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a b s t r a c t 

Rail systems have been developing rapidly in recent years aiming at satisfying the growing 

passenger demand and shortening passenger travel time. The line planning problem (LPP) 

and train timetabling problem (TTP) are two key issues at the strategic level and tactical 

level, laying the foundation of a high-level service quality for railway operation. In this 

paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are 

introduced for direct connections, with consideration of both periodic and aperiodic na- 

ture to meet strongly heterogeneous train services and reduce the capacity loss of train 

operating companies. A combined LPP and TTP method is designed considering timetable 

robustness, timetable regularity, and passenger travel time. For a given line pool, a multi- 

objective mixed integer linear programming model for the MF-LPP is formulated to obtain 

a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and 

the number of lines. Using the acquired line plan from the previous step, a MP-TTP model 

is proposed to achieve the minimal travel time, the maximal timetable robustness and the 

minimal number of overtakings. The two models work iteratively with designed feedback 

constraints to find a better plan for the rail transport system. Numerical experiments are 

applied to verify the performance of the proposed model and solution approach. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Over years, rail systems have been developing fast all over the world, with demands for more speed, punctuality and

capacity improvements. Passenger demand meets a constant growth and normally features unbalanced distributions with 

highly heterogeneous spatial mobility patterns and flow sizes. Meanwhile, a direct service is preferable for the passengers

especially for ODs with bad transfer conditions, and a regular train service is the tendency in order to attract more pas-

sengers. The rail networks also become highly utilized and experience lots of delays caused by delay propagation. A high

capacity utilization of both infrastructure and trains is appealing to reduce the operation cost. Therefore, an efficient and

robust plan is necessary for providing a high-level service to satisfy both passengers and operators. Railway planning is a

complicated process, normally decomposed into line planning, train timetabling, rolling stock scheduling, and crew schedul-

ing ( Peeters, 2003; Liebchen, 2008; Schöbel, 2012 ), see Fig. 1 . The line planning problem (LPP) and train timetabling problem

(TTP) are two fundamental issues for rail transport systems on a strategic and tactical level respectively. The LPP is the ini-

tial step aiming to find a set of lines or paths with corresponding stop schemes and operation frequencies that satisfy travel
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Fig. 1. Railway planning process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

demand in a given network. The TTP determines the time of departure and arrival at each station of every train within the

given line structure. It could provide scheduled train times and paths for rail operators, but also give alternatives with corre-

sponding travel time for passengers. Accordingly, the system efficiency about travel time, capacity utilization, and sensitivity

to delays are highly dependent on both line plan and timetable. 

Currently, two types of timetables are implemented in railway systems: periodic timetables and aperiodic timetables. In

the literature, most line planning models are established to optimize the line plan specific to one timetable pattern. The

four line planning models in Goerigk et al. (2013) are all proposed for periodic timetables. We categorize line plans with a

periodic and aperiodic nature in this paper. A periodic timetable provides the same service pattern (arrival time, departure

time and frequency) in each period, while scheduled times and train origin and destination (OD) for aperiodic timetables are

defined mostly based on varying passenger demand. Periodic patterns offer regularity while aperiodic patterns offer flexi-

bility ( Robenek et al., 2017 ). Specifically, periodic patterns have fixed stops with high frequencies which provide a regular

service for passengers in each period, while aperiodic timetables are more flexible with different stop patterns and various

headways. Whereas a line plan with high frequencies could result in a low seat occupancy rate, irregular arrival/departure

times are not convenient for travel planning. The strongly heterogeneous rail lines face an unbalanced passenger distribution

in time and space. The question that arises in the planning is: which type of service pattern is preferable for this type of rail

network, like corridors in the Chinese high-speed rail network with huge demand, unbalanced distribution and big amounts

of commuters? 

In practice, for railway networks with commuting passengers, periodic timetables proved to be more convenient for the

railway system with years of practice in Europe. But limited stop patterns are offered, like only Sprinters (all-stop trains)

and Intercities (stops at big stations) for conventional railways in the Netherlands. However, the mixed operation of ex-

press trains and all-stop trains is highly capacity consuming, and transfers are always inevitable due to the limited direct

connections in the line plan. Meanwhile, train lines with many stops could lead to more time loss by dwelling, accelera-

tion and deceleration, and this holds in particular for lines with relatively short station spacing. Especially for the Chinese

high-speed rail network, more time is lost for deceleration and acceleration due to the higher running speed. Moreover,

transfer times are very high due to poorly available transfer facilities. In case of a transfer, passengers typically need to

check out, and then check in again with quite a long walking distance, as well as time due to the huge amounts of travelers

and security check of luggages, see for details ( Zhao et al., 2018 ). As a consequence, direct travel connections are preferred

by passengers. Hence, for a strongly heterogeneous rail corridor like Chinese high-speed lines, different stop patterns with

a relatively high frequency are necessary to meet the various passenger OD demands for direct traveling with respect to

passenger travel time and operational cost. Robenek et al. (2016) illustrated that aperiodic timetables could perform better

for high-density demand than periodic timetables by a sensitivity analysis on passenger congestion in the rail network of

Switzerland. Therefore, a timetable with both periodic and aperiodic nature could be more efficient. We define a line plan

and a timetable pattern with both periodic and aperiodic nature as multi-periodic . 

In order to deal with the capacity utilization of both train and infrastructure, regular services, and direct connections, we

designed a multiple frequency LPP (MF-LPP) model and a multiple period TTP (MP-TTP) model in this paper. Direct travel

services for all passengers are proposed from a practical perspective. Both models take a multi-periodic pattern into account

by introducing an extended period length T based on the traditional periodic timetable model. We define the problem as

follows: 

Multi-frequency line plan : The frequency f l of each line l can be different and is flexible. For a traditional periodic

line pattern, the period length is one hour and frequencies are always simple, like one, two and four in a period in the

Netherlands. In a MF-LPP the frequencies can be anything depending on demand. 

Multi-period timetable : Trains from the same line follow the same path while each train line has its own cycle time

(regular interval) within the overall period length T . The cycle time of each line l can be strict T / f l or slightly deviate between

[ T / f l − ξ , T / f l + ξ ] with tolerance parameter ξ , distinguishing from a traditional periodic timetable. 

Fig. 2 illustrates an example of a multi-period timetable from a given multi-frequency line plan within an overall period

length T = 120 min. Four lines l 1 , l 2 , l 3 , and l 4 with four different frequencies of four, three, two, and one respectively,

have different regular intervals T 1 = 40 min, T 2 = 31 min, T ′ = 29 min, T 3 = 60 min and T 4 = 120 min. l 2 has a semi-regular

2 
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Fig. 2. Multi-period timetable from a given multi-frequency line plan. Each color of the line represents one stop pattern, and all lines have different 

frequencies. T is the overall period length, and T 1 , T 2 , T 3 and T 4 are the cycle time for each line which is smaller (frequency is more than one) or equal 

(frequency is one) to the overall period length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interval T 2 and T ′ 
2 
. Lines with the same color follow the same path including the same dwell time at a station and running

time in a section. For example, the second train of line l 2 (black line) has an overtaking at station B, so all the other trains

of line l 2 need to have a longer dwell time as well. Moreover, the regular interval might not be fixed if T / f l is not an integer

or ξ is applied due to the tight capacity utilization. 

The MF-LPP model could offer a direct travel choice for ODs with fewer passengers in the aperiodic case, and also pre-

vent travel time loss by the unnecessary dwelling of these ODs to more dedicated low-frequency lines. In addition, a high

frequency is provided to offer a regular service for large commuting passengers from the periodic perspective. Except for

the traditional objectives of operational cost ( Claessens et al., 1998; Goossens et al., 2004 ) and passenger total travel time

( Schöbel and Scholl, 2005; Borndörfer et al., 2007 ), this paper proposes the number of lines as an objective in order to

control the frequency of each line, which plays an important role for the line plan with both periodic and aperiodic pattern.

When the line plan is given, the MP-TTP needs to be optimized. Since the huge impact of delay propagation could result

in worse punctuality of highly-utilized rail corridors, we design a periodic timetable optimization model with considera-

tion of robustness and overtakings based on the Periodic Event Scheduling Problem (PESP) ( Serafini and Ukovich, 1989 ).

Robustness is taken into account to mitigate the delay propagation and improve the system efficiency of rail networks. Fur-

thermore, overtaking is allowed in this model, and the number of overtakings is proposed as objective as it could impact the

capacity utilization and timetable robustness when different travel times occur, especially for a dense corridor. According to

the periodic and aperiodic nature, a new regularity constraint is introduced to provide regular services for trains from the

same line even though the cycle time is longer than usual, and keep all trains follow the same path. 

A collaborative optimization method of MF-LPP and MP-TTP is proposed as a line plan can be infeasible in the timetable

optimization model. This means that a timetable may not be found, once a line plan is determined. Although many line

planning models have an upper bound on the number of trains allowed on each infrastructure section, the capacity still

could be not enough while generating a timetable at the corridor level. Models for integrating line planning and timetabling

have been proposed in Schöbel (2015) and Burggraeve et al. (2017) with some assumptions. Moreover, passenger travel time

in line planning normally only considers the shortest path, with respect to the minimal travel time without consideration

of the timetable. Whereas travel time in the timetable shows the real scheduled time. 

With the purpose of less capacity loss, less time loss, regularity and robustness of the rail system, this paper proposes

an iterative approach from line plan to timetable to find a high-quality service plan. The main contributions of this paper

are the following: 

• We develop a multi-frequency line planning optimization model. 
• We develop a multi-period timetabling optimization model. 
• Overtaking constraints are presented based on dwell time stretches. 
• An iterative framework finds high-quality multi-periodic timetables for heterogeneous rail lines. 
• A real-life case-study on a Chinese railway corridor demonstrates the method. 

The rest of this paper is structured as follows. Section 2 presents the literature review. In Section 3 , we elaborate the op-

timization models of line plan and timetable. In Section 4 , numerical experiments are applied, and the result is analyzed to

demonstrate the applicability of the model and approach. Some conclusions and future research work are given in Section 5 .

2. Literature review 

In this section, we investigate models of line planning, timetabling, and the integration of both in recent studies, and

analyze the literature gaps that this paper contributes to. 
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2.1. Line planning 

The LPP aims at finding an optimal line plan for a railway network, and has been well-studied in the literature. There

are two main conflicting objectives, minimization of operation costs from the operator’s perspective (cost-oriented) and

minimization of generalized travel cost from the passengers’ perspective (customer-oriented). 

Researchers have developed a series of integer programming models to achieve both objectives. For a cost-oriented

approach, the LPP aims to find a line plan serving all passengers and minimizing the costs of operators. It is al-

ways modeled concerning the lines and corresponding frequencies or train types with capacity as presented in

Claessens et al. (1998) , Goossens et al. (2004) , and Goossens et al. (2006) . For the customer-oriented approach, maximiz-

ing the number of direct travelers is proposed in Bussieck et al. (1997) , and minimizing the total travel time in Schöbel and

Scholl (2005) and Borndörfer et al. (2007) . Branch and bound, branch-and-cut, and column generation are used for solving

these mixed integer linear programs. Borndörfer et al. (2007) consider a multi-commodity flow model in which passenger

paths can be freely routed and lines are generated dynamically. Schöbel and Scholl (2005) used a change-and-go graph to

model travel and transfer times. However, for large scale instances the model tends to be computationally intractable. There-

fore, Borndörfer and Neumann (2010) proposed a compact integer programming approach to deal with transfer minimization

problems even for large instances. They incorporated penalties for transfers that are induced by “connection capacities” and

compared a direct connection capacity model with a change-and-go model. Bussieck et al. (2004) proposed a fast solu-

tion combining nonlinear techniques with integer programming, and a game-theoretic model is introduced in Schöbel and

Schwarze (2006) , where each line acts as a player to minimize cost. For a huge rail network in China, Fu et al. (2015) de-

scribed an integrated hierarchical approach to optimize a line plan, with a classification of stations and trains, and a bi-level

optimization model. The stop patterns are predefined by an enumeration of higher-classified stations for higher level trains

and limiting the maximal number of stops for lower level trains. The minimization of passenger’s travel time in the up-

per level is used to estimate passenger routes, while maximization of served passengers in the lower level is designed for

optimization of frequencies. Schöbel (2012) gave a review of different line planning models from a mathematical and algo-

rithmic approach. Goerigk et al. (2013) conducted a comprehensive experimental study to evaluate the quality of line plans

from four different models by travel times and robustness. 

2.2. Timetabling 

Normally, the resulting line plan serves as a direct input for timetable scheduling, where arrival and departure times for

the given lines should be found. Two types of timetables can be distinguished: aperiodic and periodic timetables. 

For aperiodic timetables, many references consider mixed integer linear programming (MILP) formulations in which the

arrival and departure times are represented by continuous variables while binary variables express the order of the train de-

partures from each station. Branch-and-bound techniques were used for solving this model by Jovanovi ́c and Harker (1991) ,

and heuristic techniques of local search, genetic algorithms, tabu search, and hybrid algorithms were compared for find-

ing a feasible solution by Higgins et al. (1997) . Caprara et al. (20 02, 20 06) designed integer linear programming models

based on a graph representation, which discretized time into minutes and used Lagrangian relaxation to derive bounds

for the optimal solution. A comprehensive survey on aperiodic train timetabling and train platforming can be found in

Cacchiani et al. (2015) . To minimize total passenger waiting time, Niu et al. (2015) developed a quadratic integer program-

ming model with linear constraints to design a train timetable with given skip-stop patterns and passenger demand. For

a given scheduled timetable, Jiang et al. (2017) inserted more trains by a skip-stop method in a highly congested railway

line. More precisely, Caimi et al. (2017) gives an overview of timetable models and its applications, and also provides the

methods for improving timetable robustness. 

For periodic timetables, the Periodic Event Scheduling Problem (PESP) is frequently used for macroscopic scheduling.

PESP was first proposed by Serafini and Ukovich (1989) , and later it was extensively studied by many railway researchers,

like Nachtigall (1996) , Peeters (2003) , and Liebchen (2007) . Based on this model, the robustness and stability of periodic

timetables were studied by Goverde (2007) , Kroon et al. (2008) and Goverde et al. (2016) . Kroon et al. (2008) discussed to

improve the robustness by allocating buffer times between two successive trains and time supplements along train paths

by a stochastic programming approach. Goverde et al. (2016) introduced a three level framework of integrated timetable

construction with consideration of feasibility, stability, robustness, efficiency and energy consumption. They combine mi-

croscopic and macroscopic models of timetable design, as detailed in Bešinovi ́c et al. (2016) . To address illegal overtakings

(two trains occupy the same open track section at the same time), a relation between modulo parameters is presented to

find a feasible timetable in Zhang and Nie (2016) . Sparing and Goverde (2017) extended the PESP model with the objective

function of the minimum cycle time of the periodic timetable. The model maximizes network stability while generating fea-

sible timetables. Based on the foregoing model, Bešinovi ́c (2017 , chapter 5) proposed a two-stage model to achieve a stable

and robust timetable. The first stage is to find the optimal stable timetable structure by minimizing capacity utilization and

journey times, and the second stage is to improve timetable robustness by optimizing allocations of the time allowance.

Yan and Goverde (2017) compared several periodic timetable models, and a number of statistic indicators are defined to

assess robustness. 

An overview of nominal and robust timetable optimization for both periodic and aperiodic patterns is summarized

in Cacchiani and Toth (2012) . To assign buffer times and time supplement reasonably, Liebchen et al. (2009) combined
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stochastic programming and robust optimization to deal with uncertain data, and introduced the concept of recoverable

robustness . Without consideration of infrastructure conflicts, Robenek et al. (2016) modeled a MILP timetable problem by

maximizing the operation profit while maintaining a certain level of passenger satisfaction for both patterns, and the re-

sult shows aperiodic timetables are more efficient for high demand network than periodic ones. Based on the last paper,

Robenek et al. (2017) proposed a hybrid timetable with both features of regularity and flexibility from periodic and aperi-

odic timetables respectively. Galli and Stiller (2018) discussed the new challenges of railway timetable problem: multi-period

timetables and robustness, and the corresponding model and solution approach are proposed. 

2.3. Integrated approach 

Since the line plan has a huge impact on timetable design, an integrated model of LPP and TTP is considered to improve

the quality of the service plan for both passengers and railway operators. Some scholars attempted to develop an integrated

model to solve both problems at the same time. In Michaelis and Schöbel (2009) , the traditional sequence of planning stages

is reordered. They first determined the vehicle routes, and then optimized the line plan and timetable in a bus network with

a heuristic approach. Kaspi and Raviv (2013) proposed an integrated model with consideration of passenger inconvenience

and operational cost, and an evolutionary metaheuristic was introduced to achieve the goal. Yue et al. (2016) introduced a

novel methodology to optimize train stopping patterns and the timetable simultaneously with the objective of train profit

(based on stopping time and the number of stops), and a column-generation-based heuristic algorithm to solve the problem

in a large scale network. Burggraeve et al. (2017) proposed an iterative and interactive framework to optimize the line plan

and timetable. A heuristic algorithm is applied to generate a line plan with consideration of a feasible and robust timetable,

while overtakings are not allowed. Yamauchi et al. (2017) designed an approach to optimize stop patterns of a railway line

system. To relax congestion, both travel time and congestion rate are taken into account to find the Wardrop equilibrium.

Borndörfer et al. (2017) studied the integration of periodic timetabling and routing, where four routing models are intro-

duced to compare from a theoretical perspective. They found that different routing models could have a huge impact on

the quality of the rail system. However, no exact solution approaches are given for the capacited routing problem. Due to

the dependencies between different subproblem, Schöbel (2017) pointed out that integration would be more beneficial than

solving the problems sequentially. She integrated line planning, timetabling and vehicle scheduling, and proposed heuristic

approaches to solve the model. Pätzold et al. (2017) proposed three different ways to reduce the operation cost compared

with a traditional sequential approach of the three mentioned stages. Very recently, Meng and Zhou (2019) developed an in-

tegrated optimization model considering passengers responses to service interval times, stopping patterns, arrival/departure 

times of trains, and capacity of infrastructure and rolling stock, and a team-based solution approach was used to synchronize

demand assignment, routing, timetabling tasks. 

2.4. Literature gaps 

From our literature review, we have learned that periodic and aperiodic pattern were always designed by a totally dif-

ferent methodology. We cope with this problem by extending the period length and allow multiple frequencies in the LPP

and multiple periods in the TTP. The number of lines is first introduced as objective in the line planning model in order to

balance the line frequency, and a regularity constraint is designed to obtain a regular service within the extended period. So

both MF-LPP and MP-TTP feature a periodic and aperiodic nature. Most robust optimization models mentioned above need

an initial feasible timetable, where train orders have been fixed already, which leaves less space for improvements com-

pared with flexible orders. As discussed in Peeters (2003) , pulling apart trains using the same track could improve timetable

robustness. Our paper aims at computing a robust timetable while determining train orders by spreading trains as far as

possible. Overtakings are possible in our model, and the number of overtakings is introduced as objective as it would affect

timetable robustness a lot. Heuristic methods are typically needed to search for the optimal solution for LPP and TTP. There-

fore we developed a novel combined approach from line plan to timetable to find the optimal solution with consideration

of seat capacity loss, passenger total travel time, timetable regularity and timetable robustness. 

3. Model formulation 

3.1. Problem statement 

A line plan is a set of train lines with train ODs, train types, stop patterns and frequencies. Hence, the optimization

model needs to be built from networks on three levels, as shown in Fig. 3 . The first level is the railway infrastructure, which

is called the physical network, including stations and tracks connecting the stations. In the second level, the train lines with

stop pattern and frequency are provided to passengers, which gives for each OD an opportunity to travel. With the line

plan scheduled, a service network to the passengers can be derived in the third level. Here we define the direct transport

service for an OD from a line or an indirect transport service for an OD by several lines as a service arc . The service network

is composed by service arcs from all lines. The passenger travel choice is influenced by the total travel time over different

service arcs which have the same OD in the third level. This third level determines how passengers are assigned to each

train, which is the network for the passenger assignment model. 
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Fig. 3. Networks for the line planning optimization. Note: Red arcs represent the train services provided by both lines, and blue and black arcs stand for 

the train services served by the corresponding color line. The dashed blue arc denotes the transfer service between line 1 to line 2. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3 also illustrates a simple network with six stations along a corridor, and sub-figures a (Rail infrastructure), b (Line

system), and c (Service network) correspond to the three levels respectively. In the given rail corridor A to F, two train lines

with the same OD, different stop patterns, and different frequencies are provided. One train line of two frequency ( f 1 = 2 ),

stops at C, D and E; and the other of one ( f 2 = 1 ), stops at B, C and E. In the service network, it can be observed that both

lines have 10 service arcs, and they also share five service arcs with the same OD (red arcs shown in Fig. 3 ). For example,

both lines provide the train service for passengers from A to C, A to F, and C to E. If we assume that all lines have the same

speed level and minimum train running times t AB , t BC , t CD , t DE and t EF are always the same, line 1 would be more attractive

for passengers from A to C because of a shorter travel time and higher frequency. For passengers from B to D, no direct

service is available, so a transfer node and a connecting train needs to be selected (The dashed blue arc is a transfer arc).

For passengers from C to E, line 1 offers a higher frequency but line 2 a non-stop service. The travel time difference between

 

1 
CE 

and t 2 
CE 

is bigger than the dwell time at D, as t 1 
CE 

= t ac + t CD + t de + t dwell 
D 

+ t ac + t DE + t de and t 2 
CE 

= t ac + t CD + t DE + t de ,

where t ac and t de stand for acceleration and deceleration time loss. Hereby, the acceleration and deceleration time loss also

affect the choice of the line, especially for a high-speed railway with bigger t ac and t de . In general, it is nontrivial which

line is selected for each OD pair. Therefore, a passenger assignment model with a given objective is necessary to the line

planning model to determine which train line to select for passengers. 

The two main objectives for a line planning model are the operational costs and passengers generalized costs. Profit or

cost is normally proposed as an objective from an operator’s point. However, the monetary value from a train operating

company is not always that accurate, and the empty-seat-hour could give a direct view on the capacity loss. Therefore, we

choose this straightforward way to minimize the cost. From the passenger’s perspective, in-vehicle time plays a primary

role when passengers select a train line for a trip, so the passengers’ total travel time (passengers weighted in-vehicle

time) is used as the second objective. Moreover, according to the discussions in Section 1 , the defined multi-frequency line

plan with a multi-periodic pattern could be more efficient for heterogeneous railway lines, including both a periodic nature

with higher frequencies and an aperiodic nature with more flexibility. Hence, the number of lines is proposed as an extra

objective to control the flexibility of lines selected by passengers to achieve the shortest travel time, and the frequency

within an appropriate range. Similar to recent research of the periodic LPP, a line pool is considered as a given input in this

paper. A line pool is a predefined set of potential lines with different stop patterns, used to simplify the problem due to

numerous combinations of all stop patterns and route choices. 

With the proposed objectives, the given line pool, the vehicle seat capacity, and the day-based passenger OD demand,

the passenger assignment optimization part is actually a shortest path problem with capacity constraints. To generate a

multi-frequency line plan, the maximum frequency of each line should also be restricted to balance the frequencies in the

line plan. Hence, the seat capacity is not only restricted by the objective of empty-seat-hour, but also by each line. A system-

optimal assignment is used to find a trade-off between the total travel time, the empty-seat-hour and the number of train

lines. Passengers may thus aim at the shortest travel time, but at the same time the train operator aims at minimizing

empty-seat-hours and the number of different train lines (stop patterns), which may thus influence the number of trains

available to passengers. Moreover, only direct connections are considered in this paper, so the transfer paths are not needed.

Arcs from different lines may have different weights (in-vehicle times), so the same passenger OD could have different
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Fig. 4. Timetable structure with different train orders and headways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

travel times depending on the choice of service arcs with different weights. If a train line has the shortest travel time for

several passenger ODs, then the corresponding passengers will compete with each other due to the seat capacity constraints.

The optimization process will find the system-optimal solution for the model and the associated shortest paths for the

passengers (in terms of travel times and constrained to seat capacity). The shortest path problem is embedded in the LPP

(MILP) model, hence the system-optimal solution is our optimal line plan with stop patterns and corresponding frequencies

for the LPP. 

When a line plan is generated, a timetabling model is needed to compute a feasible and optimized timetable with consid-

eration of certain objectives (like passenger travel time and timetable robustness) and constraints (infrastructure, regularity,

and overtakings). 

Take Fig. 4 as an illustration, where two timetables from the same line plan are displayed, with four trains of three stop

patterns. Timetable (a) has a tight headway schedule but plenty of buffer at the end in one period. Train 1-1 and 1–2 with

the same pattern are scheduled successively. Timetable (b) has more headway time between two departures and train line

1 has a regular schedule of a half cycle time. By observing the two timetables, it can be directly concluded that timetable

(b) is more insensitive to delays and offers more regularity to passengers. 

In order to obtain such a timetable with the given stop patterns and the corresponding frequencies, a robustness objective

is introduced to find timetables that are less vulnerable to delays, and additionally the number of overtakings is proposed to

control the increase of overtakings by the robustness objective. As our line plan is considered from a passenger’s viewpoint,

travel time including running times and dwell times, is also still an objective. Moreover, regularity constraints are added to

lines with multiple frequencies to follow the same path, and in this sense, each train line could have its own cycle time

(with slight deviations) within the overall period length. As defined before, this type of timetables can be considered as

a multi-period timetable, corresponding to a multi-frequency line plan. To be specific, for our multi-frequency line plan,

each train line is periodic (with possibly a slight regularity tolerance) in our model with the line cycle time determined by

the frequency, while the multi-period timetable actually shows different periodic patterns for each line. With the presented

objectives and constraints, a modified PESP model is proposed to generate an efficient multi-period timetable. 

3.2. MF-LPP model 

In order to simplify the complexity of the line planning problem, we use some assumptions. 

(1) All passengers have a direct service to their destinations without any transfer, so train lines are chosen such that all

passengers can travel directly. 

(2) Only one direction is taken into account for optimization in our model. We assume that passenger demand is sym-

metric, and it can be extended to both directions. 

(3) For simplicity, all train types have the same seat capacity. 

The notation of parameters and variables is summarized in Tables 1 and 2 respectively. 

Using the notation explained in the tables, the mathematical model of the MF-LPP is formulated as follows. 

Minimize α ·
∑ 

l∈L 0 

N l −1 ∑ 

m =1 

( 

C · f l −
m ∑ 

i =1 

N l ∑ 

j= m +1 

q l s i ,s j 

) 

· t l s m ,s m +1 
+ (1 − α) ·

∑ 

l∈L 0 

N l −1 ∑ 

i =1 

N l ∑ 

j= i +1 

t l s i ,s j · q l s i ,s j + β ·
∑ 

l∈L 0 
x l (1) 

This objective function is a multi-objective function, and includes three sub-objectives: 
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Table 1 

Subscripts and parameters used in the LPP model. 

Symbol Definition 

L 0 Line pool, the set of potential train lines with various train stop patterns 

S Set of stations in the corridor 

l Train line from L 0 with l -th stop pattern 

S l , N l Set of stations on line l , and the number of stations on line l respectively 

C Seat capacity of rolling stock 

μ Maximal seat occupancy rate in passenger assignment model 

P s i ,s j Passenger demand between stations s i and s j 
f max Upper bound of frequency for each train line 

v l s i Stop parameter which equals 1 if line l stops in station s i , and 0 otherwise 

t l s i ,s j In-vehicle time from s i to s j on line l , including running times (with acceleration and deceleration times), and possible 

intermediate dwell times 

α Weight of total train empty-seat-hours, and 1 − α is the weight of passenger total travel time, α ∈ [0, 1] 

β Weight of the total number of lines in the objective function, β ≥ 0 

Table 2 

Decision variables in the LPP model. 

Symbol Definition 

f l Frequency of train line l . 

x l Binary variable, which equals 1 if line l is selected in the line plan, and 0 otherwise. 

q l s i ,s j The number of passengers from station s i to s j assigned to line l . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z 1 = 

∑ 

l∈L 0 

N l −1 ∑ 

m =1 

( 

C · f l −
m ∑ 

i =1 

N l ∑ 

j= m +1 

q l s i ,s j 

) 

· t l s m ,s m +1 
(2)

Z 2 = 

∑ 

l∈L 0 

N l −1 ∑ 

i =1 

N l ∑ 

j= i +1 

t l s i ,s j · q l s i ,s j (3)

Z 3 = 

∑ 

l∈L 0 
x l (4)

Z 1 describes the maximum capacity utilization by minimizing the total empty-seat-hours, and Z 2 depicts the passengers’

travel time, which is in-vehicle travel time. Z 3 refers to the number of lines or stop patterns in the line plan. In order to

find a way to deal with multi-objectives, certain weights could be assigned to each objective. As the weight in the objective

function has a great impact on the final decision, it needs to be calibrated for a certain case. If a cost-oriented line plan is

requested, it is better to assign a value to α close to 1; and if a customer-oriented line plan is required, the value is better

close to 0. We calibrate α by varying its value between 0 to 1 and compute the corresponding objective values without

consideration of Z 3 . Then the objective value as function of α could help to determine which value to choose for a certain

case. For β , we aim to find a value, such that Z 3 would not have a big impact to other two objectives. The frequency of

lines can be optimized and the number of passengers assigned to each train line is obtained for a given line pool and the

parameters. 

The constraints are described as follows in four groups, where multi-frequency constraints and line constraints are dedi-

catedly designed for the line plan with the multi-periodic pattern. 

Passenger flow constraints : ∑ 

l∈L 0 
q l s i ,s j = P s i ,s j ∀ s i , s j ∈ S (5)

q l s i ,s j ≤ M · v l s i · v l s j ∀ s i , s j ∈ S l , l ∈ L 

0 (6)

q l s i ,s j ∈ N ∀ s i , s j ∈ S l , l ∈ L 

0 (7)

Constraint (5) specifies that each passenger OD demand needs to be satisfied and is equal to the sum of passengers assigned

to all lines. Constraint (6) ensures that if there is no service arc from station s i to station s j on line l , then the corresponding

passenger flow assigned to this arc equals 0. M is a very large positive number and equals max s i ,s j P s i ,s j . The passenger flow

on each service arc of train line l is restricted to nonnegative integers in (7) . Note that we denote N = { 0 , 1 , 2 , . . . } . 
Seat capacity constraints : 

m ∑ 

i =1 

N l ∑ 

j= m +1 

q l s i ,s j ≤ μ · C · f l ∀ s m 

∈ S l , l ∈ L 

0 (8)
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Fig. 5. Periodic Event-activity network for three trains of two lines in a station. l 1 _ 1 and l 1 _ 2 are from the same line with the same black color, and l 2 _ 1 has 

a through event at this station (the t means through). Solid lines represent running constraints, dotted lines are for dwell constraints, dashed for headway 

constraints, and dash-double-dotted for regularity constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constraint (8) ensures that the seat capacity of each line in each successive section is no less than the passengers assigned

and guarantees that the service frequency between each OD is sufficient to meet all passenger demand. 

Multi-frequency constraints : 

f l ≤ f max ∀ l ∈ L 

0 (9) 

f l ∈ N ∀ l ∈ L 

0 (10) 

Constraint (9) allows that the frequency of each train line could only vary in a certain range, and constraint (10) assures that

the frequency variable is a nonnegative integer. If the frequency is zero, then this line is not selected in the line plan. The

upper bound could limit the maximal frequency of lines, and impact the number of lines when changed. A large positive

number is set for the first optimization step, and would be updated in the following iterations in our model. 

Line constraints : 

x l ∈ { 0 , 1 } ∀ l ∈ L 

0 (11) 

f l / f max ≤ x l ≤ f l ∀ l ∈ L 

0 (12) 

Constraint (11) restricts line selection variable x l as a binary integer, and constraint (12) linearizes the binary variable by

line frequency. If the frequency of a line l equals 0, then the upper bound ensures x l to be 0. Otherwise, if the frequency is

bigger than 0, the lower bound constraint guarantees it to be 1. 

3.3. MP-TTP model 

When the line plan has been generated, a timetabling model is applied to find a feasible, regular and robust timetable.

Timetable models can be at the microscopic and macroscopic level, see Bešinovi ́c et al. (2016) . With the given input from

the line plan, our timetabling model is at a macroscopic level, where stations are considered as points, and minimum and

maximum running and dwell times along the routes of each train line are provided. The PESP model is widely used for

solving the macroscopic periodic timetable problem, hence we adapted this model to optimize the timetable. The PESP

formulation can be represented by a direct graph G = (E, A ) , which represents a periodic event-activity network. 

With a given line plan, the model is associated with a set of train lines L . Each line l ∈ L , defines a stopping pattern

(s l 
1 
, .s l 

k 
., s l 

N l 
) and a frequency f l within a given time period T . The set E contains E dep , E arr , E arr _ thr and E dep _ thr representing

departure events at s l 
1 
, arrival and departure events (for stops) or arrival through and departure through events at s l 

k 
, and

arrival events at s l 
N l 

for all frequencies of all lines. We defined a through event with both arrival through and departure

through in order to simplify the model in a later stage (like the overtaking model part), while it does not influence too

much for the computation time. The set of activities A which link these events, represents the constraints on the process

time between a pair of events, as shown in Fig. 5 . For each event i , we determine the scheduled time π i ∈ [0, T ) in a

basic period while satisfying the set of constraints A . Due to periodicity, this event would occur at times πi + z · T , where

z = 1 , 2 , . . . . Each process time a ij corresponds to an activity (i, j) ∈ A , where i and j are two consecutive events, which can

be distinguished as running time, dwell time, headway time, and regularity interval, and each of them has a lower l ij and

upper bound u ij modulo T , also represented as [ l ij , u ij ] T . 

Running activities A run and dwell activities A dwell are generated from the consecutive events of the same train. The

lower bound for running time is the minimum running time, which equals the technical running time plus a proper time
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Table 3 

Sets and parameters used in the TTP model. 

Symbol Definition 

T Period length 

L Set of line plan, index l ∈ L , L n represent the line plan from the n − th iteration 

T The set of achieved timetables, T n is the timetable from the n − th line plan if it exists 

E Set of all events, index i, i ′ , j, j ′ , n, m ∈ E
E arr Set of arrival events, E arr ⊂ E
E dep Set of departure events, E dep ⊂ E
E thr Set of through events, E thr ⊂ E
A Set of activities, index ij, ii ′ , jj ′ , i ′ j ′ , nm 

A run Set of running activities, A run ⊂ A 

A dwell Set of dwell activities, A dwell ⊂ A 

A infra Set of headway activities, A infra ⊂ A 

A reg Set of regularity activities, A reg ⊂ A 

A reg (s l 
k 
) Set of regularity activities of line l at station s k , A reg (s l 

k 
) ⊂ A reg 

P l Set of activities from line l 

a ij Scheduled process time of activity ( i, j ) 

l ij Lower bound of activity ( i, j ) (from event i to event j ) 

u ij Upper bound of activity ( i, j ) 

h ij Minimum headway time of activity ( i, j ) with two events at the same station 

r ij Process time of running activity ( i, j ) from the line plan, considered as minimum running time 

θ The running time supplement rate, θ ≥ 1 

d ij Process time of dwell activity ( i, j ) from line plan 

ηij Parameter of maximal allowed dwell time buffer if an overtaking occurs 

O max 
l 

The maximal overtakings allowed for train line l 

ξ Regularity tolerance, 0 ≤ ξ ≤ 2 

φ ij Robustness parameter, φi j = (u i j + l i j ) / 2 , ∀ (i, j) ∈ A infra 

λij Weight of each process ( i, j ) 

ω i Weights of each objective, ω i ∈ [0, 1], i = 1 , 2 and 3 

Table 4 

Variables in the LPP model. 

Symbol Definition 

π i A continuous variable, scheduled time for event i 

z ij A binary variable, considered as modulo parameter of activity ( i, j ) deciding the order of event i and j 

c ii ′ j j ′ An integer variable, auxiliary variable to forbid illegal overtakings during sections between activities of ( i, i ′ ) and ( j, j ′ ) 
δij A continuous variable, the headway deviation to φ ij 

y ij A binary variable that equals 1 if activity ( i, j ) has a dwell time stretch, and 0 means no stretch and also no overtake occurring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

supplement that covers various train behavior. The upper bound is the maximum running time that can be accepted by

passengers. The minimum time for boarding and alighting of passengers, and the maximum time for passengers waiting at

stations represent the lower bound and upper bound of the dwell process. Headway activities A infra are generated between

different train events at the same station to ensure a safety distance. The minimal safety interval is the lower bound l ij for

headway time, whilst T − l ji is the upper bound to ensure the safety between trains in the reverse order. If the frequency f l
of line l is greater than one, regularity activities A reg are needed to ensure a regular service. Regularity activities mean that

headway between successive trains from the same line are equal at each station. When strict regularity is needed, trains

from the same line should have the same interval T / f l at each station. Transfer connections and rolling stock connections are

not considered in this paper. 

According to the description, the notation of parameters and variables is summarized in Tables 3 and 4 respectively. 

The mathematical timetabling model is defined as follows. We introduce a model for MP-TTP with multi-objective: train

journey time, timetable robustness, and the number of dwell time stretches. 

PESP-MP Minimize ω 1 

∑ 

(i, j) ∈ A run ∪ A dwell 

λi j · (π j − πi + z i j · T ) + ω 2 

∑ 

(i, j) ∈ A infra 

δi j + ω 3 

∑ 

(i,i ′ ) ∈ A dwell 

y i j (13)

In objective function (13) , ω 1 , ω 2 and ω 3 stand for the weight of each objective respectively due to the different order

of magnitude of each objective value. When all three objectives need to be satisfied, traditionally appropriate weights are

assigned to deal with this multi-objective problem. Also, λij represents the weight of each process. The constraints are

elaborated as follows. 

Periodicity constraints : 

0 ≤ πi < T ∀ i ∈ E (14)

z i j ∈ { 0 , 1 } ∀ (i, j) ∈ A (15)
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Fig. 6. Collision in a railway section. 1 ©, 2 ©, 3 ©, and 4 © represent four different positions of period length boundary T, and the sum of four modulo 

parameters equals to one or three for all boundary positions. 

 

 

 

 

 

 

 

 

 

 

 

Constraint (14) requires periodicity of events by bounding to [0, T ). The modulo parameter z ij determines the order of event

i and j within the defined period T . Here we assume u i j − l i j ∈ [0 , T − 1] and l i j ∈ [0 , T − 2] . Then z ij is a binary variable in

our model constrained in (15) . z i j = 1 if π i > π j , and it is 0 otherwise. 

Running time and headway time constraints : 

h i j ≤ π j − πi + z i j · T ≤ T − h i j ∀ (i, j) ∈ A infra (16) 

r i j ≤ π j − πi + z i j · T ≤ θ · r i j ∀ (i, j) ∈ A run (17) 

Constraint (16) ensures that all headway process times are within the given safety bounds. Constraint (17) allows that run-

ning activities could vary in a certain range, and the upper bound is defined by a given proper time supplement rate based

on the minimal running time. 

Non-collision constraints : 

z i j + z i ′ j ′ + z ii ′ + z j j ′ = 2 · c ii ′ j j ′ (i, j) , (i ′ , j ′ ) ∈ A run , (i, i ′ ) , ( j, j ′ ) ∈ A infra (18) 

0 ≤ c ii ′ j j ′ ≤ 2 (i, j) , (i ′ , j ′ ) ∈ A run , (i, i ′ ) , ( j, j ′ ) ∈ A infra (19) 

c ii ′ j j ′ ∈ N (i, j) , (i ′ , j ′ ) ∈ A run , (i, i ′ ) , ( j, j ′ ) ∈ A infra (20) 

Constraints (18)–(20) guarantee that no collision can arise (see Fig. 6 ), when the sum of four modulo parameters of related

running and infra processes equals zero, two or four, see for details in Zhang and Nie (2016) . 

Regularity constraints : ⌊ 

T 

f l 

⌋ 

− ξ ≤ π j − πi + z i j · T ≤
⌈ 

T 

f l 

⌉ 

+ ξ ∀ (i, j) ∈ A reg (s l 1 ) , l ∈ L (21) 

πn − πm 

+ z mn · T = π j − πi + z i j · T ∀ (m, n ) ∈ A reg (s l k ) , (i, j) ∈ A reg (s l 1 ) , k ∈ [2 , N] , l ∈ L (22) 

Regularity constraints are formulated in (21) and (22) . Flexible frequencies are proposed in this paper, so f l could be any

number given from a line plan. A parameter ξ is introduced to provide a certain tolerance in case T / f l is not integer or to

express the tolerance from strict regularity. We assume that all trains from the same line have the same trajectory (train

path), which means the same running time between two successive stations and dwell time at each station. 

Robustness constraints : 

− δi j ≤ π j − πi + z i j · T − φi j ≤ δi j ∀ (i, j) ∈ A infra (23) 

The robustness constraint is displayed in (23) , where the variable δij and parameter φij are introduced (see details in

Peeters, 2003 ) as 

φi j = 

u i j + l i j 

2 

(24) 

δi j = 

∣∣π j − πi + z i j · T − φi j 

∣∣ (25) 

Parameter φij is the middle of [ l ij , u ij ]. For a certain process (i, j) ∈ A infra , if π j − πi + z i j · T = φi j , it could provide the best

robust solution for event i and j since the two events are distributed as far as possible. Formulation (23) is the linearized

version of (25) since π j − πi + z i j · T − φi j can be positive or negative. 

Overtaking constraints : 
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Fig. 7. Overtaking at stations. ( i, j ) represents a dwell activity of line l 1 at station S b , where a ij is the activity time and d ij is the minimum dwell time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d i j ≤ π j − πi + z i j · T ≤ d i j + ηi j · y i j ∀ (i, j) ∈ A dwell (26)

∑ 

(i, j) ∈P l , (i, j) ∈A dwell 

y i j ≤ O 

max 
l ∀ l ∈ L (27)

The number of overtakings might increase when robustness is appealing to. In order to analyze the trade-off between ro-

bustness and overtakings, the number of overtakings are considered to be optimized. Overtaking constraints are proposed in

(26) and (27) . Constraint (27) guarantees the lower bound and upper bound of dwell activities, and constraint (27) restricts

the maximal number of overtakings for line l . In this model, we use the number of “dwell time stretches” to represent the

overtakings, which is explained in more detail next. The minimum dwell time d ij (the lower bound l ij of dwell activity ( i,

j )) of a station is always 1 or 2 min for passenger trains which is smaller than twice the minimum headway h ij . Fig. 7 (a)

displays that overtaking is not possible when there is no time supplement for a dwell activity, and Fig. 7 (b) shows that

overtaking could occur when enough time supplement ηij is given. Traditionally ηij can be predefined by a maximum wait-

ing time at stations. Here we assume d i j + ηi j is exactly equal to 2 h ij , which means that only one overtaking could occur for

each dwell activity. 

Meanwhile, total dwell time would increase a lot if time supplements are directly added for every dwell activity. The

minimum dwell time at stations would be difficult to achieve even without an overtaking. In order to ensure that a dwell

activity has a minimum dwell time when no overtaking occurs, an extra binary variable y ij is proposed to the dwell time

supplement ηij . The upper bound of the dwell activity then becomes 

u i j = d i j + ηi j · y i j (28)

When y ij equals one, it can be interpreted as “a stretch of dwell time” and overtaking could occur, since the dwell time is

stretched to twice the minimum headway. So if a dwell activity time is larger than the corresponding minimum dwell time,

then it is a dwell time stretch . Otherwise, the dwell time equals the minimum dwell time, and overtaking cannot happen

as the time is not enough for infrastructure constraints. The minimization of the number of dwell time stretches could also

reduce overtakings. Therefore, y ij represents whether an overtaking occurs for activity ( i, j ), and the model can be considered

as minimizing the number of overtakings. 

In general, we made modifications in both the objectives and constraints of the traditional PESP-based models (with PESP

being just a feasibility problem) to find an efficient timetable. First, we extended the feasibility model to a multi-objective

timetabling model with extra binary variables, PESP constraints including a binary variable in the upper bound, and extra

constraints on the binary variables. For the objective of robustness, we chose to minimize the sum of headway deviation to

half the cycle time for all infrastructure activities (all headways between trains), which tries to pull apart headways as far

as possible in order to have more buffer times between trains. This absorbs or reduces disturbances and avoids or reduces

propagation of delays to other trains. The most significant contribution are the overtakings constraints introducing “dwell

time stretches with additional binary variables and constraints (26) and (27) . Overtakings affect the capacity utilization and

timetable robustness for mixed train traffic (with different running times and stopping patterns). The existing methods to

express an overtaking in the timetabling model brings at least three variables (see also Zhang and Nie, 2016; Sparing and

Goverde, 2017 ), while our model simplifies this part by introducing one dwell time stretch variable. Due to the MF-LPP

model, the train lines have flexible frequencies. A strict regularity constraint could easily lead to an infeasible problem in

the timetabling model. Hence we introduced regularity constraints with some tolerance to the strict regularity between

trains from the same line but still following the same path. 

The proposed robustness objective helps to find a robust timetable, however also leads to a bigger and harder optimiza-

tion problem due to the huge increase of soft constraints (21) . The regularity and overtaking constraints reduce the search

space to find the optimal solution more efficiently. 
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Moreover, in order to improve the computation time, we also define two sub-models. The PESP model only aiming at

minimizing passenger travel time is defined as PESP-PTT, and the model with consideration of regularity, passenger travel

time and overtaking is PESP-REG. Each sub-model is formulated as follows. 

PESP-PTT Minimize 
∑ 

(i, j) ∈A run ∪A dwell 

λi j · (π j − πi + z i j · T ) (29) 

subject to (14)–(20), (26) and (27) . 

PESP-REG Minimize ω 1 

∑ 

(i, j) ∈A run ∪A dwell 

λi j (π j − πi + z i j · T ) + ω 3 

∑ 

(i, j) ∈A dwell 

y i j (30) 

subject to (14)–(22), (26) , and (27) . 

3.4. Iterative optimization 

The framework of the iterative optimization process is illustrated in Fig. 8 . The circled numbers represent the iteration

processes, and are designed for specifying the iteration path. Here we assume that the railway infrastructure capacity is

enough to operate all trains when seat occupancy is one (i.e., 100%). 

MF-LPP : For the line planning models, Schöbel (2012) has already discussed that most of the line planning models are

NP-hard even if both the upper and lower bound on frequency for each edge equals one in the LP-Basic model. Our MF-

LPP model is similar to the one in Schöbel and Scholl (2005) , which is proved NP-hard, while we have extra objective

and constraints for the number of lines. Therefore, the optimization problem is also associated with an NP-hard feasibility

problem and has long computation time for big cases. For the given input of passenger demand, line pool, infrastructure

data and corresponding parameters, an initial line plan L is obtained by solving the MF-LPP model until the optimization

gap is achieved. In Fig. 8 , n represents a given number of iterations for the MF-LPP model. 

MP-TTP : The basic PESP model is a feasibility problem without any objectives. It is proved NP-complete for a fixed

period time T ≥ 3 by several researchers ( Serafini and Ukovich, 1989; Peeters, 2003 ). When an objective is applied to PESP,

the related feasibility problem becomes NP-hard as discussed in Nachtigall (1996) . Whereas, multi-objective is introduced

to this MP-TTP with extended period length T = 180 . Moreover, we added non-collision constraints (the relation between

modulo parameters) and overtaking constraints in our multi-objective model which differ from the basic PESP constraints.

Hence it is a hard problem even on corridors and a challenge to achieve exact optimality with limited computation time.

Our previous research ( Yan and Goverde, 2017 ) showed that a similar model could find the optimal solution within two

seconds with a smaller case, if the infrastructure capacity is enough. With the input of the previous optimized line plan, the

MP-TTP model is applied to find the optimal timetable. But a timetable might not exist for a given line plan as mentioned

before. By testing our TTP model with a couple of line plans, it could be observed that the model might be infeasible

or no solution occurs within the given computation time limitation. We observed that the infrastructure capacity and the

regularity constraints could directly lead to an infeasible solution, and the model size plays a crucial role on the infeasible

issue when it comes to computation time limitation. The following steps are designed to deal with the infeasibility in MP-

TP and the feedback loop to MF-LPP for exploring a better timetable. The model in each step could find a feasible solution

within one minute, but could not achieve a zero optimality gap until the computation time limitation (60 min). Hence, the

optimization gap is analyzed in our study instead of computation time. 

Step 1 PESP-PTT: A feasibility check of capacity utilization for the newly generated line plan is applied to the PESP-

PTT model by setting the optimization gap to 100%. So when a feasible solution is found, it stops computing.

Otherwise, if no solution could be found, we increase the seat occupancy rate to one in the MF-LPP model. As

higher seat occupancy rate leads to fewer trains, as well as fewer constraints in the TTP model, this makes the

model easier to solve. A feasible solution would be obtained by running the MF-LPP model again. Note that we

assume that the capacity is enough for seat occupancy μ = 1 . 

Step 2 PESP-REG: This step solves the line plan (feasible in Step 1) by PESP-REG with a given optimization gap and

computation time limitation. PESP-REG considers minimization of passenger travel time and the number of over-

takings as well as regularity constraints with initial regularity tolerance ξ = 0 . If the model is infeasible, the

regularity tolerance is relaxed to ξ + 1 until a feasible solution is found with ξ ≤ 2. If no solution could be found

when ξ = 2 , reduction of the frequency bound is applied as a lower frequency relaxes the regularity constraints.

The upper bound of the frequency in the MF-LPP model is decreased by f n max = F n −1 
max − 1 ( f n max is the upper bound

of the frequency in the MF-LPP model, and F n −1 
max is the maximal frequency from the obtained line plan in the

previous iteration). Then the MF-LPP model is solved with the updated frequency constraints, and a new line

plan L 

n is generated. 

Step 3 PESP-MP: If model PESP-REG in step 2 could find a feasible solution within the given regularity tolerance bound,

this solution is set as the initial solution to PESP-MP. Then we optimize the timetable by PESP-MP with consid-

eration of passenger travel time, timetable robustness and the number of overtakings until the optimization gap
or computation time limitation. 
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Fig. 8. Framework of optimization process. 

 

 

 

 

 

 

 

 

Evaluation : In this framework, two evaluation indicators are used: The objective value V and regularity condition R. V

can be directly obtained during the optimization process, but R could only be calculated when the timetable is generated.

R not only considers the periodic lines (with multiple frequency) but also aperiodic ones (frequency is one). The number of

passenger ODs ( N OD ) is known when the passenger demand is given. When the timetable is obtained, the train order is also

determined. We define I τ,τ ′ 
s i ,s j 

as the departure interval between two successive trains ( τ and τ ′ ) of which both have service

arcs from s i to s j (or both have stops at station s i and s j ). The sum of the service frequency F ( s i , s j ) from s i to s j can be

calculated by 

F (s i , s j ) = 

∑ 

l∈L 
f l · v l s i · v l s j (31)

Hence the average service interval is 

Ī s i ,s j = 

T 

F (s i , s j ) 
(32)
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Fig. 9. Railway corridor of Shanghai–Nanjing high-speed railway (Source: https://en.wikipedia.org/wiki/Shanghai%E2%80%93Nanjing _ intercity _ railway) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the regularity deviation for the OD from s i and s j can be obtained by Eq. (33) and the average regularity condition of

the timetable by (34) . 

R (s i , s j ) = 

1 

F (s i , s j ) 

F (s i ,s j ) ∑ 

τ=1 

| I τ,τ ′ 
s i ,s j 

− Ī s i ,s j | 
Ī s i ,s j 

(33) 

R = 

1 

N OD 

∑ 

s i ∈S 

∑ 

s j ∈S: i< j 

R (s i , s j ) (34) 

The first achieved V and R is marked as the best (minimal) objective value V 

∗ and regularity condition R ∗, and the upper

bound of frequency in the MF-LPP model is modified by f n max = F n −1 
max − 1 . Then we solve the model as in the previous steps,

and check whether the new obtained V and R are lower than V 

∗ and R ∗ respectively. If only one lower value occurs, V 

∗ or

R ∗ would be replaced by the corresponding lower value. If both V and R are lower than V 

∗ and R ∗, the iteration to the line

plan model would terminate. Then the timetable and line plan are achieved with the lowest existing V and R . Moreover, if

the lowest V and R could not be found until f max = 1 , we find the timetable with the total minimal 

M V R = 

V 

n − V 

∗

V 

∗ + 

R 

n − R 

∗

R 

∗ (35) 

This obtained timetable and the corresponding line plan could be treated as the optimal solution. 

4. Computational experiments 

In this section, a real network case in China is applied to verify the proposed approach for designing a better service plan

with shorter travel times, less capacity loss, high regularity and robustness. Fig. 9 illustrates the corridor layout of Shanghai

to Nanjing high-speed railway (Shanghai on the right side, and Nanjing on the left.), 14 stations (red dots) are taken into

account in our model, of which four major stations (big red dots) with technical facilities to be origin and destination of a

train line. Passenger OD demand is predicted flow data in 2015. 268 types of stop patterns are provided with maximal 9

stops and minimal 3 stops in the given line pool , which is based on the technical condition of stations, passenger demand

and time loss of all-stop line. The nominal period length is defined as 180 min (3 h) in this paper (after comparing with 2 h

and 4 h with sensitivity analysis of passenger travel time and seat occupancy). 

The values of the fixed parameters for the line planning model and timetabling model are depicted in Tables 5 and 6

respectively. Both optimization models are implemented using Matlab R2016b, Gurobi version 7.0.2, and the Yalmip toolbox

( Löfberg, 2004 ). 

4.1. Parameter calibration 

With both models elaborated in Section 3 , firstly, we need to calibrate the parameters in both objective functions. 

4.1.1. Weights in the MF-LPP model 

In the line planning model, the weight α for empty-seat-hour ( Z 1 ), 1 − α for the total travel time ( Z 2 ), and the weight β
for the number of lines ( Z ) need to be determined. 
3 

https://en.wikipedia.org/wiki/Shanghai%E2%80%93Nanjing_intercity_railway)


F. Yan and R.M.P. Goverde / Transportation Research Part B 127 (2019) 20–46 35 

Table 5 

Input parameters of line planning model. 

Parameter Initial value Value in iteration n 

Acceleration time loss t ac 2 min –

Deceleration time loss t de 1 min –

Seat capacity C 620 seats/train-set –

Weight of the number of lines β 300 –

Maximal optimization gap 3.5% –

Seat occupancy rate μ 0.85 0.85(1 ∗) 

Upper bound of frequency f max 100 F n −1 
max − 1 

∗ If no feasible timetable can be obtained from the initial optimization even with- 

out regularity and robustness constraints, it increases to 1. 

Table 6 

Input parameters of timetabling model. 

Parameter Value 

Minimal headway time h ij 3 min 

Maximal running time supplement rate θ 1.3 

Minimal dwell time 1 or 2 min 

Regularity tolerance ξ 0 min (initial),1 or 2 min (iteration) 

Maximal dwell time buffer ηij 2 h ij 
Maximal overtakings allowed O max 

l 
4 

Optimization gap 5.0% 

Computation time limitation 60 min 

Fig. 10. Variation curves for the model with objective of total empty-seat-hour Z 1 (yellow line) and passenger total travel time Z 2 (red line) for α ∈ [0, 1]. 

Left: Variation of objective values for α from 0 to 1; right: Correlation curve between passenger total travel time and empty-seat-hour (The corresponding 

value of α is displayed nearby the intersection point). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For α, we try to explore the correlation between empty-seat-hour Z 1 and the total travel time Z 2 by varying α from 0 to

1 (Interval: 0.05) with only these objectives. The left side of Fig. 10 illustrates the variation of the total objective value, total

travel time, total empty-seat-hour, and total train running time. It can be observed that Z 2 grows slightly from 0 to 0.15, and

almost remains the same between 0.15 to 0.55. Then with a marginal increase to 0.65, it turns relatively stable until α = 1 .

Z 1 has a remarkable fall from 0 to 0.2, and becomes almost steady between 0.2 and 1, except a slight decrease from 0.55

to 0.65. Meanwhile, the total train running time keeps identical after 0.2. The right side of Fig. 10 depicts the correlation

between Z 1 and Z 2 , and the values of α are shown nearby the intersection points. We could find that there are two main

centralized distribution groups. One group is the area with α ∈ [0.15, 0.55] where Z 1 is around 1.64 × 10 4 , and the other is

α ∈ [0.65, 0.95] with a higher value of Z 1 about 1.68 × 10 4 and almost the same Z 2 . For the purpose of line planning, a line

plan with lower total travel time and total empty-seat-hour is more attractive to both passengers and operators. Therefore,

α between 0.15 and 0.55 could be more reasonable for the line planning model. 

Now the interval of α is determined, we choose one value to calibrate β with all objectives. After obtaining β , we return

to check the feasibility of the selected α by implementing the whole model. For the sake of less disturbance compared to

the boundary value, 0.4 is selected for α in our model as it is almost in the middle of this interval. Fig. 11 displays the

variation of the objective related values when all objectives are considered. The left side of Fig. 11 reveals the changes of
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Fig. 11. Variation curves for all objectives. Left: Variation of objective values when α is 0.4 and β changes from 0 to 600; right: Variation of objective 

values when β is 300 and α changes from 0 to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the objective value, total empty-seat-hour Z 1 (yellow line), passenger total travel time Z 2 (red line), objective value of the

number of the line ( β · Z 3 ) (purple line), optimization time (green line), the number of lines Z 3 (blue line, right axis) and

the number of trains (dashed blue line, right axis) when β varies from 0 to 600 (Interval:50). Z 1 almost remains the same

with a slight rise from 0 to 100, and Z 2 increases from 0 to 150, and becomes stable afterward. To the opposite side, Z 3 
decreases to 7 from 0 to 150, then keeps constant. In addition, the number of trains is 25 during all the iterations, and in

general, the optimization time has a tendency to rise when β becomes larger even though it fluctuates. Thus, [200, 450]

can be summarized as a reasonable interval of β . In this paper, we choose 300 in the model. Then we verify the feasibility

of both values by varying α from 0 to 1 again, illustrated in the right side of Fig. 11 . It shows that Z 1 , Z 2 , and Z 3 (as the

value of line number equals β · Z 3 ) are all in the stable area when α equals 0.4. To sum up, the weight parameters in the

line planning model are calibrated as α = 0.4 and β = 300 . 

4.1.2. Weights in the MP-TTP model 

In the train timetabling model, three objectives are introduced: passenger travel time, timetable robustness, and the

number of dwell time stretches. Due to the huge magnitude difference among the objective values, reasonable weights need

to be calibrated to apply for the case study. Scaling the activities of passenger travel time and timetable robustness could

lead to the same order of magnitude of all objectives, which makes it easier to assign weights. Hence, our MP-TTP model is

reformulated as 

Minimize 

3 ∑ 

i =1 

ω i · V i (36) 

V 1 = 

∑ 

(i, j) ∈A run ∪A dwell 

λi j · (π j − πi + z i j · T ) 

N run + N dwell 

(37) 

V 2 = 

∑ 

(i, j) ∈A infra 

δi j 

N infra 

(38) 

V 3 = 

∑ 

(i, j) ∈A dwell 

y i j (39) 

V 1 and V 2 is the scaled value of passenger travel time and timetable robustness, and V 3 is the number of dwell time

stretches. N run , N dwell and N infra stand for the number of run activities, dwell activities, and infra activities respectively.

We assume λij equals one in order to compare travel time, dwell time and time supplement with different line plans. 

As there are three objectives, we choose to find the correlation between V 1 and V 3 first. The left of Fig. 12 illustrates the

variation of V 1 , V 2 , and V 3 when ω 1 changes from 0 to 1 and ω 3 = 1 − ω 1 . When ω 1 = 1 , V 3 becomes 80 at this point. It can

be observed that V 1 and V 3 are not sensitive when ω 1 ∈ [0.1, 0.8], and have an obvious variation from 0.8 to 1. Meanwhile,

V 2 changes quite irregular, as it represents the headway deviation of half period length for all infrastructure activities, which

is not quite stable when searching for solutions without taking it into account. The aim of this model is to find a timetable

with less travel time and best robustness, with the least dwell time stretches. Therefore, the weight for each of the objectives

could not be too big to balance the objectives. Considering the non-sensitive area of V 1 and V 3 , and the change tendency of

V , we choose ω as 0.7 , and ω would be the 0.3 accordingly. The right of Fig. 12 shows the variation of V for ω from 0
3 1 3 2 2 
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Fig. 12. Variation curves for model with objective of V 1 and V 3 for ω 1 from 0 to 1. Left: Variation of all objective values for ω 1 from 0 to 1; Right: Variation 

of V 2 with ω 2 from 0 to 1 and selected ω 1 and ω 3 . 

Table 7 

Initial optimized values of line planning model. 

Obj val Z 1 Z 2 Z 3 #line #train Max freq #stop Av occup Opt time Opt gap 

14,586.06 6149.2 16,710.63 2100 7 25 14 92 73.16% 1828.47s 1.9% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to 1 with previous selected ω 1 and ω 3 . V 1 , V 2 and V 3 are totally stable from 0.12 to 0.7, and they all have some fluctuation

from 0 to 0.11. Hence, 0.2 is chosen for ω 2 which is in the stable area and nearby the sensitive area. Moreover, with these

selected weights, all three objectives would vary in close values. 

4.2. Case study 

The MF-LPP model and MP-TTP model will be tested in this section with the determined parameters. Using the frame-

work of Section 3.4 to find a solution for the given network. 

4.2.1. Line plan 

Since α and β are selected, an initial optimized line plan can be computed. Table 7 reports the obtained objective value

(Obj val), total empty-seat-hour ( Z 1 ), total passenger travel time ( Z 2 ), total value of the line number ( Z 3 ), the number of lines

(#line), the number of trains (#train), maximal frequency (Max freq), the number of stops (#stop), average seat occupancy

(Av occup), and optimization gap (Opt gap). The seat occupancy for line l between station s m 

and s m +1 ( s i ∈ S l ), and the

average seat occupancy for line l could be obtained by the following formulas respectively: 

γ s m ,s m +1 

l 
= 

∑ m 

i =1 

∑ N l 
j= m +1 

q l s i ,s j 
C · f l 

γl = 

∑ 

s i ,s j ∈S l : i< j q 
l 
s i ,s j 

· b s i ,s j 

C · f l · b l 

where b s i ,s j and b l represent the distance between station i and station j , and the total travel distance of line l respectively.

Hence, for a line plan, the average seat occupancy rate can be calculated by 

Av occup = 

∑ 

l∈L γl · f l ∑ 

l∈L f l 
With the optimization model, seven lines are selected from line pool with a total number of 25 trains, and the maximal

line frequency is 14. In total, 92 stops are achieved to provide alighting and boarding services for all passenger ODs on

stations between origin and destination. The average seat occupancy of this line plan is 73.16% which is quite high with

consideration of the designed maximal rate 85.0%. Table 8 gives the achieved line plan with the line number from the

line pool, stop patterns (The number represents the order of the corresponding station along the corridor), corresponding

frequency and average seat occupancy. Three lines have a frequency more than one, line 11 has the maximal frequency of

14 with seat occupancy 71.75%. Fig. 13 depicts the correlation between passenger flow and stop frequency at each station,

where the passenger flow includes both arrival and departure passengers due to the symmetry passenger flow assumption.

It indicates that the stop frequency follows the variation of passenger flow. 
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Fig. 13. The correlation between passenger flow and stop frequency at each station. 

Table 8 

Initial line plan. 

Line number Lines (stop patterns) Frequency #Stop Av occup 

1 1- 4- 6- 8 3 2 79.68% 

11 1- 6-10-11-14 14 3 71.75% 

127 1- 3- 4- 8-12-14 4 4 80.20% 

94 1- 4- 5- 6- 9-10-12-13-14 1 7 59.64% 

124 1- 3- 5- 7- 8-10-11-13-14 1 7 54.53% 

215 1- 2- 4- 6- 7- 9-11-12-14 1 7 77.64% 

266 1- 2- 3- 5- 6- 8- 9-10-14 1 7 72.74% 

Table 9 

Settings of optimization model. 

#Integer variable #Binary variable #Continuous variable #Constraint 

3486 7653 7586 56,240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Timetable 

With the obtained line plan, the extended PESP model is applied. Table 9 indicates the size of the model by the number

of variables and constraints. As mentioned in Section 3.4 , a feasible solution might not be found until the given computation

time limitation if the model size is big or some constraints are too strict. When all objectives and constraints are applied in

this model, an infeasible solution is returned. Therefore, we optimize the model using in the framework of Fig. 8 . 

First, we solve PESP-PTT to check whether the seat capacity is enough. A feasible timetable is achieved, as shown in

Fig. 14 . Each color represents a certain train stop pattern, where the black lines are the train line with the maximal fre-

quency. As robustness and regularity are not included, trains of the same line always departure successively with the mini-

mal headway interval. Second, PESP-REG is applied with the initial regularity tolerance ξ = 0 and optimization gap of 100%,

and an infeasible solution occurs. By relaxing ξ = 1 still no feasible solution exists. When updating ξ to the upper bound

two, a feasible solution is found, as displayed in Fig. 15 . With this solution as the initial solution, the PESP-MP model is

solved. The time-distance diagram of the optimized timetable is depicted in Fig. 16 , and the results are shown in Table 10 ,

including the objective value, the value of the three objectives ( V ), V 1 , V 2 , V 3 , passenger travel time (PTT), timetable ro-

bustness (TRO), the number of overtakings (NOV), the average dwell time (T dwell ), regularity indicator ( R ), optimization

gap and time. By comparing the three timetables, it can be identified that PESP-PTT could result in the least travel time,

but with the worst regularity and robustness. PESP-MP has better robustness and fewer overtakings compared to PESP-

REG ( ξ = 2 ), but with certain travel time and regularity increase. In Fig. 15 , the red rectangular boxes display the extra
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Fig. 14. Time-distance diagram of a feasible timetable of PESP-PTT for the initial line plan. 

Fig. 15. Time-distance diagram of the optimized timetable of PESP-REG for the initial line plan. 

Table 10 

Results of optimized timetables of three PESP models for the initial obtained line plan. 

Model ξ Obj V V 1 V 2 V 3 PTT TRO NOV T dwell R Opt gap Opt time 

PESP-PTT 0 4.02 15.05 5.74 55.16 0 2291 384,598 0 1.63 63.42% 0.00% 4.37 

PESP-REG 2 8.81 17.44 6.15 43.16 13 2454 300,919 15 2.41 21.53% 54.35% 104.39 

PESP-MP 2 17.20 17.20 6.25 43.15 12 2492 300,856 14 2.39 21.68% 43.57% 3600.04 

 

 

 

 

overtaking compared with Fig. 16 and the dwell time stretches without overtaking. For the overall objective, the timetable

from PESP-MP is better than PESP-REG with a lower V = 17 . 20 . In general, in order to find a feasible timetable for the

initial line plan, we have performed feedback loop 6 ©→ 7 ©→ 8 © (circled numbers are shown in Fig. 8 ) twice sequentially,

while following the mainstream in the framework. To be specific, the path for this iteration from the very beginning is

1 © → 2 © → 5 © → 6 © → 7 © → 8 © → 6 © → 7 © → 8 © → 10 © → 11 ©. 
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Fig. 16. Time-distance diagram of the optimized timetable of PESP-MP for the initial line plan. 

Table 11 

Iterative results of line plans from the MF-LPP model. 

n Obj val Z 1 Z 2 Z 3 Train time F max # line # train # stop Av occup Opt time Opt gap 

1 14,586.06 6149.20 16,710.63 2100 2291 14 7 25 92 73.16% 1828.47 1.92% 

2 14,603.58 6179.25 16,719.80 2100 2296 13 7 25 93 73.09% 1663.46 1.93% 

3 14,631.79 6169.15 16,773.55 2100 2301 12 7 25 94 72.72% 2884.06 1.72% 

4 14,677.25 6171.75 16,847.58 2100 2310 11 7 25 95 72.74% 2572.14 1.98% 

5 14,699.21 6165.55 16,888.32 2400 2319 10 8 25 97 72.68% 2713.41 1.99% 

6 14,712.59 6181.05 16,900.28 2100 2316 9 7 25 97 73.24% 2695.08 1.82% 

7 14,752.30 6254.80 16,917.30 2100 2335 8 7 25 101 72.68% 2195.98 1.85% 

8 14,822.02 6189.65 16,576.93 2400 2291 7 8 25 92 72.90% 2279.57 1.97% 

9 14,894.82 6183.55 16,702.33 2400 2301 6 8 25 95 72.62% 2297.31 1.97% 

10 15,057.82 6252.80 16,927.83 2400 2327 5 8 25 102 72.72% 10,168.69 1.99% 

11 15,173.79 6196.65 16,658.55 2700 2299 4 9 25 94 72.72% 2863.07 2.00% 

12 15,429.16 6358.55 16,976.23 2700 2347 3 9 25 106 72.72% 808.10 1.98% 

13 16,417.21 6133.28 16,773.17 3900 2302 2 13 25 99 73.85% 3941.65 2.00% 

14 19,732.89 6027.93 16,369.53 7500 2247 1 25 25 86 73.29% 31.90 1.93% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. Iteration results 

As discussed in Section 3.4 , we use an iterative method to find the optimal solution with the given network and passen-

ger demand. Table 11 describes the iterative MF-LPP results when the maximal frequency f max changes from 14 to 1, and

Table 12 lists the TTP optimization results of PESP-MP with the corresponding line plans. Since model constraints are similar

as unimodular matrix, we found that the solutions for event times are all integer even though defined as continuous vari-

ables. The double horizontal lines in both tables indicate the termination iteration as the optimal solution is found. The low-

est objective value ( V = 13 . 82 ) and regularity indicator ( R = 18 . 82% ) appear in iteration 3, and the corresponding line plan is

depicted in Table 13 and the time-distance diagram is shown in Fig. 17 . The iterative path for finding this optimal solution

is as following: 1 © → 2 © → 5 © → 6 © → 7 © → 8 © → 6 © → 7 © → 8 © → 10 © → 11 © → 12 © → 13 © → 4 © → 1 © → 2 © → 5 © → 6 © →
7 © → 8 © → 6 © → 7 © → 8 © → 10 © → 11 © → 14 © → 15 © → 16 © → 17 © → 4 © → 1 © → 2 © → 5 © → 10 © → 11 © → 14 © → 20 © (circled num-

bers shown in Fig. 8 ). The stop patterns in iteration 3 are the same as iteration 1 except a frequency decrease of two

for line 11 and an increase of two for line 127. The time related objective variation in both MF-LPP and MP-TTP from iter-

ation 1 to 3 is illustrated in Fig. 18 . The objective values from the MF-LPP model changed in the MP-TTP model, and the

variation tendency is also different. In the MF-LPP model, the passenger weighted total travel time and train running time

increase due to the updated frequency constraint, with a largest overall objective value in iteration 3. All three values grow

in iteration 2 and drop to smaller values in iteration 3. Hence, the integration of the LPP and TTP is quite important to find

a more efficient timetable as only minimal running times are considered in LPP without infrastructure constraints. The best

line plan might have the worst timetable performance. 
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Table 12 

Iterative results of timetables from the MP-TPP model. 

n ξ F max Obj(V) V 1 V 2 V 3 PTT TRO NOV T dwell R Opt gap M VR 

1 2 14 17.20 6.25 43.15 14 2492 300,856 12 2.39 21.68% 43.57% 51.21% 

2 2 13 15.24 6.37 43.42 7 2547 302,709 7 1.97 25.02% 35.82% 53.46% 

3 0 12 13.82 6.15 43.07 3 2466 300,315 3 1.82 18.82% 17.32% 9.27 % 

4 2 11 16.84 6.15 43.20 13 2472 301,189 10 2.35 19.06% 42.43% 34.48% 

5 2 10 15.95 6.17 43.19 10 2491 301,102 9 2.22 20.73% 40.19% 36.31% 

6 0 9 14.20 6.22 43.21 4 2513 301,294 4 1.88 20.74% 20.81% 22.48% 

7 0 8 22.73 6.38 43.33 32 2602 302,084 13 3.11 21.33% 54.43% 93.10% 

8 1 7 21.15 6.31 43.18 27 2518 301,034 8 3.01 20.92% 55.71% 78.45% 

9 2 6 16.69 6.29 43.47 12 2527 303,064 6 2.33 23.82% 46.37% 58.61% 

10 1 5 21.31 6.50 43.29 27 2660 301,810 16 2.82 22.47% 60.40% 87.92% 

11 0 4 21.39 6.22 43.16 28 2495 300,887 12 2.78 19.89% 53.80% 74.79% 

12 0 3 12.65 5.70 43.27 0 2356 301,674 0 1.55 20.93% 27.58% 11.21% 

13 0 2 15.24 6.04 43.06 8 2460 300,240 2 1.89 38.49% 50.53% 125.07% 

14 0 1 14.74 6.10 52.37 0 2402 365,102 0 1.57 48.06% 65.43% 171.96% 

Table 13 

Line plan of iteration 3. 

Line number Lines (stop patterns) Frequency #Stop Av occup 

1 1- 4- 6- 8 3 2 73.44% 

11 1- 6-10-11-14 12 3 74.04% 

127 1- 3- 4- 8-12-14 6 4 74.91% 

94 1- 4- 5- 6- 9-10-12-13-14 1 7 60.17% 

124 1- 3- 5- 7- 8-10-11-13-14 1 7 50.11% 

215 1- 2- 4- 6- 7- 9-11-12-14 1 7 76.64% 

266 1- 2- 3- 5- 6- 8- 9-10-14 1 7 72.83% 

Fig. 17. Time-distance diagram of timetable from iteration 3. 

 

 

 

 

 

 

 

 

Fig. 19 shows the variation of objective values in TTP from iteration 1 to 3, including the overall objective value ( V ),

average travel time ( V 1 ), average robustness ( V 2 ), the number of dwell time stretches ( V 3 ), the number of overtakings (NOV),

regularity condition, and the optimization gap. It can be identified that the overall objective value, and regularity both

achieved the lowest value in iteration 3. The values of V 1 and V 2 do not vary too much, and V 3 also comes to the lowest in

iteration 3, as well as the optimization gap. Moreover, it also indicates that dwell stretches could represent the overtakings

from the slight difference between V 3 and NOV. 

In order to verify our method, we also computed all of the remaining iterations and found the lowest objective value

( V 

∗) and regularity indicator ( R ∗). Meanwhile, M VR is calculated from Eq. (35) after all iterations were completed, as shown

in the last column in Table 12 . It can be discovered that iteration 3 is still the best solution with the lowest M , even
VR 
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Fig. 18. Time related value changes of both MF-LPP and MP-TTP models from iteration 1 to 3. The solid lines represent values obtained from the MF-LPP 

model, while the dashed lines are from the MP-TTP model. (In order to make variation more obvious, total empty-seat-hour and total train running time 

are multiplied by 2.5 and 8 respectively). 

Fig. 19. Objective value variation of the TTP from iteration 1 to 3. Lines in light blue color use the right axis, the other use the left one. (In order to make 

variation more obvious, average robustness V 2 is divided by 5). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

though a lower V = 12 . 65 occurs in iteration 12. In the optimal solution, R and the optimization gap are the overall lowest;

the timetable robustness and average dwell time are the second lowest. 

For all iterations of LPP and TTP, most objective values change without convergence. However, we observed that the

number of overtakings (NOV) almost has the same fluctuation as the overall objective value of TTP, seen in Fig. 20 . Mean-

while, M VR also follows the same variation except the last iteration. This means that the number of overtakings plays an

important role in the final timetable result. Moreover, a timetable in which the maximal frequency (shown in the upper

X-axis in Fig. 20 ) is a divisor (i.e., 12, 10, 9...) of the period length 180 min has a lower overall objective value, NOV, and

M VR (except iteration 14), especially when the maximal frequency is a multiple of three (see the corresponding frequency

of dashed vertical lines). The best solution we found has a frequency of 12. This is the reason that we defined the regular-

ity interval in the regularity constraints to be an integer. This indicates that the extended period length T also affects the

timetable optimization. 
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Fig. 20. The overall objective value of TTP, the number of overtaking (NOV), the number of lines, regularity and M VR variations within all iterations. 

Regularity and M VR are depicted by purple lines with right axis, and the upper X-axis represents the maximal frequency corresponding to the iteration on 

lower X-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 14 

Line plan of iteration 12. 

Line number Lines (stop patterns) Frequency #Stop Av occup 

1 1- 4- 6- 8 3 2 73.44% 

8 1- 6-11-12-14 3 3 76.48% 

17 1- 6- 7- 12–14 3 3 84.83% 

35 1- 5- 8- 9–14 3 3 84.89% 

94 1- 4- 5- 6-9-10-12-13-14 3 7 47.64% 

130 1- 3- 4- 8- 10–14 3 3 80.76% 

192 1- 2- 4- 7- 8- 10- 11-13-14 3 7 48.95% 

255 1- 2- 3- 8- 12–14 3 4 84.79% 

268 1- 2- 3- 5- 6- 7- 9-11-14 1 7 72.69% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, both MF-LPP and MP-TTP are designed to have both periodic and aperiodic pattern, so we compare our

approach with both patterns to validate the model. Iteration 12 with maximal frequency of three, has almost the same

frequency of each line which could be treated as a periodic pattern with cycle time one hour, except for one extra train

per 3 h, as seen from the line plan and timetable in Table 14 and Fig. 21 respectively. Iteration 14 is a totally aperiodic

pattern since the maximal frequency is one. Fig. 22 depicts the layout of this timetable, with some train departures with

small headways resulting in several big time windows. 

By comparing the three time-distance diagrams, it can be directly observed that Fig. 17 (iteration 3) has a better regu-

larity, and this also can be verified by the value of R in Table 12 with 18.82% being less than 20.93% and 48.06%. The left

of Fig. 23 displays the objective values of iteration 3, 12 and 14 from the MF-LPP model. It can be found that iteration 14

has the lowest (best) Z 1 , Z 2 , train running time and the number of stops, and iteration 12 has the highest of all. The values

from the optimal solution are in-between. Meanwhile, the optimal solution has four lines with frequencies of one and three

lines with frequencies larger than two. This indicates that our model could achieve a multi-periodic pattern with a certain

increase of the objective values compared with the aperiodic pattern, but much lower than the periodic pattern. Moreover,

iteration 12 is the second optimal solution in our case, and it has almost totally different stop patterns with respect to iter-

ation 1 and 3. This means that the best line plan depends on a set of lines, and it is difficult to prove that a certain line has

a high quality. For the almost periodic solution 12, several lines have almost the highest seat occupancy rate with parameter

u = 85% , and the ones with many stops have quite low values due to dwell time loss. Only one line has a frequency of one,

indicating that the objective for the number of lines and the upper bound frequency constraint in the MF-LPP could help to
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Fig. 21. Time-distance diagram of timetable from iteration 12. 

Fig. 22. Time-distance diagram of timetable from iteration 14. 

 

 

 

 

 

 

 

 

 

 

equalize the frequency of lines. Therefore, we conclude that the MF-LPP model can provide a line plan with both periodic

and aperiodic natures with reasonable objective values. 

The right of Fig. 23 depicts the objective values of iteration 3, 12 and 14 from the MP-TTP model. It could be identified

that our optimal solution has the best regularity and timetable robustness, whereas iteration 14 has the worst of both. The

lowest total travel time, as well as average dwell time (T dwell in Table 12 ), occurs in iteration 12, which is the opposite result

with the LPP. These can be explained by two reasons. One is that regularity constraints could help to spread train lines in

the whole period (improve robustness) but need more time supplement (increase travel time) to be satisfied, especially for

multiple frequencies. The other is that the objective of robustness could increase time supplement, which leads to higher

total travel time in iteration 14. This implies that the multi-periodic timetable from our MP-TTP could acquire better ro-

bustness and regularity than either a periodic and aperiodic timetable with a certain increase of total travel time. Note that

our approximate periodic timetable has one extra aperiodic train, so the comparison result is a bit different from the full

periodic case: best regularity of periodic pattern and least travel time of aperiodic pattern. 
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Fig. 23. Comparison of objective values of iteration 3, 12 and 14 from MF-LPP (left) and MP-TTP (right). (In order to make the variation more obvious, 

timetable robustness is scaled by a factor of 1/110). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

This paper presented an MF-LPP model with consideration of passenger travel time, empty-seat-hour, the number of lines

and frequency bounds within the extended cycle time. A corresponding MP-TTP model was proposed taking into account

passenger travel time, timetable regularity, timetable robustness and the number of overtakings. Both models help to find

a plan of both periodic and aperiodic nature that performs better for strongly heterogeneous lines. The multiple frequency

constraints and the number of lines in the objective of MF-LPP control that the number of lines does not increase too much

to have a more balanced frequency of each line. The regularity constraints in MP-TTP ensure a regular interval of trains for

each train line, while the overtakings are used to find feasible timetables with acceptable capacity utilization of the rail

corridors. An iterative framework of line planning and timetabling has been designed to find an overall optimal solution,

with feedback loops for regularity constraints in TTP and frequency constraints to LPP from TTP. 

The MF-LPP model computes a multi-periodic line plan without the competitive total travel time and empty-seat-hours

compared to an aperiodic pattern. The MP-TTP model optimizes a multi-periodic timetable with better robustness than the

periodic timetable with an hour pattern. Moreover, the combined design of MF-LPP and MP-TTP with extended period length

could support rail transport planners to find a timetable with the best regularity and robustness. 

Future research will consider the trade-off between robustness and overtaking. Also, a Pareto front could be computed

to deal with multiple objective functions in the TTP, as it is quite difficult to calibrate reasonable weights for the objectives

with different perspectives as applied in Section 4.1 . Also, new approaches and measures for selecting the best timetable

could be an interesting topic since different situations have different requirements for timetables. 
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