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Abstract

Increasing online retail has resulted in increased automation in order picking systems, leading to new challenges and opportunities
in task scheduling. The job-shop scheduling problem is an optimization problem essential in such systems, but existing JSP litera-
ture often overlooks workplace fatigue, which harms employees’ well-being and costs U.S. employers up to €127 billion annually.
In this work, we propose fatigue consideration in the job-shop scheduling problem in a cobotic order picking system to mitigate its
negative effects. We present a new bi-objective mixed integer nonlinear programming problem formulation that considers worker
fatigue and productivity during schedule optimisation. To put the results of simulated optimisation in perspective, we experimen-
tally validate the fatigue model and scheduling results in a real operation. The mathematical model finds solutions that conventional
single-objective optimisation cannot, allowing fractional fatigue distribution improvements more than 4x larger than the decrease
in productivity they require in 53% of the considered virtual cases. The experiments show that our predictive fatigue model has
an average RMSE of 2.20 kcal/min in estimating energy expenditure rates compared to heart rate measurements. It also shows a
low correlation, meaning it is unfit for application. On the other hand, fatigue-conscious schedules show no clear benefit regarding
measured and perceived fatigue. However, the scheduling model could also use heart rate measurements that do not show these
inaccuracies. Our study highlights the need to further develop and validate the mathematical formulation and fatigue model and
extend to other human factors and indirect fatigue effects.
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1. Introduction

Retail is shifting its business away from traditional brick-and-mortar stores and into an online setting [6]. With labour
accounting for up to 55% of operational costs in order picking (OP), businesses are looking for new, more efficient
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ways to prepare customers’ orders [13]. By introducing automation in the OP process, retailers can increase their
productivity per labour hour, allowing them to fulfil a greater demand at reduced operational costs. In the online
grocery sector, which has seen increasing demand in recent years [22], automation is often only partially applied, and
reliance on humans continues to exist. One operational challenge in partially automated OP systems is a combinatorial
optimisation called the job-shop scheduling problem (JSP). In OP systems, the JSP describes assigning individual item
picks to employees, a picking station and a time while preparing an order in a unique sequence of steps [21]. Generally,
the objective is the total production time or makespan, but many other objectives exist [25]. Optimisation of the JSP
in a partially automated OP system comes with additional challenges, but also ways in which the automated resources
can support humans in ways previously impossible.

This work is part of a collaboration with an online grocery company. The conveyor network in company’s
OP system allows for flexible task assignment to order pickers (’shoppers’), who can also switch easily between
(work)stations. At the same time, there can be a larger imbalance in physical workload between employees than in
manual OP systems, as only a subset of items is located at each station. This storage location assignment (slotting)
can lead to large, heavy or large numbers of items being picked at one station, while other stations can have much
less physically fatiguing picking tasks. This fatigue affects employee well-being, productivity and the online grocer’s
chances of retaining shoppers.

Workplace fatigue can have costly effects on employers. Some studies estimate that the cost of fatigue-related

productivity loss in the workplace is as high as 127 billion euros per year in the U.S. alone [15]. Fatigue in the
workplace is a multidimensional construct in which we can identify external and occupational factors [20]. External
factors include outside work activities, sleeping disorders, climate and other personal factors, while occupational
factors are within the employer’s control and include shift work, long hours and overtime, time on task, workload
and break schedules. Not all occupational fatigue is completely avoidable, but it is possible to minimise the negative
implications on the design, organisational and operational level [21].
Considering human factors (HF), such as fatigue, in work environments can simultaneously improve productivity and
employee well-being [11]. HF are essential in a partial automation environment but generally not or insufficiently
considered in existing operations [24]. If HF are considered, this is often done using mathematical HF models on the
design level, such as workstation design [16, 23]. However, in existing facilities like the online grocers’ OP system,
this would require retrofitting the design level, which is not always possible and often expensive [10]. We also see that
the current operational decision-making methods do not allow fatigue consideration [23]. With the opportunities that
automation offers, cobotic’ OP systems - ones with active human-robot collaboration - could then actively consider
human fatigue development, mitigating its negative effects in operation [12].

In this work, we address this knowledge gap on occupational fatigue and the possibility of mitigating its negative
effects through operational decision-making. We aim to understand how can we simultaneously optimise worker
fatigue and productivity in the job-shop scheduling problem for cobotic order picking systems. We hypothesise that
fatigue consideration in the JSP can be achieved by implementing a quantitative fatigue model in the JSP formulation
and setting up a bi-objective optimisation with fatigue and productivity indicators. We expect predictive fatigue
models to show some inaccuracies but still allow for appropriate fatigue mitigation in scheduling. Also, we expect
fatigue-conscious schedules to lead to lower measured and perceived fatigue in real operations.

2. Related work on human factors in job shop scheduling

Implementing human factors in the JSP requires the relaxation of multiple assumptions from the basic model. Al-
though this JSP variant has not been addressed explicitly by [25], an increasing volume of literature has been published
in recent years. In Table 1, we present an overview of the implementation of HF in scheduling problems in the exist-
ing literature. The work by [19] combines learning, fatigue, recovery and motivation in a virtual job-shop scheduling
problem with a combined relative goal deviation objective. The authors make many simplifications in implementing
the HF models, resulting in an unrealistic version of the JSP. However, to our knowledge, they are the first to suggest
multiple objectives for JSP optimisation.

[1] dive into fatigue quantification using the principle of energy expenditure and review its usability in a storage
location assignment problem where both makespan and fatigue alleviation are considered. Their model does not



Berry Lance Vermin et al. / Procedia Computer Science 232 (2024) 635—644 637

Article | OPF JSP WTHE AV
[19] v v X X
[1] v X X X
[5] X X v X
[8] v X X v
[3] X v v v
Our Study | v v v

Table 1: Literature table of applicative HF in scheduling studies. OPF=Optimise Productivity and Fatigue, JSP=Job-Shop Scheduling Problem,
WTHE=Worker and Task Heterogeneity, AV=Applicative Validation.

apply worker heterogeneity but only differentiates EE rates between activities. Their approach looks promising for an
extension towards scheduling but requires real-life validation before application.

[5] and [8] both incorporate a combined fatigue-recovery model into a scheduling problem focusing on this practi-
cal application, of which the former includes worker and task heterogeneity and the latter considers multiple objectives
in a real case study. Finally, [3] incorporate fatiguing, heterogeneous worker (MAEE) and task attributes and three
different RA scheduling methods into a heuristic for DRC JSPs. This paper’s approach differentiates operations and
jobs regarding the fatiguing process. Since the individual, heterogeneous fatiguing process is captured in the recovery
time parameter, and there is no notion of workload or fatigue level, the paper does not allow employers to apply these
heuristics to their JSP with specific tasks and workforce characteristics. Apart from that, machine-learning approaches
considering wearable sensor data have been suggested to reduce human fatigue and stress in related problems [18, 17].

The literature review shows two main research gaps in the area:

e The existing methods that can estimate fatigue through energy expenditure require live bodily measurements or
have not been previously applied to or validated in settings with both worker and task heterogeneity.

¢ No existing works combine bi-objective optimisation of productivity and fatigue in a DRC JSP with worker and
task heterogeneity.

This work fills these research gaps by applying a personalised, predictive fatigue model to a mathematical JSP for-
mulation where real-life DRC OP system constraints are considered. Because this fatigue model has not yet been
validated in a similar setting, nor has they been applied to similar scheduling problems, there is a need for real-life
applicative validation of the fatigue model and resulting schedules.

3. Modelling approach

In this section, we present the selected fatigue model, followed by the mathematical JSP formulation that it was
applied to. Then, we discuss the optimisation approach.

3.1. Fatigue model

Before applying the RA model, we perform the task decomposition method by [9]. For the highly similar tasks that
shoppers do, this detailed task decomposition method is suitable for estimating the average EE rate during picking,
though this is still a simplification of the real world. Each body movement is coupled to a specific equation dictating
the energy expenditure of that task. For example, a two-arm lift with load L is represented by:

EE = 1072[0.062BW (h, — 0.81) + (3.19L — 0.52S - L) (hy — )] for 0.81 < hy < h» (1

with BW the body weight of the shopper, /i, the endpoint height of the lift, S the sex of the shopper and %, the
starting point height of the lift. The formulae from [9] have been adjusted to fit our specific situation, with standard
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assumptions for hj, hy and the pick displacement distance. Furthermore, we assume the floor is level, no pull or
pushing force is required during picking or placing, and the picking height is constant. Station switching energy and
energy spent waiting between picks are only considered in the experiments.

Each elemental movement is also estimated in terms of time, therefore allowing us to take the average EE during
the pick action. The personal characteristics, a pick speed parameter, different item weights and walking distances
ensure this calculation embodies both worker and task heterogeneity. The worker heterogeneity is also considered in
the calculation of EEp, also from [9], and MAEE calculation from [7] (see 2).

MAEE =0.0016 (60 — 0.55 - AGE) - BW) Men

2
0.0016 ((48 = 0.37 - AGE) - BW) Women @

3.2. Mathematical job shop scheduling formulation

In this section, we present a mathematical formulation for the scheduling problem.
Our mathematical model is based on the work by [3] and [26], but adds decision variables and constraints to improve
the completeness of their formulations. The resulting attributes and assumptions of this model are:

Set of shoppers process a unique set of order lines for a set of totes on a set of stations.
All information on shoppers, stations, totes and order lines is pre-known and fixed.
There are no due dates or different priorities between totes or order lines.
Order lines are specific items to be picked per tote, which can be any item in the assortment.
Any shopper can pick any order line, but only on a subset of stations.
Totes are independent of each other; order lines are not: they are subject to precedence constraints based on
pre-known item fragility categories.
7. An order line can be picked once, on only one station at a time; there is no interruption or preemption for picking.
8. Waiting is permitted between order lines.
9. Each order line has a specific processing time and rest allowance, both item- and shopper-dependent.
10. Order lines of the same tote cannot be picked simultaneously.
11. Rest allowance must be scheduled directly after picking an order line.
12. Shoppers can switch stations, which costs (travel) time.
13. Stations and shoppers only process one order line at a time and are independent.
14. No buffer, setup time, warehouse or machine availability constraints are considered.

AR e

Following the notation in Table 2, the mathematical model can be defined as follows:

Ciax — C EE, .. — EE
min  x—2E 0 4 (] -y e —T0 (3a)
Co EE,
s.t.  Chax = MmaXiey;jeJ; (C,"j) s (3b)
EEpqs =maxicr| Y 3" > EEju- @ijui|, (3¢)
keK jeJ; iel
Cij=8ij+ Z Z (pi,j,l + "i,j,l) @ikl (3d)
leL keK

Z Z @ijks = 1, Viel,je 3e)

leL keK
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D =1, vieljeJ, (30
leL keK;;
Sijy 2 Cij Broijj, Viel,jelJij eJi\{j} (g
Bro:ijj +Proij,j <1, VielijelJisj eJi\{j} (3h)
PBroijy =0, VielLj=j el (31)
Z Z [ﬂro:i,j,jf] +1= Z Z Z @i jkls Viel, €))
Jedi jedi leL keK jeJ;
> Broijy <1, VieljeJ, (3K)
Jedi
D Broipi<1, vieljeJ, (31
Jeli
Sijp2CijBstijijks Viji'el,jeJ;j elJikek, (3m)
Bstiijijk + Bstijijk < Z i jki Z Qi kl> VieLjelJsli',j/1e J\{li,j1,ke K, (3n)
leL leL
Bstiijirjx =0, VL, 1= j1€eJ, (30)
Z Z Z Z [ﬂST:i,j,i’,j’,k] +1= Z Z Z @i jk > Vk € K, (3p)
jely i'el jel; iel leL jeJ; i€l

Z Z Zﬁsr:i,j,i',_j',k <1, Viel;jel, 3q)

keK jeJy el

Z Z ZﬂST:i’,j’,i,j,k <1, Yiel;jel,, (3r)

keK jeJy el

Sy 2 |Cij+ Z Z Sk Vit kked | * BS He it jr s Viii eljel;jedJnlel, (3s)
keK k'eK
Bsw:i gyl + Bshi il < Z @kl Z it jr ks VieLjeJill',j1e J\{li,jl:l €L, (31)
keK keK
Bs:ijij1 =0, YL, 1= j1€eJ, (3w
22 2 2 D lBsmige i) v 1= 30 ) > e VIEL (3v)
jely el jel; iel keK jel; iel

Z Z ZﬁSH:i,j,i',j',l <1, Viel;jel, (Bw)

keK jely i'el

Z Z ZﬂSH:i',_/',i,j‘l <1, Viel,jel; (3x)

keK jely i'el

Yijir ke d = Z Z [,BSH:i,j,i',j',l ikl a’i',j',k’,l] ; Vi'eL,j €Jrke K;k' e K\{k};l€ L, (3y)
jeJi iel

Yijirjkkd =0, Yk =k €K, (32)

Bro.ijj - fij < fij Viel;j,j el (3aa)

Sij=20, Viel;je ], (3ab)

Qi jkds Brosij,j>BsTiijir,j ko Bs Heisjir, b Yijirjdied €0,1Y, Yi,i' eljeJisje Jp kK e K;le L. (3ac)

Here (3a) is the bi-objective to minimise, a combination of C,,,, and EE,,,, coupled by weight parameter x. This
objective is a weighted sum with fractional single-objective deviation. There are better methods to investigate the
trade-off between two objectives, but this method allows estimation of a Pareto front without many repetitions of
the optimisation, which is especially relevant for NP-hard problems [14, 2]. The two objectives Cy,,x and EE,,,, are
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Notation Description

1,1 Tote index

»isJ Order line index

kKK Station index

Lr Shopper index

1 Set of totes

J Set of order lines per tote, J; is a set of all order lines for tote i

Jij Jjth order line of tote i

K Set of stations

K;; Set of stations where order line J; ; can be picked

L Set of shoppers

Cij Completion time of order line J; ;

Crax Maximum completion time, makespan

EE, 4 Maximum sum of required energy expenditure for all individuals
Parameters

Co Optimal value for Cy,,, if only optimising for C,,,, (or x = 1)

EE, Optimal value for EE,,,, if only optimising for EE,,,, (or x = 0)

EE; Energy expenditure for order line J; ; when shopper / is executing it

fij Item fragility category of order line J; ;

Dijl Processing (picking) time of order line J; ; when shopper [ is executing it
Tijl Recovery time for shopper [ after picking order line J; ;

Stk Switching time between station k and &’

by Bi-objective weight parameter

Decision variables

Sij Starting time of order line J; ; (sec.) measured from start of operation (¢ = 0)
@i jk; € (0,1} 1 if station k and shopper [ are selected to process order line J; ;, 0 otherwise
Bro:ijy €10,1} 1 if tote i order line J; ; is performed right before J; j, O otherwise

Bst.ijijpx €10,1}  1if order line J; ; is performed right before J; ; on station k, 0 otherwise
Bsuiji.jg €1{0,1}  1if order line J; ; is performed before J; ; by shopper I, 0 otherwise
Yiji.j ki € 10,1} 1if shopper [ moves from station k to k’ to pick order line Jy j after picking J; ;, 0 otherwise

Table 2: Notations, parameters and decision variables for the DRC JSP formulation with fatigue consideration.

defined in (3b) and (3c). (3d) calculates the value of auxiliary variable C; ;. Constraint (3e) ensures every order line is
executed once by one shopper and on one station, while (3f) specifies the subset of stations where this can be done.

Constraints (3g)-(31), (3m)-(3r) and (3s)-(3x) are sequencing constraint sets on three different levels with high
similarity: tote, station and shopper. First, (3g) ensures no two order lines belonging to the same tote can be picked
simultaneously, no matter which station and shopper are involved. Therefore, the starting time of that tote’s order line
picked next is at least the completion time of the previous one. Constraints (31)-(31) then define sequence decision
variable Br¢. Second, (3m)-(3r) ensure the same as (3g)-(31), but on the station level and with the notion that the
order lines are indeed picked at that station. Third, (3s)-(3x) do this on the shopper level, thereby switching the roles
of k, K and /, L. One extra addition is the station switching time sy, for which we require (3y) and (3z) to define
switch decision variable y. Finally, (3aa) ensures that order lines within one tote are picked in the order of the fragility
category, and (3ab) and (3ac) define the types of the decision variables.

4. Experimental study

We perform experiments to validate the fatigue model and the resulting schedules simultaneously. The experiments
are done during normal picking operations in the online grocers’ OP system, a real-life facility still in ramp-up.
This can cause demand fluctuations and disturbances that require constant monitoring, therefore allowing only two
participants to be tested at once. The participants are healthy employees familiar with the OP system (> 1 month of
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Deviation form Optimal EE max

0% 5% 10% 15% 20% 25% 30% 35% 20% 0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%
Deviation from Optimal Makespan Deviation from Optimal Makespan

Fig. 1: Two different shapes for the Pareto front estimate without globally optimal solutions.

experience), so learning effects are minimised. The mathematical model includes worker heterogeneity, so we try to
include this in the data as much as possible. Therefore, we randomly select shoppers from the working schedule a day
before the tests and ask them to participate. We expect 20 participants to be sufficient to represent the variance in the
entire employee pool.

4.1. Scheduling and optimization experiments

We solve the presented MINLP using SCIP, or Solving Complex Integer Problems. SCIP uses a spatial branch-
and-bound algorithm with linear relaxations. This allows the solver to find global optima for non-convex MINLPs
[4]. SCIP version 8.0.3 was installed on Windows Subsystem for Linux and executed on an Intel 10700F octa-core
2.9/4.7GHz processor with 16GB DDR4 RAM.

Because of our exact solver, we only run small virtual problem instances through our scheduling model. We find
globally optimal solutions within 6000 seconds of run time until the number of decision variables exceeds roughly
2,500. This is already the case for problem instances with 3 totes, 3 order lines per tote, 3 stations and 2 shoppers, a
problem size tiny in comparison to real-life problem sizes. However, even for these small problems, we can identify
some key outcomes of our developed approach.

Larger problem instances, which have more decision variables and thus more degrees of freedom in scheduling, are
seen to deliver more feasible solutions in optimisation, but these solutions are not guaranteed to be globally optimal. In
general, this means there are no solutions that can be guaranteed to be Pareto-optimal. If we only look at the solutions
that are not dominated by any other known solution - meaning they could be non-dominated, but cannot be guaranteed
as such - we can also estimate the Pareto front in this case, as shown in Figure 1. However, the front can be drawn in
multiple ways, even in a concave shape.

4.2. Empirical fatigue model experiments

First of all, men and women of different ages are evenly represented in our population sample. Also, their heart rate
records show no remarkable anomalies in comparison to population databases. Predicted EE; and MAEE values vary
between participants. We also see that EER and EE,,4.rs (for the same order data) increase slightly with the MAEE,
but that the MAEE values tend to relatively exceed these by a larger margin for higher MAEE and that these relations
differ per individual.
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Figure 2 shows visually the distribution and relative relation between the different estimates for EE. Generally, we
see that the individuals that are below the median in one of the box plots are also below the median in the others and
vice versa, especially when comparing EE ks and EE,gers.

Energy Expenditure Rate [kcal/min]
w

Picks Orders Heart Rate
Estimation method

Fig. 2: Three interconnected box plots representing the average values from the different estimation methods. Each line represents one individual
during the tests.

As we treat EEyg as the most accurate estimate of the energy expenditure rate in these circumstances, we evaluate
the accuracy of EE ,;40rs and EE picks Dy comparing their estimates to this value. For EE ,4ers, this results in a root
root-mean-square error (RMSE) of 1.14 kcal/min, while E.Epicky has an RMSE of 2.20 kcal/min. These values are in
agreement with the visual representation in Figure 2.

5. Discussion

Even though our methods only allow for a few unique non-dominated solutions to be found, we are able to improve
the energy expenditure distribution in comparison to single-objective optimisation solution ’Cy’. This choice would
depend on managerial insights, but the steep Pareto front line pieces that we found indicate considerable potential for
implementation. This is in accordance with our hypothesis.

The results of the empirical study show a good selection of participants for this study. Also, the differences and
relations between MAEE, EEg and EE,,4.rs show the value of fatigue-conscious scheduling, also highlighting the
importance of our personalised fatigue modelling approach over the assumptions made by [1]. However, our predictive
fatigue model shows large inaccuracies in estimating the fatigue throughout all experiments. This is the case on a shift
level but also for 10-minute intervals. A first valid suspicion could relate these inaccuracies to the highly volatile pick
demand, but our results show no clear relation between the pick demand and estimation accuracy. This contradicts our
expectations of the estimation method’s performance.

Shoppers do much more than just order picking, such as pallet loading, cleaning and opening boxes. We estimate
that about 25% of the shift is not spent according to our task decomposition description. However, the task intensity of
the other tasks, we believe, is similar to that of picking. This would explain the better estimations of EE yrders, as this
assumes a continuous picking workload. Furthermore, lots of operational challenges occurred during the experiments,
such as system downtime and shopper reassignment, troubling the experimental circumstances.

These factors could also have influenced the schedule validation results, where we see no clear differences between
scenarios or the two groups of participants in terms of EEpg or the qualitative fatigue ratings. Therefore, we cannot
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conclude that the positive results from our modelling study immediately translate to real-life applications.

6. Conclusion

Increasing automation in the work environment can offer new solutions to the operational challenges in partially
automated OP systems. Although methods exist to quantify fatigue and consider it in a scheduling context, these
still need to find their way into real-life applications. This work presents a detailed formulation for the job-shop
scheduling problem in a robotic order picking system, considering physical workload distribution and total makespan
simultaneously. Thereby we bridge the gap between theoretical scheduling problem approaches and operational reality
in the context of human fatigue. Our work establishes the first steps towards human fatigue consideration in scheduling
for real-life operations.

e We find that energy expenditure-based fatigue models can best be applied in scheduling problem formula-
tions. In combination with the rest allowance principle, this allows for a personalised approach to fatigue in a
scheduling context. The applied predictive fatigue model allows for detailed task decomposition without prior
measurements, able to evaluate energy expenditure requirements for various tasks. This is in accordance with
our hypothesis.

e Our modelling study shows that the proposed bi-objective JSP formulation can successfully generate sched-
ules for partially automated OP systems while considering fatigue and productivity. As expected, the results
are promising for application, although our results are limited to small problem instances. We argue that the
mathematical formulation could benefit from a different solution approach, without the need for reformulation.

e Our empirical study shows that the applied predictive energy expenditure model was inaccurate in estimating
energy expenditure rates in a real operation and that heart rate sensors are a more viable approach at this time.
Also, we find no significant changes in measured or qualitative fatigue after applying the generated fatigue-
conscious schedules, in contrast with the results from the modelling study. Both results are in contrast with our
expectations prior to this research and offer opportunities for further research.

These findings have practical implications for scheduling in real-life operations, providing management with alter-
native schedules that consider productivity and employee physical strain. This work sets the first steps towards human
fatigue consideration in scheduling for real-life operations and opens up avenues for further research in this field.
This work has several limitations, which we summarise with accompanying suggestions for future research: The exact
optimization model does not yield solutions for large-scale instances. Appropriate bi-objective heuristics may help
gain a better understanding by considering more realistic problem sizes. We choose to model energy expenditure, the
precursor of fatigue, and therefore not fatigue itself. Other ergonomic models may better approximate human fatigue.
Moreover, the conducted real-word experiment was also limited in size and should be validated with more participants
under varied conditions.
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