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Effect of particle inertia on turbulence in a suspension

Victor S. L’vov,1,* Gijs Ooms,2,† and Anna Pomyalov1,‡
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We propose aone-fluidanalytical model for a turbulently flowing dilute suspension, based on a modified
Navier-Stokes equation with ak-dependent effective density of suspensionreff(k) and an additional damping
term }gp(k), representing the fluid-particle friction~described by Stokes law!. The statistical description of
turbulence within the model is simplified by a modification of the usual closure procedure based on the
Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term.
The resulting ordinary differential equation for the energy budget is solved analytically for various important
limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically
two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement
during the cascade process due to decrease of the effective density of the small-scale motions. An additional
suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation
of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of
the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these
effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative
picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simu-
lations.

DOI: 10.1103/PhysRevE.67.046314 PACS number~s!: 47.55.Kf, 47.27.Gs, 47.10.1g
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INTRODUCTION

The interaction of solid particles or liquid droplets wi
the turbulence in a gas controls the performance of vari
engineering devices and is important for many practical
plications such as the combustion of pulverized coal a
liquid sprays, and cyclone separation. This interaction pl
also an important role in many areas of environmental
ence and physics of the atmosphere. Dust storms, rain
gering, dusting and spraying for agricultural or forestry p
poses, preparation and processing of aerosols are ty
examples. For a review of turbulent flows with particles a
droplets see, e.g., Ref.@1#.

In dilute suspensions with small volume fractions of p
ticles Cp the particle-particle interactions are negligibl
Nevertheless, forrp /r f@1 ~the ratio of the solid particle
material and the gas densities!, the mass loadingf
5Cprp /r f may exceed unity and the kinetic energies of t
particles and the carrier gas may be comparable. He
the ‘‘two-way coupling’’ effect of the fluid on the particle
and vice versa must be accounted for. Current underst
ing of the turbulence in dilute suspensions is still at
infancy due to the highly nonlinear nature of the physica
relevant interactions and a wide spectrum of govern
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parameters~the particle sizea vs L and h, the outer and
inner scales of turbulence, the particle response timetp vs g

L

and gh , the turnover frequencies ofL- and h-scale
eddies!.

Existing analytical studies of the problem are main
based upon atwo-fluid model description, wherein both th
carrying fluid and particle phases are treated as interpene
ing continua@1–4#. This model deals with noninteractin
solid spherical particles with a radiusa small enough such
that the following conditions are satisfied.

~1! One can neglect the effect of preferential concent
tion and may assume homogeneity of the particle space
tribution. This is not always so. Above some critical radi
acr the space homogeneous distribution of particles beco
unstable. Resulting clustering instability leads to preferen
concentration. For a detailed theory of this effect, see R
@5#, and references therein. In the present paper, we cons
only particles witha,acr .

~2! The Stokes viscous drag law for particle accelerati
dup /dt5@uf2up#/tp , is valid (uf is the fluid velocity!.

Unfortunately, the statistical description of two-fluid tu
bulence with closure procedures requires a set of additio
questionable simplifications due to the lack of understand
of the relevant physics of the particle-fluid interactions. Th
makes closures of the two-fluid model highly qualitative
best@4,6,7#.

We think that the basic physics of the problem may
better described by a simplerone-fluid modelfor turbulent
dilute suspensions, which uses standard closure relation
one-phase turbulence. The present paper suggests su
model and, as a first step, uses a properly modified sim
©2003 The American Physical Society14-1
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closure, based on the Kolmogorov-Richardson casc
picture of turbulence. The resulting nonlinear different
equation for the energy budget were solved analytica
This provides an economical and internally consistent a
lytical description of the turbulence modification by particl
including the dependence of suppression or enhan
ment of the turbulence on the three governing paramet
(tpg

L
), f, and the scale of eddies. These effects were p

viously observed in numerous experimental and numer
publications, see, e.g., the review by Crowe, Trout, a
Chung @8#. Many groups carried out experimental wor
for an overview see Pietryga@9#. Other researchers studie
the modification of turbulence by small particles u
ing direct numerical simulations~DNS! @4,10–13# or by
large-eddy simulation@14#. Nevertheless, the complicate
physics of turbulently flowing suspensions in the two-w
coupling regime still wait for a detailed analytical descri
tion.

Our analytical findings in this paper successfully correl
important features of turbulence modification observed
numerical simulations Refs.@4,12,13#. We believe that the
one-fluid model~together with more advanced closures
one-phase turbulence! offers an insight in basic physics o
particle-laden turbulent flows. The next step in this devel
ment should include the effect of preferential concentratio
which was studied so far only for a given turbulent flow fie
of the carrier fluid@5#.

The paper is organized as follows. In Sec. II, we revie
after a presentation of the notation~Sec. I A! and an evalu-
ation of the characteristic time scales~Sec. I B!, some pub-
lications about DNS simulations~Sec. II A!, about experi-
mental work~Sec. II B! and about some analytical mode
~Sec. II C!. A critical evaluation of the existing analytica
models@4,15–20# is made.

In Sec. III, we suggest a one-fluid equation of moti
~3.1! for turbulently flowing suspensions with small pa
ticles. This is a modified version of the Navier-Stokes eq
tion with two wave-number-dependent parametersreff(k)
andgp(k).

~a! The k-dependent effective density of suspensio
reff(k) describes the different degree of involvement
heavy particles in turbulent fluctuations with different wa
numbers@referred below ask eddies#. For k eddies with a
turnover time 1/g(k), which is much smaller than the pa
ticle response timetp , the particles may be considered
rest andreff(k) is about the density of the fluid itselfr f . For
k eddies withtpg(k)!1 the effect of the particle inertia ma
be neglected and particles may be considered as fully
volved in the motion of eddies. Therefore, for small enou
k the effective densityreff(k) is close to the mean density o
the suspension~fluid plus particles!, rs5r f(11f). Our Eq.
~3.2! reasonably describesreff(k) for all values ofk.

~b! The damping termgp(k), given by Eq.~3.3! describes
the fluid-particle viscous friction. The functiongp(k) satu-
rates at the level 1/tp for small-scale eddies withtpg(k)
@1, when the particles may be considered to be almos
rest. In this regime the damping isk independent, while the
turnover frequency ofk eddiesg(k) grows withk. Therefore,
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for largek gp(k)!g(k) and the particle-induced damping o
thesek eddies may be neglected with respect to their ene
loss in the cascade process, which is determined by the
quencyg(k). In contrast, for small enoughk @whentpg(k)
!1] the particles arealmost completelyinvolved in the mo-
tions of k eddies and their contribution togp(k) is sup-
pressed by the factor of@tpg(k)#2!1 with respect to 1/tp .

Our one-fluid model for turbulent suspensions~3.1! is first
postulated in Sec. III A. Its physical interpretation is di
cussed in Sec. III B. A detailed derivation of Eq.~3.1! is
given in Secs. III C, III D, and III E. The most difficult prob
lem here is how to account for the nonlinear effect of t
interaction ofk eddies within the one-fluid model of turbu
lent suspensions. The suggested form of the nonlinear t
~3.5! is a modification of the standard Navier-Stokes nonl
earity and is based on the following.

~i! A rigorous description of eddy interactions in both lim
iting casestpg(k)!1 andtpg(k)@1

~ii ! Respect of the fundamental symmetries of t
problem—Galilean invariance and conservation of energ

Section IV deals with the budget of the kinetic energy
turbulently flowing suspensions. One has to account not o
for the dissipation of energy due to the fluid-particle frictio
but also for the effect of particles on the energy redistribut
in the system due to the eddy interaction. First, we derive
Sec. IV A the budget equation~4.1! which accounts for the
energy pumping due to a stirring force, energy damping d
to the kinematic viscosity and fluid-particle friction and al
describes the flux of energy over the scales due to the n
linearity of the problem. Equation~4.1! is exact but unfortu-
nately is not closed. As usual it includes a third-order velo
ity correlation functions. As a first step in the analysis
turbulent suspensions in the framework of our one-flu
model Eq.~3.1! and the budget equation~4.1!, we use in this
paper, Sec. IV B, a simple closure procedure based on
Richardson-Kolmogorov cascade picture of turbulence
which the energy flux is accounted for in a differential a
proximation. Needless to say that there are various clos
procedures for the Navier-Stokes turbulence in the literatu
They may be straightforwardly applied to our Eq.~3.1!. This
important part of the project will be done elsewhere.

The derived energy balance equations are summarize
Sec. IV C. They have a very simple and transparent ana
cal form ~4.22!–~4.26!, allowing their effective analytical
analysis, see Secs. V and VI. In particular, in Sec. V B,
found a simple solution for the case of microparticles hav
a very small response time. In Sec. V C, we found the ite
tive solution for the case of a suspension with heavy partic
in the inertial interval and analyzed its accuracy in Sec. V

In Sec. VI, we analytically describe a complicated inte
play between two competitive effects of the turbulence s
pression and the turbulence enhancement in the inertia
terval of scales, as well as in the viscous subrange. A b
comparison of our finding with the DNS results is done
Sec. VI E.

In the concluding Sec. VII, we summarize the results
the paper and present our ideas for further work.
4-2
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I. NOTATIONS AND RELEVANT TIME SCALES

A. Nomenclature

Symbol Definition

r f , u(t,r) Density and velocity of the fluid

ũ(v,r), u(t,k), ũ(v,k) Fourier transform ofu(t,r) with respect to t @ t
→v#, with respect tor @r→k#, and to both variables
@ t→v, r→k#

F(t,k), F̃(v,k) Pair correlation functions of fluid velocity in (t,k)
and (v,k) representation

E(k)5r fk
2F(0,k)/2p One-dimensional spectrum of the turbulent kinetic

energy of the pure fluid~fluid without particles!
E(k) One-dimensional spectrum~of the turbulent kinetic

energy! of the suspension
g(k) Turnover frequency ofk eddies ~turbulent fluctua-

tions of the characteristic scale 1/k). May be under-
stood also as 1/t(k), wheret(k) is the lifetime ofk
eddies. In the Kolmogorov 41 picture of turbulence
g(k).kAkE(k)/r f

E5*dkE(k)/2p, E5*dkE(k)/2p Total turbulent kinetic energy of, respectively, the
pure fluid and the suspension

a, rp , mp54pa3rp/3 Radius, density, and mass of the particles
Cp , ,351/Cp Volume fraction of particles and volume of suspen-

sion per particle
c5@4pa3/3#/,3, f5mp /r f,

3 Volume fraction and mass loading parameter
tp Particle response time, also referred to asStokes time

scale
t

L
Turnover time of the energy containing eddies~of
scaleL)

d[tp /t
L

The particle response time in the units oft
L

h; vh , th5h/uh Kolmogorov ~viscous! microscale; characteristic ve-
locity, and time at scaleh of turbulence

reff(k) Effective density of the suspension for turbulent fluc-
tuations of characteristic scale 1/k @referred to ask
eddies#

n, neff(k) Kinematic viscosity of the pure fluid and effective
kinematic viscosity ofk eddies in the suspension

gp(k) Effective damping frequency in the suspension due to
the fluid-particle friction

«(k) ~One-dimensional! flux of the turbulent kinetic en-
ergy of the suspension via a sphere of radiusk in k
space, also referred to asenergy flux over scales
a

es

cl

e
a-

he
he

.

B. Evaluation of time scales

The radius of the particles is supposed to be sm
enough, so that the particle Reynolds number Rep is less than
a critical value (Recr). In this case, we can apply the Stok
approximation~according to which the fluid-particle friction
force is proportional to the difference between the parti
velocity and the fluid velocity!. Careful analysis by Lumley
@21# shows that in a turbulent flow the condition for th
validity of Rep&Recr may be expressed via the particle r
dius a and the Kolmogorov microscaleh in the following
way:

a&2h~r f /rp!1/3. ~1.1!
04631
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It is clear that one of the important parameters in t
physics of turbulently flowing suspensions is the ratio of t
inertial time scale of the particles~the Stokes time scaletp)
and the lifetimeth of eddies of the Kolmogorov microscale
The particle response time is given by

tp5
mp

6pnr fa
5

2rpa2

9r fn
, ~1.2!

where we use the expression for the particle massmp ,

mp5
4p

3
a3rp . ~1.3!
4-3
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As is well known the Kolmogorov microscaleh is found
from the condition that the Reynolds number for eddies
scaleh is equal to unity,

Reh5hvh /n51. ~1.4!

Here,vh is the characteristic velocity ofh-scale eddies. It is
related to the turnover time of these eddies in the follow
mannerth5h/vh . This allows us to rewrite the requireme
~1.4! as follows:

th5h2/n. ~1.5!

The ratio of the time scalestp and th immediately follows
from Eqs.~1.2! and ~1.5!,

tp

th
5

2

9

rp

r f

a2

h2
. ~1.6!

Substituting the condition~1.1! for the validity of the Stokes
approximation, we find

tp

th
&S rp

r f
D 1/3

, ~1.7!

where we neglected the difference between 8/9 and 1. E
tion ~1.7! means that for ‘‘heavy’’ particles in a gas, th
satisfy Stokes approximation, the particle response t
scale may be about ten times larger than the Kolmogo
time scale:tp&10th . For such particles in a liquid the tw
time scales are about the same. So we may conclude tha
heavy particles in a gas, that satisfy Stokes approximat
the inertia of the particles may be expected to be importan
a considerable part of the energy spectrum. For particles
liquid the particle inertia will only be significant for th
smallest eddies, for whichtp.th .

II. REVIEW OF LITERATURE

This section is devoted to a review of the literature ab
the problem of a turbulently flowing suspension. We w
review important findings from published numerical expe
ments, physical experiments, and analytical models.

A. Review of some DNS simulations

To study the two-way coupling effect several groups ha
applied the direct-numerical-simulation technique~DNS! to
particle-laden isotropic turbulence. A brief review of some
the publications is given below.

Squires and Eaton@10# considered the particle motion i
the Stokes regime in which gravitational settling was n
glected. They assumed statistically stationary isotropic tur
lence. Mass loadings from zero to unity were considered
a series of particle response times varying from 0.3th to
11th , whereth is the Kolmogorov time scale. They foun
that the overall reduction in turbulence kinetic energy
increasing mass loading was insensitive to the particle
sponse time. They attributed the nonuniform distortion of
turbulent energy spectrum by particles to the preferen
04631
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concentration of particles into regions of low vorticity and/
high strain rate.

Elghobashi and Truesdell@11# examined turbulence
modulation by particles in decaying isotropic turbulenc
They used the particle equation of motion derived by Max
and Riley @23#, and found that for the large density rat
considered in their simulations the particle motion was infl
enced mostly by drag and gravity. They found that the c
pling between particles and fluid resulted in an increase
small-scale energy. This increase in the energy of the h
wave-number components of the velocity field resulted in
larger dissipation rate. They also found that the effect
gravity resulted in an anisotropic modulation of the turb
lence and an enhancement of turbulence energy levels in
direction aligned with gravity.

Boivin, Simonin, and Squires@4# also made a very de
tailed DNS study of the modulation of isotropic turbulen
by particles. The focus of their work was on the class
dilute flows in which particle volume fractions and interpa
ticle collisions are negligible. Gravitational settling was al
neglected and the particle motion was assumed to be g
erned by drag with particle response times ranging from
Kolmogorov scale to the Eulerian time scale of the turb
lence and particle mass loadings up to unity. The veloc
field was made statistically stationary by forcing the lo
wave numbers of the flow. Like in Refs.@10,11# the effect of
particles on the turbulence was included by using the po
force approximation. The DNS results showed that partic
increasingly dissipate fluid kinetic energy with increas
mass loading, with the reduction in kinetic energy being re
tively independent of the particle response time~as was al-
ready found in Ref.@10#!. The viscous dissipation in the fluid
decreases with increased mass loading and is larger for
ticles with smaller response times. The fluid energy spe
show that there is a nonuniform distortion of the turbulen
spectrum with a relative increase in small-scale energy~as
was found in Ref.@11#!. They state that the fluid drags th
particles at low wave numbers, while the converse is true
high wave numbers for small particles.

Sundaram and Collins@12# performed DNS simulations
of particle-laden isotropic decaying turbulence. The parti
response time was in the range 1.6th&tp&6.4 th . The ra-
tio of the particle density and fluid density was of the ord
of 103. The particle Reynolds number Rep remained less
than Recr , and the drag force on the particles was describ
by Stokes law. The point-force approximation was employ
to represent the two-way coupling force in the fluid mome
tum equation. The DNS results showed that the particles
duce the turbulent kinetic energy as compared to the parti
free case, and this reduction is less pronounced for sma
response timestp . The results also showed that the tot
turbulent energy dissipation is increased by the particles,
the increase is larger for smallertp . The turbulent energy
spectrum is reduced at small wave numbers and increase
high wave numbers by the two-way coupling, and the lo
tion of the crossover point is shifted towards larger wa
numbers for largertp .

Druzhinin @13# examined the modulation of isotropic de
caying turbulence by microparticles, for which 2a,h, tp
4-4
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,th and Rep,Recr . The gravitational settling is neglecte
Due to the fact thatrp@r f , the mass loading may be larg
enough to modify the carrier flow. Druzhinin first derived a
approximate analytical solution for the energy spectrum
then performed also the DNS simulations. The results
tained for particles whosetp<0.4th show that both the tur-
bulence kinetic energy and the turbulence dissipation rate
increased by the two-way coupling effect as compared to
particle-free case. For particles with sufficiently high iner
(tp>0.5th) the two-way coupling effect caused a reducti
in the turbulence kinetic energy as compared to the parti
free case. Druzhinin, therefore, showed that there occu
qualitative transition in the two-way coupling effect of pa
ticles on isotropic turbulence as the particle response tim
increased fromtp!th ~microparticles! to tp.th ~particles
with finite inertia!. For microparticles, there is an increase
all wave numbers in the energy spectrum. For particles w
a higher inertia that is no longer the case.

B. Review of some laboratory experiments

Many experiments have been carried out to study
modulation of turbulence in the carrier phase by particles.
overview of the experimental work up to 1999 is given
Pietryga @9#. Experimental measurements in shear flow
e.g., particle-laden jets and boundary layers, have shown
the turbulence velocity fluctuations may be either increa
or decreased due to the modulation of the flow by~heavy!
particles. However, in turbulent shear flows it is often dif
cult to separate the direct modulation of the turbulence
to the momentum exchange with the particles from the in
rect changes occurring through modification of turbulen
production mechanisms via interaction with mean gradie
In grid-generated turbulence these production mechani
are absent. It approximates in the best possible way the
mogeneous, isotropic turbulence with particles that we st
in this publication. We will, therefore, briefly review below
some literature publications about experimental work
voted to the study of the modulation by particles of gr
generated turbulence.

Schreck and Kleis@24# studied the effect of almost neu
trally buoyant plastic particles~density 1050 kg/m3) and
heavy glass particles~density 2400 kg/m3) on grid-generated
turbulence in a water flow facility. The average particle s
was 655mm. The particle Reynolds number of the plas
particles Rep'8, for the glass particles Rep'20. The par-
ticle volume fraction was varied between 0.4% and 1.5%,
the system was very dilute. Mean velocity and velocity flu
tuations of both phases were measured by a laser-Dop
velocimeter. The presence of the particles in sufficiently h
concentration modified the turbulence downstream of
grid. The decay rate of the turbulence energy increa
monotonically with particle concentration. The addition
dissipation rate for the suspensions with the heavier g
particles was about double that of the almost neutrally bu
ant plastic particles. A simple model based on the slip vel
ity between the phases underpredicted the measured inc
in the dissipation rate. Schreck and Kleis, therefore, assu
that a large portion of the additional dissipation is associa
04631
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with the measured modification of the spectral distribution
the turbulence energy. They speculate that the particles
hance the transfer of energy to smaller eddies extending
dissipation spectrum to smaller scale. Since only part of
high wave number end of the spectrum could be resol
experimentally, this speculation could not be conclusiv
demonstrated by their experimental data.

Hussainovet al. @25# studied the modulation of grid
generated turbulence by coarse glass particles in a ver
downward channel flow of air. Two different types of grid
were used. Glass beads with an average diameter of 700mm
and a mass loading of 10% were used. The particles w
about seven times larger than the Kolmogorov length scah
and Rep'70 or 93, dependent on the type of grid used. T
particle response time scale of the particlestp was about
5000 to 7000 times larger than the Kolmogorov time sc
th . The mean velociy and the turbulence intensity along
channel axis~and in some cross sections! were measured by
means of a laser-Doppler velocimeter. The decay curve
the turbulence intensity in the streamwise direction show
an attenuation of the turbulence intensity of the flow by t
particles. The particles caused an increase in the total d
pation rate of the turbulence. Hussainovet al. found that the
presence of the particles decreased the energy spectra a
frequencies. This seems to be in contradiction with
speculation of Schreck and Kleis, that the particles enha
the transfer of energy to smaller eddies.

C. Analytical models

The starting point for analytical models, described in t
literature, is often the Navier-Stokes~NS! equation for the
velocity of the pure fluid~fluid without particles! u(t,r)

r fF ]

]t
1~u•“ !2n¹2Gu1“p5fp1f, ~2.1!

wherep(t,r) is the pressure andr f is the fluid density. The
random vector fieldf(t,r) represents the stirring force re
sponsible for the maintenance of the turbulent flow. Equat
~2.1! includes also the forcefp(t,r) caused by the friction of
the fluid with particles,

fp~ t,r!5
fr f

tp
@v~ t,r!2u~ t,r!#. ~2.2!

Herev(t,r) is the velocity field of the particles, considere
as a continuous medium with densitymp /,35r ff, where
mp is the mass of a particle,,3 the suspension volume pe
particle, andf the mass loading parameter,

f5mp /r f,
3. ~2.3!

The validity to representfp(t,r) in the form of Eq.~2.2! is
based on the assumption of space homogeneity of the
ticle distribution. It is also assumed that the particles
small enough for the Stokes drag law to be valid. The eq
tion of motion, suggested in the literature, for the continuu
phase of the particles does not often include the pressure
viscous terms
4-5
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S mp

,3 D F]1

]t
~v•“ !Gv52fp . ~2.4!

Equations~2.1! and ~2.4! were used by Baw and Pesk
@15# to derive a set of ‘‘energy balance’’ equations for t
following functions.

Symbol Definition

Ef f(k) Energy spectrum of the fluid turbulence,E(k) in
our nomenclature

Ef f ,p(k) Energy spectrum of the fluid turbulence along
particle trajectory

Ef p(k) Fluid-particle covariance spectrum
Epp(k) Particle energy spectrum

In the balance equations the following energy transfer fu
tions occur.

Symbol Definition

Tf f , f(k) Energy transfer in fluid turbulence
Tf p, f(k) Transfer of fluid-particle correlated motion by

the fluid turbulence along the particle path
Tf p,p(k) Transfer of fluid-particle correlated motion by

the particles
Tpp(k) Transfer of particle-particle correlated motion b

the particle motion
Pq, f(k) Fluid-particle energy exchange rate

Baw and Peskin@15# made a set of simplifying assumption
in order to be able to analyze the balance equations. F
they assumed that the particles do not respond to the
velocity fluctuations due to their~very large! inertia. There-
fore,

Ef f ,p~k!5Ef f~k!,
~2.5!

Tf p, f~k!5Tf p,p~k!5Tpp,p~k!50.

This assumption is, of course, not realistic for particles s
isfying the Stokes’ approximation. Their next assumption

Pq, f5f@Ef p~k!2Ef f ,p~k!#/tp , ~2.6!

may be understood as a statement that the fluid-particle
change rate is statistically the same for all scales chara
ized by ak-independent frequencygp5f/tp . This is rea-
sonable for particles with very large inertia, but then Stok
law is not valid. For particles satisfying Stokes law, assum
tion ~2.6! has to be replaced with a more realist
k-dependent frequencygp(k). We will come back to this
point while discussing our model.

A serious difficulty in the derivation of the energy balan
equations is how to find a closure expression for third-or
velocity correlation functions, responsible for the various e
ergy transfer functions. Baw and Peskin assumed
Tf f , f(k) can be expressed similarly as in the case of a p
~single-phase! flow
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Tf f , f~k!52
d

dk

e f
1/3k5/3Ef f~k!

a
, ~2.7!

wheree f is the viscous dissipation in the pure fluid~without
particles! anda is the so-called Kolmogorov constant. Th
assumption seems questionable to us. According to the s
of the Richardson-Kolmogorov cascade picture of turbule
one may express inertial range objects, such asTf f , f(k) in
terms of again inertial range quantities, such ask, Ef f(k)
@which is done in Eq.~2.7!# and «(k) the energy flux ink
space. In a single-phase flow, indeed«(k)5e f . However,
this is not the case for a turbulent suspension due to
fluid-particle energy exchange, given by Eq.~2.6!. We think
that our closure~to be discussed later on! is an improvement
in this respect.

With this simplified model Baw and Peskin predicted t
following influences on the energy spectrum of the fluid tu
bulence due to the particles.

~i! A decrease of the energy in the energy-contain
range of the spectrum.

~ii ! An increase in the inertial range of the spectrum.
~iii ! A decrease in the viscous dissipation range.
Boivin, Simonin, and Squires@4# used the same model a

in Ref. @15#. They also applied assumptions similar to Eq
~2.6! and ~2.7!. Fortunately, they took into account the r
sponse of the particles to the turbulent velocity fluctuatio
by relaxing assumptions~2.5! and also accounted for th
very important physical effect of the energy dissipation d
to the drag around the particles. For that reason they appr
matedTf f , f(k) andTf p, f(k) as follows:

Tf f , f~k!52
d

a dk
@e f2Pq, f~k!#1/3k5/3Ef f~k!,

~2.8!

Tf p, f~k!52
d

a dk
@e f2Pq, f~k!#1/3k5/3Ef p~k!.

Notice that this closure has the same weakness as Eq.~2.7!,
involving the dissipation range valuee f . With the above
described changes with respect to the model describe
Ref. @15# Boivin, Simonin, and Squires found an increase
the viscous dissipation range of the fluid turbulence spect
for small values of the particle response timetp .

Al Taweel @16# calculated the rate of additional energ
dissipation due to the presence of the particles. Becaus
their inertia the particles were assumed not to follow co
pletely the turbulent velocity fluctuations of the carrier flui
They expressed the additional dissipation in terms of
turbulent kinetic energy of the suspension. Then they ad
this term to the balance equation of the turbulent kine
energy, making the~questionable! assumption that the energ
flux across the spectrum has the same functional form as
single-phase flow. Solving this equation they found an
tenuation of the high-frequency fluctuations with a small
teration of the energy-containing low frequencies. Althou
there was an additional energy dissipation due to the p
ticles, the total energy dissipation was reduced due to
reduction of viscous dissipation in the carrier fluid.
4-6
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EFFECT OF PARTICLE INERTIA ON TURBULENCE IN . . . PHYSICAL REVIEW E67, 046314 ~2003!
In a number of publications@17–20# Felderhof, Ooms,
and Jansen developed an analytical model for the dynam
of a suspension of solid spherical particles in an incompre
ible fluid based on the linearized version of the Navi
Stokes equation. In particular, they studied the effect of
particles-fluid interaction on the effective transport coe
cients and on the turbulent energy spectrum of the sus
sion. Also the hydrodynamic interaction between the p
ticles and the influence of the finite size of the particles w
incorporated. However, it is needless to say that the non
earity of the Navier-Stokes equation is of crucial importan
in the problem of turbulence. Felderhof, Ooms, and Jan
were well aware of this problem, but wanted to study,
particular, the influences of the particle-particle hydrod
namic interaction and of the finite particle size at a hi
particle volume concentration.

III. ONE-FLUID MODEL NAVIER-STOKES EQUATION
FOR TURBULENT SUSPENSIONS

In Sec. II C, we discussed the two-fluid model of susp
sions consisting of the Navier-Stokes equation~2.1! for the
fluid and Eq.~2.4! for the ‘‘gaseous’’ phase of particles. Th
approximation is based on the assumptions of space ho
geneity of the particle distribution and applicability of th
Stokes drag law for the fluid-particle friction. We think th
the basic physics of a turbulently flowing suspension w
these assumptions may be described in the framework o
much more simple one-fluid equation. This model is p
sented in Sec. III A, discussed in Sec. III B, and ‘‘derived’’
Secs. III D and III E.

A. The model

The following equation may be considered as a mo
equation for turbulently flowing suspensions:

reff~k!F]1

]t
gp~k!1g0~k!Gu~ t,k!52N$u,u% t,k1f~ t,k!.

~3.1!

The linear part of this equation involves

reff~k!5r f H 12c1f
112tpg~k!

@11tpg~k!#2J , ~3.2!

gp~k!5
f tp@g~k!#2

~11f!@112tpg~k!#1@tpg~k!#2
, ~3.3!

g0~k!5neff~k!k2, neff~k!5
nr f

reff~k!
. ~3.4!

The nonlinear term in~3.1! has the usual NS equation form

N$u,u% t,k
a 5E d3k1d3k2

~2p!3
Gkk1k2

abg ub* ~ t,k1!ug* ~ t,k2!.

~3.5!
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However, the vertexGk k1k2

abg differs from the standard verte

gk k1k2

abg of the NS equation~see, e.g., Refs.@26,27#!

gk k1k2

abg 5
r f

2
@Pab~k! kg1Pag~k!kb#d~k1k11k2!

~3.6!

as follows:

Gk k1k2

abg 5reffS 2 k1k2k3

k1
21k2

21k3
2D gk k1k2

abg

r f
. ~3.7!

Our model differs from the standard NS equation in t
following three aspects.

~a! Equation~3.1! involves thek-dependent effective den
sity of suspensionsreff(k) given by Eq.~3.2!. The function
reff(k) satisfies the inequalityr f<reff(k)<r f(11f). One
could say thatreff(k)2r f represents the contribution of th
particles involved in turbulent fluctuations with characteris
scale 1/k to the effective density of suspensions.

~b! Equation~3.1! includes the additional damping term
gp(k), Eq. ~3.3!, describing the loss of kinetic energy caus
by the viscous fluid-particle friction.

~c! In the absence of a stirring forcef(t,r) and both damp-
ing terms, Eq.~3.1! conserves the total kinetic energy o
suspensionsE @given by Eq.~3.42!# which is different from
the kinetic energyE of the fluid itself.

The explicit form~3.5! of the nonlinear term is not nec
essary for the simple closure procedure that we applied
this publication. For the introduction of the energy flux
used closure procedure it is enough to use the fact that
modeled nonlinearity must be conservative. However, the
plicit form is needed for more advanced closure procedu
that we intend to use in future work. For this reason,
include it in this publication.

B. Physical interpretation of the one-fluid model

In a simplified fashion we may interpretreff(k), the
k-dependent density of suspension in our model equa
~3.1! as follows.

Denote asf com(k) the fraction of particlescomovingwith
the k eddies~turbulent fluctuation with some wave numb
k), in the sense that their velocity is the same as the velo
of k eddies. These particles also participate in the motion
eddies with smaller wave numberk8,k but not necessarily
in the motion of k9 eddies withk9.k. For small k, the
turnover frequencyg(k) of k eddies is small in the sens
g(k)tp!1. Therefore, in this region ofk, the particle veloc-
ity is very close to that of the carrier fluid and we can d
scribe the suspension asa single fluidwith effective density
reff(k), which is close to the density of suspension

rs5r f~12c!1Cprp5r f~12c1f!,
~3.8!

c[Cp@4pa3/3#, f5Cp rp /r f .

Here,Cp is the particle concentration,c andf are the vol-
ume fraction and mass loading parameter. However, for la
k, when g(k)tp@1, the particles cannot follow these ver
fast motions and may be considered at rest. Thus, the
4-7
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ticles do not contribute to the effective density andreff(k)
→r f . In the general case,reff(k) may be written as

reff~k!5r f@12c1f f com~k!#. ~3.9!

Here a statistical ensemble of all particles, partially involv
in the motion ofk eddies, is replaced by two subensemb
of ‘‘fully comoving’’ @fraction f com(k)] and ‘‘fully at rest’’
@fraction f rest(k)512 f com(k)] particles, which does no
contribute toreff(k).

The particles at rest cause the fluid-particle friction. A
cording to Newton’s third law, the damping frequency of
suspensiongp(k) may be related to the particle respon
time tp via the ratio of total mass of particlesM p at rest to
the total effective mass of the suspensionMeff(k)

gp~k!5
M p

tpMeff~k!
5

Cprpf rest~k!

tpreff~k!
5

fr f f rest~k!

tpreff~k!
.

~3.10!

As we mentioned, the fractionsf com(k) and f rest(k) depend
on tpg(k). Moreover, the portionf rest(k) is independent on
the sign of the velocity, therefore, we expectf rest(k)
;@tpg(k)#2. In the opposite case, when 1/tpg(k) is small,
f com(k) has corresponding smallness:f com(k);1/tpg(k).
As a simple model of such a function, we adopt

f rest~k!512 f com~k!5@tpg~k!/$11tpg~k!%#2.
~3.11!

Using Eq.~3.11!, we rewrite Eqs.~3.9! and~3.10! as Eqs.
~3.2! and~3.3!. Note that these equations, which follow fro
the physical reasoning described above, give the same
pression forgp(k) as Eq.~3.3! in our ‘‘derivation’’ in Sec.
III E 2. We consider this fact as a strong support of the phy
cal relevance of our one-fluid model for a turbulently flowin
suspension given by Eqs.~3.1!–~3.4!, with k-dependent ef-
fective density, fluid-particle damping frequencygp , and ef-
fective kinematic viscosityneff(k).

C. Basic assumptions

The theory developed in this paper is based on a num
of assumptions and simplifications described below.

~1! All particles in the suspension are spheres with
same densityrp and the same radiusa.

~2! The radius of the particles is small enough, see
~1.1!.

~3! The particle-particle interaction will be neglected, a
suming that the volume fractionc!1. Nevertheless, for the
very heavy particles withrp@r f , the mass loadingf may
be of the order of unity, leading to a significant modificati
of the turbulent flow by particles.

~4! The turbulent flow is stationary, homogeneous, a
isotropic.

~5! In our equations for the energy balance~4.1!, we will
use simple~but physically relevant! closure procedures base
on our effective~one-fluid! Navier-Stokes equation for sus
pensions~3.1! and on the Richardson-Kolmogorov casca
picture of turbulence.
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D. Formal derivation of the effective NS equation
for suspensions

In the derivation, we begin with the NS equation~2.1! for
the fluid component. Instead of the averaged expression~2.2!
for the fluid-particle friction force, we will use the following
detailed expression:

fp~ t,r!5(
j

Fp~ t,r j !d~r2r j !, ~3.12!

in which Fp(r j ,t) is the force between the fluid andj particle
positioned atr5r j . Assume@as in derivation of Eqs.~2.2!
and~2.4!# that the statistics of particles is independent of t
statistics of turbulence and, moreover, that their distribut
is space homogeneous. In that case, we can replace the
over the position of particles by a space integration

(
j

→ 1

,3E dr j ,

where,3 is the volume per particle. In this approximation

fp~r,t !5Fp~r,t !/,3. ~3.13!

We computeFp(t,r) for small enough particles with a radiu
a satisfying inequality~1.1!, such that the fluid flow in the
vicinity of a particle may be considered as laminar@assump-
tion in Sec. III C~2!#. Then, one can apply Stokes law for th
force Fp(t,r)

Fp~ t,r!5z@vp~ t !2u~ t,r!#, ~3.14!

with the friction coefficientz for heavy particles~with the
densityrp@r f) is given by

z56pr fna. ~3.15!

The Newton equation for a particle reads

mp

dvp~ t !

dt
52Fp~ t,r!5z@u~ t,r!2vp~ t !#. ~3.16!

A formal solution of this equation

vp~ t !5Ftp

d

dt
11G21

u~ t,r!, ~3.17!

allows one to express the forceFp(t,r) as follows:

Fp~ t,r!5mp

d

dt Ftp

d

dt
11G21

u~ t,r!. ~3.18!

Here,tp is the particle response time,

tp5mp /6pnr fa. ~3.19!

The total time derivative (d /dt) as usual takes into accoun
the time dependence of the particle coordinater

d

dt
5F]1

]t
vp~ t !•“G . ~3.20!
4-8
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Due to the~immersed! particle inertia they do not follow
Lagrangian trajectories of fluid particles. Therefore, gen
ally speaking, (d/dt) does not coincide with the total La
grangian time derivative in the fluid,

D

Dt
5F]1

]t
u~ t,r!•“G . ~3.21!

Consider the relationship between (d/dt) and (D/D t)

Du~ t,r!

Dt
5

du~ t,r!

dt
1@vp

a2ua~ t,r!#¹au~ t,r!

5
du~ t,r!

dt
2

d

dt

tp

11tp

d

dt

u~ t,r!a¹1
au1

5
d

dt

1

11tp

d

dt

F S 11tp

]

]t D1L̂Gu~ t,r!,

~3.22!

L̂u~ t,r![tp@~vp,1•“ !u~ t,r!2~u•“1!u1#. ~3.23!

Here u1[u(t1 ,r1), “15d/dr1, and all derivatives with re-
spectt1 and r1 are taken att15t and r15r. Together with
Eq. ~3.21! this gives

Fp~ t,r!5
Du~ t,r!

Dt

1

11tp

]

]t
1L̂

u~ t,r!. ~3.24!

For particles with a small response time Ferry and Balach
dar @22# show, that the particle velocity depends only
local fluid quantities~the velocity and its spatial and tempo
ral derivatives!. They derive an expansion of the partic
velocity in terms of the particle response time which gen
alizes those of previous researchers. For large values o
ratio of the particle density and the fluid density and
small values of the particle response time our Eq.~3.24! for
the force on a particle gives the same equation for the
ticle velocity as derived in Ref.@22#.

Substitution of Eq.~3.24! into NS equation~2.1! yields

r fF]1

]t
~u•“ !G H 11

f

11tpS ]1

]t
L̂D J u1“p5r fn¹2u1f,

~3.25!

wheref is the mass loading parameter. For simplicity, w
consider here only the case of heavy particles with neglig
small volume loading parameterc!1. However, the mass
loading parameter may be of the order of unity. For exam
for the water droplets in the air,rp /r f'103 and forf51,
the volume fractionc'1023.

The inverse operator in Eq.~3.25! may be understood as
Taylor expansion with respect to the nonlinearity (u•“)
04631
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11tpS ]

]t
1L̂D 5

1

11tp

]

]t

2
L̂

S 11tp

]

]t D
2 1••• .

~3.26!

This expansion produces higher order@in (u•“)] nonlinear
terms in the effective NS equation~3.25!. These terms are
not important for big eddies withtpg(k)!1 for which the
operator in the braces in the left-hand side of Eq.~3.25!,
$•••%, is close to the factor 11f. In the opposite case, fo
small-scale eddies withtpg(k)@1 the operator$•••%51.
Both limiting cases one easily gets from the first term in t
Taylor expansion~3.26! in which there is no contribution
from L̂. It means that only for intermediate scales wi
tpg(k);1 this operator may be quantitatively importan
For a qualitative description of the ‘‘transient’’ process b
tween these two regimes it is enough to account for the
term of expansion~3.26!. In this approximation, the turbulen
fluid velocity around the particle is approximated by the v
locity at a fixed coordinate, which is reasonable in statisti
sense and exact in the limittpg(k)!1. With this approxi-
mation Eq.~3.25! turns into

r̂effF]1

]t
~u•“ !Gu1“p5r fn¹2u1f, ~3.27!

r̂eff[r fH 11
f

tp

]1

]t
1J , ~3.28!

where r̂eff may be considered as an operator of effect
density for a suspensions.

Since we are interested in the incompressible flows,
can project the potential components out of the equation
motion. This may be done by the projection operatorP,
defined via its kernelPab(r)

Pab~r![E d3k

~2p!3
Pab~k!exp@2 ik•r#, ~3.29!

Pab~k!5dab2kakb /k2. ~3.30!

The application ofP to any given vector fielda(r) is non-
local, and it has the form

@P•a~r!#a5E dr1Pab~r2r1!ab~r1!. ~3.31!

ApplyingP to Eq. ~3.27!, we find

r̂effF]1

]t
P•~u•“ !Gu5r fn¹2u1f, ~3.32!

This equation together with the definition~3.28! for the op-
erator of the effective density constitutes a one-fluid desc
tion of a turbulently flowing suspension. However, the o
erator form of the effective density is not convenient f
4-9
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practical calculations. To overcome this inconvenience,
will derive below another form for the effective paramete
of this equation.

E. NS equation for suspensions withk-dependent parameters

In our analytical description of space homogeneous,
tionary turbulence it is convenient to consider Eq.~3.32! in
the (k,v) representation

$v@r̃eff8 ~v!#2 ir f@nk21g̃p~v!#%ũ~v,k!

52N$u,u%v,k1 f̃~v,k!. ~3.33!

Here

ũ~v,k!5E dtdru~ t,r!exp~ ivt1 ik•r!, ~3.34!

r̃eff8 ~v!5Re$r̃eff~v!%5r fF11
f

11~vtp!2G , ~3.35!

g̃p~v!5
v

r f
Im@$r̃eff~v!#%5

f v2tp

11~vtp!2
, ~3.36!

reff~v!5r fF11
f

12 ivtp
G ,

~3.37!

N$u,u%v,k[@r̃eff~v!P•~ ũ•“ !ũ#v,k .

N$u,u%v,k denotes the nonlinear term in (v,k) representa-
tion and frequencynk2 describes the viscous damping.

The Navier-Stokes equation for suspensions~3.33! in-
volves a frequency-dependent effective density of susp
sionsr̃eff8 (v) andv dependent frequencyg̃p(v) responsible
for the damping due to fluid-particle friction. To use standa
closure procedures in the statistical description of turbule
one needs frequency-independent coefficients in the b
equation of motion. On other hand, these procedures ma
applied to equations withk-dependent coefficients. There
fore, for further analysis it is much more convenient to d
with a k dependent effective densityreff(k) of k eddies. To
relate these functions we note that thek eddies have a char
acteristic frequency of motions,g(k) @related to their life-
time t(k) by a simple relationg(k);1/t(k)].

1. k-dependent effective density of suspensions

In the inertial interval of scales Eq.~3.33! must preserve
the total kinetic energy of a suspensionE if one neglects the
fluid-particle friction g̃p(v)→0. The equation forE may be
written in terms of the density@ r̃eff8 (v) andF̃(v,k), the pair
correlation function of the (v,k) Fourier components of ve
locity, ũ(v,k). Namely,
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E5E d3k

~2 p!3

dv

2p

r̃eff8 ~v!

2
F̃~v,k!,

~3.38!
~2p!4d~k2k1!d~v2v1!F̃~v,k![^ũ~v,k!•ũ~v1 ,k1!&.

For isotropic turbulenceF̃(v,k)5F̃(v,k) and Eq.~3.38! al-
lows one to introduce the one-dimensional energy spect
of suspensionE(k) according to

E5E dk

2p
E~k!, ~3.39!

E~k!5E dv

~2 p!

r̃eff8 ~v!

2p
k2F̃~v,k!. ~3.40!

Define a k-dependent effective density of suspensio
which gives the same one-dimensional spectrumE(k) as the
v-dependent effective densityr̃eff8 (v),

reff~k!5

E r̃eff8 ~v!F̃~v,k!dv

E F̃~v,k!dv

. ~3.41!

Then, Eq.~3.40! takes the form

E~k!5
reff~k!

2p
k2E dv

~2 p!
F̃~v,k!. ~3.42!

Notice that

E dv

~2 p!
F̃~v,k!5F~k! ~3.43!

is the simultaneous velocity pair correlation function. Wi
this notations Eq.~3.42! may be written as

E~k!5
reff~k!

2p
k2F~k!, ~3.44!

while the traditional notation for one-dimensional spectru
of kinetic energy of fluid itself isE(k),

E~k!5
r f

2p
k2F~k!. ~3.45!

Formally speaking, in order to evaluatereff(k) by Eq.~3.41!,
we need to know thev dependence ofF(v,k). This is not a
simple task. Instead, we will use a few reasonable forms
F(v,k) and compare the resulting functionsreff(k). One of
the frequently used is the Lorentzian form

F̃~v,k!5F~k!
g~k!/p

v21g2~k!
, ~3.46!

which corresponds to the simplest ‘‘one-pole’’ approximati
for the Green’s functions. Using thisv dependence in Eq
~3.41!, we have the following simple form forreff(k).

reff~k!5r fF11
f

11tpg~k!G . ~3.47!
4-10
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For smalltpg(k) this gives a correction linear intpg(k)

reff~k!'r f@12ftpg~k!#, ~3.48!

which contradicts the physical intuition. Indeed, one m
considerk eddies as having a motion with the characteris
frequencyg(k) and expect thatreff(k) may be obtained from
r̃eff8 (v) with the substitutionv→g(k). This gives a correc-
tion quadratic intpg(k),

reff~k!2r f~11f!'2f r ftp
2g2~k!. ~3.49!

This contradiction follows from the fact that the model fun
tion Eq.~3.46! decays very slowly forv→`, like 1/v2. It is
known from the diagrammatic analysis of the different tim
velocity correlation functionF(t,k) that for smallt the dif-
ferenceF(t,k)2F(0,k) does not containsutu and decays no
slower thant2. Therefore, the Fourier transform ofF(t,k),
F̃(v,k) has to decay withv faster than 1/v2, at least as
1/v4. To meet this requirement, we consider instead of
~3.46! the function

F̃~v,k!5F~k!
2g3~k!/p

@v21g2~k!#2
, ~3.50!

which gives instead of Eq.~3.47!

reff~k!5r f H 11
f @112 tpg~k!#

@11tpg~k!#2 J
5r f~11f!2f r fF tpg~k!

11tpg~k!G
2

. ~3.51!

Now the correction toreff(k) is quadratic intpg(k) which
agrees with the expectation~3.49!. One observes the sam
agreement for any other model dependenceF̃(v,k) decaying
even faster than 1/v4.

Therefore, the linear part of Eq.~3.33! may be modeled as

$vreff~k!2 ir f@nk21g̃p~v!#%ũ~v,k!5•••, ~3.52!

with reff(k) given by Eq.~3.51!.

2. Effective fluid-particle damping frequencygp„k…

Using Eq.~3.33! or Eq. ~3.52! together with Eq.~3.40!,
we can compute the contribution of the fluid-particle frictio
to the damping ofE(k),

]E~k!

]t U
p

522r fE dv

~2 p!

g̃p~v!

2p
k2F̃~v,k!. ~3.53!

Introduce anv-independent fluid-particle damping frictio
by a standard relation

]E~k!

]t U
p

522gp~k!E~k!. ~3.54!

Combining these two equations with Eq.~3.40!, one gets
04631
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gp~k!5

r fE g̃p~v!F̃~v,k!dv

E r̃eff8 ~v!F̃~v,k!dv

. ~3.55!

Substitution of Eqs.~3.36! and ~3.46! into Eq. ~3.55! gives
Eq. ~3.3! for gp(k). With this knowledge, Eq.~3.52! may be
further simplified as follows:

reff~k!$v2 i @neff~k!k21gp~k!#%ũ~v,k!52N$u,u%v,k1 f̃.
~3.56!

Here,neff(k) is given by Eq.~3.4!. Notice that this equation
gives the same dissipation rate~3.54! due to fluid-particle
friction as Eq.~3.33! and the same dissipation rate,

]E~k!

]t U
n

522neffk
2E~k!, ~3.57!

due to the kinematic viscosity.
The suggested form ofN$u,u%v,k in terms ofreff(k) will

be discussed in Sec. III E 3.

3. v-independent nonlinearity of the effective NS equation

(a) Nonlinearity in the usual NS equation. Consider first
the nonlinear term in the ‘‘usual’’ NS equation for single
phase flow. In (v,k) representation it has the form~see, e.g.,
Refs.@26,27#!

N$u,u%v,k
a 5E d3k1 d3k2 dv1 dv2

~2p!4
gkk1k2

abg ub* ~v1 ,k1!

3ũg* ~v2 ,k2!d~v1v11v2!. ~3.58!

Here gk k1k2

abg is the so-calledvertex of interactiongiven by

Eq. ~3.6!. It includes transversal projectors accounting for t
incompressibility of the fluid,d function of k vectors origi-
nating from the space homogeneity of the problem and
proportional tok ~as a reflection of“ operator in the nonlin-
ear term inr representation!.

The vertexgk k1k2

abg satisfies so-calledJacobi identity

gkk1k2

abg 1gk2k k1

gab 1gk1k2k
bga 50, ~3.59!

as a consequence of the energy conservation by the E
equation.

(b) Nonlinearity in the effective NS Eq.~3.1!. A rigorous
derivation of the nonlinear term in the effective NS Eq.~3.1!
is a very delicate issue. For example, in Eq.~3.27!, we used
the operator of the effective density~3.28! containing only
the first term of expansion~3.26!. This approximation does
not account for all terms, second order inu. This derivation
is beyond the scope of this paper. Instead, we present
physical arguments which allows us to propose a form
N$u,u%v,k that satisfies all needed requirements.

By analogy with Eq.~3.58!, we can write
4-11
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N$u,u%v,k
a 5E d3k1d3k2dv1dv2

~2p!4
Gkk1k2

abg ub* ~v1 ,k1!

3ũg* ~v2 ,k2!d~v1v11v2!, ~3.60!

where the vertexGk k1k2

abg differs from gk k1k2

abg , Eq. ~3.6!, be-

cause nowr fÞreff(k).
The simplest possible generalization of the vertex, jus

replacementr f→reff(k) in Eq. ~3.6!, leads to a vertex
Gk k1k2

abg , which does not satisfy the Jacobi identity

Gk k1k2

abg 1Gk2k k1

gab 1Gk1k2k
bga 50, ~3.61!

leading to violation of the conservation of the kinetic ener
of suspensionE. We suggest Eq.~3.7! for Gk k1k2

abg . Clearly,

due to Eq.~3.59! this vertex satisfies requirement~3.61! and
consequently, Eq.~3.1! conserves the energyE.

Another physical requirement is Galilean invariance
the problem. This is the case for the standard NS equa
with vertex ~3.6! in which r f is k independent. For the
k-dependent density in the vertex~3.7! Galilean invariance
implies that in the limit, when one of the wave numbers
much smaller then two others~sayk1!k2[k3), the effective
density must depend on the smallestk vector. Obviously, this
is the case for thek argument ofreff(k) in Eq. ~3.7!. This
guarantees Galilean invariance of Eq.~3.1!.

Now Eq. ~3.56! involves onlyv-independent coefficient
and may be rewritten in (t,k) representation; see Eq.~3.1!.

IV. BUDGET OF KINETIC ENERGY IN TURBULENT
SUSPENSIONS

In this section, we consider the budget of kinetic energy
turbulent suspension. In Sec. IV A, we will use the one-flu
model ~3.1! to derive ~for homogeneous, isotropic turbu
lence! the following budget equation for the ~one-
dimensional! density of kinetic energy:

]E~ t,k!

2 ]t
1@g0~k!1gp~k!#E~ t,k!5W~ t,k!1J~ t,k!.

~4.1!

The left hand side~LHS! of this equation includes two
damping terms,g0(k)E(t,k), caused by the effective kine
matic viscosity andgp(k)E(t,k) caused by the fluid-particle
friction. The densityE(t,k) is given by Eq.~4.7!. The right
hand side~RHS! of Eq. ~4.1! includes the source of energ
W(t,k), localized in the energy containing interval, and t
energy redistribution termJ(t,k).

The budget equation~4.1! is exact, but unfortunately no
closed. Equations~3.4! for the effective kinematic viscosity
and Eq.~3.3! for gp(k) includes ‘‘turnover frequency’’ ofk
eddiesg(k). Also W(t,k) contains yet unknown (u, f ) cor-
relations, Eq.~4.6!. And finally J(t,k) is given by Eqs.~4.9!
and ~4.3! via third-order velocity correlationsF3. There are
many reasonable closure procedures for the approximatio
higher-order velocity correlations by lower-order ones.
elucidate the basic physics of the problem at hand, in
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paper, we will use the simplest possible closure. Applicat
of more sophisticated closures will be done elsewhere.

A. The energy budget equation

In order to derive Eq.~4.1!, we multiply Eq. ~3.1! by
u(t,k8) and average

reff~k!H ]F~ t,k!

2 ]t
1@g0~k!1gp~k!#F~ t,k!J

5J~ t,k!1W~ t,k!, ~4.2!

J~ t,k![E d3k1 d3k2

~2p!3
Gk k1k2

abg F3
abg~ t;k,k1 ,k2!. ~4.3!

Here,F(t,k) andF3(t; . . . ,) are thesecond- and third-orde
simultaneousvelocity correlation functions taken atoverall
time t,

~2p!3d~k1k1!F~ t;k!5^u~ t,k!•u~ t,k1!&, ~4.4!

~2p!3d~k1k11k2!F3
abg~ t;k,k1 ,k2!

5^ua~ t,k!ub~ t,k1!ug~ t,k2!&. ~4.5!

Note that the timet in the argument ofF(k) in Eqs.~3.43!–
~3.46! is omitted:F(t,k)5F(k).

In Eq. ~4.2!, we introduce also thesimultaneous(u, f )
cross correlation functions

~2p!3d~k2k1!W~ t,k!5^u~ t,k!f~ t,k1!&. ~4.6!

We can rewrite Eq.~3.42! for the density of the kinetic en
ergy of suspension in terms ofF(t,k)5F(t,k) ~for isotropic
turbulence!:

E~ t,k!5
reff~k!

2p
k2F~ t,k!. ~4.7!

Multiplying Eq. ~4.3! by k2/2p one gets finally the balanc
Eq. ~4.1! in which

W~ t,k!5
k2

2p
W~ t,k!, ~4.8!

J~ t,k!5
k2

2p
J~ t,k!. ~4.9!

Notice that effective vertexGk k1k2

abg in Eq. ~4.3! was con-

structed such that the total kinetic energyE is the integral of
motion ~neglecting pumping and damping!: *0

`J(t,k)dk
50. Therefore, the energy redistribution termJ(t,k) may be
written in the divergent form

J~ t,k!52
d«~ t,k!

dk
, ~4.10!

where «~ t,k!5E
k

`

dk J~ t,k! ~4.11!
4-12
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is the ~one-dimensional! energy flux over scales.
In the rest of the paper, we will consider only stationa

solutions of Eq.~4.1!. Omitting ~here and below! time argu-
ment one finally has

@g0~k!1gp~k!#E~k!5W~k!2
d«~k!

dk
. ~4.12!

B. Simple closure for the energy budget equation

The effective density in our approach, Eq.~3.2!, depends
on the characteristic frequencyk eddiesg(k). This object
may be evaluated as the inverse lifetime of these ed
which is determined by their viscous damping and ene
loss in the cascade processes. Accordingly,g(k) is a sum of
two terms

g~k!5g0~k!1gc~k!, ~4.13!

whereg0(k), Eq. ~3.4!, is the viscous frequency andgc(k)
may be evaluated as the turnover frequency ofk eddies,

gc~k!;k Uk where Uk;AkE~k!/reff~k! ~4.14!

is the characteristic velocity ofk eddies. We therefore defin

gc~k!5CgAk3E~k!/reff~k!, ~4.15!

whereCg is some dimensional constant, presumably of
order of unity. Clearly, the same evaluation~4.15! one gets
from a dimensional reconstruction ofg(k) in terms of the
only relevant~in the K41 picture of turbulence! variablesk,
E(k), andreff(k).

In the same manner, by the dimensional reasoning,
gets the following evaluation of the energy flux:

«~k!5C«Ak5E3~k!/reff~k!, ~4.16!

where C«5O(1). Notice that in pure fluids@with reff(k)
→r f ] Eqs. ~4.15! and~4.16! are nothing but the K41 evalu
ation of the corresponding objects. This become even m
transparent if one rewrites Eq.~4.16! in the more familiar
form

E~k!5C1@«2~k! reff~k!#1/3k25/3, C1[C«
22/3.

~4.17!

Together with Eq.~4.15! this gives a useful evaluation o
gc(k) via «(k),

gc~k!5C2F«~k! k2

reff~k! G1/3

, C2[
Cg

C«
1/3

. ~4.18!

Last, we have to evaluate the energy input in the sys
W(k). It follows from Eq.~3.1! that u(k) may be evaluated
as f (k)/g(k)reff(k). Together with Eqs.~4.6!, ~4.8!, and
~4.15! this gives

W~k!5Cwf k
2Ak E~k!

reff~k!
, ~4.19!
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whereCw5O(1) andf k
2 is the pair correlation of the forcing

@which may be defined similarly to Eq.~4.6!#.

C. Dimensionless budget equation

For the convenience of the reader, we present here the
set of equations which will be studied below. To nondime
sionalize this equation, we define a dimensionless w
number,k, and the integral-scale related parameters

k5k L, «
L
5«S 1

L D , g
L
5gS 1

L D , r
L
5reffS 1

L D .

~4.20!

Define also the dimensionless functions

«k5
«~k!

«
L

, gk5
g~k!

g
L

,

~4.21!

rk5
reff~k!

r
L

, Wk5
W~k!

W~1/L !
,

in which the argumentk is written as a subscript to distin
guish them from the corresponding dimensional functions
the dimensional argumentk.

The resulting dimensionless budget equation reads

d«k

dy
1

«k

y
C Tk1

C1

Res
S y «k

2

rk
2 D 1/3

~11Tk!5Wk ,

~4.22!

Tk[
f d gk

~11f!~112 d gk!1~d gk!2
, ~4.23!

C5C1 C2 , d5g
L
tp .

Here, we used Eq.~4.17! and defined the Reynolds numbe
for the carrier fluid Ref and the effective Reynolds numbe
for the suspension Res

Ref5
L v

L

n
, v

L
5S «

L
L

r
L

D 1/3

, ~4.24!

Res5
L v

L

n
L

, n
L
[neff~L21!5n

r
L

r f
, ~4.25!

r
L
5r fF11f

112d

~11d!2G
in terms of the rms turbulent velocityvL dominated byL
eddies. Obviously, Ref involves the kinematic viscosity o
the carrier fluidn, while Res depends on the effective kine
matic viscosity of the suspensionneff(L

21) for the outer
scale of turbulenceL.

Equation~4.22! has to be considered together with equ
tions for rk andgk , which follows from Eqs.~3.2!, ~4.13!,
and ~4.18!:
4-13
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rk5F11f
112dgk

~11d gk!2G Y F11f
112 d

~11d!2G ,

~4.26!

gk5
k2

C2 Res rk
1

«k
1/3k2/3

rk
1/3

.

These two equations allow us to express the functionsgk and
rk in terms of«k . With these solutions, Eq.~4.22! becomes
an ordinary differential equation for the only function«k .

The first line of Eq.~4.22! describes the effect of particle
in the inertial integral of scales. This part involves the ma
loadingf, the dimensionless particle response time~normal-
ized by the eddy lifetime! d, and the parameterC, character-
izing our version of theK41 closure.

The second line of Eq.~4.22! represents the effect of th
viscous friction, which is proportional to 1/Res , and the
pumping termWk , which we choose as follows:

Wk5
1

A2ps
expF2

~y21!2

2 s2 G . ~4.27!

This function has a maximum aty51 ~the input of energy is
largest atk51/L), while the parameters describes the char
acteristic width of the pumping region. In addition, the fun
tion Wk satisfies the normalization constrain

E
2`

`

Wkdy51, ~4.28!

which follows from Eq.~4.22! in the limit s!1.

V. SOLUTION OF THE BUDGET EQUATION

A. Simplification of the energy pumping term

First notice, that the turbulence statistics in the ene
containing range,k L5y;1 is not universal and depends o
the type of energy pumping, in our case, on the functionWk .
Therefore, for general analysis, which is not aimed at
study of some particular type of turbulence generation,
can take the pumping of energy in a narrow shell in thek
space. This means

lim
s→0

$Wk%5d~k!, ~5.1!

whered(k) is the Diracd function. In this limit and with
zero boundary conditions for«k , gk at k50 ~and, conse-
quently, rk51 at k50) , Eq. ~4.22! can be solved on the
interval 0<k<1. This gives

«k51, gk51, rk51 at k51. ~5.2!

In the limit ~5.1!, Eq. ~4.22! has zero RHS fork.1:

d«k

dk
1

«k

k
CTk1

C1

Res
S k«k

2

rk
2 D 1/3

~11Tk!50. ~5.3!
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Relations~5.2! can be considered as the boundary conditio
for Eq. ~5.3! at k51.

B. Particle-free case and limit of small particles

Consider now the particle-free casef50 and the case o
very small particlesd50 for finite Res . In both cases Eq
~5.3! becomes

d«k

dy
1

C1k1/3«2/3

Res
50. ~5.4!

We took here in account that according to Eq.~4.26! rk51
for f50 and also ford50. Notice, that forf50, n

L
5n,

and, consequently, Res5Ref , while for d50, n
L
5n/(1

1f) and Res5Ref(11f). The reason is that ford→0 all
particles are fully involved in turbulent motions and one c
consider a suspension as a single but heavier fluid with
densityr f(11f).

The solution of Eq.~5.4! with the boundary condition
«151 is

«k5F11
C1

4Res
~12k4/3!G3

. ~5.5!

In the particle-free casef50 and this solution turns into

«k
(0)5F11

C1

4Ref
~12k4/3!G3

, ~5.6!

where Res⇒Ref as we discussed above. In the bulk of t
inertial interval these solutions give a small viscous corr
tion to the K41 solution with the constant energy flux«k
51. Namely,

«k'113C1~12k4/3!/~4Res! for k!1/Res . ~5.7!

The local in thek-space closure procedure, used in the pap
works reasonably well in the inertial interval, where the e
ergy exchange between eddies is dominated by the eddie
compatible scales. However, it is violated in the bulk of t
viscous subrange, where the dynamics of eddies of v
small scales is dominated not by their self-interaction, but
their energy exchange withh eddies of the Kolmogorov mi-
croscaleh. Therefore, we cannot expect Eq.~5.3! to repro-
duce the exponential decay of the energy flux in the visc
subrange. Nevertheless, this equation describes on a qu
tive level the behavior of the energy flux until the very end
the inertial interval giving the crossover scale to the visco
subrange, i.e., the value ofh. According to Eq.~5.5!, the
energy flux becomes zero at

kcr5~114 Res /C1!3/4. ~5.8!

It convenient to introduce here an effective Reynolds num
of the carrier fluid and suspensions

Ref
eff54Ref /C1 , Res

eff54Res /C1 , ~5.9!

which enters in the corresponding Kolmogorov-41 evalu
tions of the viscous cutoff. For example, for the fluid
4-14
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h f5L/kcr'L/@Ref
eff#3/4. ~5.10!

C. Iterative solution in the inertial interval

In the bulk of the inertial interval, after neglecting th
viscous terms~i.e., for Res→`), Eq. ~5.3! becomes

d«k

dk
1

«k

k

C f d gk

~11f!~112 d gk!1~d gk!2
50, ~5.11!

gk
3 rk5«kk2, ~5.12!

rk5F11f
112 dgk

~11d gk!2G Y F11f
112 d

~11d!2G .

1. Large-scale solution of the budget equation

In region of large scalesk'1 the functionsrk'1 and we
can simplify Eq. ~5.12! by the replacementrk⇒1 in the
equation forgk , i.e., gk⇒«k

1/3k2/3. In the denominator of
Eq. ~5.11!, where thek dependence ofgk is less essential
we can make further simplification, replacinggk⇒k2/3. The
resulting equation allows separation of variables,

2

d

d«k
21/3

dk2/3
5CC0~k!, ~5.13!

C0~k!5
f

~11f!~112dk2/3!1d2k4/3
.

The solution of this equation with the boundary conditio
«151 is «k5«0,k , where

«0,k5
1

@11CJ0~k!#3
, ~5.14!

J0~k!5
d

2E1

k

C0~x!d x2/3

5
Af

4A11f
H lnFdk2/3111f2Af~11f!

d111f2Af~11f!
G

2 lnFdk2/3111f1Af~11f!

d111f1Af~11f!
G J .

Now with Eq. ~5.12!, we find the following approximations

r0,k5F11f
112 d «0,k

1/3 k2/3

~11d «0,k
1/3 k2/3!2G Y F11f

112 d

~11d!2G ,

g0,k5~«0,kk2/r0,k!1/3. ~5.15!

Formally speaking, the analytical solution~5.14! and
~5.15! is valid only for k'1. To find the solution of the
initial Eq. ~5.11! in the whole interval of scales, we wil
iterate this equation, taking the analytical solution as a st
04631
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ing function. Comparing in Sec. V D this solution with th
next order iterations and with the numerical solution of E
~5.11!, we will find an actual region of applicability of the
analytical solution~5.14! and ~5.15!.

2. First improvement and subsequent iterations

With the analytical solution~5.14! and~5.15!, we can im-
prove approximation~5.13! of Eq. ~5.11! by rk⇒r0,k @in-
stead ofrk⇒1], which givesgk⇒«k

1/3k2/3/r0,« in the nu-
merator of Eq. ~5.11!. In the denominator, we replac
gk⇒«0,k

1/3k2/3/r0,« . The improved simplification of Eq.~5.11!
reads

2

d

d«k
21/3

dk2/3
5CC1~k!, ~5.16!

C1~k!5
f

r0,k
1/3@~11f!~112d g0,k!1~d g0,k!2#

.

Integration of this equation gives the first iterative solution
Eq. ~5.11!, «k5«1,k , where

«1,k5
1

@11CJ1~k!#3
, ~5.17!

J1~k!5
d

2E1

k

C1~x!d x2/3.

This allows further improvement of approximations~5.15!

r1,k5F11f
112 d g0,k

~11d g0,k!2G Y F11f
112 d

~11d!2G ,

~5.18!

g1,k5~«1,kk2/r1,k!1/3.

Now, the next iteration steps are obvious. Thenth order so-
lution is

«n,k5
1

@11C Jn~k!#3
, ~5.19!

Jn~k!5
d

2E1

k

Cn~x!dx2/3,

Cn~k!5
f

rn21,k
1/3 @~11f!~112dgn21,k!1~d gn21,k!2#

,

rn,k5F11f
112 d gn21,k

~11d gn21,k!2G Y F11f
112 d

~11d!2G ,

gn,k5~«n,kk2/rn,k!1/3. ~5.20!
4-15
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FIG. 1. Log-log plots of analytical solution«0,k ~dashed lines!, first iterative solution«1,k ~dot-dashed lines!, and ‘‘exact’’ numerical
solution ~solid lines! for d50.1 and various valuesf. Panel~a! C50.25, panel~b! C51.
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D. Accuracy of the iterative solutions

To get an understanding of the accuracy of the analyt
solution«0,k , Eq. ~5.14!, and the first iterative solution«1,k ,
we compare them with the ‘‘numerically exact’’ solutions
Eq. ~5.11!, «k in the wide inertial range of four decades.

We found that for all values ofk and d the analytical
function «0,k works unexpectedly well forC f<0.25. To
illustrate this, we plot in Fig. 1 functions«0,k , «1,k , and«k

for C50.25 @panel ~a!# and C51 @panel ~b!# for f
50.25, 0.5, andf51 with d50.1. The relative difference
between«0,k and «k is about a few percents for all thre
cases in panel~a! and for the casef50.25 in panel~b!.

For larger values of the productC f the accuracy of few
percents is achieved in the smaller region ofk, where
tpg(k)5dk2/3,1, i.e., approximately fork<d23/2. For ex-
ample, ford50.01 this is three decades,k,103, while for
d50.1 only for k,30, as we show in Fig. 1~b!. Moreover,
the first iterative solution,«1,k gives a very good approxima
tion to «k for all reasonable values of parameters. This
illustrated in Fig. 1~b! for C51 andf51. Notice, that for
C50.25 andf51 @Fig. 1~a!# the plots of«1,k «k are undis-
tinguished within the linewidth.

The conclusion is that for the qualitative and semiqua
tative description of the turbulence modification by partic
in the inertial interval, we can use the analytical soluti
~5.14! and ~5.15!, corrected, if needed, by the first iteratio
«1,k .

VI. TURBULENCE MODIFICATION BY PARTICLES

A. Preliminaries

Consider now separately the density of kinetic energy
the carrier fluidEf(k) and that of the particleEp(k) ~i.e., the
density of the kinetic energy of the particle velocity field!.
According to Eqs.~3.2!, ~3.44!, ~3.45!, and~4.17!

Ef~k!5C1r f@«~k!/reff~k!#2/3k25/3, ~6.1!
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f

Ep~k!5f
112 tpg~k!

@11tp g~k!#2
Ef~k!. ~6.2!

It is convenient to introduce the dimensionless functions
k5k L, Ek

f , andEk
p , both normalized byEf(L

21):

Ek
f 5

Ef~k!

Ef~L21!
, Ek

p5
Ep~k!

Ef~L21!
, ~6.3!

which may be written as

Ek
f 5~«k /rk!2/3k25/3, ~6.4!

Ek
p5f

112 d gk

@11d gk#2
Ek

f . ~6.5!

Next, introduce the dimensionless ratio

R~k![
Ek

f

Ek
0,f

5F «k

«k
(0)rk

G 2/3

, ~6.6!

whereEk
0,f5@«k

(0)#2/3k25/3 is the density of turbulent kinetic
energy and«k

(0) is the energy flux in the particle-free cas
Eq. ~5.6!. The ratioR(k) is larger~smaller! than unity in the
case of enhancement~suppression! of the turbulent energy by
particles.

B. Energy flux

Our model with local ink-space parametrization of th
energy flux involves the parameter of the closure proced
C, which has to be considered as a fit parameter which m
be evaluated, for example, by comparison with the dir
numerical simulation. Generally speaking, it is expected
be of the order of unity. For simplification of the qualitativ
analysis of the effect of particles on the statistics of turb
lence we choose usuallyC51/4, for which we can use the
4-16
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EFFECT OF PARTICLE INERTIA ON TURBULENCE IN . . . PHYSICAL REVIEW E67, 046314 ~2003!
analytical solution~5.14! and ~5.15!. The effect ofC on the
behavior of the function«k is qualitativly described by the
approximation«k(C);11C @«k(C21)#. This is illustrated
by comparison of plots«0,k for C50.25 andC51 in Figs.
1~a! and 1~b!.

The plots in Fig. 1 also demonstrate the expected fact
for small f the effect of the particles is proportional tof.
This may also clearly be seen from the balance equa
~5.11!. The balance equation itself also reflects a less triv
fact of saturation of the effect of the particles in the lim
f@1; the beginning of this saturation is clearly seen in F
1. The physical reason for the saturation is that the m
governing parameter in the problem is the ratio of the p
ticle energy to the energy of thesuspensionbut not to the
energy of thecarrier fluid. As an example of the quantitativ
description of the effect of saturation consider Eq.~5.14! for
«0,k in the limit k→`,

«0,̀ 5F11
CAf

4A11f
lnS d111f1Af~11f!

d111f2Af~11f!
D G23

.

~6.7!

Evidently

«0,̀ 'F11
Cf

2~11d!G
23

for f!1,

~6.8!

«0,̀ 'F11
C

4
lnS 2f

d11D G23

for f@1.

One sees in Fig. 1 that the increase in the mass loadinf,
leads to the suppression of the energy flux for largek ~ small
scales!. The onset of this suppression shifts to smallerk
~larger scales! with increasingd, Fig. 2. To understand this
we note thattpgk'd k2/3 is an important governing param
eter in the energy budget equation. Consequently, with
creasing particle response time, the fluid-particle friction d
sipate energy in the larger-scale region. As is evident fr

FIG. 2. Log-log plots of analytical solution«0,k for d51,
0.1, 1022, 1023 ~with C50.25 andf51).
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this figure, the main dissipation of energy occurs in the
gion 0.1,dk2/3,10. Therefore, ford.0.1 the total loss in
the energy decreases with further increase ind.

C. Suppression and enhancement of turbulence
in the inertial interval

As we discussed in Sec. VI A the effect of particles on t
energy distribution in suspension~with respect to the
particle-free case! may be characterized by the ratioR(k),
Eq. ~6.6!. This effect is twofold: the fluid-particle friction
leads to suppression of the energy flux with increasingk.
Accordingly, «k in the numerator of Eq.~6.6! decreases to-
wards largerk. On the other hand, for largerk less particles
are involved in the motion and the effective densityrk de-
creases withk. The factor «k

(0)51 in the limit Res→`.
Therefore, in the inertial interval of scales the behavior
R(k) is defined by the strongestk dependence either of«k
or of rk . As we discussed, forC,0.25 it is sufficient to use
the analytical solutions for«0,k , Eq. ~5.14! and g0,k , Eq.
~5.15!. This gives

R0~k!5H «0,k@11f~112d!/~11d!2#

11f~112dg0,k!/~11dg0,k!2J 2/3

. ~6.9!

Figure 3~a! demonstrates how the ratioR(k) depends on
the fit parameter of our modelC which appeared in the bud
get Equation~5.11! in the front of the term, responsible fo
the fluid-particle friction. Clearly, the relative importance
the fluid-particle friction~with respect to the effect of the
density variation! increases with the value ofC. In particular,
for C51 the friction dominates andR(k),1, for C50.25
the density variation dominates andR(k).1. For 0.25,C
,1, the density of energy of the carrier fluid is suppress
for smallerk and enhanced towards largerk. As is clearly
seen in the figure, the functionR(k) has a minimum around
some critical valuekcr which depends onC and k. For C
'1 the value ofkcr agrees with the expected estima
tpg(kcr)[dgkcr

'1. With decreasingd the position of the

crossover~and of the minimum! is shifted towards largerk.
It is evident that fork,kcr the effect of the fluid-particle
friction wins, while for k.kcr the effect of the decrease i
the effective density of the suspension is stronger.
k@kcr the functionR(k) saturates.

Notice that forC,0.5 the analytical prediction~dashed
lines! is pretty close to the ‘‘exact’’ numerical result~solid
lines! indicating the qualitative validity of the analytical de
scription of the effect of particles on the energy distributi
in suspensions~within the model limitations!. Therefore, one
can find the limiting value ofR`[R(k→`) from Eq. ~6.9!

R0,̀ 5F11
f~112d!

~11d!2 G 2/3F11
C

2
A f

11f

3 lnS d111f1Af~11f!

d111f2Af~11f!
D G22

. ~6.10!
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FIG. 3. Log-log plots of the analytical predictionR0(k), Eq. ~6.9! ~dashed lines! and the numerical resultR(k) for f51 ~note
that k5kL). Panel~a! d50.1 and values ofC indicating corresponding lines. Panel~b! C50.5 and values ofd corresponding lines.
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The analysis of this equation shows that the largest poss
enhancement of the turbulent energy in the inertial interva
achieved ford'1 and increases withf.

D. Turbulence modification for finite Re

In the preceding section, we discussed the mechanism
turbulent enhancement in the inertial interval caused by
density variation in the energy cascade processes. The
one more mechanism of the turbulent enhancement, nea
viscous subrange, that may be even more important at m
erate Re. This effect is due to the renormalization of
kinematic viscosity in suspensions,n⇒neff(k), Eq. ~3.4!,
caused again by the density variation. Sincereff(k) near the
viscous cutoff,k;1/h, is larger thanr f ~and consequently
neff(1/h),n), the extent of the inertial interval in suspe
sion is therefore larger than that in the particle-free case
the same energy pumping to the system. Within our mo
this effect may be described for very small particles with
response time smaller than the turnover time ofh eddies. In
this case, the effective density isk independent in the inertia
subrange,rk51, «k and«k

(0) ~for the particle-free case! are
given by Eqs.~5.5! and ~5.6!. Thus, Eq.~6.6! yields

R~k!5F11
C1

4Res
~12k4/3!G2Y F11

C1

4Ref
~12k4/3!G2

.

~6.11!

Plots of R(k) for different Ref are shown in Fig. 4~a! by
dashed lines together with the numerical results for a q
small d51023, solid lines. The numerical results ford
50.01 andd50.1 are shown in Figs. 4~b! and 4~c!. With Ref
growing above 106–108, we return back to the situation i
the inertial interval, described above, see Fig. 3. For
comparison, we show the plots for Ref→` in Fig. 4.

For very smalld the effect of particles on the turbulen
statistics in the inertial interval is negligible; as an illustr
tion see Fig. 4~a! for d51023. In this case, there is only th
viscous range enhancement. Clearly, with decreasing Ref this
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effect is more pronounced. For the moderate values ofd,
there is a turbulence suppression in the beginning of
inertial interval, which turns into a turbulence enhancem
in the bulk of the inertial interval, see, e.g., Fig. 3~b! for d
50.01 and the line marked Ref5` in Fig. 4~b!. One sees
that already for Ref5104 the energy enhancement increas
This enlargement becomes more and more pronounced
even smaller Ref . For Ref5102 the turbulence suppressio
in the beginning of the inertial interval is negligible. Furth
development of these tendencies is illustrated in Fig. 4~c! for
d50.1

E. Brief comparison with the DNS

In order to get an analytical description of the main phy
cal mechanisms of the particle effect on turbulence, we u
in this paper as simple as possible approximations, wh
nevertheless, preserve the basic physics of the problem
particular, we have used the differential approximation of
energy flux term, Eq.~4.11! with local in k-space closure
procedure, which gives a reasonable approximation in
extended inertial intervals of several decades. However
the direct numerical simulations of turbulence in susp
sions, e.g., in Ref.@4#, there is almost no inertial interva
definitely smaller than one decade. Therefore, the deta
comparison of our simple theoretical picture with the DN
may be only qualitative.

For such a comparison with the DNS by Boivin, Simon
and Squires@4#!, we replotted in Fig. 5 their Fig. 5~b! for the
kinetic energy spectraEs(k,f) of suspensions in the log-log
coordinates~solid lines!. The solid line, labeled byf50,
describes the particle-free case, in which the energy sp
trum in the inertial interval should be scale invariant. T
K41 dependence is shown in Fig. 5 by a dash-dotted l
labeled byk25/3. One sees that only the first half of th
decade may be considered as the inertial interval. The
cous corrections to this dependence may be accounted
with the help of Eq.~5.6!. Using also Eqs.~5.9! and ~6.4!,
one gets
4-18
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EFFECT OF PARTICLE INERTIA ON TURBULENCE IN . . . PHYSICAL REVIEW E67, 046314 ~2003!
FIG. 4. The plots of the numerical results forR(k) (k5kL) for
various Ref ~solid lines! for f51 and C5C150.5. Panel~a! d
51023, dashed lines show analytical prediction, Eq.~6.11! for d
50. Panels~b! and ~c! d50.01 andd50.1.
04631
Ek
f 5k25/3F11

1

Ref
eff ~12k4/3!G 2

. ~6.12!

With an appropriate value of Ref
eff this equation reasonabl

approximates the numerical data almost in the whole dec
of k, in which Ek

f decays more than three orders of mag
tude, see dashed linef50. The chosen value Ref

eff540
agrees with parameters given in Ref.@4# with an acceptable
value of the closure parameterC1, which enters in the defi-
nition ~5.9! for Ref

eff . With C513 the numerical solutions o
Eq. ~5.3! approximate well all the DNS energy spect
Ek

f (f) with f50.2, 0.5, and 1 in the region, bounded fro
above by some value ofk referred to askmax. In this region,
the spectra decrease from unity~at k51) to some values,
smaller than 1023. The value ofkmax decreases fromkmax
'14 for f50 spectrum tokmax'7 for the spectrum with
f51.

For k.kmax the solutions of Eq.~5.3! give too small val-
ues of the turbulent energy. As already discussed, this is
to the differential approximation for the energy flux, which
absolutely not realistic in the viscous subrange. Clearly,
larger the value off, the more energy is dissipated by th
fluid-particle friction, diminishing the energy flux at the en
of the inertial interval. Consequently, the Kolmogorov m
croscaleh5n3/4/«1/3 increases. Sincekmax}1/h, it shifts to-
ward smaller values.

One observes also some deviations of the DNS data
our numerical solutions in the energy containing regionk
;1. This is again related to the differential approximati
for the energy flux. To improve the description of the partic
effect on the turbulent statistics a better approximation
the energy transfer term is required. This calls for the m
elaborated closure procedures, based on a proper analys
the triad interactions.

FIG. 5. Log-log plots of turbulent kinetic energy spectru
Ek

f (f) taken from Ref.@4# for f50, 0.2, 0.5, and 1 withd
51.65 ~solid lines!, and numerical solution of Eq.~5.3! for the
same values off andd with Ref

eff540 andC513.
4-19
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VII. SUMMARY

~a! In this paper, we propose a one-fluid dynamical mo
of turbulently flowing dilute suspensions which differs fro
the usual Navier-Stokes equation in two aspects.

~1! Instead of fluid densityr f our model involves a
k-dependenteffective densityreff(k), which varies between
r f ~for large k) and the mean density of suspensionrs

5r f(11f) ~for small k).
~2! The model equation includes an additional damp

term}gp(k), which describes the fluid-particle viscous fri
tion.

~b! Our model may be considered as amean-field approxi-
mation in which one uses a dynamical equation of moti
with ‘‘effective’’ coefficients which depend on the statistic
of the resulting stochastic solutions. In our case,reff(k) and
gp(k) are determined by the eddy turnover frequencyg(k)
which, in its turn, depends on the resulting energy distri
tion in the system.

~c! Our model is based on the same set of assumpt
~applicability of the Stokes law for the fluid-particle frictio
and space homogeneity of the particle distribution! as widely
used in two-fluid models for suspensions. We believe that
one-fluid description of turbulent suspensions contains
same physics as the essentially more complicated two-fl
models. Our feeling is that a possible minor difference in
level of accuracy between these two models is beyon
current level of understanding of the problem and is d
nitely smaller than the ‘‘absolute’’ accuracy of each mod
itself.

~d! In order to keep the description of the problem
simple and transparent as possible, we used in this pap
closure procedure based on the Kolmogorov-41-dimensio
reasoning with an additional simplification—the different
form of the energy transfer term in which the energy fl
«(k) is evaluatedlocally in k space, via the spectrumE(k)
taken at thesame wave number k. This allows us to derive
the quite simple ordinary differential equation for the ener
budget in the system~5.3!.

~e! As a reward, our budget equation~5.3! allows an ef-
fective analytical analysis in various important limitin
cases, i.e.,~1! in the particle-free case, see Eq.~5.6!; ~2! for
the microparticles case (d,Re23/4), see Eq.~5.5!; ~3! for the
first decades of the inertial interval~in the cased,1) or in
the whole inertial interval~if C,1/4), see Eqs.~5.14! and
~5.15!; ~4! for any reasonable values of parameters at ha
see Eqs.~5.17! and ~5.18!, involving one-dimensional inte
gration.

In the general case the budget equation~5.3! may be eas-
ily solved numerically.

~f! We derived the analytical expression~6.9! for the di-
mensionless ratioR0(kL), which describes the energy su
pression and enhancement in theinertial interval of scales.

~g! In Sec. VI D, we described the additional ‘‘viscous
mechanism of the turbulence suppression and enhancem
caused by the particle effect on theextent of the inertial
interval.

~1! The decrease of the effective kinematic viscosity
suspensions~due to the increase in the effective density f
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small-scale motions! elongate the inertial interval.
~2! The fluid-particle friction causes a decrease of the

ergy flux at the viscous end of the inertial interval and hen
shorten the inertial interval.

The winner of this competition depends mainly on t
value ofd, see, e.g., Fig. 4.

The complicated interplay of the inertial-range and t
viscous-range mechanisms of the suppression and the
hancement of the turbulent activity in suspensions is
main topic of Secs. V and VI.

~h! Our model successfully correlates observed feature
numerical simulations. These features are the following.

~1! For a suspension with particles with a response ti
much larger than the Kolmogorov time the main effect of t
particles is suppression of the turbulence energy of fluid
dies of all sizes~at the same energy input as for the partic
free case!. See for instance Fig. 5, where a comparison w
the DNS results of Boivin Simonin and Squireset al. @4# is
shown.

~2! For a suspension with particles with a response ti
comparable to or smaller than the Kolmogorov time, t
Kolmogorov length scale of the fluid eddies will decrea
and the turbulence energy of eddies of~nearly! all sizes in-
creases~at the same energy input as for the particle-fr
case!. This result was also reported by Druzhinin@13#, who
carried out the DNS simulations for the case of microp
ticles.

~3! For a suspension with particles with a response time
between the two limiting cases mentioned above the ene
of the larger fluid eddies is suppressed whereas the energ
the smaller eddies is enhanced. The crossover between
pression and enhancement depends on the ratio of the
ticle response time and the Kolmogorov time. The stren
of the effect depends on the mass loading. This is in ag
ment with the DNS results of Sundaram and Collins@12#.

The more detailed comparison of our approach to tur
lent suspensions with the physical and numerical exp
ments requires:~1! from the DNS side more detailed analys
of joint statistics of the velocity field of the particle and th
carried fluid;~2! from the theoretical side an application o
the more advancednonlocal closure procedures, explicitly
accounting for the triad interactions.

~i! An additional advantage of our one-fluid approach
that one can use standard and well developed closures
analytical theory of one-phase turbulence. This fact and
relative simplicity and physical transparency of the one-flu
model equations may essentially help in the further progr
towards a theory of turbulent suspensions for more reali
cases with space inhomogeneities, gravitational settling,
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