond with “yes” or “no”-no extra text.
argument: You’ll only
respond with “yes” or policy proposal: "{topic}" argument: "{argument}"
“no”-no extra text. stance: "{stance}" key point: "{key_point}"
output:
policy proposal: "{topic}"
argument: "{argument}"
stance: "{stancel}" key point:
"{key_point}"
output: <mask> </s>
Few-
shot You are asked to determine if the key point summarizes (part
Prompt of) the argument. You’ll only respond with “yes” or

“no”-no extra text.

Example 1:

policy proposal: "Adopt Sen. Graham’s proposal for a
nation-wide ban on abortions after 15 weeks of pregnancy"

argument: "Their end game is a nationwide abortion ban that
will rip away freedoms for millions of women and put our
Nation’s healthcare providers at risk of imprisonment."

stance: "Con"

key point: "A federal mandate overrides states’ rights and
conflicts with local self-governance."

Output: no

Example 2:

policy proposal: "Make Paying Ransoms to Cyber-Criminals
Illegal”

argument: "Paying the hackers is sort of like aiding and
abetting the next crime."

stance: "Pro"

key point: "Cutting off ransom funds prevents criminals from
financing other illicit activities, including terrorism.'

output: yes

Determine if the key point summarizes (part of) the argument.
You’ll only respond with “yes” or “no”-no extra text:

policy proposal: "{topic}" argument: "{argument}"
stance: "{stance}" key point: "{key_point}"
output:




A.4 Table of transcripts

Table S: United States House of representatives (117th Congress, 2021-2022) hearing transcripts (n=11) used in this study. Dates are
presented in U.S. format (MM/DD/YYYY).

Serial No. Committee Date Hearing Title

117-1 House Energy and Commerce  02/02/2021 NO TIME TO LOSE: SOLUTIONS TO INCREASE COVID-19 VACCINA-
TIONS IN THE STATES

117-2 House Judiciary 02/11/2021  The U.S. Immigration System: The Need for Bold Reforms

117-12 House Judiciary 03/18/2021  Discrimination and Violence Against Asian Americans

117-35 House Energy and Commerce  05/26/2021 A Shot at Normalcy: Building COVID-19 Vaccine Confidence

117-42 House Energy and Commerce 06/13/2021 MEMBER DAY

117-58 House Education and Labor 09/21/2022  Examining the Administration of the Unemployment Insurance System

117-60 House Judiciary 03/29/2022  OVERSIGHT OF THE FEDERAL BUREAU OF INVESTIGATION, CYBER
DIVISION

117-69 House Judiciary 05/19/2022  Oversight Hearing on Clemency and the Office of the Pardon Attorney

117-102 House Oversight and Reform  09/15/2022  Fueling the Climate Crisis: Examining Big Oil’s Prices, Profits, and Pledges

117-103 House Financial Services 11/15/2022  Investing in our Rivals: Examining U.S. Capital Flows to Foreign Rivals and
Adversaries Around the World

117-107 House Oversight and Reform  09/29/2022  Examining the Harm to Patients from Abortion Restrictions and the Threat of

a National Abortion Ban




B Figures
B.1 Annotator Choice Venn Diagram

Annotator A Annotator B

Annotator C

Figure 1: Venn diagram showing the overlap of argument-keypoint annotations by annotators A, B, and C.

C Data & Code Availability

All scripts and (raw) data for reproducing the experiments in this thesis are archived at github.


https://github.com/jeijkenboom/data_parsing
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