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ARTICLE INFO ABSTRACT

Article history: MEFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite
Available online xxxx element methods that features arbitrary high-order finite element meshes and spaces,
Keywords: support for a wide variety of discretization approaches and emphasis on usability, porta-
Finite element methods bility, and high-performance computing efficiency. MFEM'’s goal is to provide application
Numerical PDEs scientists with access to cutting-edge algorithms for high-order finite element meshing,
Open-source scientific software discretizations and linear solvers, while enabling researchers to quickly and easily
High-order methods develop and test new algorithms in very general, fully unstructured, high-order, parallel
Matrix-free algorithms and GPU-accelerated settings. In this paper we describe the underlying algorithms and
High-performance computing finite element abstractions provided by MFEM, discuss the software implementation,

and illustrate various applications of the library.
Published by Elsevier Ltd.

1. Introduction

The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to ap-
proximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically
and in practice, in the past several decades [1-8].

MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary
high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on
usability, portability, and high-performance computing (HPC) efficiency [9]. The MFEM project performs mathematical
research and software development to enable application scientists to take advantage of cutting-edge algorithms for
high-order finite element meshing, discretizations, and linear solvers. MFEM also enables researchers and computational
mathematicians to quickly and easily develop and test new research algorithms in very general, fully unstructured, high-
order, parallel settings. The MFEM source code is freely available via Spack, OpenHPC, and GitHub, https://github.com/
mfem, under the open source BSD license.
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In this paper we provide an overview of some of the key mathematical algorithms and software design choices that
have enabled MFEM to be widely applicable and highly performant, while retaining relatively small and lightweight code
base (see Sections 6 and 8). MFEM'’s main capabilities and their corresponding sections in the paper are outlined in the
following text.

MFEM is distinguished from other finite element packages, such as deal.ll [10], FEniCS [11], DUNE [12], FreeFem++
[13], Hermes [14], libMesh [15], FETK [16], NGSolve [17], etc., by a unique combination of features, including its
massively parallel scalability, HPC efficiency, support for arbitrary high-order finite elements, generality in mesh type and
discretization methods, support for GPU acceleration and the focus on maintaining a clean, lightweight code base. The
continued development of MFEM is motivated by close work with a variety of researchers and application scientists. The
wide applicability of the library is illustrated by the fact that in recent years it has been cited in journal articles, conference
papers, and preprints covering topology optimization for additive manufacturing, compressible shock hydrodynamics,
reservoir modeling, fusion-relevant electromagnetic simulations, space propulsion thrusters, radiation transport, space-
time discretizations, PDEs on surfaces, parallelization in time, and algebraic multigrid methods. A comprehensive list of
publications making use of MFEM can be found at https://mfem.org/publications.

Conceptually, MFEM can be viewed as a finite element toolbox that provides the building blocks for developing finite
element algorithms in a manner similar to that of MATLAB for linear algebra methods (Section 2). MFEM includes support
for the full high-order de Rham complex [18]: H'-conforming, discontinuous (L?), H(div)-conforming, H(curl)-conforming
and NURBS finite element spaces in 2D and 3D (Section 4.3), as well as many bilinear, linear, and nonlinear forms
defined on them, including linear operators such as gradient, curl, and embeddings between these spaces. It enables fast
prototyping of various finite element discretizations including: Galerkin methods, mixed finite elements, discontinuous
Galerkin (DG), isogeometric analysis, hybridization, and discontinuous Petrov-Galerkin approaches (Section 5.1).

MFEM contains classes for dealing with a wide range of mesh types: triangular, quadrilateral, tetrahedral, hexahedral,
prismatic as well as mixed meshes, surface meshes and topologically periodic meshes (Section 3). It has general support
for mesh refinement and optimization including local conforming and non-conforming adaptive mesh refinement (AMR)
with arbitrary-order hanging nodes, powerful node-movement mesh optimization, anisotropic refinement, derefinement,
and parallel load balancing (Section 7). Arbitrary element transformations allowing for high-order mesh elements with
curved boundaries are also supported. Some commonly used linear solvers, nonlinear methods, eigensolvers, and a variety
of explicit and implicit Runge-Kutta time integrators are also available.

MFEM supports Message Passing Interface (MPI)-based parallelism throughout the library and can readily be used
as a scalable unstructured finite element problem generator (Section 6.1). Starting with version 4.0, MFEM offers initial
support for GPU acceleration, and programming models, such as CUDA, OCCA, RAJA and OpenMP (Section 6.3). MFEM-
based applications have been scaled to hundreds of thousands of cores. The library supports efficient operator partial
assembly and evaluation for tensor-product high-order elements (Section 5.4). A serial MFEM application typically requires
minimal changes to transition to a scalable parallel version of the code where it can take advantage of the integrated
scalable linear solvers from the hypre library, including the BoomerAMG, AMS, and ADS solvers (Section 6.2). Both the
serial and parallel versions can make use of high-performance, partial assembly Kkernels, described in further detail in
Section 6.3.

Comprehensive support for a number of external numerical libraries, e.g., PETSc [19], SuperLU [20], STRUMPACK [21],
SuiteSparse [22], SUNDIALS [23], and PUMI [24] is also included, which gives access to many additional linear and
nonlinear solvers, preconditioners, and time integrators. MFEM’s meshes and solutions can be visualized with its
lightweight native visualization tool GLVis [25], as well as with ParaView and the Vislt [26,27] visualization and analysis
tool (Section 4.5).

MFEM is used in a number of applications in the U.S. Department of Energy, academia, and industry (Section 8). The
object-oriented design of the library separates the mesh, finite element, and linear algebra abstractions, making it easy to
extend and adapt to the needs of different simulations. The MFEM code base is relatively small and is written in highly
portable C++, using a limited subset of the language. This reduces the entry barrier for new contributors and makes it
easy to build the library on early-access HPC systems with vendor compilers that may not be mature. The serial version
of MFEM has no required external dependencies and is straightforward to build on Linux, Mac, and Windows. The MPI-
parallel version requires only two third-party libraries (hypre [28] and METIS [29,30]) and is easy to build with an MPI
compiler.

MFEM'’s development grew out of a need for robust, flexible, and efficient simulation algorithms for physics and
engineering applications at Lawrence Livermore National Laboratory (LLNL). The initial open-source release of the library
was in 2010, followed by version 1.2 in 2011 that added MPI parallelism. Versions 2.0, 3.0 and 3.4 released in 2011,
2015 and 2018 added new features such as arbitrary high-order spaces, non-conforming AMR, HPC miniapps and mesh
optimization. An important milestone was the initial GPU support added in MFEM-4.0, which was released in May 2019.
The latest version is 4.1, which was released in March 2020.

MFEM is being actively developed on GitHub with contributions from many users and developers worldwide. Users
can report bugs and connect with the MFEM developer community via the GitHub issue tracker at https://github.com/
mfem/mfem/issues. Details on testing, continuous integration, and how to contribute to the project can be found in the
top-level README and CONTRIBUTING.md files in the MFEM repository.

Please cite this article as: R. Anderson, . Andrej, A. Barker et al., MFEM: A modular finite element methods library, Computers and Mathematics with
Applications (2020), https://doi.org/10.1016/j.camwa.2020.06.009.
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2. Finite element abstractions

To illustrate some of the functionality of MFEM, we consider the model Poisson problem with homogeneous boundary
conditions:

Find u : £ — R such that
—Au=f inf (m
u=0 onrl

where £2 ¢ R? is the domain of interest, I" is its boundary, and f : 2 — R is the given source. The solution to this
problem lies in the infinite dimensional space of admissible solutions (cf. e.g. [4])

V={veH(2),v=00nT]}. (2)

To discretize (1), we begin by defining a mesh of the physical domain §2. The mesh is represented in MFEM using a
Mesh object. Once the mesh is given, we may define a finite dimensional subspace V, C V, represented in MFEM by
FiniteElementSpace. The approximate solution u; € V}, is found by solving the corresponding finite element problem:

Find u, € V; such that

/ Vuh . Vvh = / fvh Vv,, (S Vh.
2 2

This can be written equivalently as
Find uy, € V}, such that
a(up, vp) = l(vp)  Yop € Vj,

(3)

where the bilinear form a(-, -) and linear form I(-) are defined by

a(u, v) :f Vu - Vv, (5)
2

Iv) = /Qf v. (6)

These types of forms are represented in MFEM by the classes BilinearForm and LinearForm, respectively. These forms
are expressed as sums of terms defined by classes derived from BilinearFormIntegrator and LinearFormIntegrator,
respectively (see Section 5.1). In the example considered here, the bilinear form (5) has one term of type Diffusion-
Integrator and the linear form (6) has one term of type DomainLFIntegrator. Functions such as f, and any material
coefficients, are represented as classes derived from Coefficient, VectorCoefficient, or MatrixCoefficient. Note that
due to performance considerations, linear and bilinear forms in MFEM are described using sub-classes of the above classes
and not with a domain-specific language.
After defining basis functions ¢; for the space Vj, the finite element problem (3) may be rewritten as

Find coefficients ¢; such that
ZCJ’/ ij'V¢i=ff¢i. @)
7 2 2

Defining the linear algebra objects

AUZ/QV%"V(Pia (8)

b = f fo (9)
2

Xi = G, (10)

we arrive at the discrete system of linear equations
Ax = b. (11)

By calling the FormLinearSystem method, the BilinearForm object representing a(-, -) is transformed into an Operator
object representing the linear operator A, and the LinearForm object representing I(-) is transformed into a Vector
object representing b. After the linear system (11) has been solved, the resulting Vector object may be used to define a
GridFunction representing the discrete solution u; € Vi, by means of the method RecoverFEMSolution (see Section 5.2).

This simple example illustrates some of the core concepts and classes in the MFEM example. A more comprehensive
description of MFEM’s capabilities, including extensions to other discretization techniques, parallelization, mesh adaptivity
and GPU acceleration are described in the following sections.

Please cite this article as: R. Anderson, ]. Andrej, A. Barker et al., MFEM: A modular finite element methods library, Computers and Mathematics with
Applications (2020), https://doi.org/10.1016/j.camwa.2020.06.009.
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Fig. 1. Left: The mapping @ from the reference element K to a bi-cubic element K in physical space with high-order nodes shown as black dots.
Right: Example of a highly deformed high-order mesh from a Lagrangian hydrodynamics simulation (see Section 8.3).

3. Meshes

The main mesh classes in MFEM are: Mesh for a serial mesh and ParMesh for an MPI-distributed parallel mesh. The
class ParMesh is derived from Mesh and extends the local mesh representation (corresponding to the inherited Mesh data
and interface) with data and functionality representing the mesh connections across MPI ranks (see Section 6.1).

In this section we describe the internal representation aspects of these two classes. Mesh input and output functionality
is described in Section 4.5, and mesh manipulation capabilities (refinement, derefinement, etc.) will be described later in
Section 7.

3.1. Conforming meshes

The definition of a serial (or a local component in parallel), unstructured, conforming mesh in MFEM consists of two
parts: topological (connectivity) data and geometric (coordinates) data.

The primary topology data are: a list of vertices, list of elements, and list of boundary elements. Each element has a
type (triangle, quad, tetrahedron, etc.), an attribute (an integer used to identify subdomains and physical boundaries),
and a tuple of vertex indices. Boundary elements are described in the same way, with the assumption that they define
elements with dimension one less than the dimension of the regular elements. Any additional topological data - such
as edges, faces, and their connections to the elements, boundary elements and vertices - is derived internally from the
primary data.

The geometric locations of the mesh entities can be described in one of two ways: (1) by the coordinates of all vertices,
and (2) by a GridFunction called nodal grid function, or simply nodes. Clearly, the first approach can only be used when
describing a linear mesh. In the second case, the GridFunction class is the same class that MFEM uses to describe any
finite element function/solution. In particular, it defines (a) the basis functions mapping each reference element to physical
space, and (b) the coefficients multiplying the basis functions in the finite element expansion — we refer to these as nodal
coordinates, control points, or nodal degrees of freedom (DOFs) of the mesh. The nodal geometric description is much
richer than the one based only on the vertex coordinates: it allows nodes to be associated not only with the mesh vertices
but with the edges, faces, and the interiors of the elements (see Fig. 1). A A

The exact shape of an element is defined through a mapping ® = &¢ : K - K from the reference element K, as
shown in Fig. 1. The mapping @ itself is defined in terms of the basis functions {w;(X)}" i1, typically polynomials, and the
local nodal coordinates xx which are extracted/derived from the global nodal vector X,

N
XR) = (%) =) xcwilR). (12)

Both {w;} and {xy} are defined from the geometric mesh description — either the vertex coordinates with linear (bilinear
for quadrilaterals, or trilinear for hexahedra) polynomials, or the nodal GridFunction with its respective definition of
basis functions and node coordinates. Typically, the basis functions {w;} are scalar functions and the coefficients {x ;}
are small vectors of the same dimension as x € K = <1>(IA<). In MFEM, the mapping &, for a particular element K, is
represented by the class ElementTransformation. The element transformation for an element K can be obtained directly
from its Mesh object using the method GetElementTransformation(k), where k is the index of the element K in the
mesh. Once constructed, the ElementTransformation object can be used for computing the physical coordinates of any
reference point, the Jacobian matrix of the mapping, the integration weight associated with the change of the variables
from K to K, etc. All of these operations generally depend on a reference point of interest which is typically a quadrature
point in a quadrature rule. This motivates the use of the class IntegrationPoint to represent reference points.

Note that MFEM meshes distinguish between the dimension of the reference space of all regular elements (reference
dimension) and the dimension of the space into which they are mapped (spatial dimension). This way, surface meshes
are naturally supported with reference dimension of 2 and space dimension of 3, see e.g. Fig. 19.

Please cite this article as: R. Anderson, J. Andrej, A. Barker et al., MFEM: A modular finite element methods library, Computers and Mathematics with
Applications (2020), https://doi.org/10.1016/j.camwa.2020.06.009.
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3.2. Non-conforming meshes

Non-conforming meshes, also referred to as meshes with hanging nodes, can be viewed as conforming meshes (as
described above) with a set of constraints imposed on some of their vertices. Assuming a linear mesh, the requirement is
that each constrained vertex has to be the convex combination of a set of parent vertices. Note that, in general, the parent
vertices of a constrained vertex can be constrained themselves. However, it is usually required that all the dependencies
can be uniquely resolved and all constrained vertices can be expressed as linear combinations of non-constrained ones,
see Section 7.2 for more details.

The need for such non-conforming meshes arises most commonly in the local refinement of quadrilateral and
hexahedral meshes. In such scenarios, an element that is refined shares a common entity (edge or face that the first
element needs to refine) with another element that does not need to refine the shared entity. To restrict the propagation
of the refinement, the first element introduces one or more constrained vertices on the shared entity and constrains them
in terms of the vertices of the shared entity. The goal of the constraint is to ensure that the refined sub-entities introduced
by the refinement of the first element are completely contained inside the original shared entity. In simpler terms, the
goal is to make sure that the mesh remains “watertight”, i.e. there are no gaps or overlaps in the refined mesh.

When working with high-order curved meshes, or high-order finite element spaces on linear non-conforming meshes,
one has to replace the notion of constrained vertices with constrained degrees of freedom. The goal of the constraints is
still the same: ensure there are no gaps or overlaps in the refined mesh. In the case of high-order spaces, the goal is to
ensure that the constrained non-conforming finite element space is still a subspace of the discretized continuous space,
H', H(div), etc. High-order finite elements are further discussed in Section 4.4.

The observation that a non-conforming mesh can be represented as a conforming mesh plus a set of linear constraints
on some of its nodes, is the basis for the handling of non-conforming meshes in MFEM. Specifically, the Mesh class
represents the topology of the conforming mesh (which we refer to as the “cut” mesh) while the constraints on the mesh
nodes are explicitly imposed on the nodal GridFunction which contains both the unconstrained and the constrained
degrees of freedom. In order to store the additional information about the fact that the mesh is non-conforming, the Mesh
class stores a pointer to an object of class NCMesh. For example, NCMesh stores the full refinement hierarchy along with
all parent-child relations for non-conforming edges and faces, while Mesh simply represents the current mesh consisting
of the leaves of the full hierarchy, see [31].

Notable features of the NCMesh class include its ability to perform both isotropic and anisotropic refinement of
quadrilateral and hexahedral meshes while supporting an arbitrary number of refinements across a single edge or face
(i.e. arbitrary level of hanging nodes).

3.3. NURBS meshes

Non-Uniform Rational B-Splines (NURBS) are often used in geometric modeling. In part, this is due to their capability
to represent conic sections exactly. In the last decade, the use of NURBS discrete functions for PDE discretization has also
become popular and is often referred to as IsoGeometric Analysis (IGA), see [8].

In principle, the construction of NURBS meshes and discrete spaces is very similar to the case of high-order polynomials.
For example, a NURBS mesh can be viewed as a quadrilateral (in 2D) or hexahedral (in 3D) mesh where the basis functions
are tensor products of 1D NURBS basis functions. However, an important distinction is that the nodal degrees of freedom
are no longer associated with edges, faces, or vertices. Instead, the nodal degrees of freedom (usually called control points
in this context) can participate in the description of multiple layers of elements — a fact that follows from the observation
that NURBS basis functions have support (i.e. are non-zero) inside of blocks of (k+2)x(k+2) (2D) and (k+2)x (k+2)x (k+2)
(3D) elements, with k the continuity of the NURBS space.

In MFEM, NURBS meshes are represented internally through the class NURBSExtension which handles all NURBS-
specific implementation details such as constructing the relation between elements and their degrees of freedom.
However, from the user perspective, a NURBS mesh is still represented by the class Mesh (with quadrilateral or hexahedral
elements) which, in this case, has a pointer to an object of type NURBSExtension and a nodal GridFunction that defines
the appropriate NURBS basis functions and control points. Most MFEM examples can directly run on NURBS meshes, and
some of them also support IGA discretizations. As of version 3.4, MFEM can also handle variable-order NURBS, see the
examples in the miniapps/nurbs directory.

3.4. Parallel meshes

As mentioned in the beginning of this section, an MPI-distributed parallel mesh is represented in MFEM by the class
ParMesh which is derived from class Mesh. The data structures and functionality inherited from class Mesh represent the
local (to the MPI task) portion of the mesh. Note that each element in the global mesh is assigned to exactly one MPI rank,
so different processors cannot own/share the same element; however they can share mesh entities of lower dimensions:
faces (in 3D), edges (in 2D and 3D), and vertices (in 3D, 2D, and 1D).

The standard way to construct a ParMesh in MFEM is to start with a serial Mesh object and a partitioning array that
assigns an MPI rank to each element in the mesh. By default, the partitioning array is constructed using the METIS graph

Please cite this article as: R. Anderson, ]. Andrej, A. Barker et al., MFEM: A modular finite element methods library, Computers and Mathematics with
Applications (2020), https://doi.org/10.1016/j.camwa.2020.06.009.
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partitioner [29,30] where mesh elements are the vertices of the partitioned graph, and the graph edges correspond to the
internal faces (3D), edges (2D) and vertices (1D) connecting two adjacent mesh elements.

Given the partitioning array, each shared entity can be associated with a unique set of processors, namely, the set
of processors that share that entity. Such sets of processors are called processor groups or simply groups. Each MPI
rank constructs its own set of groups and represents it with an object of class GroupTopology which represents the
communication connections of each rank with its (mesh) neighbors. Inside each group one of the processors is selected
as the master for the group. This choice must be made consistently by all processors in the group. For example, MFEM
assigns the processor with the lowest rank in the group to be the master.

In order to maintain a consistent mesh description across processors, it is important to ensure that shared entities
are described uniformly across all MPI tasks in the shared entity group. For example, since ParMesh does not define a
global numbering of all vertices, a shared triangle with local vertex indices (a, b, c) on processor A must be described on
processor B as (x,y, z) such that the shared vertex with index x on processor B is the same as the shared vertex with
index a on processor A, and similarly for the indices y and z. This uniformity must be ensured during the construction of
the ParMesh object and maintained later, e.g. during mesh refinement.

For this reason, shared entities are stored explicitly (as tuples of local vertex indices) on each processor. In addition,
the shared entities are ordered by their dimension (vertices, edges, faces) and by their group, making it easier to maintain
consistency across processors.

The case of parallel non-conforming meshes is treated similarly to the serial case: the ParlMesh object is augmented
by an object of class ParNCMesh which inherits from NCMesh and provides all required parallel functionality. In this case,
the parallel partitioning is performed using a space-filling curve instead of using METIS. This is discussed in more detail
later in Section 7.2.

The case of parallel NURBS meshes is also treated similarly to the serial case: the ParMesh object is augmented with
an object of class ParNURBSExtension which inherits from NURBSExtension. Note that, currently, MFEM does not support
parallel refinement of NURBS meshes.

4. Finite element discretization

In this section, we introduce and describe the main classes (in addition to the mesh classes described in Section 3)
required for the full definition of any finite element discretization space: the class FiniteElement with its derived classes,
the class FiniteElementCollection with its derived classes, and finally the class FiniteElementSpace. In addition, we
describe the class GridFunction which represents a particular discrete function in a finite element space.

4.1. Finite elements

The concept of a finite element is represented in MFEM by the abstract base class FiniteElement. The main character-
istics of the class are the following.

Reference element. This is the precise definition of the reference geometric domain along with descriptions of its
vertices, edges, faces, and how they are ordered. As previously mentioned, this information is included in class Geometry.
In the FiniteElement class, this information is represented by a specifier of type Geometry: : Type. This data member can
be accessed via the method GetGeomType (). The respective dimension of the reference element can be accessed via the
method GetDim().

Map type. This is an integer given by one of the constants: VALUE, INTEGRAL, H_DIV, and H_CURL defined in the
FiniteElement class. These constants represent one of the four ways a function on the reference element K can be
transformed into a function on any physical element K through a transformation @ : K — K. The four choices are:

VALUE This map-type can be used with both scalar- and vector-valued functions on the reference element: assume
that (), X € K is a given function, then the transformed function u(x), x € K is defined by

u(x) = u(x), where  x = @(X).

INTEGRAL This map-type can be used with both scalar- and vector-valued functions on the reference element: assume
that #i(x), X € K is a given function, then the transformed function u(x), x € K is defined by
1

w(X)

u(x), where  x = @(k),

u(x) =

and w(X) is the transformation weight factor derived from the Jacobian J(X) of the transformation @(x), which
is a matrix of dimensions d x d (where d < d are the dimensions of the reference and physical spaces,
respectively):

det(J (X)) when d = d, i.e. ] is square

w(X) = avtran ] .
det(J(x)YJ(x))2  otherwise.

This mapping preserves integrals over mapped subsets of K and K.

Please cite this article as: R. Anderson, . Andrej, A. Barker et al., MFEM: A modular finite element methods library, Computers and Mathematics with
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H_DIV This map-type can be used only with vector-valued functions on the reference element where the number of
the vector components is d, i.e. the reference element dimension: assume that #i(X), X € K is such a function,
then the transformed function u(x), x € K is defined by

1 X

u(x) = —J(X)u(x), where  x = &(X),
w(X)

and w(k) and J(X) are as defined above. This is the Piola transformation used for mapping H(div)-conforming
basis functions [32]. This mapping preserves the integrals of the normal component over mapped
(d — 1)-dimensional submanifolds of K and K.

H_CURL This map-type can be used only with vector-valued functions on the reference element where the number of
the vector components is d, i.e. the reference element dimension: assume that i(X), X € K is such a function,
then the transformed function u(x), x € K is defined by

AN—T A ~ _ . .
(x) = {](x) (x) when d = d, i.e. ] is square where x= &),

i
JEUEYE)]I'aR)  otherwise,

and w(X) and J(%) are as defined above. This is the Piola transformation used for mapping H(curl)-conforming
basis functions [32]. This mapping preserves the integrals of the tangential component over mapped 1D paths.

There is a connection between the way a function is mapped and how its gradient, curl or divergence is mapped: if a
function is mapped with the VALUE map type, then its gradient is mapped with H_CURL; if a vector function is mapped
with H_CURL, then its curl is mapped with H_DIV; and finally, if a vector function is mapped with H_DIV, then its divergence
is mapped with INTEGRAL.

The map type can be accessed with the method GetMapType (). In MFEM, the map type also determines the type of

basis functions used by the FiniteElement: scalar (for VALUE or INTEGRAL map types) or vector (for H_CURL or H_DIV map
types).
Degrees of freedom. The number of the degrees of freedom in a FiniteElement can be obtained using the method
GetDof () which is also the number of basis functions defined by the finite element. Each degree of freedom i has an
associated point in reference space, called its node (ith node). For many scalar interpolatory finite elements (referred
to as nodal finite elements in MFEM), evaluating the jth basis function at the ith node gives §; (the Kronecker delta).
However, this is not true in general for all finite element types.

The basis functions can all be evaluated simultaneously at a single reference point, given as an IntegrationPoint,
using the virtual method CalcShape () for scalar finite elements or CalcVShape () for vector finite elements. Similarly,
based on the specific finite element type, the gradient, curl, or divergence of the basis functions can be evaluated with
the method CalcDShape (), CalcCurlShape(), or CalcDivShape(), respectively.

In order to simplify the construction of a global enumeration for the DOFs, each local DOF in a FiniteElement is
associated with one of its vertices, edges, faces, or the element interior. Then the local DOFs are ordered in the following
way: first all DOFs associated with the vertices (in the order defined by the reference element), then all edge DOFs
following the order and orientation of the edges in the reference element, and then similarly the face DOFs, and finally,
the interior DOFs. This local ordering is then easier to translate to the global mesh level where global DOFs are numbered
in a similar manner but now traversing all mesh vertices first, then all mesh edges, then all mesh faces, and finally all
element interiors. )

For vector finite elements, in addition to the node, each DOF i has an associated d-dimensional vector, ;. For DOF i,
associated with a non-interior entity (usually edge or face) the vector 7; is chosen to be either normal or tangential to the
face/edge based on its map type: H_DIV or H_CURL, respectively. The role of these associated vectors is to define the basis
functions on the reference element, so that evaluating the jth vector basis function at the ith node and then computing
the dot product with the vector 7; gives §;. Note that the vectors 7; have to be scaled appropriately in order to preserve
the rotational symmetries of the basis functions.

The main classes derived from the base FiniteElement class are the arbitrary order H'-conforming (with class names
beginning with H1), the L?-conforming (i.e. discontinuous, with class names beginning with L2), the H(curl)-conforming
(with class names beginning with ND, short for Nedelec), and the H(div)-conforming (with class names beginning with RT,
short for Raviart-Thomas) finite elements. All of these elements are defined for all reference element types where they
make sense. These elements can be used with several types of bases, including the nodal Lagrange basis at Gauss-Lobatto
or uniform points (or Gauss-Legendre points for L? finite elements) and the Bernstein basis. For an illustration, see Fig. 2.

In addition to the methods for evaluating the basis functions and their derivatives, the class FiniteElement introduces
a number of other useful methods. Among these are: methods to support mesh refinement: GetLocalInterpolation()
and GetTransferMatrix(); methods to support finite element interpolation/projection: Project () (scalar and vector
version), ProjectMatrixCoefficient (); and methods to support the evaluation of discrete operators such as embedding,
gradient, curl, and divergence: ProjectGrad(), ProjectCurl(), etc.

In order to facilitate programming independent of the mesh type, while simultaneously defining any required
permutations of DOFs shared by neighbor elements in the process of mapping global DOFs to local DOFs, MFEM introduces
the abstract base class FiniteElementCollection. Its main functionality is to (1) define a specific finite element for every
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Fig. 2. Linear, quadratic and cubic H' finite elements and their respective H(curl), H(div) and L? counterparts in 2D. Note that the MFEM degrees
of freedom for the Nedelec (ND) and Raviart-Thomas (RT) spaces are not integral moments, but dot products with specific vectors in specific points
as shown above.

mesh entity type, and (2) define a permutation for the DOFs on any mesh entity type (face, edge), based on the orientation
of that entity relative to any other possible orientations; these orientations correspond to the different permutations of
the vertices of the entity, as seen from the points of view of adjacent elements.

The main classes derived from FiniteElementCollection are the arbitrary order *_FECollection classes where the
+-prefix is one of H1, L2, ND, or RT which combine the appropriate finite element classes with the respective prefix for
all different types of reference elements. Note that in the case of RT_FECollection, the regular (non-boundary) elements
use RT_x finite elements, however, the edges (2D) or faces (3D) use L2_x elements with INTEGRAL map-type. In addition
to these “standard” FiniteElementCollections, MFEM also defines interfacial collections used for defining spaces on the
mesh skeleton/interface which consists of all lower-dimensional mesh entities, excluding the regular full-dimension mesh
elements. These collections can be used to define discrete spaces for the traces (on the mesh skeleton) of the regular H',
H(curl), and H(div) spaces.

4.2. Finite element spaces

In MFEM, the mathematical concept (or definition) of a discrete finite element function space is encapsulated in the
class FiniteElementSpace. The two main components for constructing this class are a Mesh and a FiniteElementCol-
lection which provides sufficient information in order to determine global characteristics such as the total number of
DOFs and the enumeration of all the global DOFs. In the FiniteElementSpace constructor, this enumeration is generated
and stored as an object of class Table which represents the mapping: for any given element index i, return the ordered
list of global DOF indices associated with element i. The order of these global DOFs in the list corresponds exactly to
the local ordering of the local DOFs as described by the FiniteElement. The specific FiniteElement object associated
with an element i can be obtained by first looking up the reference element type in the Mesh and then querying the
FiniteElementCollection for the respective FiniteElement object. Thus, the FiniteElementSpace can produce the basis
functions for any mesh element and the global indices of the respective local DOFs.

The global DOF numbering is created by first enumerating all DOFs associated with all vertices in the mesh; then
enumerating all DOFs associated with all edges in the mesh — this is done, edge by edge, choosing a fixed direction on
each edge and listing the DOFs on the edge following the chosen direction; next, the DOFs associated with faces are
enumerated — this is done face by face, choosing a fixed orientation for each face and following it when listing the DOFs
on the face; finally, all DOFs associated with the interiors of all mesh elements are enumerated, element by element.
Various renumbering schemes, such as [33], are also supported to improve the cache locality.

An additional parameter in the construction of a FiniteElementSpace is its vector dimension which represents,
mathematically, a Cartesian power (i.e. number of components) applied to the space defined by the FiniteElement basis
functions. The additional optional parameter, ordering, of the FiniteElementSpace constructor, determines how the
components are ordered globally: either Ordering: : byNODES (default) or Ordering: :byVDINM; the vector DOF (vdof) index
k corresponding to the (scalar) DOF i in component j is given by k = i + jNg in the first case (N is the number of DOFs
in one component), and k = j + iN,, in the second (N is the number of components).
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Fig. 3. Continuous de Rham complex in 3D and example physical fields that can be represented in the respective spaces.

4.3. Discrete de Rham complex

The de Rham complex [34,35] is a compatible multi-physics discretization framework that naturally connects the solu-
tion spaces for many common PDEs. It is illustrated in Fig. 3. The finite element method provides a compatible approach
to preserve the de Rham complex properties on a fully discrete level. In MFEM, constructing a FiniteElementSpace using
the *_FECollection with * replaced by Hi, ND, RT, or L2, creates the compatible discrete finite element space for the
continuous H', H(curl), H(div), or L? space, respectively. Note that the order of the space is simply a parameter in the
constructor of the respective *_FECollection, see Fig. 2.

The finite element spaces in the de Rham sequence are the natural discretization choices respectively for: kinematic
variables (e.g., position, velocity), electromagnetic fields (e.g., electric field in magnetohydrodynamics (MHD)), diffusion
fluxes (e.g., in flux-based radiation-diffusion) and thermodynamic quantities (e.g., internal energy, density, pressure).
MFEM includes full support for the de Rham complex at arbitrary high order, on arbitrary order meshes, as illustrated for
example in the first four example codes that come with the MFEM distribution, see Section 8.1.

Finite element functions are represented by the class GridFunction. A GridFunction is the list of DOFs for a discrete
function in a particular FiniteElementSpace, so it could be used both on a linear algebra level (as a Vector object), or on
the finite element level (as a piecewise-smooth function on the computational mesh). Grid functions are primal vectors,
see Section 5.2, that are used to represent the finite element approximate solution. They contain methods for interpolation
of continuous data (ProjectCoefficient), evaluation of integrals and errors (ComputeL2Error), as well as many linear
algebra operations that are inherited from the Vector class.

4.4. High-order spaces

High-order methods are playing an increasingly important role in computational science due to their potential for
better simulation accuracy and favorable scaling on modern architectures [3,5,6,36,37]. MFEM supports arbitrary-order
elements, and provides efficient implementations of specialized algorithms designed to control the algorithmic complexity
with respect to the polynomial order, see Section 5.4.

4.5. Input/output and visualization

MFEM provides integrations with several external tools for easy and accurate visualization of finite element meshes
and grid functions, including arbitrary high-order meshes and fields. These integrations are based on sampling of the
geometry and grid function data on a reference space lattice via the GeometryRefiner. (One example of its use is the
Shaper miniapp in miniapps/meshing.) MFEM can also provide accurate gradients enabling better surface normal vector
computations.

Two of the visualization tools with which MFEM has been integrated are GLVis [25] and VisIt [26,27]. GLVis is MFEM’s
lightweight in-situ visualization tool that directly uses MFEM classes for OpenGL visualization supporting interactive
refinement of the reference-space sampling and uses accurate gradients for surface normals. Vislt is a comprehensive
data analysis framework developed at LLNL, which includes native MFEM support via an embedded copy of the library.
The sampled data in this case is controlled by a muiti-resolution slider and is treated as low-order refined information so
all Vislt functionality can be used directly. Various file formats are supported, including in-memory remote visualization
via socket connection in the case of GLVis.

For mesh 1/0O, there are two MFEM native ASCII formats: one for generic (non-NURBS) meshes, and one that is specific
for NURBS meshes. These are the default formats used when writing a mesh to a C++ output stream (std: :ostream) or
when calling the Print () method of class Mesh or ParMesh. Note that the cross-processor connectivity in a parallel mesh
is lost when using the Print () method which, however, is not required for visualization purposes. To save a parallel mesh
with all cross-processor connections, one can use the method ParMesh: :ParPrint ().

Other input formats supported by class Mesh are: Netgen [17,38], TrueGrid [39], unstructured VTK [40], Gmsh (linear
elements only) [41], and Exodus format (produced by the Cubit mesh generator, among others) [42]. Class Mesh also
provides output support for the unstructured VTK format through the method PrintVTK ().

For more comprehensive input/output, where a mesh is stored with any number of finite element solution fields, MFEM
defines the base class DataCollection along with several derived classes: VisItDataCollection: writes an additional
.mfem_root file that can be opened by the MFEM plugin in Vislt [26,27]; SidreDataCollection: a set of data formats
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based on the Sidre component of LLNL’s Axom library [43] which, in particular, supports binary I/O and can also be
opened by Vislt; and ConduitDataCollection: a set of data formats based on LLNL’s Conduit library [44] which also
supports binary I/O and can be opened by Vislt. Note that the class VisItDataCollection uses the default ASCII format
to save the mesh and finite element solution fields. The class ParaViewDataCollection can be used to output XML data
in ParaView’s “VTU” format, using either ASCII or compressed binary format. In addition to standard low-order output,
ParaViewDataCollection also supports ParaView’s high-order Lagrangian elements.

5. Finite element operators
5.1. Discretization methods

MFEM includes the abstractions and building blocks to discretize equations; that is, the process by which the linear
system is formed from a PDE, choice of basis functions, and mesh. As discussed in Section 2, before discretizing a linear PDE
using the finite element method, it is converted into a variational form like (4) consisting of a bilinear and a linear form.
In MFEM, they are represented by the classes BilinearForm and LinearForm, respectively. Depending on the PDE, each of
these forms consists of one or more terms, called integrators in MFEM. The process of describing the PDE in MFEM consists
of defining a BilinearForm and a LinearForm and then adding integrators to them by calling their Add*Integrator
methods, e.g. AddDomainIntegrator or AddBoundaryIntegrator. The main parameter for these methods is an instance of
an integrator: a subclass of the abstract base classes BilinearFormIntegrator and LinearFormIntegrator. An extensive
list of the integrators defined in MFEM can be found at https://mfem.org/fem. Note that this design is extensible since it
allows users to implement and use their own integrators.

There are many different approaches for expressing a given PDE in variational form which, in turn, give rise to different
finite element methods for the same given PDE. MFEM’s included examples illustrate some of these different methods.
For example, a very common approach for discretizing Poisson’s equation is to use H! elements of any order and spatial
dimension, where the basis functions are continuous across element interfaces. This is illustrated in Example 1. This is the
most straightforward discretization of the equation, but there are many other approaches possible. For instance, Example
8 and Example 14 solve the same PDE with discontinuous Petrov-Galerkin (DPG) [45] and discontinuous Galerkin (DG)
discretizations, respectively, see Section 8.1. The examples include interactive documentation (in examples/README.html
or online at https://mfem.org/examples) organized by the different discretization methods available in the library and are
the fastest route to learn about MFEM'’s capabilities.

Examples 3-5 show a wide range of the discretization capability of MFEM and many of the possible finite elements.
Example 3 solves the second-order definite Maxwell equation using the H(curl) Nedelec finite elements with the curl-curl
and mass bilinear form integrators. Example 4 progresses down the de Rham sequence, and solves a second-order definite
equation with a Neumann boundary condition using H(div) Raviart-Thomas finite elements and div-div and mass bilinear
form integrators. Example 5 uses a mixed H(div) and L? (DG) discretization of a Darcy problem, solving these together
in a 2 x 2 block bilinear form. These three examples are just a few of the many examples included with the library, but
they show a wide range of the finite elements and discretization approaches possible along the de Rham sequence.

On the meshing side, there are also many different approaches. As described above in Section 3, MFEM supports
arbitrary-order meshes, which can be topologically periodic or assigned boundary tags. However, MFEM also includes
an extension to its Mesh class to generate basis functions from non-uniform Rational B-splines (NURBS), see Section 3.3.
This allows for isogeometric analysis, where the basis is refined without changing the geometry or its parametrization [8].

MFEM includes various ordinary differential equation (ODE) solvers that can be used in conjunction with the finite
elements and bilinear forms to discretize the time derivative terms. Many ODE solvers are distributed with the library: var-
ious implicit and explicit Runge-Kutta (RK) methods including singly-diagonal implicit versions (SDIRK), and symplectic
methods. Additionally, MFEM supports time integration with the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic
equation Solver) library, which provides many additional ODE solvers. Explicit and fully-implicit time stepper solvers (TS)
from PETSc [46] are also supported. Finally, MFEM’s ODE solvers can be extended by inheriting from the abstract base
class ODESolver.

5.2. Finite element linear systems

One of the main operations that MFEM performs is the construction of a linear system of the form (11) given a finite
element description of problem such as in (4). Performing this task while supporting distributed memory architectures,
high-order basis functions, non-conforming meshes, or more general basis function types introduces complications that
require careful treatment. To manage these complexities MFEM makes use of abstractions which clearly separate finite
element concepts from linear algebra concepts.

MFEM’s linear algebra objects include Vector and SparselMatrix in serial and HypreParVector and HypreParMatrix
in parallel. Parallel linear algebra via PETSc is supported via the classes PetscParVector and PetscParMatrix; the latter
also provides on-the-fly conversion routines between hypre and PETSc parallel data formats. The finite element ob-
jects include (Par)GridFunction, (Par)LinearForm, and (Par)BilinearForm. For convenience (Par)GridFunction and
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Fig. 4. Graphical depiction of the relationship between the finite element bilinear and linear form objects, and the linear algebra matrices and
primal/dual vectors in MFEM.

(Par)LinearForm inherit from the Vector class and can therefore be used as vectors, and similarly (Par)BilinearForm
can be used as a matrix.

Fig. 4 illustrates the relationship between the finite element and linear algebra objects in MFEM. The ParGridFunction
object contains, among other things, all of the degrees of freedom needed to interpolate field values within every element
contained in the local portion of the computational mesh, denoted by x in Fig. 4. X in Fig. 4 is a linear algebra Vector
(or HypreParVector) related to this ParGridFunction but potentially quite different. X represents a non-overlapping,
parallel decomposition of the true degrees of freedom of the ParGridFunction X. For example, some of the degrees of
freedom in the ParGridFunction may be subject to constraints if they happen to be shared with neighboring elements
in a non-conforming portion of the mesh, or they may be constrained to match degrees of freedom owned by elements
found on another processor. Some of the degrees of freedom in the ParGridFunction may not even directly contribute
to the linear system if static condensation or hybridization is being used. Thus, the linear algebra Vector represented by
X may be much smaller than the ParGridFunction x. The P and R operators shown in Fig. 4, called the prolongation and
restriction operators, respectively, are created and managed by the ParFiniteElementSpace and can be used to map data
between the finite element representation of a field and its linear algebra representation.

The ParGridFunction, labeled x in Fig. 4, and its linear algebra counterpart X, are called primal vectors because of their
direct relationship with the finite element expansion of a field. Indeed the values stored in x are the expansion coefficients

fiin
FR =) fie®). (13)

Conversely, a ParLinearForm, labeled b in Fig. 4, or the vector labeled B are dual vectors. In this context duality refers to
the fact that dual vectors map primal vectors to the set of real numbers [1]. More importantly, they can be used to map a
ParGridFunction to a physical quantity of interest. For example, if we have a ParGridFunction p representing the mass
density of a fluid, and a ParLinearForm v such that v; = f o ¥i» 1.e. @ ParLinearForm representing the constant function
1, then v - p would approximate the integral of the density over the computational domain which would equal the total
mass of the fluid in this illustration. Dual vectors will be of the same length as their primal counterparts but their entries
have very different meanings. The relationship between b and B is complementary to that between x and X. Whereas the
restriction operator removes dependent entries from x to produce the shorter vector X, the transpose of the prolongation
operator is used to coalesce entries from b to form those of B. For example P! will add together entries from b to sum the
contributions from different elements to the basis function integral over its entire support which will be stored in B.
Dual vectors can be created directly by integrating a function times the appropriate basis functions as occurs inside a
(Par)LinearForm or indirectly by applying a (Par)BilinearForm or a system matrix to a primal vector. The resulting dual
vector should be identical in either case. Which scheme is used to create a particular dual vector is usually determined
by how the source terms in the PDE arise. If the sources are determined by known functions it is generally most efficient
to provide these functions to a (Par)LinearForm object and compute the dual vector directly. If, on the other hand, the
source term is the result of a field represented by a (Par)GridFunction it could be more efficient to simply apply a
(Par)BilinearForm to the appropriate primal vector. ) R
As implied in Fig. 4, the linear algebra operator A can be computed from the (Par)BilinearForm A as A = P'AP;
however, many finite element linear systems require boundary conditions to ensure that they are non-singular. To
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facilitate the application of boundary conditions the (Par)BilinearForm class has a FormLinearSystem method which
prepares the three linear algebra objects, as well as applying boundary conditions. In the simplest case this method
performs the following operations:

A = P'AP,
X = Rx,
B = P'h.

Further modifications are also performed in order to impose essential boundary conditions.

The FormLinearSystem method also supports two more advanced and closely related techniques for reducing the size
of a finite element linear system: hybridization and static condensation, see e.g. [5,32]. Note that hybridization in MFEM
is applied to a single bilinear form, see [47], instead of the more classical hybridization approach applied to mixed finite
element discretizations. These more advanced techniques, which compute only portions of the solution vector, necessitate
a further step of reconstructing the entire solution vector. The (Par)BilinearForm class provides a RecoverFEMSolution
method for exactly this purpose. Given the partial solution vector X and the (Par)LinearForm b this method computes
the full degree of freedom vector x needed to properly represent the solution field throughout the mesh. Additional details
can be found in [47].

5.3. Operator decomposition

Finite element operators are typically defined through weak formulations of partial differential equations that involve
integration over a computational mesh. The required integrals are computed by splitting them as a sum over the mesh
elements, mapping each element to a simple reference element (e.g. the unit square) and applying a quadrature rule in
reference space, see Section 2.

This sequence of operations highlights an inherent hierarchical structure present in all finite element operators where
the evaluation starts on global (trial) degrees of freedom on the whole mesh, restricts to degrees of freedom on subdomains
(groups of elements), then moves to independent degrees of freedom on each element, transitions to independent quadrature
points in reference space, performs the integration, and then goes back in reverse order to global (test) degrees of freedom
on the whole mesh.

This is illustrated in Fig. 5 for the simple case of a symmetric linear operator on second order (Q,) scalar continuous
(H") elements, where we use the notions T-vector (true vector), L-vector (local vector), E-vector (element vector) and
Q-vector (quadrature vector) to represent the sets corresponding to the (true) degrees of freedom on the global mesh,
the split local degrees of freedom on the subdomains, the split degrees of freedom on the mesh elements, and the values
at quadrature points, respectively. Note that class (Par)GridFunction represents an L-vector, and T-vector is typically
represented by either HypreParVector or Vector, cf. Fig. 4. We remark that although the decomposition presented in
Fig. 5 is appropriate for square, symmetric linear operators, the generalization of this finite element decomposition to
rectangular and nonlinear operators is straightforward.

One of the challenges with high-order methods is that a global sparse matrix is no longer an efficient representation
of a high-order linear operator, both with respect to the FLOPs needed for its evaluation [48], as well as the memory
transfer needed for a matrix-vector product (matvec) [49,50]. Thus, high-order methods require a new “format” that still
represents a linear (or more generally, nonlinear) operator, but not through a sparse matrix.

We refer to the operators that connect the different types of vectors as:

Subdomain restriction P.

Element restriction G.

Basis (DOFs to quadrature points) evaluator B.
Operator at quadrature points D.

More generally, when the test and trial space differ, each space has its own versions of P, G and B.

Note that in the case of adaptive mesh refinement (AMR), the restriction P will involve not just extracting sub-vectors,
but evaluating values at constrained degrees of freedom through the AMR interpolation, see Section 7.2. There can also
be several levels of subdomains (Py, P,, etc.), and it may be convenient to split D as the product of several operators (D1,
D,, etc.).

After the application of each of the first three transition operators, P, G and B, the operator evaluation is decoupled
on their ranges, so P, G and B allow us to “zoom-in” to subdomain, element, and quadrature point level, ignoring the
coupling at higher levels. Thus, a natural mapping of A on a parallel computer is to split the T-vector over MPI ranks
in a non-overlapping decomposition, as is typically used for sparse matrices, and then split the rest of the vector types
over computational devices (CPUs, GPUs, etc.) as indicated by the shaded regions in Fig. 5. This is discussed further in
Section 6.1.

One of the advantages of the decomposition perspective in these settings is that the operators P, G, B and D clearly
separate the MPI parallelism in the operator (P) from the unstructured mesh topology (G), the choice of the finite element
space/basis (B) and the geometry and point-wise physics D. These components also naturally fall in different classes of
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Fig. 5. Fundamental finite element operator decomposition. This algebraically factored form is a much better description than a global sparse matrix
for high-order methods and is easy to incorporate in a wide variety of applications. See also the IibCEED library in [37].

numerical algorithms - parallel (multi-device) linear algebra for P, sparse (on-device) linear algebra for G, dense/structured
linear algebra (tensor contractions) for B and parallel point-wise evaluations for D.

Since the global operator A is just a series of variational restrictions (i.e. transformations Y — XTYX) with B, G and P,
starting from its point-wise kernel D, a matrix-vector product with A can be performed by evaluating and storing some of
the innermost variational restriction matrices, and applying the rest of the operators “on-the-fly”. For example, one can
compute and store a global matrix on the T-vector level. Alternatively, one can compute and store only the subdomain
(L-vector) or element (E-vector) matrices and perform the action of A using matvecs with P or P and G. While these
options are natural for low-order discretizations, they are not a good fit for high-order methods due to the amount of
FLOPs needed for their evaluation, as well as the memory transfer needed for a matvec.

Much higher performance can be achieved by the use of partial assembly algorithms, as described in the following
section. In this case, we compute and store only D (or portions of it) and evaluate the actions of P, G and B on-the-fly.
Critically for performance, we take advantage of the tensor-product structure of the degrees of freedom and quadrature
points on quadrilateral and hexahedral elements to perform the action of B without storing it as a matrix. Implemented
properly, the partial assembly algorithm requires the optimal amount of memory transfers (with respect to the polynomial
order) and near-optimal FLOPs for operator evaluation. It consists of an operator setup phase, that evaluates and stores
D and an operator apply (evaluation) phase that computes the action of A on an input vector. When desired, the setup
phase may be done as a side-effect of evaluating a different operator, such as a nonlinear residual. The relative costs of
the setup and apply phases are different depending on the physics being expressed and the representation of D.

5.4. High-order partial assembly

In the traditional finite element setting, the operator is assembled in the form of a matrix. The action of the operator is
computed by multiplying with this matrix. At high orders this requires both a large amount of memory to store the matrix,
as well as many floating point operations to compute and apply it. By exploiting the structure shown in Section 5.3 as well
as the basis functions structure, there are options for creating operators that require much less storage and scale better at
high orders. This section introduces partial assembly and sum factorization [6,48], which reduce both the assembly storage
and number of floating point operations required to apply the operator, and discusses general algorithm opportunities
and challenges in the MFEM code.

Removing the finite element space restriction operator from the assembly for domain-based operators' yields the
element-local matrices at the E-vector level. This storage can lead to faster data access, since the block is stored
contiguously in memory, and applications of the block can be designed to maximally use the cache.

Partial assembly operates at the Q-vector level, after additionally removing the basis functions and gradients, B, from
the assembled operator. This leaves only the D operator to store for every element, see Section 5.3. This by itself reduces
the storage but not the number of floating point operations required for evaluation. As will be discussed later, this is key
to offloading the operator action to a co-processor that may have less memory.

As an illustration of partial assembly, consider the decomposition of the mass matrix evaluated on a single element E

(Mg);; = / P @i dx, (14)
E

1 Domain-based operators correspond to bilinear forms which use integrals over the problem domain, as opposed to its boundary, for example.
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where p is a given density coefficient and {¢;} are the finite element basis functions on the element E. Changing the
variables in the integral from E to the reference element E and applying a quadrature rule with points {X;} and weights
{at} yields

(Me)j =Y o (p o ®) (Ri) (Re)pi(Re) det((%). (15)
k

In the last expression, @ is the mapping from the reference element E to the physical element E, ] is its Jacobian matrix,
and {¢;} are the finite element basis functions on the reference element. Defining the matrix B of basis functions evaluated
at quadrature points as By; = @;(X¢), the above equation can be rewritten as

(Mg); = ZBki(DE)kkBkﬁ where  (Dg)y, = axdet(J(X)) (p o @) (), (Dp)y =0, k#1L (16)
P

Using this definition, the matrix operator can be written simply as Mg = B'DgB. Matrix-vector evaluations are computed
as the series of products by B, Dg, and B' without explicitly forming Mg.

For general B, its application requires the same order of floating point operations as applying the fully-assembled Mg
matrix: O(p*?) (assuming that the number of quadrature points is O(p?)). Taking advantage of the tensor-product structure
of the basis functions and quadrature points on quad and hex elements, By; can be written as

Bi =M (%) ... ol (R) . k=(ki,....ka), i=(i1,..., ia), (17)

with d the number of dimensions. In this case the matrix B itself is decomposed as a tensor product of smaller
one-dimensional matrices Bj? = ! (X]?) so that
d d
Bi =By ... B (18)

Applying the series of B'¢ matrices reduces the overall number of floating point operations when applying Mg to
O(p?*1) (assuming that the number of 1D quadrature points is O(p)). This evaluation strategy is often referred to as
sum factorization.

To make this point concrete, consider the application of a quad basis to a vector v for interpolation at a tensor product
of quadrature points. Without taking advantage of the structure of the basis, the product takes the form

(Bl = Y Buvi= Y _ dil%)vi, (19)

which requires O(p*?) (d = 2) storage and operations for the matrix-vector product. When using the alternative form
(18) the operation can be rewritten as

(Bl =3 Buvi =Y Bl B, Vi, = [B”v (B“f)f]klk2 , (20)

i i1,i

where V is the vector v viewed as a square matrix: Vj,;, = v;. This highlights an interesting aspect of sum factorization:
with each smaller matrix product with B¢, an additional axis is converted from basis (i;) to quadrature (k;) indices. The
same reasoning can also be applied to three spatial dimensions. Using the sum factorization approach, the storage was
reduced to O(p?) and the number of operations to O(p?*1).

Choosing to store the partially assembled operator instead of the full matrix affects the solvers that can be used, since
the full matrix is not available to be queried. This means for instance that traditional algebraic multigrid solvers are
difficult to apply. These issues are discussed further in Section 6.2.

The storage and asymptotic number of floating point operations required for assembly and evaluation using the
different methods are recorded in Table 1. Sum factorization can be utilized to reduce the cost of assembling the local
element matrices and thus the cost of full assembly (T-vector level) - this is shown in the second row of the table.
Furthermore, partial assembly has improved the asymptotic scaling for high orders in both storage and number of floating
point operations for assembly and evaluation. Therefore, partial assembly is well-suited for high orders.

Table 1

Comparison of storage and Assembly/Evaluation FLOPs required for full and partial assembly
algorithms on tensor-product element meshes (quadrilaterals and hexahedra). Here, p represents
the polynomial order of the basis functions and d represents the number of spatial dimensions.
The number of DOFs on each element is ©(p?) so the “sum factorization full assembly” and
“partial assembly” algorithms are nearly optimal.

Method Storage Assembly Evaluation
Traditional full assembly + matvec o(p*) o(p*?) o(p*®)
Sum factorized full assembly + matvec o(p*) o(p*+) o(p*)
Partial assembly + matrix-free action o(p?) o(pt) o(p*h)

There are many opportunities and challenges for parallelization with partial assembly using sum factorization. At the
E-vector level the products can be applied independently for every element in parallel, which makes partial assembly
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Fig. 6. Parallel classes inherit from, and partially override, serial classes.

with sum factorization a promising portion of the finite element algorithm to offload to co-processors, such as GPUs. In
MEFEM, partial assembly and sum factorization are implemented in the bilinear and nonlinear form integrators themselves.
Specifically, in the base class BilinearFormIntegrator, the assembly and evaluation are performed by the virtual methods
AssemblePA and AddMultPA, respectively. MFEM supports partial assembly for the entire de Rham complex, including
H', H(curl), H(div), and L? spaces. MFEM currently supports partial assembly for tensor-product elements (quadrilaterals
and hexahedra), for which sum factorization is most efficient. Partial assembly on simplices and mixed meshes are partially
supported through MFEM’s integration with the libCEED library. In the case of simplices, sum factorization cannot be used
for the evaluation of the action of the B operator, however, other efficient algorithms exist, for example using the Bernstein
basis [51].

6. High-performance computing
6.1. Parallel meshes, spaces, and operators

The MFEM design handles large scale parallelism by utilizing the Message Passing Interface (MPI) library in an
additional layer, that reuses as much of the serial code as possible. In terms of object-oriented design, this is done by
sub-classing the serial classes to augment them with parallel logic, see Fig. 6, occasionally overriding small parts of the
code using virtual functions.

If K is the number of MPI tasks, MFEM decomposes the problem domain (i.e. the mesh) into K parts, with the goal of
processing the parts as locally as possible, see Fig. 7. The parallel mesh object, ParMesh, is just a regular serial Mesh on each
MPI task plus additional information that describes the geometric entities (faces, edges, vertices) that are shared with other
processors. See Section 3.4 for more details. The parallel finite element space, ParFiniteElementSpace is just a regular
serial FiniteElementSpace on each task plus a description of the shared degrees of freedom, grouped in communication
groups. As in the serial case, one of the main responsibilities of the parallel finite element space is to provide, via
GetProlongationMatrix (), the prolongation matrix P, see Section 5.3, which is used for parallel assembly (see below) or
adaptive mesh refinement, see Section 7. Parallel grid functions, ParGridFunction, are just regular GridFunction objects
on L-vector level which can be mapped back and forth to T-vectors, e.g. with the ParallelAverage and Distribute
methods.

Fig. 7. Left: Solving a Poisson problem (parallel example 1, examples/ex1p.cpp) in parallel on 100 processors with a relatively coarse version
of data/square-disc.mesh. Right: Unstructured parallel decomposition of a fourth order NURBS mesh of the unit ball on 16 processors.

The finite element stiffness matrix at the L-vector level, A, = G'BTDBG, has K diagonal blocks and can be assembled
without any parallel communication. The prolongation matrix P is parallel and its construction requires communication,
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however part of that communication can be overlapped with the computation of A;. As a general rule, we try to keep
MPI messages to a minimum and only communicate with immediate neighbors in the parallel mesh, ideally overlapping
communication with computation using asynchronous MPI calls.

Based on the variational restriction perspective presented in Section 5.3, the final parallel assembly is computed with
a parallel P'A;P triple matrix product, which is performed either with the hypre library [28] (making use of the RAP
triple-product kernel which hypre provides internally for the coarse-grid operator construction in its algebraic multigrid
solvers), or via PETSc routines, depending on the underlying operator type set via the SetOperatorType method of the
ParBilinearForm class.

One of the advantages of handling parallelism by sub-classing the serial finite element classes is that serial MFEM-based
application codes are easily converted to highly-scalable parallel versions by simply adding the Par prefix to the types of
finite element variables. To emphasize this point, the MFEM distribution includes serial and parallel versions of most of
its example codes, so the changes needed to transition between the two are easy to compare.

6.2. Scalable linear solvers

Parallel matrices in MFEM are computed and stored directly in the ParCSR format of the hypre library, which gives
the user direct access to high-performance parallel linear algebra algorithms. For example, MFEM uses hypre’s matvec
routines, as well as the RAP function, see Section 6.1, which has been optimized in hypre for the construction of coarse-grid
operators in a multigrid hierarchy.

This tight integration with hypre enables MFEM applications to easily access the powerful algebraic multigrid (AMG)
preconditioner in the library, which has demonstrated scalability to millions of parallel tasks. All parallel MFEM examples
are using these scalable preconditioners, which only take a line of code in MFEM. For example the parallel linear system
in examples/ex1p.cpp is defined by

OperatorPtr A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);

and then hypre’s BoomerAMG preconditioner can be used with the preconditioned conjugate gradient (CG) method to
solve it simply with

Solver *prec = NULL;

if (!pa) { prec = new HypreBoomerAMG; }
CGSolver cg(MPI_COMM_WORLD) ;

cg.SetRelTol (1e-12) ;

cg.SetMaxIter (2000) ;

cg.SetPrintLevel (1) ;

if (prec) { cg.SetPreconditioner (*¥prec); }
cg.SetOperator (*A) ;

cg.Mult (B, X);

In addition to general black-box solvers, such as BoomerAMG, the MFEM interface enables access to discretization-enhanced
AMG methods such as the auxiliary-space Maxwell solver (AMS) [52] which is specifically designed for second-order
definite Maxwell problems discretized with Nedelec H(curl)-conforming elements, see Section 4.3. The AMS algorithm
needs the discrete gradient operator between the nodal H! and the Nedelec spaces, which in MFEM is represented as a
DiscretelLinearOperator corresponding to an embedding between spaces. This operator is constructed in general parallel
settings (including on surfaces and mesh skeletons) with the following code from linalg/hypre.cpp:

ParDiscretelLinearOperator *grad;

grad = new ParDiscretelinearOperator(vert_fespace, edge_fespace);
if (trace_space)
{
grad->AddTraceFaceInterpolator (new GradientInterpolator);
}
else
{
grad->AddDomainInterpolator (new GradientInterpolator);
}

grad->Assemble () ;
grad->Finalize () ;
G = grad->ParallelAssemble();

From the user perspective, this is handled automatically given a FiniteElementSpace object, and the use of AMS is also
a one-liner in MFEM. This is illustrated in the following excerpt from examples/ex3p.cpp, which also shows how static
condensation is seamlessly handled by the preconditioner:
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ParFiniteElementSpace *prec_fespace =
(a->StaticCondensationIsEnabled () ? a->SCParFESpace() : fespace);

HypreSolver *ams = new HypreAMS(A, prec_fespace);

HyprePCG *pcg = new HyprePCG(A);

pcg->SetTol (le-12);

pcg->SetMaxIter (500) ;

pcg->SetPrintLevel (2);

pcg->SetPreconditioner (*ams) ;

pcg->Mult (B, X);

Different preconditioning options are also easy to combine as illustrated in Example 4p which solves an H(div) problem
discretized with Raviart-Thomas finite elements. Depending on the dimension, and the use of hybridization or static
condensation, see Section 5.2, several different preconditioning options could be appropriate. All of them can be handled
with the following simple code segment:

if (hybridization) { prec = new HypreBoomerAMG(A); }

else

{
ParFiniteElementSpace *prec_fespace =

(a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);

if (dim == 2) { prec = new HypreAMS(A, prec_fespace); }
else { prec = new HypreADS(A, prec_fespace); }

}

pcg->SetPreconditioner (*prec);

MFEM provides easy access to a variety of other iterative and direct solvers. For example, discretization-enhanced
Balancing Domain Decomposition by Constraints (BDDC) solvers from PETSc [53] are exposed via the PetscBDDCSolver
class. These methods provide customizable, multilevel preconditioning for various finite element discretizations, as
well as for isogeometric analysis, see [54] and [55] for a recent review. Examples examples/petsc/ex3p.cpp and
examples/petsc/ex4p.cpp construct the BDDC solver for the second-order definite Maxwell equations [56,57] as well
as for the H(div) [58] problem, as shown in the below code snippet:

PetscParMatrix A;
a->SetOperatorType (Operator::PETSC_MATIS) ;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);

ParFiniteElementSpace *prec_fespace =
(a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);

PetscPCGSolver *pcg = new PetscPCGSolver (A);

PetscPreconditioner *prec = NULL;

PetscBDDCSolverParams opts;
opts.SetSpace (prec_fespace);

prec = new PetscBDDCSolver (A,opts);
pcg->SetPreconditioner (*prec);

In addition, the PetscBDDCSolver class provides support for preconditioning symmetric indefinite linear systems [59],
as shown in examples/petsc/ex5p.cpp for the mixed H(div)-L? formulation of the Poisson equation. The same example
showcases MFEM’s interface to the generic field-split solver PetscFieldSplitSolver in PETSc, which can be used to
quickly and easily prototype block-preconditioning techniques for complicated multi-physics problems.

With high-order methods, the explicit assembly of finite element matrices becomes a bottleneck, as discussed in
Section 5.4. While matrix-free (partially assembled) high-order operators offer many benefits, one of their drawbacks
is that the entries of the matrix are not readily available, and thus purely algebraic preconditioners cannot be used. An
ongoing area of research pursued by the MFEM team is the development of matrix-free preconditioners for high-order
operators. These include matrix-free h- and p-multigrid methods, as well as low-order refined preconditioning, which is
based on the idea of preconditioning a spectrally equivalent low-order refined operator obtained by meshing the nodes
of each of the high-order elements [48,60-63].

6.3. GPU acceleration

Version 4.0 of MFEM introduced initial support for hardware accelerators, such as GPUs, as well as programming
models and libraries, such as CUDA, OCCA [64], libCEED [65], RAJA [66] and OpenMP in the library. This support is based
on new backends and kernels working seamlessly with a new lightweight memory spaces manager. Several of the MFEM
example codes and the Laghos miniapp [67] (see Section 8.3) can now take advantage of this GPU acceleration.

Given the rapidly changing computing landscape, the MFEM performance portability approach has been to not commit
to a single framework, but instead to support a variety of different backends, which may differ in the set of features
they actually implement, the technology they use (OCCA, external library such as libCEED, OpenMP, CUDA, RAJA, HIP),
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Fig. 8. Diagram of MFEM’s modular design for accelerator support, combining flexible memory management with runtime-selectable backends for
executing key finite element and linear algebra kernels.

the targeted architecture (Intel, IBM, AMD, Nvidia), the algorithms to achieve performance, and the implementations of
these algorithms. This flexibility allows generic backends like the core backend of MFEM, using the macro MFEM_FORALL
described below, to target all architectures with a performance emphasis on GPU architectures. The OCCA backend serves
a similar purpose of generic backend using the OCCA just-in-time compilation technology, but varies in the algorithms
used, and more significantly in the implementation ideas. The libCEED backend uses the libCEED library that itself contains
numerous backends. This modularity over backends increases both the portability and performance of MFEM algorithms,
as different backends provide the best performance in different scenarios, see [68,69].

One main feature of the MFEM performance portability approach is the ability to select the backends at runtime:
e.g. different MPI ranks can choose different backends (like CPU or GPU) allowing applications to take full advantage of
heterogeneous architectures. Another important aspect of MFEM'’s approach is the ability to easily mix CPU-only code
with code that utilizes the new backends, thus allowing for selective gradual transition of existing capabilities.

Most of the kernels are based on a single source, while still offering good efficiency. For performance critical kernels,
where single source does not provide the best performance, the implementation introduces dispatch points based on the
selected backend and, in some cases, on kernel parameters such as the finite element order. Many of the linear algebra
and finite element operations can now benefit fully from the new GPU acceleration.

Fig. 8 illustrates the main components of MFEM’s modular design for accelerator support. The Library side of MFEM
(on the left) represents the software components where new kernels have been added. The following components have
been extended with new accelerated kernels:

e The 1linalg directory: most operations in class Vector and some operations (e.g. matvec) in class SparseMatrix.
Other classes, such as the Krylov solvers and time-stepping methods, are automatically executed on the device
because they are written in terms of Vector operations.

o The mesh directory: the computation of the so-called geometric factors.

e The fem directory: the mass, diffusion, convection (including DG), gradient, divergence, and some H(curl) Bilinear-
FormIntegrators; the element restriction and quadrature interpolator operators (G and B on Fig. 5) associated with
class FiniteElementSpace; the matrix-free action of the BilinearForm, MixedBilinearForm and NonlinearForm
classes.

Note, however, that many of the capabilities in the library are still not ported to GPU including the mesh refinemen-
t/derefinement, a number of the BilinearFormIntegrator classes, sparse matrix assembly, error estimation, integration
with external libraries, etc. Some of these missing parts are currently under development and will become available in
the near future.

The integration of the kernels has been made at the for-loop level. Existing code has been transformed to use a new
for-loop abstraction defined as a set of new MFEM_FORALL macros, in order to take advantage of various backends supported
via the new macros. This approach allows for gradual code transformations that are not too disruptive for both, MFEM
developers and users. Existing applications based on MFEM should be able to continue to work as before and have an easy
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way to transition to accelerated kernels. Another requirement is to allow interoperability with other software components
or external libraries that MFEM could be used in conjunction with, for instance hypre, PETSc, and SUNDIALS, among others.

The main challenge in this transition to kernel-centric implementation is the need to transform existing algorithms
to take full advantage of the increased levels of parallelism in the accelerators while maintaining good performances on
standard CPU architectures. Another important aspect is the need to manage memory allocation and transfers between
the CPU (host) and the accelerator (device). In MFEM, this is achieved using a new Memory class that manages a pair of
host and device pointers and provides a simple interface for copying or moving the data when needed. An important
feature of this class is the ability to work with externally allocated host and/or device pointers which is essential for
interoperability with other libraries.

Lambda-capturing for-loop bodies

There are multiple ways to write kernels, but one of the easiest ways, from the developer’s point of view, is to
turn for-loop bodies into kernels by keeping the bodies unchanged and having a way to wrap and dispatch them toward
native backends. This can be easily done for the first outer for-loop using standard C++11 features. However, additional
care is required when one wants to address deeper levels of parallelism. The following listing illustrates a possible
implementation in MFEM of the diffusion setup (partial assembly) kernel in 2D.

void PADiffusionSetup2D(const int Q, const int N, const Array<double> &w,

const Vector &j, const double alpha, Vector &y) {
auto W = w.Read();
auto J = Reshape(j.Read(), Q*Q, 2, 2, N);
auto Y = Reshape(y.Write(), Q*Q, 3, N);
MFEM_FORALL_2D(e, N, Q, Q,
MFEM_FOREACH_THREAD (gx, x, Q)
MFEM_FOREACH_THREAD (qy, y, Q) {
const int q = gqx + qy * Q;
const double Ji1 = J(q,0,0,e), J21 = J(q,1,0,e);
const double J12 = J(q,0,1,e), J22 = J(q,1,1,e);
const double c_detJ = alpha * W[ql / ((J11%J22)-(J21%*J12));
Y(q,0,e) = c_detJ * (J12%J12 + J22%J22);
Y(q,1,e) = -c_detJ * (J12*J11 + J22%J21);
Y(q,2,e) = c_detJ * (J11*J11 + J21%J21);
¥
}

The kernel is structured as follows:

e Lines 3 to 5 are the portion of the kernel where the pointers are requested from the memory manager (presented
in the next paragraph) and turned into tensors with given shapes.

e Line 6 holds the MFEM_FORALL_2D wrapper of the first outer for-loop, with the iterator, the range, and the for-loop
body.

e Lines 7 and 8 allow inner for-loops to be mapped to blocks of threads with arbitrary sizes (from 1 to thousands): it
uses another level of parallelism within the lambda body for each mesh element.

e Lines 9 to 15 are the core of the computation and show how to use the tensors declared before entering the kernel.
This portion may use shared memory as a fast scratch memory shared within the thread block when supported by
the respective backend. This kernel is the one used both for the OpenMP and the CUDA backends.

Memory management

Before entering each kernel, the pointers that will be used in it have to be requested from the new Memory class which
acts as the frontend of the internal lightweight MFEM memory manager. Access to the pointers stored by the Memory class
is requested using three modes: Read-only, Write-only, and ReadWrite. These access types allow the memory manager
to seamlessly copy or move data to the device when needed. Portions of the code that do not use acceleration (i.e. run on
CPU) need to request access to the Memory using the host versions of the three access methods: HostRead, HostWrite, and
HostReadWrite. The use of these access types allows the memory manager to minimize memory transfers between the
host and the device. The pointers returned by the three access methods can be reshaped as tensors with given dimensions
using the function Reshape which then allows for easy multi-dimensional indexing inside the computational kernels.

In addition to holding the host and device pointers, the Memory class keeps extra metadata in order to keep track of
the usage of the different memory spaces. For example, if a vector currently residing in device memory is temporarily
needed on the host where it will not be modified (e.g. to save the data to a file), the host code can use HostRead to tell
the memory manager to copy the data to the host while also telling it that the copied data will not be modified; using
this information, the memory manager knows that a subsequent call to, say, Read will not require a memory copy from
host to device.
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Fig. 9. Performance results with MFEM-4.0: Poisson problem (Example 1), 200 conjugate gradient iterations using partial assembly, 2D, 1.3 M dofs,
GV100, sm_70, CUDA 10.1, Intel Xeon Gold 6130@2.1 GHz.

Transitioning applications to GPUs

Porting existing codes to GPUs can be relatively simple in some cases. The first step is to configure an mfem: :Device
object, e.g. using a string from a command-line option. The next step is typically to enable the partial assembly mode
in the (Par)BilinearForm object(s). Since in this mode the fully assembled sparse matrix is not available, one has to
switch to suitable matrix-free solvers. In cases when an application uses MFEM at a lower level, e.g. to implement some
algorithm on an element level, porting to GPU will be more involved. For such cases, the user will typically need to learn
more about the MFEM_FORALL macros and the memory management.

Some current limitations in the GPU support are: not all pre-defined integrators in MFEM have been ported to GPU;
full assembly on GPU (which may be of interest for low-orders) is also not available. As pointed out earlier, these and
many other missing components are being actively developed and will become immediately available in the MFEM source
repository when completed.

Results

Fig. 9 and Table 2 present initial performance results with MFEM v4.0 measured on a Linux desktop with a Quadro
GV100 GPU (Volta, 5120 cuda cores, 7.4 TFLOPS FP64 peak; 32 GB HBM2, 870 GB/s peak), CUDA 10.1, and Intel Xeon Gold
6130 CPU (Skylake, 16 cores/32 threads, 970 GFLOPS FP64 peak; 128 GB/s memory bandwidth peak) @ 2.10 GHz.

Single-core, multi-core CPU, and single-GPU performance for different discretization orders is shown, keeping the
total number of degrees of freedom (DOFs) constant at 1.3 million in 2D. Results from backends supported in MFEM
4.0, as well as recent results based on the libCEED library (integrated with MFEM) are included. The libCEED library
itself includes several backends, targeting, for example, CPUs using AVX instructions, Intel CPUs taking advantage of the
LIBXSMM library [70], and GPUs using CUDA. Fig. 9 shows that GPU acceleration offers a significant gain in performance
relative to multi-core CPU.

We emphasize that these results are preliminary and additional performance improvements in several of the backends
are under active development. Therefore these results illustrate only the current state of the MFEM backends, and should
not be viewed as a fair and exhaustive comparison of the specific CPU and GPU hardware.

7. Finite element adaptivity

MFEM includes extensive support for serial and parallel finite element adaptivity on general high-order unstructured
meshes, including: local conforming mesh refinement on triangular and tetrahedral meshes (conforming h-adaptivity),
non-conforming adaptive mesh refinement on quadrilateral and hexahedral meshes (non-conforming h-adaptivity), and
support for mesh optimization by node movement (r-adaptivity). The unified support for local refinement on simplex and
tensor-product elements is one of the distinguishing features of the MFEM library. These capabilities are described in the
following subsections. Additional parallel conforming mesh adaptivity and modification algorithms are available via the
integration with RPI's parallel unstructured mesh infrastructure (PUMI) [24].

7.1. Conforming adaptive mesh refinement

The conforming h-adaptivity algorithm in MFEM is based on the bisection procedure for tetrahedral meshes proposed
in [71]. This approach supports both uniform refinement of all elements in the mesh, as well as local refinement of only
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Table 2

Performance results with MFEM-4.0: Poisson problem (Example 1), 200 conjugate gradient
iterations using partial assembly, 2D, 1.3M dofs, GV100, sm_70, CUDA 10.1, Intel Xeon Gold
6130@2.1 GHz. The best performing backends in each category (GPU, multicore, and CPU) are
shown in bold.

p=1 p=2 p=4 p=38
OCCA-CUDA 0.52 0.31 0.20 0.19
GPU RAJA-CUDA 0.38 0.30 0.28 0.45
CUDA 0.36 0.26 0.17 0.15
CEED-CUDA 0.19 0.15 0.12 0.12
OCCA-OMP 334 241 2.13 1.95
Multicore RAJA-OMP 3.32 245 2.10 1.87
OMP 3.30 2.46 2.10 1.86
MPI 2.72 1.66 145 1.44
OCCA-CPU 21.05 15.77 14.23 14.53
RAJA-CPU 45.42 16.53 14.22 14.88
CPU CPU 25.18 16.11 13.73 14.45
CEED-AVX 43.04 18.16 11.20 8.53
CEED-XSMM 53.80 20.13 10.73 7.72

elements of interest with additional (forced) refinement of nearby elements to ensure a conforming mesh. Note that in
parallel these forced refinements may propagate to neighboring processors, which MFEM handles automatically for the
user.

When a tetrahedral mesh is marked for refinement with Mesh: :MarkForRefinement () the vertices of each tetrahedron
are permuted so that the longest edge of the tetrahedron becomes the edge between vertices 0 and 1. MFEM ensures that
the longest edge in each tetrahedron is chosen consistently in neighbor tetrahedra based on a global sort of all edges (by
length). The edge between vertices 0 and 1 becomes the marked edge, i.e. the edge that will be bisected during refinement.
Initially, this is the longest edge in the element (with equal length edges ordered according to the global sort). However,
later, the bisection algorithm may choose to mark an edge that is not the longest. When a tetrahedron is bisected, its type
(M, A, etc., see [71]) determines which edges in the two children become marked, as well as what types are assigned to
them. The initial type of the tetrahedron is also determined based on the globally sorted edges.

The bisection algorithm consists of several passes. For example, during green refinement (cf. [71]), every tetrahedron
is checked if it “needs refinement” by calling the method Tetrahedron: :NeedRefinement () and if it does, the element
is bisected once. The method NeedRefinement () returns true if any of its edges have been refined. When a tetrahedron
is bisected, it is replaced (in the list of elements) by one of its children and the other child is appended at the end of
the element list. That way, the children will be checked if they need refinement in the next loop over the elements. If no
elements “need refinement”, the green refinement step is done.

In parallel, the tetrahedra are marked consistently across processors, as inherited from the serial mesh before the
parallel partitioning. The consistently marked tetrahedra guarantee that a face between any two tetrahedra will be refined
the same way from both sides. This implies in particular that uniform refinement can be performed in parallel without
communication. In the case of local refinement we need to know which of the five possible cases of face refinement was
actually performed on the other side of a shared face.

7.2. Non-conforming adaptive mesh refinement

Many high-order applications can be enriched by parallel adaptive mesh refinement (AMR) on unstructured quadri-
lateral and hexahedral meshes. Quadrilateral and hexahedral elements are attractive for their tensor product structure
(enabling efficiency, see Section 5.4) and for their refinement flexibility (enabling e.g., anisotropic refinement). However,
as opposed to the bisection-based methods for simplices considered in the previous section, hanging nodes that occur
after local refinement of quadrilaterals and hexahedra are not easily avoided by further refinement [72-74]. We are thus
interested in non-conforming (irregular) meshes, in which adjacent elements need not share a complete face or edge and
where some finite element degrees of freedom (DOFs) need to be constrained to obtain a conforming solution.

In this section we review MFEM'’s software abstractions and algorithms for handling parallel non-conforming meshes
on a general discretization level, independent of the physics simulation. These methods support the entire de Rham
sequence of finite element spaces (see Section 4.3), at arbitrarily high-order, and can support high-order curved meshes,
as well as finite element techniques such as hybridization and static condensation (see Section 5.2). They are also highly
scalable, easy to incorporate into existing codes, and can be applied to complex, anisotropic 3D meshes with arbitrary
levels of non-conforming refinement. While MFEM’s approaches can be exclusively on non-conforming h-refinement with
fixed polynomial degree.

These approaches are based on a variational restriction approach to AMR, described below. For more details, see [31].
Consider the weak variational formulation (4) where for simplicity we assume that the bilinear form a(-, -) is symmetric.
To discretize the problem, we cover the computational domain §2 with a mesh consisting of mutually disjoint elements
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Fig. 10. Illustration of conformity constraints for lowest order nodal elements in 2D. Left: Nodal elements (subspace of H'), constraint ¢ = (a+b)/2.

Right: Nedelec elements (subspace of H(curl), constraints e = f = d/2. In all cases, fine degrees of freedom on a coarse-fine interface are linearly
interpolated from the values at coarse degrees of freedom on that interface.

K;, their vertices V;, edges E, and faces F,. Except for the vertices, we consider these entities as open sets, so that
2 = (UiK) U(U;V;) U (UnER) U (URFy). In the case of non-conforming meshes, there exist faces F; that are strict subsets of
other faces, Fs C Fp, see Fig. 10. We call Fs slave faces and F,, master faces. The remaining standard faces F, are disjoint with
all other faces and will be referred to as conforming faces. Similarly, we define slave edges, master edges and conforming
edges.

Non-conforming meshes in MFEM are represented by the NCMesh and ParNCMesh classes. We use a tree-based data
structure to represent refinements which has been optimized to rely only on the following information: (1) elements
contain indices of eight vertices, or indices of eight child elements if refined; (2) edges are identified by pairs of vertices;
(3) faces are identified by four vertices. Edges and faces are tracked by associative maps (see below), which reduce both
code complexity and memory footprint. In the case of a uniform hexahedral mesh, our data structure requires about 290
bytes per element, counting the complete refinement hierarchy and including vertices, edges, and faces.

To construct a standard finite dimensional FEM approximation space V, C V on a given non-conforming mesh, we
must ensure that the necessary conformity requirements are met between the slave and master faces and edges so that
we get V), that is a (proper) subspace of V. For example, if V is the Sobolev space H!, the solution values in V, must
be kept continuous across the non-conforming interfaces. In contrast, if V is an H(curl) space, the tangential component
of the finite element vector fields in V}; needs to be continuous across element faces. More generally, the conformity
requirement can be expressed by requiring that values of Vj, functions on the slave faces (edges) are interpolated from
the finite element function values on their master faces (edges). Finite element degrees of freedom on the slave faces (and
edges) are thus effectively constrained and can be expressed as linear combinations of the remaining degrees of freedom.
The simplest constraints for finite element subspaces of H' and H(curl) in 2D are illustrated in Fig. 10.

The degrees of freedom can be split into two groups: unconstrained (or true) degrees of freedom and constrained (or
slave) degrees of freedom. If z is a vector of all slave DOFs, then z can be expressed as z = Wx, where x is a vector of all
true DOFs and W is a global interpolation matrix, handling indirect constraints and arbitrary differences in refinement
levels of adjacent elements. Introducing the conforming prolongation matrix

= (L),

we observe that the coupled AMR linear system can be written as
P'APx. = P'b, (21)

where A and b are the finite element stiffness matrix and load vector corresponding to discretization of (4) on the “cut”
space (see Section 3.2) Vi = U;(Vylk,)- After solving for the true degrees of freedom x. we recover the complete set of
degrees of freedom, including slaves, by calculating x = Px.. Note that in MFEM this is handled automatically for the user
via FormLinearSystem() and RecoverFEMSolution(), see Section 5.2. An illustration of this process is provided in Fig. 11.

In MFEM, given an NCMesh object, the conforming prolongation matrix can be defined for each FiniteElementSpace
class and accessed with the GetConformingProlongation() method. The algorithm for constructing this operator can be
interpreted as a sequence of interpolations P = PyPy_q - - - P;, where for a k-irregular mesh the DOFs in V} are indexed
as follows: 0 corresponds to true DOFs, 1 corresponds to the first generation of slaves that only depend on true DOFs,
2 corresponds to second generation of slaves that only depend on true DOFs and first generation of slaves, and so on. k
corresponds to the last generation of slaves. We have

I 0 - 0
P]Z(W>,Pz= 0 rj, -, =
10 Wi Wy 0 0 I
Ww Wi - Wig-1

are the local interpolation matrices defined only in terms of the edge-to-edge and face-to-face constraining relations.
Note that while MFEM supports meshes of arbitrary irregularity (k > 1), the user can specify a limit on k when refining
elements, if necessary (an example of a 1-irregular mesh is shown in Fig. 15).
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Fig. 11. Illustration of the variational restriction approach to forming the global AMR problem. Randomly refined non-conforming mesh (left and
center) where we assemble the matrix A and vector b independently on each element. The interpolated solution x = Px. (right) of the system (21)
is globally conforming (continuous for an H! problem).

Fig. 12. Left: 2D benchmark problem for a Poisson problem with a known exact solution. Center: Isotropic AMR mesh with 2197 DOFs. Right:
Anisotropic AMR mesh with 1317 DOFs. Even though the wave front in the solution is not perfectly aligned with the mesh, many elements could
still be refined in one direction only, which saved up to 48% DOFs in this problem for similar error.

The basis for determining face-to-face relations between hexahedra is the function FaceSplitType, sketched below.
Given a face (v1, vy, v3, vg), it tries to find mid-edge and mid-face vertices and determine if the face is split vertically,
horizontally (relative to its reference domain), or not split.

Split FaceSplitType(vl, v2, v3, v4)

{
v12 = FindVertex(vl , v2);
v23 = FindVertex(v2 , v3);
v34 = FindVertex(v3 , v4);
v41l = FindVertex(v4 , v1);
midfl = (v12 !'= NULL && v34 != NULL) ? FindVertex(v12, v34) : NULL;
midf2 = (v23 != NULL && v41 != NULL) ? FindVertex(v23, v41) : NULL;
if (midf1l == NULL && midf2 == NULL)
return NotSplit;
else
return (midf1 !'= NULL) ? Vertical : Horizontal;
}

The function FindVertex uses a hash table to map end-point vertices to the vertex in the middle of their edge. This
algorithm naturally supports anisotropic refinement, as illustrated in Fig. 12.

The algorithm to build the P matrix in parallel is more complex, but conceptually similar to the serial algorithm. We
still express slave DOF rows of P as linear combinations of other rows, however some of them may be located on other
MPI tasks and may need to be communicated first.

Unlike the conforming ParMesh class, which is partitioned with METIS, the ParNClMesh is partitioned between MPI tasks
by splitting a space-filling curve obtained by enumerating depth-first all leaf elements of all refinement trees [75]. The
simplest traversal with a fixed order of children at each tree level leads to the well-known Morton ordering, or the Z-curve.
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Fig. 13. Left: One octant of the parallel test mesh partitioned by the Hilbert curve (2048 domains shown). Right: Overall parallel weak and strong
scaling for selected iterations of the AMR loop. Note that these results test only the AMR infrastructure, no physics computations are being timed.

We use instead the more efficient Hilbert curve that can be obtained just by changing the order of visiting subtrees at
each level [76]. The use of space-filling curve partitioning ensures that balancing the mesh so that each MPI task has
the same number of elements (£1 if the total number of elements is not divisible by the number of tasks) is relatively
straightforward.

These algorithms have been heavily optimized for both weak and strong parallel scalability as illustrated in Fig. 13,
where we report results from a 3D Poisson problem on the unit cube with exact solution having two shock-like features.
We initialize the mesh with 323 hexahedra and repeat the following steps, measuring their wall-clock times (averaged
over all MPI ranks): (1) Construct the finite element space for the current mesh (create the P matrix); (2) Assemble
locally the stiffness matrix A and right hand side b; (3) Form the products P‘AP, P'b; (4) Eliminate Dirichlet boundary
conditions from the parallel system; (5) Project the exact solution u to u; by nodal interpolation; (6) Integrate the exact
error e; = ||uy — ullg k; on each element; (7) Refine elements with e; > 0.9 max{e;}; (8) Load balance so each process has
the same number of elements (£1). We run about 100 iterations of the AMR loop and select iterations that happen to
have approximately 0.5, 1, 2, 4, 8, 16, 32 and 64 million elements in the mesh at the beginning. We then plot the times
of the selected iterations as if they were 8 independent problems. We run from 64 to 393,216 (384 K) cores on LLNL’s
Vulcan BG/Q machine. The solid lines in Fig. 13 show strong scaling, i.e. we follow the same AMR iteration and its total
time as the number of cores doubles. The dashed lines skip to a double-sized problem when doubling the number of cores
showing weak scaling, and should ideally be horizontal.

MFEM'’s variational restriction-based AMR approach can be remarkably unintrusive when it comes to integration in a
real finite element application code. To illustrate this point we show two results from the Laghos miniapp (see Section 8.3)
which required minimal changes for static refinement support (see Fig. 14) and about 550 new lines of code for full
dynamic AMR, including derefinement (see Fig. 15).

7.3. Mesh optimization

A vital component of high-order methods is the use of high-order representation not just for the physics fields, but
also for the geometry, represented by a high-order computational mesh. High-order meshes can be relatively coarse and
still capture curved geometries with high-resolution, leading to equivalent simulation quality for a smaller number of
elements. High-order meshes can also be very beneficial in a wide range of applications, where e.g. radial symmetry
preservation, or alignment with physics flow or curved model boundary is important [77-79]. Such applications can utilize
static meshes, where a good-quality high-order mesh needs to be generated only as an input to the simulation, or dynamic
meshes, where the mesh evolves with the problem (e.g. following the motion of a material) and its quality needs to be
constantly controlled. In both cases, the quality of high-order meshes can be difficult to control, because their properties
vary in space on a sub-zonal level. Such control is critical in practice, as poor mesh quality leads to small time step
restrictions or simulation failures.

The MFEM project has developed a general framework for the optimization of high-order curved meshes based on
the node-movement techniques of the Target-Matrix Optimization Paradigm (TMOP) [80,81]. This enables applications to
have precise control over local mesh quality, while still optimizing the mesh globally. Note that while our new methods
are targeting high-order meshes, they are general, and can also be applied to low-order mesh applications that use linear
meshes.
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Fig. 14. MFEM-based static refinement in a triple point shock-interaction problem. Initial mesh at t = 0 (background) refined anisotropically in
order to obtain more regular element shapes at target time (foreground).

Fig. 15. MFEM-based dynamic refinement/derefinement in the 3D Sedov blast problem. Mesh and density shown at t = 0.0072 (left), t = 0.092
(center) and t = 0.48 (right). Q3Q2 elements (p = 3 kinematic, p = 2 thermodynamic quantities).

TMOP is a general approach for controlling mesh quality, where mesh nodes (vertices in the low-order case) are moved
so-as to optimize a multi-variable objective function that quantifies global mesh quality. Specifically, at a given point of
interest (inside each mesh element), TMOP uses three Jacobian matrices:

e The Jacobian matrix Ag.4 of the transformation from reference to physical coordinates, where d is the space
dimension.

e The target matrix, Wy,4, which is the Jacobian of the transformation from the reference to the target coordinates. The
target matrices are defined according to a user-specified method prior to the optimization; they define the desired
properties in the optimal mesh.

e The weighted Jacobian matrix, Tyxq, defined by T = AW ™!, represents the Jacobian of the transformation between
the target and the physical (current) coordinates.

The T matrix is used to define the local quality measure, u(T). The quality measure can evaluate shape, size, or alignment
of the region around the point of interest. The combination of targets and quality metrics is used to optimize the node
positions, so that they are as close as possible to the shape/size/alignment of their targets. This is achieved by minimizing
a global objective function, F(x), that depends on the local quality measure throughout the mesh:

F) =) f TN =) ) w det(W(xg) (T (xq)). (22)
Et

Eeg Ee€ xqeQg

where E; is the target element corresponding to the physical element E, Qg is the set of quadrature points for element
E, wq are the corresponding quadrature weights, and both T(x,) and W(x,) are evaluated at the quadrature point x; of
element E. The objective function can be extended by using combinations of quality metrics, space-dependent weights
for each metric, and limiting the amount of allowed mesh displacements. As F(x) is nonlinear, MFEM utilizes Newton's
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(d)

Fig. 16. A perturbed fourth order 2D mesh (a) is being optimized by targeting shape-only optimization (b), shape and equal size (c), and finally
shape and space-dependent size (d).
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Fig. 17. Optimized meshes in parallel inertial confinement fusion simulation, see [82] and Section 8.3. Shown is the region around the capsule’s fill
tube. Both meshes are optimized with respect to shape, size, and amount of mesh displacement. On the left, material interfaces are kept fixed. On
the right, interfaces are relaxed later in the simulation.

method to solve the critical point equations, dF(x)/dx = 0, where x is the vector that contains the current mesh positions.
This approach involves the computation of the first and second derivatives of w(T) with respect to T. Furthermore,
boundary nodes are enforced to stay fixed or move only in the boundary’s tangential direction. Additional modifications
are performed to guarantee that the Newton updates do not lead to inverted meshes, see [81].

The current MFEM interface provides access to 12 two-dimensional mesh quality metrics, 7 three-dimensional metrics,
and 5 target construction methods, together with the first and second derivatives of each metric with respect to the matrix
argument. The quality metrics are defined by the inheritors of the class TMOP_QualityMetric, and target construction
methods are defined by the class TargetConstructor. MFEM supports the computation of matrix invariants and their first
and second derivatives (with respect to the matrix), which are then used by the NewtonSolver class to solve dF(x)/dx = 0.
The library interface allows users to choose between various options concerning target construction methods and mesh
quality metrics and adjust various parameters depending on their particular problem. The mesh optimization module
can be easily extended by additional mesh quality metrics and target construction methods. Illustrative examples are
presented in the form of a simple mesh optimization miniapp, mesh-optimizer, in the miniapps/meshing directory, which
includes both serial and parallel implementations. Some examples of simulations that can be performed by this miniapp
are shown in Fig. 16. MFEM’s mesh optimization capabilities are also routinely used in production runs for many of the
ALE simulation problems in the BLAST code, see Section 8.3, and the example in Fig. 17.

Work to extend MFEM's mesh optimization capabilities to simulation-driven adaptivity (a.k.a. r-adaptivity) [83], and
coupling h- and r-adaptivity of high-order meshes by combining the TMOP and AMR concepts is ongoing. See Fig. 18 for
some preliminary results in that direction.

8. Applications

MFEM has been used in numerous applications and research publications, a comprehensive list of which is available
on the project website at https://mfem.org/publications. In this section we illustrate a small sample of these applications.
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Fig. 18. Example of MFEM r-adaptivity to align the mesh with materials in a multi-material ALE simulation of high velocity gas impact, cf. [84].
Time evolution of the materials and mesh positions at times 2.5 (left), 5 (center), and 10 (right). See [83] for details.

8.1. Examples and miniapps

The MFEM codebase includes a wide array of example applications that utilize numerous MFEM features and
demonstrate the finite element discretization of many PDEs. The goal of these well documented example codes is to
provide a step-by-step introduction to MFEM in simple model settings. Most of the examples have both serial and parallel
versions (indicated by a p appended to the filename) which illustrate the straightforward transition to parallel code and
the use of the hypre solvers and preconditioners. There are also variants of many example codes in the petsc, sundials
and pumi subdirectories that display integration with those packages. Each example code has the flexibility to change the
order of the calculations, switch various finite element features on or off, and utilize different meshes through command
line options. Once the example codes are built, their options can be displayed by running the code with --help as a
command line option. The outputs of the examples can be visualized with GLVis, see Section 4.5 and https://glvis.org.
Basic tutorials for running the examples can be found online at https://mfem.org under the links “Serial Tutorial” and
“Parallel Tutorial”.

The example codes are simply named ex1-ex21, roughly in order of complexity, so it is recommended that users
start with earlier numbered examples in order to learn the basics of interfacing with MFEM before moving on to more
complicated examples. More details can be found in our online documentation at https://mfem.org/examples.

The first example ex1 begins with the solution of the Laplace problem with homogeneous Dirichlet boundaries utilizing
nodal H! elements. Examples ex6, ex8, and ex14 also solve the Poisson problem, but they also highlight AMR, DPG
and DG formulations, respectively. Examples ex2 and ex17 solve the equations of linear elasticity with Galerkin and DG
formulations, respectively, while ex10 provides an implementation of nonlinear elasticity utilizing a Newton solver; the
interface to PETSc’s nonlinear solvers is described in petsc/ex10p, which also showcases the support for a Jacobian-free
Newton Krylov approach. An elementary introduction to utilizing H(curl) vector elements to solve problems arising from
Maxwell’s equations can be found in ex3 and ex13. An example of utilizing surface meshes embedded in a 3D space can
be found in ex7 while more advanced dynamic AMR is explored in ex15. Time-dependent simulations are considered in
examples ex9, ex10, ex16, and ex17; users interested in the usage of the SUNDIALS and PETSc ODE solvers are referred to
examples sundials/ex9p and petsc/ex9p respectively. Finally, ex11, ex12, and ex13 tackle frequency domain problems
solving for eigenvalues of their respective systems. Results from some of the example runs are shown in Fig. 19.

8.2. Electromagnetics

The electromagnetic miniapps in MFEM are designed to provide a starting point for developing real-world electromag-
netic applications. As such, they cover a few common problem domains and attempt to support a variety of boundary
conditions and source terms. This way application scientists can easily adapt these miniapps to solve particular problems
arising in their research.

The Volta miniapp solves Poisson’s equation with boundary conditions and sources tailored to electrostatic problems.
This miniapp supports fixed voltage or fixed charge density boundary conditions which correspond to the usual Dirichlet
or Neumann boundary conditions, respectively. The volumetric source terms can be derived from either a prescribed
charge density or a fixed polarization field.

The Tesla miniapp models magnetostatic problems. Magnetostatic boundary conditions are more complicated than
those for electrostatic problems due to the nature of the curl-curl operator. We support two types of boundary conditions:
the first leads to a constant magnetic field at the boundary, the second arises from a surface current. The surface current
is itself the solution of a Poisson problem restricted to the surface of the problem domain. The motivation for this surface
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Fig. 19. Left: Solution of a Maxwell problem on a Klein bottle surface with ex3; mesh generated with the klein-bottle miniapp in
miniapps/meshing. Right: An electromagnetic eigenmode of a star-shaped domain computed with 3rd order finite elements computed with
ex13p.

current boundary condition is to approximate the magnetic fields surrounding current carrying conductors. Tesla also
supports volumetric sources due to current densities or materials with a fixed magnetization (i.e. permanent magnets).
Note that the curl-curl operator cannot be solved with an arbitrary source term; the source must be a solenoidal vector
field. To ensure this, the Tesla miniapp must remove any irrotational components by performing a projection operation
known as “divergence cleaning”.

The Maxwell miniapp simulates full-wave time-domain electromagnetic wave propagation. This miniapp solves the
Maxwell equations as a pair of coupled first order partial differential equations using a symplectic time-integration
algorithm designed to conserve energy (in the absence of lossy materials). The simulation can be driven by a time-varying
applied electric field boundary condition or by a volumetric current density. Perfect electrical conductor, perfect magnetic
conductor, and first order Sommerfeld absorbing boundary conditions are also available. A frequency-domain version of
this miniapp is currently under development.

One of the most practical applications of electromagnetics is the approximation of the Joule heating caused by an
alternating electrical current in an imperfect conductor. The MFEM miniapp Joule models this behavior with a system
of coupled partial differential equations which approximate low-frequency electromagnetics and thermal conduction.
The boundary conditions consist of a time-varying voltage, used to drive a volumetric current, and a thermal flux
boundary condition, which can approximate a thermal insulator. This miniapp is a good example of a simple multi-physics
application which could be modified to simulate a variety of important real-world problems in electrical engineering.

8.3. Compressible hydrodynamics

The MFEM-based Laghos [67,68] (short for Lagrangian high-order solver) miniapp models time-dependent, compress-
ible, inviscid gas dynamics via the Euler equations in the Lagrangian form. The Euler equations describe the conservation
of mass, momentum, and energy of an inviscid fluid. In the Lagrangian setting, the elements represent regions of fluid
that move with the flow, resulting in a moving and deforming mesh. The high-order curved mesh capabilities of MFEM
provide a significant advantage in this context, since curved meshes can describe larger deformations more robustly than
meshes using only straight segments. This in turn mitigates problems with the mesh intersecting itself when it becomes
highly deformed.

The Laghos miniapp uses continuous finite element spaces to describe the position and velocity fields, and a discon-
tinuous space to describe the energy field. The order of these fields is determined by runtime parameters, making the
code arbitrarily high order. The assembly of the finite elements in Laghos can be accomplished using either standard
full assembly or as partial assembly, see Section 5.4. With partial assembly, the global matrices are never fully created
and stored, but rather only the local action of these operators is required. This reduces both memory footprint and
computational cost.

Laghos is also a simplified model for a more complex multi-physics code known as BLAST [78,82,85], which fea-
tures mesh remapping, arbitrary Lagrangian-Eulerian (ALE) capabilities, solid mechanics, and multi-material zones.
The remapping capability allows arbitrarily large deformations to be modeled, since the mesh can be regularized at
intervals sufficient to continue a simulation indefinitely. The remap capability in BLAST is accomplished with a high-
order discontinuous Galerkin method, which is both conservative and monotonic [86]. The DG component of the remap
algorithm is very similar to the DG advection in Example 9.
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Fig. 20. Left: A shock interface 3D hydrodynamics calculation on 16,384 processors with BLAST. Center: Static non-conforming AMR in a Sedov blast
simulation, see Section 7.2. Right: High-order axisymmetric multi-material inertial confinement fusion (ICF)-like implosion in BLAST.

BLAST uses a general stress tensor formulation which allows for the simulation of elasto-plastic flows in 2D, 3D, and
in axisymmetric coordinates. Multi-material elements are described using high-order material indicator functions, which
describe the volume fractions of materials at all points in the domain. A new, high-order multi-material closure model was
developed to solve the resulting multi-material system of equations [87]. This capability has been used to model many
types of hydrodynamic systems, such as Rayleigh-Taylor instability, shock-interface interactions, solid impact problems,
and inertial confinement fusion dynamics. Some examples of BLAST calculations are shown in Fig. 20.

8.4. Other applications

MFEM has been applied successfully to a variety of applications including radiation-diffusion, additive manufacturing,
topology optimization, heart modeling applications, linear and nonlinear elasticity, reaction-diffusion, time-domain
electromagnetics, DG advection problems, Stokes/Darcy flow, and more. Two examples of such applications are the
Cardioid and ParElag projects described below.

The Cardioid project at LLNL [88] recently used MFEM to rewrite and simplify two cardiac simulation tools. The first
is a fiber generation code which solves a series of Poisson problems to compute cardiac fiber orientations on a given
mesh. See Fig. 21 for sample output. Additionally, a deformable cardiac mechanics code which solves incompressible
anisotropic hyperelasticity equations with active tension has also been developed. The methods implemented are outlined
in [89] and [90]. A second MFEM-based code to generate electrocardiograms using simulated electrophysiology data is
also under development.

Fig. 21. Left: Heart fiber orientations computed in Cardioid using MFEM. Cardioid is being developed for virtual drug screening and modeling heart
activity in clinical settings. Right: Drone body optimized for maximum strength in a given mass based on MFEM discretizations in LLNL's LiDO code.
LiDO enables engineers to optimize immensely complex systems in HPC environments — in this case using 100 million elements, well beyond the
capability of commercial software..

MFEM has also been applied to topology optimization for additive manufacturing (3D printing) by LLNL’s Center for
Design and Optimization, which develops the Livermore Design Optimization (LiDO) software. LiDO is used to solve
challenging structural engineering problems consisting of millions of design variables. See [91] and Fig. 21. Another project
that is built extensively around MFEM is ParElag [92], which is a library organized around the idea of algebraic coarsening
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of the de Rham complex introduced in Section 4.3. ParElag leverages MFEM's high-order Lagrange, Nedelec, and Raviart-
Thomas finite element spaces as well as its auxiliary space solvers (Section 6.2) to systematically provide a de Rham
complex on a coarse level, even for unstructured grids with no geometric hierarchy. Its algorithms and approach are
described in [93,94].

9. Conclusions

In this paper we provided an overview of the algorithms, capabilities and applications of the MFEM finite element
library as of version 4.1, released in March 2020. Our goal was to emphasize the mathematical ideas and software design
choices that enable MFEM to be widely applicable and highly performant from a relatively small and lightweight code
base.

While this manuscript covers all major MFEM components, it is really just an introduction to MFEM, and readers
interested in learning more should consult the additional material available on the website https://mfem.org and in the
MFEM code distribution.

In particular, new users should start with the interactive documentation of the example codes, available online as well
as in the examples/ directory, and may be interested in reading some of the references in Section 8, e.g. [82,95-99].

Researchers interested in learning mathematical details about MFEM’s finite element algorithms and potentially
contributing to the library can follow up with [31,45,47,81,83] and the instructions/developer documentation in the
CONTRIBUTING.md file.
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