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Effect of particle inertia on turbulence in a suspension
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We propose ane-fluidanalytical model for a turbulently flowing dilute suspension, based on a modified
Navier-Stokes equation with ladependent effective density of suspensigr(k) and an additional damping
term o y,(K), representing the fluid-particle frictiofdescribed by Stokes lgwThe statistical description of
turbulence within the model is simplified by a modification of the usual closure procedure based on the
Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term.
The resulting ordinary differential equation for the energy budget is solved analytically for various important
limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically
two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement
during the cascade process due to decrease of the effective density of the small-scale motions. An additional
suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation
of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of
the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these
effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative
picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simu-
lations.
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INTRODUCTION parametergthe particle sizea vs L and 7, the outer and
inner scales of turbulence, the particle response tignes 7,

The interaction of solid particles or liquid droplets with and y,, the tumover frequencies of- and y-scale

the turbulence in a gas controls the performance of variougddie,s'_ ) ) )
engineering devices and is important for many practical ap- EXiSting analytical studies of the problem are mainly
plications such as the combustion of pulverized coal and@S€d upon @vo-fluid model description, wherein both the

liquid sprays, and cyclone separation. This interaction p|ay§arrying fluid and particle phases are treated as interpenetrat-
:ing continua[1—4]. This model deals with noninteracting

also an important role in many areas of environmental sci= 2. ) ) X ‘
ence and physics of the atmosphere. Dust storms, rain tri olid spherlca[ partlcle.slwnh a radu_as;mall enough such
hat the following conditions are satisfied.

gering, dusting and spraying for agricultural or forestry pur- | (1) One can neglect the effect of preferential concentra-

poses, preparation and processing of aerosols are typlcﬁon and may assume homogeneity of the particle space dis-

examples. For a review of turbulent flows with particles andtribution. This is not always so. Above some critical radius
droplet_s s€e, €9, Re[fl]. . . a., the space homogeneous distribution of particles becomes
) In dilute SUSpensIions W'_th small VO“_Jme fractions c_)f_par'unstable. Resulting clustering instability leads to preferential
ticles C,, the particle-particle interactions are negligible. concentration. For a detailed theory of this effect, see Ref.
Nevertheless, fop,/p;>1 (the ratio of the solid particle [5) and references therein. In the present paper, we consider
material and the gas densitiesthe mass loading¢ only particles witha<a,, .
=Cppp/ps may exceed unity and the kinetic energies of the () The Stokes viscous drag law for particle acceleration,
particles and the carrier gas may be comparable. Heﬂcﬂup/dt=[uf—up]/7p, is valid (u; is the fluid velocity.
the “two-way coupling” effect of the fluid on the particles  Unfortunately, the statistical description of two-fluid tur-
and vice versa must be accounted for. Current understangulence with closure procedures requires a set of additional
ing of the turbulence in dilute suspensions is still at itsquestionable simplifications due to the lack of understanding
infancy due to the highly nonlinear nature of the physicallyof the relevant physics of the particle-fluid interactions. This
relevant interactions and a wide spectrum of governingnakes closures of the two-fluid model highly qualitative at
best[4,6,7].

We think that the basic physics of the problem may be

*Electronic address: Victor.Lvov@Weizmann.ac.il; URL: http:// better described by a simplene-fluid modefor turbulent
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closure, based on the Kolmogorov-Richardson cascad®r largek y,(k)<y(k) and the particle-induced damping of
picture of turbulence. The resulting nonlinear differentialthesek eddies may be neglected with respect to their energy
equation for the energy budget were solved analyticallyloss in the cascade process, which is determined by the fre-
This provides an economical and internally consistent anaguencyy(k). In contrast, for small enougk[when 7,y(k)
lytical description of the turbulence modification by particles <1] the particles ar@almost completeljnvolved in the mo-
including the dependence of suppression or enhanceions of k eddies and their contribution te,(k) is sup-
ment of the turbulence on the three governing parametergressed by the factor cﬁfrpy(k)]2<1 with respect to 1, .
(7p7.), ¢, and the scale of eddies. These effects were pre- Our one-fluid model for turbulent suspensidBsl) is first
viously observed in numerous experimental and numericapostulated in Sec. IIl A. Its physical interpretation is dis-
publications, see, e.g., the review by Crowe, Trout, anccussed in Sec. Il B. A detailed derivation of E.1) is
Chung [8]. Many groups carried out experimental work; given in Secs. Il C, lll D, and Ill E. The most difficult prob-
for an overview see Pietryd®]. Other researchers studied lem here is how to account for the nonlinear effect of the
the modification of turbulence by small particles us- interaction ofk eddies within the one-fluid model of turbu-
ing direct numerical simulation$DNS) [4,10-13 or by lent suspensions. The suggested form of the nonlinear term
large-eddy simulatio{14]. Nevertheless, the complicated (3.5 is a modification of the standard Navier-Stokes nonlin-
physics of turbulently flowing suspensions in the two-way€arity and is based on the following.
coupling regime still wait for a detailed analytical descrip- (i) Arigorous description of eddy interactions in both lim-
tion. iting casesr,y(k)<1 and7,y(k)>1

Our analytical findings in this paper successfully correlate (i) Respect of the fundamental symmetries of the
important features of turbulence modification observed irProblem—Galilean invariance and conservation of energy.
numerical simulations Ref§4,12,13. We believe that the Section IV deals with the budget of the kinetic energy in
one-fluid model(together with more advanced closures of turbulently flowing suspensions. One has to account not only
one-phase turbulengeffers an insight in basic physics of for the dissipation of energy due to the fluid-particle friction
particle-laden turbulent flows. The next step in this developbut also for the effect of particles on the energy redistribution
ment should include the effect of preferential concentrationsin the system due to the eddy interaction. First, we derive in
which was studied so far only for a given turbulent flow field Sec. IV A the budget equatio@.1) which accounts for the
of the carrier fluid[5]. energy pumping due to a stirring force, energy damping due

The paper is organized as follows. In Sec. I, we review,g the kinematic viscosity and fluid-particle friction and also
after a presentation of the notati¢8ec. | A and an evalu-  describes the flux of energy over the scales due to the non-
ation of the characteristic time scaleSec. | B, some pub- |inearity of the problem. Equatiof4.1) is exact but unfortu-
lications about DNS simulation&Sec. Il A), about experi-  nately is not closed. As usual it includes a third-order veloc-
mental work(Sec. II'B) and about some analytical models i, correlation functions. As a first step in the analysis of
(Sec. I1Q. A crltl_cal evaluation of the existing analytical turbulent suspensions in the framework of our one-fluid
moldelss[4,1ﬁl—2q is made. fluid . ¢ ._model Eq.(3.1) and the budget equatidd.1), we use in this

n Sec. lll, we suggest a one-fluid equation of motion paper, Sec. IV B, a simple closure procedure based on the

(3.2) for turbulently flowing suspensions with small par- = i . :
ticles. This is a modified version of the Navier-Stokes equa—RIChardson Kolmogorov: cascade picture of turbulence in

tion with two wave-number-dependent parametggs(k) WhICh th_e energy flux is accounted for in a dlffe_rentlal ap-
and y,(K). proximation. Needless to say that there are various closure

(a) The k-dependent effective density of Suspensionsprocedures for th(_e Navier-Stokes tu_rbulence in the Iite_rature.
pei(K) describes the different degree of involvement of | "€y may be straightforwardly applied to our E8.1). This
heavy particles in turbulent fluctuations with different wave mportant part of the project will be done elsewhere.
numbers[referred below ak eddied. For k eddies with a The derived energy balance equations are summarized in
turnover time 14(k), which is much smaller than the par- Sec. IV C. They have a very simple and transparent analyti-
ticle response timer,, the particles may be considered at cal form (4.22—(4.26), allowing their effective analytical
rest andpe(K) is about the density of the fluid itsgsf. . For ~ analysis, see Secs. V and VL. In particular, in Sec. V B, we
k eddies withr,y(k) <1 the effect of the particle inertia may found a simple solution for the case of microparticles having
be neglected and particles may be considered as fully ina very small response time. In Sec. V C, we found the itera-
volved in the motion of eddies. Therefore, for small enoughtive solution for the case of a suspension with heavy particles
k the effective density«(k) is close to the mean density of in the inertial interval and analyzed its accuracy in Sec. V D.
the suspensioffluid plus particleg ps=p:(1+ ¢). Our Eq. In Sec. VI, we analytically describe a complicated inter-
(3.2 reasonably describgs.x(k) for all values ofk. play between two competitive effects of the turbulence sup-

(b) The damping terny,,(k), given by Eq.(3.3) describes  pression and the turbulence enhancement in the inertial in-
the fluid-particle viscous friction. The functiop,(k) satu- terval of scales, as well as in the viscous subrange. A brief
rates at the level %[, for small-scale eddies with,y(k) comparison of our finding with the DNS results is done in
>1, when the particles may be considered to be almost a&ec. VI E.
rest. In this regime the damping ksindependent, while the In the concluding Sec. VII, we summarize the results of
turnover frequency ok eddiesy(k) grows withk. Therefore, the paper and present our ideas for further work.
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I. NOTATIONS AND RELEVANT TIME SCALES

A. Nomenclature

Symbol Definition
ps, u(t,r) Density and velocity of the fluid
U(w,r), u(t,k), u(w,k) Fourier transform ofu(t,r) with respect tot [t

—w], with respect ta [r—k], and to both variables
[t—w, r—K]

F(t.k), F(w,k) Pair correlation functions of fluid velocity int k)
and (w,k) representation

E(K) = p:k?®F (0 k)/27 One-dimensional spectrum of the turbulent kinetic
energy of the pure fluidfluid without particle$

E(Kk) One-dimensional spectrurfof the turbulent kinetic
energy of the suspension

v(K) Turnover frequency ok eddies (turbulent fluctua-

tions of the characteristic scalekl/ May be under-
stood also as x(k), wherer(k) is the lifetime ofk
eddies. In the Kolmogorov 41 picture of turbulence
¥(K) =k VKE(K)/ps

E=[dkE(k)/27, £= [dkE(k)/27 Total turbulent kinetic energy of, respectively, the
pure fluid and the suspension

a, pp, mp=47-ra3pp/3 Radius, density, and mass of the particles

Cop, (53=1/Cp Volume fraction of particles and volume of suspen-
sion per particle

y=[47a’3]/¢3, ¢=m,/pit®  Volume fraction and mass loading parameter

T Particle response time, also referred tdSaskes time
scale

T Turnover time of the energy containing eddiesf
scalel)

o= 7-,,/7-L The particle response time in the unitsxef

7,0, T,=nlU, Kolmogorov (viscous microscale; characteristic ve-
locity, and time at scaley of turbulence

peii(K) Effective density of the suspension for turbulent fluc-
tuations of characteristic scaleklfreferred to ask
eddieg

v, Vei(K) Kinematic viscosity of the pure fluid and effective
kinematic viscosity ok eddies in the suspension

¥p(K) Effective damping frequency in the suspension due to
the fluid-particle friction

e(k) (One-dimensionalflux of the turbulent kinetic en-

ergy of the suspension via a sphere of radius k
space, also referred to asergy flux over scales

B. Evaluation of time scales It is clear that one of the important parameters in the

The radius of the particles is supposed to be smalPhysics of turbulently flowing suspensions is the ratio of the
enough, so that the particle Reynolds numbey Réess than ~ inertial time scale of the particlg¢he Stokes time scale,)
a critical value (Rg). In this case, we can apply the Stokes and the lifetimer,, of eddies of the Kolmogorov microscale.
approximation(according to which the fluid-particle friction The particle response time is given by
force is proportional to the difference between the particle 5
velocity and the fluid velocity Careful analysis by Lumley ;o m, _2ppa
[21] shows that in a turbulent flow the condition for the P 6mvpsa  9psv’
validity of Rg,<Re; may be expressed via the particle ra-
dius a and the Kolmogorov microscale in the following
way: .

_T 3
a<2y(pilpp) ™= (1.2 Mp="37 & Pp- €3

1.2

where we use the expression for the particle nrags
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As is well known the Kolmogorov microscalg is found  concentration of particles into regions of low vorticity and/or
from the condition that the Reynolds number for eddies ofigh strain rate.

scaley is equal to unity, Elghobashi and Truesdel[11] examined turbulence
modulation by particles in decaying isotropic turbulence.
Re,=nv,/v=1. 1.4 They used the particle equation of motion derived by Maxey

and Riley[23], and found that for the large density ratio

Here,v,, is the characterllstlc velocity of-spalg eddies. It 'S considered in their simulations the particle motion was influ-
related to the turnover time of these eddies in the following

mannerr, = y/ This allows us to rewrite the requirement enced mostly by drag and gravity. They found that the cou-
(L4 asTfrc])ﬂo?/vg'”. q pling between particles and fluid resulted in an increase in

small-scale energy. This increase in the energy of the high-
(1.5 wave-number components of the velocity field resulted in a
larger dissipation rate. They also found that the effect of
The ratio of the time scales, and 7, immediately follows gravity resulted in an anisotropic modulation of the turbu-
from Egs.(1.2) and(1.5), lence and an enhancement of turbulence energy levels in the
direction aligned with gravity.
T 2pp a2 .Boivin, Simonin, and Squireéé_l] also_made'a very de-
=9, 2 (1.6 tailed D_NS study of the modul_atlon of isotropic turbulence
T Pt 7y by particles. The focus of their work was on the class of
dilute flows in which particle volume fractions and interpar-
ticle collisions are negligible. Gravitational settling was also
neglected and the particle motion was assumed to be gov-
(p )1/3 erned by drag with particle response times ranging from the
P

T,= 7l v.

Substituting the conditiofil.1) for the validity of the Stokes
approximation, we find

.
To_
.

(1.7 Kolmogorov scale to the Eulerian time scale of the turbu-
lence and particle mass loadings up to unity. The velocity
field was made statistically stationary by forcing the low
Yave numbers of the flow. Like in Refgl0,1]] the effect of
articles on the turbulence was included by using the point-
orce approximation. The DNS results showed that particles
Yncreasingly dissipate fluid kinetic energy with increased
mass loading, with the reduction in kinetic energy being rela-

n P

where we neglected the difference between 8/9 and 1. Equ
tion (1.7) means that for “heavy” particles in a gas, that
satisfy Stokes approximation, the particle response tim
scale may be about ten times larger than the Kolmogoro
time scale:r,=<10r,. For such particles in a liquid the two

time scale; are ‘T"bOUt the same. S_o We may concludt_a thgt fﬁ(/ely independent of the particle response tifas was al-
heayy pgrtmles In-a gas, that satisfy Stokes approxmatm%ady found in Ref{10]). The viscous dissipation in the fluid
the Inertia of the particles may be expected to be Important e creases with increased mass loading and is larger for par-
a cc_)n5|derable_ part of the energy spectrum. _F_or particles in ficles with smaller response times. The fluid energy spectra
liquid the particle inertia will only be significant for the gp,q, that there is a nonuniform distortion of the turbulence
smallest eddies, for whict,~7,,. spectrum with a relative increase in small-scale endegy
was found in Ref[11]). They state that the fluid drags the
Il. REVIEW OF LITERATURE particles at low wave numbers, while the converse is true at
igh wave numbers for small particles.
Sundaram and Colling12] performed DNS simulations
of particle-laden isotropic decaying turbulence. The patrticle
response time was in the range r.fs7,<6.47,. The ra-
tio of the particle density and fluid density was of the order
of 10°. The particle Reynolds number Reemained less
than Re,, and the drag force on the particles was described
To study the two-way coupling effect several groups haveby Stokes law. The point-force approximation was employed
applied the direct-numerical-simulation techniqiNS) to  to represent the two-way coupling force in the fluid momen-
particle-laden isotropic turbulence. A brief review of some oftum equation. The DNS results showed that the particles re-
the publications is given below. duce the turbulent kinetic energy as compared to the particle-
Squires and Eato[il0] considered the particle motion in free case, and this reduction is less pronounced for smaller
the Stokes regime in which gravitational settling was ne-response times,,. The results also showed that the total
glected. They assumed statistically stationary isotropic turbuturbulent energy dissipation is increased by the particles, and
lence. Mass loadings from zero to unity were considered fothe increase is larger for smalley,. The turbulent energy
a series of particle response times varying from#),30  spectrum is reduced at small wave numbers and increased at
11r,, wherer, is the Kolmogorov time scale. They found high wave numbers by the two-way coupling, and the loca-
that the overall reduction in turbulence kinetic energy fortion of the crossover point is shifted towards larger wave
increasing mass loading was insensitive to the particle reaumbers for largerr, .
sponse time. They attributed the nonuniform distortion of the Druzhinin[13] examined the modulation of isotropic de-
turbulent energy spectrum by particles to the preferentiataying turbulence by microparticles, for whica2 5, 7,

This section is devoted to a review of the literature abou{1
the problem of a turbulently flowing suspension. We will
review important findings from published numerical experi-
ments, physical experiments, and analytical models.

A. Review of some DNS simulations
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<r, and Rg<Re,. The gravitational settling is neglected. with the measured modification of the spectral distribution of

Due to the fact thap,>p, the mass loading may be large the turbulence energy. They speculate that. the partic!es en-
enough to modify the carrier flow. Druzhinin first derived an hance the transfer of energy to smaller eddies extending the

approximate analytical solution for the energy spectrum an(]ﬁillssmatlon spectrum to smaller scale. Since only part of the

then performed also the DNS simulations. The results ob- igh wave number end of the spectrum could be resolved

. . _experimentally, this speculation could not be conclusively
Lal?end foliigatrit'dis \rNhOS:SThO'At'T’;bSTOxV thgit biOthtithr? rtutr rdemonstrated by their experimental data.
uleénce kinetic energy a € turbulence dissipation rate aré . «ainov et al. [25] studied the modulation of grid-

incrgased by the two-way C_OUP””Q eﬁECt, as compareq to Fhﬁenerated turbulence by coarse glass particles in a vertical
particle-free case. For particles with sufficiently high inertia yonward channel flow of air. Two different types of grids

(7,=0.57,) the two-way coupling effect caused a reduction,yere ysed. Glass beads with an average diameter o700

in the turbulence 'ki_netic energy as compared to the particleénd a mass loading of 10% were used. The particles were
free case. Druzhinin, therefore, showed that there occurs

litati tion in th i ﬁ ‘ &bout seven times larger than the Kolmogorov length sgale
qualitative transition in the two-way coupling effect of par- 5,q Rg~70 or 93, dependent on the type of grid used. The

) i . - i Barticle response time scale of the particlgswas about
T e e, e e i pcac o 000 10 7000 imes g hian e Koimogoroy e scale
all wave number:s in the energy s e,ctrum. For particles with.?; The mean ve!omy and the turbul_ence intensity along the
hiaher inertia that i | 9y tl?] P rI:hannel axigand in some cross sectionsere measured by
a figher inertia that 1S no fonger the case. means of a laser-Doppler velocimeter. The decay curves of
. ) the turbulence intensity in the streamwise direction showed
B. Review of some laboratory experiments an attenuation of the turbulence intensity of the flow by the

Many experiments have been carried out to study théarticles. The particles caused an increase in the total dissi-
modulation of turbulence in the carrier phase by particles. Arpation rate of the turbulence. Hussainetval. found that the
overview of the experimental work up to 1999 is given by presence of the particles decreased the energy spectra at high
Pietryga [9]. Experimental measurements in shear flows frequencies. This seems to be in contradiction with the
e.g., particle-laden jets and boundary layers, have shown thapeculation of Schreck and Kleis, that the particles enhance
the turbulence velocity fluctuations may be either increase¢he transfer of energy to smaller eddies.
or decreased due to the modulation of the flow(hgavy
particles. However, in turbulent shear flows it is often diffi- C. Analytical models
cult to separate the direct modulation of the turbulence due
to the momentum exchange with the particles from the indim
rect changes occurring through modification of turbulencq/
production mechanisms via interaction with mean gradients.
In grid-generated turbulence these production mechanisms
are absent. It approximates in the best possible way the ho- o
mogeneous, isotropic turbulence with particles that we study

in this publication. We will, therefore, briefly review below wherep(t,r) is the pressure ang; is the fluid density. The
some literature publications about experimental work deianqom vector fieldf(t,r) represents the stirring force re-
voted to the study of the modulation by particles of grid- gnsnsiple for the maintenance of the turbulent flow. Equation

generated turbulence. 2.1) includes also the forck(t,r) caused by the friction of
Schreck and Klei$24] studied the effect of almost neu- 'Ehé)fluid with particles &0 y

trally buoyant plastic particlegdensity 1050 kg/f) and
heavy glass particlegensity 2400 kg/rf) on grid-generated dps

turbulence in a water flow facility. The average particle size fo(t.n=—=[v(t,N—u(t,N]. (2.2
was 655um. The particle Reynolds number of the plastic P

particles Rg~8, for the glass particles Be 20. The par-  Herep(t,r) is the velocity field of the particles, considered
ticle volume fraction was varied between 0.4% and 1.5%, SQg a continuous medium with density, /¢3= p;, where
the system was very dilute. Mean velocity and velocity quc—mp is the mass of a particle,® the suspension volume per

tuations of both phases were measured by a Iaser—Dopplvﬁ,‘)ramde andg the mass loading parameter
velocimeter. The presence of the particles in sufficiently high ’ '

concentration modified the turbulence downstream of the p=my/pel3. (2.3

grid. The decay rate of the turbulence energy increased

monotonically with particle concentration. The additional The validity to represent,(t,r) in the form of Eq.(2.2) is
dissipation rate for the suspensions with the heavier glassased on the assumption of space homogeneity of the par-
particles was about double that of the almost neutrally buoyticle distribution. It is also assumed that the particles are
ant plastic particles. A simple model based on the slip velocsmall enough for the Stokes drag law to be valid. The equa-
ity between the phases underpredicted the measured increasmn of motion, suggested in the literature, for the continuum
in the dissipation rate. Schreck and Kleis, therefore, assumegshase of the particles does not often include the pressure and
that a large portion of the additional dissipation is associatediscous terms

The starting point for analytical models, described in the
erature, is often the Navier-StokéblS) equation for the
elocity of the pure fluidfluid without particle$ u(t,r)

(U-V)—»V2|u+Vp=f,+f, (2.1

—+
at
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Mo
€3
Equations(2.1) and (2.4) were used by Baw and Peskin Whe-reef is the \{iscous dissipation in the pure flugithout .

[15] to derive a set of “energy balance” equations for the particleg and « is the so-called Kolmogorov constant. This

J+

v d 62f|./3k5/3Eff(k)
7 ( [ ) [l

v=—f,. (2.9 Tff,f(k):_d_k (2.7)

a

following functions. assumption seems questionable to us. According to the spirit
of the Richardson-Kolmogorov cascade picture of turbulence
Symbol  Definition one may express inertial range objects, suciT gs(k) in

: - terms of again inertial range quantities, such &s E¢¢(k)
Et1(k)  Energy spectrum of the fluid turbulende(k) in  [which is done in Eq(2.7)] and (k) the energy flux ink

our nomenclature space. In a single-phase flow, indeetk)=¢;. However,
Ets p(k)  Energy spectrum of the fluid turbulence along a this is not the case for a turbulent suspension due to the
particle trajectory fluid-particle energy exchange, given by EJ.6). We think
Etp(k) Fluid-particle covariance spectrum _that our closureto be discussed later pis an improvement
Epp(k)  Particle energy spectrum in this respect. . ,
. . With this simplified model Baw and Peskin predicted the
lir:)rieot():ill?rnce equations the following energy transfer funCTollowing influences on the energy spectrum of the fluid tur-

bulence due to the particles.

(i) A decrease of the energy in the energy-containing
range of the spectrum.

(i) An increase in the inertial range of the spectrum.

(iii) A decrease in the viscous dissipation range.

Boivin, Simonin, and Squirelgl] used the same model as
in Ref. [15]. They also applied assumptions similar to Egs.
(2.6) and (2.7). Fortunately, they took into account the re-

Symbol  Definition

Tt ¢(k)  Energy transfer in fluid turbulence

Tips(k)  Transfer of fluid-particle correlated motion by
the fluid turbulence along the particle path

Tip,p(k)  Transfer of fluid-particle correlated motion by

the particles sponse of the particles to the turbulent velocity fluctuations
Top(k)  Transfer of particle-particle correlated motion by py relaxing assumptioné2.5) and also accounted for the

the particle motion very important physical effect of the energy dissipation due
T4 ¢(k)  Fluid-particle energy exchange rate to the drag around the particles. For that reason they approxi-

matedTy¢ (k) and T, (k) as follows:

Baw and Peskifl5] made a set of simplifying assumptions q
in order to be able to analyze the balance equations. First, T K)= — “ L. «(K)1H3K5BE, . (K
they assumed that the particles do not respond to the fluid (K== grler Mokl (K,
velocity fluctuations due to theivery large inertia. There- (2.9
fore, d

Tips(K)=— m[ff_Hq,f(k)]l/3k5/3Efp(k)-
Et,p(K)=E¢:(k),

Teo (K)=Trg o(K)=Tog o(k)=0 29 Notice that this closure has the same weakness a$2Ef),
ot fpp pp.p ' involving the dissipation range value; . With the above
This assumption is, of course, not realistic for particles satdescribed changes with respect to the model described in

isfying the Stokes’ approximation. Their next assumption, Ref.[15] Boivin, Simonin, and Squires. found an increase in
the viscous dissipation range of the fluid turbulence spectrum

g = ¢[Ep(K) = Egs p(K) 1/ 7, (2.6 for small values of the particle response timg
Al Taweel [16] calculated the rate of additional energy

may be understood as a statement that the fluid-particle extissipation due to the presence of the particles. Because of
change rate is statistically the same for all scales charactetheir inertia the particles were assumed not to follow com-
ized by ak-independent frequency,= ¢/7,. This is rea- pletely the turbulent velocity fluctuations of the carrier fluid.
sonable for particles with very large inertia, but then StokesThey expressed the additional dissipation in terms of the
law is not valid. For particles satisfying Stokes law, assump+turbulent kinetic energy of the suspension. Then they added
tion (2.6) has to be replaced with a more realistic, this term to the balance equation of the turbulent kinetic
k-dependent frequency,(k). We will come back to this energy, making théquestionableassumption that the energy
point while discussing our model. flux across the spectrum has the same functional form as in a

A serious difficulty in the derivation of the energy balance single-phase flow. Solving this equation they found an at-
equations is how to find a closure expression for third-ordetenuation of the high-frequency fluctuations with a small al-
velocity correlation functions, responsible for the various en+eration of the energy-containing low frequencies. Although
ergy transfer functions. Baw and Peskin assumed thahere was an additional energy dissipation due to the par-
Ty ¢(k) can be expressed similarly as in the case of a purdcles, the total energy dissipation was reduced due to the
(single-phasgflow reduction of viscous dissipation in the carrier fluid.
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In a number of publication§17—2Q Felderhof, Ooms, However, the verte>l*§‘{flyk2 differs from the standard vertex
and Jansen developed an analytical model for the dynamic%fyk of the NS equatiorisee, e.g., Ref$26,27)
of a suspension of solid spherical particles in an incompress-""1"2
ible fluid based on the linearized version of the Navier- pi
Stokes equation. In particular, they studied the effect of the  ¥ikik, =5 [P*#(K) K7+ P (K)kP1o(k-+ ki +kz)
particles-fluid interaction on the effective transport coeffi- (3.6
cients and on the turbulent energy spectrum of the suspen-
sion. Also the hydrodynamic interaction between the paras follows:

ticles and the influence of the finite size of the particles were @By
incorporated. However, it is needless to say that the nonlin- ragy — 2 K1kaoKg | Yk, 37
earity of the Navier-Stokes equation is of crucial importance kgl ™ Peff| | 27 22| '

1T KT K3

in the problem of turbulence. Felderhof, Ooms, and Jansen

were well aware of this problem, but wanted to study, in Our model differs from the standard NS equation in the

particular, the influences of the particle-particle hydrody-following three aspects. _

namic interaction and of the finite particle size at a high (& Equation(3.1) involves thek-dependent effective den-

particle volume concentration. sity of sus_pensmnpe_ﬁ(k) given by Eq.(3.2). The function
peii(K) satisfies the inequalitps=<pe(K)<p:;(1+ ¢). One

could say thap.q(k) — p; represents the contribution of the
lll. ONE-FLUID MODEL NAVIER-STOKES EQUATION particles involved in turbulent fluctuations with characteristic
FOR TURBULENT SUSPENSIONS scale 1k to the effective density of suspensions.

In Sec. Il C, we discussed the two-fluid model of suspen- (b) Equation(3.1) includes the additional damping term
sions consisting of the Navier-Stokes equati@rt) for the ~ ¥p(K), Ed.(3.3), describing the loss of kinetic energy caused
fluid and Eq.(2.4) for the “gaseous” phase of particles. This by the viscous fluid-particle friction.
approximation is based on the assumptions of space homo- (C) In the absence of a stirring foréét,r) and both damp-
geneity of the particle distribution and applicability of the ing terms, Eq.(3.1) conserves the total kinetic energy of
Stokes drag law for the fluid-particle friction. We think that suspensiong [given by Eq.(3.42)] which is different from
the basic physics of a turbulently flowing suspension withthe kinetic energyE of the fluid itself.
these assumptions may be described in the framework of the The explicit form(3.5) of the nonlinear term is not nec-
much more simple one-fluid equation. This model is pre-€ssary for the simple closure procedure that we applied in

sented in Sec. Il A, discussed in Sec. Ill B, and “derived” in this publication. For the introduction of the energy flux in
Secs. Il D and Il E. used closure procedure it is enough to use the fact that the

modeled nonlinearity must be conservative. However, the ex-
plicit form is needed for more advanced closure procedures
A. The model . - .
that we intend to use in future work. For this reason, we
The following equation may be considered as a modelnclude it in this publication.
equation for turbulently flowing suspensions:
B. Physical interpretation of the one-fluid model

u(t, k)= —Mu,u}  +f(t,k). In a simplified fashion we may interprai.z(k), the
3.0) k-dependent density of suspension in our model equation
' (3.1) as follows.
Denote as (k) the fraction of particlesomovingwith
the k eddies(turbulent fluctuation with some wave number
} k), in the sense that their velocity is the same as the velocity
: (3.2

g+
pei(K)| —— vp(K) + vo(K)

The linear part of this equation involves

1+27,y(k)
[1+759(k)]?

of k eddies. These particles also participate in the motion of
eddies with smaller wave numbkf<k but not necessarily

in the motion ofk” eddies withk”>k. For smallk, the
turnover frequencyy(k) of k eddies is small in the sense

Peﬁ(k)zpf{ 1-4+¢

2
Yp(k) = ¢ 7l v(K)] . (33 y(k) 7,<1. Therefore, in this region &, the particle veloc-
(1+P)[1+27,9(K) ]+ [7p¥(k)]? ity is very close to that of the carrier fluid and we can de-
scribe the suspension assingle fluidwith effective density
vps peii(K), which is close to the density of suspension
Yo(K) = ver(K)K?,  vei(k) = o) (3.9
e ps=pi(1= 1)+ Copp=ps(1= -+ ),
The nonlinear term ir{3.1) has the usual NS equation form (//ECp[477a3/3], d»=C,pp/ps- .8

Here,C, is the particle concentratio; and ¢ are the vol-
P U (k) U% (t,ky). ume fraction and mass loading parameter. However, for large
172 k, when y(k) 7,>1, the particles cannot follow these very
(3.5  fast motions and may be considered at rest. Thus, the par-

d3k,d3k,

N{U,U}ffk:f NTEER
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ticles do not contribute to the effective density amg(k) D. Formal derivation of the effective NS equation
—p¢. In the general case.x(k) may be written as for suspensions
In the derivation, we begin with the NS equati¢hl) for
pefi(K)=pil 1=+ dfcon(k) . 3.9 the fluid component. Instead of the averaged expreg&i@

Here a statistical ensemble of all particles, partiall involvedfor the fluid-particle friction force, we will use the following
P P y detailed expression:

in the motion ofk eddies, is replaced by two subensembles
of “fully comoving” [fraction f (k)] and “fully at rest”
[fraction fs(k)=1—f.(k)] particles, which does not fo(t,1) =2 Fy(t,r) 8(r—ry), (3.12
contribute topeg(K). !

The particles at rest cause the fluid-particle friction. Ac-jy \which F (r. 1) is the force between the fluid apgarticle
cording to Newton's third law, the damping frequency of apositionedp a1]r=rj. Assume[as in derivation of Eqs(2.2)
suspensiony,(k) may be related to the particle responsegng (2 4)] that the statistics of particles is independent of the
time 7, via the ratio of total mass of particléd, at rest 0 giagistics of turbulence and, moreover, that their distribution
the total effective mass of the suspenshdgy(k) is space homogeneous. In that case, we can replace the sum

oo Mo Coppfres(K)  bpifes(k) over the position of particles by a space integration
T T M) Topen(K) Topen(K) 1 f N
i

——

As we mentioned, the fractionfs,,(k) and f (k) depend
on 7,¥(k). Moreover, the portiorf (k) is independent on
the sign of the velocity, therefore, we expetis(k) fo(r,t)=Fp(r,t)/ €3, (3.13
~[pr(k)]2. In the opposite case, whenrlA(k) is small,

feom(K) has corresponding smallnesk;o(k) ~ 1/7,y(K). We computeF(t,r) for small enough particles with a radius

where¢2 is the volume per particle. In this approximation

As a simple model of such a function, we adopt a satisfying inequality(1.1), such that the fluid flow in the
5 vicinity of a particle may be considered as lamifassump-
fres(K)=1—feon(K) =[7py(K){1+ 7, ¥(K)}]". tion in Sec. Ill C(2)]. Then, one can apply Stokes law for the

(31D force Fyt,r)

Using Eq.(3.11), we rewrite Eqs(3.9) and(3.10 as Egs. Fp(t.1)={[vp()—u(t,n], (3.19
(3.2) and(3.3). Note that these equations, which follow from
the physical reasoning described above, give the same ewth the friction coefficient{ for heavy particlegwith the
pression fory,(k) as Eq.(3.3) in our “derivation” in Sec. ~ densityp,>ps) is given by
[Il E 2. We consider this fact as a strong support of the physi-
cal relevance of our one-fluid model for a turbulently flowing {=6mpsva. 319
suspension given by Eg$3.1)—(3.4), with k-dependent ef-
fective density, fluid-particle damping frequengy, and ef-
fective kinematic viscosity (k). do,(t)

L =—Fy(t,n)={[u(t,r)—vu(t)]. (3.1

The Newton equation for a particle reads

C. Basic assumptions

The theory developed in this paper is based on a numbéot’ formal solution of this equation
of assumptions and simplifications described below. -1

(1) All particles in the suspension are spheres with the vp(t)= u(t,r), (3.17
same density, and the same radius

(2) The radius of the particles is small enough, see Eq
(1.2.

(3) The particle-particle interaction will be neglected, as- d
suming that the volume fractiop<1. Nevertheless, for the Fo(t,r)= Mo 5t
very heavy particles withp,>p¢, the mass loadingg may
be of the order of unity, leading to a significant modification yge, 7, is the particle response time,
of the turbulent flow by particles.

(4) The turbulent flow is stationary, homogeneous, and T,=M,/67vp;a. (3.19
isotropic.

(5)p|n our equations for the energy balan@el), we will ~ The total time derivatived/dt) as usual takes into account
use simplebut physically relevantclosure procedures based the time dependence of the particle coordinate
on our effective(one-fluid Navier-Stokes equation for sus-
pensions(3.1) and on the Richardson-Kolmogorov cascade d
picture of turbulence. dt

Tpa‘f'l

allows one to express the forég,(t,r) as follows:

-1

1| u(t,r). (3.18

Tpm'f'

J+
—op(D)- V. (3.20
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Due to the(immersed particle inertia they do not follow b 1 I
Lagrangian trajectories of fluid particles. Therefore, gener- = st
ally speaking, @/dt) does not coincide with the total La- 147 i+z 147 — |14+ g
grangian time derivative in the fluid, Pl ot Pat Pat
(3.26
o+ . . ) . )
DL Wu(t,r)-V] (3.2)  This expansion produces higher ordar (u- V)] nonlinear

terms in the effective NS equatidi3.25. These terms are
not important for big eddies with,y(k)<1 for which the
operator in the braces in the left-hand side of Eg25),
Du(t,r) du(t,r) {---}, is close to the factor 1 ¢. In the opposite case, for
DL - dt +[vp—u*(t,nN]Vau(t,r) small-scale eddies withr,y(k)>1 the operatoq---}=1.
Both limiting cases one easily gets from the first term in the
du(t,r)  d TaylorAexpansion(3.26) in which there is no contribution

— — ——u(t,n*viu : - i
dt dt d ) 1t from L. It means that only for intermediate scales with

Consider the relationship betweed/{t) and O/D t)

+7pa 7,¥(K)~1 this operator may be quantitatively important.
For a qualitative description of the “transient” process be-
d 1 J ~ tween these two regimes it is enough to account for the first
=gt gl nen] L u(t,r), term of expansioii3.26). In this approximation, the turbulent
1+ T fluid velocity around the particle is approximated by the ve-

locity at a fixed coordinate, which is reasonable in statistical
(3.22 sense and exact in the limit,y(k) <1. With this approxi-
mation Eq.(3.25 turns into

Lu(t,n=7,[(vp1 VIUt,N—(u-Vyus]. (3.23

~ |0+
—(u-V) [u+Vp=p;rV2u+f, 3.2
Hereu,=u(t,,r;), V,=d/dr;, and all derivatives with re- pe“[ at (U-V)|u P=prr¥u (3.29

spectt; andr, are taken at;=t andr;=r. Together with

Eq. (3.2)) this gives A b
per=pt) 1+ ———1, (3.28
1
Du(t,r) 1 ot
Fp(t,r)= Dt 3 A-J(t,l’). (3.29
1+7,—+L A . .
Pat where p.s may be considered as an operator of effective

density for a suspensions.

For particles with a small response time Ferry and Balachan- Since we are interested in the incompressible flows, we
dar [22] show, that the particle velocity depends only oncan project the potential components out of the equation of
local fluid quantitiesthe velocity and its spatial and tempo- motion. This may be done by the projection operafr
ral derivative$. They derive an expansion of the particle defined via its kerneP*(r)
velocity in terms of the particle response time which gener-
alizes those of previous researchers. For large values of the
ratio of the particle density and the fluid density and for P“ﬁ(f)zf
small values of the particle response time our 8424 for (
the force on a particle gives the same equation for the par-
ticle velocity as derived in Ref22].

Substitution of Eq(3.24) into NS equation(2.1) yields

3K
ZW)BP“ﬁ(k)exp{—ik-r], (3.29

PA(k) = 8,5~ K.Kg/K. (3.30

The application ofP to any given vector field(r) is non-
local, and it has the form

1+
1+ Tp

u+Vp=psrVau+f,

o+
Pt (U V) 9t .
—L

o [’P-a(r)]azf dryPA(r—ry)ag(ry). (3.31)

(3.25
Applying P to Eq.(3.27), we find
where ¢ is the mass loading parameter. For simplicity, we
consider here only the case of heavy particles with negligibly N
small volume loading parameter<1. However, the mass Pef
loading parameter may be of the order of unity. For example,
for the water droplets in the ainp/pfwlo3 and for¢p=1, This equation together with the definitigB.28 for the op-

u=psrVau+f, (3.32

J+ v
P V)

the volume fractiony~10"3. erator of the effective density constitutes a one-fluid descrip-
The inverse operator in E¢3.25 may be understood as a tion of a turbulently flowing suspension. However, the op-
Taylor expansion with respect to the nonlinearity V) erator form of the effective density is not convenient for
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practical calculations. To overcome this inconvenience, we Kk do p ()
will derive below another form for the effective parameters = f s et F(w,k),
of this equation. (2 7) 27 2

. - - (3.39
(2m)*8(k—kq) (0 — w1)F(@,K)=(U(w,k) - U(w1,ky)).
E. NS equation for suspensions wittk-dependent parameters 5 _
For isotropic turbulencé& (w,k) =F(w,k) and Eq.(3.38 al-
ows one to introduce the one-dimensional energy spectrum

of suspensiorf(k) according to

In our analytical description of space homogeneous, sta]
tionary turbulence it is convenient to consider E8.32 in
the (k,w) representation

_ L dk
{w[pe(@)]1—ipi vK2+ yp(w) [YU(w,K) 52]%&'01 (3.39

=—Mu,ul,  +T(w,k). (3.33
g(k)=f (sw pe;(w) KE (,K). (3.40

Here

Define a k-dependent effective density of suspension,
which gives the same one-dimensional spectéifi) as the

a(“"k):f didru(t,rexpiot+ik-r),  (3.34 w-dependent effective densip/q(w),

_ 5 & f};gﬁ(w)ﬁ(w,k)dw
Peii( @) =Re{per( w) } = ps| 1+ ﬁl (3.35 peii( K) = (3.41)
(7p) fﬁ(w,k)dw
- - 2 Then, Eq.(3.40 takes the form
o) = I (per(0) - —2 T2 (3.39
Pt l+(w7'p) Peff( k) )
E(k)= k I(Z )'_(w ,K). (3.42
= Notice that
Pei( @)= ps| 1+ Epe| otice tha d
(3.37) 9 = =
f (ZW)F(w,k) F(k) (3.43

Mu,u},  =[per( @) P-(U-V)U],
is the simultaneous velocity pair correlation function. With

MNu,u}, « denotes the nonlinear term im(K) representa- IS notations Eq(3.42 may be written as

tion and 1‘requency/k2 describes the viscous damping. peﬁ( k)
The Navier-Stokes equation for suspensid@s33 in- E(k)= —=—Kk°F(k), (3.44
volves a frequency-dependent effective density of suspen-

sionsp.«(w) andw dependent frequenc~yp(w) responsible  while the traditional notation for one-dimensional spectrum
for the damping due to fluid-particle friction. To use standardof kinetic energy of fluid itself i£(k),

closure procedures in the statistical description of turbulence

one needs frequency-independent coefficients in the basic E(k)__kZF(k) (3.45
equation of motion. On other hand, these procedures may be

applied to equations witlk-dependent coefficients. There-
fore, for further analysis it is much more convenient to deal
with a k dependent effective densip(k) of k eddies. To
relate these functions we note that theddies have a char-
acteristic frequency of motionsy(k) [related to their life-
time 7(k) by a simple relationy(k) ~1/7(k)].

Formally speaking, in order to evaluaigy(k) by Eq.(3.42),

we need to know the dependence d¥(w,k). This is not a
simple task. Instead, we will use a few reasonable forms of
F(w,k) and compare the resulting functiopss(k). One of
the frequently used is the Lorentzian form

_ _ _ y(k)/ 7
1. k-dependent effective density of suspensions F(w,k)=F(k) —z(k) (3.46
In the inertial interval of scales E43.33 must preserve _ . o
the total kinetic energy of a suspensiéiif one neglects the Which corresponds to the simplest “one-pole” approximation
fluid-particle friction}p(w)eo. The equation fof may be for the Green’s functions. Using this dependence in Eq.

written in terms of the densitjp.q(w) andF(w,K), the pair 42 We have the following simple form fgseq(k).
correlation function of the ¢,k) Fourier components of ve-

locity, U(w,k). Namely, (3.47

pei(K)=p¢| 1+

_ ¢
1+ 7,y7(K))

046314-10
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For small,y(k) this gives a correction linear in,y(k) ~ -
" ’ pff Vo(©)F(0,k)dw
pe(K)~pi[ 1= d1p¥(K)], (3.49 yp(k)= . (3.59

which contradicts the physical intuition. Indeed, one may fpéff(“’)':(‘”’k)dw
considerk eddies as having a motion with the characteristic
frequencyy(k) and expect that.(k) may be obtained from Substitution of Eqs(3.36) and (3.46) into Eqg. (3.55 gives

pia(w) with the substitutiorw— y(k). This gives a correc- EQ. (3.3 for y,(k). With this knowledge, Eq(3.52 may be
tion quadratic in7,y(k), further simplified as follows:

pei(K) = ps(1+ )~ — ¢ pr75¥*(K). (349 per(k{w—i[ver(Kk?+ y,(K) JJU(w,k) = = Niu,u}, (+1.

35
This contradiction follows from the fact that the model func- (359
tion Eq.(3.46) decays very slowly fom—c, like 1/w?. Itis  Here, vot(K) is given by Eq.(3.4). Notice that this equation
known from the diagrammatic analysis of the different timegives the same dissipation rat8.54 due to fluid-particle
velocity correlation functior-(7,k) that for smallr the dif- friction as Eq.(3.33 and the same dissipation rate,
ferenceF (7,k) — F(0k) does not containkr| and decays no
slower than7®. Therefore, the Fourier transform Bf(7,k), IE(K) 5
F(w,k) has to decay withw faster than 2, at least as ot | = 2venk“E(k), (3.57
1/w*. To meet this requirement, we consider instead of Eq.

(3.49 the function due to the kinematic viscosity.
The suggested form oW{u,u},, x in terms ofpeu(k) will
(3.50 be discussed in Sec. IIl E 3.

v

293(K)/

Flw,k)=F(k) —————,
[0®+92(K)]?
3. w-independent nonlinearity of the effective NS equation

which gives instead of Eq3.47) (a) Nonlinearity in the usual NS equatio€onsider first

the nonlinear term in the “usual” NS equation for single-
H[1+2 7y(K)] N
per(K)=pel 1+ S b phase flow. In {,k) representation it has the fortsee, e.g.,
[1+7,y(k)]? Refs.[26,27))
(k) |7 5 g3
=pi(1+¢)—dppil——| . (35 d°k, d*k, dw; do
POyt B Mug,e [ SRS k)
(277)4 172
Now the correction ten(k) is quadratic in7,y(k) which -
agrees with the expectatid3.49. One observes the same XU (w2,Kp) 8(w+ w1+ wp). (3.58
agreement for any other model dependefi¢e, k) decaying ) _ o
even faster than &, Here yﬁfsz is the so-calledvertex of interactiongiven by

Therefore, the linear part of E(3.33 may be modeled as Eq.(3.6). It includes transversal projectors accounting for the
incompressibility of the fluids function of k vectors origi-

{wpeff(k)—ipf[vk2+3/p(w)]}ﬁ(w,k)= --+, (3,52 nating from the space homogeneity of the problem and is
. _ proportional tok (as a reflection oV operator in the nonlin-
with per(k) given by Eq.(3.51). ear term inr representation

) ) ) ] The vertexﬁ{f’k satisfies so-calledacobi identity
2. Effective fluid-particle damping frequency,(k) 172

Using Eq.(3.33 or Eg. (3.52 together with Eq(3.40), ay 4 yaB | Byx —0 (3.59
we can compute the contribution of the fluid-particle friction Yidale ™ Vigklq ™ Yl

to the damping of(k), as a consequence of the energy conservation by the Euler

IEK) do Fo(w) equation. . .
— | ==2 P LB (w k). (35 (b) Nonlinearity in the effective NS E.1). A rigorous
Pt (w,k). (3.53 " . ) .
ot (2m) 2m derivation of the nonlinear term in the effective NS E8}.1)

_ _ . _ ~is avery delicate issue. For example, in E827), we used
Introduce anw-independent fluid-particle damping friction the operator of the effective densitg.28 containing only

by a standard relation the first term of expansiofB.26). This approximation does
not account for all terms, second orderunThis derivation
9E(K) =24 (K&K 35 is beyond the scope of this paper. Instead, we present here
Yp(K)E(K). (3.59 . .
at physical arguments which allows us to propose a form of

p . e .
Mu,u}, x that satisfies all needed requirements.

Combining these two equations with E®.40, one gets By analogy with Eq(3.58, we can write
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4%k, d%k,dew;dw, paper, we will use the simplest possible closure. Application
Fﬁk‘iﬁzuzwl,kl) of more sophisticated closures will be done elsewhere.

NMuz= [ =525

Xﬂ’;(wz,kz)ﬁ(w+wl+w2), (3.60 A. The energy budget equation
In order to derive Eq(4.1), we multiply Eq.(3.1) by
where the verted'¢(’, differs from %%, Eq. (3.6, be-  u(t,k’) and average

cause nowps # pes(K).

: - . : F(t,k)
The simplest possible generalization of the vertex, just a p (k){ +[ oK) + vo(K) JE(t,K)
replacementp;— pei(k) in Eq. (3.6), leads to a vertex ef 24t ° P
Fkksz, which does not satisfy the Jacobi identity = J(t,K) +W(t,K), 4.2
Cko T TG+ TRa=0, (3.61)

d3k, d%k,
sek= [ A Pk k). @49
leading to violation of the conservation of the kinetic energy (2m)®

. af
of suspensiort. W_e suggest E_q(?.?) for rk klykz' Clearly, Here,F(t,k) andF;(t; .. .,) are thesecond- and third-order
due to Eq.(3.59 this vertex satisfies requiremef@.61) and  simultaneousvelocity correlation functions taken aterall

consequently, Eq3.1) conserves the enerdgy timet,
Another physical requirement is Galilean invariance of
the problem. This is the case for the standard NS equation (2m)38(k+ky)F(t;k)=(u(t,k)-u(t,ky)), (4.9
with vertex (3.6) in which p; is k independent. For the
k-dependent density in the vert¢g.7) Galilean invariance (2m)38(k+ky+ ko) F§P7(t5k Ky, ko)

implies that in the limit, when one of the wave numbers is e B y
much smaller then two othetsayk;<k,=k3), the effective ={u(tuP(tk)u?(tky)). (4.5
density must depend on the smallkstector. Obviously, this Note that the time in the arqument of (k) in Eas.(3.43—
s the case for thé argument ofpey(K) in Eq. (3.7). This (346 is omitted:F (t k) = F(K). (1) In Eas.(3.43
guarantees Galilean invariance of E8.1). . In Eq. (4.2, we introduce also thsimultaneous(u,f)
Now Eg. (3.56) involves onlyw-independent coefficients .. << correlation functions
and may be rewritten int(k) representation; see E(.1).
(27)38(k—ky)W(t, k) =(u(t,k)f(t,ky)). (4.9
IV. BUDGET OF KINETIC ENERGY IN TURBULENT ) ) o
SUSPENSIONS We can rewrite Eq(3.42 for the density of the kinetic en-

ergy of suspension in terms &f(t,k) = F(t,k) (for isotropic
In this section, we consider the budget of kinetic energy inyrpulence:

turbulent suspension. In Sec. IV A, we will use the one-fluid
model (3.1) to derive (for homogeneous, isotropic turbu- peﬁ( k),
lence the following budget equation for the (one- E(tk)=——kF(t.k). 4.7
dimensional density of kinetic energy:
Multiplying Eq. (4.3) by k?/27 one gets finally the balance

IE(t, . :
T Lo+ I =Wtk + Ak, B (4D inwhich
(4.1 k?
' W(t, k)= —W(t k), (4.9
The left hand side(LHS) of this equation includes two
damping terms,yo(K)&(t,k), caused by the effective kine- k2
matic viscosity andy,(k)£(t,k) caused by the fluid-particle Tk =5_I(tK). (4.9

friction. The density&(t,k) is given by Eq.(4.7). The right

hand side(RHS) of Eq. (4.1) includes the source of energy Notice that effective verted"®2” in Eq. (4.3 was con-

WI(t,K), localized in the energy containing interval, and the Kekiky ) .
energy redistribution terrd(t,k). structed such that the total kinetic eneigyis the integral of

The budget equatiofé.1) is exact, but unfortunately not Motion (neglecting pumping and damping /o J(t,k)dk
closed. Equation€3.4) for the effective kinematic viscosity —0- Therefore, the energy redistribution tegft, k) may be
and Eq.(3.3) for y,(k) includes “turnover frequency” ok~ Wrtten in the divergent form
eddiesy(k). Also W(t,k) contains yet unknownuf) cor- de (1K)
relations, Eq(4.6). And finally J(t,k) is given by Eqs(4.9) Tt k)=— . (4.10
and (4.3 via third-order velocity correlations;. There are dk
many reasonable closure procedures for the approximation of
higher-order velocity correlations by lower-order ones. To where s(t,k)Zdek Jt,k) (4.11
elucidate the basic physics of the problem at hand, in this k
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is the (one-dimensionalenergy flux over scales. whereC,,=O(1) andf is the pair correlation of the forcing
In the rest of the paper, we will consider only stationary[which may be defined similarly to Eg4.6)].
solutions of Eq(4.1). Omitting (here and beloywtime argu-

ment one finally has C. Dimensionless budget equation
de(k) For the convenience of the reader, we present here the full
[yo(K) + yp(K) JE(K) =K) = — 51— (4.12  set of equations which will be studied below. To nondimen-

sionalize this equation, we define a dimensionless wave
number,x, and the integral-scale related parameters

i

B. Simple closure for the energy budget equation
1

. I 1
The effective density in our approach, E§.2), depends k=KL, SLZS(E Y= 7(E>’ P = Pefi

on the characteristic frequendyeddiesy(k). This object
may be evaluated as the inverse lifetime of these eddies
which is determined by their viscous damping and energyy fine also the dimensionless functions
loss in the cascade processes. According(k) is a sum of

two terms (k) y(K)
SK: 3 7K: ’
¥(K) = yo(K) + v¢(K), (4.13 & L
(4.27)
where y(k), Eq. (3.4), is the viscous frequency ang.(k) Per(K) W(K)
may be evaluated as the turnover frequenck efidies, Py < W(LL)’
L

Ye(k)~k U where Uy~ Vk&(K)/pei(K) (414 in which the argumenk is written as a subscript to distin-
guish them from the corresponding dimensional functions of

is the characteristic velocity df eddies. We therefore define the dimensional argumekt

The resulting dimensionless budget equation reads
¥o(k) = C K&K pen(K), (4.1 J get e
2\ 1/3
whereC,, is some dimensional constant, presumably of the de EC T+ & Yex (1+T)=W,
. . K 2 K K
order of unity. Clearly, the same evaluatich15 one gets dy vy Re| p2
from a dimensional reconstruction of(k) in terms of the (4.22
only relevant(in the K41 picture of turbulengevariablesk,
&(k), %ﬂdpeﬁ(k)- o the d | - OV, 4.23
In the same manner, by the dimensional reasoning, one k= > .

gets the following evaluation of the energy flux: (1+¢)(1+26y,)+(0y.)

£(k) = C,JKE (K o), (4.16 C=CC2 277 T

where C,=0(1). Notice that in pure fluidgwith pex(K) Here, we used Ed4.17) and defined the Reynolds numbers
— p(] Egs.(4.19 and(4.16 are nothing but the K41 evalu- for the carrier fluid Reand the effective Reynolds number
ation of the corresponding objects. This become even morfor the suspension Re

transparent if one rewrites E¢4.16) in the more familiar Lov e L\ 13
form Re= VL, UL:< ; ) : (4.24
E(k)=Cy[£%(K) pes(k) V453, C=C*". ]
(4.17 Lo p
. o . Re=——-, v =ve(l H=v— (4.25
Together with Eq.(4.15 this gives a useful evaluation of v, ' Loe P’
vo(Kk) via e(k),
1+26
(=c, 2 kTB Crm (4.18 PP I )
=Co|l ———| , =—, . +
[ PP TI EareTe (1+9

) _ in terms of the rms turbulent velocity, dominated byL
Last, we have to evaluate the energy input in the systeraddies. Obviously, Reinvolves the kinematic viscosity of
W(K). It follows from Eq.(3.1) thatu(k) may be evaluated the carrier fluidv, while Re, depends on the effective kine-
as f(k)/y(K)per(k). Together with Eqs(4.6), (4.8, and  matic viscosity of the suspensiomg(L 1) for the outer

(4.19 this gives scale of turbulencé.
Equation(4.22 has to be considered together with equa-
W(K) =C, 2 /kS(k) 4.19 tions forp, and y,., which follows from Eqs(3.2), (4.13,
YKN per(K) ' and (4.18:
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Relations(5.2) can be considered as the boundary conditions

P P A {w 1+20] for Eq. (5.9 at k—1.
(1457, (1+6)?
, v o (4.26 B. Particle-free case and limit of small particles
- K Er K Consider now the particle-free cage=0 and the case of

= + .
Cz Rep, pi’s very small particless=0 for finite Re. In both cases Eq.
(5.3) becomes
These two equations allow us to express the functignand U3 23
p, in terms ofe,. . With these solutions, Eq4.22) becomes de n Cik™e
an ordinary differential equation for the only functienr). dy Re,
The first line of Eq.(4.22 describes the effect of particles
in the inertial integral of scales. This part involves the mass/Ve took here in account that according to 4,26 p,=1
loading ¢, the dimensionless particle response timermal- ~ for ¢=0 and also for6=0. Notice, that for¢=0, v =v,
ized by the eddy lifetimes, and the parametéZ, character- and, consequently, ReRe, while for §=0, VL=V/(1
izing our version of th&<41 closure. +¢) and Re=Re(1+ ¢). The reason is that fof—0 all
The second line of E¢(4.22) represents the effect of the particles are fully involved in turbulent motions and one can
viscous friction, which is proportional to 1/Reand the consider a suspension as a single but heavier fluid with the

=0. (5.4)

pumping termW,., which we choose as follows: densityp;(1+ ¢).
, The solution of Eqg.(5.4) with the boundary condition
1 -1 =1
W, = expg — -1 . 427 18
Ne2mo 207 C 3
£o=| 1+ ——(1—k*3)| . (5.5
This function has a maximum gt=1 (the input of energy is 4Re

largest ak=1/L), while the parametes describes the char-
acteristic width of the pumping region. In addition, the func-
tion W, satisfies the normalization constrain

In the particle-free case=0 and this solution turns into

3

Cc
(0)_ 1 _ 413
) e,/ =1+ 4RQ(1 K7, (5.6
f W,dy=1, (4.28 )
—w where Rg=Reg as we discussed above. In the bulk of the
inertial interval these solutions give a small viscous correc-
which follows from Eq.(4.22 in the limit o<<1. tion to the K41 solution with the constant energy flex

=1. Namely,

V. SOLUTION OF THE BUDGET EQUATION & ~1+3C,(1— K4’3)/(4Res) for k<1/Re. (5.7

A. Simplification of the energy pumping term . .
The local in thek-space closure procedure, used in the paper,

First notice, that the turbulence statistics in the energyyorks reasonably well in the inertial interval, where the en-
containing rangek L=y~1 is not universal and depends on grgy exchange between eddies is dominated by the eddies of
the type of energy pumping, in our case, on the funciBp.  compatible scales. However, it is violated in the bulk of the
Therefore, for general analysis, which is not aimed at thgjiscous subrange, where the dynamics of eddies of very
study of some particular type of turbulence generation, wema|| scales is dominated not by their self-interaction, but by
can take the pumping of energy in a narrow shell in khe thejr energy exchange with eddies of the Kolmogorov mi-
space. This means croscalern. Therefore, we cannot expect E&.3) to repro-

. _ duce the exponential decay of the energy flux in the viscous
(IT'TO{WK}_ oK), (5. subrange. Nevertheless, this equation describes on a qualita-
tive level the behavior of the energy flux until the very end of
where 8(«) is the Diracé function. In this limit and with the inertial _interval giving the crossover scale to the viscous
zero boundary conditions fof, , v, at k=0 (and, conse- subrange, i.e., the value of. According to Eq.(5.5), the
quently, p.=1 at k=0) , Eq.(4.22 can be solved on the €nergy flux becomes zero at
interval O<k=<1. This gives Kko=(1+4 Re/Cy)%¥ (5.8

=1 7~=1 p.=1 at k=1 (5.2 It convenient to introduce here an effective Reynolds number

of the carrier fluid and suspensions
In the limit (5.1), Eq. (4.22 has zero RHS fok>1:

/ Re"=4Rg/C,, Re&"=4Re/C, (5.9
dsK Ex Cl KSi e . . .
g +—CT,+ Rel 2 (1+T,)=0. (5.3 which enters in the corresponding Kolmogorov-41 evalua-
KoK &\ pi tions of the viscous cutoff. For example, for the fluid
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7= LI ke~LI[REM (5.10

C. lterative solution in the inertial interval

In the bulk of the inertial interval, after neglecting the
viscous termgi.e., for Rg—x), Eq. (5.3) becomes

de, &, Coh oy,
+ £ =0, (5.11)
dc K (1+¢)(1+257,)+(87,)?
yipk=sKK2, (5.12
1+257K/ 14268
pe=|1+¢p—m"5 1+¢ .
(1+67v,)° (1+ 6)?

1. Large-scale solution of the budget equation

In region of large scales~1 the functiong ,~1 and we
can simplify Eq.(5.12 by the replacemenp,=1 in the
equation fory,, i.e., y,=&X3%?° In the denominator of
Eq. (5.11), where thex dependence of, is less essential,
we can make further simplification, replacing= «?°. The

resulting equation allows separation of variables,

2 de 1B

5W:C‘P0(K),

(5.13

¢

o oL+ 20679 + 82

PHYSICAL REVIEW B7, 046314 (2003

ing function. Comparing in Sec. V D this solution with the
next order iterations and with the numerical solution of Eq.
(5.1, we will find an actual region of applicability of the
analytical solution5.14) and(5.15.

2. First improvement and subsequent iterations

With the analytical solutiori5.14) and(5.15), we can im-
prove approximatior(5.13 of Eq. (5.11) by p,=po, [in-
stead ofp,=1], which givesy,=&2*?%p,, in the nu-
merator of Eq.(5.11). In the denominator, we replace

y.=egokIpo, . The improved simplification of Eq5.11)
reads
2 de 13
5 4 =CW¥y(x), (5.19
¢
Vi(k)=

PE3(1+ ) (1426 v0,0+ (8 70,071

Integration of this equation gives the first iterative solution of
Eq.(5.1D, e ,=¢4,, Where

1

T[1+CI(0]? 649

8l,K

S («
Ji(k)= EL ¥ (x)d x23,

The solution of this equation with the boundary conditionsThis allows further improvement of approximatiof&15

e,=1ise,=¢gq,, Where

1

T[1+CI(0) P (514

€0,k

O («
Jo(k)= EL Wo(x)d X3

Jo | Sk 1+ p—Jb(1+ @)
= n
41+ ¢ S+1+d—Jb(1+ @)

SKk?B+ 1+ p+\p(1+ ¢)
S+1+p+Vp(1+¢) ||

Now with Eq.(5.12), we find the following approximations:

pO,K:|:1+¢ /
(5.19

‘}/O,K: (SO,KKZ/pO,K)lla-
Formally speaking, the analytical solutiofb.14 and
(5.15 is valid only for k~1. To find the solution of the
initial Eqg. (5.12) in the whole interval of scales, we will

—In

1+26

1+2 5egy k*° .
(1+ 6)?

(1+ 58%{3 K2/3)2

iterate this equation, taking the analytical solution as a start-

1+26
(1+6)?

1+26 v,
(1+ 570,1()2

t¢

(5.18

pl,K:|:1+

Now, the next iteration steps are obvious. Tith order so-
lution is

/

yl,K = (8 l,KKz/pl,K) 1/3-

1

T[1+C (0P 619

€,k

O [k
In(k)= EL Wo(x)dx??,

b
\Pn( ): ,
O OB [(1+ ) (1+28yn 10+ (870 1,0°]
—{1+ 1+2 8 Yn_1. /{H 1428
P ¢<1+6yn_1,K>2 ¢(1+5>2 ’

)1/3

(5.20

Y= (Sn,KKZIPn,K
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C=0.25, 6=0.1
w
w
0.9}
0.8 . : :
10° 10' 10° 10° 10"

FIG. 1. Log-log plots of analytical solutiogy, (dashed lines first iterative solutiore; , (dot-dashed lings and “exact” numerical
solution(solid lineg for §=0.1 and various valueg. Panel(a) C=0.25, panelb) C=1.

D. Accuracy of the iterative solutions 142 Tp'y(k)

To get an understanding of the accuracy of the analytical Ep(k)= d’mEf(k)- (6.2
solutiongg ., Eq.(5.14), and the first iterative solutioa, ,, P
we compare them with the “numerically exact” solutions of |t is convenient to introduce the dimensionless functions of
Eq. (5.1)), ¢, in the wide inertial range of four decades. k=kL, EL, andEP, both normalized bye(L ~%):

We found that for all values ok and & the analytical

function &q, works unexpectedly well foC ¢=<0.25. To Ef E¢(k) ~ Ep(k)

p
illustrate this, we plot in Fig. 1 functions, ., €1, ande, K E(L°Y)’ "_Ef(L—l) ' 6.3
for C=0.25 [panel (a)] and C=1 [panel (b)] for ¢
=0.25,0.5, andp=1 with §=0.1. The relative difference which may be written as
betweeneg, and e, is about a few percents for all three B

Neo, - Ef =(g,/p,)23 53 (6.4)
cases in pandla) and for the case=0.25 in panelb). P k! Px ) .

For larger values of the produ€t ¢ the accuracy of few

percents is achieved in the smaller region @f where EP— 1+26y, Ef 6.5
7,¥(K) = 8k?3<1, i.e., approximately fok= 5 *2 For ex- AR R P '
ample, for5=0.01 this is three decades<10°, while for _ _ _ _
5=0.1 only for k<30, as we show in Fig.(lb). Moreover, ~Next, introduce the dimensionless ratio
the first iterative solutiong, , gives a very good approxima- ‘ 23
tion to &, for all reasonable values of parameters. This is R(k)= E: €k 6.6
illustrated in Fig. 1b) for C=1 and¢=1. Notice, that for o Eg'f sf(o)p,( ’ )

C=0.25 and¢=1 [Fig. 1(a)] the plots ofe, , €, are undis-

tinguished within the linewidth. whereE% =[£(?123c =58 is the density of turbulent kinetic
The conclusion is that for the qua”tative and Semiquanti'energy an(kf(o) is the energy flux in the partide_free case,

tative description of the turbulence modification by particlesgq. (5.6). The ratioR(«) is larger(smalled than unity in the

(5.14 and(5.19, corrected, if needed, by the first iteration particles.

Sl,K'

B. Energy flux
VI. TURBULENCE MODIFICATION BY PARTICLES . . o
Our model with local ink-space parametrization of the

A. Preliminaries energy flux involves the parameter of the closure procedure
Consider now separately the density of kinetic energy ofc: Which has to be considered as a fit parameter which may
the carrier fluidE(k) and that of the particl&,(k) (i.e., the ~Pe evaluated, for example, by comparison with the direct

According to Eqs(3.2), (3.44), (3.45, and (4.17) be of the order of unity. For simplification of the qualitative
analysis of the effect of particles on the statistics of turbu-
E¢(K)=Cypi[e(K)/ per(K) 173k 5, (6.1)  lence we choose usuall@=1/4, for which we can use the
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1 ; ; - this figure, the main dissipation of energy occurs in the re-
$20.001 gion 0.1< 8«x%3<10. Therefore, for5>0.1 the total loss in
’ the energy decreases with further increasé.in

C. Suppression and enhancement of turbulence
5=1 in the inertial interval

0.9r 8=0.01 1 As we discussed in Sec. VI A the effect of particles on the
energy distribution in suspensiofwith respect to the
particle-free cagemay be characterized by the rafR{«),
Eq. (6.6). This effect is twofold: the fluid-particle friction
§=0.1 leads to suppression of the energy flux with increasing
Accordingly, ¢, in the numerator of Eq(6.6) decreases to-
wards largerx. On the other hand, for largérless particles
are involved in the motion and the effective dengity de-
10°  creases withx. The factore(¥=1 in the limit Re—.

Therefore, in the inertial interval of scales the behavior of

FIG. 2. Log-log plots of analytical solutior,, for s=1,  R(x) is defined by the strongest dependence either of,
0.1,102 103 (with C=0.25 andg=1). or of p,.. As we discussed, fa€<0.25 it is sufficient to use
the analytical solutions foe,,, Eq. (5.14 and y,,, EQ.
analytical solution(5.14) and (5.15. The effect ofC on the  (5.19. This gives
behavior of the functiore , is qualitativly described by the
approximatiore (C)~1+C[e,(C—1)]. This is illustrated | e, 1+ d(1+28)/(1+6)7]
by comparison of plotg,, for C=0.25 andC=1 in Figs Rolx)= 1+ 2| 7 6.9
x - - (1+2670,)/(1+ 570,
1(a) and Xb).
The plots in Fig. 1 also demonstrate the expected fact that

for small ¢ the effect of the particles is proportional t. Figure 3a) demonstrates how the ratR(«) depends on
This may also clearly be seen from the balance equatiothe fit parameter of our mod€l which appeared in the bud-
(5.11). The balance equation itself also reflects a less triviapet Equation(5.11) in the front of the term, responsible for
fact of saturation of the effect of the particles in the limit the fluid-particle friction. Clearly, the relative importance of
¢>1; the beginning of this saturation is clearly seen in Fig.the fluid-particle friction(with respect to the effect of the
1. The physical reason for the saturation is that the maislensity variationincreases with the value @. In particular,
governing parameter in the problem is the ratio of the parfor C=1 the friction dominates anR(«)<1, for C=0.25
ticle energy to the energy of theuspensiorbut not to the the density variation dominates afR{x)>1. For 0.25<C
energy of thecarrier fluid. As an example of the quantitative <1, the density of energy of the carrier fluid is suppressed
description of the effect of saturation consider E514) for ~ for smallerx and enhanced towards larger As is clearly

80,!(

C=0.25, p=1
0 8 1 1 2 1
1 0 10 10 10
K

3

€9, In the limit k— oo, seen in the figure, the functidR(«) has a minimum around
s some critical valuex., which depends o€ and «. For C
C\/— S+1+p+\d(1+ ) ~1 the value ofk. agrees with the expected estimate
€0 _ _ . ) ”
4\/1T S+1+d—Jh(1lt ) 7-py(kcr)—5y,<Cr 1. With decreasing the position of the

(6.7)  crossoverand of the minimumis shifted towards largex.
It is evident that fork<k the effect of the fluid-particle
Evidently friction wins, while for x> k., the effect of the decrease in
the effective density of the suspension is stronger. For

Cop |73 k> K¢, the functionR(«x) saturates.
0e~|1+ = for ¢<1, ; ; -
; 2(1+9) Notice that forC<<0.5 the analytical predictiodashed
(6.9 lines is pretty close to the “exact” numerical resul$olid
C 24 \1°3 lines) indicating the qualitative validity of the analytical de-
~|1+ — I 571 for ¢>1. scription of the effect of particles on the energy distribution

in suspensionéwithin the model limitations Therefore, one

One sees in Fig. 1 that the increase in the mass loagling can find the limiting value oR..=R(x—) from Eq. (6.9

leads to the suppression of the energy flux for latgesmall

scale$. The onset of this suppression shifts to smaler

(larger scaleswith increasings, Fig. 2. To understand this, ROPC={1+
we note thatr,y,~ & k* is an important governing param-

eter in the energy budget equation. Consequently, with in-

creasing particle response time, the fluid-particle friction dis-

sipate energy in the larger-scale region. As is evident from

d(1+28) ]
(1+ 6)?

[oritg+ m)l
N orito—voit e

(6.10
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R(k L)

10 10° 10 10 10 10 10° 10° 10*

kL kL

FIG. 3. Log-log plots of the analytical predictioRy(«), Eq. (6.9 (dashed linesand the numerical resuR(«) for ¢=1 (note
that k=kL). Panel(a) §=0.1 and values o€ indicating corresponding lines. Parie) C=0.5 and values ob corresponding lines.

The analysis of this equation shows that the largest possibleffect is more pronounced. For the moderate values,of
enhancement of the turbulent energy in the inertial interval igshere is a turbulence suppression in the beginning of the

achieved for6~1 and increases witkp. inertial interval, which turns into a turbulence enhancement
in the bulk of the inertial interval, see, e.g., FighBfor &
D. Turbulence modification for finite Re =0.01 and the line marked Rex in Fig. 4(b). One sees

. . , i that already for Re=10* the energy enhancement increases.
In the preceding section, we discussed the mechanism s enlargement becomes more and more pronounced for

turbulent enhancement in the inertial interval caused by th%ven smaller Re For Rg=1(? the turbulence suppression
density variation in the energy cascade processes. There i e heginning of the inertial interval is negligible. Further
one more mechanism of the turbulent enhancement, near t velopment of these tendencies is illustrated in Fig). #or

viscous subrange, that may be even more important at mo ~01
erate Re. This effect is due to the renormalization of the
kinematic viscosity in suspensions= ve4(k), Eq. (3.4),

caused again by the density variation. Sipgg(k) near the

viscous cutoff,k~1/7, is larger thanp; (and consequently In order to get an analytical description of the main physi-
ver(1/m)<v), the extent of the inertial interval in suspen- cal mechanisms of the particle effect on turbulence, we used
sion is therefore larger than that in the particle-free case folh this paper as simple as possible approximations, which,
the same energy pumping to the system. Within our modehevertheless, preserve the basic physics of the problem. In
this effect may be described for very small particles with aparticular, we have used the differential approximation of the
response time smaller than the turnover timepagddies. In energy flux term, Eq(4.11) with local in k-space closure
this case, the effective densityksndependent in the inertial procedure, which gives a reasonable approximation in the
subrangep,.=1, ¢, andgff’) (for the particle-free cageare  extended inertial intervals of several decades. However, in
given by Eqgs(5.5 and(5.6). Thus, Eq.(6.6) yields the direct numerical simulations of turbulence in suspen-

c ) sions, e.g., in Ref[4], there is almost no inertial interval,
_ 1 _ 43
R(«) 1+4RE‘S(1 K )} /

E. Brief comparison with the DNS

2

Ci 43 definitely smaller than one decade. Therefore, the detailed
1+ m(l K ) .

comparison of our simple theoretical picture with the DNS
(6.11) may be only qualitative.
’ For such a comparison with the DNS by Boivin, Simonin

Plots of R(«x) for different Rg are shown in Fig. @) by  and Squire$4]), we replotted in Fig. 5 their Fig.(b) for the
dashed lines together with the numerical results for a quitkinetic energy spectr& (k,¢) of suspensions in the log-log
small §=10"3, solid lines. The numerical results fo8  coordinates(solid lines. The solid line, labeled byp=0,
=0.01 ands=0.1 are shown in Figs.(8) and 4c). With Rg describes the particle-free case, in which the energy spec-
growing above 19-1C°, we return back to the situation in trum in the inertial interval should be scale invariant. The
the inertial interval, described above, see Fig. 3. For th&41 dependence is shown in Fig. 5 by a dash-dotted line,
comparison, we show the plots for Rex in Fig. 4. labeled by« 52 One sees that only the first half of the

For very smallé the effect of particles on the turbulent decade may be considered as the inertial interval. The vis-
statistics in the inertial interval is negligible; as an illustra- cous corrections to this dependence may be accounted for
tion see Fig. 4a) for =103, In this case, there is only the with the help of Eq.(5.6). Using also Eqs(5.9) and (6.4),
viscous range enhancement. Clearly, with decreasindgli®®e one gets
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1.2

¢=1, C=0.5, =0.001
0.9 =
10 10 10 10 10

1.5

=1, 5=0.01

10 10

FIG. 4. The plots of the numerical results ®¢«) («=KkL) for
various Re (solid lineg for ¢=1 andC=C;=0.5. Panel(a) &
=103, dashed lines show analytical prediction, £6.11) for &
=0. Panelgb) and(c) §=0.01 ands=0.1.
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FIG. 5. Log-log plots of turbulent kinetic energy spectrum
E!(¢) taken from Ref.[4] for ¢=0, 0.2, 0.5, and 1 withs
=1.65 (solid lineg, and numerical solution of Eq5.3 for the
same values of and § with R&"=40 andC=13.

2

. (6.12

f_ —5/3
E.=

1
1+ —(1-«*9
Ref

With an appropriate value of Rethis equation reasonably
approximates the numerical data almost in the whole decade
of , in which E!. decays more than three orders of magni-
tude, see dashed ling=0. The chosen value K&=40
agrees with parameters given in Ref] with an acceptable
value of the closure paramet€r, which enters in the defi-
nition (5.9 for R&™. With C= 13 the numerical solutions of
Eq. (5.3 approximate well all the DNS energy spectra
E!(¢) with ¢=0.2,0.5, and 1 in the region, bounded from
above by some value of referred to ascmax. In this region,
the spectra decrease from uniigt «k=1) to some values,
smaller than 10%. The value ofx ., decreases fronk
~14 for =0 spectrum tok,~7 for the spectrum with
¢p=1.

For k> kmax the solutions of Eq(5.3) give too small val-
ues of the turbulent energy. As already discussed, this is due
to the differential approximation for the energy flux, which is
absolutely not realistic in the viscous subrange. Clearly, the
larger the value ofp, the more energy is dissipated by the
fluid-particle friction, diminishing the energy flux at the end
of the inertial interval. Consequently, the Kolmogorov mi-
croscaler= 1343 increases. Sincen,1/7, it shifts to-
ward smaller values.

One observes also some deviations of the DNS data and
our numerical solutions in the energy containing region
~1. This is again related to the differential approximation
for the energy flux. To improve the description of the particle
effect on the turbulent statistics a better approximation for
the energy transfer term is required. This calls for the more
elaborated closure procedures, based on a proper analysis of
the triad interactions.
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VIl. SUMMARY small-scale motionselongate the inertial interval
(8) In this paper, we propose a one-fluid dynamical model (2) The fluid-particle friction causes a decrease of the en-

of turbulently flowing dilute suspensions which differs from ergy flux at t_he viscous end of the inertial interval and hence,
. e shorten the inertial interval
the usual Navier-Stokes equation in two aspects. : . . .
. ) . The winner of this competition depends mainly on the
(1) Instead of fluid densityp; our model involves a

. . . . value of 6, see, e.g., Fig. 4.
k-dependengffective densityeq(k), Wh.'Ch varies betvyeen The complicated interplay of the inertial-range and the
ps (for large k) and the mean density of suspensipp

— pi(1+ ¢) (for smallk). viscous-range mechanisms of the suppression and the en-

L . ._hancement of the turbulent activity in suspensions is the
(2) The model equation includes an additional damping y P

: : . . . . “main topic of Secs. V and VI.
:i%r;n *p(K), which describes the fluid-particle viscous fric- (h) Our model successfully correlates observed features of

(b) Our model may be considered asaan-field approxi numerical simulations. These features are the following.
T . y . >'d approxi- (1) For a suspension with particles with a response time
mationin which one uses a dynamical equation of motion

ith “effective” ffici hich d q h ...~ much larger than the Kolmogorov time the main effect of the
with “effective” coefficients which depend on the Statistics 5 icles is suppression of the turbulence energy of fluid ed-

of the resulting stochastic solutions. In our casg(k) and  gies of all sizegat the same energy input as for the particle-
vp(k) are determined by the eddy turnover frequend¥)  free casp See for instance Fig. 5, where a comparison with
which, in its turn, depends on the resulting energy distributhe DNS results of Boivin Simonin and Squiresal. [4] is
tion in the system. shown.

(c) Our model is based on the same set of assumptions (2) For a suspension with particles with a response time
(applicability of the Stokes law for the fluid-particle friction comparable to or smaller than the Kolmogorov time, the
and space homogeneity of the particle distributiaswidely  koimogorov length scale of the fluid eddies will decrease
used in two-fluid models for suspensions. We believe that thgnd the turbulence energy of eddies(néarly all sizes in-
one-fluid description of turbulent suspensions contains th@reases(at the same energy input as for the particle-free
same physics as the essentially more complicated two-fluigase. This result was also reported by Druzhirit8], who
models. Our feeling is that a possible minor difference in the;arried out the DNS simulations for the case of micropar-
level of accuracy between these two models is beyond gcles.
current level of understanding of the problem and is defi- (3) For a suspension with particles with a response time in
nitely smaller than the “absolute” accuracy of each modelpetween the two limiting cases mentioned above the energy
itself. o of the larger fluid eddies is suppressed whereas the energy of

~(d) In order to keep the description of the problem asthe smaller eddies is enhanced. The crossover between sup-
simple and transparent as possible, we used in this papergession and enhancement depends on the ratio of the par-
closure procedure based on the Kolmogorov-41-dimensiongjcie response time and the Kolmogorov time. The strength
reasoning with an additional simplification—the differential 5f the effect depends on the mass loading. This is in agree-
form of the energy transfer term in which the energy flux ment with the DNS results of Sundaram and Colling].
e(k) is evaluatedocally in k space, via the spectrud(k) The more detailed comparison of our approach to turbu-
taken at thesame wave number. Rhis allows us to derive |ent suspensions with the physical and numerical experi-
the qum? simple ordinary differential equation for the energyments requires) from the DNS side more detailed analysis
budget in the syster(b.3). . of joint statistics of the velocity field of the particle and the

() As a reward, our budget equati®.3) allows an ef-  carried fluid; (2) from the theoretical side an application of
fective analytical analysis in various important limiting the more advancedonlocal closure procedures, explicitly
cases, i.e.(1) in the particle-free case, see H§.6); (2) for  accounting for the triad interactions.
the microparticles caseSt< Re_fm), see Eq(5.5); (3) for the (i) An additional advantage of our one-fluid approach is
first decades of the inertial intervéh the cases<1) orin  that one can use standard and well developed closures from
the whole inertial intervalif C<1/4), see Eqs(5.14 and  analytical theory of one-phase turbulence. This fact and the
(5.19; (4) for any reasonable values of parameters at handkelative simplicity and physical transparency of the one-fluid
see Egs(5.17) and(5.18), involving one-dimensional inte- model equations may essentially help in the further progress
gration. towards a theory of turbulent suspensions for more realistic

_ Inthe general case the budget equatidi3) may be eas- cases with space inhomogeneities, gravitational settling, etc.
ily solved numerically.

(f) We derived the analytical expressi¢.9) for the di-
mensionless rati&y(kL), which describes the energy sup- ACKNOWLEDGMENTS
pression and enhancement in thertial interval of scales

(g) In Sec. VI D, we described the additional “viscous”  We thanks T. Elperin, N. Kleeorin, and |. Rogachevskii
mechanism of the turbulence suppression and enhancemefur helpful discussions, which contributed to this paper. This
caused by the particle effect on tlextent of the inertial work has been partially supported by the Israel Science
interval. Foundation and the Netherlands Foundation of Applied Sci-

(1) The decrease of the effective kinematic viscosity inences. Two of ugV.L. and A.P) acknowledge the hospitality
suspensiongdue to the increase in the effective density for at the Burgerscentrum, Delft, The Netherlands.
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