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SUMMARY

Understanding the behaviour of and handling of bulk materials is an essential part of
many industrial processes. Small changes in equipment design or the properties of a bulk
material can result in drastic changes in performance. To understand these processes,
research on the behaviour of granular materials and their interaction with equipment
needs to be studied. Research can consist of experimental or numerical work at different
scales. The level of particles, the interaction of small agglomerates of particles or the
transport of millions of particles. For accurate models it is essential that the variety in
shape, size, and other material properties is included. Due to the variety, the behaviour
of granular materials is inherently stochastic. Even though this is an important aspect,
it is not commonly included in research. In addition to the stochastic behaviour it is
essential that detailed modelling techniques like particle based models are used as a tool
in the design process of bulk handling equipment. An important method is the Discrete
Element Method (DEM) which can model the interaction between particles and particles
and equipment in high detail. However, in the optimization of bulk handling equipment
designs it is difficult to include these models directly because of the high computational
cost. Therefore, it is necessary that fast and accurate predictive models are developed that
inherit the behaviour of a particle based model and even include the stochastic behaviour
of the granular or bulk material. A potential technique to achieve this goal is by using
metamodels. These are efficient models that relate design parameters to performance of
equipment. Discovering how to identify and include the stochastic behaviour of granular
materials and the translation of this information to a usable form in the design of bulk
handling equipment is the aim of this research.

To reach this aim, the research is divided in four parts: The identification of stochastic
behaviour of granular materials by means of experiments with a discharging hopper,
investigate the potential use of metamodels in the design of bulk handling equipment
by assessing the quality of different model types, the use of metamodels to include the
stochastic behaviour of bulk materials in calibration of DEM models, and the application
of metamodel-based robust design optimization to the design of bulk handling equip-
ment. In all of these parts the results from experiments and numerical models are used to
verify and validate the results.

In this thesis the essential questions regarding stochastic behaviour of bulk mate-
rials and the effects it has on design optimization procedures are discussed. First an
experimental study to describe the behaviour of gravel in a hopper is presented aiming
to understand the relationship between external and internal observed behaviour. This
research shows that the behaviour of the granular material is related to the geometry of
the hopper. Moreover, the stochastic behaviour of the granular material is not constant
and changes with the geometry. Additionally, it was found that the type of measurement
and wear in the setup, need to be considered when a reliable dataset is required.

Secondly, a study is presented in which the challenges related to the use and training of
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metamodels are described. Here it becomes clear that the choice of a type of metamodel
highly depends on the application and the dataset that is used for training. Furthermore,
hyper-parameter optimization generally improves the quality of the metamodel and
a validation strategy gives information on the robustness of the trained metamodel in
between the data points used for training. The training procedure presented in this study
can be used for the development of metamodels.

Thirdly, including the stochastic behaviour of the granular material in the calibration
of DEM models leads to more accurate and robust performance of the DEM model
in predicting key performance indicator values. Here, stochastic metamodels play an
essential role as they improve the efficiency of the calibration and increase the reliability.
Even though there is more effort required to perform a stochastic calibration it is a neces-
sary step to improve accuracy of DEM models. The methodology presented in this study
enables engineers and researchers to include stochastic behaviour of granular materials in
their own discrete element models. Fourth and finally, combining stochastic metamodels
that predict equipment performance and robust optimization techniques shows that
more accurate design performance predictions can be made. The extensive experimental
work, the comparison of the conventional design procedure and the proposed strategy
support these findings. Including stochastics and metamodels shows that the reliability of
DEM models and optimal designs is improved. The presented framework for the design
of bulk handling equipment includes the procedure for training metamodels and the
stochastic calibration methodology.

In the current procedure for design of bulk handling equipment, including stochastic
behaviour of granular materials and detailed discrete element models effectively is
difficult. The studies presented in this thesis lead to a design procedure that includes both
these aspects and gives detailed information on how it can be applied. To improve the
presented design procedure it is recommended that the procedure is applied to design
problems at an industrial scale. Moreover, it is encouraged to study the dependency of
stochastic behaviour on dynamic regimes and the effect of operation on the interaction
properties between particles and equipment.



SAMENVATTING

Het begrijpen van het gedrag en het transport van bulkmaterialen is een essentieel
onderdeel van veel industriële processen. Kleine veranderingen in het ontwerp van
werktuigen of de eigenschappen van een bulkmateriaal kunnen leiden tot drastische
prestatieveranderingen. Om deze processen te begrijpen, moet onderzoek naar het
gedrag van granulaire materialen en hun interactie met werktuigen worden uitgevoerd.
Onderzoek kan bestaan uit experimenteel of numeriek werk op verschillende scha-
len. Het gedrag tussen deeltjes, de interactie van kleine agglomeraten van deeltjes of
het transport van miljoenen deeltjes. Om tot nauwkeurige modellen te komen is het
essentieel dat de variëteit in vorm, grootte en andere eigenschappen van granulaire
materialen wordt opgenomen. Door de variëteit in eigenschappen is het gedrag van
korrelige materialen inherent stochastisch. Hoewel dit een belangrijk aspect is, wordt het
niet vaak in onderzoek meegenomen. Naast het stochastische gedrag is het essentieel
dat gedetailleerde modelleertechnieken zoals op deeltjes gebaseerde modellen worden
gebruikt als hulpmiddel bij het ontwerpproces van bulkwerktuigen. Een belangrijke
methode is de Discrete Elementen Methode (DEM), die de interactie tussen deeltjes en
deeltjes en werktuigen tot in detail kan modelleren. Bij de optimalisatie van ontwerpen
voor bulkwerktuigen is het echter moeilijk om deze modellen rechtstreeks op te nemen
vanwege de daarmee gepaarde lange rekentijden. Daarom is het noodzakelijk dat er snelle
en nauwkeurig voorspellende modellen worden ontwikkeld die het gedrag van een op
deeltjes gebaseerd model overnemen en ook het stochastische gedrag van het granulaire
of bulkmateriaal omvatten. Een mogelijke techniek om dit doel te bereiken is door
metamodellen te gebruiken. Dit zijn efficiënte modellen waarmee ontwerpparameters
direct gerelateerd kunnen worden aan de prestaties van het werktuig. Het doel van
dit onderzoek is om te ontdekken hoe men het stochastische gedrag van granulaire
materialen kan identificeren en deze informatie kan vertalen naar een bruikbare vorm bij
het ontwerp van bulkwerktuigen.

Om dit doel te bereiken, is het onderzoek verdeeld in vier delen: De identificatie van
stochastisch gedrag van korrelige materialen door middel van experimenten met een
hopper, de mogelijkheden van het toepassen van metamodellen bij het ontwerp van
bulkwerktuigen onderzoeken door de kwaliteit van verschillende modeltypen te beoor-
delen, het gebruik van metamodellen om het stochastische gedrag van bulkmaterialen
bij de kalibratie van DEM-modellen op te nemen, en de toepassing van op metamodel
gebaseerde robuuste ontwerpoptimalisatie op het ontwerp van bulkwerktuigen. In al deze
onderdelen worden de resultaten van experimenten en numerieke modellen gebruikt om
de resultaten te verifiëren en te valideren.

In dit proefschrift worden de essentiële vragen over stochastisch gedrag van bulkma-
terialen en de effecten die het heeft op ontwerpoptimalisatieprocedures besproken. Eerst
wordt een experimentele studie beschreven om het gedrag van grind in een hopper te
bepalen en om de relatie tussen extern en intern waargenomen gedrag te begrijpen. Dit
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onderzoek toont aan dat het gedrag van het korrelige materiaal verband houdt met de ge-
ometrie van de hopper. Bovendien is het stochastische gedrag van het korrelige materiaal
niet constant en verandert het mee met aanpassingen in de geometrie. Daarnaast blijkt
dat het type meting en slijtage in de opstelling in overweging moet worden genomen als
men een betrouwbare experimentele dataset wil creëren.

Ten tweede wordt een studie gepresenteerd waarin de uitdagingen met betrekking
tot het gebruik en de training van metamodellen wordt beschreven. Hier wordt duidelijk
dat de keuze van een type metamodel sterk afhangt van de applicatie en de dataset
die wordt gebruikt voor training. De optimalisatie van de metamodel hyperparameters
verbetert over het algemeen de kwaliteit van het metamodel en een validatiestrategie
geeft informatie over de robuustheid van het getrainde metamodel tussen de datapunten
die worden gebruikt voor de training van het model. De trainingsprocedure die in
dit onderzoek wordt gepresenteerd, kan worden gebruikt voor de ontwikkeling van
metamodellen.

Ten derde leidt het opnemen van het stochastische gedrag van het granulaire materiaal
bij de kalibratie van DEM-modellen tot nauwkeurigere en robuustere prestaties van
het DEM-model bij het voorspellen van de belangrijkste prestatieindicatoren. Hier
spelen stochastische metamodellen een essentiële rol omdat ze de efficiëntie van de
kalibratie verbeteren en de betrouwbaarheid vergroten. Ook al is er meer inspanning
nodig om een stochastische kalibratie uit te voeren, het is een noodzakelijke stap om de
nauwkeurigheid van DEM-modellen te verbeteren. De methodologie die in deze studie
wordt gepresenteerd, stelt ingenieurs en onderzoekers in staat stochastisch gedrag van
granulaire materialen op te nemen in discrete elementmodellen.

Ten vierde en tot slot, het combineren van stochastische metamodellen die de pres-
taties van werktuigen voorspellen en robuuste optimalisatietechnieken, toont aan dat
er nauwkeurigere voorspellingen voor ontwerpprestaties kunnen worden gedaan. Het
uitgebreide experimentele werk, de vergelijking van de conventionele ontwerpprocedure
en de voorgestelde strategie ondersteunen deze bevindingen. Het meenemen van sto-
chastisch gedrag en het gebruik van metamodellen laat zien dat de betrouwbaarheid van
DEM-modellen en geoptimaliseerde ontwerpen wordt verbeterd. Het gepresenteerde
raamwerk voor het ontwerp van bulkwerktuigen bevat de procedure voor het trainen van
metamodellen en de stochastische kalibratiemethodologie.

In de huidige procedure voor het ontwerp van bulkwerktuigen is het ingewikkeld om
het stochastisch gedrag van granulaire materialen en het gebruik van discrete element-
modellen te implementeren. De studies die in dit proefschrift worden gepresenteerd,
leiden tot een ontwerpprocedure die deze implementatie mogelijk maakt en gedetail-
leerde informatie geeft over hoe deze kan worden toegepast. Om de gepresenteerde
ontwerpprocedure te verbeteren, wordt aanbevolen dat de procedure wordt toegepast
op ontwerpproblemen op industriële schaal. Bovendien wordt het aangemoedigd om de
afhankelijkheid van stochastisch gedrag van dynamische regimes en het effect van het
bulkproces op de interactie-eigenschappen tussen deeltjes en werktuig te bestuderen.



1
INTRODUCTION

1.1. RESEARCH AREA

In our daily life we encounter granular materials in many situations, whether it is the
cereal you pour in your bowl for breakfast or a scoop of sand that is used to build a castle
on the beach. In those cases you might wonder, why did the cereal get jammed in the
box today whereas it poured constantly the day before, or why does the sand stick to your
spade when it is wet but not when it is dry? Those questions are very logical and are also
arise in heavy industries when new equipment to process raw materials is developed. In
design of such bulk handling equipment (BHE) it is essential that the granular behavior of
the bulk material and the interaction with the equipment is understood such that designs
can be optimized and be used reliably and with high accuracy. Optimizing designs for
performance and reliability is important considering the vast amount of raw materials that
are being transported and processed yearly. Use of optimized equipment will eventually
lead to a lower consumption of energy, lower costs, and lower environmental impact.

In Figure 1.1 several examples of bulk materials are shown. The term bulk material is
used for all powder or granular materials consisting of a large amount of particles. They
can be organic like corn or wood, raw earth materials like coal, iron ore, and gravel or
preprocessed materials like iron ore pellets. It is clear to see that the shape of the particles
is very different and that the size and shape is different even for the same material. This
variability in the shape, size and surface properties of the particles make the behavior
of a granular material inherently stochastic. Every time a granular material is handled,
the orientation of the particles and their interaction changes which leads a variation in
results. Therefore it is important to understand and characterize the stochastic behavior
of a granular material and include this behavior in the design process. Figure 1.2 shows
examples of bulk handling equipment and their interaction with a granular material. The
shown equipment is capable of transporting several tons of material in each handling
operation and generally has dimensions of multiple meters. Here the importance of
understanding the interaction between materials and equipment becomes apparent. The

1
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of bulk materials (a) corn (b) wood pellets (c) coal (d) iron ore pellets (e) iron ore (f) gravel

bucket of an excavator is in contact with the bulk material and is subjected to wear which
changes the way the material and equipment interact over time because of changing
surface roughness or changes in the environment. The bulk material transported by
a conveyor will travel differently through air depending on the velocity and size of the
particles. Moreover, if there is no friction between particles and surface of conveyor belt
the particles might not be transported at all. The grab is a complex mechanism where it’s
design may change for different categories of materials to reach the desired performance.
The interaction is generally hard to describe by means of analytical functions. Therefore it
is essential that the behavior and interaction with bulk materials of equipment is known
for a large variety of designs and a large variety of materials such that these designs can
be optimized.

1.2. THEORETICAL BACKGROUND

In Figure 1.3 the conventional and newly developed paths in the design process for bulk
handling equipment are shown in more detail with time on the vertical axis and reliability
on the horizontal axis. The design process can take different paths towards an equipment
design. Here the left path is the current design procedure which starts with the analysis
of the bulk handling equipment design problem. The general approach in this step is to
identify the problem and understand the mean or average behavior of the equipment
and granular material. Next, engineers come up with an initial idea for a design based on
experience with the material or with the type of equipment that was used in the past. The
initial design is then updated by trial and error until the design meets the requirements
using the input from lab-scale experiments, prototypes, and evaluation of the structural
integrity of the design. A relatively new method in design of bulk handling equipment
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(a)

(b) (c)

Figure 1.2: Examples of bulk handling equipment (a) excavator (b) conveyor belt (c) grab (courtesy of Nemag
B.V.)
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is the use of the Discrete Element Method (DEM) [1] in which the bulk material and its
interaction with the material of the equipment can be modelled in detail. This is the
path shown on the right. These models contain the mechanical interaction between the
particles itself and the interaction with equipment through contact laws. These DEM
models can be used to evaluate the performance of a new design without the need of
expensive experiments. However, as easy as this sounds we have to be careful because
these models are computationally expensive and the contact parameters need to be
calibrated and validated if used to optimize designs [2, 3]. Next, the DEM model is ready
to be used in the design process. Generally, this means that engineers come up with
an initial design which is based on their experience apply a trial and error approach
to improve the design by subsequent simulations. Even though this is a widespread
approach, it poses a significant risk of tunnel vision because alternative designs are
neglected. In addition, detailed DEM models for industrial-scale equipment design have
to process millions of particles and is time consuming. The duration of a simulation can
take a couple of hours but might also take days depending on the size and complexity
of the system. For this reason, a trial-and-error based design process including DEM is
generally concluded prematurely with a suboptimal result.

In describing the current design procedure and the recent developments with including
DEM it becomes clear that each of the three steps have their limitations: Problem analysis,
DEM model development, and design. In current analysis of bulk handling equipment
problems the focus lies on the average or mean behavior of the equipment and does not
include the stochastics of the granular materials that are processed even though this is
an essential aspect of the behavior of the system. To gain insight on the behavior of bulk
handling equipment it is essential to conduct experiments for different configurations.
By repeating these experiments the degree of stochastic behavior of the equipment
can be determined as well. The insights from these experiments improves the physical
understanding of the system and is useful in the development of the DEM model.

In the development of a DEM model the insights on equipment and material behavior
obtained in the analysis phase needs to be translated to the model. However, it is common
to make simplifications and only incorporate the essential physical behavior in the DEM
model. Exact modelling of granular materials is still difficult and a major focus point in
literature. In order to obtain the most accurate DEM model it is necessary to calibrate
the contact and material properties such that the overall behavior of the DEM model
resembles the physical behavior of the granular system . The process of calibration of
DEM models consists of matching measurable bulk parameters at laboratory scale and
reproducing these with the DEM model by adjusting the calibration parameters [4–6].
Over the past two decades, research on the calibration of DEM models has been an
important topic and lead to improvements in speed and accuracy [7–10]. However, these
advances were generally focused on average behavior of a DEM model and neglect the
stochastic behavior of the granular material. Currently there is no procedure to include
the stochastic behavior in the calibration of DEM models.

The stochastic behavior of the granular material indirectly makes the performance of bulk
handling equipment stochastic as well. In the current design procedure this is neglected
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by focusing on the mean or average performance of the equipment [11–13]. However, in
heavy industries, reliable equipment performance is important because entire processes
can be shut down due to jamming of equipment or breaking down due to unexpected
loading. Including the stochastic behavior of equipment is beneficial in the design process
because it includes upper and lower performance limits.

To make the best choices in both the calibration of DEM models and design of bulk
handling equipment, ideally, engineers would require an overview of the possible sets
of calibration parameters or a set of designs. However, the use of time consuming DEM
models makes it difficult to analyze all these paths and gather this information. A common
approach to make the information from computationally expensive models more effective
is the use of surrogate or metamodels [14–19]. A surrogate or metamodel is an inexpensive
model which predicts the behavior of a numerically expensive model [20]. Metamodels
are trained using a set of data from, for example, a DEM model and describe a relation
between input and output parameters. In the case of calibration the metamodel can
be used to predict the behavior of lab experiments based on a combination of contact
parameters. For the design optimization of bulk handling equipment the metamodel
can be constructed to predict the performance of the equipment based on the design
parameters of the equipment. The main advantage of these models is their computational
efficiency which is essential for design exploration and optimization where many itera-
tions are used to find a solution to the optimization problem. Currently, the development
of metamodels for bulk handling equipment which include the stochastic behavior is not
covered frequently in literature.

1.3. RESEARCH AIM AND RESEARCH QUESTIONS

Based on the analysis of the design procedure for bulk handling equipment the aim of
this thesis is,

To identify the effect of including the stochastic behavior of granular materials
in the entire design procedure for bulk handling equipment

This includes the identification of the stochastic behavior of the granular material, the
development and calibration of a DEM model and the design robust optimization of bulk
handling equipment. In addition, the use of metamodels for fast and efficient progression
through the steps in the design procedure is investigated. These aspects are covered by
the following four research questions:

1. To what extent does the stochastic behavior of a granular material affect the perfor-
mance of bulk handling equipment in the design space?

2. How can metamodels be used to describe the behavior of bulk handling equipment
in a design space?

3. To what extent can the stochastic behavior of a granular material be captured in
metamodel-based calibration of a discrete element model?

4. How does introducing metamodels and robust optimization to the design process
of bulk handling equipment change the process and its outcome?
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Figure 1.3: Flow chart for design procedure with and without metamodels, stochastic behaviour, and
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1.4. METHODOLOGY

To identify the stochastic behavior of material and equipment performance, an extensive
experimental study is performed. The experimental setups consist of a geometrically
adjustable hopper for which the effect of changing design parameters and repeatability
can be investigated. Moreover, several calibration experiments to identify characteristics
and stochastic behavior of the bulk material are used as well as tests to identify the
interaction properties between particles and equipment. In total 456 test have been
performed for this research. The results of these experiments show that there is stochastic
behavior of the material but also in equipment performance. It also appears that the
stochastic behavior is dependent on how it is processed in equipment.

Secondly, to make wider use of DEM models in the design of bulk handling equipment
metamodels are developed which relate the system performance to the design parameters
of the system. The use of metamodels and especially metamodels that include stochastic
behavior has had little coverage in literature. However, before using a metamodel in both
the calibration and design optimization it is necessary to understand the limitations and
possibilities of a metamodel. Metamodels are trained using a dataset but are also affected
by the type of metamodel, hyper-parameter optimization, sample size, and validation
strategy which influences the quality of a metamodel. These aspects are studied in
Chapter 3 and give a basis for stochastic metamodels and the insight needed to be able to
build high quality metamodels for calibration of DEM models and DEM-based design
optimization.

Thirdly, DEM models are developed with a focus on including the stochastic behavior
in the calibration of the DEM model by using metamodels. To make a comparison, the
metamodel based calibration procedure is evaluated for a mean and mean-variance
(stochastic) calibration in Chapter 4. The experimental results from the calibration
experiments are used to validate the results of the calibration process. To make a full
circle the calibrated DEM model is validated with the results from the experimental study
with the discharging hopper.

Finally, the last step in the design procedure is the design optimization using metamodels.
Here, both the deterministic and robust approach in design optimization are used to
identify the effect of including the stochastics. By validating the optimization results a
comparison between the two approaches can be made.

All the steps lead to a comprehensive view on the effect of including stochastic behavior
of bulk materials in modelling and designing bulk handling equipment. By combining
experimental results, modeling, and optimization techniques this research will aid engi-
neers in rethinking their own approach with regard to design of bulk handling equipment
and unravel some of the intricacies granular behaviour.
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Figure 1.4: Outline of this dissertation

1.5. OUTLINE OF THIS THESIS

Chapter 2 includes an article on the identification of the flow mechanism in a semi 2D
hopper discharging gravel where flow in the hopper is connected to the impact loads
observed in loadcell data for a wide range of geometries.

Chapter 3 includes an article on the performance of several types of metamodels on a
DEM data set of a discharging hopper related to a wide range of geometries.

Chapter 4 consists of an article in which the effectiveness of stochastic calibration is
compared to deterministic calibration based on an experimental case study.

Chapter 5 consists of an article which investigates the effect of robust design optimization
on the outcome of hopper designs compared to a deterministic optimization procedure.

Chapter 6 includes the conclusion of this thesis



2
EXPERIMENTAL STUDY ON FLOW

INDUCED HOPPER VIBRATIONS AND

THE RELATION TO GEOMETRY

The behaviour of granular materials in experiments and bulk handling equipment is
stochastic by nature. The wide range of sizes, shapes and mechanical properties makes that
particles are oriented differently each time the material is handled. Quantification of the
stochasticity experimentally is complicated and requires thorough understanding of the
governing physics and accurate measurements. In this chapter an experimental study on
a discharging hopper is presented for which the relation between flow behaviour of the
material and the impact on the bulk handling equipment is determined. Additionally, the
stochastic relation between the geometrical properties of the hopper and two key perfor-
mance indicators, the discharge rate and impact load are determined. The experimental
data presented in this chapter is used to validate the models that are developed in the
subsequent chapters.

Parts of this chapter have been submitted to Granular Matter "Experimental study on flow induced hopper
vibrations and the relation to geometry", (2024) M.P. Fransen, M. Langelaar, D.L. Schott

9
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2.1. INTRODUCTION

Hoppers are common equipment in a wide range of industrial processes and are used to
store, feed and control the throughput of material. Depending on the process/application
they are of different sizes, from large scale in concrete production to small-scale in
pharmaceutical applications. In general, hoppers are designed for a process with a
specific storage capacity and throughput where the design is based on the interaction
between material and equipment and the behaviour of the bulk material. Even though
the bulk behaviour is included, for many granular materials processed through a hopper,
pulsating flow is a common phenomenon. This pulsating flow, in combination with the
dynamic response of the hopper structure is the likely cause for silo quaking or music
[21, 22]. Consequences of the pulsating flow in a hopper are the induced vibrations in the
structure and additional wear of the material structure interface which may ultimately
lead to failure of the hopper [23–26]. Additionally, the flow pulsations can be enhanced
largely by the dynamic interaction between the bulk material and equipment structure.
In design of silos the described phenomena and behaviour are essential to come to well
performing designs. Design procedures for silos and hoppers have been thoroughly
described by [27–29]. However, hopper vibrations or silo quaking as it is also called or
impact during hopper filling is not included in four of the most common design codes
[27]. To be able to update design codes for hoppers and silos with respect to quaking
and vibrations more insight on the relation between flow behaviour and the induced
vibrations needs to be obtained.

To gain insight on their behaviour hoppers are studied extensively for several decades,
both numerically and experimentally [30–33]. Most recent experimental hopper studies
for granular materials from a bulk handling perspective were focussed on the effect of
particle shape on the discharge rate (e.g. [34–36]. Tangri et al. determined velocity
profiles for discharging hoppers with different geometries and particle shapes based on
discrete element simulations. A study by Slominski et al. focussed on the deformation and
strain fields in the granular flow using particle image velocimetry (PIV) [37]. The study
by Mehdizad et al. investigated the flow dynamics through MRI data and determined
velocity fields based on phase differences between MRI images [38]. However, to the
authors knowledge the relationship between flow behaviour and dynamic response of the
hopper is not studied.

A technique to investigate flow behaviour of a moving medium based on image recordings
is particle image velocimetry (PIV) or particle tracking velocimetry (PTV) which are
methods mainly used for experimental fluid mechanics [39]. With PIV high speed images
of a (granular) flow are converted to velocity and acceleration fields. PTV is used to track
individual particles which seems to be most ideal but, for high velocity flows this method
is not fully applicable [40]. More recently, PIV has been frequently used in research with
respect to granular flows and referred to as g-PIV, geo-PIV [41], or granular PIV [42–48].
In this study we will use the general term PIV because the additions only refer to the
specific application. Application of PIV to granular flows comes with several challenges
which have to be addressed [48]. Specialized experimental setups need to be developed
and reliable settings for the PIV analysis need to be determined. related to analytical
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models. The flow behaviour can only be observed at the boundaries because granular
materials are generally non-transparent. Average flow velocities for granular flows can
be accurately obtained using PIV but fluctuations around the average flow called the
granular temperature requires higher framerates and image quality. However, in this
study we focus on the transient of the mean flow behaviour in a hopper which does not
require a higher resolution.

Hopper vibrations are well known and the relation between the dynamic response of
the hopper and solid pressures and flow patterns has been described thoroughly in
literature. However, a relation between the vibration of the hopper and the optically
visible changes in flow fields has not been provided in literature. To gain insight on the
acceleration and deceleration of the granular material during discharge an experimental
setup has been developed which can measure the pulsating behaviour through load cells
and simultaneously record the flow of the material in the hopper through high speed
image recording. The induced vibrations on the structure are generally measured with
load cells [49, 50]. The high speed image recordings are analysed using PIV and used to
determine the velocity and acceleration fields for the granular flow in the hopper. Based
on the results of the PIV analysis, velocity and acceleration fields for the granular flow can
be compared to the load cell data.

The aim of this study is to gain insight on the relation between dynamic loads on the
hopper structure and the flow behaviour of the bulk material in the hopper. Exploring this
relation is the primary aim of the present study. With this goal in mind, we focus on first-
order effects and utilize a convenient small-scale setup that allows PIV measurements. We
extensively investigate a wide range of geometries using loadcell data to obtain stochastic
information on discharge rates and impact loads. On a selection of the dataset a PIV
analysis is used to analyse flow behaviour and indirectly determine the discharge rate.
In addition, we will show how well PIV can be used for the analysis of flow patterns by
comparing PIV results to the loadcell measurements.

The full dataset resulting from this research has been made publicly available according
to the FAIR principle (10.4121/fa7544d6-14fd-4372-a81f-e2e1b4a44832).

2.2. EXPERIMENTAL SETUP

To identify the hopper discharge behaviour the hopper setup described by Fransen et al.
is used [51]. In this section the hopper setup with load cells, the discharging material, and
the high speed camera setup are introduced.

2.2.1. HOPPER DISCHARGE SETUP

Figure 2.1 (a) shows the hopper setup filled with gravel. The hopper construction consists
of an aluminium frame in which different wall materials can be placed for the inclined and
vertical hopper sections. In these experiments the wall material is stainless steel which
has worn through impact during earlier experiments. This leads to heavily indented walls
with a higher surface roughness than the original material. The geometry is enclosed by
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(a)
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Figure 2.1: (a) Picture of the experimental setup (b) Dimensions of the hopper discharge experiment

Acrylic plates such that the flow of material during discharge can be recorded with a high
speed camera. The hopper is filled with gravel by evenly cascading material through the
top surface into the hopper.

The hopper angleα is adjusted in a range from 20 to 90 degrees and the discharge opening
Wo is adjusted from 50 to 200mm for these experiments. The depth of this setup d is
50mm and is fixed throughout the experiments. The total width of the hopper Wh is set to
600mm. The fill height H f ranged from 600mm (in 50mm discharge opening cases) to
1000mm.

The experiments carried out with the setup are given in Table 2.1. For each hopper
configuration, a different angle and size of the discharge opening, a new Acrylic front and
back plate is used which is cleaned after each iteration of the experiment. In the table
below it is already stated that some of the experiments were not successful because of
errors in load cell measurements or high speed image recordings.

The entire setup is positioned on three load cells such that the vertical load exerted by the
gravel material on the setup can be measured (AEB8D OIML R60 C3 Shear Beam Load cell
from AE sensors). Three load cells are used such that offsets in the centre of mass changes
during discharge are accounted for. The load cells measure the exerted forces at 50 Hz.
The signals are processed through a Strain Gauge Amplifier (SGA) from Mantracourt and
transferred to a computer through a NI-6001 DAC from Texas Instruments.

Compared to industrial sized hoppers this is a relatively small hopper. Therefore the
results of experiments at this scale need to be put in the perspective of industrial applica-
tions. In this study the hopper designs used in the experiments cover alle hopper angles
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Table 2.1: Experimental plan, including an indication of the experiments that were unsuccessful. These are
indicated in between brackets.

α= 20◦ α= 30◦ α= 45◦ α= 60◦ α= 75◦ α= 82.5◦ α= 90◦
Wo = 50mm 10(2) 10 10 10 10 10 10
Wo = 75mm 5(1) 5 5 5 5 5 5
Wo = 100mm 5 5 5 5 5 5 5
Wo = 150mm 5 5 5 5 5(1) 5 5
Wo = 200mm 5 5 5 5 5 5 5

and push the size of the discharge opening to sizes for which flow is generally obstructed.
This information can be used directly in large scale hoppers as guiding for stable discharge
without the risk of arching. The transition from mass to core flow in the hopper is
characteristic for this setup but can serve as an indication for large scale hoppers. Hopper
design depends on the material behaviour and interaction properties with the structure.
To make the effect of stochastic variability on the hopper performance into a general
guideline for hopper design it is essential that experiments are conducted with large scale
setups and that parametric studies with these setups include varying the filling procedure,
initial density, grain diameter, wall friction angle, and other properties. In addition,
limitations of this setup such as the small depth, accuracy of the measurement systems,
and the absence of wall loadcell measurements should be considered in extension of the
setup when future studies are conducted.

2.2.2. DISCHARGING MATERIAL: GRAVEL

The material used in the experiments is gravel which is a common material in heavy
industries. The particle size distribution of the used bulk material has been determined
by a sieve analysis with a HAVER&BOECKER HAVER EML 200 Premium sieve shaker.
In total 10 sieves have been used with grid sizes of 1, 1.4, 2, 2.8, 4, 5.6, 8, 10, 12.5, and
16mm. In Figure 2.2 (b) the cumulative particle size distribution is shown. Based on the
values for the cumulative particle size distribution we have determined the d10, d50, d60

through interpolation and based on the ratio d60 over d10 the uniformity coefficient Cu
was determined. The gravel can be considered clean because the fines content is smaller
than 5%. The Cu = 1,7 which defines the gravel as poorly graded (PG). These properties,
among others, are presented in Table 2.2. In bulk material handling two types of density
are considered, the particle and bulk density. For the gravel sample, both the particle and
bulk density were determined. The particle density was determined by making use of
Archimedes law where the displaced water volume is used to determine the volume of
the particles and the weight difference measured by the scale to determine the weight of
the volume leading to the particle density. We have repeated this experiment ten times
to obtain an accurate average and these results are presented in Table 2.2. The bulk
density of the material is determined by filling a bulk density tester ISO17828 (EN 15103)
with bulk material and weighing the amount of material that is in the container. This
tester meets the diameter and height requirements which should be at least 10 times the
average particle diameter. The volume of the bulk density tester is 5 litres with an 0.2%
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Figure 2.2: (a) Close-up picture of the gravel used in the experiment, (b) cumulative particle size distribution of
gravel sample
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Table 2.2: Gravel properties

Material properties
Particle density ρp 2313,4±22,5 kg /m3

Bulk density ρb 1473,06±15,4 kg /m3

Angle of Repose β 41,40 ± 0,36◦
Void ratio e 0,57
Fraction d50 17,41

d60 18,86
d10 11,08
Cu 1,70

Roundness number Rn 0,48±0,12
Sphericity ψ 0,70±0,17

Table 2.3: Gravel properties

mean µs standard deviation σmus

Gravel-Stainless Steel (side walls) 0,523(27,5◦) 0,05(2,86◦)
Gravel-Acrylic (front and back plate) 0,446(24,03◦) 0.096(5,5◦)

tolerance. We have repeated this experiment 50 times which results in the same bulk
density as found in [51]. From this test the average bulk density and the void ratio with a
95% confidence interval are obtained and presented in Table 2.2.

In addition, 100 particles have been closely examined to determine the sphericity and
roundness of the particles. The sphericity ψ was obtained by measuring the particles
with a caliper for the longest, smallest, and an intermediate cross-sectional length.
The equation used to calculate the sphericity is ψ = 3

p
(c2/ab) where a is the longest

diameter, b an intermediate diameter, and c the smallest diameter. The roundness Rn

was determined by comparing the shape of the particles to the Krumbains chart [52].
These values can be found in Table 2.2. The roundness of the particles shows a similar
distribution where roundness can be both on the low and high side. The interaction
between gravel and wall materials depends on the surface. In this case the surface of the
side walls is worn out and pitted. With an inclined surface tester [53] we have tested for
the angle of sliding friction of 25 individual gravel particles with impacted steel which
corresponds to the walls of the hopper and acrylic material which corresponds to the
front and back plate of the hopper. The inclined surface test was repeated 4 times with the
same 25 particles. In Table 2.3 the average friction coefficient values have been presented.

2.2.3. HIGH SPEED IMAGING SETUP

The discharge of the hopper experiment is recorded using a FasTec IL5-H high speed
camera with a manual 25mm Navitar Lens. The software used to control the camera and
recording is FasMotion provided by FasTec. The distance from the lens to the front wall of
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the hopper was 250cm and the height of the centre of the lens is 98,5 cm. The lighting
conditions for the hopper were set with construction lights providing indirect light to
the front of the hopper setup to avoid reflections on the acrylic plates. The experimental
setup is shown in Figure 2.3 (a).

The recording area of the camera contains the width of the hopper, 10cm below the
opening and 45 cm of the hopper height itself where the aluminium cross bar is located,
see Figure 2.3 (a). In case of large angles such as the 20 and 30 degrees this means that
the vertical sidewalls of the hopper are not visible in the recordings. At large discharge
openings 150 and 200mm the recording frequency is 600Hz, for the 100mm cases the
recording frequency is 400Hz, 300Hz for the 75mm cases, and 200 Hz for the cases with
50 mm discharge opening sizes. This ensures that all the experiments are fully recorded.
The shutter speed was set to 650ms for all experiments.

The lens of the camera was focussed manually using the following procedure. The first
step was to put the lens at the focal point of the camera (0.95 in the case of the Navitar
lens). In the live feed of the controller zoom in on the material in the centre of the hopper
and start adjusting the focus of the lens. When a sharp image is obtained the lens is
fastened. Next, the f-stop of the lens is used to adjust the back-focus. This is followed by
zooming in on the edges of the setup and adjust the back-focus such that the contrast
is optimal. To account for the image distortion by the lens in the PIV analysis a sheet of
calibration markers was positioned in the flow region of the image and reference pictures
were taken after setting up the camera, see Figure 2.3 (b).

2.3. DATA ANALYSIS METHODOLOGY

In Section 2.3.1 the analysis of the load cell data is discussed. Next, the processing of PIV
data is discussed.

2.3.1. ANALYSIS OF LOAD CELL DATA

The load cell data consists of a force signal over time. By dividing the force with the
gravity constant the mass in the hopper is determined which is shown in Figure 2.4 (a)
for the first experiment with a 45 degree hopper angle and 100 mm discharge opening.
From this force over mass signal the average discharge rate can be determined by linear
interpolation of the signal in a steady flow region [51]. In Figure 2.2 (b) the force signal is
shown for the first experiment with a 30 degree angle and a 150mm discharge opening.
Here we identify the peaks and valleys in the fluctuation of the force signal from the load
cells. The difference between a valley and peak defines the impact of the bulk material on
the hopper setup. The black markers indicate the maximum difference between a peak
and valley and the other peaks and valleys are indicated in red. This analysis is carried
out on all experiments from the experimental plan shown in Table 2.1.
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(a)

(b)

Figure 2.3: Experimental setup with camera position (a), Calibration grid before test with 40 by 40mm and 4mm
thickness calibration marker(b)
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Figure 2.4: Steady state discharge rate in steady discharge area (a) and peaks in the loading of the load cells due
to acceleration and deceleration of granular material in the hopper (b).
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2.3.2. IMAGE ANALYSIS USING PARTICLE IMAGE VELOCIMETRY (PIV )

The high speed images of the hopper discharge are processed with Particle Image Ve-
locimetry (PIV) to obtain the velocity fields using PIVware software. In particle image
velocimetry the changes in the characteristic pattern of an image are compared to the
characteristic patterns in images from subsequent time steps [43]. The translation of
the characteristic patterns between subsequent images determines the velocity of the
material in the image. More details on the procedure can be found in Appendix A.1. To
identify relation between velocities and hopper angles, the experiments with a 100mm
discharge opening and a 20, 30, 45, 60, 75, and 90 degree hopper angle are chosen for
analysis with PIV. For the PIV analysis of the images a patch size of 64 by 64 pixels was used
which was able to give a good resolution at the inclined hopper walls and have limited
oscillations in the obtained velocity data.

To analyse the flow patterns in the hopper the PIV data is plotted over the original image
using a vector plot. For the analysis of the velocity profiles at 0, 10, 20, 30, and 35
centimetres above the outlet of the hopper the PIV data is filtered and linearly interpolated
if not positioned exactly in a grid point of the PIV data. These velocity profiles are averaged
over the stable flow region at the different heights where the stable flow region for the
hopper outlet is the same as used for the discharge rate. With these velocity profiles the
effect of hopper geometry on the velocity profile is determined. In addition, the stagnant
zones during hopper discharge are determined based on the velocity profiles.

Next, the goal is to compare the load cell measurements with the PIV data. To do this it is
necessary to obtain the acceleration fields in the hopper derived from the PIV data. From
the velocity data the acceleration is determined by using the Euler Forward integration
method with a time step size equal to 1/ fr ec .

ai =
vi+1 + vi

∆t
(2.1)

The obtained acceleration fields are used for a comparison with the trajectory of the
load cell signal by taking the average acceleration of the material in the hopper, ay of the
material in the hopper in vertical direction and scaling it to the loadcell signal leaving the
transient behaviour unchanged. To improve the comparability of the acceleration and
load cell signal the noise in the signal is reduced by passing both the PIV and load cell
signal through a low-pass filter.

2.4. RESULTS

In total, 201 hopper discharge experiments were conducted. The dataset is sufficient for
obtaining accurate averages and standard deviations for the discharge rate and impact
load. In the following sections we will discuss the results and the trends that are observed.

In Section 2.4.1 we look at the discharge rates and impact loads for all geometrical setups
of the hopper used during the experiments. These are hopper angles (α) of 20, 30, 45, 60,
75, 82.5, and 90 degrees with discharge openings (Wo) of 50, 75, 100, 150, and 200mm.
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In Section 4.2 the results for the PIV analysis are discussed for all experiments with the
hopper angles 20, 30, 45, 60, 75, and 90 degrees for a discharge opening of 100mm. This
choice was made based on the computational cost of performing the PIV analysis for 30
experiments. In this Section the pulsating flow is visualised, the average velocity patterns,
and the stagnant zones in the geometry are discussed. To answer the question on how
the loads on the setup are related to the flow behaviour of the material we compare
the loadcell data to the PIV data in Section 2.4.3 which consists of a comparison of the
accelerations obtained from the loadcells and the PIV. In addition the discharge rates
calculated based on the load-cell data are compared to the discharge rate from the
PIV analysis. The arching phenomena observed during the experiments with a 50mm
discharge opening have been added in Appendix A.2.

2.4.1. DISCHARGE RATES AND IMPACT LOADS

The performance of the hopper is assessed using the discharge rate (φ) and impact load
Fi mp which are key performance indicators (KPIs). The discharge rate is a KPI that is
important in design of industrial process line whereas the impact load is important for
the structural integrity of the hopper. To analyse the trend in the behaviour the data
for the discharge is normalized with respect to the maximum key value as shown in
Figure 2.5. In this figure the normalized value for the discharge rate is shown with black
markers and the normalized 95% confidence interval (CI) are represented by the red
markers. Along with the discharge rate and the impact load the initial void ratio of the
particles in the hopper was determined for each experiment and was on average 0,527
with a standard deviation of 0,103. This is lower than observed with the density tests
where it was 0,57. This difference can be attributed to the small depth of the hopper
relative to the height. For reproducibility of results, the reference values for the average
and standard deviation of the discharge rate and average impact load can be found in
Appendix A.3. Here, it is seen that the normalized discharge rate, φnor m , is equal to one at
the 20-degree angle as the maximum discharge rates for each experiment were observed
here and normalized with respect to the maximum value. The trend as a function of the
hopper angle for each discharge opening size follow a similar path, especially the 100,
150, and 200 mm discharge openings. Over the range of angles the maximum relative
difference in discharge rate is 24% of the normalized value for the 100, 150, and 200 mm
discharge opening sizes. For the 50 and 75 mm discharge openings it is observed that this
maximum relative difference is 42%. These results shows that there is a significant effect
of the hopper angle and size of the discharge opening on the discharge rate for the same
discharge material.

For the confidence intervals a clear transition is visible in the data at the transition point
from 45 to 60 degree hopper angles. Here, the confidence intervals start to deviate with
respect to the size of the discharge opening for the hopper angle that is used. A consistent
trend in this behaviour as a function of the hopper angle or the size of the discharge
opening is difficult to distinguish. However, it seems that for hopper angles below 60
degrees the confidence interval is smaller and therefore shows that the discharge rate is
more stable. This transition might be related to the change from mass flow to core flow.
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Figure 2.5: Normalized average discharge rate and the relative 95% CI for these discharge rates

In Figure 2.6 the normalized impact load, Fi mp−nor m , is shown with respect to the hopper
angle represented by the black markers and the 95% CI of this impact load by the red
markers. For the normalized impact load a clear decreasing trend is visible with an
increasing hopper angle. A clear relation between the impact load at a specific hopper
angle and all discharge opening sizes is not directly visible. The spread seems larger
for the 30, 45, and 60-degree hopper angles than for the 75, 82.5, and 90-degree hopper
angles.

To assess whether the average impact load is reliable the 95% CI of the normalized impact
load is evaluated. The 95% CI of the normalized impact loads show a large variability with
an irregular pattern over the different hopper angles with a rather low value at a 20 degree
hopper angle as the exception. It could be distinguished that for 45, 60, and 75-degree
hopper angle the confidence intervals are below 50% of the average impact load but can
be as small as 10% depending on the size of the discharge opening.

2.4.2. PIV ANALYSIS: IDENTIFYING FLOW FIELDS IN DISCHARGING HOPPERS

The high speed image data obtained from the experiments is used to determine velocity
fields by using PIV. In Section 2.4.2 stills from an experiment are shown where the
acceleration and deceleration of the granular material is shown. Next, Section 2.4.2
discusses the dependency of average flow profiles on height and their reliability for the 20,
30, 45, 60, 75, and 90 degree hopper angles with a discharge opening of 100 mm. Based
on this analysis we discuss the formation of stagnant zones in the hopper experiments,
Section 2.4.2.
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Figure 2.6: Normalized average of maximum impact load and the relative 95% CI for these impact loads

PULSATING FLOW DURING HOPPER DISCHARGE

During the discharge of a hopper pulsating behaviour can be observed which is related
to the acceleration and deceleration of the material. In Figure 2.7 (a-f) 6 stills are shown
from 0,54 till 0,78 seconds of the first experiment with a 20 degree hopper angle and 100
mm discharge opening. The tags ti of the images can be found in Figure 8 where the load
cell signal from the experiment is and where the average velocity in vertical direction
from the PIV analysis is shown. In the load cell signal oscillations of 20N are visible and
for the velocity signal a fluctuation of 0,5m/s within the signal is present. This indicates
that the discharge rate fluctuating significantly compared to the maximum velocity in the
hopper of 0,95m/s.

In the stills in Figure 2.7 the full velocity fields obtained with the PIV analysis are shown.
In the first still the velocity field is shown for t1 which is located at a valley in the load cell
signal. Here the velocity field has a higher intensity over the hopper area and just passed
a peak in the velocity signal calculated from the PIV results. In still 2 at t2 it shows the
velocity field over the entire hopper decreased in intensity. The material in the hopper is
slowing down which corresponds to a deceleration and an increased load on the structure.
This is seen in the load cell signal. At t3 the material is still flowing in the bottom section
but in the top part the material decreased in velocity compared to t2. In the load cell
signal t3 corresponds to the moment where the peak is reached. The still at t4 shows that
the velocity field has increased over the entire hopper area and corresponds to a stage
where the velocity is still increasing and the loading of the load cell is decreasing. At t5

the velocity field has fully developed again, corresponding to a peak in the velocity signal
and a valley in the load cell signal. Finally, t6 shows that the flow in the upper part of the
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hopper has significantly decreased. Here it is still in the deceleration phase but already
reached a valley in the velocity signal.

The figures shown above and the other images in the dataset show what occurs from a
mechanical perspective. The material flows and accelerates into the funnel at t1. However,
there is a limited area where the material can flow through causing the material to be
compressed between the two walls leading to increased forces between the particles and
walls. This leads to a lower flowability of the material and consequently a decrease in flow
velocity but an increase in force on the hopper as shown in Figure 8. This is especially
visible looking at the material in the hopper at the height of the first black spot in the
structure of the hopper side walls. When the material keeps flowing from the orifice in
the region below this line it ultimately frees up space for the material that has decelerated
to start moving freely. Hence, all the above material will start to accelerate as well. This
process has been thoroughly described for sand by Michalowski from both a theoretical
and experimental point of view [32]. However, a difference that can be observed is that
the irregularity in particle shape of gravel compared to sand causes irregularities in flow
patterns whereas this is less pronounced with discharging sand. In Figure 2.8 the two
signals are shown from the start of the experiments. Here, it can be seen that the flow is
starting to develop and that the signals become nearly periodic after t= 0.5 seconds. As
can be seen in the signal there is a slight phase change between the behaviour observed
in the load cell and velocity signal. One of the reasons might be that the images were
recorded at 400Hz whereas the load cell signal was recorded at 50Hz. In addition, the load
cells are mounted beneath the hopper and there is a certain distance between the hopper
walls and the load cells. This might lead to a delay in the measured signal by the loadcells
and the image recording.

AVERAGE VELOCITY PATTERNS

From PIV analysis of the experiments with a 100mm discharge opening and 20, 30, 45, 60,
75, and 90 degree hopper angle the average velocity patterns at five heights in the hopper
is determined. These heights are the outlet and 10, 20, 30, and 35 centimetres above the
outlet as shown in Figure 2.9. Recalling the normalized discharge rates from Section 2.4.1
for the discharge opening of 100mm it is expected that the minimum flow velocity is
approximately 22 percent lower than the velocity of the material in a 20 degree hopper. In
Figure 2.9 (a) it can be seen that the velocity profiles at the outlet are self-similar for all
angles as was also found by Mehdizad et al. in small scale MRI experiments [38]. Even
though there is self-similarity in shape, the actual variation in the velocity profiles is large
and about 33 percent. This indicates that if the discharge rate is to be determined based
on the velocity profiles that errors are introduced.

In Figures 2.9 (b-d) flow heights above the outlet are shown which all show a transition in
shape from an incomplete Gaussian profile at the 20-degree angle to a complete Gaussian
profile for the 90-degree angle. The profiles for the 20 and 30-degree angle clearly show
that there is velocity of the granular material at the wall. For the 20-degree angle there is
flow along the wall for all flow heights and for the 30-degree angle this is present up to
20cm above the outlet. A closer look shows that the narrowest velocity profile is obtained
at the 90 degree angle and shows the smoothest profile compared to the other angles.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: 6 instances during hopper discharge with magnitude and direction of velocity Vm, (a) t1 = 0,54s (b)
t2 = 0,58s (c)t3 = 0,62s (d) t4 = 0,67s (e)t5 = 0,72s (f) t6 = 0,78s
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Figure 2.8: Acceleration and deceleration of granular material during discharge for hopper angle of 20 degrees
and discharge opening of 100 mm.

At higher heights this profile becomes wider but less in magnitude, this is similar to the
experimental results obtained by Steingart & Evans for zinc particles [47]. In the study
by Gonzales et. al. a hopper with a hopper angle of 62,5 degrees was used for maize
discharge which showed the same trend of velocity profiles at increasing height [54].

STAGNANT ZONES FOR DIFFERENT GEOMETRIES

The most common characterisation of a discharging hopper is whether there is mass
or funnel flow. During mass flow all the material in the hopper is in motion whereas
during funnel flow the material on the sides of the hopper forms stagnant zones and the
material only flows in the centre. This behaviour highly depends on the hopper angle, bulk
material, and wall properties. During the experiments and in the experimental results this
behaviour was clearly visible. To determine where these stagnant zones start, the velocity
profiles from the previous section were evaluated for velocities below 5×10−4(m/s). This
corresponds to half a mm per second which is a fraction of the maximum velocity in
the hopper which is between 0.8 and 1 m/s. Analysis of the velocity patterns leads to
the stagnant and flow zones shown in Figure 2.10. The blue lines depict the hopper
geometry, the red lines the edge where the material becomes stagnant, the stagnant zones
are depicted by the red area, and the flow zones where the velocity is higher than the set
threshold.

For the steepest angles at 20 and 30 degrees shown in Figure 2.10 (a) and (b) the flow
velocities were higher than the threshold leading to no stagnant zones. This was also
observed for the velocity patterns at the different heights in the hopper. At an angle
of 45 degrees we see that a stagnant zone appears above the 0.1m line, below this line
the velocity was higher than the threshold. It is expected that with decreasing hopper
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Figure 2.9: Average velocity patterns at different flow heights for all angles, (a) outlet (b) 10cm above outlet (c)
20cm above outlet, (d) 30 cm above outlet, (e) 35cm above outlet
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angles the flow velocity alongside the walls decreases because the friction forces between
particles and wall are less easily surpassed. For the 60 degree hopper angle in Figure 2.10
(d) we see that along the wall all the material is stagnant. In Figure 2.10 (e,f) the stagnant
zones for the 75 and 90 degree hopper are shown respectively. As expected, stagnant
zones are visible. In the figures for the 45 to 90 degree hopper angle a clear shape of
the interface with the stagnant zones is visible. This is not a straight line but a curved
line which curves towards the edges of the hopper outlet. This inline with the behaviour
observed in other hopper studies [36, 37].

2.4.3. COMPARISON LOAD CELL TO PIV DATA

Individual analysis of the load cell and PIV analysis gave insight on the external behaviour
of the hopper and the internal behaviour of the granular material. In this section these
results are combined by first presenting a qualitative comparison of the force and accel-
eration signals obtained from the load-cell and PIV respectively. Secondly we present a
comparison between the discharge rates obtained from the load-cell data and PIV.

FORCE AND ACCELERATION SIGNAL COMPARISON

In Section 2.4.2 the flow fields in the hopper were compared to the moments where this
occurs in the load cell and in the average velocity in the y-direction from the PIV analysis.
Here, a clear phase difference was observed between the velocity signal and load cell
signal which seems to be around 90 degrees. By integration of the velocity fields the
acceleration and deceleration of the granular material is determined which has a phase
change of 90 degrees and therefore should be in phase with the load cell signal. In Figure
2.11 (a) and (b) the fluctuation of the average acceleration in y-direction can be seen
over time for a section of the first and second experiment of a hopper geometry with a
100mm discharge opening and a 20 and 30 degree angle respectively. In addition to the
acceleration signal the filtered load cell signal LC is shown. These clearly show that the
signals are nearly in phase. Based on these examinations it can be concluded that the
pulsating force endured by the hopper is caused by the acceleration and deceleration of
the granular material during discharge.

The fluctuations we see in the load cell data seem to be near harmonic but cannot be
qualified as such. Each time a structure forms during discharge the composition is
different and will lead to a different limit for failure of the structure. In the stochastic
calibration study [51] we have seen that macro properties are stochastically distributed
and tend to behave normally. This might also be the case for collapsing granular structures,
however, this is a topic for further research.

From the comparison of the processed data from the load cell analysis and the PIV analysis
it is seen that the vibrations induced on the structure of the hopper are related to the flow
behaviour of the granular material in the hopper.

COMPARISON OF DISCHARGE RATES FROM LOADCELL AND PIV MEASUREMENTS

From both the load cell data and PIV analysis we have obtained discharge rates for angles
20, 30, 45, 60, 75, and 90 degrees and a discharge opening of 100 mm. In Figure 2.12 the
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Figure 2.10: Stagnant zones (a) α= 20◦ (b) α= 30◦ (c)α= 45◦ (d) α= 60◦ (e)α= 75◦ (f) α= 90◦
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Figure 2.11: Comparison of the filtered acceleration signal in y-direction obtained from loadcell and PIV data (a)
α = 20, d = 100, run 1 (b) α = 30, d=100, run = 1
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average discharge rate and the 95% confidence interval (CI) for the load-cell data in blue
and derived from the PIV data in red are presented. The discharge rate is directly obtained
from the load-cell data and only includes the error in fitting the discharge rate. For the
discharge rate derived with PIV more steps are taken which are prone to error. First the
accuracy of the PIV analysis itself, in this case it is likely to be 1 pixel relating to a 0.5
mm error. Secondly, in calculating the discharge rate additional errors can come up. The
velocity profiles are based on the PIV analysis of the images in which only the particles
in contact with the front wall are visible. The velocity at the wall is likely to be slightly
lower than in the centre of the hopper. The bulk density used to calculate the discharge
rate is the same as obtained in the bulk density test which might be slightly different from
the bulk density in the experiment. For the velocity profile we have 8 to 6 points on the
velocity curve which are used to approximate the total area under the velocity curve by
means of the trapezium rule. With 6 to 8 the integration error might be significant.

The results in Figure 2.12 (a) show that the mean discharge rate obtained from the PIV
analysis is lower than the value obtained from the discharge rate. One of the reasons for
this error might be that the PIV is based on the particle movement along the wall and
not in the centre of the hopper. However, this effect is not likely to be big because of the
shallow depth of the hopper. Regarding the trend in the data it seems that there is a point
between the 45 and 60-degree hopper angle in which the trend goes from decreasing to
increasing again. This might be related to the transition from mass to core flow. If we look
at the percentage errors in Figure 2.12 (b) an average error of below 5 percent is achieved
for the 20 and 75-degree hopper angles and between 5 and 20 percent for the other angles.
In Figure 2.12 (c) and (d) the discharge rates calculated from the loadcell and PIV data for
each individual experiment have been shown, respectively. Another reason for the error
is found in the differences between subsequent runs of the experiment. It is observed
that the discharge rates calculated from the loadcell data seems to be more or less stable
around a mean. On the contrary, the discharge rates for the individual PIV data shows
that there is a decreasing discharge rate with an increasing experiment number. This
explains why the mean of the PIV based discharge rates is lower than for the loadcell
based values. An explanation for the trend in the PIV discharge rates can be given based
on the execution of the experiments. For each configuration of the hopper, size of the
discharge opening and hopper angle, a new Perspex plate was used. During the first run
of the experiment the Perspex plate is transparent and pristine which is likely to yield
the highest detail in the high speed images. While carrying out more experiments the
Perspex plate is cleaned but shows signs of wear. It is likely that the quality of the images
decreases and that it becomes difficult for the PIV algorithm to keep track of the flow of
particles due to the introduced noise by the wearing of the Perspex plate. To compare,
Figure 2.12 (b) also shows the error of the mean discharge rate for the loadcell data with
the discharge rate obtained from the first experiment for each hopper angle. These results
indicate that the error between the first run of the PIV and the loadcell based discharge
rate is positioned closer to the zero percent error except for the first experiment.

In Table 2.4 the numerical values for the average and standard deviation of the discharge
rate are presented for each angle for both the load-cell and PIV data. Here, the standard
deviation of the discharge rate is always higher for the results obtained with the PIV
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Table 2.4: Comparison of discharge rates from loadcells and PIV data

Hopper angle α Loadcell (mean±std) PIV (mean±std) Error mean (%)
20 4.73±0.073 4.56±0.47 −3,53
30 3.95±0.085 3.11±0.53 −17,67
45 3.68±0.025 3.23±0.19 −9,59
60 3.69±0.078 3.31±0.52 −7,96
75 3.79±0.080 3.56±0.32 −4,71
90 3.93±0.075 3.39±0.06 −11,48

analysis than for the results directly obtained from the load-cell data. This clearly shows
that the additional steps in determining the discharge rate leads to a higher uncertainty.
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Figure 2.12: (a) Mean discharge rate obtained from load-cell data and PIV analysis with 95% confidence interval
(b) Error in mean discharge rate in percentages, (c) Individual discharge rates per run from loadcell data (d)
Individual discharge rates per run from PIV data

2.5. CONCLUSION

The aim of this study was to identify the relation between dynamic loads on the hop-
per structure and flow behaviour of the bulk material in the hopper. A wide range of
geometries have been tested for hopper discharge with load cells and high speed imaging
measurement techniques to get information on internal and external behaviour. The
comparison of flow behaviour and load cell measurements showed that the flow behaviour
of the granular material is related to the vibrations measured externally.

The discharge rates for the different geometries showed that increasing the hopper angle
above the friction angle of the wall with the granular material leads to a roughly two times
higher fluctuation in the discharge rate. This is related to the observation that this is
also the transition point from mass to funnel flow. In addition, the high velocities and
more prominent stick-slip behaviour in steep hopper angles (<30 degrees) also lead to
wider confidence intervals for the discharge rate. Experimental observations showed that
arching is likely to occur in hopper geometries where the hopper angle is in the range of
the wall friction angle for the wall-granular material interaction and if discharge openings
become too small.

The impact load decreases with an increasing hopper angle where it is likely that the
impact of the granular flow on the structure dissipates in the stagnant zones. In terms
of 95% confidence intervals the discharge rates are most stable from 20 to 45 degrees for
all evaluated sizes of the discharge opening. For the impact load it shows that the 95%
confidence intervals show a parabolic trend with the smallest interval at the 60-degree
hopper angle.
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The extensive experimental study shows that the variability in the performance of the
hopper is not uniform over the range of discharge opening diameters and hopper angles
for both the discharge rate and impact load. Even though the used experimental setup is
limited, this variability should be an important consideration for designers of hoppers.
Combining the information on the performance and variability of the discharge rate and
the effect of impact load may be used to improve the design choice of hoppers.

The analysis of the flow profiles showed that these are influenced by the geometry of the
hopper. In terms of reliability of flow profiles it can be seen that for average velocities the
95% confidence interval is in a range of 15 to 30% of the average velocity. This leaves room
for optimizing the hopper geometry such that the fluctuation in the outflow is minimized
to achieve a stable discharge.

Comparing the force signals from the load cells to the accelerations obtained with PIV
lead to a clear correlation relating the granular behaviour in the hopper to the vibrations
that can be measured externally. In the load cell signals the fluctuation of force with a
periodic appearance was visible in hopper geometries with a steep hopper angle and
large discharge opening. In the PIV results for these configurations the acceleration and
deceleration of granular material was clearly visible and was in phase with the load cell
signals. The accelerating behaviour can be explained by formation and breaking down of
granular structures due to interlocking of the particles. By means of integration of the
velocity profiles over the depth of the hopper we determined that PIV underestimated the
hopper discharge measured with the load cells by 3,5 to 18%. The categoric underestima-
tion is likely related to the wear of the field of view which increases with the number of
experiments.

From the comparison of the processed data from the load cell analysis and the PIV
analysis it is seen that the vibrations induced on the structure of the hopper are related
to the flow behaviour of the granular material in the hopper. For further research the
dataset is made available and can be used for validation (10.4121/fa7544d6-14fd-4372-
a81f-e2e1b4a44832).

2.6. OUTLOOK

The experimental setup used in this study is an academic scale setup with its limitations.
In further studies on this topic the setup should be extended with loadcell measurement
capabilities for the side walls and hopper walls of the hopper. In addition, the width of the
hopper should be increased to make comparison to Jenike diagrams for wedge-shaped
hoppers possible. The data from the PIV measurements and load cell measurements
contains information about the frequency of the pulsating behavior which requires further
study. The detailed imaging of the experiments allows to evaluate the movement of
particles and the intergranular structure. However, to do this accurately the experimental
setup needs to be improved with additional loadcell measurement. To obtain a general
formulation on the stochastic variability and its influence on design of hoppers it is
essential that parametric studies are conducted considering changing grain diameters,
wall friction angles, but also initial densities and different filling techniques.
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3
APPLICATION OF DEM-BASED

METAMODELS IN BULK HANDLING

EQUIPMENT DESIGN:
METHODOLOGY AND DEM CASE

STUDY

Design of bulk handling equipment is an extensive process which involves the complex
behaviour of systems and is usually based on empirical relations between design parameters
and performance. This can be improved by using simulation based models. One of these
methods is the discrete element method (DEM) which enables modelling of granular mate-
rials in equipment. However, these models are computationally expensive and therefore
challenging to use in design optimization. To make discrete element modelling a common
technique in equipment design it is essential that fast and inexpensive models are developed
that can predict the outcome of DEM models. To unlock the advantages of DEM modelling,
first different metamodelling techniques are investigated and validation strategies are
discussed. Second, a proof of concept for the use of DEM-based metamodels with a hopper
example demonstrates that even for small datasets metamodels can effectively capture the
relation between design parameters and equipment performance.

Parts of this chapter have been published in the Journal of Powder Technology, M. P. Fransen, M. Langelaar, and
D. Schott, Application of DEM-based metamodels in bulk handling equipment design : methodology and DEM
case study, (2021) [55].
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3.1. INTRODUCTION

Recent developments in modelling of large scale particle systems and an increase in
computing power enable researchers and engineers to model behaviour of bulk and
powder handling equipment in increasing detail. A powerful modelling technique for
particulate systems is the discrete element method (DEM) [1]. While this method enables
detailed modelling it still requires a large amount of computational resources, especially
when the number of particles increases. Typically, DEM simulations can take hours or
even days for large particle assemblies. Therefore, in modelling bulk handling equipment
(BHE) these techniques are typically used to evaluate how small design changes affect
the behaviour of the particles in the equipment. This is defined as local optimization
and has proven to be a successful approach in development of equipment. However,
local optimization is concerned with a specific design and only explores a small section
of the design space. Therefore it is likely to miss superior designs that can be found
if the entire design space was evaluated. To bridge the gap between local and global
evaluation of behaviour of bulk handling equipment, metamodels are an excellent option.
These data-driven models of a computationally expensive model such as DEM, which
can be used as an inexpensive surrogate. Metamodels can be used at a global level for
model approximation, design space exploration, problem formulation, and optimization
support [19].

In the past decade the applicability of DEM increased significantly due to the introduction
of GPU and parallel computing [7, 56]. Using a GPU results in a speed-up up to ten times
[56], which makes it feasible to study large scale industrial systems and complex flows
with DEM [9, 57, 58]. Strategies to further increase efficiency of DEM simulations include
the use of hierarchical grid [59, 60], stiffness reduction [61] and coarse graining or particle
upscaling [62, 63]. Still, there are limits to the speed-up that can be achieved. In design
problems the amount of model evaluations is high which makes it computationally expen-
sive despite speed-up measures. Moreover, bulk handling equipment (BHE) behaviour
involves structural and kinematic responses for which coupling with numerical methods
such as finite element (FE) and multibody dynamics (MBD) is required [64, 65], [66–72].
Such coupling leads to a further increase in computational costs. Therefore, metamodels
show great potential in facilitating usage of DEM in bulk handling equipment design
procedures.

There are two main types of metamodeling approaches. The first is model fitting (MF)
where a mathematical relation between scalar design parameters and key performance
indicators (KPIs) is defined. Well known methods for model fitting are response surface
methodologies (RSM) [14, 19] and surrogate models [17]. The second approach is reduced
order modelling (ROM) [15, 16, 18], where physical phenomena present in the system
are modelled in a simplified manner while including spatial and transient information.
Common methods in reduced order modelling are projection based reduced order models
(PROM) [73], balanced truncation [16], and moment matching [18]. The computational
effort required to construct ROM models varies significantly depending on the nature
and complexity of the modelled system.
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In contrast to their widespread use in other fields, in literature on design of bulk handling
equipment with DEM, metamodeling techniques are rarely used. A few related studies for
bulk handling can be found within the chemical engineering field. These are focussed
on operational parameters rather than on design [74–76]. In this field an increase of
the use of metamodels is observed because these models can be included in flow sheet
descriptions of chemical processes [77, 78]. A combination of metamodeling techniques
with computationally expensive particle based models such as DEM has been applied.
Boukouvala [75] focussed on predicting the velocity profiles in a rotating drum by using
a reduced order model. Rogers & Ierapetritou [78] suggest integration of reduced order
and model fitting metamodels in flowsheets for unit processes in chemical engineering.
Barrasso [74] studied the collision frequency in a continuously stirred reactor with a
model fitted metamodel based on an artificial neural network (ANN). Furukawa et. al.
[79] used response surfaces to map segregation of particles based on DEM data. However,
the scale, material properties, and shape of the materials modelled in these studies is far
different from the materials used in bulk material handling where irregular shapes and
wide, gapped particle size distributions are common.

These studies show the potential of metamodeling in combination with particle based
models to predict behaviour of bulk handling equipment designs. Given the high potential
of these techniques and the presently limited use for BHE applications, there is need for a
metamodel construction or training procedure that ensures that accurate metamodels
are obtained for a design purpose. Model fitting and reduced order modelling are difficult
to combine in one training procedure. In design of BHE scalar design parameters and
KPIs are commonly used. To find a mathematical relation between those, model fitting is
the most adequate approach. Therefore the focus of this study is on a training procedure
for model fitted metamodels.

Figure 3.1 depicts the proposed framework for the use of DEM-based metamodels. First
a DEM object model is developed after characterisation of the bulk handling problem.
Instead of directly using this model in optimizing the equipment design, metamodels
could be constructed after the DEM model development and before design optimization,
as shown in Figure 3.1. Here the DEM model is used to generate training data for the
metamodel. The metamodel training procedure is shown on the right of Figure 3.1. This
starts with defining the design space and creating a sampling set for which the DEM
model will generate the training data. Secondly, a suitable type of metamodel is chosen
based on the distribution and expected trends in the data. Thirdly, hyper-parameters of
the metamodel, i.e. additional parameters that affect the resulting shape, are optimized
to obtain the most accurate metamodel for this data set. Finally, the model is validated
using a validation strategy. Together, these steps form a systematic metamodel training
methodology. After training of the metamodels is completed, they can be used in design
space exploration, analysis, and optimization at low computational cost.

The aim of this study is to present, analyse and demonstrate the steps involved in
methodically training DEM-based model fitting metamodels, with particular attention
for intricacies related to the behaviour of bulk handling equipment. To illustrate the
use of metamodels the training procedure is applied to a hopper design case. In this
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Bulk handling equipment

design problem

Object Model

Development
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Metamodel

Training

Design Optimization
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(Experimental/Numerical)
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no
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Figure 3.1: Framework for bulk handling equipment design based on metamodeling, with the various steps
involved in methodical metamodel training outlined on the right.

case study three common metamodels are evaluated: Polynomial Regression (PR), Radial
Basis Function Interpolation (RBFI), and Kriging. Secondly, the design space is sampled,
the effect of sample size is analysed and data is filtered. Next, the third step involves
optimization of the hyper-parameters to obtain the most accurate metamodel. Lastly, in
the fourth step the applied validation strategies are the validation set approach (VSA),
k-fold cross-validation (K-fold CV) and leave one out cross-validation (LOOCV) with
repetitions. Based on the results for these models recommendations for the use of
metamodels in design with DEM models are are given.

Following this introduction, Chapter 3.2 starts with a general introduction to metamodel-
ing and a detailed description on building a model fitting based metamodel. Additionally,
the theory for the three metamodels used in the test case is described. Chapter 3.3
introduces the DEM model of the hopper used in this study and presents the analysis
of the generated data. After sampling, hyper-parameter optimization, and validation
techniques for the hopper case are evaluated. Subsequently, in Chapter 3.4 the results
obtained from the metamodels are discussed, after which Chapter 3.5 presents, the
conclusions and recommendations for further research.
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3.2. METAMODELLING

3.2.1. SAMPLING AND DATA GENERATION

Development of a MF metamodel starts by identifying the design space in which the
metamodel must be valid. The size and bounds of the design space are defined by
the limits of the design problem. After choosing a suitable design space the general
procedure to obtain training data is to perform a design of experiments (DoE) or design
of simulations (DoS) as it is called if one uses a numerical model for data generation.
In these processes sampling locations are generated for the defined design space, us-
ing methods such as Sobol sampling, Latin Hypercube Sampling (LHS), Hammersley
Sequence Sampling (HSS), Monte Carlo Sampling (MCS), or Direct Sampling (DS) [19].
There are many methods to sample design spaces which all have their own benefits and
pitfalls. The reader is referred to Pardalos et. al. for further details [80].

The type of method that should be used depends on the desired sample size and proper-
ties. However, the sampling set does not have to be generated in one single step. To reduce
the computational costs of generating data, the sample set can be gradually expanded
by resampling or adaptive sampling [81]. These have become popular methods to find a
sufficient sampling while minimizing training data generation costs [19, 82]. Especially in
relation to DEM the use of adaptive and iterative sampling has been included in several
studies [8, 83]. To sample the design space further, supervised or unsupervised techniques
can be used. In supervised adaptive sampling, new points are added based on evaluating
the performance of the metamodel for the previous sampling set. Unsupervised sampling
is based on adding samples according to a method such as LHS or grid sampling to
improve the model by simply increasing the size of the sampling set. However, in case of
DEM data, resampling with many iterations might not be convenient. DEM simulations
take a considerable amount of time, and multiple resampling steps would increase the
duration of sample generation. Therefore, it should be considered how many resampling
iterations are acceptable and how many sample points are added in each iteration. It can
be more efficient and faster to have fewer iterations with more sample points than adding
a single sample point each iteration.

Moreover, it needs to be considered that metamodels tend to behave poorly at the edges
of the design space because most metamodeling techniques are not able to extrapolate
well. To improve the metamodel at the boundaries, either sample points should be
chosen slightly outside of the domain of interest, or one has to densify the training data
on the boundaries of the design space such that they are better defined [19]. However,
because DEM simulations are computationally intensive densification of the sampling
set is inconvenient. Therefore, sampling a space bigger than the domain of interest is the
recommended way to ensure sufficient accuracy in boundary regions.

After the data has been generated for the sample set, it must be processed and analysed
before continuing with the second metamodel training step. To increase the quality of
the sample set the results from the simulations might require an intermediate step where
the data is filtered. Invalid and inaccurate simulation results must be identified and
removed, so that the metamodel training is not adversely affected by this data. Of course
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caution has to be taken when filtering data because there is a risk of leaving out data that
is actually representative for the modelled system.

3.2.2. METAMODEL SELECTION

The second aspect of metamodel development is training of the metamodel. For the
model fitting approach, this starts at constructing the function space or basis. The
functions space contains basis functions such as polynomials, splines, or radial basis
functions (RBF) [14, 19].The chosen basis functions should together be able to represent
the trends that are present in the data. Methods such as Kriging [84, 85], Gaussian
process regression [86], artificial neural networks (ANN) [74] and radial basis function
interpolation (RBFI) are suitable for capturing highly nonlinear trends and flexible in
interpolation and filtering of data. A downside of polynomial regression (PR) is that these
methods are based on less flexible polynomial basis functions [14]. On the other hand,
this reduced flexibility of a polynomial basis can be exploited when dealing with irregular
and noisy data, as it can provide a smoothing effect instead of exact interpolation. It must
also be noted that compared to the computational expense of generating the DEM data
the cost of training a metamodel is low. After defining the function space the task is to
find the coefficients of these functions for which the metamodel fits the data best. Well
known fitting methods are least squares regression, best linear predictor, log-likelihood,
and multipoint approximation. The type of fitting method depends on how the optimal
fit is defined and which technique is most suitable to find this fit.

In chapter 3.3 a numerical test case is presented involving two design parameters and
two performance parameters. The three metamodels are built based on data obtained
from a DEM simulation of a discharging hopper. Considered are a Polynomial Regression
(PR), Radial Basis Function Interpolation (RBFI), and Kriging metamodel. These have
been chosen because of their common use in engineering practice and because they are
regression based, interpolation based, and a combination of interpolation and regression
respectively. In the following subsections the foundation of these methods is discussed,
including the basis-functions used to construct the models.

POLYNOMIAL REGRESSION

In Polynomial regression a polynomial function is fitted to a set of data points such that a
response surface for the design domain is obtained. Even though this is a classical method
it is still commonly used in developing response surfaces [87] because of its simplicity
and smoothing capability. In this two-dimensional case study a response function f is
represented as,

f (x1, x2) =Σm
k=0Σ

n
l≤k akl xk

1 x l
2 (3.1)

where x1, x2 are the polynomial dimensions and m and n are the order of the polynomial
in dimensions x1 and x2, respectively. The polynomial which is fitted to the data consists
of multiple terms which each have a coefficient ak l . In the regression process the values
for these coefficients are determined by finding the least squares solution of the mean
squared error between the reference value and the predicted value of the polynomial in
these training points.



3.2. METAMODELLING

3

45

RADIAL BASIS FUNCTION INTERPOLATION

Radial basis function interpolation was first presented in [88] and was focussed on
representing irregular surfaces with multi-variate functions. In RBF interpolation, a
response function is represented by a summation of N radial basis functions φ(|(|x−di |)|)
located at the training data points, di . We consider the commonly used inverse multi
quadric radial basis function which is a full rank function which has a high information
content,

φ(||x −di ||) =
1√

1+ (ϵ||x −di ||)2
(3.2)

Here the ||x −di || term is the distance from a location x to a training point di . ϵ is the
shape factor of the RBF and determines the width of the radial basis function. To make
the RBFs represent the reference values ui at the training points the correlation between
each RBF must be calculated and the coefficients bi need to be determined. This results
in the following system,

φi j b j = u j



φr11 . . . φr1N

...
. . .

...
φrN 1 . . . φrN N







b1
...

bN


=




u1
...

uN


 (3.3)

which if solved, results in the coefficients bi . With the coefficients the following interpola-
tion function can be formulated,

f (x) =ΣN
i=1biφ(||x −di ||) (3.4)

The predictor function f (x) calculates the correlation between the points x and the train-
ing points and by multiplying with the coefficients bi and summation of all contributions,
the function value at locations x is predicted. The resulting function exactly reproduces
the reference values at the training points, and smoothly interpolates between those.

KRIGING

A Kriging model is a model based on both regression and interpolation. The concept of
kriging has been developed by Krige [89, 90] and finds its origins in geotechnical sciences.
Currently there exist many variants and Kriging is a common technique to construct
predictive models. A well-known Kriging toolbox is the DACE toolbox [91], which is also
used in this study. Kriging is very flexible in fitting nonlinear data trendsbecause the
covariances can be tuned by the sample data [14]. The Kriging predictor can be defined
as follows

f (x) =Σk
i=1ci gi (x)+Z (x) (3.5)

and consists of a sum of regression components which are second order polynomials in
the first term and a realization of a random stochastic process Z (x) in the second term.

Z (x) =σ2
l φ(||x −di ||) (3.6)

Here φ(|(|x − di |)|) gives the covariances between the training points based on their
Euclidian distance and σl is the process variance. Similar to RBF, various choices for φ
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are possible. In the Kriging model in this study the squared exponential Gaussian is used
for calculating the covariance between the data points and the points that need to be
predicted, given by:

φ(||x −di ||) = e−θi ||x−di || (3.7)

Kriging is more computationally expensive than the RBFI and PR method because it
needs to find a fit for the regression and the interpolation components of the model.
Finding a good is generally achieved by maximizing the likelyhood of the fit which is a
hyper-parameter optimization technique that is discussed in the next section.

3.2.3. HYPER-PARAMETER OPTIMIZATION

To improve the fit of a metamodel the parameters of the used basis functions can be
optimized, commonly called hyper-parameter optimization. For the three models de-
scribed in this section three different approaches are taken to optimize the parameters.
For the polynomial regression model the parameter that needs to be optimized is the
order of the polynomial in x and y direction, Nx , Ny respectively. It can be argued that
this order should be as high as possible such that the more detail can be captured by the
model. However, beside the possibility of overfitting, adding higher orders might result
in oscillations in the response surface which decreases the accuracy of the metamodel,
also known as the Runge phenomenon. Therefore it is recommended that metamodels
based on polynomial regression are checked for these artefacts and base the order of the
polynomial on the accuracy of the resulting metamodels. In this case the metamodels
are built for zeroth to fifth order polynomials for both design parameters and the optimal
coefficients correspond to the combination with the lowest root mean squared error.

In the RBFI model the optimization parameter is the support radius c of the RBF. Because
the RBFs are located at the training points there will be exact interpolation. The only error
at these points is the machine precision error of the system. Therefore the parameters
need to be optimized using a different strategy. To identify the error of the metamodel, the
RSME is determined by Leave One Out Cross Validation as used by Urquhart et. al. [92].
The support radius c is optimized such that the RMSE is minimized. With this method it
must be noted that it is computationally expensive.

The Kriging model which is based on the DACE toolbox [91] uses log-likelihood maximiza-
tion of the metamodel to determine the optimal shape factor values. In the case of this
Kriging model there is a shape parameter for each dimension, θ1 and θ2. The optimization
of these parameters is implemented in the toolbox. This approach minimizes the process
variance is which ensures that the reliability of the metamodel in between the training
points is maximized.

3.2.4. METAMODEL VALIDATION

A next essential step is validation of the metamodel. The goal of metamodel validation is
to verify their ability to predict values in the design domain. There are three frequently
used methods for validation: the validation set approach (VSA), k-fold cross validation
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(k-CV), and leave-one-out cross validation (LOOCV) [93]. In each method, the sampling
set is divided into a training and validation subset, and metamodel predictions at the
validation points based on the training set are compared against the validation values.
The three approaches mainly differ in the way the samples are divided. In the VSA the
sampling set is divided into a training and validation set according to a user-defined ratio.
The k-CV divides the samples into k subsets of equal size which are combined to form k
different cross validation sets. Finally, in LOOCV, a validation set consists of one sample
point and all the remaining data points are put in the training set. This is repeated for the
total number of data points. All three validation methods will be considered in the case
study presented in the next section.

The random division of the sampling set in VSA and k-CV introduces some variability
in the results, and additional methods exist to improve consistency. One method to
mention is stratification, which ensures that the validation and training sets contain
data points from every section of the domain. However, use of stratification requires
heuristic information on the model. Another method to obtain consistent results from
the validation strategies is to repeat the procedure with new randomized divisions. This
gives an insight into the stability of the validation error prediction. In both the VSA and
k-CV approach common validation set sizes are 10 and 20% of the entire data.

3.3. DEM-BASED METAMODEL TEST CASE: DISCHARGING HOP-
PER

3.3.1. DEM (OBJECT ) MODEL

In this case study the object model used is a semi-two-dimensional silo, shown in
Figure 3.2. This model has been built in MercuryDPM, an open source discrete element
software package [94], The material properties that will be used for this study are fictive
and only valid for this numerical example. In reality, every bulk material has to be
characterized experimentally to find the correct values for its properties. Bulk properties
are heavily affected by environmental conditions such as the humidity and temperature.
Additionally, the particle size distributions and surface properties can differ between
batches of material. As the focus of this case study is on demonstrating the process of
constructing a DEM-based metamodel, these complications are not taken into account.
The metamodeling techniques described in Section 3.2.2 are applied to the data generated
with the object model. For the hopper example the angle α and the discharge opening
Wo are the design parameters. The KPIs are the discharge rate and coefficient of variation
[50].

MODEL GEOMETRY DESCRIPTION

The geometry of the silo is fixed except for the hopper angle α and discharge opening Wo ,
which are chosen as the design parameters. A cross section of the silo and its dimensions
are shown in Figure 3.2. In order for the silo model to have a feasible geometry the range
for the hopper angle α is 10 to 100◦. The size of the discharge opening ranges from 15 to
210mm for a fixed silo width Wh of 0.6m as denoted in Table 3.1. The ratio of hopper width
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α

Figure 3.2: The silo geometry used in the DEM model. α represents the angle of the hopper and Wo describes
the width of the outlet opening. The silo width is described by Wh , silo depth by d , and the fill height of the silo
by H f .

to discharge opening approximately equals 3 which meets the condition Wh > 2.5Wo set
for having constant discharge rate during hopper discharge [95].

MATERIAL DESCRIPTION

The bulk material is modelled by spherical particles for which the particle size is described
by a normal distribution with an average diameter of 8 mm and a standard deviation of
2.0mm. Particle sizes in this range are common in bulk handling applications. However,
because the time-step size depends on the smallest particle size, the particle size distri-
bution is truncated to the range of 5 to 14mm to limit computation time. The density
of the particles is set to 2500kg /m3 which is similar to the density of gravels and sands.
The bulk stiffness Eb of the material is set at 70MPa and is used to calculate the contact
stiffness k following this relation [96],

k = EbV

Cnr 2
av g

(3.8)

where V is the average particle volume, Cn the contact number, for loose packing equal
to 4 [97], and the average particle radius rav g of the particle size distribution. The time
step ∆t is based on the response time tc of the contact between two particles which is
calculated as,

tc =
π√

k
me f f

−
(

γ
2me f f

)2
(3.9)

here k is the contact stiffness, me f f is the effective mass of the two copies of the smallest
particle, and γ is the damping of the contact. To ensure a stable simulation the time step
for integration should be far smaller than the response time, ∆t << tc [98]. A safe ratio
that is commonly used in MercuryDPM for large scale simulations is ∆t = tc

10 [94].
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Table 3.1: Geometric properties silo

Property Value
α 10−100◦
Wo 15−210mm
Wh 600mm
H f 800mm
d 5,3×10−2mm

Table 3.2: Properties of the contact between particle-particle, particle-wall 1, and particle-wall 2.

Property P-P P-W1 P-W2
µs 0,2 0,5 0,3
µr 0,2 − −
kn (N /m) 2,93×105 5,86×105 5,86×105

kt (N /m) 2
7 kn

2
7 kn

2
7 kn

γn (N s/m) 0,3 0,3 0,3
γt (N s/m) 2

7γn
2
7γn

2
7γn

CONTACT MODEL DESCRIPTION

In this study a linear visco-elastic friction contact model has been used to model particle-
particle and particle-wall contact [96]. The particle-particle contact is shown in Figure 3.3
and consists of two spring-damper combinations and a figure to represent the friction
between the particles. The contact stiffness k has a component kn in normal and kt in
tangential direction. For the damping of the contact normal and tangential components
γn and γt apply. Friction between the particles is represented by sliding and rolling
friction coefficients, µs and µr . The torsion in this model has been turned off to reduce
the complexity of the contact model. The property values for each contact model can
be found in Table 3.2. These settings will ensure that in the simulated hopper designs
the dominant flow mode is core flow. The contact stiffness of the walls is, P-W1 and
P-W2 are set to two times the contact stiffness of the particle-particle (P-P) interaction [3].
Where the side walls (P-W1) have a high friction coefficient of 0,5 and the front and back
wall of the hopper (P-W2) have a lower friction coefficient of 0,3. The friction coefficient
for the side wall is in the same range found for bonded iron particles on steel [53]. The
friction value for the front and back walls is set to a lower value because we assume less
friction on this wall. The damping in the entire system is the same for particles and walls
and is equal to 0,3 (N s/m). In this case study we have assumed values for the contact
properties. However, these properties can be determined with experiments on a micro
scale directly and inversely through macro scale experiments. Examples are the wall
friction coefficients by using a shear cell [31] or an inclined surface tester [53] and the
bulk modulus and internal shear angle by means of a compression test.

SIMULATION SETTINGS

Before the start of the simulation the silo is filled by a randomized particle generator while
the outlet remains closed. After starting the simulation the particles are allowed to settle
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Figure 3.3: Description of the normal, tangential, rolling, and sliding contact between the particles which is also
used to model particle-wall contact

and at t = 1,5s all particles above the fill height are removed. The fill height is 0,8m which
ensures that the discharging time of the silo is sufficient for analysis of the granular flow.
At t = 1,6s the outlet opens and allows particles to discharge from the hopper. The total
simulation time is set to 25 seconds to ensure that for all configurations emptying of the
silo is achieved. A stopping criterion has been added to the model which stops when the
ratio between the kinetic and elastic energy becomes smaller than 10−6. This stopping
criterion ensures that simulations are stopped when the flow of material stopped or the
hopper is empty. Therefore unnecessary simulation steps are prevented. For stability of
the simulation the time step is set to 8,7×10−6s which is equal to the contact time divided
by ten, tc /10.

3.3.2. DEM DATA ANALYSIS

The DEM simulations provide particle location and velocity information which are used to
identify material flow characteristics in the hopper. In this case study the mean discharge
rate φ and the coefficient of variation ψ of the discharge rate are used as the KPIs of
the hopper. These values are calculated by using the method described by [50]. The
average discharge rate coefficient of variation is determined in the steady flow region of
the discharge as shown in Figure 3.4. The data obtained from the simulations is filtered
after determining the KPIs where the training points which have no flow are removed
from the dataset.

3.3.3. SAMPLING

We assume that there is no prior knowledge on the behaviour of the DEM model. There-
fore, it is desired to get a uniformly distributed sampling set which covers the design
space equally. To obtain this set, the Sobol sampling technique is used because one of
its properties is that it produces a highly uniform sampling of the domain. The design
space which ranges from 20 to 90◦ hopper angles and 25 to 200mm discharge opening
sizes is the desired domain. In order to obtain sufficient samples near the boundaries, the
design space ranging from 10 to 100◦ hopper angles and discharge opening sizes of 15
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Figure 3.4: Discharge rate versus time obtained from simulations data, red line is the average discharge rate and
the red dotted lines represent the CoV

to 210mm. Covering this with 100 samples results in 72 interior points and 28 exterior
points, as shown in Figure 3.5.

3.3.4. HYPER-PARAMETER OPTIMIZATION

In general it is difficult to manually determine the appropriate values of the hyper-
parameters of the basis-functions which will result in an accurate metamodel. Therefore
optimization of these hyper-parameters as described in 3.2.3 is an important step in
metamodel construction. To demonstrate the effect these hyper-parameters have on the
resulting metamodels a set of metamodels with predefined hyper-parameter values and
a set with optimization hyper-parameter values are compared. Our aim is to highlight,
by means of this example, that hyper-parameter optimization is important to construct
high quality metamodels. In the case study initial models have been built with the set
of hyper-parameter values shown in Table 3.3. Here, N1 and N2 are the order of the
polynomials, c is the value for the shape factor of the multi-quadric radial basis function,
and θ1 and θ2 are the shape factors of the basis functions of the Kriging model for the two
design parameters.
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Figure 3.5: Distribution as a result of Sobol sequence sampling.

Table 3.3: Initial parameter values used without hyper-parameter optimization

Optimized pa-
rameter

Discharge rate
φ

Coefficient of
variation ψ

PR (polynomial order) N1, N2 2,2 2,2
RBFI (Inverse multi-quadric) c 1 1
Kriging (Hyper-parameter correlation
function)

θ1,θ2 1,1 1,1
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Table 3.4: Validation strategies and applied settings

Training set Validation set φ Number of iterations
VSA 10% 90% 10% 1
VSA 20% 80% 20% 1
k-CV 10 90% 10% 10
k-CV 5 80% 20% 5
LOOCV% N-1 data points 1 data point% N

3.3.5. VERIFICATION

For the metamodels in this paper the VSA, k-CV, and LOOCV validation strategies are
performed where the root mean squared error (RMSE), given as

RMSE =
√
ΣN

i=1( f − f ∗)2

N
(3.10)

between the metamodel predictions and validation values is used as the error measure.
For the VSA a 20 and 10% validation set size of all data points is evaluated. For k-CV
the values k = 5 and k = 10 are used which means an equal subset size of 20 and 10%
respectively. Both the approaches are repeated ten times to take the effect of random
subset generation into account. The LOOCV method has to be run only one single time
because it is deterministic, but consists of N = 80 individual validations. In Table 3.4 the
sizes of the training and validation sets are shown for each method and the number of
iterations that are included in the validation strategy.

3.4. RESULTS

3.4.1. DEM SIMULATION RESULTS

The data for training the metamodels has been obtained by running simulations with the
model described in Section 3.3.1. The system used to execute the simulation sample is a
DELL Precision 5820 with an Intel Xeon W-2223 CPU @ 3.60 GHz x 8 cores. The whole set of
simulations took around 28 days in serial mode using all 8 cores. The average simulation
time was 53,8 hours. However, the simulation time is geometry dependent. A simulation
with a large discharge opening and low hopper angle is faster than one with a small
discharge opening and high hopper angle. In Figure 3.6 (a) a screenshot of a discharging
hopper with an angle α= 47,6◦ and a discharge opening Wo = 108,1mm is shown. With
the current wall friction settings and this specific combination of angle and discharge
opening core flow is observed in the hopper. Moreover, on the left and right side of the
hopper stagnant zones are visible where the particle velocity stays zero during discharge.
Figure 3.6 (b) shows the hopper with an angle α= 45,3◦ and a discharge opening of 30,8
mm which results in arching of the material in the hopper and consequently no flow. The
total number of simulations is 100 corresponding to the Sobol sampling of the design
space shown in Figure 3.5. With the simulation data, the discharge rate and coefficient
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of variation (CoV) have been calculated and are used for all the models in this section.
The simulations results are shown as data points and contour plots in Figure 3.7 with
the discharge rate in (a,b) and the coefficient of variation in (c,d). These performance
parameters are essential in hopper design, because in general the aim is to achieve
continuous flow with low CoV [29]. In the figures the data points are denoted by dots.
The black dots (80 data points) represent silo designs where there was flow in the silo,
whereas the red dots (20 data points) represent the designs which have no flow. In this
case study the aim is to develop metamodels that can predict flow conditions of hopper
designs with a discharge rate of 2 kg /s and up. To avoid the steep transition from no-flow
to flow regime, based on this analysis the model is trained only for the data points having
flow and is only valid for discharge rates higher than 2 kg /s.

As seen in Figure 3.7 (a), the discharge rate increases monotonically with the discharge
opening Wo . Along the α-axis the hopper angle is shown where the data seems to follow
a more constant level. This indicates that the discharge rate mainly depends on the
size of the discharge opening and that the hopper angle has a limited effect. This is in
line with the theory on hopper flow by Schulze [29]. In Figure 3.7 (b) the data in (a) is
represented by a contour plot where the isolines show the same trend. Moreover, in the
25 to 60mm zone for all angles the transition from flow to no-flow is visible by the change
from black to red dots. Decreasing the size of the discharge opening causes the formation
of arches in the hopper. These arches continuously collapse until they become stable
at the transition from no-flow to flow. This can also be seen in the CoV which increases
when the discharge opening becomes smaller. To prevent arch formation in designs a
minimum discharge opening is used which is equal to 8-10 times the average particle
size [29]. We use a truncated particle size distribution with an average particle diameter
rav g = 10,2mm. Using the lower bound of 8 times, would result in a discharge opening of
81,6mm which safely ensures flow of the material even above the 2kg /s threshold as can
be seen in Figure 3.7 (b).

In Figure 3.7 (b) a dependency of the discharge rate on the hopper angle is visible by
a curve shape in all isolines. In the transition area between 50 and 70◦ hopper angles
and above the 150mm discharge opening a shift in discharge behaviour is observed
where discharge rate for 9, 11, and 13 kg /s isolines show a move in the upward direction
which is different from the smoother curves at lower discharge rates. This behaviour can
be explained by the behaviour at the walls for the lower hopper angles. In the hopper
model a wall friction coefficient, µp,w1 = 0,5, between particles and wall is defined which
corresponds to a wall friction angle of 26,6◦. We would expect that sliding of the material
along the wall will stop or decrease at hopper angles 63,4◦ and higher. When the angle
stays below 63,4◦ the wall friction force is likely to be lower than the force exerted by the
particles on the wall, which enables flow along the walls. If the hopper angle becomes
higher than 63,4◦, stagnant zones will form which shifts the sliding interface from particle-
wall to particle-particle and therefore changing the flow behaviour.

Figure 3.7 (c) shows the data points for the second KPI, the coefficient of variation ψ

for the discharge rates in Figure 3.7 (a). The fluctuations in the discharge rate show a
different dependency on the design parameters than the discharge rate. However, the
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Figure 3.6: DEM simulation stills (a) Core flow hopper discharge (α= 47,6◦,Wo = 108,1mm) and (b) an example
of no flow due to arching (α= 45,3◦,Wo = 30,8mm)
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Table 3.5: Optimized Hyper-parameters

Optimized pa-
rameter

Discharge rate φ Coefficient of Variation
ψ

PR (polynomial order) N1, N2 5,5 5,5
RBFI (Inverse multi-quadric) c 2,05 4,09
Kriging (Hyper-parameter
correlation function)

θ1,θ2 (7,98), (10,16) (4,19),19,04

area in Figure 3.7 (b) depicting the change in flow behaviour also shows changes in the
CoV because of the accumulation of isolines in that area. As with the discharge rate this
can be attributed to the change from particle-wall to particle-particle interface. Based
on the CoV data it can be seen that for angles below the transition area the CoV becomes
lower and therefore the discharge rate becomes more stable. In the transition area the
CoV starts to increase for increasing hopper angles which results in unstable discharge. In
the 60 to 150mm region we can see a valley in which the CoV increases when the discharge
opening becomes smaller for all angles although at a different rate. With smaller discharge
openings and at higher hopper angles the flow becomes less stable.

3.4.2. EFFECT OF HYPER-PARAMETER OPTIMIZATION

In Figure 3.8 the three metamodels for the discharge rate without hyper-parameter
optimization are shown. The PR metamodel in Figure 3.8 (a) has been built with a
second order polynomial for the two design parameters. This figure shows a curved
surface fitted through the data, which is below the data points for a hopper angle between
45◦ and 90◦ and lies above the data points for lower angles. The ability of a PR model
to fit to the data highly depends on the trends in the data, distribution of samples over
the design space and the order of the polynomial [19]. In Figure 3.8 (b) and (c) the
RBFI and Kriging metamodels are shown where irregularities in the surface are present
between 150 and 200 mm and hopper angles between 50 and 70◦ and for the Kriging
model we see fluctuations at the 50 mm and 20◦ point. These undulations present in the
RBFI and Kriging metamodel might be caused by the inappropriate values for the shape
parameters of the basis-functions. Concluding, with polynomial regression a smooth
surface is obtained. The RBFI and Kriging models in (b,c) show more local fluctuations
when the distance between data points increases but are capable of capturing both the
nonlinear behaviour at smaller discharge openings and the global trend of the dataset.

The metamodels based on the CoV data are shown in Figure 3.9. In Figure 3.9(a) the PR
metamodel shows that the fit of the polynomial surface is able to capture the trend of the
data on a global level but the regression function is not able to capture local detail in the
data set. The RBFI and Kriging models show the same behaviour as with the discharge
rate. Several fluctuations are visible along the 200 mm line for all angles as well as for the
20◦ line, which indicate that the shape parameter is too small to capture the actual curve.

To obtain the best possible metamodels, hyper-parameter optimization was carried out
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Figure 3.7: Results of discharge rates φ with (a) the data points and (b) a contour plot, coefficient of variation ψ

results in (c) 3D plot of data points, (d) contour plot.
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Figure 3.8: Metamodels without hyper-parameter optimization for the average discharge rate (a) Polynomial
Regression (b) Radial Basis Function Interpolation (c) Kriging
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Figure 3.9: Metamodels without hyper-parameter optimization for the coefficient of variation (a) Polynomial
Regression (b) Radial Basis Function Interpolation (c) Kriging
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for 50 random initial guesses where the best performing parameter values were chosen
as the optimal hyper-parameter values Table 3.5. For the PR metamodel it was found
that the fifth order polynomial should be used for both design parameters and the KPIs.
The optimal RBF shape parameter of the CoV is larger than the one for the discharge
rate, because of the presence of flat areas in the CoV surface, which requires an RBF with
a larger radius. For the Kriging model we can see the same behaviour as for the RBFs,
where a smaller value for theta results in a narrow Gaussian whereas a larger value gives a
wider Gaussian. Unlike the RBF, the Gaussian has two shape parameter values for each
performance parameter, one in the direction of each design parameter.

Using the results of the hyper-parameter optimization, new metamodels have been
trained for the hopper data set. Figure 3.10 shows the results for the discharge rate,
together with the data points. While based on the same data, the three models are different
compared to the default metamodel results. The higher order polynomial enables the PR
metamodel to fit better to the trend in the data. With the RBFI and Kriging metamodels,
the fluctuations in the surface are reduced or absent. All three models show a transition
zone for large discharge openings (>150mm) and angles between 50 and 70◦. However,
the PR model is less able to describe this transition zone compared to RBFI and Kriging
models because it is less capable to capture local changes in the trend.

The dataset containing the CoV at the data points and the corresponding metamodels are
shown in Figure 3.11. All metamodels are able to capture the global trend. However, the
PR model is not able to capture the local changes in the data set but produces a smooth
trend surface. In addition, at the 20◦ and 200mm point the PR model will predict negative
CoV values which are infeasible. The RBFI and Kriging models do show a more irregular
surface but are able to capture the local behaviour better. The effect of hyper-parameter
optimization on the resulting metamodels can also be achieved by adjusting the hyper-
parameters through trial and error until the quality of the model is maximised. However,
hyper-parameter optimization with the described methods is far more efficient and will
become even more convenient when the number of design and performance parameters
increases.

To a certain extent, metamodels are able to predict the behaviour of the discharge
rate and CoV within the bounds of the design space. It needs to be realized that all
models developed on a data set need to be evaluated on their ability to predict the actual
behaviour. In the case of low dimensional problems it is possible to visualize the data but
when the dimensionality increases this becomes more difficult. Therefore, quantitative
measures are required, which will be discussed in the following section.

3.4.3. METAMODEL VALIDATION

The validation strategies introduced in Section 3.2.4 have been evaluated to determine
the accuracy of the PR, RBFI, and Kriging metamodel in predicting values at unknown
design points. The three models used to evaluate the validation strategies are trained
with the optimized parameters presented in Table 3.5 using the percentages of the 80
sample dataset denoted in Table 3.4. All the strategies have been repeated 10 times to get
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Figure 3.10: Metamodels for average discharge rate (a) Polynomial Regression (b) Radial Basis Function
Interpolation (c) Kriging
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Figure 3.11: Metamodels for the coefficient of variation (a) Polynomial Regression (b) Radial Basis Function
Interpolation (c) Kriging



3

64 3. DEM-BASED METAMODELS IN BULK HANDLING EQUIPMENT

a measure on the reliability of the measured errors. All of these strategies give insight on
how well the metamodels performs at predicting KPI values at new design points.

The bar charts in Figure 3.12 and Figure 3.13 show the average RMSE between the
validation set values and the metamodel predictions for the discharge rate and coefficient
of variance, respectively. As a results of the 10 repetitions the variance of the average
RMSE can be shown. For the discharge rate results in Figure 3.2 it can be seen that for
the VSA and kCV approaches the prediction error is in the order of 4 to 7,5% and for the
LOOCV is below 0,2%. In terms of the variance it can be seen that it is nearly absent for
the LOOCV approach but that it is larger for the VSA approach then for the kCV approach.
For the CoV results in Figure 3.13 we see that the average error is much higher and ranges
from 15 to 20% which can be explained because the trends in the CoV data are more
complex than those in the discharge rate data. If data near the validation points is not
included in the training set it becomes more difficult to predict, especially when the
behaviour is non-linear. For the LOOCV approach we see a small error of at most 1,5%. In
terms of variance the same effect can be observed as with the discharge rate where the
variance of the VSA approach is higher than the kCV variance. Results for both KPIs show
that prediction errors are large if a data set of 72 (90%) or 64 (80%) points are used. This
suggests that additional data points should be generated.

As mentioned, the major difference that can be observed for both results is that the
variance of the kCV approach is smaller than of the VSA approach. This indicates that
the kCV approach is more reliable in giving insight on the validity of a metamodel than
the VSA approach. Compared to the kCV and VSA approach the LOOCV shows that the
errors given by the metamodels is very small. Here it is important to consider that with
the LOOCV approach more data points are used for training a metamodel compared to
the kCV and VSA approach. As a consequence, if the ratio between number of validation
points and training points becomes too small the effect of leaving one data point out will
reduce and therefore lead to low validation errors.

To evaluate the validation error the LOOCV method can be used if the training data set
is small, in the order of 50 data points. For larger data sets one should use the VSA or
kCV approach where the kCV approach gives the most reliable validation error. In terms
of time consumption the LOOCV approach is the most expensive looping through all
the data points. Next is the kCV approach which uses k iterations in determining the
validation error, therefore computational expenses increase with k. Followed by the VSA
approach which only evaluates the validation error of a single division of the data into a
training and validation set. With respect to DEM-based metamodels the computing time
of these validation errors is irrelevant due to the cost of DEM-data generation. Evaluating
metamodels by multiple validation strategies leads to a more complete insight on their
accuracy and allows a designer to make a better choice for the type of metamodel that is
going to be used.
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3.4.4. EFFECT OF SAMPLE SIZE ON ACCURACY

Generating DEM data is computationally expensive, therefore insight on the effect of
sample size on the quality of the metamodel is required. To study the effect of sample
size on the RMSE of the metamodel we gradually build the three models by increasing the
sample size from 1 to 80 by 1. These 80 samples are the points in the data set representing
material flow. After each increase in sample size a training set is drawn from the full
dataset to train the three models, using the metamodel training procedures discussed in
3.2.2. To avoid any bias of the order of the subset, this process has been repeated 1000
times where for each repetition the order of the subsets is changed randomly. Finally,
the average RMSE is calculated. In Figure 3.14 the development of the averaged RMSE is
shown for the Polynomial Regression, RBFI, and Kriging metamodels of both the discharge
rate and CoV.

Note that some models cannot be built beneath a certain sample size. The PR metamodel
uses a 5th order polynomial fit, which can only be determined when more than 21
data points for a two-variable problem are available because that equals the amount
of coefficients. However, [14] suggests that the amount of samples should be at least
twice or three times the amount of coefficients of the polynomial to obtain accurate
metamodels. Building an RBFI model is already possible from a single sample. However,
low sample numbers will not lead to representative metamodels. The Kriging model built
with the DACE toolbox requires a minimum of 5 data points for training based on the
number of undetermined coefficients for the second order regression part of the model.
For the RBFI and Kriging models it can also be seen that the error goes to zero at a sample
size of 80. This occurs because both RBFI and Kriging have almost exact interpolation at
the data points, therefore the error in the data points is at machine precision.

Figure 3.14 (a) and (b) show that in all models the error reduces for increasing sample sizes.
For the discharge rate, the Kriging model performs better over the entire range compared
to the PR and RBFI models. It can be observed that the RBFI model outperforms the
PR model over the entire range but performs similarly at a sample size of 50 data points.
The results for the coefficient of variation data show that the PR model is not able to
get an accurate prediction of the CoV while, both the RBFI and Kriging model show a
large increase in quality when the sample size increases. Note also that the PR fit quality
with lower sample numbers shows a larger standard deviation, indicating a stronger
dependence on the selected design points.

For DEM-based metamodels it is essential to know the amount of samples required
to reach a certain quality level of a metamodel. This depends on the accuracy that is
required for the prediction of mean performance parameters. Table 3.6 shows the number
of points required to reach a 2 and 5% error of the model. The PR model only reaches the
5% error limit for the discharge rate but is not able to get to 2%. The RBFI and Kriging
model perform similar and are able to reach the thresholds with this dataset. However,
the Kriging model requires less data points to reach the 5% and 2% threshold than the
RBFI model for the discharge rate. For the CoV they require the same amount of data
points. The better performance of the Kriging metamodel can be related to the basis of
training the model which is minimizing the global process variance of the Kriging model
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Figure 3.14: The effect of sample size on the RMSE of the metamodel (a) averaged RMSE vs. sample size for
the discharge rate (b) averaged RMSE vs. sample size for the coefficient of variation where in both figures the
dashed lines represent the standard deviation
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whereas for the RBFI model the error in the data points is used which does not imply
global optimality.

Based on the results of this test case it is advised to start with a sufficient sample size of
50 data points and gradually expand the amount of data points until the desired quality
is reached. However, this number changes when the number of design parameters and
KPIs changes. If the dimensionality (number of variables) increases the sample size
should be increased accordingly to maintain a sufficient sampling density. To determine
if more points need to be added the effect of sample size should be used. The process of
expanding the sample set is referred to as adaptive or sequential sampling in literature
[19, 81]. In the case of DEM-based metamodels the time required for generating data
is much higher compared to training, validating, and updating of the metamodel itself.
Therefore an approach where some time is invested in determining the quality of the
metamodel based on the sample size before additional simulations are started is most
efficient.

3.4.5. SUMMARY OF FINDINGS

The three metamodels used in this study showed that hyper-parameter optimization is
an essential step for obtaining accurate metamodels, regardless of the metamodel type.
Hyper-parameter optimization can be performed on a trial and error basis but automatic
hyper-parameter optimization is preferred.

The results in this section show that it is necessary to determine which data is useful and
relevant before building a metamodel. Filtering or excluding specific data might lead to
more accurate metamodels but caution has to be taken because the data set may become
less representative for the process.

In order to acquire accurate metamodels a representative error measure should be used
to assess the quality. The results show that the use of k-fold CV gives reliable information
on the validity of the metamodels. A single metamodel type that fits all datasets is not
found which makes it worthwhile to test several metamodels and even have a different
type for each performance parameter. Although this is time consuming the time spent is
small compared to the time spent on developing the DEM model and generating the data
through simulations.

To determine if the size of the sampling set is sufficient the effect of sample size and the
validation error should be evaluated. Based on these errors the need for more data can
be determined. To start metamodel construction, a sufficiently large data set should be
trained to have a basis, in this hopper case study with two design parameters this is 50
data points. In additional resampling steps the size of the sampling set can be expanded.

The results for the three metamodels used in this case study showed that the Polynomial
Regression model was the least accurate model and could not reach validation errors
less than 3% for the discharge rate and 12% for the CoV. The Kriging model performed
better for the discharge rate than the RBFI model while both models performed nearly
identical for the CoV. Therefore, unless a particular polynomial trend is expected, RBFI
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Table 3.6: Minimum amount of data points required for 2 and 5% accuracy levels

Discharge rate φ PR RBFI Kriging
2% - 75 70
5% 45 45 32

Coefficient of variation ψ PR RBFI Kriging
2% - 78 78
5% - 70 70

and in particular Kriging should be preferred for their efficiency and generality. A 5% error
for the discharge rate was reached with a small amount of data points whereas the models
for the CoV required at least 70 points. Based on the results it can be seen that increasing
complexity of the trends in the data requires larger data sets if accurate metamodels are
desired.
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3.5. CONCLUSIONS

In this study a methodology for constructing DEM-based metamodels has been presented
and demonstrated on a case study. Different metamodels were trained and the effect
of hyper-parameter optimization, sample size, and validation strategy was analysed for
the first time in context of DEM. From this study it can be concluded that DEM-based
metamodels can aid in revealing and understanding trends in the performance of bulk
handling equipment in relation to selected design parameters, at acceptable computa-
tional cost. In using metamodels combined with DEM it is not advised to universally apply
one single type of metamodel. The behaviour of performance parameters might match
certain metamodel types better than others. Moreover, metamodel training is far less
computationally demanding compared to the DEM data generation phase. Therefore it is
advised to evaluate several types of metamodels and use the most adequate type for each
performance parameter. To further increase the quality of metamodels hyper-parameter
optimization should be applied to obtain the best possible metamodel for a given data
set.

As a proof of concept, we analysed and validated the application of three model fitting
metamodeling techniques using a representative BHE example: polynomial regression,
radial basis function interpolation, and Kriging, and showed the ability of these methods
to capture the discharge behaviour and the coefficient of variation of a silo in a wide
design space. In this study the Kriging model performed best in predicting the discharge
rate whereas the Kriging and RBFI models were better in predicting the coefficient of
variance. Polynomial regression showed the strongest smoothing behaviour, which may
be desired in case of noisy datasets. The overall results show that metamodels based on
these techniques provide an sufficiently accurate representation of the bulk handling
equipment behaviour for use in the equipment design process.

In relation to the design of BHE it is essential that metamodels with high accuracy can
be trained for small or limited data sets because of the computational burden of DEM
simulations. In this study the focus was on obtaining accurate predictions for average
performance values. However, in bulk handling processes the behaviour of bulk material
is stochastic by nature. Therefore, further research is required in training of metamodels
including stochastic data such that this information can be included in exploring design
options.
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INCLUDING STOCHASTICS IN

METAMODEL-BASED DEM MODEL

CALIBRATION

In the design process for bulk handling equipment it is essential that the models used
are accurate and reliable. For discrete element models this means that they need to be
calibrated. The common method of calibration focusses on the mean behaviour of the
material or equipment. Although this is practical the behaviour of granular materials
is inherently stochastic and should be included. In this chapter a study is presented that
includes stochastic behaviour of granular materials in the calibration process. Building
on the findings in Chapter 3 [55], the stochastic behaviour of the bulk material is included
in the metamodels used in calibration. The presented calibration procedure is validated
experimentally and shows that including the stochastics improves the accuracy of the
DEM model. These results show that there is a large potential for including the stochastic
behaviour in other steps of the design process for bulk handling equipment such as robust
design optimization.

Parts of this chapter have been published in the Journal of Powder Technology, M.P. Fransen, M. Langelaar, D.L.
Schott, Including stochastics in metamodel-based DEM model calibration, (2022) [51].
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4.1. INTRODUCTION

To design reliable bulk handling equipment (BHE) engineers and researchers rely on
particle-based models to predict the performance of a new design [99]. The discrete
element method (DEM) is used to model granular materials and analyse a wide range of
related applications. Accurate predictions can only be made if the input parameter values
such as friction coefficients and material properties are chosen adequately. To this end,
calibration with experimental findings is typically used. However, granular processes are
stochastic by nature leading to random results if repeated. This stochastic behaviour is
caused by the large variety of particle shapes, sizes, and particle packing compositions in
granular systems.

In current calibration approaches the DEM parameters are optimized to ensure that
the mean values for the performance parameters are matched to the calibration targets
[2, 100–102]. However, the mean calibration approach accounts only marginally for
the stochastic nature of granular processes originating from distributions of particle
shape, size, and microstructural composition. Alternatively, an iterative Bayesian filtering
framework in combination with analysis of stress dependency paths can be used to
minimize the variance of the solution and obtain more accurate calibration results [8, 83].
In this study the initial packing of the bulk material was known through X-ray tomography
and exactly represented in the DEM model. In practice, this information is usually
available which means that we generally assume random initial packings and repeat
experiments to obtain mean and standard deviation values. Experiments for calibration
and validation are commonly repeated 3-5 times. This number seems arbitrary because
the mean and standard deviations of key performance indicators (KPI) may not have
converged to a stable value with this number of repetitions. Additionally, if mean and
standard deviations are used in developing BHE designs the common approach is to work
with confidence intervals based on standard deviations. For reference, in case of three
repetitions the 95% confidence interval with a t-distribution is equal to 1,837 times the
standard deviation which approximately induces a 6,5 times wider confidence interval
compared to a factor 0,284 when experiments are repeated 50 times. Even though this
number of repetitions is not feasible in practice, this study can be used as a reference for
a suitable number of repetitions.

Moreover, with increasing irregularity of particle shapes and sizes the variance in experi-
ments increases. Therefore, in experiments with granular materials it is not uncommon
to have relatively high standard deviations when material becomes more heterogeneous.
For the quartz sand calibration experiments, Derakshani reports standard deviations
of 2,64% for the sandglass test with three repetitions [103]. For the gravel calibration
experiments with three repetitions, standard deviations between 0,5 and 4% of the mean
KPI values for the lifting cylinder, shear box, and drop down test were reported [102].
For wood chips reported standard deviations range from 3,44% to 6,45% for the Angle
of Repose and 3,85% to 7,41% for the Angle of Slip [104]. The subsequently tested wood
chip feeding system resulted in a standard deviation of 4,5% for eight repetitions. In large
scale applications like the grab validation study on spherical iron ore pellets by Lommen
resulted in a 2% error for the payload with three repetitions [11]. Another grab validation
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study for cohesive iron ore reported a standard deviation of the average payload of 5,74%
for three repetitions [105]. Combined with the confidence intervals this leads to 95%
confidence intervals of up to ± 10,5% around the mean in the discussed cases. In design
of bulk handling equipment, these confidence intervals are generally too high to obtain
reliable designs. Therefore, the effect of repetitions on the reliability of experiments with
bulk materials is investigated in this study.

Ideally, the DEM model should exhibit the same stochastic behaviour as observed in
reality. This requires that the stochastics are included throughout the development of
the DEM model. To the author’s knowledge, stochastic behaviour of granular processes
is rarely included in calibration except for a recent study using random initial packing
[10]. Therefore, we propose including the stochastic behaviour in a metamodel which
is subsequently used to predict mean and variance in the calibration. To include the
stochastics in a metamodel there are two options. Firstly, two individual metamodels are
trained for the mean and variance as was demonstrated by [14], here we use a noiseless
Gaussian Process Regression (GPR) metamodel which results in a metamodel based on
exact interpolation. Secondly, a noise included Gaussian Process Regression metamodel
which includes the KPI variance in the noise term [86]. The GPR model has been
previously used in a DEM calibration context of bulk material [106]. Furthermore, a mean-
variance calibration approach is proposed which includes the variance of the calibration
experiments in the objectives of calibration procedure. In mean-variance optimization
of DEM parameters, the focus of the optimization algorithm is to find parameter values
for which both mean and variance match those of the experimentally obtained targets.
In contrast, mean calibration only focusses on finding parameter values for the mean
of the targets. In this paper, the noiseless GPR is referred to as the interpolation-based
metamodel (IBM) and the noisy GPR is referred to as the Regression-based metamodel
(RBM). Both these metamodeling approaches are used and compared for mean and
mean-variance calibration of DEM parameters. In addition, we study the influence of the
number of repetitions on the obtained calibration results.

We apply the aforementioned approach to a gravel case study where three material
parameters are calibrated using a pile forming test, ledge test, and bulk density test. The
parameters that are calibrated are the sliding and rolling coefficient, and the particle
density. The calibration results are applied to a DEM model of a hopper and the resulting
discharge rate is compared to the experimental equivalent. This case study is chosen
because of the good measurability of the KPIs and their frequent use for calibration in
this field.

The experimental setups in the case study and analysis are described in Section 4.2. The
experiments are followed by the development of the DEM models of the experimental
setups in Section 4.3. Next, Section 4.4 introduces the metamodeling approaches and
the mean and mean-variance calibration, which are demonstrated with the previously
described experiments. The results of the calibration and a comparison between the
interpolation-based and regression-based metamodel calibration and the proposed
mean-variance calibration and mean calibration is given in Section 4.5. Lastly, this
work ends with conclusions and an outline for further work on this topic.
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Table 4.1: Wall-Gravel interaction properties

mean µs var σ(µs )
Gravel-Stainless steel (impact) 0,523 0,05
Gravel-Stainless steel (sliding) 0,456 0,044
Gravel-Acrylic (sliding) 0,446 0,0965

4.2. EXPERIMENTAL METHODS AND MATERIALS

The goal of DEM calibration is to obtain a set of DEM parameters such as friction
coefficients and material properties for which the KPI obtained from an experiment
is matched to the KPI from a DEM model of the same experiment. In this study, we use the
bulk calibration approach (BCA) in which small scale calibration experiments are used
to determine the DEM parameters. These calibration experiments provide well-isolated
macro properties of the granular material, the KPIs. Ideally, for each DEM parameter an
calibration experiment with a specific macro property is desired [4–6]. In general, the
behaviour of granular material in calibration experiments is assumed representative for
the behaviour of the material in large-scale bulk handling applications. In this study three
calibration experiments, a pile forming test, ledge test, and bulk density test are used
which are discussed in Section 4.2.1. After finding the DEM parameter set these values are
applied to a DEM model of a large-scale hopper model for which the numerical results
are compared to the experimental results of the hopper setup described in Section 4.2.2.
Analysis of the experimental results to obtain the calibration (pile forming, ledge, and
bulk density test) and validation (hopper) KPIs can be found in Section 4.2.3. The results
for these experiments are presented in Section 4.2.4.

In this case study gravel is used which is categorised as dry cohesionless bulk material
similar to the gravel used in previous studies [102, 106]. The particle size distribution
(PSD) of this material was found using a Haver and Boecker sieve shaker tester which
resulted in a normally distributed PSD with an average radius of 5,02mm and a standard
deviation of 1,39mm. The particle density was measured with a submerged mass density
test and averages on 2313,4 kg /m3 for ten repetitions.

The experimental setups consist of a combination of stainless steel or acrylic plate
material which can have three types of wear. The wall-particle interaction properties have
been measured with an inclined surface tester for 25 particles on the wall material and
their wear state. These wear states are stainless steel with wear due to sliding, stainless
steel and impact wear, and acrylic with sliding wear. The stainless steel with sliding wear
is the state of the wall of the bulk density tester. The stainless steel with impact wear is
present in the hopper due to the pounding of the particles on the walls during filling. The
acrylic with sliding wear is present in the shear box test, pile-forming test, and in the front
and back walls of the hopper. The sliding friction properties have been shown in Table 1
and shows the mean and variance values for the experiment. In the DEM models of the
experiments the mean value of the friction coefficient is used.
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(a)

(b) (c)

Figure 4.1: Laboratory scale tests (a) Pile forming test (b) Ledge test (c) Bulk density test

4.2.1. LABORATORY SCALE EXPERIMENTS

The calibration experiments are a pile test, ledge test, and bulk density test as shown
in Figure 4.1 (a,b,c). The KPIs are the Angle of Repose (AoR) β, Angle of Movement
(AoM) θ, and the bulk density ρb obtained from the pile, ledge, and bulk density test
respectively. These experiments have been selected because they are representative for
different aspects of the final application. The pile-forming test resembles the kinetic
behaviour of the material exiting the silo and the formation of the pile beneath the silo.
The ledge test is representative for the movement of the material along stagnant zones
when the hopper is discharging. The bulk density test is a representative test for the filling
of the hopper. The pile forming test consists of an elevated structure from which gravel
is dropped in a container enclosed consisting of acrylic plates, Figure 4.1 (a) and Figure
4.2 (a). The acrylic plates have a wear profile corresponding Gravel-Acrylic (sliding). The
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top container is filled up to 110 mm with gravel after which the bottom plate is removed.
This starts the flow of material through the orifice of the top container. Consequently, the
material fall on the bottom plate of the lower container and a pile starts forming. After
the formation of the pile, a camera is used to photograph the sidewall of the container.
This photograph is later used to determine the angle of repose, β.

The ledge test is a container with a retractable sidewall, Figure 4.1 (b) and Figure 4.2 (b).
The container has acrylic walls which have the wear properties of Gravel-Acrylic (sliding).
At the edge, the container has a ridge of 2x20 mm covering the entire trailing edge of
the container. This ensures that when the sidewall is retracted that there is a stable base
of gravel. The container is filled up to 214 mm with gravel after which the sidewall is
retracted. After retracting the wall, the material starts to flow which continuous until a
stable slope is left in the container. Of this pile a photograph is taken which is analysed to
obtain the angle of movement, θ.

The bulk density test involves a cylindrical container with a radius of 82 mm and a height
of 237 mm , the bulk density cylinder ISO 17828 (EN 15103), Figure 4.1 (c) and Figure 4.2
(c). It has a volume of 5 litres with a 0,2% error. Due to the repetitive use of the container
the material has wear properties corresponding to Gravel-Stainless steel (sliding). First
the empty cylinder’s weight is measured with a scale (Kern EMS 12K.01). Next, it is filled
with gravel until the upper edge of the tester is reached and weighed again to obtain the
mass of the bulk.

4.2.2. LARGE SCALE HOPPER EXPERIMENT

The semi-two dimensional hopper setup is shown in Figure 4.3. The hopper walls are
connected to an aluminium frame. The sidewalls of the hopper have worn due to impact
which lead to a pitted surface (Gravel-Stainless steel (impact)). These sidewalls are
enclosed in the front and back by 5 mm acrylic transparent plates which have been
subjected to sliding wear. The angle of the hopper walls is 45◦ and the size of the discharge
opening is 100 mm. The width of the silo is 602 mm and the depth is 50 mm. At the
bottom of the hopper a steel bar held by electromagnets closes the orifice of the hopper.
To commence discharge of the hopper the steel bar is released by turning off the magnets
using a switch. To measure the weight of the bulk material in the hopper the entire
structure is positioned on load cells (AEB8D Shear Beam Load cell from AE sensors). The
signal of the load cells is sent to a data acquisition box (Texas Instruments) and processed
using Labview to a data file. The weight data is measured and stored at a frequency of
50 Hz during the discharge of the hopper. Due to the scale of this setup the number
of repetitions is set to five, this number is sufficient because discharge rates are time
averaged values which lead to more stable results in the case of a steady-state flow.

4.2.3. ANALYSIS EXPERIMENTAL RESULTS

The KPIs of the pile forming and ledge test are determined by analysis of the pictures of
the experiments. This analysis follows the same procedure in both experiments, therefore
the analysis is only discussed for the ledge test. First, the distortion of the pictures is
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Figure 4.2: Dimensions of the experimental setups (a) pile forming test, (b) ledge test, (c) bulk density test, with
dimensions in millimetres
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Figure 4.3: Experimental setup for the large scale hopper
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Figure 4.4: Image of a ledge test result where the blue crosses are placed on the edge of the pile and a linear
regression (red line) is applied to find the angle of movement. This procedure is the same for the pile-forming
test to determine the angle of repose.

corrected after which a square grid is layered over the pictures as shown in Figure 4.4. This
grid has equal spacing in both directions and is equal to two times the average particle
radius obtained from the PSD. In the squares along the material edge the particle with the
highest location is identified. This is a manual process which comes with errors because
of the analyst determining the points, by using squares this error is minimized and the
relative distance between points is kept similar. The highest locations are denoted by the
blue crosses in Figure 4.4 and are used as the input for a linear regression analysis to find
the angle of movement. Based on the angles from all experiments the mean and variance
of the Angle of Movement are determined.

The bulk density is determined by dividing the bulk mass in the container measured
with the scale by the volume of the container. As we have repeated all the laboratory
scale experiments 50 times the distribution of the data can be analysed, especially if
the data is normally distributed. Therefore, the Lilliefors test is used to determine if the
data from the experiments is normally distributed. These tests turned out to be positive
for a 5% significance level which means that the data from the experiments is normally
distributed. Based on these observations we can proceed with mean and mean-variance
based calibration. The data obtained from the large-scale hopper experiment is the
evolution of the force exerted on the hopper by the material sampled at a frequency of
50 H z. From this data the discharge rate as a function of time can be determined using
linear regression as illustrated in Figure 4.4. Assuming that the constant force fit divided



4

80 4. INCLUDING STOCHASTICS IN METAMODEL-BASED DEM MODEL CALIBRATION

0 2 4 6 8

t (s)

0

5

10

15

20

25

m
 (

F
lo

ad
ce

ll
/g

) 
(k

g
)

Loadcell data

Linear regression fit

Figure 4.5: Linear regression fit to the load cell data, the slope of the fit is the discharge rate of the mass flow in
the hopper.

by the gravity constant leads to an average discharge rate in kg /s. For each large scale
hopper experiment the steady state discharge rate φ is calculated. The mean discharge
rate and its variance are calculated for the five repetitions of the experiment.

4.2.4. EXPERIMENTAL RESULTS

The experiments for the Angle of Repose, Angle of Movement, and bulk density have been
repeated 50 times. On these datasets, a Lilliefors test has been applied to determine if
these datasets are likely to be normal with 95% confidence. For all three sets it was found
that the data is normally distributed which justifies including the confidence intervals in
the analysis of the experimental results. In Figure 4.6 (a,c,e) we can see the way the mean
value and 95% confidence interval (CI) of the angle of repose, angle of movement, and
the bulk density of the material develops when the number of repetitions increases. In
addition, the ± 1% boundaries are given which indicate the relative size of the error in the
mean value. As we can see, the mean stays within the 1% boundaries after the number
of repetitions increases over 29 for the angle of repose. The angle of movement reaches
a stable bandwidth of ± 1% around the 41.5 degree angle after nine repetitions where it
leaves this bandwidth once at 30 repetitions. For the bulk density we see that the mean
is in the 1% bandwidth after three repetitions. However, the mean stabilises when 20
repetitions are reached. The 95% CI of the mean is determined using the t-distribution
for a number of repetitions lower than 30 and using the z-distribution for numbers higher
or equal to 30 assuming that the central limit theorem holds. Based on the confidence
intervals we can say that at 50 repetitions the true mean of the AoR is within 2,2% of the
mean with 95% certainty. For the AoM this is equal to within 1% and for the bulk density
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Table 4.2: Calibration targets for the Angle of Repose, Angle of Movement, and bulk density for 50 repetitions
and the validation target for the discharge rate for 5 repetitions.

Calibration
Targets

KPI No. of exper-
iments

Mean ± CI 95% Standard Deviation ± CI
95%

Pile test βe (◦) 50 25,43 ± 0,58 2,09 ± (-0,24;+0,48)
Ledge test θe (deg) 50 41,40 ± 0,36 1,38 ± (-0,36;+0,31)
Bulk density test ρbe

(kg /m3)
50 1473,1 ± 3,0 10,94 ± (-1,88;+2,52)

Validation Target
Hopper test φe (kg /s) 5 3,68± 0,029 0,025 ± (-0,011;+0,030)

within 0,2%. In the calibration procedure described in Section 4 we assume that both
the calculated mean and standard deviation are the true values. Therefore, we use these
values as the calibration targets. The CIs are only used to indicate the reliability of the
experimental results.

In Figure 4.6 (b, d, f) the standard deviations and their 95% CI are shown. For the AoR
and AoM stabilisation of the standard deviation can be observed after 15 repetitions but
for the bulk density it keeps declining with the number of repetitions. For the CI of the
standard deviation the chi-distribution is used to account for the sample size. Observing
the confidence intervals, it is visible that for low numbers of repetitions the confidence
intervals for the angle of repose and bulk density are much wider than for a high number
of repetitions. These observations indicate the necessity of having sufficient repetitions
in calibration experiments for irregular shaped and randomly packed bulk materials.

In this case study the effect of increasing the number of repetitions in a dataset on the
calibration and validation result are evaluated. However, for conclusions regarding the
most accurate calibration approach the entire dataset of 50 repetitions will be used. In
these cases, it is also important to notice that one can consider the standard deviation
relative to the mean. These calibration targets are shown in Table 4.2. It is found the
standard deviation is 8,2% for the Angle of Repose, 3,3% for the Angle of Movement,
0,74% for the bulk density. These percentages show that the variability of each calibration
differs significantly. This can be explained by the nature of the calibration experiments.
In the bulk density test a container is filled with material which is very confined and
restricts high velocity movement of the particles. Hence an experiment that will have less
variability. In the ledge test a container is filled as well but when the sidewall is removed
the material starts moving. Moreover, the sliding interface in the ledge test causes higher
variability of the angle due to the changing orientation of the particles in each repetition
of the experiment. In the pile-forming test the material falls from the container on a
free surface where the orientation and high velocity of the particles results in a higher
variability of the experimental result.
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Figure 4.6: In figures (a, c, e) the development of the mean value and 95% CI related to the number of repetitions
of the calibration experiment is shown for the Angle of Repose, Angle of Movement, and Bulk density, respectively.
Additionally a bandwidth of 1% shown around the mean value for 50 repetitions. Figures (b, d, f) show the
development of the standard deviation and its 95% CI.
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4.3. DEM MODELS

The DEM models of the hopper and calibration experiments are built based on the
schematics shown in Figure 4.2. The model assumptions for the granular material and
material structure interaction are described in Section 4.3.1. Next, the procedure for
initialisation of the models is described in Section 4.3.2. Finally, the analysis of the
simulation results is discussed in Section 4.3.3.

4.3.1. DEM MODEL ASSUMPTIONS AND MATERIAL PROPERTIES

In general, DEM models of a granular process are simplifications of the actual process.
For reproducibility, the procedures followed and assumptions made in creating the model
are as follows. In this study we use Mercury DPM, an open source discrete element
package [94] to build the three-dimensional DEM models. Although the particle shapes
are irregular they are modelled as spheres. As suggested by Wensrich & Katterfeld, the
irregular shapes of the particles and its behaviour is assumed to be described by the
rolling friction coefficient in the contact model [107]. The size of the spheres follows
the experimentally determined PSD but is truncated between -1.5 STD and +5 STD
around the particle size mean. Ideally, the particle size distribution in DEM is identical
to the experimentally obtained distribution. However, for reasonable simulation times
truncation of the PSD is justified [12].

The contact model used to describe normal, tangential, sliding, and rolling interaction for
particle-particle and particle-wall contact is the model developed by Luding [96]. This
model is suitable for modelling dry cohesionless granular solids. The contact stiffness k
for particle-particle interaction is determined by using the micro-macro relation given in
the following equation,

k = K Vp

Cnr 2 (4.1)

where K is the bulk modulus of the granular material, Vp is the particle volume of a sphere
with the average particle radius from the PSD , Cn is the coordination number, and r is
the average particle radius [96, 108]. The bulk modulus K of the material is set to 70MPa.
The particle contact number, or coordination number, is assumed to be equal to 4 which
corresponds to loose material [97]. The damping coefficient of the material is assumed
to be equal to 0,3 [49]. The material properties have been tabulated in Table 4.3 and
the contact properties for the particle-particle contact can be found in column two of
Table 4.4. Based on these properties the size of the time-step can be determined. For
the time-step size we assume that ∆t = tc /10 where tc is the collision time between the
particles for the smallest particle size and was used in previous work as presented in
Chapter 3.

For the interaction between particles and three types of walls sliding and rolling friction
coefficients are defined. The mean values of the measured sliding friction properties
declared in Table 4.1 are directly included in the DEM model and are assumed uniform
over the wall surface. Here it is assumed that the walls have uniform properties and are
therefore not spatially dependent. The rolling friction coefficient could not be measured



4.3. DEM MODELS

4

85

Table 4.3: Material properties gravel.

Bulk modulus Eb = 70MPa
Particle density Calibration parameter
Contact number Cn = 4 [97]
Particle size distribution (PSD) 5.02 (mm) +/- 1.39 (mm) sieve test results, in

simulation the particle size is limited to -1,5 and +5 sigma.

Time step ∆t = tc
10

Table 4.4: Material properties gravel.

Stiffness Particle-particle Particle-wall
Contact stiffness k kp = 3,67743 ×

105(N /m)

kw = 2kp

kr
2
7 kp

2
7 kw

ks
2
7 kp

2
7 kw

Damping
γ 0,3 0,3
γs 0,3 0,3
γr 0,3 0,3
Friction
µs Calibration parameter Experimental sliding friction values

(Tabel 4.2)
µr Calibration parameter µr = 2µs

directly. Therefore the relation µr = 2µs is adopted which is common in DEM models for
calibration [3, 109] to ensure sliding is the dominant mode of motion in the simulation.
The contact stiffness of the walls is also assumed to be twice the size of the contact
stiffness of the particles, kw = 2kp [3]. The properties can be found in the third column of
4.4.

The particle density has been identified experimentally but because of the assumption
of spherical particles adjustments to the particle density might be needed. Therefore it
is decided to use the particle density as a calibration parameter. In the particle-particle
contact, the sliding and rolling friction coefficients are parameters that are subject of the
calibration because both these properties cannot be measured directly.

4.3.2. INITIALISATION OF DEM MODELS AND SIMULATIONS

In Figure 4.7 examples of the simulation results for the DEM models of the calibration
experiments for µs ,µr = 0.5 and ρp = 2750kg /m3 are shown. Here it can be seen that pile
formation occurs in the pile test shown in Figure 4.7 (a), a slope in the ledge test result (b),
and a filled bulk density container in (c).

To resemble the filling process in the experiments random filling is used. The procedure
is illustrated by the filling procedure for the bulk density container. For each DEM model
a volume is defined in which the particles will be generated. In the case of the bulk density
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(a)

(b)

(c)
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(d)

Figure 4.7: Simulation results for the pile (a), ledge (b), and bulk density test (c) for sliding and rolling friction
coefficient of 0,5 and a particle density of 2750 kg /m3 and a visualisation of a filled DEM model of the hopper
(d).
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Table 4.5: Simulation settings

DEM models Filling height H f Activate deletion boundary

Hopper test 0,66m 1,5s
Pile test 0,11m 1,55s
Ledge test 0,218m 1,55s
Bulk density test 0,236m 1,5s

tester it is the volume of the test apparatus. A circular generation plane is defined at the
bottom of the tester and moves up to fill the tester with a predefined volume. The first
loop is to generate particles in the circular plane of the bulk density tester. In this loop
a random location in the plane is chosen by randomly generation of an angle for the
angular location 0 to 360 degrees on the circle and a radius from 0 to the outer radius of
the tester. At this location, a particle is generated with a radius drawn from the particle
size distribution obtained from the experiments. Before generating it is checked whether
the particle is in contact, if so, it is not placed, else, it is placed and the next particle can
be placed. With each step in generating a particle, the height of the horizontal generation
plane is increased with a step size of r = 1×10−4 to ensure proper filling of the volume
where the average particle radius is r. After adding a particle its volume is subtracted from
the total volume that needs to be added. When this added volume reaches zero or less the
particle generation stops. With this procedure a volume is filled with particles without
contact. After initialization of the particles, the simulation is started and particles settle
under the influence of gravity.

The procedure for all simulation setups is similar while the shape of the generation plane
is adjusted to the setup. In the DEM models, the mass of material added to the setup
is larger than the amount needed to fill the setup. Therefore, when the particles have
settled, the deletion boundary that removes excess material above the filling height H f for
each setup is activated. This activation time is different for each model but equilibrium is
reached before the deletion boundary is activated (Table 4.5).

For the hopper simulation material flow starts upon removal of the bottom of the hopper
at t=1,6s. In the ledge and pile forming test the sidewall and bottom are removed at 1,65s,
respectively. The stopping criterion for all simulations is when ratio between the elastic
and kinetic energy of the particles in the system becomes lower than 10−6 [55]. The
hopper simulation has an additional stopping criterion that ensures that the simulation
stops when the mass in the hopper is equal to zero.

The DEM models of the calibration experiments are run on a cluster which uses 2x Xeon
E5-2680 v4, 28 core CPU’s. The average CPU time for the DEM models of the laboratory
scale tests is 5h for the bulk density test, 7,5h for the pile forming test, and 12h for the
ledge test. The simulation time is denoted as an average because the packing, value of the
friction coefficient, and density influences the behaviour of the model and the simulation
time.
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4.3.3. ANALYSIS SIMULATION RESULTS

The DEM simulations provide data files containing the locations and velocities of the
particles. This data is used to determine the KPI values for each DEM model. In contrast
to the experimental analysis the analysis of simulation results is automated. Therefore
this method is not prone to any error from the analyst whereas the experimental analysis
relies on picking data points by hand which can induce errors. For each repetition and
sample point this value is calculated which in turn is used to determine the mean and
variance values. These values are used as training data for the metamodels used in the
calibration procedure (Section 4.4.3).

To obtain the angle of repose from the pile test simulations a grid search is performed to
find the locations of the largest combination of particle z-value and its radius in bins. In
this search, only the particles located at front are considered analogous to the analysis of
the experimental results where only the visible particles are analyzed. The pile has two
slopes as shown in Figure 4.8 (a) for which the approach is to determine the angles at
both sides of the pile. The left edge of the search area is ds1 which is located 0,1m left
of the center of the setup along the x-axis. The right edge of the search area for the left
angle is located at de1 which is located 0,01m to the left of the setup center on the x-axis.
This search area is divided into a number of bins based on the length of the search area
divided by the average particle diameter rounded up to an integer. In this case study
9 bins are used. For the right angle the same procedure is followed. After finding the
highest particles in each bin, this data is used to determine the angle of repose by linear
regression for both the left and right side which are averaged.

After the ledge test simulation finished, the bulk material has formed a stable slope as
shown in Figure 4.8 (b) for which the angle can be determined. However, the calibration
parameter values in the sample do affect the shape of the slope. Increasing the friction
values increases the slope of the heap but also forms a horizontal plane at the back of
the shear box after which the slope starts. To obtain the accurate angle of movement the
particles lying in this plane should not be considered. To obtain the angle of movement,
the first task is to find the particles which have the highest z-values at the front of the
simulation. Note that this z-value is the sum of the z-value of the center of the particle and
the radius of the particle. As with the Angle of Repose, we do this by looking for the largest
combination of z-value of the particle and its radius in bins. The left edge of the search
area is defined by the adopted friction relation, ds = (max(µs ,µr )/0.9)×0.06 and the right
side of the bin is located at de = 0,228m which is 0,01m from the leading edge of the shear
box. The area between ds and de is divided into a number of bins. The number of bins is
determined by dividing the distance between ds and de by the average particle diameter
and rounding up. In this way we ensure that the particle in each bin is the highest. After a
particle is found in each bin, linear regression is applied to find the angle of movement θ.
This method is identical to the experimental analysis.

The result of the bulk density simulation is a volume filled with particles as shown in
Figure 4.7 (c). From the data file the volume of each particle in the container can be
calculated, and by multiplying with the particle density and dividing the total mass by the
volume of the container the bulk density is obtained.
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For the analysis of the hopper results the same procedure is followed as with the experi-
mental hopper results but using the numerical data instead of the experimental (Section
4.2.4).

4.4. METAMODEL AND CALIBRATION METHODS

Our calibration, verification, and validation procedure is shown in Figure 4.9. It starts
with the calibration experiments shown on the left side of the figure. We use the Pile Test,
Ledge Test, and the Bulk density test with the mean and variance of the Angle of Repose,
Angle of Movement, and bulk density as output which is discussed in Section 4.2. For
each of those experiments a DEM model has been developed as discussed in Section 4.3.

The first step in the calibration procedure is to define the bounds and sample the calibra-
tion space, described in Section 4.4.1 and 4.4.2. The results of the DEM simulations for the
sample will be used in the metamodel training step and are subsequently used for DEM
parameter calibration. We use two types of metamodels to describe the relation between
calibration parameters and KPIs. The first type is an interpolation-based metamodel that
describes the mean and variance of the KPIs by two separate metamodels. The second
type is a regression-based metamodel, which is a metamodel that incorporates both mean
and variance of the KPIs. Details on the models and training procedure are discussed in
Section 4.4.3. For the calibration step, we use both the commonly used mean calibration
approach and our newly introduced mean-variance calibration approach. The main
difference between these methods is that the latter includes the variance of the KPI in the
calibration in addition to the mean. In both approaches, using the DEM-based metamodel
the DEM parameter values are determined that provide the best agreement with the
experimental KPI data. The calibration is further discussed in Section 4.4.4. After this
calibration step, the found optima need to be verified in the verification step as discussed
in Section 4.4.5. Here the found DEM parameter sets are reintroduced to the DEM models
of the calibration experiments and the simulation results are compared to the results
predicted by the metamodels. If the verification results are not satisfactory, the sample of
the calibration space can be enriched by adding samples or the optimization settings in
the calibration can be adjusted. In this study resampling based on the calibration and
verification results is not considered. After successful verification, the DEM parameter
set is used as input to the validation step by executing simulations with the DEM hopper
model which is described in Section 4.4.6. The results of these simulations are compared
to the experimental results from the Hopper discharge experiment. If the error between
the experiments and simulations is acceptable, a validated DEM model of the equipment
has been obtained. If the error is too large revisiting the calibration or sampling step is
required.

In this study we show the effect of the mean and mean-variance calibration strategy
in combination with the interpolation-based and regression-based metamodels on the
evolution of the found DEM parameter optima when the number of repetitions of the
calibration sample simulations increases. In addition, the quality of these found optima
are evaluated for the calibration and equipment experiments.
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Figure 4.8: Visualisation of the analysis of the simulation results where a linear regression is applied to the
highest located particles in each bin (a) determination of angle of repose (b) determination of the angle of
movement
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Figure 4.9: Overview of steps taken in the calibration approach and the validation.

4.4.1. BOUNDS OF THE CALIBRATION SPACE

Ensuring that there is a solution present in the calibration space that is used is an
essential step in the calibration procedure. In this approach we define lower and upper
bounds for the calibration parameters which are the sliding friction coefficient, rolling
friction coefficient, and particle density. The lower and upper bound of the friction
coefficients has been set to 0,1 and 0,9 based on common values in literature involving
gravel experiments as well [12, 110]. In combination with the measured particle density
ρ(pe ), the bulk density can be determined by running the bulk density simulation. To
determine the bulk density bounds, this is done for two situations, the experimental
particle density with the highest friction coefficients and the lowest friction coefficients.
Moreover, to ensure stability of the outcome these two situations have been repeated
50 times with random material packing to get an accurate estimate of the average bulk
density and its standard deviation. Based on the results from these simulations, the
experimental particle density, and the experimental bulk density the lower and upper
bound for the particle density can be found by using the following two equations,

ρps−l b = ρbe

ρbs (µs−lb ,µr−lb ,ρpe )
ρpe (4.2)

ρp(s−ub) =
ρbe

ρbs (µs−ub ,µr−ub ,ρpe )
ρpe (4.3)
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Table 4.6: Bounds of the calibration space

Calibration parameter Lower bound Upper bound
µs (-) 0,1 0,9
µr (-) 0,1 0,9
ρp (kg /m3) 2542,9 2834,7

where (ρbe ) is the average experimental bulk density, (ρbs ) is the average simulated bulk
density which depends on the friction coefficients and experimental particle density. The
average experimental particle density is denoted by the term (ρpe ). The lower and upper
bound are denoted by lb and ub. With these lower and upper bounds of the particle
density determined, they can be used in combination with the sliding and rolling friction
coefficient limits to check if the lower and upper limits of the KPIs of the other calibration
models, the shear box and pile test, stay in their respective bounds. After verification
of these results the next step is to define the boundary sample. In this case study we
have three parameters which results in a three-dimensional calibration space with the
following bounds denoted in Table 4.6. For these lower and upper bound values we
have confirmed that the lower and upper bounds result in values for the angle of repose
β, angle of movement θ, and bulk density ρb which contain the experimentally found
calibration targets. In Section 4.3 the model assumptions have been declared where it is
assumed that the material has a contact number of 4. After the simulations described here
the contact number was found to be ≈ 4,36 with lower limit of 3,6 and an upper limit of 5
depending on high or low friction, respectively. This makes 4 a reasonable assumption for
the contact number.

4.4.2. SAMPLING THE CALIBRATION SPACE

After the feasibility check of the calibration space bounds it can be sampled. The sample
consists of two parts, a sample covering the edges of the calibration space and a sample
covering the internal volume of the calibration space. Sampling of the edges is essential if
metamodels are used for the calibration because these have poor extrapolation abilities
beyond the space covered by the data points. In this case the boundary sample consists
of 27 sample points located at the corners of the calibration space, at the halfway points
between the corner points, and the center points in the plane and cube as shown as
purple squares in Figure 4.10. To cover the internal space of the calibration space an
internal sample of 100 points based on Latin Hypercube Sampling (LHS) with the maximin
criterion is applied to obtain a sample that covers the calibration space. These sample
points are denoted by blue circles in Figure 4.10. The total number of sample points is

127 which leads to a sampling density of η= 127
1
3 which is equal to 5,02 samples per unit

step in the normalised three dimensional calibration space.

To obtain accurate predictions of the mean and variance of the KPIs the simulations
for the sample points are repeated 50 times where in each repetition the packing of the
particles is randomly generated. The total number of simulations is equal to 4050 for the
boundary sample for the DEM models of the calibration experiments. For the internal
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Figure 4.10: Three dimensional representation of non-normalized sample space.

sample, the number of simulations is 15000 which totals 19050 simulations training the
calibration metamodels. In this study a high number of repetitions is used to find an
accurate reference value. Based on the results, recommendations can be given on the
amount of repetitions that are needed to reach an accurate calibration result.

4.4.3. METAMODEL TRAINING

The results from the simulations for the calibration sample are used to train a Gaussian
Process Regression metamodel which will be denoted by fi (x) where i is the index of the
KPI and x = [µs ,µr ,ρp ] is a vector containing the calibration parameters as variables for
which the GPR metamodel gives a prediction of the KPI. The mean and standard deviation
values obtained from the DEM simulation results are normalized such that a normalized
mean and coefficient of variation can be used in training the metamodels. As mentioned
in the introduction, two types of metamodels are trained

1. Separate noiseless GPR models based on interpolation for normalized mean and
coefficient of variation of the KPI [14]

2. Single noisy GPR model based on regression including both normalized mean and
coefficient of variation of the KPI [86]

A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution [86]. The Gaussian process GP is an approximation of the real
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process fi (x) that it intends to model. The GP consists of a mean function m(x) and a
covariance function k(x, x ′).

fi (x) ≈GP (m(x),k(x, x ′)) (4.4)

In building a metamodel with Gaussian Processes the correlation function between the
training points needs to be chosen which forms the basis of the model. In this case, the
correlation function (Equation 4.5) is chosen as a squared exponential Gaussian in R3 with
a shape factor l 2 and an amplitude factor σ f which in this case are both set equal to 1. To
add more flexibility to the correlation function, the contribution of each design parameter
is determined based on the Euclidean distance and is weighted with a coefficient ai for
each calibration parameter (Equation 4.6). This makes the shape factor l 2 obsolete and
would interfere in the hyper-parameter optimization process. The factor σ f is set equal
to 1 because in the noiseless GPR there is no influence on the solution and in the noise
included GPR a value of 1 is suitable because it preserves the ratio between the normalized
mean values and coefficient of variation. These coefficients are called hyper-parameters
which can be user-defined or optimized. In Gaussian Process Regression it is common to
optimize these hyper-parameters by using type II log-likely-hood maximization [86]. In
this method the negative marginal log-likely-hood function (Equation 4.7) is minimized
to find the hyper-parameter values. Where K is the covariance matrix,σ2

n is the coefficient
of variation in the training points, and N is the total number of training points. In the
noiseless GPR the coefficient of variation in the training points is equal to zero whereas it
contains the coefficients of variation in each datapoint in the noisy GPR.

φ(x) =σ f e
−1
2l 2 r 2

(4.5)

r =
√

(a1(x1 −x1,c )2 +a2(x2 −x2,c )2 +a3(x3 −x3,c )2) (4.6)

log (P (y |X )) =−0.5yT (K +σ2
n I )−1 y − 1

2
log K +σ2

n I )− N

2
log2π (4.7)

The maximization problem is solved using a constrained optimization solver in [-1,1] R3

using the interior point method on which theory can be found here [111]. To ensure that
the initial guess for this gradient-based solver does not miss the global optimum we have
used 100 random initial guesses to rule out this effect. After solving the maximization
problem, the found optimum for the hyper-parameters of each KPI is fixed input in
training the calibration metamodels used for optimization of DEM-parameters.

The metamodel prediction (Equation 4.8) for the mean value consists of the correlation
between the training points and predicted point, k(x, x∗). This is multiplied with the
inverse of the summation of the Gram matrix K (x, x) and the variances σ2

n and with
the reference values y from the DEM simulation results for the training points in the
calibration space to obtain a prediction of the mean at x∗. The variance predictor
(Equation 4.9) is a correction based on the prior covariance of the predicted points
k(x∗, x∗) minus the information the training points give about the function [86].

f (x∗) = k(x, x∗)T (K (x, x)+σ2
n I )−1 y (4.8)
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V ( f ∗) = k(x∗, x∗)−k(x, x∗)T (K +σ2
n I )−1k(x, x∗)T (4.9)

In this case study we defined three KPIs, the angle of repose β, angle of movement
θ, and the bulk density ρb for each of which we have developed the interpolation-
based and regression-based metamodels. All these calibration metamodels have DEM
parameters as their variables, the sliding friction µs , rolling friction µr , and the particle
density ρp . For the interpolation-based metamodels this results in six metamodels. A
separate mean and variance predictor for each KPI. In the regression-based metamodel
the mean and variance predictor are included in a single model which results in three
metamodels. Notation: Interpolation-based metamodels are denoted by IBM, regression-
based metamodels by RBM, followed by the abbreviation of the calibration method. M
for the mean calibration and MV for the mean-variance calibration.

4.4.4. CALIBRATION OF DEM PARAMETERS

In the previous section we have described the two types of calibration metamodels
that are developed for the calibration procedure. Both these models can predict mean
and variance values for the KPIs of the laboratory scale experiments. Next to these two
metamodeling approaches, in the calibration of the design parameters we can choose
between using a mean (M) or mean-variance (MV) calibration approach. Here, the mean
calibration approach focusses on matching the mean values of the experimental and
numerical KPI values. The mean-variance approach matches both mean and variance
values of the experimental and numerical KPI values. As discussed in Section 4.2, the
calibration targets are the experimentally obtained mean and variance for which we
assume that the found values are the true mean and variance. This means that in
the calibration we do not include the confidence intervals around the found mean
and variance values. In this section these two approaches and the used solver for
the optimization problem are described. The following calibration approaches will be
evaluated.

1. Mean calibration with interpolation-based GP model (IBM-M)

2. Mean-Variance calibration with interpolation-based GP model (IBM-MV)

3. Mean calibration with regression-based GP model (RBM-M)

4. Mean-Variance calibration with regression-based GP model (RBM-MV)

The two calibration approaches are applied to each of the two calibration metamodels
for an increasing number of repetitions. This means that calibration metamodels are
trained with data for all number of repetitions individually to see how the optimal solution
changes with increase of the number of repetitions.

To calibrate the DEM-parameters a multi-objective optimization problem is formulated
which is solved using constrained optimization with the interior-point-method [111]. In
order to find a global optimum, the optimization is run 100 times with different initial
guesses in the calibration space to find the optimum DEM-parameter set.
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MEAN MULTI-OBJECTIVE OPTIMIZATION PROBLEM

For the mean calibration problem the goal is to match the mean KPI values from the
experiments to those of the simulations. To calibrate the DEM-parameters the following
multi-objective optimization problem is defined.

mi n c(x) (4.10)

Where c(x) is a summation of the objectives for the optimization problem. The goal of
calibration is to find DEM parameter values for the sliding and rolling friction coefficient
for the interaction between gravel particles and the particle density. For each KPI (Angle
of Repose, Angle of Movement, bulk density) an objective is defined according to the
following equation,

ci (x) = wi
Ki−e −Ki−s (x)

Ki−e

2

(4.11)

Where Ki represents the KPI, wi the weight of the objective, and x is a vector containing
the DEM parameter values. The subscript e for the KPI denotes that it is the experimental
value and the subscript s of the KPI denotes that it is the numerical or simulation
value. The term Ki s (x) provides a prediction of the mean and variance of the KPI by
the metamodel described in Section 4.4.3. The objective is normalized by the simulation
value of the KPI and squared such that the objective returns a positive value.

For this case study there are three KPIs resulting in three objectives which are summed in
c(x). Each objective is normalized and is therefore equally important if the weights are
equal to one. For the clarity of this study the we have decided to keep the weights equal
to 1, w = [111]. However, in practical applications these weights can be adjusted if the
engineer or researcher decides that some KPIs are more important than others.

MEAN-VARIANCE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

For the mean-variance calibration problem the definition of the optimization problem is
the same as in Equation 4.11. However, in addition to the mean objectives the relation
between the mean and variance is utilized to define six additional objectives. These
objectives are the mean plus and minus the standard deviation, which is the square root
of the variance, of the KPI. The standard deviation of the KPI is used because it has the
same unit as the mean. The upper bound is defined as the error between the sum of
the experimental mean Ki−e and standard deviation value σ(Ki−e ) and the sum of the
numerical prediction for the mean Ki−s and standard deviation σ(Ki−s ) as described in
Equation 4.12. The lower bound is defined as the error between the experimental mean
minus the standard deviation value and the numerical prediction for the mean minus the
standard deviation as described in Equation 4.13.

ci (x) = wi

(
(Ki−e +σK i−e )− (Ki−s (x)+σK i−s (x))

Ki−e +σK i−e

)2

(4.12)

ci (x) = wi

(
(Ki−e −σK i−e )− (Ki−s (x)−σK i−s (x))

Ki−e −σK i−e

)2

(4.13)

In the mean-variance calibration problem each objective has a weight. Here, the weights
indicate the importance of each part of the objective function. For the objective of the
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mean value the same weights are used as in the mean calibration case. The weights for the
mean ± standard deviation objectives is defined by a factor C which scales the influence of
these objectives. The value chosen for C = 0,5 and kept constant in this case study which
result in the weight vector w = [1 C C 1 C C 1 C C ]. We assume that the lower and upper
bound are equally important and that the sum of these should be equally as important as
the mean objective of the specific KPI.

4.4.5. VERIFICATION OF DEM PARAMETER SETS

For each of the four calibration approaches described in the previous section, 50 sets
of DEM-parameters for metamodels trained with mean and variance data are obtained.
These optimal DEM-parameter sets are applied to the DEM models of the laboratory
scale experiments. The results are verified by comparing KPIs from the simulation results
to the calibration targets. To reduce the number of simulations, a selection of obtained
DEM-parameter sets will be evaluated. This selection is defined by the DEM-parameter
sets corresponding to 1, 2,. . . , 10, 15, 20, 30, 40, 50 repetitions. Simulations for these
15 sets are repeated with the same number of repetitions as the number of repetitions
used to train the metamodels. From these simulations the mean and standard deviation
values for the KPIs are determined. These values are used to verify the accuracy of the
metamodel prediction of the optima of the KPIs mean and mean ± standard deviation.
Furthermore, the verification results are evaluated with respect to the calibration targets
to get insight on the quality of the calibration results.

4.4.6. VALIDATION OF OPTIMAL DEM PARAMETER SETS FOR LARGE SCALE

HOPPER MODEL

In addition to the verification, the DEM parameter sets need to be applied to the DEM
model of the hopper and simulated. The hopper discharge experiments described in
Section 2.2 were repeated 5 times so for the validation the DEM parameter sets from the
mean and mean-variance calibration were repeated 5 times as well. This procedure as
applied to the same solutions as described in the previous section to reduce the number
of computations. The results from these simulations are used to determine the error
between the experimental results and numerical results by using the following equation.

ϵφ = φs −φe

φe
×100% (4.14)

To determine if the interpolation-based or regression-based metamodel with the mean or
mean-variance calibration results in the best performing DEM model the results for 50
repetitions are compared in more detail.

4.5. RESULTS

In this section the results of this study are presented. Section 4.5.1 starts with an evaluation
of the quality of the interpolation-based and regression-based metamodels. Next, the
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calibration results are evaluated in Section 4.5.2 followed by the verification of these
results in Section 4.5.3. In this section the quality of metamodel prediction of the KPIs is
verified first followed by a comparison between the predicted KPIs and the calibration
targets. In Section 4.5.4 the validation results are presented for the large-scale hopper
application.

4.5.1. METAMODELS FOR CALIBRATION

The quality of the metamodel determines the quality of the DEM parameter set found
through optimization. To gain insight on the quality of the metamodel the training
error of the model can be assessed. Because training error does not give insight in the
quality of the predictions in between training points the predictions by the metamodel
are compared to a validation set.

4.5.1.1. TRAINING ERROR

The calibration models have been trained according to the method described in Section
4.4.3. For these models, the normalised root mean squared error (NRMSE) is calculated
such that the accuracy in training of the model can be evaluated and compared for the
different KPIs, (Equation 4.15).

N RMSE =

√
ΣN

i=1

f ∗
i (x)− fi (x)2

N

f̄
(4.15)

In Figure 4.11 the NRMSE for the mean, mean ± standard deviation for the interpolation-
based and regression-based metamodels are shown. In Figure 4.11 (a) to (c) it can be
seen that the error of the interpolation-based metamodel is close to machine precision
which can be regarded as numerical noise. This can be explained by the fact that the
interpolation-based models are exact in the data-points. In Figure 4.11 (d) to (f) the RSE
for the stochastic models is shown where errors in the mean prediction are small but
errors in the mean ± standard deviation are significant. The trend of the RSE of the Angle
of Repose and Movement indicates that increasing the number of repetitions leads to a
decreasing error up to 20 repetitions after which stabilisation occurs. The NRMSE for the
bulk density is below 0,0005 which indicates an accurate metamodel. The majority of the
improvement of the regression-based metamodel accuracy for the Angle of Repose and
Movement occurs up to the first 20 repetitions, which is an indication of the importance
of repeating simulations to obtain accurate metamodels. Based on the training error the
RBM of the bulk density is best, followed by the RBM of the AoM, and lastly the AoR.

4.5.1.2. VALIDATION ERROR

The results in Figure 4.11 show that the interpolation-based metamodels (IBM) are more
accurate in the data-points than the regression-based metamodels (RBM). However, the
accuracy of a metamodel is mainly determined by its ability to predict KPI values at
locations in between the used training set. To verify this ability a validation strategy
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Figure 4.11: Normalized Root Mean Squared Error (NRMSE) in the training points for interpolation-based
metamodels (a,b,c) and regression-based metamodels (d,e,f) for the Angle of Repose β, Angle of Movement θ,
and Bulk Density ρb data
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such as validation set approach (VSA), Cross-validation, or leave one out cross validation
(LOOCV) should be used [55]. Therefore, an additional 32 data point sampling set has
been simulated for 50 repetitions such that the 20% validation set approach can be
applied. The results in Figure 4.12 show the NRMSE error for the interpolation-based
metamodel in (a-c) and for the regression-based metamodel in (d-f).

For all KPIs and both the IBM and RBM approach it shows that the addition of repetitions
to the dataset leads to a decrease in NRMSE. The difference between the IBM and RBM
approach is that the NRMSE of the IBM develops less consistent than the error of the RBM.
Considering the mean prediction of the AoR and AoM the NRMSE is 1,5 to 2,5 times lower
for the RBM models than for the IBM models. This means that the RBM models are more
reliable in predicting the mean. For the mean prediction of the bulk density we see that
both the IBM and RBM metamodels lead to similar levels of accuracy. With respect to the
bandwidth of the standard deviation around the mean it is observed that for the IBM the
error is in the same range as the mean error. This indicates that these models have a small
prediction error in the magnitude of the standard deviation but that the error of the mean
causes a large shift of the bandwidth. For the RBM of the AoR we see different behaviour.
In addition to a shift of the bandwidth due to the mean error it is observed that the mean
± standard deviation has a larger error for the lower limit than for the upper limit. This
indicates an additional error introduced by the RBM in the prediction of the variance.
This same behaviour is also visible for the AoM but has a smaller magnitude compared to
the AoR results. In contrast to the mean ± standard deviation of the bulk density for the
IBM the bandwidth error of the RBM decreases fast in the first 20 repetitions.

Overall, the regression-based metamodel is more reliable in predicting the mean value
which results in smaller offsets in the location of the bandwidth of the standard deviation
around the mean. Due to the error in mean prediction by both metamodel types the
standard deviation bandwidth has an offset. For the IBM the prediction of the standard
deviation is accurate in magnitude but has an offset in location due to the error of the
mean. The RBM has an inaccurate prediction of the standard deviation magnitude and
an induced offset due to the error in the mean prediction leading to an asymmetric
bandwidth of the standard deviation.

4.5.2. CALIBRATION RESULTS

The resulting DEM parameter values of the mean (M) and mean- variance (MV) calibra-
tion with the interpolation- and regression-based metamodels (IBM & RBM) are shown
in Figure 4.13. For all three calibration parameters it is observed that the calibration
with interpolation-based metamodels results in irregular development of the parameter
values µs , µr , and ρp with the increase of the number of repetitions. On the contrary,
the regression-based metamodel calibration presents a relatively smooth and steady
parameter evolution for an increasing number of repetitions. This indicates that the
optimal DEM parameter set is approximately reached at 20 repetitions, which is useful
information if this method is applied in engineering practice. Note also that at a more
conventional amount of 3-5 repetitions, the parameter values have not stabilized for
either method. In Figure 4.14 (a-f) the mean and mean ± standard deviation of the KPI
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Figure 4.12: Normalized Root Mean Squared Error (NRMSE) in the validation points for interpolation-based
metamodels (a,b,c) and regression-based metamodels (d,e,f) for the Angle of Repose β, Angle of Movement θ,
and Bulk Density ρb data
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Figure 4.13: Development of the DEM parameter values µs , µr , and ρp resulting from mean (M) and mean-
variance (MV) calibration with interpolation- and regression-based metamodels (IBM & RBM) with increasing
number of repetitions.
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values are presented corresponding to the optimal DEM parameter values in Figure 4.13.
For all four calibration approaches, Figure 4.14 (a) and (b) shows the Angle of Repose as a
function of the number of repetitions. Figure 4.14 (c) and (d) show the Angle of Movement
and (e) and (f) show the bulk density. Figures (a,c,e) show the results obtained with the
mean and mean-variance calibration approach with the interpolation-based metamodels,
and Figures (b, d, f) show the results obtained with the regression-based metamodels.
With respect to the IBM and RBM calibration the clear difference is the consistency of the
calibration results obtained with the RBM compared to the IBM calibration results. As
was observed with the validation of the metamodel in Section 4.5.1 the IBM models are
more sensitive to changes in the dataset than RBM models.

Even though IBM is more sensitive to changes in the dataset, the performance for both
mean and mean-variance calibration with the IBM is good. For the mean calibration, the
match of the AoR and AoM is good over the entire range and the bulk density has a good
match after 36 repetitions. The match for mean ± standard deviation is close for the AoR,
twice the target for the AoM and half of the target for the bulk density. This is reasonable
because the mean ± standard deviation is not included in mean calibration. For the
mean-variance calibration the match of the mean value of the AoR is good. The match to
the mean of the AoM is quite good but less than for the mean calibration. The mean of the
bulk density fluctuates considerably before converging to a relatively good match. The
mean ± standard deviation is included in the mean-variance calibration approach and
shows a slightly better match to the targets compared to the mean calibration approach.

The performance of the calibration approaches with the RBM models gives consistent
results. However, the error between the calibration results and the target is significant and
is around -5% for the AoR and +5% for the AoM over the entire range of repetitions. For
the bulk density a good fit to the calibration target was found after 10 repetitions. With
respect to the mean ± standard deviation values the AoR shows that the bandwidth is half
of the calibration target. For the AoM the bandwidth is similar to the target in magnitude
and half of the target for the bulk density. Comparing the mean and mean-variance
calibration approach with the RBM it is observed that there is no significant difference
between the calibration results apart from a small shift. This means that in this case there
is no added benefit by adding the variance to the calibration. At 50 repetitions, the dataset
for training the metamodels has the highest reliability and therefore we assume that the
results of the calibration is the most accurate. In Table 4.7 the DEM parameter values for
calibration with 50 repetitions are shown. For the IBM calibration it can be seen that the
DEM parameter values are close. The largest difference can be observed for the particle
density. For the RBM calibration we can see that the DEM parameters are more or less
similar for the mean and mean-variance calibration. Between the interpolation-based
and regression-based metamodel calibration it can be seen that the sliding friction is
slightly higher, the rolling friction is almost 2,5 times higher, and the particle density is in
the same range.
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Figure 4.14: Mean and mean-variance calibration results for the Angle of Repose, Angle of Movement, and Bulk
Density for the interpolation-based metamodel (a,c,e) and regression-based metamodel (b,d, f) respectively.
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Table 4.7: DEM parameters after calibration for mean and mean-variance calibration with interpolation-based
and regression-based metamodels at 50 repetitions of the sample

IBM-M IBM-MV RBM-M RBM-MV
µs 0.5198 0.5106 0.5513 0.5506
µr 0.1996 0.2010 0.4885 0.4804
ρp (kg /m3) 2767.0 2812.7 2763.5 2766.2

4.5.3. VERIFICATION OF LABORATORY SCALE SIMULATIONS AND VALIDATION

WITH EXPERIMENTAL RESULTS

In this section the verification results from the mean (M) and mean-variance (MV)
calibration for the interpolation- and regression-based metamodels (IBM & RBM) are
presented. In Section 4.5.3.1 the results from the verification simulations are compared
to the KPI values corresponding to the calibration results. This comparison gives an
indication of the quality of the metamodel predictions in the calibration procedure.
In Section 4.5.3.2 the results from the verification simulations are compared to the
calibration targets which gives insight on the quality of calibration results. For the DEM
parameter sets of the cases where [1,..,10, 15, 20, 30, 40, 50] repetitions were used the
simulations of the laboratory scale experiments are verified.

5.4.3.1. COMPARISON KPI VERIFICATION SIMULATIONS AND CALIBRATION RESULTS

The calibration results are a prediction by the metamodel which can include errors as
shown with the training and validation error evaluation in Section 4.5.1. In Figure 4.15
(a-d) the error percentage between the calibration and verification results for the mean of
each KPI and mean ± standard deviation of each KPI are shown to indicate the magnitude
of this metamodel prediction error. For the IBM-M and IBM-MV results in Figure 4.15
(a) and (b) large errors with respect to the calibration results is seen for the Angle of
Repose β and the Angle of Movement θ when the number of repetitions is below 10. For
the IBM-M calibration results the error in the Angle of Movement stays large until 30
repetitions and reduces for a higher number of repetitions. On the contrary, the Angle
of Repose becomes more accurate after 10 repetitions but becomes inaccurate after 30
repetitions. This might be caused by overfitting which is a known risk of interpolation-
based metamodels. Figure 4.15 (b) shows similar behaviour for the IBM-M and IBM-MV
calibration results, however the point of change is located at 20 repetitions instead of
30. Overall, the verification results show that for mean and mean-variance calibration
with interpolation-based metamodels large errors can occur even at higher numbers of
repetitions. For the error in the mean ± standard deviation bandwidth asymmetry can be
observed which is caused by the inaccurate prediction of the mean. The Angle of Repose
exhibits an error of -10% for the upper limit and -20% for the lower limit. The error is
within 5% for the Angle of Movement and is below 1% for the Bulk Density.

In Figure 4.15 (c) and (d) the verification error of the regression-based metamodel
calibration results are shown. For the mean prediction by both mean and mean-variance
calibration results large errors are observed up to ten repetitions but the magnitude is
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smaller than for the IBM calibration results. The errors for the mean ± standard deviation
are significant. After 10 repetitions, the verification error is close to zero for the Angle of
Movement and bulk density for both the mean and mean-variance calibration. For the
Angle of Repose the error stays within a 5% bandwidth when the number of repetitions
is increased. The error in the mean ± standard deviation bandwidth is quite symmetric
because of the accurate prediction of the mean value. However, the magnitude shows an
error of 15% for the Angle of Repose, 7% for the Angle of movement and below 1% for the
Bulk Density. As expected for both IBM and RBM the error in the Bulk density prediction
is small because the error in the validation of both metamodels was small.

4.5.3.2. COMPARISON KPI VERIFICATION SIMULATIONS AND CALIBRATION TARGETS

The verification simulations show that RBM metamodels give more reliable calibration
results. However, the next step is to look at the quality of the calibration results compared
to the calibration targets. In Figure 4.16 the percentage error between the calibration
results and calibration targets are shown for the mean and mean-variance calibration with
the IBM and RBM metamodels. While the calibration results for the interpolation-based
metamodels showed a good fit to the calibration results in Figure 4.14, it can be seen in
Figure 4.16 (a) and (b) that the error observed with the verification leads to errors with the
calibration target. This is especially visible for the Angle of Repose up to 30 repetitions
and Angle of Movement after 30 repetitions. For the IBM calibration it is observed that
the calibration results are inconsistent with the increase of the number of repetitions.
The RBM calibration results in Figure 4.16 (c) and (d) show more consistency. Especially
after 30 repetitions a balance can be found between the error for the Angle of Repose and
Movement where the percentage error stays the same. The stability and consistency in
these results make the regression-based metamodel calibration more reliable. There are
no significant differences observed between the mean and mean-variance calibration.

To determine which calibration method performs best the results for 50 repetitions
are compared to the experimental results for the calibration targets. In Table 4.8 the
percentage error between the verification result and calibration target is shown for 50
repetitions. At 50 repetitions, the percentage error for the calibration with interpolation-
based metamodels is between 11 and 14% for the Angle of Repose, 1 and 1,5% for the Angle
of Movement, and 0,5 to 2,5% for the Bulk Density. The results for the calibration with
regression-based metamodels shows errors between 5 and 6% for the Angle of Repose,
4,5 and 5,5% for the Angle of Movement and 0,1% for the Bulk Density. Here it is clearly
visible that even though the errors in matching the calibration targets is quite large the
calibration results with regression-based metamodels are more balanced than those of
the interpolation-based metamodels. Due to the errors in the mean value of the KPIs the
bandwidth of the standard deviation will exhibit an asymmetric error as presented in the
bottom section of Table 4.8. On average, the mean-calibration with the regression-based
metamodels presents the best match to the experimental calibration targets and gives the
most reliable DEM parameter set for this case. Based on these results it can be seen that
the predictions by regression-based metamodels are more reliable which makes these a
better choice for the calibration of the DEM parameters even though in the final results
the predictability of the mean ± standard deviation is poor. The discrepancy in the mean
± standard deviation might also be a result of the modelling assumptions for the DEM
models of the laboratory experiments themselves, where the stochastic behaviour as
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Figure 4.15: Percentage error for the mean (·) and mean ± standard deviation (+,∆) for the Angle of Repose β
(blue), Angle of Movement θ (red), Bulk Density ρb (magenta) for (a) interpolation-based metamodel mean
calibration (b) interpolation-based metamodel mean-variance calibration (c) regression-based metamodel
mean calibration (d) regression-based mean-variance calibration.
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Figure 4.16: Error verification results to calibration targets
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Table 4.8: Percentage error between verification results and experimental calibration target values where the
underlined results show the most accurate result

IBM mean IBM mean-variance RBM mean RBM mean-variance

Mean KPI % error
AoR -13.17 -11.19 -5.02 -5.73
AoM 1.34 1.14 5.19 4.87
BD 0.71 2.37 -0.04 0.06

Mean ± standard deviation KPI % error
AoR -8.00 / -19.28 -6.73 / -16.44 0.05 / -11.01 -0.62 / -11.75
AoM 4.21 / -1.73 5.07 / -3.07 10.83 / -0.83 10.36 / -0.99
BD 0.28 / 1.14 1.84 / 2.91 -0.47 / 0.38 -0.39 / 0.52

seen in experiments is captured to a lesser extent. As shown in the results, there is no
significant difference in the outcome of the mean vs. mean-variance calibration using
the regression-based metamodels. In addition, the calibration procedure using multiple
laboratory setups leads to a multi-objective problem for which it is not certain that there
is an optimal solution matching all the targets perfectly. As decided in Section 4.4.3 the
weight of each objective was kept to one for the mean and 0.5 for the variance interval. By
changing these values objective weights can be changed, ultimately affecting the outcome
of the calibration. An in-depth investigation of this influence is however outside of the
scope of this study.

4.5.4. VALIDATION OF HOPPER MODEL

In this section we present the validation of the DEM model of the hopper described
in Section 4.3 with the experimental results described in Section 4.2. For this model
the discharge rate of the hopper during steady flow is compared for the DEM model of
the hopper and the experiments. The calibration of the DEM parameters lead to 4 sets
(IBM-M, IBM-MV, RBM-M, RBM-MV) of DEM parameters for each number of repetitions
that was used in training the metamodels for the calibration. For the DEM parameter
sets of the cases where [1,..,10, 15, 20, 30, 40, 50] repetitions were used the hopper
simulations have been carried out five times, the same as the number of experiments. In
Figure 4.17 the obtained mean and standard deviations for the discharge rate are shown
for each of the cases. In these results a large difference between the results obtained
with the interpolation-based and regression-based metamodels can be observed. The
interpolation-based metamodel calibration results show for both the mean and mean-
variance calibration that there is much fluctuation in the results. The mean-calibration
mean error follows an irregular path which is close at 30 repetitions but far from the
validation target for the other points. In the mean-variance case the mean error tends to
decrease up to 15 repetitions after which the error starts increasing continuously. In terms
of the bandwidth of the mean ± standard deviation large fluctuations are present for the
mean calibration but less for the mean-variance calibration. Indicating that including
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the variance in the calibration has a certain effect. Compared to the bandwidth of the
validation target the bandwidth in the simulation results is larger. For the regression-
based metamodel calibration the results are closer to the experimental results for the
entire range of repetitions. Both mean and variance calibration cases show a stable offset
which starts decreasing after 15 repetitions. For the mean ± standard deviation it is
observed that after 10 repetitions the bandwidth stabilises at a bandwidth that is around
two times the bandwidth of the validation target. From these results it can be seen that the
calibration with the regression-based metamodels leads to more stable output compared
to the calibration with the interpolation-based metamodels. Mean-variance calibration
shows slightly better performance than the mean calibration but in terms of confidence
intervals with five repetitions this observation is not significant. Table 4.9 shows the
mean and the standard deviation of the discharge rate for the calibration results with 50
repetitions. For both these results the 95% confidence intervals are also shown based on a
t-distribution where n=5. For these intervals we applied the same method as described in
Section 4.2. In the third column the relative errors to the mean and the mean plus minus
the standard deviation are shown.

The results show that for the discharge rate the mean-variance calibration with the
stochastic model gives the most accurate prediction of the discharge rate (RBM-MV).
This model is followed by the mean calibration with the stochastic model (RBM-M), the
mean calibration with the deterministic model (IBM-M), and lastly the mean-variance
calibration with the deterministic model (IBM-MV). Differences of up to a factor 6 are
found in the mean error percentage, while all methods use the same dataset. This
illustrates the importance of using the correct calibration procedure. Overall, it is observed
that the variance prediction shows large errors with respect to values found in the
experiments. This indicates that the results from the DEM model of the hopper with the
optimal DEM parameter sets have a higher variability than those from the experiments.
Reasons for this observation might be the simplification of particle shape from irregular
to spherical and uniformity assumption of material properties and contact parameters in
the DEM model.
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(a)

(b)

Figure 4.17: Results for the validation simulations of the hopper with respect to the number of repetitions
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Table 4.9: Percentage error between verification results and experimental calibration target values where the
underlined results show the most accurate result

Model Discharge rate φ(kg /s) Percentage error with respect to the
experimental results

mean (95% CI [LL;UL]) ±sigma (95%
CI [LL ;UL])

Experimental
results

3,70 (95% CI [3,67 ;3,73])±0,026 (95%
CI [0,014 ; 0,056])

Reference

IBM-M 3,86 (95% CI [3,77 ;3,95])±0,081 (95%
CI [0,036 ; 0,260])

mean error 4,84% (mean ± std) error
(3,33% ,6,33%)

IBM-MV 3,98 (95% CI [3,92 ;4,04])±0,052 (95%
CI [0,023 ; 0,167])

mean error 8,15% (mean ± std) error
(7,46% ,8,83%)

RBM-M 3,81 (95% CI [3,76 ;3,85])±0,038 (95%
CI [0,017 ; 0,121])

mean error 3,34%(mean ± std) error
(3,01% ,3,67%)

RBM-MV 3,76 (95% CI [3,62 ;3,80])±0,037 (95%
CI [0,016 ; 0,118])

mean error 2,15% (mean ± std) error
(1,84% ,2,46%)

4.6. CONCLUSION

Experiments with granular materials often exhibit significant variation, which have to the
best of the authors’ knowledge not been included in calibration approaches. In this paper
we investigated the inclusion of stochastics throughout the development of the DEM
model, in the calibration, verification with lab experiments, and validation with a hopper
application. We used metamodels to predict KPI values and proposed a mean-variance
calibration approach that includes the variance of the calibration experiments in the
objectives of the calibration procedure. The conclusions of this study are as follows.

• The calibration experiments showed stability for the KPI mean after 5 repetitions
for the bulk density, 10 for the Angle of Movement, and 30 for the Angle of Repose.
However, in practice 3-5 repetitions is common which means that increasing
the number of repetitions should be considered for obtaining reliable calibration
targets.

• Stabilization of experimentally obtained variances occurs at a higher number of
repetitions than stabilization of the mean, which is an additional motivation to
consider the required number of repetitions.

• Based on the verification results in this study, regression-based metamodels prove
to be better at predicting mean KPI values than interpolation-based metamodels,
both in terms of accuracy and number of required repetitions, and are therefore
recommended in metamodel or surrogate model based calibration.

• Both regression-based and interpolation-based metamodels give inaccurate predic-
tions of the variance for the DEM models of both the calibration and the validation
experiment. The cause of these inaccuracies might be related to the modelling
assumptions in the DEM model or to the used number of repetitions in training the
metamodel.
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• Accurate prediction of KPI variances by metamodels proves to be harder than
predicting KPI means. Therefore, further research is needed on accurately including
the variance in DEM model calibration.

Although this study focused on a particular granular material, DEM model and application
example, it is expected that the observed trends and the associated conclusions extend
to a wide range of use cases, due to the inherent stochastic nature of granular processes.
Therefore, it is recommended to conduct further research on including and identification
of stochastic behavior in granular processes and their implications on DEM modeling of
particulate systems.



5
DETERMINISTIC VS. ROBUST

DESIGN OPTIMIZATION OF A

DISCHARGING HOPPER: A
VALIDATED CASE STUDY

In design of bulk handling equipment optimization techniques are not commonly applied
because of the high computational costs of detailed models such as DEM. As shown in the
previous chapters, metamodels are a technique which makes capturing global behaviour
and calibration more effective. These metamodels make design optimization of bulk
handling equipment possible. In this chapter the numerical data obtained with the hopper
DEM model is used to train a stochastic metamodel. This stochastic metamodel is used to
investigate deterministic and robust design optimization strategies for hopper design. The
results from the optimization are validated through a series of additional hopper discharge
experiments. These results show that reliable designs can be obtained through the presented
design process and that including metamodels makes the entire process more efficient.

Parts of this chapter have been published in the Journal of Powder Technology, M.P. Fransen, M. Langelaar, D.L.
Schott, Deterministic vs. robust design optimization using DEM-based metamodels (2023) [112].
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5.1. INTRODUCTION

In design of Bulk Handling Equipment (BHE) the use of Discrete Element Method (DEM)
models to predict and evaluate performance in equipment design is increasing. The
major advantage of this approach is the ability to evaluate a wide range of equipment
designs without the need of conducting expensive experiments. The major downside is
that if the number of particles [113], complexity of the equipment kinematics [13, 105],
and interaction complexity [100, 114] increases, the computation time of simulations is
increases as well. In addition, DEM models require calibration which also becomes a
computationally intensive process if the number of calibration parameters is increased
[8, 51, 115].

To counteract these high computational costs, metamodels are used in both calibration
of and design of bulk handling equipment. Richter & Will introduced a metamodel-
based global calibration (MBGC) framework and showed how metamodels can be ef-
fectively used in calibration [116]. Most DEM calibration optimization problems are
multi-objective optimization problems (MOOP) with multiple calibration parameters
[115]. Furthermore, a number of metamodeling approaches were successfully used
in calibration of DEM models. Artificial neural networking (ANN), Gaussian process
regression (GPR), multi-adaptive regression splines (MARS), and universal kriging (UK)
were applied by Richter et. al. [106]. An iterative Bayesian framework including a
Gaussian mixture model (GMM) is used by Cheng et. al. [8]. Based on the findings
by Fransen et. al. (2022) it is recommended to use regression-based metamodels for the
mean prediction to obtain accurate calibration results at low costs. Similar benefits are
expected in using metamodels for design optimization where typically a large number
of performance evaluations is required. However, it is important to note the limitations
of the use of metamodels as they are approximations of the DEM model and therefore
inherit a model error. Overall, metamodels perform well when used to interpolate but
poor in extrapolation. Therefore, quality of the data and the sampling are important for
the performance of a metamodel. Metamodel-based design optimization (MBDO) is
referred to by Wang & Shan [19] but in design of bulk handling equipment metamodels
have not been used extensively [55]. In design, we generally have to deal with similar
problems as in DEM model calibration: multiple design parameters and performance
characteristics, which requires similar solving techniques.

Currently, the focus of optimization of BHE designs is on the mean performance of
the equipment [11, 13], i.e. the deterministic approach. However, granular systems
are stochastic in nature resulting in uncertainty of design performance. To achieve an
optimal design which has a good match to the mean performance and a minimized
variance robust optimization strategies can be applied [117, 118]. As indicated for the
calibration of DEM models it is an effective approach to use DEM-based metamodels
in MBDO instead of DEM simulations in the loop for calibration parameter estimation.
In the case of robust design optimization, metamodels can be used in a similar fashion
because they can predict both mean and variance. To the authors’ knowledge, robust
MBDO has not been investigated in relation to bulk handling equipment design.
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The aim of this study is to show how robust metamodel-based design optimization
can be applied to bulk handling equipment design with DEM-based metamodels and,
to show how this method compares to a conventional deterministic approach and to
identify application challenges. In this study, we present a methodology/framework
for robust Metamodel-based Design Optimization (MBDO) for design of bulk handling
equipment in Section 5.2. Next, Section 5.3 describes the design problem for a discharging
hopper starting with a description of the experimental setup and DEM model, followed
by the analysis of experimental and DEM results and sampling of the design space. It
continues with a description of training the DEM-based metamodel and a formulation of
the optimization problem. Lastly, the two design case studies are described to which the
robust MBDO approach and deterministic MBDO are applied. In Section 5.4, the resulting
DEM training set is evaluated as well as the resulting metamodel. This is followed by
the results of the two design case studies where deterministic and robust optimization
are compared. This section ends with a discussion on the obtained results related to the
quality of the DEM data compared to experiments, mismatch between DEM metamodel
predictions and the verification results, and the discrepancies observed between DEM
metamodel predictions and experimental results.

5.2. METHODOLOGY

Bulk handling equipment is used to transport or process wide varieties of granular mate-
rial. However, the behaviour of a granular material in general is stochastically distributed.
This stochastic behaviour is caused by differences in particle packing’s, sizes and in
variations of material properties. Additionally, properties of the bulk material such as
consolidation, moisture content, and temperature might affect the inter-particle physics
leading to variable bulk strength and cohesion. This leads to distributed performance of
the BHE around a certain mean performance. Even though this is known, the stochastic
behaviour of the granular material and its effect on the equipment performance is not
considered in the design process. Therefore, we introduce a methodology that includes
the stochastic behaviour of granular materials in the bulk handling equipment design
process.

In this section the global implementation of robust metamodel-based design optimization
(MBDO) including verification and validation to design of bulk handling equipment is
explained. The scheme in Figure 5.1 shows the steps taken in the design process of BHE
if MBDO, verification, and validation are included. A bulk handling equipment design
problem starts with describing the system or problem where design and key performance
indicators (KPIs) are defined. The next step in the approach is to create a numerical model
of the equipment and the material that needs to be handled. For this purpose the Discrete
Element Method (DEM) is used which can simulate behaviour of the bulk and interaction
with the equipment. However, DEM models are generally a simplification of the physical
system and are therefore reliant on calibration of material and contact parameters of the
DEM model. After the calibration of the DEM model, this model needs to be validated to
demonstrate that the model possesses a satisfactory range of accuracy consistent with the
intended application of the model within its domain of applicability [119]. The calibrated
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and validated DEM model of a hopper used in this study is adopted from Fransen et. al.
[51]. DEM simulations take a considerable amount of time, which makes direct use of
DEM models in optimization inconvenient. To overcome this, a metamodel-based design
optimization (MBDO) procedure can be used. This procedure uses a DEM data set to
train a metamodel which gives predictions on BHE performance at low cost.

The first block in MBDO is design space sampling and DEM data generation shown in
Figure 5.1. After sampling the data, the DEM model can be used to generate the data. As
the DEM model is stochastic due to the random initial packing of material this means
that the simulations need to be repeated for each sampling point. This gives information
about the average performance and the standard deviation of the design performance
prediction. For a metamodel to be able to predict both mean and variance, it is essential
that both are included in training the metamodel.

The second step in MBDO is metamodel training, which has been thoroughly described
by Fransen et. al. for a DEM case study [55]. For the proposed robust optimization it is
required that information on the standard deviation of a KPI is supplied during training
of the metamodel such that the metamodel can be trained to give predictions of both
mean and variance of the KPI. In training the metamodel, hyper-parameter optimization
is included such that the best fit of the metamodel to the data is obtained [86]. Moreover,
a common step is to use resampling to improve the quality of the metamodel. However,
when the set verification and validation tolerances are not violated by the initial sample
resampling is not required. In Section 5.3.4 the metamodel training procedure and the
relation to the case study is discussed in more detail.

After training the metamodel, the next step is design optimization which can be further
divided in two types, deterministic and robust optimization. In deterministic optimiza-
tion, only the mean performance of the BHE is used to find the optimal design whereas
in robust optimization the standard deviation of the BHE performance is also included.
These differences are further discussed in Section 5.3.5, which also elaborates, on solving
the optimization problem leading to the optimal design(s). Next, the found optima need
to be verified by carrying out DEM simulations of the found designs. For the verification
of the results, a tolerance is set for the maximum error of the designs’ performance relative
to the optimization target. If the tolerances are not met, resampling of the design space
can be carried out or the weights in the optimization problem can be adjusted. When
the results have reached the desired accuracy, the next step is to validate the optimal
designs using an experimental setup. For the validation, an additional tolerance is set
which should be higher than the verification tolerance because there is a probability
of error propagation through the subsequent steps. If the design reaches the criteria, a
design with the desired performance is obtained and the design procedure is successful.
Verification, validation, and the case studies are further discussed in Section 5.3.6.
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Figure 5.1: Framework for Metamodel-based Design Optimization (MBDO) (red area) included in the process
for bulk handling equipment design
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5.3. DEM-BASED METAMODEL DESIGN OPTIMIZATION FOR A

DISCHARGING HOPPER

The metamodel-based design optimization (MBDO) method described in Section 5.2
is applied to a hopper case study that will be described in this section in more detail.
Specific choices made for the various steps are also detailed here. Hoppers are pieces
of bulk handling equipment that are frequently used in processing plants to regulate
flows of material. In the design of a hopper there are many restrictions such as occupied
space and which construction materials can be used in combination with the bulk being
processed. However, the key performance indicator (KPI) that is most frequently used to
assess the effectiveness of a hopper is the discharge rate.

5.3.1. EXPERIMENTAL SETUP AND DEM MODEL OF HOPPER

In this study, an experimental setup of a semi two-dimensional hopper is considered
which has been shown in Figure 5.2. This setup consists of four adjustable stainless
steel wall sections which can be used to change the geometry of the hopper. These
four adjustable walls are clamped between two 5 mm Perspex plates. The setup is
positioned on load cells such that the force exerted by the bulk can be measured. For
further information on the experimental setup the reader is referred to Fransen et. al.
[51]. The load cell data from the experiments is used to determine the discharge rate.
In addition, the setup is used to validate the results from the deterministic and robust
MBDO. Gravel is used as a bulk material in this experimental setup and was modelled
in DEM using spherical particles. The gravel has been stored in a dry environment with
a low humidity, therefore we assume the material can be regarded as dry and has no
cohesion. In addition, the material falls under the well-graded gravel category for which it
is common to take zero cohesion into account (Swiss Standard SN 670 010b, Characteristic
Coefficients of soils, Association of Swiss Road and Traffic Engineers). After calibration of
the DEM model, the hopper discharge was validated for a hopper configuration with a
hopper angle α of 45◦ and a discharge opening Wo of 100mm. The model from this study
showed an overestimation for the mean of 2,15% and 42% higher standard deviation. Even
though the error in standard deviation is large it is only 1% of the mean. We assume that
this level of error is in the same range in the selected design space. The DEM model is used
to replicate the experimental setup and to generate a DEM data set for the metamodel. In
Figure 5.3 (a) an image of the experimental setup of the hopper is shown and a still from
the initial configuration of the DEM simulation in (b).

5.3.2. ANALYSIS OF EXPERIMENTAL AND DEM SIMULATION RESULTS

The KPI of the case study is the steady-state discharge rate φ for which both the mean and
standard deviation are used. From the hopper discharge experiment the force (Floadcel l )
exerted by the bulk material on the load cell over time is obtained which can be used to
determine the steady-state discharge rate. In Figure 5.4 (a,b) the process of determining
the discharge rate is illustrated for the experimental and DEM data respectively. A
difference between the experimental and DEM data is the presence of spikes in the force
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Figure 5.2: Experimental hopper setup (a) and dimensions (b) Wh = 602mm, d=5mm. The fill height depends
on the mass inserted.

data. This is explained by the difference in measurement location. The force measurement
in the experiment is not located on the walls as is the case for the simulation result but
under the base of the setup. The structure between the walls and the load cells has a
dampening effect on the forces on the wall and therefore the measurement.

To obtain the average discharge rate in kg /s the average force exerted per second needs
to be determined. Assuming this value is stable we can divide this force by the gravity
constant (g) to obtain the average mass discharged per second. This value approximates
the discharged mass that cannot be measured exactly in the experiment. Even though
it is possible to determine the exact mass discharged in a DEM simulation we use the
force-based approach because this gives results for experiments and simulations that can
be compared. The fitted data between the force based and mass based discharge rate
in the DEM simulation showed small deviations and are therefore representative for the
performance.

5.3.3. SAMPLING OF DESIGN SPACE AND NUMBER OF REPETITIONS

The design space in this case study is sampled in an irregular spaced rectangular grid for
discharge openings of 50, 75, 100, 150, and 200 mm and angles 20, 30, 45, 60, 75, 82.5,
and 90 degrees as shown in Figure 5.5. For the hopper angles, a minimum of 20 degrees
was chosen because of the limits of the experimental setup. At the high end of the angles,
an additional sample was added at 82.5 degrees to have a higher information density in
this location. The used sample consists of 35 points which means that this sample has
a sampling density of 351/2 = 5,92 per unit length in the normalized design space. This
is approximately in the same range as the sampling density used in previous work for a
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(a) (b)

Figure 5.3: (a) Picture of experiment where the block at the bottom prevents the discharge of material (b) Picture
of simulation where only the walls and bottom of the experimental setup are modelled.

three-dimensional calibration case [51]. For each design point in the sampling we carry
out five repetitions to get an average and a standard deviation. This number is enough
considering that the discharge rate is already a steady-state value averaged from time
dependent discharge data. The results of these simulations are discussed in Section 5.4.1.

The sample shown in Figure 5.5 has also been carried out using the experimental setup.
To be consistent with the experiments the number of repetitions is kept the same as with
the experiments. At a 150 mm discharge opening and 75 degree angle the number of
repetitions is equal to four because of a failed experiment. The same holds for one of
20-degree angle and 75 mm discharge opening experiment. For the 50 mm experiments it
was decided to use five repetitions as a basis and extend to ten if arching occurred. In the
60-degree case, arching occurred five times and therefore the additional 5 repetitions were
not conducted. The 20-degree case was repeated 10 times but two of those experiments
failed. To be consistent with the experiments that have been carried out we used the
same initial mass of bulk material contained in the experiment in the simulations and
used the same number of repetitions for each design in the sample. In calculating the
mean, standard deviation, and confidence intervals the different number of repetitions
accounted for.

5.3.4. METAMODEL TRAINING

The generated DEM data for the sample of the design space is used to train a Gaussian
Process Regression (GPR) type stochastic metamodel [86]. Before the data is used, feature
scaling based normalization is used which shifts the data to a [-1,1] range. The standard
deviation corresponding to the mean values is converted to the coefficient of variation
σ/µ which is input for the σn component in the training procedure.

The metamodel is denoted by GK PI (x∗) for any given KPI where x∗ is a vector containing
the design variables for which a prediction of the mean and variance of the KPI is desired.
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Figure 5.4: Determining discharge rate from load cell data (a) and from the simulation of the same experiment
(b)
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Figure 5.5: Determining discharge rate from load cell data (a) and from the simulation of the same experiment
(b)

In the case study, the KPI is the discharge rate and the design variables are the hopper
angleα and the size of the discharge opening Wo , x∗ = [α∗W ∗

o ]. The metamodel is trained
with the DEM data generated for the sample presented in Section 3.3 which consist of a
mean and variance value of the KPI at the data points in the sample. By including both
mean and variance in training the metamodel we allow the metamodel to predict the
mean and variance. In training the metamodel we assume that the variance obtained
in the data points from the training set is the true variance [51]. Thus, the trained DEM-
based metamodel gives a prediction of the mean and the variance in the design space.

The GPR metamodel uses a basis function to obtain the correlation between two points
x1 and x2. Here x1 and x2 can both be training points, two prediction points, or a training
and a prediction point. In this case the basis function is a squared exponential Gaussian
ψ in R2,

ψ=σ f e−
1

2l2 r (x1,x2)2

(5.1)

where σ f and l 2 represent the first two hyper parameters and r (x1, x2),

r (x1 = [α1,Wo,1], x2 = [α2,Wo,2]) =
√

c1(α1 −α2)2 + c2(Wo,1 −Wo,2)2 (5.2)

is a function which determines the Euclidian distance between two points, x1 and x2.
This distance is determined based on the two design variable values in the two points
which are adjusted by the second two hyperparameter values c1 and c2. Here c1 and c2

function as a shape parameter for the basis function on the design variables α and Wo .

The metamodel GK PI (x∗) is used for mean and variance prediction of the KPI. The mean
prediction function,
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(5.3)

consists of the correlation between the training points x1 to xn and the predicted point
x∗, kK PI (x, x∗). Based on the summation of the Gram matrix KK PI (x, x) and the variances
σ2

(K PI ,n) of the system and the reference values yK PI in the training points a prediction is
made for the mean value. The variance predictor,

VK PI (x∗) = kK PI (x∗, x∗)−kK PI (x, x∗)T (KK PI (x, x)+σ2
K PI ,n I )−1kK PI (x, x∗)T

= kK PI (x∗, x∗)−



ψ(x1, x∗)

...
ψ(xn , x∗)




T (


ψ(x1, x1) . . . ψ(x1, xn)

...
. . .

...
ψ(xn , x1) . . . ψ(xn , xn)




+




σ2
K PI ,1 . . . 0

...
. . .

...
0 . . . σ2

K PI ,n




)−1



ψ(x1, x∗)

...
ψ(xn , x∗)


 (5.4)

is a correction based on the prior covariance of the predicted point kK PI (x∗, x∗) minus
the information the training points give about the function [86].

As shown in Equation 5.1 and Equation 5.2, the metamodel has tunable parameters that
can be used to improve the quality of the model. The parameters σ f , l 2, c1, and c2 are
the hyper-parameters of the basis function and need to be optimized for a good fit of
the metamodel to the training data. The σ f parameter balances the effect of the added
noise and l 2 controls the shape of the function. However, the l 2 term is kept constant
because the hyper-parameters c1 and c2 in the basis function have the same function
of controlling the shape of the basis function. Therefore optimizing these three would
lead to an undetermined problem. To optimize the hyper-parameters the marginal log-
likelihood function,

log p(yi |X ) =−0.5yT
i (KK PI +σ2

K PI ,n I )−1 yi −
1

2
log (|KK PI +σ2

K PI ,n I |)− N

2
l og (2π) (5.5)

of the metamodel is maximized. Here 100 random initial guesses in a range from 0 to
100 are used to find the optimal set of hyper-parameter values because the log-likelihood
function is expected to be nonconvex. To find this set the interior point method is used
[111]. The resulting metamodels are discussed in Section 5.4.2.
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5.3.5. FORMULIZATION OPTIMIZATION PROBLEM

In essence, the optimization problem for the design of the hopper is similar to the calibra-
tion problems described in previous studies [115]. Therefore, most solving methods used
in these studies can also be applied in the optimization of design. However, there are
distinct differences in the type of solutions that are obtained. When genetic algorithms or
other types of swarm methods are used, the design domain is populated with samples
which generally evolve over time to a set of solutions. These solutions can form a Pareto-
front on which a designer can pick a design which gives the best-balanced solution. A
different approach is to let the optimizer find single or several local optimal designs and
converge to a set limit as used by [51] with the interior-point method. This is the method
that is used in solving this optimization problem. This optimization is repeated with 100
random initial guesses spread around the design space using Latin Hypercube Sampling
(LHS). Using a 100 random initial points ensures that the majority of the local optima is
found.

To define the optimization problem we define objective function f for the described
optimization problem. This objective function is formulated using the weighted-sum
method [118] which is used in robust optimization because of its ease and simplicity. In
this case study the multi-objective problem consists of two objectives. The first part of
the objective function describes the discharge rate constraint which needs to reach a
specified value. The second part of the objective function is the variance objective. The
relative importance of these two parts is controlled by the factor κ. The solution will focus
more on an exact match to the mean if κ moves to one whereas a higher focus on the
variance is achieved with a small κ. This formulation has been chosen because it shows
a clear relation between the importance of the mean and its variance. The objective
function,

f = κ
[µ1

µ∗
1

]2
+ (1−κ)

[σ1

σ∗
1

]2
(5.6)

consists of two components, a mean and standard deviation objective for each KPI. The
first component,

[µ1

µ∗
1

]2
=

(φ(x)−φt

φt

)2
(5.7)

is the square of the relative error between the mean prediction of the discharge rate by
the metamodel and the discharge rate target φ(x)−φt which is divided by the discharge
rate target φt . The second component,

[σ1

σ∗
1

]2
=

( σ(φ(x))

max(σ(φ(x))

)2
(5.8)

is the square of the ratio between the predicted standard deviation of the discharge rate
and the maximum standard deviation of the discharge rate present in the model. This
ensures that the standard deviation is minimized in a range from zero to one.



5.4. RESULTS

5

133

5.3.6. CASE STUDIES INCLUDING VERIFICATION AND VALIDATION

In this paper we will look at two case studies which are representative of a hopper design
case. The optimization problem described in the previous section will be solved for these
two cases. For both cases we will use a threshold in the verification error of 5% and for the
validation the results should remain within a 10% threshold to cover error propagation
between the verification and validation step. These cases will be a discharge rate target of
4 kg /s (Case 1) and 8 kg /s (Case 2). For the deterministic optimization, the coefficient
κ is equal to one and for the robust optimization case the coefficient κ = 5/6 which
corresponds to a 5:1 ratio between the mean and variance. This ratio has been chosen
because the actual discharge rate of the hopper is the essential performance indicator.
The variance is an additional measure that focusses the optimization into the direction of
a reliable design and therefor has a smaller coefficient. Using a ratio of 1:1 would likely
result in a design optimum with a large mismatch to the targeted discharge rate. The
two discharge rate cases are used to show difference between deterministic and robust
optimization by only considering the discharge rate KPI. These results will be discussed
in Section 5.4.2.

To put the case studies into context with an industrial setting we have to address the
following. Relative to industrial scale hoppers, the size of the hopper used in this case
study is small. However, results from this study serve as a proof of concept and might lead
to opportunities for research focussed on scaling and validation on a pilot-scale, and later
on to the industrial scale. In addition, more complex bulk materials including cohesion
and other inter-particle behaviour are interesting topics.

5.4. RESULTS

In this chapter the results from the metamodel training and optimization studies de-
scribed in Section 5.3 are presented. First we analyse the DEM simulation data and
evaluate the trained DEM-based metamodel. Next, the results of deterministic and robust
design optimization approaches for the discharge rate and its standard deviation as the
objectives are discussed. This section also includes the verification and validation of the
optimization results.

5.4.1. DEM DATA AND DEM-BASED METAMODEL

The training data for the DEM-based metamodel consists of DEM data for the discharge
of a hopper. In 5.6(a) the discharge rates obtained from the DEM data set used for
metamodel training is shown combined with a surface plot of the trained metamodel. For
the discharge rate in 5.6 (a) we can observe an approximately linear relation between the
hopper angle and the size of the discharge opening but with different gradients. 5.6 (b)
depicts the standard deviation of the average discharge rate from the simulations and
the predictions by the metamodel. This clearly shows that the standard deviation is high
for the 50mm discharge openings. This is most likely related to the slow and irregular
discharge process and the possibility of arch formation as is discussed in more detail in
Appendix B.1. For the 75 and 100 mm discharge openings we see similar levels of variation,
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Table 5.1: Coefficients of Gaussian Process Regression Metamodel

Metamodel σ f l 2 c1(αdi r.) c2(Wo di r.)

GDR 1.797 1 1.201 0.166

up to 0,1 kg /s, which starts to increase again with increasing discharge openings. At the
60- and 75-degree hopper angles we see low variation in the discharge rate for the higher
discharge openings.

Based on the mean and standard deviation of the discharge rate the Gaussian Process
Regression (GPR) metamodel is trained as described in Section 5.3.1. This leads to the
coefficients for the GPR for the discharge rate listed in Table 5.1. Together with the
provided dataset, these values allow the GPR metamodel, GDR , to be reconstructed. Based
on the large difference between c1 and c2 the included flexibility for different parameters
is justified.

In Figure 5.6 (c,d) the contour plots of the mean and standard deviation predictions by the
DEM-based metamodel are shown. Figure 5.6 (c) shows isolines of constant discharge rate
and exhibiting a near linear relation with the discharge openings based on the distance
between the isolines as was also visible in the DEM data. The dependency on the hopper
angle shows a slightly curved relation. Figure 5.6 (d) shows the standard deviation where
regions of low standard deviations are visible indicating areas containing reliable designs.

Visually it is difficult to assess the errors made in predicting mean and standard deviation
of the discharge rate in the design space. Therefore the percentage error in prediction is
depicted in Figure 5.6 (e,f) for the mean and standard deviation respectively. Here the
error percentages for the 50 mm discharge opening are left out because these percentages
are very high for both mean and standard deviation. This can be explained because all
simulations at the 50mm discharge opening encountered arching at one point during
the simulation leading to high errors. This is highly undesirable in a hopper design and
therefore it is not likely that design solutions for the prescribed cases will be found in
this region. In the remainder of the design space, the variance prediction is reasonably
accurate and follows the trend in the data and therefore deemed good enough to be
included in the optimization. For further information on the arching phenomena in
the simulations we refer to Appendix B.1. In Figure 5.6 (e) it is seen that the error for
the 75mm discharge opening varies greatly with the hopper angles. An over or under
estimation of at most 6% of the discharge rate is expected for most angles except for the
30, 75, and 82.5 degree angles. As is the case with the 50mm opening, the 75mm opening
DEM simulations encountered arching as well but not for all simulations. For the 100 mm
discharge opening we see that the fit is accurate within 1.5%. At 150mm the metamodel is
accurate except for the 60 and 75-degree hopper angles which look at errors of at most 6%.
For the 200mm discharge opening the error is within 1.5% except for the 90-degree angle.

In Figure 5.6 (f) the error in standard deviation prediction shows significantly higher
values than for the mean prediction. This was already clearly visible in Figure 5.6 (a)
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where large differences between the training data and the metamodel surface were seen.
As a results the error fluctuates quite severely between -40 and +40% throughout the
design space. Even with these high fluctuations, Figure 5.6 (a) shows that the metamodel
is able to follow the trend in the data which is essential for robust optimization. However,
for the application it is important that the prediction of the standard deviation is also
accurate. Even though it can be used, the analysis of the metamodel and DEM-data
clearly indicates that for quantitative prediction, the reliability of the standard deviation
should be increased by increasing the number of repetitions of the DEM simulations in
each data point.

Overall, in most regions of the design space the mean prediction error is well below 3%
with some exceptions reaching 6%. Based on these errors in mean prediction and the
trend presented by the metamodel for the standard deviation, we proceed with using the
metamodel in deterministic and robust optimization.

5.4.2. DETERMINISTIC VS ROBUST DESIGN OPTIMIZATION

To identify the effect of using deterministic and robust design optimization (DO) two
case studies are investigated. In these case studies we optimised a hopper design using
deterministic and robust optimization for a discharge rate of 4 kg /s (Case 1) and 8 kg /s
(Case 2). In Figure 5.7 the contours of the discharge rate (a) and standard deviation (b) are
visualized in the design space. The magenta and red coloured dots are the results from
the deterministic optimization for Case 1 and 2. The yellow and blue dots represent the
solutions for the robust optimization for Case 1 and 2. The deterministic optimization
results clearly show that solutions are not unique and present a wide variety of design
options with the same performance. Based on the single objective for the discharge rate in
both cases the solver will return solutions on the isoline for the corresponding discharge
rate, which represents designs of equal performance. However, the solutions for both
cases are all located in the middle of the isolines and not at the outer hopper angles even
though the solutions would give the same result. This can be explained by the interior
point method which uses a barrier function that initially promotes searching the interior
of the domain.

The robust optimization results for cases 1 and 2 including the variance as a second
objective clearly show more distinct solutions compared to the deterministic results. The
robust optimization results for case 1 show three distinct optima of which the 81 degree
and 104mm design has the lowest variance followed by the 44-degree and 103mm and
31-degree and 98 mm design. The location of the robust designs in Figure 5.7 (b) shows a
clear minimum in variance for the 45-degree solution in Case 2 and shows that the other
solutions are located at points where there is large curvature in the isoline of the standard
deviation. The exact designs and performance of the robust optima are shown in Table 5.2.
Comparing the two cases shows that there are two solutions with a similar angle in both
cases: the 45- and 81-degree hopper angle where only the size of the discharge opening is
different. The 31-degree angle present in case 1 is not present in Case 2. Additionally, it is
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Figure 5.6: Figure 6 Surface plots of the mean and standard deviation predictions by the metamodel (a,b)
contour plots of the mean and standard deviation (c,d) and the percentage error between the DEM-based
metamodel predictions and DEM data for mean and standard deviation (e,f)
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Figure 5.7: Deterministic and robust optimization results for both the 4 kg/s and 8 kg/s discharge rate target
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Table 5.2: Local optima for robust optimization results with the corresponding average and standard deviation
of the discharge rate

Hopper angle Discharge
opening

Average discharge Standard deviation

α(◦) Wo (mm) rate φ(kg /s) discharge rate
σ(φ)(kg /s)

Case 1: 30.77 98.42 3.994 0.05

4
(

kg
s

)
44.11 103.2 3.999 0.051

81.45 104.1 3.997 0.032
Case 2: 44.96 149.8 7.993 0.039

8
(

kg
s

)
81.23 151.8 7.84 0.147

visible that there is a small difference between the target discharge rate compared to the
deterministic results. This is caused by the additional objective for which the optimizer
has to start making a trade-off. The 81-degree solution for Case 2 shows a discharge rate
difference of about 2% and also the largest standard deviation, which indicates this is a
poor local minimum.

Comparing the deterministic and robust optimization results, we see that only the 45-
degree solutions in the robust optimization are present in the deterministic results. The
solution at 31 and around 80 degrees are not present when using the interior-point-
method but might become visible when different search algorithms are used. In the
deterministic case, the standard deviation information from Figure 5.7 (b) is not used
but by projecting the solutions it can be seen that using the standard deviation by means
of robust optimization could be used to make design decisions from the deterministic
optimization results.

Based on the deterministic optimization results a design between 42- and 69-degree
hopper angles with their corresponding widths would result in a hopper with the right
performance for both Case 1 and 2. For the robust optimization, we would have three
hopper designs for Case 1 and two solutions for Case 2. For both Cases there are
solutions around a 44- and 81-degree hopper angle that would be suitable where the
44-degree design is equally reliable for Case 1 and 2 but the 81-degree design only for
Case 1. However, these designs are only based on the performance of the design and
do neglect other aspects which would be encountered in engineering and operation of
the equipment. For example, with an 81-degree angle stagnant zones would form on
the slopes of the hopper walls because friction with the wall keeps the material in place.
This would lead to a core flow dominated hopper which decreases wear of the equipment
but might increase material wear. On the contrary, a 44- or 31-degree angle would lead
to flow along the walls and a mass flow dominated hopper performance with increased
equipment wear for abrasive materials but less material wear. Numerically, it would be
clear that the 44/45 degree angle would lead to the most reliable performance for Case 2
but if engineering and operational aspects are considered one of the other designs might
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Table 5.3: Verification design points along the 4 and 8 kg/s discharge rate isoline predicted by the metamodel

α(◦) 20 30 40 50
Case 1 Wo (mm) 87.9 97.9 102.4 103.9
Case 2 Wo (mm) 131.5 145.1 149.6 149.8
α(◦) 60 70 80 90
Case 1 Wo (mm) 104.9 105.2 104.4 103.4
Case 2 Wo (mm) 150.8 152.8 153.7 152.4

be chosen. In Appendix B.2, an elaboration can be found on design considerations in
hopper design.

VERIFICATION OF DETERMINISTIC AND ROBUST OPTIMA

As part of the method described in Section 5.2 the results from the deterministic and
robust optimization are verified. The metamodel predicted a discharge rate isoline for
both cases in the design space of the hopper. This resulted in the deterministic optimiza-
tion procedure to find a distribution of points on this isoline. Instead of verification of
all these points on the isoline we decided to verify the metamodel prediction at 8 points
along the isoline distributed from 20 to 90 degrees with a 10-degree interval with their
corresponding discharge openings as found in Table 5.3. For each of these points the
DEM simulation is repeated 5 times with an initial random packing of particles. In
Figure 5.8 (a) and (b) the mean (blue dots) and 95% confidence interval (CI) of the mean
(blue envelope) are shown as predicted on the isoline by the DEM-based metamodel for
both cases. In addition, the verification results of the mean and 95% CI of the mean are
shown. Overall, it can be seen that the verification results show good resemblance with
the predicted results by the DEM-based metamodel for the isolines of 4 and 8 kg/s. Most
of the designs on this isoline will be within 2,5% of the prediction which is acceptable
looking at the set tolerance of 5%. The 95% CI from the verification results shifts with the
location of the mean but overall the behaviour in variance is similar to the predictions
by the DEM-based metamodel. Some exceptions in the behaviour are discussed below.
Considering the limited number of repetitions, these results are promising for use of
DEM-based metamodels in design optimization for bulk handling equipment.

In Case 1 it is clearly visible that at the 90-degree hopper angle the mean has an error of
5% as well as a wide 95% CI. The second simulation for the 20-degree point encountered
arching directly at the start of the simulation, therefore it is not included in calculating
the discharge rate in this point. For the third simulation the same occurred but when
the half of the hopper had already discharged. This was long enough for calculating
the discharge rate and is therefore included. However, it must be noted that with the
20-degree case there is a high likelihood of arching so it is not a reliable design point.
Another simulation that shows a large error with the predicted discharge rate is the second
simulation for the 90-degree angle case. During the discharge of the hopper the mass
flow slows down halfway during the discharge but comes up to speed again, leading to a
lower average discharge rate. This slight plateau forming also occurred with the second
and third simulation for the 30-degree angle. The likelihood of arching increases with



5

142 5. DETERMINISTIC VS. ROBUST DESIGN OPTIMIZATION

(a)

(b)

Figure 5.8: Verification results of isoline verification points for 4 kg/s (a) and 8 kg/s discharge rate (b)
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decreasing discharge opening sizes which is clearly the case for the 20-degree hopper
angle. Plateau forming or stalling during discharge is a phenomenon that can ultimately
lead to arching so it is not strange that this occurs at the 30-degree angle and is likely
to become more severe with a decreasing discharge opening size. In the 8 kg /s case we
do not observe arching which can be explained by the fact that the discharge openings
never reach the sizes in which arching starts to occur. This case shows that at 20-, 50- and
60-degree angles the verification results are matching the DEM-metamodel prediction.
For the 40-, and 70- to 90-degree angles we see an overestimation of approximately 2.5%
for the mean discharge rate. One exemption is the 30-degree angle, which shows a 5%
overestimation. The confidence interval shows approximately the same behaviour as
predicted but is on average wider than predicted.

In addition to the verification of the deterministic results the robust optima are also
verified. Therefore 5 repetitions of the DEM model simulation for each local optimal
design have been carried out as was the case for the generation of the DEM data for the
metamodel. The error percentages for the verification of the robust optima are shown
in Table 5.4. For visualisation, these results are combined with the deterministic results
in Figure 5.8 where in (a) the verification results for Case 1 are shown and (b) shows
Case 2. The green dot represents the predicted mean for each optimum and the green
rectangle represents the 95% CI of the mean in this location. The Case 1 discharge rate
verification results show that the mean for the 31 degree hopper angle is a closely matches
the predicted optimal mean. However, the 95% CI is 1.7 times wider than for the predicted
mean. For the other two optima it can be observed that the metamodel predicts a higher
mean than the verification results. The difference between prediction and verification is
1.6% and 2% for the 45- and 81-degree case, respectively. The CI of the 44-degree case is
the same in magnitude but shifted due to the error in the mean. For the 81-degree case
the CI is 35% wider than predicted and shifted due to the large error in the mean.

For Case 2 we see that at the 45-degree hopper angle the verified mean is 0,8% higher
than predicted. In the 81-degree case this is 3,2% but here it should be observed that the
found optima was already slightly off from the target and that the verification results are
closer to the initial optimization target. In terms of the CI it can be seen that it is wider in
both cases up to 4.5 times for the 45-degree angle. Considering the mean prediction we
would accept these optima because they are within the 5% tolerance that we have set even
though the confidence intervals show significant errors. However, for a full evaluation it is
important to study how the optima of both cases behave when these are experimentally
validated.

VALIDATION OF DETERMINISTIC AND ROBUST OPTIMA

We performed validation of the deterministic and robust optimization results by means
of experiments using the setup introduced in Section 5.3.1. For the validation of the DEM-
based metamodel prediction the same designs as for the verification simulations are used.
Here it is important to notice that the hopper angle and size of the discharge opening in
the points presented in Table 5.4 cannot be set exactly because of the measurement error
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Table 5.4: Local optima for verification of the robust optimization results with the corresponding average and
standard deviation of the discharge rate

Avg. discharge Std. dev. % error with mean
robust

% error with stan-
dard

rate φ(kg /s) discharge rate
σ(φ)(kg /s)

optima deviation in robust
optima

Case 1:
4(kg /s)

3.992 0.084 -0.044 70

3.936 0.051 -1.575 4
3.917 0.043 -1.999 35

Case 2:
8(kg /s)

8.056 0.216 0.786 453

8.091 0.368 3.199 150

of the angle (± 0,1 degree) and discharge opening (± 1mm) of the physical setup. In Figure
5.9 (a) and (b) the DEM-based metamodel prediction for the discharge rate for Cases 1
and 2 are shown combined with the verification results. These are the same as shown
in Figure 5.8 but the validation results for the deterministic and robust optimization
are added. The validation results for the deterministic optimization are represented by
the red triangles for the mean and the red shaded area for its 95% confidence interval.
For the robust optimization results yellow triangles are used and the yellow shaded area
represents its 95% confidence interval. In addition to these visual results the percentage
errors with the optimization target are presented in Table 5.5.

Overall we can see that the DEM-based metamodel and the DEM model itself underes-
timate the actual discharge rate of a design in both the deterministic and robust cases.
However, in the preceding verification it was found that the DEM-based metamodel is
relatively accurate in predicting the outcome of a DEM simulation for both the mean and
its confidence interval. The validation results indicate that the DEM-based metamodel
predictions are closer to experimental results in the region of Case 2 of the design space
than for Case 1.

For deterministic Case 1 the largest mean error between the DEM-based metamodel
prediction and the experimental results is present at a 20-degree angle and is about 13%.
In the 30- to 60-degree angle range the error fluctuates between 3.5 and 6.5%. At 70
degrees it is observed that the error in mean prediction is around 4%. Remarkably, this
is the only design for which an underestimation of the discharge rate is observed in the
validation even though the load cell data is consistent. For the 80- and 90-degree angles
we see 6 to 7.5% errors. The robust Case 1 validation results show an error of 12% for the
31,8-degree hopper angle, 7,5% for the 45-degree angle and 16,5% for the 81-degree angle.
All of these results show that the found robust optima underestimate the actual discharge
rate. Relative to the deterministic validation results the robust validation result shows an
higher error. In terms of the 95% confidence interval it can be seen that this is similar for
the predicted 95% CI by the DEM-based metamodel and even slightly smaller.
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The validation results of deterministic Case 2 shown in Figure 5.9 (b) show a maximum
error at the 90-degree hopper angle of around 9%. At the 40-degree hopper angle the
error in mean prediction is around -8%. All the other errors are within the 5% error
margin. In terms of the 95% confidence interval we see that it is twice as small as the
predicted width of the confidence intervals by the DEM-based metamodel. For Case 2
the DEM-based metamodel predicts local optima at the 45 and 80-degree hopper angles.
The validation results seem to show the same behaviour which reinforces the idea of
quantatively using the variance in robust optimization. For the robust optima it can be
seen that the 45-degree optimum has an error of around 4% and the 81-degree angle a
9% error. The 95% CI of the first optima is 230% as wide as the prediction by the DEM-
based metamodel whereas for the second optimum the error is only 33% wider than
predicted. This indicates that predicting confidence intervals is difficult, especially with a
low number of repetitions.

In both cases relatively large errors are observed in the validation results whereas the
verification results did not show these to the same extent. The source of this difference can
be explained by comparing the DEM data to experimental results in the same data points.
This shows that the 2% error obtained from the calibrated DEM model at a 45-degree
hopper angle and 100 mm discharge opening is not consistent throughout the design
space. In Appendix B.3 these results are compared in more detail. These results showed
that the error between DEM and experimental data is not consistent throughout the
design space. When the DEM model cannot produce accurate predictions in the entire
design space, increased errors in the performance of optimized designs can be expected.

Comparing the validation results from both cases it is observed that the validation error of
the mean prediction by the DEM-based metamodel stays within the 10% error threshold
for Case 2. For Case 1 we see that in most locations the error stays within 10% of the
DEM-based metamodel prediction except for the 20-degree hopper angle and the first
and third robust optima. In terms of acceptance of the solutions on the isolines we
would accept most solutions if the 10% error threshold for the validation was considered.
However, the results clearly show that the error at the 20-degree angle is significantly
larger than for the other solutions. These results indicate that there is a significant error
between the experiment and the DEM-model even though it has a 2% error based on the
calibration [51]. Based on the trajectory of the isoline results it is clear that the error is
not consistent throughout the design space. This means that the assumption of uniform
errors throughout the design space cannot be made. Explanations for this inconsistency
are the different flow velocity regimes in the different designs which are not considered in
the calibration.

Based on the validation results we can assume that the DEM-based metamodel opti-
mization results for Case 2 can all be used and for Case 1 only in the range from 30
degrees and higher even though the robust optima showed errors higher than 10%.
From a deterministic optimization perspective all designs in these regions would be
acceptable. For the robust optimization results only the 45-degree design for Case 1
would be acceptable as are both solutions for Case 2. A question that should be asked
is whether the optimization is actually robust if errors seep in the method by means of
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(a)

(b)

Figure 5.9: Mean and 95% CI predicted by DEM-based metamodel, verification and validation from the
deterministic and robust optimization with 5 and 10% error margins with respect to the mean target for
Case 1 and 2 in (a) and (b) respectively.
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Table 5.5: Local optima for validation of the robust optimization results with the corresponding average and
standard deviation of the discharge rate

Avg. dis-
charge

Std. dev. % error with mean ro-
bust

% error with standard

rate φ
(

kg
s

)
discharge
rate
σ(φ)

(
kg
s

)
optima DEM-based
metamodel prediction

deviation in robust op-
tima DEM-based meta-
model prediction

Case 1:
4
(

kg
s

) 4.46 0.042 11.67 -16.75

4.29 0.042 7.36 -18.35
4.66 0.072 16.52 124.11

Case 2:
8
(

kg
s

) 8.32 0.127 4.08 226.45

8.74 0.196 11.49 33.35

the quality of the data, DEM-model, and metamodel. However, the small errors between
DEM-based metamodel predictions and the verification results for a small number of
repetitions shows that MBDO using a DEM-based metamodel has potential.



5

148 5. DETERMINISTIC VS. ROBUST DESIGN OPTIMIZATION

5.5. CONCLUSIONS

In design of bulk handling equipment the stochastic nature of granular material be-
haviour is rarely included as is the use of metamodel-based design optimization (MBDO).
Therefore this study investigates the effect metamodel-based deterministic and robust
optimization strategies have on hopper design optimization. Both strategies use DEM-
based metamodels for the prediction of mean and variance and are verified and validated
by the DEM equipment model and experiments, respectively. The goal of this study is
to introduce a robust MBDO, identify the differences between deterministic and robust
optimization strategies and the challenges that might be encountered.

The deterministic and robust design optimization case studies show that for deterministic
optimization a multitude of local optima are distributed over the isoline of the desired
discharge rate whereas the robust optimization zones produces more specific solutions
by using the variance. The verification of the deterministic optimization results showed
an error in mean prediction within a 5% bandwidth, whereas the errors found in robust
optimization results did not exceed 2,5%. The confidence intervals showed more fluctua-
tion and are therefore less reliable. However, based on the mean prediction it seems that
robust optimization leads to better performing optima.

One common issue in the use of metamodels in a design process is the effect of error
propagation due to a mismatch between the metamodel and the data it is trained on.
This is true for metamodels that predict a mean or both mean and variance and is
directly affected by the reliability of the used mean and variance training data. In
addition, the optimization results are affected by a mismatch between DEM model and
experiments. These errors became clearly visible in the verification and validation stage
of the deterministic and robust optimization results.

Overall, the use of DEM-based metamodels gives insight on the behaviour of bulk han-
dling equipment which can be used for finding suitable designs in the design space. For
bulk handling systems with multiple design and performance parameters and similar
problems in other domains, design optimization strategies such as the deterministic
and robust approach are good options to find a range of optimal designs. The robust
optimization finds designs which in addition to optimized mean performance also exhibit
low variance. However, the quality of the optimization relies highly on the quality of the
mean and variance data that is available for the metamodel. This is one of the biggest
challenges in applying robust MBDO in design of bulk handling equipment.
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6.1. CONCLUSIONS

The current procedure for design of bulk handling equipment does not include the
stochastic behaviour of granular materials. However, the results from the experimental
studies for the design space of bulk handling equipment and for the calibration experi-
ments show that it is essential to include the stochastic behaviour of the bulk material
in the design procedure. Even though it is necessary to include the stochastic behaviour
there are implications to the implementation such as increased computational effort and
the need to repeat experiments. In this thesis it is systematically shown how the stochastic
behaviour of equipment and material can be obtained through experiments, how it can
be included in modelling the bulk material using DEM, and how stochastic metamodels
can aid in the robust optimization of bulk handling equipment design. This systematic
approach leads to a new design procedure which can greatly improve the accuracy and
reliability of modelling and design of bulk handling equipment. The aim of this thesis is:

To identify the effect of including the stochastic behaviour of granular materi-
als in the design procedure for bulk handling equipment.

To achieve this aim, an extensive experimental and numerical study has been performed
which incorporates the stochastic behaviour in the analysis of the bulk handling equip-
ment design problem, the development and calibration of a DEM model, and the design
optimization of bulk handling equipment. The conclusions are organized according to
the research questions stated in Chapter 1.

Research Question 1: To what extent does the stochastic behavior of a granu-
lar material affect the performance of bulk handling equipment in the design
space?
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The experimental studies in this thesis show that the stochastic behaviour depends on the
type of experiment that is conducted. Moreover, the stochastic behaviour of the discharge
rate of the hopper experiment depends on the geometry of the hopper. The variance
of the discharge rate is up to 7% of the mean discharge rate after 5 to 10 repetitions for
many design configurations. Additionally, a clear transition from mass to core flow was
observed where the physical behaviour of the granular material in the hopper changes.
The impact loads inflicted on a hopper are relevant for the life expectancy of the structure.
The variance of the maximum impact load is in a range of up to 70% which has significant
effects on the design reliability. The analysis of the experimental data in the design
space shows that the variance of the hopper performance is geometry dependent. In the
calibration experiments which were conducted for 50 repetitions it showed a variance
of 0,74% to 8.2% of the mean value of the calibration parameters. Noteworthy is that
this variance seemed to increase with increasing dynamic behaviour due to the type of
experiment. In addition, the interaction between the bulk material and equipment is
related to the overall behaviour of the system. These results indicate that the stochastic
behaviour is not a characteristic property of the bulk material alone as it is affected by
geometric boundary conditions, changes in flow regimes and flow density. Moreover, for
stable performance and calibration targets it is essential that experiments are repeated
until the mean reaches a stable value. If not, unstable mean values will lead to badly
calibrated DEM models and give unreliable performance predictions for equipment
design.

Research Question 2: How can metamodels be used to describe the behaviour
of bulk handling equipment in a design space?

Metamodels are a common technique to relate input and output of a system in a com-
putationally efficient way. However, in relation to DEM models metamodels are rarely
applied. In this thesis the application of metamodels to DEM model data is studied
by introducing a methodology for training and validation of a DEM-based metamodel
supported by a proof of concept. In the proof of concept different metamodels were
trained which showed that they can capture the behavioural trends in the design space
of the bulk handling equipment. The study showed that hyper-parameter optimization
is essential for obtaining accurate metamodels. In the case study it was found that the
required sample size is not consistent for each key performance indicator of the model.
In addition, it is essential that boundary sampling techniques are applied because data-
driven models are based on interpolation or regression and generally perform poorly in
extrapolation. Moreover, in assessing the quality of the metamodel it is essential to select
a proper validation strategy. Concluding, the study showed that DEM-metamodels can
be applied in the design of bulk handling equipment even for small datasets but different
metamodels should be tried before selecting the most suitable metamodel.

Research Question 3: To what extent can the stochastic behaviour of a
granular material be captured in metamodel-based calibration of a discrete
element model?

In conventional calibration the parameters of DEM models are only calibrated for the
mean performance of the model. However, the calibration experiments for this study
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showed that achieving stable results in a lab setting already requires up to 30 repetitions
which is more than the common value of five repetitions usually used in calibration
studies. This means that even for conventional mean calibration the number of repetitions
of experiments should be increased.

In this study it is shown that including the stochastic behaviour of the material in the
calibration leads to different sets of calibration parameter values. To include stochas-
tic behaviour, a methodology for stochastic calibration is introduced which can be
used in engineering practice. Moreover, the DEM models calibrated by including the
stochastic behaviour showed that more accurate predictions of mean behaviour are
obtained. Accurate prediction of the variance proved to be difficult and remains a topic
for further research. In the calibration procedure, DEM-based metamodels relating
calibration targets to calibration parameters were used to find the parameter values.
These metamodels were able to capture the mean relation and the stochastic trend of the
relation between calibration targets and parameters. The validation of the equipment
with the found calibration parameter values from the calibration procedure showed that
including the stochastic behaviour leads to more accurate DEM models (2,15%) compared
to conventional mean calibration (3,34%).

Research Question 4: How does introducing metamodels and robust op-
timization to the design process of bulk handling equipment change the
process and its outcome?

The final part of the design procedure is design of bulk handling equipment. For bulk
handling systems with multiple design and performance parameters and similar problems
in other domains, design optimization strategies such as the deterministic and robust
approach are good options to find a range of optimal designs. Metamodel-based robust
optimization finds designs which in addition to optimized mean performance also exhibit
low variance and are therefor more robust. However, the quality of the optimization
result relies highly on the quality of the mean and variance data that is available for the
metamodel.

This dissertation presents a validated framework for deterministic and robust design
optimization which incorporates the methodology for metamodel training and procedure
for stochastic calibration. The metamodels based on DEM data can describe the be-
haviour of the equipment in the design space where the mean behaviour was accurate but
the variance was only accurate in trend. However, in robust optimization also accurate
trend information can be useful to steer designs in the right direction. The verification
of the deterministic and robust optimization showed that the mean prediction for the
deterministic case stays within a 5% bandwidth around the target whereas the robust
optimization stays within a 2.5% bandwidth. The validation of the deterministic and
robust optima in the case study showed that most optima stayed within the 10% error
margin. These results indicate that robust optimization theoretically leads to more robust
performing optima.
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6.2. RECOMMENDATIONS

The research presented in this thesis shows that it is essential to include stochastic
behaviour of bulk handling equipment in the design procedure. However, the case studies
and proof of concept presented in this work have a relative low complexity compared to
other bulk handling equipment. It is suggested to investigate if the introduced method-
ologies can be applied to more complex systems and be validated at an industrial scale.
Here it is important that scale effects are identified which can aid in translating granular
behaviour at a laboratory scale to industrial systems.

On a more detailed level, there are many aspects that require further inquiries. First of
all, identification of the stochastic behaviour of granular materials is essential if it is to
be used in design of bulk handling equipment. Here it is important that the stochastic
behaviour across different dynamical regimes is better understood and that guidelines
are set for the number of repetitions required to get an accurate representation. This will
ensure that calibration of DEM models can be made more efficient and that the accuracy
of DEM models can be increased.

Secondly, DEM-based design in general is an approach that should be used more fre-
quently in design of bulk handling equipment. DEM models provide a better under-
standing of the behaviour of a bulk material that is handled. Metamodels based on
data provided by DEM models help in finding design solutions that have the desired
performance. Here it is important that techniques and methodologies are developed
that are able to build accurate metamodels based on size limited data-sets. In this light,
research is required on the possibility of using AI or machine learning techniques to
improve the reliability of these models. For the increase of accuracy of these metamodels
it is essential that the stochastics are included. To achieve this, small scale experiments
that can be repeated with little effort need to be included in the calibration and design
procedure. In addition, detailed representation of granular shapes and properties in
DEM models will help capture the stochastics of the granular behaviour. The increase
in accuracy of DEM models and understanding of the material improves the quality of
DEM models and makes the use of metamodels for design optimization a logical step. By
taking these steps the design procedure for bulk handling equipment can be gradually
improved towards the basis that is presented in this dissertation.

Nowadays, there is a trend in moving to open science and data. In order to make steps in
the field of modelling granular materials this is an essential development. Therefore, all
the experimental data (10.4121/fa7544d6-14fd-4372-a81f-e2e1b4a44832) and sources of
the numerical data related to this thesis are made publicly available according to the FAIR
principle.
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A.1. PIV PROCEDURE

In this appendix the procedure for the particle image velocimetry is described. The images
recorded by the high speed camera inherit a distortion caused by the deformation of
the image by the lens. To account for this distortion a picture is taken of a calibration
grid which is used to correct for the distortion. Using an object detection algorithm
the locations of the crosses are found. Subsequently, applying polynomial regression
to the centres of the crosses and using the fact that the calibration sheet is straight the
corrections needed for the picture distortion are found. These corrections are stored
and are used to correct the images recorded for each experiment. These calibrated
(undistorted) images are used for the PIV analysis.

The first step in the PIV analysis is to define a grid spaced with 64 by 64 pixels for the
entire image. In each grid cell the interrogation area is moved in an area 32 pixels (half
the grid size) around the grid cell for a subsequent image as shown in Figure A.1. In this
scanning operation the cross-correlation between the interrogation area and original grid
cell is calculated by using FFT. Based on the cross-correlation in which correlation peaks
are found the displacements in x and y direction are estimated by a Gaussian Peak Fit.
Based on preliminary research on a small set of images the ratio between the largest peak
in the image and the second largest an average ratio of 8 is obtained which means that
the largest peaks are well detectable for this grid size.

In the PIV analysis the found velocity vectors might show unrealistic values between a
row of well predicted points. Therefore a median filter with 5 neighbouring interrogation
squares is used to filter the outliers. The PIV result is a velocity field in pixels per time step,
to obtain the actual velocities we have to scale with the pixel to m number CP x2m and
the time correction coefficient Ct which is based on the used framerate for the recordings.
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Figure A.1: Interrogation area movement

A.2. ARCHING

During the experiments we observed both phenomena described in the introduction,
arching, and pulsating flow. The formation of arches is a common phenomenon in
hoppers and silos. In this case arching was observed in the experiments with a 50mm
discharge opening which is equal to 5,75 times the average particle diameter. As generally
accepted, decreasing the size of the discharge opening of the hopper below 8-12 average
particle diameters leads to an increasing risk of arching and therefore stopping the flow
of the hopper (Schulze, 2008). In Figure A.2 the percentage of experiments that contained
arching compared to the total number of experiments is shown. Here it is observed that
for a hopper angle of 60 degrees arches always form. The probability of arching decreases
when the angle is increased or decreased where at both ends the probability of arch
forming becomes roughly 50%.

We observe that the probability of arching decreases with increasing and decreasing
hopper angles from the 60 degree angle. The friction angle between the wall and the
granular material is equal to 27,5 degrees which corresponds to a 62,5 degree hopper
angle due to its definition. For hopper angles higher than this threshold we would expect
that the probability of arching decreases because with increasing steepness of the hopper
overcoming the frictional forces becomes easier. When the hopper angle decreases
the granular material will not initiate movement itself leading to stagnant zones where
material is at rest. Here it is likely that a shear zone will form where the granular material
shifts from stagnant to full motion. If the hopper angle decreases it is probable that
the stagnant zones will stabilize further as will the transition zone. This might lead to
increasing consistency of the granular flow and a decrease of the probability of arching.
However, these are explanations that require validation through additional research.



A.2. ARCHING

A

155

20 40 60 80 100

 (°)

0

0.2

0.4

0.6

0.8

1

N
ar

ch
in

g
/N

to
t (

-)

Figure A.2: Interrogation area movement

(a) (b) (c)

(d) (e) (f)

Figure A.3: Examples of arching during the experiment with W0 = 50mm, arch at 20 degree angle (a,d), at 60
degree angle (b,e), at 90 degree angle (c,f)
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A.3. REFERENCE VALUES DISCHARGE RATE AND IMPACT LOAD

In this appendix the reference values for the discharge rate and impact load can be found.

Table A.1: Average discharge rates with standard deviation in (kg/s)

d |α α = 20◦
(used for
normal-
ization)

α= 30◦ α= 45◦ α= 60◦ α= 75◦ α= 82.5◦ α= 90◦

50mm 9,46 ±
1,11

6,06 ±
0,95

4,45 ±
1,34

3,59 ±
0,83

2,84 ±
0,81

2,85±0,8 3,14 ±
1,08

75mm 16,10 ±
2,71

7,88 ±
2,30

6,50 ±
0,56

4,20 ±
1,53

3,96 ±
1,10

4,44 ±
0,97

5,41 ±
1,05

100mm 20,54 ±
2,85

9,11 ±
2,11

8,81 ±
1,27

7,95 ±
2,16

8,36 ±
3,63

4,45 ±
1,31

6,22 ±
0,84

150mm 26,41 ±
3,38

6,55 ±
4,43

13,99 ±
6,09

14,01 ±
5,86

8,43 ±
6,72

7,16 ±
3,59

11,71 ±
7,20

200mm 47,28 ±
6,65

12,10 ±
5,56

24,32 ±
5,48

22,63 ±
1,71

4,36 ±
4,04

4,41 ±
1,64

15,88 ±
9,53

Table A.2: Average impact loads with standard deviation in (N)

d |α α = 20◦
(used for
normal-
ization)

α= 30◦ α= 45◦ α= 60◦ α= 75◦ α= 82.5◦ α= 90◦

50mm 1.44 ±
0.068

1.17 ±
0.054

0.84 ±
0.046

0.83 ±
0.083

0.90 ±
0.071

0.94±0.1 1.03 ±
0.105

75mm 2.99 ±
0.088

2.54 ±
0.084

2.09 ±
0.081

1.92 ±
0.126

2.14 ±
0.095

2.07 ±
0.195

2.19 ±
0.150

100mm 4.73 ±
0.073

3.95 ±
0.085

3.68 ±
0.025

3.69 ±
0.078

3.79 ±
0.080

3.60 ±
0.266

3.93 ±
0.075

150mm 9.25 ±
0.273

8.21 ±
0.173

7.65 ±
0.255

7.64 ±
0.182

8.14 ±
0.668

7.68 ±
0.896

7.86 ±
0.640

200mm 14.85 ±
0.744

12.42 ±
0.227

12.27 ±
0.120

12.54 ±
0.463

12.56 ±
0.272

12.51 ±
0.669

13.04 ±
0.59
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B.1. ARCHING

As mentioned at the beginning of this section arching may occur at small discharge
openings if the discharge opening is smaller than ten times the average particle diameter
(Schulze, 2008). For the case study this means that the minimum size of the discharge
opening should be 100,4mm. However, in the design space also 50 a 75mm size samples
are included. In Figure 10 the occurrence of arching in both experiments and simulations
is shown for each hopper angle for the 50mm discharge opening in (a) and 75mm
discharge opening in (b). In the experiments it was observed that at a 60-degree angle
and 50mm discharge opening arching occurs at each instance. For an increasing and
decreasing angle we see that the probability of forming of arches reduces. In contrast,
in the DEM simulations arches form for each simulation at 50mm discharge openings.
Looking at the 75mm discharge opening results it can be seen that the simulations show
arching at small and large angles but no arching at a 75-degree angle. This behaviour
is exactly opposite to the experimental results with a 50mm discharge opening. These
results indicate that the DEM model is not able to reproduce a phenomenon such as
arching accurately. Moreover, these results show that validation of calibration results is
important and that multiple KPIs should be verified and validated.

B.2. DESIGN CONSIDERATIONS

In design optimization of bulk handling equipment it is important to consider additional
behaviour of material and equipment in assessing the found optima. One of these
phenomena was arching which was described in A.1. In bulk handling equipment the
interaction between material and structure is not only determined by the geometry but
also by the condition of the structure. The stainless steel wall in the hopper geometry
is impact loaded and has a friction coefficient of 0,52 which results in a friction angle of
27,5-degrees. In Figure B.1 showing the contour plots, this means that all points around
the 62,5-degree angle are likely to show stick slip behaviour. For angles below 62,5-degrees
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Figure B.1: Arching in the hopper for experiments and simulations for 50mm discharge opening (a) and 75 mm
discharge opening (b)
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there is continuous movement of particles and possibility of mass flow. Whereas, above
62,5-degrees, stable stagnation zones and core flow will occur. In Figure B.1 showing
the optimization results for Case 1 we see that the 30 and 45-degree solutions for the
DEM data will likely be mass flow. However, the third solution for the DEM data is at
an 80-degree angle which is likely in the core flow regime. With respect to the design
choice in the DEM solution of Case 1 the choice is not limited to the discharge rate and its
variance but also to the type of system that is desired. If the material that is put through
the hopper has an abrasive nature, the mass flow designs are not convenient because
they would increase equipment wear. This means that the core flow design would be the
correct choice. However, it can be argued that friction between particles is not desired
because of material wear making the mass flow designs the better option despite the
lower variance in the core flow design. It is important that when the design is chosen
the optimization result is not blindly accepted because other aspects of the design in
operation should be considered.

B.3. COMPARING DEM RESULTS AND EXPERIMENTS

The validation results in this study showed differences in predicted discharge rates
between the DEM-model simulation results and experiments. Based on the calibrated
DEM-model an overestimation of 2% was expected by the DEM-model compared to the
experiments. However, this error seemed to be inconsistent throughout the design space
as shown by the validation results. In Figure B.2 (a,b) we have shown the average discharge
rate and its standard deviation based on the DEM-data and their equivalent experiments
using five repetitions for the sampled design space along with the respective errors for
each discharge opening and angle in Figure B.2 (c). As can be seen the results from the
calibration is a 2% error at a 45-degree angle and 100 mm discharge opening. As can be
seen for the other angles for the 100mm discharge-opening errors up to 6% are present.
This means that if the DEM model is used to predict the discharge rate for a 20-degree
angle and 100 mm discharge opening the result is 5% higher than the value obtained from
the experiments. However, getting closer to the 75mm discharge opening leads to an
underestimation of 5%. This means that significantly larger errors between DEM-model
and experiment are present in different parts of the design space than expected from the
calibration (Fransen et al., 2022). Combined with the introduced error by the DEM-based
metamodel this can lead to additional errors in the different steps in the methodology. To
prevent this, additional calibration experiments can be used to resemble the physics of
the system.
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Figure B.2: DEM training data for metamodels (a) discharge rate (b) relative standard deviation discharge rate
(c) mean error between simulation and experiment for the discharge rate (d) mean error between simulation
and experiment for the standard deviation of the discharge rate, where the calibration results from [51] are
shown by an additional circle in both (c,d)
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NOMENCLATURE

Acronyms

AoM Angle of Movement

AoR Angle of Repose

BCA Bulk Calibration Approach

BHE Bulk Handling Equipment

CI Confidence Interval

CoV Coefficient of Variation

DEM Discrete Element Method

GP Gaussian Process

GPR Gaussian Process Regression

IBM Interpolation Based Metamodel

KPI Key Performance Indicator

M Mean

MBDO Metamodel Based Design Optimization

MF Model Fitting

ML Machine Learning

MSE Mean Squared Error

MV Mean Variance

NRMSE Normalized Root Mean Squared Error

P-P Particle-particle

P-W1 Particle-Wall 1

P-W2 Particle-Wall 2

PR Polynomial Regression

PSD Particle Size Distribution
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174 NOMENCLATURE

RBM Regression Based Metamodel

VSA Validation Set Approach

Greek Symbols

α Hopper angle [◦]

β Angle of Repose [◦]

ϵφ Error between experimental and simulation results

η Sampling density [−]

γ Overall damping coefficient[−]

γr Rotational damping coefficient[−]

γs Sliding damping coefficient[−]

µr Coefficient of rolling friction [−]

µs Coefficient of sliding friction [−]

ν Poisson ratio [−]

φ Discharge rate[kg /s]

φe Experimental discharge rate [kg /s]

φs Simulated discharge rate [kg /s]

φnor m Normalized discharge rate[−]

ψ Coefficient of variation (Chapter 3)[−]

ψ Sphericity (Chapter 2)[−]

ψ Squared exponential Gaussian (Chapter 5)[−]

ρb Bulk density [kg /m3]

ρpe Experimental particle density [kg /m3]

ρps Simulation particle density [kg /m3]

ρp Particle density [kg /m3]

σµ−s Standard deviation of sliding friction coefficient [−]

σ f Metamodel hyper parameter [−]
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Roman Symbols

ai Acceleration [m/s2]

c1 Metamodel hyper parameter [−]

c2 Metamodel hyper parameter [−]

ci (x) Objective function

Cn Coordination number [−]

Cu Uniformity coefficient [−]

d Hopper depth [mm]

d10 10% particle size [mm]

d50 Average particle size [mm]

d60 60% particle size [mm]

dei End point angle of repose calculation [m]

de End point angle of movement calculation [m]

dsi Start point angle or repose calculation [m]

ds Start point angle of movement calculation [m]

e Void ratio [−]

Eb Bulk modulus [MPA]

F Force [N ]

Fi mp Impact force [N ]

Fi mp −nor m Normalized impact force [−]

fi (x) Gaussian Process Regression metamodel [−]

Fl oadcel l Loadcell force [N ]

fr ec Recording frequency [H z]

g Gravitational acceleration [m/s2]

GDR GPR metamodel for discharge rate

H f Hopper fill height [m]

I Identity matrix

K Gramm matrix



176 NOMENCLATURE

k(a,b) Correlation function

Ki−e Experimental KPI value

Ki−s Simulation KPI value

kp Particle contact stiffness [N /m]

kr Rotational contact stiffness [N /m]

kt Torsional contact stiffness [N /m]

kw Wall contact stiffness [N /m]

l Metamodel hyper parameter [−]

m mass [kg ]

me f f Effective particle mass [kg ]

rav g Average particle radius [m]

Rn Roundness number [−]

t Time [s]

tc Contact time [s]

V ( f ∗) Variance function

vi Velocity [m/s]

vy Velocity in y-direction [m/s]

Wh Hopper width [m]

Wo Size of discharge opening [mm]

wi Objective weight

x x-coordinate

y y-coordinate

z z-coordinate

Superscripts

◦ Degrees

Subscripts

lb lower bound

ub upper bound
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Propositions
accompanying the dissertation

UNRAVELLING GRAVEL
INCLUDING STOCHASTIC BEHAVIOUR OF GRANULAR MATERIALS IN DESIGN OF BULK

HANDLING EQUIPMENT

by

Marc Patrick FRANSEN

1. Stochastics of granular processes must always be included in the calibration of
bulk materials and the design of bulk handling equipment to obtain reliable DEM
models and equipment designs. (this proposition pertains to this dissertation)

2. Surrogate and metamodeling techniques in calibration of DEM models without hy-
perparameter optimization lead to incorrect predictions of calibration parameters.
(this proposition pertains to this dissertation)

3. A DEM model calibrated using mean values gives accurate predictions for the mean
behaviour of granular material but does not automatically predict the stochastic
behaviour accurately. (this proposition pertains to this dissertation)

4. Machine learning and AI can only be used to their full potential if combined with
human intelligence.

5. The interaction between equipment and granular materials is too often neglected
in fundamental studies on particle behaviour even though it plays an important
role.

6. Of all skills acquired during a PhD, the ability to transfer skills and knowledge to
others is the most important one.

7. Society is like an avalanche of particles that interact, steering it in the right direction
is difficult because of the uncertainties in all interaction properties.

8. More computing power leads to larger computations because we tend to increase
the complexity of our simulations accordingly.

9. Funnelling your PhD topic down to its essentials is equally as important as bringing
the results back to the surface.

10. Obtaining your doctorate is like walking through a forest and climbing a few chal-
lenging trees: reaching the tree tops makes you realize that the forest is even bigger
than you thought.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. ir. D.L. Schott and prof. dr. ir. M. Langelaar.



Granular materials are all around and have many secrets that still 
need to be unravelled. In this thesis an attempt was made to show 
how the stochastic behaviour of granular materials can be identified 
and efficiently included in design of bulk handling equipment. To 
achieve this, metamodels play a key role as they are able to capture 
trends of physical models and give fast predictions. In this research 
it is shown what the opportunities and limitations of metamodels 
are in a hopper case study based on simulation data from a discrete 
element model (DEM). Next a procedure is presented in which the 
stochastic behaviour and metamodels are combined to calibrate a 
DEM model including the stochastic behaviour of the granular 
material. The stochastically calibrated DEM model is accurate and 
used as the basis for a design optimization case study in which the 
effect of robust optimization was evaluated and validated. These 
studies combined show that stochastic behaviour of granular 
material can be included in design of bulk handling equipment and 
lead to improved and robust designs.


