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Chapter 1

Introduction

This chapter starts with a quick introduction into the physics of electromag-
netic radiation with a frequency in the terahertz range. In section 1.2, we will
introduce terahertz spectroscopy, and we will compare the technique used
throughout this thesis, time-domain spectroscopy, with an alternative method
based on homodyne detection. Section 1.3 discusses the possible applications
of terahertz spectroscopy, ending with the main focus of this thesis: terahertz
microscopy.

1.1 Terahertz radiation, background

Terahertz radiation is electromagnetic radiation with a frequency in the range
between 0.1 THz and 30 THz (1 THz = 1012 Hz). As can be seen in figure
1.1, this range is situated at the transition between the microwave part and
the infrared part of the electromagnetic spectrum. The terahertz region can
therefore be seen as the transition region from electronics to optics. In elec-
tronics, electromagnetic radiation is mostly seen as electrical waves, of which
the phase can be directly measured. In optics, however, electromagnetic ra-
diation is seen as rays of light, which can easily be manipulated by mirrors
and lenses, but of which only the intensity can be directly measured. In the
terahertz field, we try to combine electronics and optics, using the best of both
fields. On the one hand, the terahertz field shares the advantage with elec-
tronics, that the phase of the electric field can be directly measured. On the
other hand, components from the field of optics, such as mirrors and lenses,
can be used to manipulate terahertz beams.

The boundaries of the terahertz region are, more or less arbitrarily, deter-
mined by the techniques available to generate and to detect the radiation. His-
torically, terahertz spectroscopy was characterized by a lack of good sources
and detectors. The available detectors could only measure the power in a te-
rahertz beam, and were thus not sensitive to the phase of the light. Therefore,
interferometric techniques had to be used to measure the phase of a terahertz
beam.

1



2 Chapter 1. Introduction

Figure 1.1: Schematic picture of the electromagnetic spectrum with the position
of the terahertz region indicated in gray. The top and bottom axes represent re-
spectively the wavelength and the frequency of the radiation on a logarithmic
scale.

The first terahertz sources were based on thermal radiation from heated
objects. However, these sources are very inefficient, and cannot produce co-
herent light. Later, coherent sources were developed. Coherent sources can
be divided into two groups: Electronic techniques extended to higher fre-
quencies, and optical sources extended to lower frequencies. Most intense
terahertz sources based on electronic techniques rely on the acceleration and
deceleration of an electron beam in a microwave cavity. Of this class of in-
struments, the so-called backward-wave oscillator is able to produce coherent
radiation with a slightly tunable frequency. However, the power levels that
can be reached with such a device rapidly decrease with frequency to values
on the order of milliwatts at 1 THz. A good overview of electronic terahertz
sources is given by Martin and Mizuno.1

New terahertz sources based on optics involved lasers. The first terahertz
lasers were based on transitions between rotational states in molecular gasses
or on transitions between impurity states in semiconductors. The molecular
gas laser can provide high power levels, on the order of kilowatts, but the fre-
quency of these lasers is not continuously tunable.2 Semiconductor lasers are
slightly tunable, but, as phonon scattering can easily destroy the population
inversion in such a laser, these devises need to be cooled to very low tempera-
tures.1 Recently, a new type of laser was introduced to the terahertz field: the
quantum cascade laser.3, 4 As this type of laser may have a large impact on the
terahertz field, it will be discussed in more detail in section 1.2.1.

An important milestone for the terahertz field was reached, when ultra-
fast laser pulses were used for the generation (fig. 1.2) and detection of tera-
hertz radiation. These ultrafast lasers allow the use of time-gating techniques,
which make it possible to directly measure the electric field of a terahertz pulse
as a function of time. Such a measurement provides not only the amplitude
of the electric field at each terahertz frequency, but also the phase, and can do
this for a large range of frequencies simultaneously. The time-gated detection
methods that became available by the use of ultrafast lasers are described in
more detail in section 1.2.2.
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Figure 1.2: The electric field of an ultrafast laser pulse with a duration of 15 fs and
a central wavelength of 800 nm (solid line). In a process called optical rectification,
the laser pulse generates a terahertz pulse (dotted line), which is proportional to
the intensity envelope of the laser pulse.

The generation and time-gated detection of terahertz radiation was soon
used for many applications. For instance, it has been applied to spectroscopic
analysis of the complex dielectric function of gases,5 dielectrics and semicon-
ductors.6 It also has been used to study a variety of physical processes, such
as intervalley scattering,7 Cooper pair breaking8 and ionization of Rydberg
atoms.9

In 1995 Hu and Nuss demonstrated the first terahertz imaging setup.10 In
this imaging method, the object is scanned through the focus of a terahertz
beam, while for each pixel a terahertz pulse as a function of time is measured.
Since each pixel does not represent a value but a complex waveform, a large
amount of data is collected in a single scan of the object. The introduction of
imaging to the terahertz field has led to a series of new developments. The
need to scan the object was removed by the use of CCD camera’s in two-
dimensional imaging.11 In 1997 three-dimensional images were made in the
first demonstration of terahertz computed tomography.12 One year later, Jiang
and Zhang showed single-shot imaging, where a full trace of the terahertz
electric field versus time could be measured along a one-dimensional line us-
ing a single terahertz pulse.13 In 1998, the first terahertz near-field images
were also reported.14

Although there is an ever increasing interest in the use of terahertz radi-
ation, especially since the development of terahertz imaging, the progress in
commercialization of the new developments is limited. This is largely due to
a lack of a ”terahertz killer application”. A terahertz killer application is an
application for which only terahertz radiation can be used or for which the
alternatives are much more expensive. We feel that such an application might
soon arise, as an increasing number of materials shows distinct features in the
terahertz region. Also, new techniques are developed that reduce the cost of a
terahertz system. Section 1.3 presents an overview of possible future applica-
tions.



4 Chapter 1. Introduction

1.2 Terahertz phase-sensitive spectroscopy

In the terahertz region, there are generally two ways to do spectroscopy in
which both the amplitude and the phase of the light is obtained. The first
uses continuous, monochromatic sources and homodyne detection methods,
and the second, which is the method that we employ, uses ultrafast pulsed
sources and directly measures the electric field of the pulses. We compare the
two methods and discuss their advantages and disadvantages. In this way, we
hope to give the reader an idea of the applicability of the methods discussed
in this thesis.

We will not discuss spectroscopy methods that provide only amplitude
information and no phase information. With only amplitude information, it is
much more difficult to obtain physical quantities related to retardation times,
such as the refractive index of a material. There are, of course, situations in
which an amplitude-only detection scheme suffices, but this thesis focusses
on the many situations where phase information is essential.

When the terahertz refractive index and absorption coefficient is to be de-
termined, it is also possible to use incoherent sources.15, 16 However, tech-
niques using such sources are sensitive to thermal radiation from the sur-
roundings, which severely limits their sensitivity. Low-frequency noise due
to fluctuations of thermal radiation, for instance due to air turbulence, can
be removed with lock-in detection techniques. However, the shot noise from
thermal radiation cannot be removed from the measurement and places an
upper limit on the detection sensitivity.

1.2.1 Homodyne spectroscopy

Continuous-wave spectroscopy uses beams with discrete, narrow band fre-
quencies to obtain spectroscopic information. The continuous-wave spectros-
copy techniques can be divided into two groups: homodyne and heterodyne
spectroscopy. For both groups, the phase of the terahertz beam under study,
called the object beam, is obtained by interference between the object beam
and a second terahertz beam, called the reference beam. For homodyne detec-
tion, the reference beam has the same frequency as the object beam, in contrast
to heterodyne detection, where the reference frequency differs from the object
frequency. Heterodyne detection is often employed, when the frequency of
the object beam is unknown, as, for instance, in the observation of astronom-
ical objects. However, for the imaging of objects that do not actively radiate
at terahertz frequencies, heterodyne detection is less suitable, since it requires
two continuous-wave terahertz beams with different frequencies that must be
phase-stable with respect to each other. Homodyne detection, however, re-
quires only one source, because the object beam and the reference beam can
be derived from the same source. Heterodyne detection will, therefore, not be
discussed in more detail.

Figure 1.3 shows a schematic picture of homodyne detection. This detec-
tion scheme can be used for imaging and spectroscopy purposes by placing
the object under study in the object beam. The object will affect both the am-
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Figure 1.3: Schematic picture of terahertz homodyne detection. A continuous-
wave terahertz beam is split into an object beam and a reference beam. The refer-
ence beam travels through a phase shifter, which shifts the phase of the reference
beam with respect to the object beam. The object beam and the reference beam
are superimposed on the detector.

plitude and the phase of the object beam. Both quantities can be measured by
superimposing the object beam with a reference beam on the detector. The de-
tector gives a signal proportional to (C + Eo0Er0 cos(ψor)), where Er0 and Eo0
are the electric-field amplitudes of the reference beam and the object beam,
and ψor is the phase difference between the object and the reference beam.
The value of the constant C is different for different types of homodyne detec-
tion. By changing the phase of the reference beam, both the amplitude and the
phase of the object beam can be measured. Typically, a series of measurements
is taken, each measurement with a slightly different value of ψor. The result of
this series is, apart from the noise, a signal proportional to the cosine of ψor.
The amplitude and phase of the cosine function is then determined from the
data, usually by a Fourier transform. The amount of data that is required is
determined by the noise level and the desired accuracy. To obtain a full spec-
trum, the frequency of the two beams is scanned, while both the amplitude
and the phase are measured at each frequency. Note that the measurement of
a spectrum requires two values to be scanned: the frequency of the terahertz
beam and at each frequency the phase difference ψor.

For terahertz homodyne spectroscopy one needs a source that provides co-
herent narrow-band terahertz radiation. The frequency resolution of the setup
is directly determined by the line width of the source and its stability. There
are many sources available that enable a high frequency resolution, such as
photomixers, backward-wave oscillators, and molecular gas lasers. Resolu-
tions of less than 1 MHz are obtained with these sources. So far, however, no
sources are available that combine a strong emission with a good tunability.
This seriously limits the capability of the technique to measure a significant
part of the terahertz spectrum in a reasonable time.

An overview of the many continuous-wave terahertz sources is available
in several review articles.1, 17 Here, we would like to make some general re-
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Figure 1.4: Schematic picture of the energy levels in the different regions of a
quantum cascade laser. The arrows indicate the flow of electrons through the het-
erostructure. The radiative transitions are indicated by the wave-shaped arrows.

marks on the new development of the terahertz quantum cascade laser. The
concept of the quantum cascade laser has only very recently been extended to
terahertz frequencies.3, 4 In quantum cascade lasers, the laser transition occurs
between the subbands formed from the conduction band in a heterostructure.
Such heterostructures consist of a building block that is repeated many times.
These building blocks contain an injector region and an active region as in-
dicated in figure 1.4. In the active region, an electron drops from an excited
level to a lower level under emission of a photon. In the injector region, this
electron is then injected from the lower level to the excited level of the next
active region. This way, an electron cascades down the potential staircase of
the heterostructure, while emitting a photon at each building block. It may
seem odd that the energy levels in the active layer on the right of figure 1.4
are lower than the levels in the left active layer, while the two layers are built
identically. However, a strong electric field of several kV/cm is applied across
the structure, which shifts the energy levels.

The terahertz quantum cascade laser has the advantage that it can produce
powers in the milliwatt range in a device of small dimensions that can poten-
tially be produced cheaply. These properties make the quantum cascade laser
a good candidate for commercial applications. However, so far these lasers
need to be cooled to at least liquid nitrogen temperatures, and the ability to
tune the frequency of these lasers is very limited.

As for the sources, there are many types of detectors available to detect
continuous wave radiation. Elaborate reviews are given in references 17–19.

1.2.2 Time-domain spectroscopy

The previous section discusses the techniques to measure the amplitude and
phase at discrete terahertz frequencies. However, it is also possible to measure
the electric field as a function of time, and obtain the spectrum by a Fourier
transform of the time domain data. This is called time-domain spectroscopy.
Historically, the problem in measuring the electric field of terahertz radiation
as a function of time, is that no electronics is fast enough to follow the fast
oscillations of the electric field. This problem was solved by using ultrafast
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laser pulses for the generation and detection of terahertz radiation.20 With
ultrafast pulses, it is possible to directly measure an electric field oscillating at
terahertz frequencies by a stroboscopic technique called time-gated detection.
There are generally two methods to obtain time-gated detection: electro-optic
detection and photoconductive antenna’s. To explain time-gated detection,
we consider the example of photoconductive antennas. Electro-optic detection
plays an important role in this work and will be discussed in detail in chapter
2.

Photoconductive antenna’s are fabricated on a piece of semiconductor ma-
terial that is usually not conductive. However, an ultrafast laser pulse can be
used to excite carriers to the conduction band, which instantaneously makes
the material conductive. Note that this ultrafast laser pulse is so short that
the variation of a terahertz electric field during the laser pulse is negligible.
Shortly after the carriers are excited, they are trapped again; a process which
rapidly shuts down the conductivity. During the short period that the antenna
conducts, a terahertz electric field can induce a current through the antenna,
which is measured with a sensitive current detector. However, the detector
is insensitive to the terahertz electric field before and after the laser pulse,
when the antenna is not conductive. In this way, the laser pulse functions as
a time gate that we can use to selectively measure the terahertz electric field
at a particular time. The electric field at other positions in time is obtained by
scanning the time delay and repeating the experiment with a new laser pulse
and a new terahertz pulse.

Time-gated detection requires that the ultrafast laser pulses are synchro-
nized to the terahertz electric field. This is done by generating terahertz pulses
with ultrafast optical pulses derived from the same laser that is used for the
detection. One can use nonlinear optical effects and photoconductive an-
tenna’s for the generation of terahertz pulses. The power levels generated
with these methods are difficult to compare with the power levels generated
by continuous sources. The average power levels of 10 to 100 µW are low
compared to the average powers of continuous sources, but the peak power
can reach 1 W. More relevant to time-domain spectroscopy is the peak height
of the electric field of the terahertz pulse, which can reach values up to 100
V/cm. This is a most relevant quantity, since it is directly proportional to the
spectral amplitude. The frequency dependence of the spectral amplitude is
determined by the shape of the terahertz pulse in the time domain, which
often can be approximated by a single-cycle, Gaussian-shaped pulse.

Figure 1.5 shows an example of a terahertz pulse measured using ultra-
fast laser pulses. The electric field has one large oscillation followed by a long
fluctuating tail. Note that the fluctuations in the tail are not random, but re-
producible. The tail is caused by absorption and subsequent re-emission of
terahertz radiation by water vapor molecules in the atmosphere. Contrary to
the microwave region,21 absorption by oxygen molecules is negligible in the
terahertz region. The time scale of the features in figure 1.5 is on the order of 1
ps. Although this is a very small time scale from an electronics view point, it
is much longer than the 15 fs duration of the laser pulse used to measure the
electric field.
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Figure 1.5: Measured electric field as a function of time of a typical terahertz
pulse.

1.2.3 Homodyne versus time-domain spectroscopy

To compare homodyne spectroscopy and time-domain spectroscopy, we con-
sider three system parameters: spectral resolution, signal-to-noise ratio and
dynamic range. In terms of spectral resolution, which is the resolution that
can be obtained in the spectral domain, homodyne spectroscopy is better than
time-domain spectroscopy. The spectral resolution of homodyne spectroscopy
is fundamentally limited by the line width of the source, which can be ex-
tremely narrow. Using homodyne spectroscopy, spectral resolutions below 1
MHz have been reported.22 In a time-domain spectroscopy setup, however,
the spectral resolution is usually on the order of 50 GHz.23 Fundamentally,
this spectral resolution is limited by the repetition rate of the ultrafast laser,
which is typically 80 MHz for an oscillator and 1 kHz for an amplified sys-
tem. However, a more practical limitation is the maximum travel range of the
optical delay stage that controls the relative delay between the terahertz pulse
and the ultrafast measurement pulse. If we assume that the practical limit on
the travel range of such a delay stage is on the order of two meters, then the
maximum spectral resolution in time-domain spectroscopy is on the order of
150 MHz.

The signal-to-noise ratio and the dynamic range are both related to the
amplitude of the reference spectrum, which is the spectrum measured with-
out object in the terahertz beam. The signal-to-noise ratio is defined as the
spectral amplitude at a certain frequency divided by the standard deviation of
that amplitude. The dynamic range is the spectral amplitude at a certain fre-
quency divided by the standard deviation of the noise at the frequency with
the terahertz beam blocked. The dynamic range is a measure of the sensitivity
of the detector and determines the maximum amount of absorption one can
tolerate before the measured signal is dominated by the noise. The signal-to-
noise ratio, however, is a measure of the sensitivity of the complete system,
and also includes noise due to fluctuations of the source. Note that a large dif-
ference between the signal-to-noise ratio and the dynamic range means that
the noise due to random fluctuations of the source dominates the total noise
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of the system.
A comparison of the signal-to-noise ratio and the dynamic range obtained

with homodyne spectroscopy and with time-domain spectroscopy is difficult,
as the published literature contains insufficient information for such a com-
parison. Based on the data that is available, we conclude that, at this mo-
ment, time-domain spectroscopy has better signal-to-noise ratios for compa-
rable measurement times per spectral amplitude data point. However, the
difference may be due to the fact that, so far, more effort has been put in time-
domain spectroscopy than in homodyne spectroscopy. Homodyne spectros-
copy and time-domain spectroscopy have been used to image objects with
signal-to-noise ratios on the order of 100:1. However, achieving such a ratio
with time-domain spectroscopy takes about 20 ms per pixel, while homodyne
detection, until now, requires 200 ms. Also, the images obtained with homo-
dyne spectroscopy were on a single-frequency basis, while time-domain spec-
troscopy measures the response at typically 60 frequencies simultaneously.24

A disadvantage of homodyne spectroscopy is that standing waves can oc-
cur in the optical system due to reflections. These standing waves are difficult
to avoid and can induce systematic errors. In time-domain spectroscopy, re-
flections are much less of a problem. The reflections can be easily separated
in the time domain, provided that the relative delay between the reflections
is larger than the duration of the pulses. It is then even possible to obtain
the spectrum of each reflection independently. If, however, subsequent pulses
overlap, then separation in time is no longer possible, and similar problems as
in homodyne detection arise. An advantage of homodyne spectroscopy is its
potential to be used in cheap, compact systems, which is important for future
commercial applications.

Concluding, homodyne spectroscopy and time-domain spectroscopy are
both sensitive techniques applicable for imaging and spectroscopy. If the re-
quirements on the spectral resolution are not too tight, then time-domain spec-
troscopy is an excellent method, since standing waves do not occur. Homo-
dyne spectroscopy has the advantage of a better spectral resolution and has a
higher potential to be used in cheap and compact systems. So far, however,
the limited tunability of the sources and the longer data acquisition times limit
the applicability of this technique.

1.3 Applications for terahertz radiation

This section discusses various potential applications of terahertz radiation. We
do not give a complete overview of all applications, as we merely try to give
the reader a sense of the potential of terahertz techniques.

In general, the advantages of using terahertz radiation compared to radia-
tion from other regions of the electromagnetic spectrum are related to material
properties. For instance, some materials are transparent at terahertz frequen-
cies, while they are opaque at optical wavelengths. This opens the possibil-
ity to look through (parts of) objects. Also, some materials, such as gasses,
show characteristic absorption features in the terahertz region. As we discuss
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Figure 1.6: Measured transmission spectrum through a 1 m long air column with
a 40% relative humidity.

potential applications, we will indicate which material properties makes the
application interesting.

1.3.1 Astronomical and atmospherical spectroscopy

We discuss astronomical and atmospherical spectroscopy in the same sec-
tion, because they rely on the same material property: rotational transitions
in molecular gasses. The rotation of a molecule is quantized, and absorption
and emission of terahertz radiation is associated with transitions between ro-
tational energy levels. A molecules that is, for instance, thermally excited from
the ground state to a higher rotational energy level, can emit a terahertz pho-
ton as it makes a transition to a lower energy level. The frequency of this
photon is determined by the energy difference between the two levels. This re-
sults in a sharply peaked emission spectrum. On the other hand, the molecule
can also absorb radiation at the transition frequency, which results in peaks
in the absorption spectrum. The line width of the peaks in the absorption and
emission spectra are very narrow, especially at low pressures, where the line
width can be smaller than 1 MHz. As an example, figure 1.6 shows a measure-
ment of the transmission spectrum of air. The water vapor in the air causes a
large number of discrete absorption lines. The exact frequencies and relative
strengths of these lines can serve as an unique ”fingerprint” for identifying
and quantitatively measuring water vapor.

Due to the narrow line width of rotational transitions of molecular gasses,
an enormous number of different molecules can be identified simultaneously.
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By measuring the spectrum of a gas mixture, it is possible to determine which
molecules are present and how much of each molecule is present. This method
is used to determine the content of our atmosphere and of gas clouds in outer
space.

In the void between stars there are large clouds of gasses. These clouds
are very important in astronomy, because they serve as a birth place of new
stars. These clouds can not be detected in the visible part of the electromag-
netic spectrum, but they do radiate at terahertz frequencies. By measuring the
spectrum of this emission, the chemical composition of the clouds can be de-
termined. This will be the mission of the Herschel telescope, which is a space
observatory scheduled to be launched in 2007. It is important to do these
observations in space, as the atmosphere absorbs almost all of the terahertz
radiation from outer space.

Terahertz absorption in the atmosphere, a disadvantage for astronomical
observations, can be used to study the earth’s atmosphere. The chemical com-
position of our atmosphere is highly relevant from an environmental point of
view, due to problems with the ozone layer and the greenhouse effect. These
problems are associated with the relative and absolute abundance of different
molecules, which can be measured very accurately with terahertz radiation.
These measurement have been performed by balloon- and aircraft-borne de-
tectors and by space-borne observatories (NASA’s AURA mission25).

1.3.2 Inspection and security

Most package materials, such as paper and plastics, are transparent at tera-
hertz frequencies. Therefore, terahertz radiation can be used for the inspec-
tion of the content of packages without having to open them. For example,
Teraview,26 a company that specializes in technologies related to terahertz ra-
diation, currently investigates the detection of dangerous substances in en-
velopes. There is also an interest in imaging through clothing, as this can be
used for the detection of concealed weapons. One could also think of appli-
cations related to quality control: checking whether the milk has gone sour
without opening the milk carton.

Of course, it is even more useful to see though a container, if its contents
can be identified with its spectral signature. Fortunately, a lot of substances
have distinct features in their terahertz absorption spectra. Current research
studies the features of, for instance, explosives. For this type of applications,
detection methods that also measure the phase of terahertz radiation have an
advantage over intensity-only methods. With phase information, it is possible
to calculate the time needed by a terahertz wave to penetrate a (part of) an
object, which provides information on the 3D structure of the object.

1.3.3 Biological and medical applications

There is an interest in biological and medical applications of terahertz radia-
tion. Many complex biological molecules show characteristic absorption fea-
tures in the terahertz region.27 Other studies have shown that it is possible
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Figure 1.7: Schematic picture of the use of apertures in near-field imaging. A
terahertz wave is incident on a metal sheet with an aperture which is smaller
than the wavelength. The light transmitted within the collection cone is detected,
which leads to a signal that is only affected by the part of the object close to the
aperture.

to distinguish between healthy skin tissue and skin tissue with basal skin cell
carcinoma, a form of cancer. Also, the label free probing of DNA in the tera-
hertz region was demonstrated.28

One of the problems which hamper the development of medical and bi-
ological terahertz applications is the limited spatial resolution in terahertz
imaging. In conventional imaging the spatial resolution is limited to about
half a wavelength, which is typically 0.15 mm for terahertz radiation. How-
ever, many interesting biological and medical processes occur at a cellular
level. Biological cells have dimensions on the order of 1 µm, which is much
smaller than the spatial resolution of conventional terahertz imaging. Tera-
hertz near-field imaging, however, can overcome this limitation.

1.3.4 Terahertz microscopy

Individual microscopic objects can only be investigated with terahertz radi-
ation, if near-field techniques are used. With near-field techniques, the spa-
tial resolution limit in conventional (meaning not near-field) imaging, which
originates from diffraction effects, is avoided. This is achieved by locally en-
hancing or confining the terahertz electric field to areas much smaller than the
wavelength of the light.

The most straightforward way to confine the electric field to sub-wave-
length dimensions is with an aperture.14 The object is scanned behind a metal
sheet containing an aperture of sub-wavelength dimensions (figure 1.7). Some
of the terahertz radiation is transmitted through the aperture and will then
diffract to all directions in the forward half-space. Because the object is very
close to the plate with the aperture, the transmitted wave is affected primar-
ily by the part of the object close to the aperture, which results in a sub-
wavelength resolution. This approach, however, does require that the object
is very thin.
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One of the disadvantages of the aperture technique, is the low transmis-
sion of the aperture. Bethe29 already discussed that the energy transmitted
by a sub-wavelength-sized aperture in a thin metal sheet goes down with the
aperture radius to the sixth power. This transmission loss significantly deteri-
orates the signal-to-noise ratio and thus limits the size of the smallest usable
aperture.

The problem of low signal-to-noise ratios is common to most near-field
techniques. It is in the nature of electromagnetic waves that they resist being
confined to dimensions smaller than the wavelength. Improvements, how-
ever, can be made with resonant structures such as antenna’s, which can en-
hance a local electric field. Plasmon-assisted enhanced transmission through
apertures30 can also be seen as originating from resonant enhancement of sur-
face waves.

1.4 This thesis

The goal of this thesis is to investigate various aspects of terahertz time-domain
spectroscopy with the aim to develop a new terahertz microscopy technique.
The near-field techniques needed to do microscopy at terahertz frequencies
generally give small signals. It is therefore essential that the detection process
is as sensitive as possible. Chapter 2 gives an elaborate discussion on electro-
optic detection, which is the time-domain spectroscopy detection method used
throughout this thesis. In this chapter a theory for electro-optic detection is
described, which includes its dependence on the orientation of the different
components of the setup. This chapter also shows how electro-optic detection
can be used to measure the polarization of the terahertz pulse.

The signal-to-noise ratio can be improved, not only by optimizing the de-
tection sensitivity, but also by minimizing the noise level. Chapter 3 inves-
tigates the influence of noise in terahertz time-domain spectroscopy experi-
ments. For shot-noise limited detection, the signal-to-noise ratio can be im-
proved by increasing the power in the optical probe beam. We investigate to
which extent high probe powers result in adverse effects due to saturation of
the photodiodes in the detector.

Chapter 4 presents calculations and measurements on various ways of
generating synchronized terahertz pulses. We theoretically and experimen-
tally investigate optical rectification, which is nonlinear optical process using
the second-order nonlinear susceptibility (χ(2)). Terahertz generation by non-
linear processes is relevant for terahertz microscopy, since it can be used to
make sources with sub-wavelength dimensions by tight focussing of the gen-
erating optical beams. Chapter 4 also discusses a different terahertz genera-
tion method, which uses photoconductive emitters. The dimensions of a con-
ductive emitter are usually not sub-wavelength, but they are still important
for near-field applications, because of their high output power.

For the terahertz near field close to conducting surfaces, surface waves in
the form of surface plasmon polaritons can be very important. They are, for
instance, relevant for terahertz near-field microscopy, which uses a metal tip.
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It is even conceivable that metal wires could be used to effectively guide the
terahertz wave to the sample in microscopy setups. Chapter 5 discusses the
features of surface plasmon polaritons at terahertz frequencies. In particular,
we investigate theoretically and experimentally, how terahertz surface plas-
mon polaritons propagate over metal wires.

Finally, we discuss a technique for near-field terahertz imaging that uses
the local electric-field distortions around metal needles in chapter 6. The de-
tection setup is discussed and measurements are presented. The frequency de-
pendence of the terahertz spectrum measured in the near field is explained by
a simple antenna model. The chapter is concluded with a speculation upon the
resolution that is obtainable with the proposed terahertz microscopy setup.



Chapter 2

Electro-optic detection

Since the development of terahertz time-domain spectroscopy, electro-optic
detection has become an increasingly popular way of measuring both the am-
plitude and phase of terahertz radiation.31, 32 Electro-optic detection is used in
various applications, such as spectroscopy,33, 34 imaging,35 tomography,36 and
microscopy.37, 38 Electro-optic detection is based on the nonlinear response of
the polarization in a medium to an electric field. As an introduction, we first
give a simplified scalar description of the nonlinear polarization response.
Later, we will give a complete tensor description of the phenomenon. The
polarization in a non-dispersive∗ medium can be written as40

P(t) = ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

)
, (2.1)

where P is the polarization, E is the electric field, and ε0 is the permittivity
of vacuum. χ(1), χ(2) and χ(3) are the electric susceptibilities of the first, sec-
ond and third order respectively. Note that each term in the expansion is, in
general, much smaller than the preceding term. In most cases, only the first-
order susceptibility is important and all other terms can be neglected. How-
ever, there are cases where the higher-order terms are important. Suppose
that a constant electric field E1 and an electric field oscillating at an optical
frequency E2(t) are simultaneously present in a non-dispersive medium. Up
to the second order in the electric field, the polarization is then given by

P(t) =ε0

(
χ(1)E1 + χ(1)E2(t) + χ(2)E2

1 + χ(2)E2
2(t) + 2χ(2)E1E2(t)

)
=ε0

(
χ′E2(t) + χ(1)E1 + χ(2)E2

1 + χ(2)E2
2(t)

)
,

(2.2)

where χ′ ≡ χ(1) + 2χ(2)E1 can be viewed as an effective susceptibility for the
optical electric field, which is a function of E1. This field-dependent suscep-
tibility leads to a field-dependent refractive index as follows. The dielectric

∗Gallot and Grischkowsky gave an excellent description of the effect of dispersion on electro-
optic detection.39

15
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constant εr, which equals the square of the refractive index n, is related to the
polarization through

εrε0E = P + ε0E. (2.3)

With equation 2.2 and 2.3, we find that

n =
√

ε0(1 + χ′) =
√

ε0
(
1 + χ(1) + 2χ(2)E1

)
, (2.4)

where all terms of equation 2.3 that do not oscillate with the same frequency
as E2(t) are disregarded. The effect that the refractive index depends on a DC
electric field is called the electro-optic effect or the Pockels effect.

For simplicity, all quantities in equation 2.2 and 2.3 are written as scalars.
In reality, the polarization and the electric field are vectors, while the suscep-
tibilities are tensors. Due to the tensor character of the susceptibility, the re-
fractive index of equation 2.4 can depend on the direction of the electric field.
The medium can thus become birefringent and this birefringence can be con-
trolled with the DC electric field E1. Due to the birefringence, an optical beam
that travels through the medium can experience a polarization change, which
is proportional to the electric field.

The discussion above is also valid if the field E1 varies slowly compared to
the frequency of the optical wave. E1 is then considered to be quasi-constant.
In terahertz electro-optic detection, we measure the change in the birefrin-
gence caused by electric fields with terahertz frequencies. Terahertz electric
fields have a much lower frequency than optical fields and can thus be con-
sidered quasi-constant. Figure 2.1 schematically show an electro-optic detec-
tion setup. The polarization of an optical probe pulse that travels through an
electro-optic detection crystal changes due to the change in birefringence.† Af-
ter the probe beam has travelled through the detection crystal, it is split into
two beams with a polarizing beamsplitter. A signal proportional to the tera-
hertz electric field is then obtained by measuring the difference in the powers
of both beams with two photodiodes.

It is obviously important to have detailed knowledge of a technique that is
so widely used as electro-optic detection. A detailed and complete descrip-
tion of this process can help experimenters optimize the detection sensitivity,
can increase physical insight, and can make it possible to model complex pro-
cesses, as in electro-optic near-field measurements.38 The most-widely used
detection crystals are optically isotropic. In previous papers the electro-optic
signal in such crystals is calculated for a few distinct propagation directions of
the probe beam, but no expressions are given for a general propagation direc-
tion.37, 42 The paper by Duvillaret et al. can be used for arbitrary probe prop-
agation direction, but presents a figure of merit instead of the electro-optic
signal.43 Therefore the description of electro-optic detection in this paper is
not complete and provides little quantitative information.

†It is also possible to perform electro-optic detection by measuring the change in the phase of
the probe beam instead of the change in the polarization.41 However, polarization modulation
is by far the most widely-used technique, since phase-modulation techniques greatly suffer from
noise induces by vibrations.
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Figure 2.1: The general setup used in electro-optic detection. A probe pulse,
which is originally polarized linearly, travels through a detection crystal and a
λ/4 plate, and is then split by a Wollaston prism (WP). The difference in the in-
tensity of the two beams is measured with a differential detector, which, apart
from the electronics, consists of two photodiodes (D1 and D2).

The goal of section 2.1 is to derive an analytic expression of electro-optic
detection in optically isotropic crystals, which shows the dependence of the
detection process on the direction of the probe propagation, the probe polar-
ization, and the terahertz electric field vector.

The electro-optic detection method described in section 2.1 measures one
component of the terahertz electric field vector. Additional information is ob-
tained in a measurement of the terahertz polarization. In the past, electro-optic
polarization measurements were performed by sequential measurements be-
tween which either the input polarization44, 45 or the detection crystal orienta-
tion46 had to be adjusted. An alternative approach uses multiple probe beams
that follow different paths through the detection crystal,47 which means that
the different electric field components are not measured at exactly the same
location.

The goal of section 2.2 is to present an electro-optic detection method that
can measure the terahertz polarization using a single probe beam. The method
has the potential to measure two components of the terahertz polarization
simultaneously, and does not require changes to the initial probe beam po-
larization or to the crystal orientation. We demonstrate the potential of this
technique in terahertz imaging and spectroscopy with two examples.

2.1 General theory for electro-optic detection

In this section, we give a full description of electro-optic detection in opti-
cally isotropic crystals, and show the dependence of the detection process on
the direction of the probe propagation, of the probe polarization, and of the
terahertz electric field.48 Our approach is independent of the terahertz prop-
agation direction, which makes the theory applicable to both collinear and
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non-collinear situations. We assume that the optical probe pulse experiences
a constant terahertz electric field, but the scope of the equations can be ex-
tended to varying electric fields by simple integration. The end result of the
calculation is a small set of simple formulas, which are easy to use, which can
help an experimenter find the optimum configuration for his particular appli-
cation, and which provide valuable physical insight. All the relevant vectors
in our final formulas will be expressed in the coordinate system formed by
the crystallographic axes of the electro-optic detection crystal. All values can,
therefore, directly be substituted into the equations without the need for time-
consuming coordinate transformations. Our calculation is valid for all opti-
cally isotropic materials, so it is applicable to a large number of electro-optic
detection crystals, such as ZnTe and GaP.

2.1.1 Calculation of the detector signal

In this section we will derive a simple formula describing electro-optic detec-
tion for arbitrary propagation and polarization directions of the probe, and
for arbitrary size and polarization direction of the terahertz electric-field. The
calculation is split into three parts. First, we will calculate the effect of an
arbitrary terahertz electric field on the optical properties of the detection crys-
tal. The calculation of the corresponding refractive indices and orientation of
the refractive-index axes, both induced by an arbitrary terahertz electric field,
is given. Second, we determine the electro-optic signal, where the refractive
indices and the direction of the principal refractive-index axes are assumed
known. Third, the results of the first and second part are combined into a
general solution for the electro-optic signal.

Calculation of the terahertz-induced birefringence

In a birefringent crystal, there are generally two polarization directions for
which a linearly polarized, plane wave is a solution to Maxwell’s equations.
Following Yariv, we call these two linearly polarized plane waves the prop-
agation modes of the crystal.49 A beam that is polarized in any other direc-
tion will experience a polarization change while travelling through the crystal.
Each mode is characterized by a refractive index and a polarization direction.
The polarization change occurring in a crystal of a certain thickness can be cal-
culated by decomposing the incident wave along the polarization directions
of the modes, propagating both modes through the crystal using the appropri-
ate refractive index, and then adding the two modes up to get the polarization
at the end of the crystal. Such a description is also valid in electro-optic detec-
tion, where the birefringence of the crystal is caused by the terahertz electric
field. We will calculate the modes for the electro-optic detection crystal for
arbitrary terahertz electric field and for arbitrary propagation direction of the
probe beam.

Yariv provides an equation for the refractive indices and polarization di-
rections of the two propagation modes.49 This equation is derived directly
from Maxwell’s equations, and it is valid for all media in which there are no
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free charges and currents, and which are nonmagnetic (µ = µ0). The equation
that defines the polarization modes is given by

D0i = n2
i ε0 [E0i − (ŝ · E0i) ŝ] , (2.5)

where D0i is the electric displacement vector, E0i is the electric field vector, ni
is the refractive index, all corresponding to the i’th polarization mode of the
probe, where i ∈ {1, 2}. The propagation direction of the probe is given by the
unit vector ŝ = (sx, sy, sz). In this thesis, we will use a hat (ˆ) to indicate a unit
vector.

Equation (2.5) gives us the propagation modes of a crystal. However, the
birefringence that is produced by the terahertz electric field still has to be
quantified. For this purpose, we need to relate the electric displacement vec-
tor D0i to the electric field vector E0i with the permittivity tensor. The values
of the permittivity tensor of a nonlinear crystal in the presence of a terahertz
electric field are given by:

ε ij = ε0

(
δij + χ

(1)
ij + ∑

k
χ

(2)
ijk ETk

)
, (2.6)

where ε ij is the element of the permittivity tensor on column i and row j, and
δij is a Kronecker delta. The permittivity of free space is ε0. χ(n) is the suscep-
tibility of order n and ET =

(
ETx, ETy, ETz

)
is the terahertz electric field in the

detection crystal. Note that the electric field in the crystal differs from that in
air or vacuum.

We will now use the fact that we are investigating optically isotropic mate-
rials. The only optically isotropic materials that exhibit an electro-optic effect
and thus can be used as electro-optic detector are crystals with a cubic sym-
metry of the classes 23 or 43m. The first-order susceptibility of these crystals
is not directionally dependent, so it can be written as

χ
(1)
ij = (εr − 1) δij, (2.7)

where εr is the relative permittivity of the crystal. Using the symmetry of our
crystal, we can also simplify the second-order susceptibility tensor. For this
purpose, we use a coordinate system which corresponds to the crystal’s main
crystallographic axes. The x-axis of the coordinate system is the (100) axis
of the crystal, the y-axis is the (010) axis, etc. In this coordinate system the
second-order susceptibility of a cubic crystal is given by:

i 	= j 	= k ⇒ χ
(2)
ijk = χ(2) (2.8)

otherwise ⇒ χ
(2)
ijk = 0. (2.9)

When we use these symmetry arguments on equation 2.6, and write the
result in matrix format, we get:

¯̄ε = ε0


 εr χ(2)ETz χ(2)ETy

χ(2)ETz εr χ(2)ETx
χ(2)ETy χ(2)ETx εr


 , (2.10)
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where (ETx, ETy, ETz) are the components of the terahertz electric field with
respect to the crystal axes.

Using equation (2.5), together with equation (2.10) and D0i = ¯̄εE0i, we get
a matrix equation that determines the refractive indices and the electric-field
vectors of the polarization modes
 εr χ(2)ETz χ(2)ETy

χ(2)ETz εr χ(2)ETx
χ(2)ETy χ(2)ETx εr


 E0i = n2

i


 1 − s2

x −sxsy −sxsz
−sxsy 1 − s2

y −sysz

−sxsz −sysz 1 − s2
z


 E0i,

(2.11)

where i is 1 or 2, and n1 and n2 are the refractive indices when the polarization
of the probe is along respectively the E01 and E02 vector. The components of
the unit vector in the probe’s propagation direction ŝ are indicated by sx , sy,
and sz in the coordinate system formed by the crystal axes. The unit vectors
along polarization directions of the two propagation modes are given by

r̂ci ≡
E0i

‖E0i‖
with i ∈ {1, 2}. (2.12)

We now define the difference between the refractive index with and the
refractive index without terahertz field as ∆ni ≡ ni − √

εr. For sufficiently
small ∆ni, we can make the approximation

n2
i = (

√
εr + ∆ni)

2  εr + 2∆ni
√

εr . (2.13)

We can use this to rewrite equation 2.11 as
 A ETz ETy

ETz A ETx
ETy ETx A


 E0i 

(
A + 2

∆ni
√

εr

χ(2)

) 1 − s2
x −sxsy −sxsz

−sxsy 1 − s2
y −sysz

−sxsz −sysz 1 − s2
z


 E0i,

(2.14)
where A ≡ εr/χ(2).

The electric field vector of the probe beam has to be almost perpendicular
to its propagation direction, if the birefringence of the crystal is very small.‡

In electro-optic detection the induced birefringence is usually very small, so
it is reasonable to expect that the probe electric field is indeed approximately
perpendicular to the probe’s propagation direction. We therefore expect that
the previous equation will look simpler in a coordinate system that has one of
its axes along the propagation direction of the probe. We chose the following
coordinate system

x̂′ = sx x̂ + syŷ + szẑ (2.15)

ŷ′ =
(−szŷ + sy ẑ

)
/
√

s2
y + s2

z (2.16)

ẑ′ =
[(

s2
y + s2

z

)
x̂ − sxsyŷ − sxszẑ

]
/
√

s2
y + s2

z , (2.17)

‡This can be verified by substitution of D0i  εrE0i in equation 2.5
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where x̂, ŷ, ẑ are the unit vectors of the old coordinate system, which were
along the crystal axes. x̂′, ŷ′, ẑ′ are the unit vectors of the new coordinate sys-
tem, and sx, sy, sz are, as before, the components of the unit vector in the prop-
agation direction of the probe with respect to the old coordinate system. The
new coordinate system is defined such that x̂′ points in the propagation direc-
tion of the probe (ŝ), and that ŷ′ points in the direction of the cross product of
ŝ and x̂. From here on, we will distinguish between the two coordinate sys-
tems by labelling all matrices and vectors in the new coordinate system with
a prime. An arbitrary vector or matrix expressed in the old coordinate sys-
tem can be transformed into the new system (and back) with the following
transformation matrix P

¯̄P =




sx 0
√

s2
y + s2

z

sy −sz/
√

s2
y + s2

z −sxsy/
√

s2
y + s2

z

sz sy/
√

s2
y + s2

z −sxsz/
√

s2
y + s2

z


 . (2.18)

Vectors can be transformed with the equation V ′ = ¯̄P−1 V, and matrices with
¯̄M′ = ¯̄P−1 ¯̄M ¯̄P.

The above coordinate transformation is a valid rotation of the coordinate
axes except for the special case of ŝ = {1, 0, 0}. For this case, the transfor-
mation is not defined. However, the case that ŝ = {1, 0, 0} is, because of the
symmetry of the crystal, completely equivalent to the cases that ŝ = {0, 1, 0}
or ŝ = {0, 0, 1}. For these directions the transformation is valid, so the coor-
dinate transformation does not limit the generality of the theory. In the new
coordinate system, equation 2.14 transforms into


A + 2ETxsysz + 2ETysxsz + 2ETzsysx
ETx(s2

y−s2
z)+ETysysx−ETzszsx√

s2
y+s2

z

ETx(s2
y−s2

z)+ETysysx−ETzszsx√
s2

y+s2
z

−2ETx
sysz

s2
y+s2

z
− 2 ∆ni

√
εr

χ(2)

−2ETxsxsysz+ETysz(−1+2s2
y+2s2

z)+2ETzsy(s2
z+s2

y)√
s2

y+s2
z

ETxsx
−s2

y+s2
z

s2
y+s2

z
+ ETysy − ETzsz

−2ETxsxsysz+ETysz(−1+2s2
y+2s2

z)+2ETzsy(s2
z+s2

y)√
s2

y+s2
z

ETxsx
−s2

y+s2
z

s2
y+s2

z
+ ETysy − ETzsz

−2ETx
s2

xsysz

s2
y+s2

z
− 2ETysxsz − 2ETzsxsy − 2 ∆ni

√
εr

χ(2)


 E′

0i = 0.

(2.19)

Where E′
0i is a vector in the new coordinate system that points along the polar-

ization direction of the i’th propagation mode with a refractive index ni. Note,
that the above vector equation comprises a system of 3 equations.

Equation 2.19 seems very complicated, but it can be simplified. We can
make the following approximation

A ≡ εr/χ(2) � ‖ET‖ , (2.20)
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which is generally valid for sufficiently small terahertz electric fields. This
restriction is not stringent, since χ(2) is usually very small. For instance, A
equals 0.3 GV/cm for ZnTe, a much-used electro-optic detection crystal. For
Ti:Sapphire oscillator systems, a peak terahertz electric field of 100 V/cm is
considered high.23 ET/A is thus on the order of 10−6 or smaller.

We will now consider only the equation formed by the top row of the ma-
trix of equation (2.19). Note, that only this row contains A. If we neglect all
terms in the top row that do not contain A, we get the following equation for
this row (

A 0 0
) E′

ix
E′

iy
E′

iz


 = 0, (2.21)

where E′
ix, E′

iy, and E′
iz are the components of the electric field of the probe.

From this equation we get that

E′
ix = 0. (2.22)

So the component of the probe’s electric field in its propagation direction, is
zero. This corresponds to a probe electric field which is perpendicular to the
propagation direction, as was expected.

The top row of equation (2.19) has been used, but the information of the
bottom two rows is still available. This information can be written as
 −2ETx

sysz

s2
y+s2

z
− 2 ∆ni

√
εr

χ(2)

ETxsx
−s2

y+s2
z

s2
y+s2

z
+ ETysy − ETzsz

ETxsx
−s2

y+s2
z

s2
y+s2

z
+ ETysy − ETzsz

−2ETx
s2

xsysz

s2
y+s2

z
− 2ETysxsz − 2ETzsxsy − 2 ∆ni

√
εr

χ(2)


( E′

iy
E′

iz

)
=
(

0
0

)
.

(2.23)

Note, that the left elements of Equation (2.19) have been left out. The value of
these elements are irrelevant, since they are multiplied with E′

ix, which is zero.
In this way, the problem is reduced from a three-dimensional matrix equation
to a two-dimensional equation. The solution of this equation can be calculated
straightforwardly. For the changes in the refractive index we get

∆n1 = − χ(2)

2
√

εr

(
b −

√
b2 + c

)
(2.24)

∆n2 = − χ(2)

2
√

εr

(
b +

√
b2 + c

)
, (2.25)

with

b = ETxsysz + ETysxsz + ETzsysx (2.26)

c = E2
Txs2

x + E2
Tys2

y + E2
Tzs2

z

−2
(
ETxETysxsy + ETzETyszsy + ETxETzsxsz

)
. (2.27)
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We also find the following eigenvectors, which corresponds to the polarization
directions of the propagation modes

E′
01 =




0

−ETxsx
s2

z−s2
y

s2
z+s2

y
− ETysy + ETzsz

−√
b2 + c + b − 2ETx

sysz

s2
y+s2

z


 (2.28)

E′
02 =




0√
b2 + c − b + 2ETx

sysz

s2
y+s2

z

−ETxsx
s2

z−s2
y

s2
z+s2

y
− ETysy + ETzsz


 . (2.29)

It is interesting to note the square roots in equation (2.24) to (2.29). Due
to these square roots, the refractive index change induced by the sum of two
electric-field vectors does not equal the sum of the refractive index changes
induced by each of the electric fields separately ( ∆n(ET1 + ET2) 	= ∆n(ET1) +
∆n(ET2) ). The equations are thus not linear with vector summation of two te-
rahertz electric fields. However, as will be shown, these nonlinearities cancel
each other in the final equation for the signal obtained in electro-optic detec-
tion.

Relationship between the electro-optic signal and the terahertz-induced bi-
refringence

In this section, we will calculate the signal obtained in electro-optic detection
as a function of the difference between the refractive indices of the two propa-
gation modes and as a function of the polarization direction of the probe beam.
For now, the refractive indices and the polarization directions of the propaga-
tion modes, which are induced by a terahertz electric field, are assumed to be
known. We consider an electro-optic detection setup, as displayed in figure
2.1, consisting of a quarter-wave (λ/4) plate, a Wollaston prism, a differential
detector, and an electro-optic detection crystal. A linearly polarized, optical
probe pulse experiences a polarization change in the electro-optic detection
crystal due to the refractive-index difference, and becomes slightly elliptical.
After the detection crystal, the probe beam travels through a λ/4 plate. The
λ/4 plate is followed by a Wollaston prism, which splits the probe beam into
two beams, which are polarized linearly and orthogonally to each other. An
electronic signal is then obtained by measuring the difference in the intensity
of the two beams with two photodiodes.

We use a geometry as defined in figure 2.2. In this picture Êp is the initial
polarization direction of the probe, and r̂w1 and r̂w2 are the polarization direc-
tions of the two beams after the Wollaston prism. The polarization directions
of the two propagation modes of the detection crystal are labelled r̂c1 and r̂c2,
and the polarization direction of the modes of the λ/4 plate are labelled r̂l1
and r̂l2. In this section, we do not define in which coordinate system the vec-
tors are expressed. There is no need to do so, because, as we will see, the
results of this section depend only on the relative angles between the different
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Figure 2.2: The relative orientation of the initial probe polarization Êp, the polar-
ization direction of the two propagation modes of the detection crystal r̂c1 and r̂c2,
the polarization direction of the two propagation modes of the λ/4 plate r̂l1 and
r̂l2, and the polarization directions of the two beams after the Wollaston prism
r̂w1 and r̂w2. The angle between Êp and r̂c1 is defined as α, the angle between Êp
and r̂l1 as β, and the angle between r̂l1 and r̂w1 as γ. All vectors, except ŝ, are in
plane of the paper. The propagation direction of the probe ŝ is perpendicular to
the plane of the paper, and points into the paper.

vectors, and these angles do not change by rotations of the coordinate system.
The variables α, β, and γ are defined as respectively the angles between Êp

and r̂c1, between Êp and r̂l1, and between r̂l1 and r̂w1.
The unit vector that corresponds to the initial polarization of the probe can

be decomposed into the two propagation modes of the electro-optic crystal as

Êp = (r̂c1 · Êp)r̂c1 + (r̂c2 · Êp)r̂c2. (2.30)

In the crystal, each propagation mode experiences a phase change pro-
portional to the refractive index of the mode. After propagation through the
electro-optic crystal, the unit vector that points in the polarization direction of
the probe is, in complex notation, given by

Êpc = exp(jωn1l/c)r̂c1(r̂c1 · Êp) + exp(jωn2l/c)r̂c2(r̂c2 · Êp)
= exp(jωn1l/c) cos(α)r̂c1 − exp(jωn2l/c) sin(α)r̂c2

= exp(jωn1l/c)[cos(α)r̂c1 − exp(jω∆nl/c) sin(α)r̂c2]. (2.31)
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Where ω is the radial frequency of the probe beam, l is the length of the crys-
tal, n1 and n2 are the refractive indices of the two propagation modes of the
electro-optic crystal, and c is the velocity of light in vacuum. The refractive
index difference ∆n is defined as n2 − n1. In the above equation, the complex
exponential factors correspond to the phase changes of the electric fields of
the modes accumulated at the end of the crystal.

We now use the approximation ζ ≡ |ω∆nl/c| � 1

Êpc  exp(jωn1l/c)[cos(α)r̂c1 − (1 + jζ) sin(α)r̂c2]. (2.32)

We can use the same method to account for the propagation through the
λ/4 plate as we used for the detection crystal. We can again decompose
the probe into the two propagation modes and then propagate both modes
through the λ/4 plate by applying the correct complex phase factor. A λ/4
plate is constructed such that the effective optical length for the two modes
differ by a quarter of a wavelength. This corresponds to a difference in phase
of 90◦. The unit vector which points in the polarization direction of the probe
beam after propagation through the λ/4 plate is thus given by

Êpl = r̂l1(r̂l1 · Êpc) + jr̂l2(r̂l2 · Êpc)
 exp(jωn1l/c) {r̂l1 [cos(β − α) cos(α) − sin(β − α)(1 + jζ) sin(α)]

+jr̂l2 [− sin(β − α) cos(α) − cos(β − α)(1 + jζ) sin(α)]}
= exp(jωn1l/c) {[cos(β)r̂l1 + ζ cos(β − α) sin(α)r̂l2]

− j [sin(β)r̂l2 + ζ sin(β − α) sin(α)r̂l1]} , (2.33)

where the imaginary unit j takes into account the 90◦ phase difference. The
polarization can now be decomposed along the axes of the Wollaston prism to
get the intensities incident on the two photodiodes

I1 =
1
2

ε0
√

εrc
∣∣∣Êpl · r̂w1

∣∣∣2
 Itot

{
cos2(β) cos2(γ) + sin2(β) sin2(γ)

+2ζ sin(α) sin(γ) cos(γ) [cos(β) cos(β − α) + sin(β) sin(β − α)]}
= Itot

[
cos2(β) cos2(γ) + sin2(β) sin2(γ)

+ζ sin(2α) sin(2γ)/2] (2.34)

I2 =
1
2

ε0
√

εrc
∣∣∣Êpl · r̂w2

∣∣∣2
 Itot

[
cos2(β) sin2(γ) + sin2(β) cos2(γ)

−ζ sin(2α) sin(2γ)/2] , (2.35)

where we have neglected all terms of order ζ2, and where Itot = I1 + I2 =
1
2 ε0

√
εrc‖Êpl‖2 is the total intensity of the probe beam. The difference in the

two intensities is given by

∆I = I1 − I2  Itot [cos(2β) cos(2γ) + ζ sin(2α) sin(2γ)] . (2.36)
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This equation dictates that to reach the maximum detection sensitivity the ex-
perimenter should orientate the Wollaston prism relative to the quarter-wave
plate in such a way that cos (2γ) = 0. For this orientation the signal is max-
imized, and the common mode signal, which is a source of noise in the de-
tection, is zero. Note, that, when cos (2γ) = 0, the angle β is irrelevant. This
means that, as long as the Wollaston prism is oriented correctly relative to the
quarter-wave plate, the orientation relative to the initial probe beam polariza-
tion of the Wollaston prism and of the quarter-wave plate doesn’t influence
the measurement.

There is an electro-optic detection scheme different from the one we are de-
scribing now, that doesn’t use a quarter-wave plate and a differential detector,
but instead uses a pair of crossed polarizers around the detection crystal and
a single detector. This setup is equivalent to ours, if we set γ = 0 and β = π/4.
If these values are substituted in the previous equation, the term proportional
to ζ vanishes. This means that the previously-neglected term proportional to
ζ2 becomes dominant. The terahertz electric field is proportional to ζ, so with
crossed polarizers a signal is obtained that is proportional to the E2

T , leading to
relatively small signals and loss of the knowledge of the sign of the terahertz
electric field.

If we now consider the most efficient configuration by setting γ = 45o and
fill in the definition of ζ we get the following expression for the signal obtained
in electro-optic detection

∆I
Itot

 sin(2α)
ω∆nl

c
. (2.37)

So in electro-optic detection, the signal is linear with the terahertz induced
refractive-index difference. The signal is zero, if the polarization direction of
the probe is parallel to the polarization of one of the propagation modes of the
crystal (sin(2α) = 0). This is easy to understand. If the polarization direction
of the probe is parallel to the polarization of one of the propagation modes,
then the probe experiences only one refractive index. In this case the probe
remains linearly polarized and the electro-optic signal is zero. It should be
noted, that the polarization of the propagation modes depend on the direction
of the applied terahertz electric field. This means, that in addition to ∆n, α also
depends on the terahertz electric field.

Calculation of the terahertz-induced electro-optic signal

The previous results will now be used to find an expression for the electro-
optic signal ( ∆I

Itot
) as a function of the amplitude and direction of the terahertz

electric field. To calculate the electro-optic signal with equation (2.37), we first
write the initial polarization direction of the probe beam in the new coordinate
system (Ê′

p) as

Ê′
p ≡


 0

cos (δ)
sin (δ)


 , (2.38)
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where we have used that the probe beam is initially polarized linearly, and
that its polarization direction is perpendicular to its propagation direction.
According to the above definition, δ is the angle between the initial polariza-
tion direction of the probe and the ŷ′ vector. With the transformation matrix of
equation (2.18), we get the initial, probe polarization vector in the coordinate
system formed by the crystal axes

Êp =
1√

s2
y + s2

z


 sin (δ)

(
s2

y + s2
z

)
−sz cos (δ) − sxsy sin (δ)
sy cos (δ) − sxsz sin (δ)


 . (2.39)

As we shall see, the sine and cosine of 2δ determine for which direction of the
terahertz electric field the setup is sensitive. For a given polarization of the
probe, the sine and cosine of 2δ can be calculated with the following equations

sin(2δ) =
2Epx

(
Epysz − Epzsy

)
s2

y + s2
z

(2.40)

cos(2δ) =

(
Epysz − Epzsy

)2 − E2
px

s2
y + s2

z
, (2.41)

where Epx, Epy, and Epz are the components of the unit vector in the direc-
tion of the probe’s electric field with respect to the crystal axes. When using
the previous equations, one has to take into account that the components of
Êp and ŝ are not completely independent, since the two vectors have to be
perpendicular to each other.

We now rewrite equation (2.37), using equations (2.24), (2.25), and (2.12)
and putting ∆n ≡ ∆n2 − ∆n1, as

∆I
Itot

 sin(2α)
ω∆nl

c

=
2ωχ(2)l

c
√

εr

√
b2 + c

(
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p · r̂′c1

) (
ŝ′ ·
(

Ê′
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))

=
2ωχ(2)l

c
√

εr

√
b2 + c

(
Ê′

p · E′
01

) (
ŝ′ ·
(

Ê′
p × E′

01

))
/
∥∥E′

01
∥∥2 . (2.42)

In the previous equation, we used the following goniometrical equations

sin(α) = ŝ′ ·
(

Ê′
p × r̂′c1

)
(2.43)

cos(α) = Ê′
p · r̂′c1. (2.44)

The only physical properties used in these equations is that α is the angle
between the unit vectors Ê′

p and r̂′c1, and that both these vectors are perpen-
dicular to probe propagation direction ŝ′.
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Equation (2.42) is valid in each coordinate system. However, the equation
will be used in the new coordinate system, because we have obtained an ex-
pression for E′

01 that is in this coordinate system.
After the insertion of equations (2.28) and (2.38) into equation (2.42) and

after some rearrangement we get

∆I
Itot

= −ωχ(2)l
c
√

εr
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 ·
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+ cos (2δ)


 ETx

ETy
ETz


 ·


 sx
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y+s2
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 ,

(2.45)

which we can rewrite as

∆I
Itot

=
ωn3r41l

c
[sin (2δ) (ET · S1) + cos (2δ) (ET · S2)] (2.46)

with

S1 =
(

sysz
s2

z+s2
y−2

s2
y+s2

z
, sxsz , sxsy

)
(2.47)

and

S2 =
(

sx
−s2

z+s2
y

s2
y+s2

z
, −sy , sz

)
(2.48)

using n =
√

εr and r41 = −χ(2)/ε2
r .40, 49

With these equations the electro-optic signal can be calculated for arbitrary
propagation and polarization directions of the probe and for arbitrary tera-
hertz electric field direction. All quantities in these equations are expressed
in the coordinate system formed by the crystallographic axes of the crystal,
which makes the usage of the equations very straightforward.

Further insight is gained, if equation (2.46) is rewritten as

∆I
Itot

=
ωn3r41l

c
(ET · V) (2.49)

with
V ≡ sin (2δ)S1 + cos (2δ)S2, (2.50)

where all the information about the orientation of the probe propagation and
polarization is concentrated in a single vector V, which we call the sensitiv-
ity vector. The size of the electro-optic signal is simply proportional to the
size of the component of the terahertz electric field in the direction of V times
the length of the vector V. Once a propagation direction has been chosen for
the probe beam, an experimenter still has the freedom to select the probe po-
larization direction, which determines δ. By the selection of δ, both size and
direction of V can be manipulated. In a lot of experiments the propagation di-
rection is kept constant, while the signal is maximized by rotating the crystal.
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In this process, the crystal is rotated to change δ such that the component of
V in the direction of ET is maximized. During the rotation of the crystal S1
and S2 do not change, because the crystal is rotated around the propagation
direction of the probe.

It is interesting to note, if δ is changed from 0 to π in equation (2.50), the
vector V describes an ellipse in 3D-space. An ellipse is fully described if the
two semi-axes are known. To find these semi-axes, we calculated the extremes
of the length of V as a function of δ for an arbitrary propagation direction of
the probe with equation (2.50). The values of δ for which the length of V has
an extreme are given by

tan(4δex) =
2 (S1 · S2)

‖S2‖2 − ‖S1‖2 . (2.51)

Once the values for δex are known, then these values can be substituted in
equation (2.50) to obtain the semi-axes. This will be done in the following
chapter for a variety of different probe propagation directions.

In equation (2.46) all square-root terms, which were present in the expres-
sions for the refractive indices and for the polarization direction of the propa-
gation modes (equation (2.24) to (2.28)), have vanished. This means, that the
electro-optic signal is linear with the terahertz electric field for every direction
of probe propagation. The signal is even linear in the strict mathematical sense
that not only the signal increases linearly with the size of the terahertz elec-
tric field, but also that a signal caused by the sum of two arbitrary terahertz
electric-field vectors equals the sum of the signals caused by the two vectors.
This is not trivial, since the two terahertz electric-field vectors do not have to
point in the same direction.

2.1.2 Different probe propagation directions

In this subsection, the results from the previous section are used to calculate
the sensitivity of the electro-optic detection setup for different propagation di-
rections of the probe beam. From equation (2.49), we can see that there are
two aspects that are important for the sensitivity to a terahertz electric field.
These aspects are the length of the vector V and the angle between V and the
terahertz electric field vector. In order to gain insight in the detection sensitiv-
ity we will separate these aspects and first look at the orientation dependence
of V. V depends on both the probe polarization and the probe propagation
direction. As was discussed in section 2.1.1, the possible values of V for a par-
ticular probe propagation direction form an ellipse. In this subsection, we will
focus on calculating the semi-axes of the ellipse for different propagation di-
rections, because the ellipse is fully described by its semi-axes. The semi-axes
are, by definition, the values of V for which the length of V as a function of
the probe polarization direction has an extreme.

We thus investigate the sensitivity for different probe propagation direc-
tions by calculating minimum and a maximum values of V. We consider
probe beam propagation along three common crystallographic axes (〈110〉,



30 Chapter 2. Electro-optic detection

Table 2.1: Calculation results for different propagation directions of the probe
beam.

variable 〈110〉 〈111〉a 〈010〉 〈345〉
sx 1/

√
2 1/

√
3 0 3

10

√
2

sy 1/
√

2 1/
√

3 1 2
5

√
2

sz 0 1/
√

3 0 1
2

√
2

δmax (degrees) 0 — 0 4.3
|Vmin| 1

2
1
3

√
6 0 0.69

Vmin/|Vmin|

 0

0
1





 − 1

3

√
6

1
6

√
6

1
6

√
6


 —


 −0.81

0.55
0.19




|Vmax| 1 1
3

√
6 1 0.91

Vmax/|Vmax|




1√
2

− 1√
2

0







0
− 1√

2
1√
2





 0

1
0





 −0.19

−0.56
0.80




Êp,max


 0

0
1







0
− 1√

2
1√
2





 0

0
1





 0.07

−0.80
0.60




aFor the 〈111〉 direction, the length of V is constant and thus has no minima and maxima.
Therefore, for this direction we show the S1 instead of Vmax, S2 instead of Vmin, and the polariza-
tion for δ = 0 in stead of Êp,max.

〈111〉, and 〈010〉), and one arbitrary chosen direction, namely 〈345〉. For each
of these propagation directions, table 2.1 shows the components of the unit
vector in the propagation direction (sx, sy, and sz), along with information
about a maximum and a minimum length of V. For one maximum, table 2.1
shows the direction of the probe polarization, the corresponding value of δ,
the length of the vector V, and a unit vector in the direction of V. For one
minimum the table gives the length of the vector V, and a unit vector in the
direction of V. The direction of the probe polarization and the value of δ are
not given for the minimum, since these values are trivial once the values for
the maximum are presented. As was discussed in the previous chapter, the
polarization at the minimum is just the polarization at the maximum rotated
45◦ around the probe propagation direction. This rotation corresponds to an
increase of δ with π/4.

The contents of table 2.1 were calculated as follows. First, the vector in
the propagation direction is normalized to the unit vector ŝ = (sx, sy, sz). Sec-
ondly, these value for sx, sy, and sz are substituted into equations (2.47) and
(2.48) to obtain S1 and S2. Third, the values of δ for which V reaches a mini-
mum or a maximum are calculated by substitution of S1 and S2 into equation
(2.51). Fourth, the values for δex are used to calculated the extremes of V with
equation (2.50), and, finally, the same values for δex are substituted into equa-
tion (2.39) to obtain the probe polarization at the extremes. We note that the
extremes of the signal (∆I/Itot) can be calculated straightforwardly from the
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extremes of V with equation (2.49).
For a 〈110〉 direction of the probe, one of the maxima of V is located at

δ = 0, which is directed along the (1/
√

2, -1/
√

2, 0) direction of the crystal.
This means that the electro-optic signal is linear with the component of the
terahertz electric field in the 〈11̄0〉 direction, if δ is set at 0◦. The situation that
δ = 0 corresponds to a probe polarization that is oriented along the z-axis of
the crystal. However, if δ is set at 45◦, then the length of V has a minimum,
and the signal is proportional to the component of the terahertz electric field
in the 〈001〉 direction. The difference between the minimum length of V and
its maximum length is a factor 2. This means that, if we compare the case
that the probe polarization is oriented for the maximum with the case that it
is oriented for the minimum, while in both cases the terahertz electric field is
aligned with V, the signal obtained at the maximum is twice the signal at the
minimum.

For most applications, it is favorable to make the sensitivity as large as
possible. For a 〈110〉 probe propagation direction this is achieved when δ =
0◦. This corresponds to a setup in which the probe polarization direction is
〈001〉 or an equivalent direction (= 〈001̄〉, 〈11̄0〉, or 〈1̄10〉), and in which the
terahertz electric field direction is 〈11̄0〉 (or the equivalent 〈1̄10〉). The results
for the 〈110〉 probe propagation direction are in agreement with the results in
previous work.42, 43, 50

The vectors S1 and S2 are equal in length and perpendicular to each other,
when the probe beam propagates along the 〈111〉 direction. This means that
the ellipse that describes the orientation dependence of V is in fact a circle, and
that the extremes of V are not defined. For the 〈111〉 propagation direction, the
length of V is independent of the orientation of the probe polarization. The
polarization direction only determines the direction of V, and thus to which
component of the terahertz electric field the setup is sensitive. This can be an
advantage for some applications, but the sensitivity is a factor 1

2

√
6  1.22

lower compared to case of the 〈110〉 probe propagation direction. The results
for the 〈111〉 probe propagation direction are in agreement with the results of
reference 43.

For a 〈010〉 propagation direction, the vector S1 equals zero, so the ellipse
of V for this direction is a line. The length of S2 is 1 for the 〈010〉 propagation
direction, so V can be just as large as for the 〈110〉 propagation direction. How-
ever, while for the 〈110〉 propagation direction V is directed perpendicular to
the propagation direction, for the 〈010〉 direction V is parallel to the propa-
gation direction. In the common case that the probe beam and the terahertz
beam propagate in the same direction, this means that for the 〈010〉 direction
the setup is only sensitive to longitudinal electric fields, while for the 〈110〉
propagation direction it is only sensitive to transverse terahertz electric fields.
This makes the 〈110〉 propagation direction well suited for transversal-wave
detection, while the 〈010〉 can be used for longitudinal-wave detection.38

To illustrate the general applicability of our theory, the last column of ta-
ble 2.1 shows the parameters for the more unusual 〈345〉 propagation direc-
tion. Although this direction is arbitrarily chosen, the calculations stay just
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as simple. Uncommon propagation directions, like 〈345〉, are certainly not ir-
relevant. The angle between the 〈111〉 and the 〈345〉 direction is only 11.5◦.
If we take into account that a focussed beam is a sum of plane waves that
have different propagation directions, then it is not difficult to imagine that a
focussed probe beam with its optical axis along the 〈111〉 direction can have
spatial components in the 〈345〉 direction.

The top picture of figure 2.3 shows the values that the length of V can have,
as a function of the propagation direction of the probe. The propagation di-
rection on the horizontal axis follows a path that begins at the 〈010〉 direction,
and ends at the 〈001〉 direction via the 〈110〉 direction. This path is indicated
visually in the bottom picture of figure 2.3. As can be seen in the top graph,
the lengths of de vectors strongly depend on the probe propagation direction,
but do not exceed 1.

We have discussed the effect of the orientation of the probe on the electro-
optic signal. Now, the second aspect that is important to the sensitivity, the
orientation of the terahertz electric field, will be considered. In most applica-
tions the terahertz beam propagates in the same direction as the probe beam.
This means that the terahertz electric field is perpendicular to the probe prop-
agation direction ŝ. The orientation of the terahertz electric field relative to
the crystal axes can still be changed by rotating the crystal around the prop-
agation direction, but this doesn’t change the fact that the terahertz electric
field is perpendicular to the propagation direction. For such cases the possi-
ble sensitivity is proportional to the part of V that is also perpendicular to the
propagation direction. This part can be written as

V⊥ = V − ŝ (ŝ · V) (2.52)
= sin(2δ) (S1 − ŝ (ŝ · S1)) + cos(2δ) (S2 − ŝ (ŝ · S2)) . (2.53)

Note, that, if the 3D position of V⊥ is tracked for different values of δ, then
these positions again lie on an ellipse, just like V. The ellipse formed by V⊥
is actually the projection of the ellipse of V on the plane perpendicular to the
propagation direction.

The values that the length of V⊥ can have, are also displayed in figure
2.3. We see that the largest value for the length of V⊥ is found for the 〈110〉
propagation direction. This means this is the propagation direction for which
the detection is the most sensitive to transversal electric fields of all the direc-
tions of the path indicated in the top picture of figure 2.3. It should be noted
that this direction is not very critical, since a reasonable detection sensitivity is
possible for a whole range of propagation directions. For example, the 〈111〉
propagation direction has a sensitivity which is only 18% less sensitive than
the 〈110〉 direction. In figure 2.3 it also can be seen that the regions of V and
V⊥ are practically the same over a wide range of propagation directions. For
those directions the ellipse of V lies approximately in the plane perpendicu-
lar to the propagation direction. Only for directions that approach one of the
crystallographic axes does V rotate toward the propagation direction, which
leads to a decrease of V⊥.
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Figure 2.3: a) Values that can be obtained for the length of V and the length of the
component of V perpendicular to ŝ (V⊥) as a function of the probe propagation
direction. b) The path followed for the propagation direction displayed on the
horizontal axis of graph a.
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2.1.3 Conclusion

We have derived a simple, easy to use, and widely applicable set of equations
that completely describes electro-optic detection of terahertz radiation in op-
tically isotropic crystals. In the discussion of our results, they are applied to
various propagation directions for the probe beam. These examples give re-
sults that agree perfectly with previously reported work.

2.2 Measuring the terahertz polarization

Most terahertz imaging techniques only measure one component of the elec-
tric-field vector. This makes the images obtained with these methods some-
times difficult to interpret. A decrease in the amplitude of the measured field,
for instance, is commonly interpreted as being caused by absorption or scat-
tering. However, such a decrease could also be caused by a rotation of the
electric field vector induced by a birefringence present in the sample. Besides
birefringence, there are various other effects that can change the direction of
a terahertz electric field, such as not-normal-incidence reflection and multiple
scattering.

In this section, we report on a method to measure both the direction and
the length of the transversal terahertz electric-field vector using electro-optic
sampling. We demonstrate the potential of this technique in terahertz imag-
ing and spectroscopy with two examples. In the first example, we perform
spectroscopic measurements on polystyrene foam. Surprisingly, this material
shows an effective birefringence, which can be measured accurately with our
new technique. In the second example, we show terahertz images of a plastic
coin based on a measurement of the two transversal electric-field components
at each pixel. The images clearly show that scattering or reflection at the edges
of the coin results in a change in the polarization state of the terahertz beam.

2.2.1 Setup

Figure 2.4 shows a schematic drawing of the detection setup. The terahertz
electric field is measured using the electro-optic effect, which causes a bire-
fringence of the detection crystal proportional to the electric field. The bire-
fringence causes a polarization change of the optical probe pulse, which is
measured with a differential detection setup. A quarter-wave plate is placed
before the ZnTe detection crystal, oriented such that the originally linear po-
larization of the probe beam becomes circular. Key element in our setup is the
use of a ZnTe detection crystal with a (111) crystal orientation. This crystal ori-
entation results in 18% smaller signals compared to the more commonly used
(110) orientation (section 2.1.2). However, as we will discuss below, this ori-
entation allows for the detection of both electric field components with equal
sensitivities without any rotation of the detection crystal. A signal propor-
tional to the terahertz electric field is obtained, by measuring the difference
in the energy in the two orthogonal polarization directions of the probe beam
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Figure 2.4: Schematic picture of the detection setup. The terahertz beam is fo-
cussed onto the ZnTe detection crystal with a parabolic mirror. The probe beam
is sent through a quarter-wave plate (λ/4) and the parabolic mirror, and focussed
onto the detection crystal. After collimation, the probe beam propagates through
a half-wave plate (λ/2) and is split into two orthogonally polarized beams by a
Wollaston prism (WP). The difference in the power of the two orthogonal polar-
izations is measured by a differential detector (DD1). Within the dotted frame it
is shown how a nonpolarizing beamsplitter (NPB) can be used to create a second
detection arm. The inset shows how the angles ψ and δ are defined by the rela-
tive orientation of the 〈01̄1〉 and 〈2̄11〉 axis of the ZnTe crystal, and the axes of the
Wollaston prism and the half-wave plate.

with a Wollaston prism and a differential detector. A half-wave plate is placed
before the Wollaston prism to set the direction of the terahertz electric field to
which the measurement is sensitive. Without the half-wave plate, this would
require an inconvenient rotation of both the Wollaston prism and the differen-
tial detector.

Using the same procedure as in section 2.1.1, the following expression is
obtained for the power difference measured by the differential detector51

∆P =

√
24πn3r41lPtot

3λ
[E2̄11 sin(2ψ − 4δ) + E01̄1 cos(2ψ − 4δ)] , (2.54)

where λ is the wavelength in vacuum of the probe beam, n is the refractive
index of the ZnTe crystal for the probe beam, and l is the thickness of the
crystal. The optical power incident on the differential detector is Ptot, and r41
is the only nonzero component of the electro-optic tensor of ZnTe. The angles
ψ and δ are defined in the inset in figure 2.4. E2̄11 and E01̄1 are the terahertz
electric fields along respectively the 〈2̄11〉 and 〈01̄1〉 directions in the detection
crystal. From equation 2.54, we can see that, either by a rotation of the half-
wave plate or by a joined rotation of the Wollaston prism and the differential
detector (changing ψ or δ), it is possible to decide which component of the
terahertz electric field is measured by the detector.

2.2.2 Measurement results

In a measurement of two orthogonal electric-field components, it is impor-
tant that, when measuring one field component, the influence of the other
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field component is suppressed. The quality of this suppression in our setup is
evaluated by measuring two orthogonal electric-field components for the case
where the terahertz field is assumed to be polarized linearly. For this purpose,
a wire grid polarizer proved necessary, because preliminary measurements
indicated that our terahertz source, a photoconductive emitter,23 produces a
slightly elliptically polarized field. Figure 2.5A shows the measured electric
field parallel and perpendicular to the transmission direction of the polarizer.
The ratio between the peak-peak values of the electric fields is 0.014, and the
ratio between the total power in the two pulses is 2552:1. Note that these num-
bers are probably an underestimation of the quality of the above mentioned
suppression, as the residual field in the perpendicular direction can easily be
attributed to a slight misalignment of the parabolic mirrors.

Figure 2.5B shows the two orthogonal electric fields measured when a 2
cm thick piece of polystyrene foam is placed just after the polarizer. Besides a
shift in time, there is barely any change in the parallel component of the elec-
tric field when the foam is inserted. However, the amplitude of the perpen-
dicular component, measured after a 22.5 degrees rotation of the half-wave
plate, increases dramatically. To our surprise, the strength of this component
proved to be a strong function of the azimuthal orientation of the polystyrene
foam with the strongest signal plotted in Figure 2.5B. Furthermore, the energy
ratio in the parallel and the perpendicular component proved to be a function
of frequency, as can be seen in figure 2.5C. In this figure, we plot the difference
between the spectral intensities of the parallel and the perpendicular compo-
nent, normalized to the sum of these intensities. The figure clearly shows that
for increasing frequency an increasing part of the terahertz energy is in the
perpendicular component of the electric field.

The polystyrene foam measurement can partly be understood by assum-
ing that anisotropies induced during fabrication of the foam cause the foam
to be birefringent. We note that it is unlikely that surface effects play an im-
portant role, because the observed effects increased with a factor of two, when
we doubled the thickness of the foam from 1 to 2 cm. To verify that the sig-
nals are caused by a birefringence in the foam, we measured the time delay
of the parallel component, while rotating the foam around the azimuthal an-
gle. The maximum changes in the time delay thus measured are 113.2 fs for
the 2 cm thick piece and 66.7 fs for the 1 cm thick piece. When the refractive
indices are assumed frequency-independent, these time delays correspond to
a refractive-index difference of 1.7× 10−3 for the 2 cm piece and 2.0× 10−3 for
the 1 cm piece. From these refractive-index differences, we calculate the rel-
ative intensity difference between the two polarization directions (solid lines,
figure 2.5C). Below 1 THz, there is an excellent correspondence between the
measurement and the calculation, which has no adjustable parameters. At
higher frequencies, the agreement is somewhat worse. We note that at higher
frequencies the birefringence model is no longer valid, because then the wave-
length approaches the size of the bubbles in the foam, and we can no longer
view the foam as an effective medium with frequency-independent refractive
indices. However, the measurements are clear examples of the advantages of
measuring both components of the terahertz electric field.
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Figure 2.5: (A) Electric field as a function of time of the reference pulses, which
travelled only through air, and (B) of the terahertz pulses after travelling through
2 cm polystyrene foam. The dotted and the solid lines in A and B are respectively
the fields parallel and perpendicular to the transmission direction of the polarizer.
Graph C shows the measured and the calculated relative intensity difference be-
tween the two polarization directions as a function of frequency for propagation
through the 1 cm and the 2 cm thick piece of polystyrene foam.
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Figure 2.6: Terahertz images (A,B,D) and visible-light photograph (C) of a plastic
coin. Left graphs: transmitted terahertz power measured parallel (A) and per-
pendicular (B) to the original polarization direction. (white = maximum trans-
mission). (C) Visible-light photograph of the coin. (D) Plot of the angular rotation
of the direction of the terahertz electric field (white = 0 degrees rotation, black =
45 degrees rotation).

Our measurement technique can also be applied to the field of terahertz
imaging. Figure 2.6 shows terahertz images obtained by measuring the trans-
mitted terahertz electric field, while scanning a plastic coin through the focus
of the terahertz beam. Before this focus, a wire-grid polarizer is placed to po-
larize the terahertz beam. For comparison, a visible-light photograph of the
coin is included (figure 2.6C). The two left images show the spectral power
integrated between 0.8 THz and 1.0 THz for the parallel and the perpendic-
ular component of the electric field. The images for the parallel component
show distinct black lines at the edges of the coin. In contrast, the images for
the perpendicular component show an enhanced power at the edges. This is
consistent with a rotation of the electric-field vector due to scattering and re-
flection at the edges of the coin. This is even more clear in figure 2.6D, which
shows the angular rotation of the terahertz electric field. This rotation is cal-
culated by arctan (E⊥/E//), where E⊥ and E// are the spectral amplitudes
between 0.8 THz and 1.0 THz of respectively the perpendicular and the par-
allel electric-field component. The image shows rotations of the electric field
up to 45 degrees. Our results clearly indicate that the features at the edges
are mostly due scattering/reflection and not due to absorption. It would not
have been possible to make this distinction with a measurement of only one
electric-field component.

Finally, we would like to point out that, although we here performed two
sequential measurements of the two orthogonal polarization components, the
setup can easily be extended to allow for the simultaneous measurement of the
two transversal electric-field component. For this purpose, an extra detection
arm can be created with a nonpolarizing beamsplitter and an additional half-
wave plate, Wollaston prism and differential detector, as shown in the dotted
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frame in figure 2.4. The two detection arms differ only in the orientation of
their half-wave plates. These plates are orientated such that the two arms
measure orthogonal components of the electric field. For instance, one arm
measures E01̄1, while the other simultaneously measures E2̄11.

2.2.3 Conclusion

We have presented a method to simultaneously measure the two orthogonal
components of the electric field of a terahertz pulse. Key elements of this
method are the use of a (111) orientated electro-optic detection crystal and the
placement of a quarter-wave plate before the crystal. By using a half-wave
plate to set the direction of the measured electric-field component, we avoid
cumbersome rotations of the Wollaston prism and the differential detector.
We have demonstrated the applicability of our method with two examples,
one related to spectroscopy and one related to imaging.
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Chapter 3

Noise

As in all measurements, noise is an important parameter in electro-optic detec-
tion. The noise level determines the measurement duration required to reach a
desired signal-to-noise ratio. The terahertz noise level is even more important
in near-field microscopy measurements. Imaging smaller objects, will, in gen-
eral, lead to smaller signals. Therefore, the noise can limit the resolution, since
objects smaller than this limit cannot be imaged within a reasonable amount
of time.

From previous work, we know that the noise in terahertz electro-optic de-
tection originates dominantly from fluctuations in the probe beam.23 With
the differential detection scheme described in chapter 2, noise due to random
variations of the probe beam power can be suppressed. The photon shot noise
measured by the two photodiodes is, however, not suppressed. The influence
of photon noise can be reduced by increasing the power of the probe beam.
However, high probe beam powers can lead to changes in the frequency re-
sponse of the photodiodes due to saturation effects.52–54

The goal of this chapter is to investigate experimentally the influence of
photodiode saturation in differential detection. More specifically, we discuss
how saturation influences the ability of the differential detector to suppress
noise due to variations of the probe beam power. Where possible, we present
recommendations on how to suppress the adverse effect of saturation.

As an introduction to this topic, we first discuss the various noise sources
in terahertz electro-optic detection in section 3.1. The discussion on photo-
diode saturation is given in section 3.2. Often, the measured noise can be
reduced with the help of lock-in techniques. This practical side of terahertz
measurements is discussed in appendix B.

3.1 Sources of noise

This section discusses the various noise sources in terahertz electro-optic de-
tection. We define noise as the random variations of the measured signal. In
electro-optic detection, this signal is the difference in the intensity on the two

41
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photodiodes ∆I. Our definition of noise implies that random fluctuations of
the terahertz source are also classified as noise. This may seem strange as it
does not influence the sensitivity of the electric-field detection, but in most
cases we are not interested in the electric field itself, but in changes in the
electric field. To determine the refractive index of an object, for instance, we
compare the measured electric field with and without the object in the tera-
hertz beam. If the terahertz source fluctuates between the two measurements,
then this leads to a variation in the value of the refractive index.

Noise due to fluctuation of the terahertz source determines the difference
between signal-to-noise ratio and dynamic range, as defined in section 1.2.3.
Signal-to-noise ratio is the ratio between the signal and the total noise. Dy-
namic range is the ratio between the signal, and the noise with the terahertz
beam blocked, and thus does not contain noise due to fluctuations of the
source.

We classify the noise sources in four categories. First, noise due to fluctu-
ations of the source. Secondly, noise due to incoherent background radiation.
Next, we consider noise due to fluctuations of the probe beam, and, finally,
electronic noise in the detector.

3.1.1 Noise due to the terahertz source

The terahertz pulse is generated with a pump pulse, which is derived from
the same laser as the probe pulse (section 1.2.2). Therefore, the electric field
of the terahertz pulse is a function of the power in the pump pulse. This
power fluctuates due to laser noise, which is present in all lasers. For lasers
producing ultrafast pulses, a relative root-mean-square amplitude noise of 1%
is considered reasonable. Therefore, fluctuations of the source in most cases
dominate the total noise and thus the signal-to-noise ratio. Noise from the
source is, however, not included in the dynamic range, for which we must
consider other noise sources.

3.1.2 Noise from background radiation

The surroundings of a measurement setup emit thermal radiation. At room
temperature, a significant portion of this radiation has a terahertz frequency.
Due to this radiation, there is a constantly fluctuating electric field in each
point in space, and thus also in/on our detector. Due to the principle of
time-gated detection (section 1.2) time-domain spectroscopy is less sensitive
to thermal radiation, because only fluctuations within the time window of the
detection contribute to the detected noise. However, thermal noise can still
play a significant role.

We estimate the contribution of thermal noise to the measured signal. For
this we assume that the detector is only sensitive to one component of the
terahertz electric field and is completely insensitive to the propagation di-
rection of the thermal radiation. This second requirement is in many cases
not completely valid. Electro-optic detection in thick crystals, for instance,
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strongly depends on the propagation direction of the radiation, due to an ef-
fect called phase-matching.55 However, since this is highly dependent on the
exact measurement configuration and since we are only interested in the order
of magnitude of the thermal noise contribution, we feel that the requirement
is justified.

The average volume density of the energy in thermal fluctuations up to the
frequency fe is given by Planck’s law

〈u〉 =

fe∫
0

df
8πh f 3

c3
1

exp(h f /kBT) − 1

 8πkBT f 3
e

3c3 for h fe � kBT,

(3.1)

where kB is Boltzmann’s constant and T is the background temperature. The
frequency fe is determined by the cut-off frequency of the detection. The
above energy density is the energy density of the total field.∗ This energy
is equally distributed over the three components of the electric field, so one
component of the electric field carries one third of the total energy. The aver-
age of the z-component of the electric field squared is given by56

〈E2
z 〉 =

〈u〉
3ε0

. (3.2)

The root mean square value (RMS) of the electric field component in the z-di-
rection is thus

√
〈E2

z 〉 =

√
8πkBT f 3

e

9c3ε0
, (3.3)

√
〈E2

z 〉 is the RMS value of the noise measured with a single probe pulse.
In a typical measurement, the measured noise is an average over many pulses.
This average can be expressed in terms of the noise equivalent field, which is
the strength of a constant electric field that produces a signal equal to the rms
value of the noise.23 The noise equivalent field of the thermal background
noise is given by

ENEF,ther =

√
8πkBT f 3

e

9c3ε0

fB
frep

, (3.4)

where frep is the repetition rate of the laser and fB is the bandwidth of the
detection. The number of probe pulses in the average equals frep/ fB. Substi-
tuting T = 300 K, fe = 3 THz, fB = 10 kHz, and fre f = 80 MHz, we find ENEF,ther
= 4.0 mV/cm.

∗The electric field and the magnetic field each contain half of the total energy in vacuum. This
is taken into account in the relation between the electric field and the energy density (equation
3.2).
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3.1.3 Noise from the probe beam

There are two noise contributions from the probe beam: laser amplitude noise
and laser shot noise. We define laser amplitude noise as all fluctuations of the
output power of the laser that are not related to the photon character of the
laser light. Amplitude fluctuations of the probe beam cause fluctuations in the
currents through photodiodes of the detector (figure 2.1). A large advantage
of differential detection is that fluctuations common to the two photodiodes
cancel. This cancellation is, however, never complete. The influence of re-
maining laser-amplitude noise can be reduced with lock-in techniques. The
noise spectrum of a laser has an overall 1/f dependence. Modulation of the
terahertz source at a high frequency makes it possible to filter-out the strong
low-frequency noise, as is described in appendix B.

If laser amplitude noise is suppressed sufficiently, then laser shot noise can
become the dominant noise source. The energy of the probe beam is quantified
in photons. Statistical variations in the arrival times of these photons results
in fluctuations in the power measured by the photodiodes. These fluctuations
do not cancel out in differential detection, since the fluctuations in the two
photodiodes are different. Lock-in techniques cannot reduce the influence of
shot noise, since the noise spectrum of shot noise is flat, that is, the noise is
independent of frequency. The influence of shot noise can only be reduced by
increasing the power of the probe beam. Shot noise increases with the square
root of the probe power, but the electro-optic signal increases proportional
to the probe power. Therefore, the signal-to-noise ratio due to shot noise is
proportional the square root of the power. If, for instance, the probe power
increases with a factor of 4, then the signal-to-noise ratio will improve by a
factor of 2. From reference,23 we obtain that a noise equivalent field for shot
noise from a 775 nm probe beam (9.3 mW power) with a 1 mm thick ZnTe
detection crystal and a 10 kHz detection bandwidth is given by ENEF,shot = 13
mV/cm.

3.1.4 Electronic noise

The differential detector is also a noise source. The photodiodes produce a
current proportional to the incident power level. As the current is quantified
in electrons, it exhibits shot noise. Assuming a quantum efficiency of one, one
electron in the current is generated by one photon of the probe beam, which
makes current shot noise equivalent to the photon shot noise discussed in
the previous section. There are also noise sources inherent to the structure of
a photodiode, which are present even if the photodiodes are not illuminated.
The noise level of a photodiode varies between different types of photodiodes,
but usually is on the order of 10−15 W Hz−1/2. This noise level results in an
equivalent terahertz electric-field of ENEF,diode = 0.3 µV/cm for electro-optic
detection in a 1 mm thick ZnTe crystal with a 10 kHz bandwidth and a 10 mW
probe beam.

The amplifier in the detector is also a noise source. However, if the con-
straints on the bandwidth of the detection are not too stringent, a good elec-
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tronic design can ensure that this source can be neglected. One can therefore
conclude that the total noise of the detector is dominated, not by noise from
the electronics, but by laser amplitude noise, photon/electron shot noise and
noise due to thermal background radiation. In our experiments, the dominant
noise source is either laser amplitude noise or laser shot noise dependent on
which laser system we use.

3.2 Photodiode saturation

In section 3.1 we argued that laser shot noise is the dominant noise source, if
laser amplitude noise is suppressed by differential detection and if electronic
noise is avoided by a good detector design.23 The signal is proportional to
the probe beam power and shot noise is proportional to the square root of
the probe power. Therefore, the dynamic range in a shot-noise limited setup
can only be increased by increasing the power in the probe beam. For this
reason, high-power photodiode illumination is very common in the terahertz
field, where powers are used of 10 mW or more per photodiode. The implicit
assumption in this is, however, that the photodiodes employed in the differ-
ential detector continue to behave properly under high-power illumination.

We present experimental results that indicate two effects that deteriorate
the sensitivity of the differential detector under high-levels of illumination.57

First, we find that the high-power illumination causes a strong reduction in
the detection bandwidth of our silicon photodiodes. Secondly, we find, asso-
ciated with this bandwidth reduction, phase shifts in the electronic signal up
to 100 degrees. When we increase the bias voltage across the photodiode, the
adverse effects of the high-power illumination are reduced.

In differential detection, the phase shifts induced at high powers strongly
reduce the ability of the detector to suppress amplitude noise, since no two
photodiodes are identical, or are illuminated in exactly the same way. Based
on this insight, we propose to increase the bias voltage over the photodiodes,
when the optical power on the photodiodes is high. Additionally, the laser
beam can be expanded to fill a large part of the active area of the photodiodes.
These two measures improve the response of the differential detector under
high levels of illumination, and insure a good amplitude-noise suppression.

3.2.1 Measurement setup

We employ two setups to investigate the effect of high-power illumination:
one that measures the response of a single photodiode and one that measures
the noise spectrum from a differential detector. To investigate the response
of a single photodiode, a Si PIN photodiode (BPW34s) is illuminated by a
Ti:Sapphire oscillator. This oscillator produces pulses with a pulse length of
about 15 fs and a repetition rate of 80 MHz. The Ti:Sapphire oscillator can be
considered as a continuous source, because its repetition rate is much higher
than the bandwidth of the detector, which is about 1 MHz.
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Figure 3.1: Schematics for the single-photodiode measurement. (Fig. A) A semi-
conductor laser is switched on/off by the pulses from the function generator,
which are also used to trigger the oscilloscope. The beam from the semiconductor
laser is combined with a beam from the Ti:Sapphire oscillator and focused onto
the detector (D). The signal from the detector is recorded with the digital oscillo-
scope. (Fig. B) Schematics of the detector circuit with a single photodiode. R is
the feedback resistance, Vbias is the bias voltage over the photodiode, and Vout is
the output voltage of the detector.

As shown in Fig. 3.1A, the Ti:Sapphire beam propagates collinearly with
a beam from a low-power semiconductor laser with a wavelength of 670 nm.
This semiconductor laser generates square-wave pulses with a duration of 2
µs and a repetition rate of 1 kHz. We study the influence of the Ti:Sapphire
illumination on the photodiode response to the pulses from the semiconductor
laser. The Ti:Sapphire beam has an average power of several milliwatts and
the peak power of the square-wave pulses is about 35 µW. Both beams are
focused onto the same position on the BPW34s silicon PIN photodiode. This
photodiode has an active area of 2.65 x 2.65 mm, of which only a small fraction
is illuminated by the foci of the two beams.

Fig. 3.1B shows a schematic of the detector circuit in which the photodiode
is embedded. The photodiode is reverse-biased by a voltage Vbias, which can
be varied. In the detector circuit, the amplifier with the feedback resistor has
the double function of amplifying the signal, while keeping the voltage over
the photodiode fixed independent of the illumination level. For bias voltages
larger than 1 V, the detector has a low-power bandwidth of 800 kHz. The
signal from the detector is measured with the digital oscilloscope for different
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Figure 3.2: Schematics of the differential detector setup. Figure A shows the con-
cept of the measurement. A Ti:Sapphire beam is split into to equal parts by a
Wollaston prism (WP). The two beams are then focussed on the two photodiodes
of the detector. Figure B shows a schematic of the electronics of the detector. The
two photodiodes are each reverse-biased with a voltage Vbias. The difference in
the currents through the photodiodes is amplified to the output voltage Vout.

values of the power of the Ti:Sapphire beam and for different values of the
bias voltage across the photodiode.

The setup for measuring the noise from the differential-detection setup is
shown in Fig. 3.2A. In this setup a beam from the Ti:Sapphire oscillator is
split into two beams, having equal power, by a Wollaston prism. Each beam
is focused onto one of the photodiodes of a differential detector. Fig. 3.2B
shows a schematic of this detector. Both (BPW34s silicon PIN) photodiodes
are reverse-biased with a 5 V voltage. The difference between the currents
through the two photodiodes is amplified. The detector design insures a con-
stant bias voltage over the photodiodes. The diameter of the foci are again
small compared to the active area of the photodiode. When not illuminated,
the detector has a noise level of only 0.06 µV Hz−1/2.

3.2.2 Results

Figure 3.3 shows the response of the single photodiode to the 2 µs long pulses
of the diode laser for different power levels of the Ti:Sapphire beam. The top
figure shows a time trace of a 13 µs part of the measurement, which has a
total duration of 1 ms. The measurements for Ti:Sapphire laser power levels
at 6.7 mW and 3.7 mW should be compared with the reference measurement,
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which is obtained with the Ti:Sapphire beam blocked. Figure 3.3A shows that
the electrical signal from the photodiode is deformed and broadened in the
presence of the Ti:Sapphire beam. It is also observed that the peak of the pulse
shifts forward in time.

The effect of the Ti:Sapphire illumination on the photodiode response be-
comes more apparent in the spectra of the measurements. The fast fourier
transforms (FFT) of the measurements for Ti:Sapphire laser powers of 6.7 mW
and 3.7 mW are divided by the FFT of the reference measurement. This re-
sults in the amplitude spectra in Fig. 3.3B and in the phase spectra in Fig.
3.3C. From figure 3.3B it can be seen that the DC (ω = 0) response from the
detector shows no sign of photodiode saturation, even for a Ti:Sapphire power
of 6.7 mW.

The amplitude and phase spectra show a remarkably strong influence of
the Ti:Sapphire background power on the ability of the photodiode to detect
the pulses from the semiconductor laser. The amplitudes of the spectra in Fig.
3.3B are unity at low frequencies, but decrease rapidly at higher frequencies.
The -3 dB frequency is 196 kHz for 3.7 mW Ti:Sapphire power and 126 kHz
for 6.7 mW Ti:Sapphire power. Remarkably, in Fig. 3.3C, we also see that the
phase of the electrical signal rises from zero to a maximum of 55.7 degrees at
297 kHz for 3.7 mW and 96.8 degrees at 192 kHz for 6.7 mW.

Figure 3.4 shows the results of measurements with the single-photodiode
detector, where the power of the Ti:Sapphire beam is kept constant at 6.7
mW and the bias voltage is varied. The corresponding amplitude and phase
spectra in respectively Fig. 3.4A and Fig. 3.4B show that the effect of the
Ti:Sapphire background power on the response of the photodiode is a strong
function of the bias voltage. For the 20 V bias, there is only a moderate ef-
fect on the photodiode response. The amplitude decreases slightly at high
frequencies and the phase changes moderately with a linear slope of 0.059
degrees/kHz. However, the photodiode response changes dramatically for
smaller bias voltages. For a 2.5 V bias, the relative amplitude increases to 1.1,
before it sharply decreases with a -3 dB point at 111 kHz. The phase shift at the
2.5 V bias has a peak of almost 180 degrees at 188 kHz. We note that the fea-
tures in figure 3.4 are not caused by a change in the capacitance of the photodi-
ode due to the change in the bias voltage. The capacitance of the photodiode
changes with the bias voltage, but this has been corrected for by dividing the
spectrum for the illuminated photodiode at each bias voltage with a reference
measurement at that bias voltage with the Ti:Sapphire laser blocked. Measure-
ments in which the diameter of the laser beam on the photodiode has been
increased (not shown here), also result in a decrease in both the amplitude
and phase distortions on the electrical signal.

It is clear from the previous results that the photodiode response changes
drastically under high levels of illumination. To study the effect of this on
differential detection, we show in Fig. 3.5 the noise spectra of the differential
detector described in Fig. 3.2, measured for different values of the power of
the Ti:Sapphire beam.

The spectra in Fig. 3.5 are approximately flat for low illumination levels as
is appropriate for a shot-noise limited detector. However, at higher illumina-
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Figure 3.3: Measurement results for the illumination-dependent response of the
single photodiode. Fig. A shows the measured signal as a function of time for
Ti:Sapphire power levels of 6.7 mW and 3.7 mW, along with the reference mea-
surement, which is recorded with the Ti:Sapphire beam blocked. Fig. B and C
show the amplitude, respectively, the phase response calculated from the mea-
surement.
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Figure 3.4: Single photodiode amplitude (Fig A.) and phase (Fig. B) response as
a function of frequency for different bias voltages over the photodiode.
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Figure 3.5: Measured noise spectra of the differential detector for different powers
of the Ti:Sapphire beam. The powers indicated in the figure refer to the optical
power per photodiode.

tion levels a bump emerges that narrows and increases in amplitude, until at
7.7 mW illumination the peak of the bump at 110 kHz is more than twice the
noise amplitude at 20 kHz. For high power illumination (1.5 mW, 4.1 mW and
7.7 mW), the noise level is seen to decrease at high frequencies. The amplitude
noise at 400 kHz for 7.7 mW illumination is even lower than for 0.8 mW illumi-
nation. We note that the sharp peak in figure 3.5 at 180 kHz is a characteristic
line of the amplitude noise spectrum of our laser.

3.2.3 Discussion

The results in Fig. 3.3 and 3.4 clearly show that bandwidths of our photodi-
odes are strongly reduced, when the diodes are illuminated with a high aver-
age power. Coupled to this bandwidth reduction is a phase change that can
reach values up to 100 degrees. In the literature, there are previous reports that
high-power illumination on a photodiode can reduce the measurement band-
width. However, we are surprised to find that an effect is already observed
below 100 kHz, while previous reports, as far as we know, all deal with fre-
quencies above 100 MHz.52–54 Although this difference is probably caused by
differences in carrier lifetimes and in the photodiode internal structure, this is
not something that we completely understand.

We can explain the results obtained with the differential detector using the
results for the single-photodiode detector. The single-photodiode measure-
ment shows that at high levels of illumination the sensitivity of an individual
photodiode decreases with frequency. This causes the noise decrease seen at
high frequencies in Fig. 3.5. We note that this reduction of the noise will not
cause an improvement of the signal to noise ratio, since the sensitivity of the
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differential detector to any signal is also reduced.
As discussed in the previous section, we measure an increase of the noise

from the differential detector under high levels of illumination. This can be
explained, if the phase response of the two photodiodes in the differential
detector is slightly different, since such a difference has a dramatic effect on
the ability of the detector to suppress the amplitude noise from the laser. An
ideal differential detector completely suppresses the amplitude noise, leaving
shot noise as the dominant noise source. However, a differential detector with
a phase difference in the response of the two photodiodes of 11.5 degrees has
a theoretical amplitude noise suppression of only 20 dB. Such a small phase
difference can easily be caused by a difference in the size or position of the foci
on the photodiodes or by a difference within the fabrication tolerances of the
photodiodes.

It is clear that high-illumination levels can cause problems in differential
detection. However, our work provides useful insights that can be used to
prevent these problems. A large improvement can be reached by increasing
the bias voltage over the photodiodes. At higher bias voltages, the generated
electron-hole pairs are more quickly removed from the depletion region, and
thus the local carrier density is lower. As seen in Fig. 3.4, this substantially
decreases the effect of the illumination on both the amplitude and the phase
response of the detector.

Additionally, the problems can be reduced by increasing the diameter of il-
luminated region on the photodiodes, since our measurements show that this
significantly reduces the saturation effects. Clipping at the edges of the pho-
todiodes should, however, be avoided, since this can introduce an extra noise
source due to vibrations of optical components and subsequent beampointing
fluctuations.

3.2.4 Conclusion

We have measured significant changes in the response of our photodiodes at
probe beam powers on the order of several milliwatts. These changes can
reduce the ability of the differential detector to suppress noise caused by vari-
ations of the probe beam power. To suppress this adverse effect without in-
creasing the influence of photon shot noise, we recommend to increase the
bias-voltage over the photodiode and the diameter of the probe beam at the
photodiodes.



Chapter 4

Terahertz generation

This chapter discusses two methods to generate ultra-short terahertz pulses.
The first, generation by photoconductive emitters is briefly discussed in sec-
tion 4.1. The second, optical rectification is described in more detail. Opti-
cal rectification is generally less efficient than generation by photoconductive
emitters. However recently, optical rectification received increased attention,
because it may play an important role in future terahertz microscopy tech-
niques.58, 59 Optical rectification is terahertz generation by a focussed optical
beam. The diameter of this focus can be much smaller than the terahertz wave-
length, which effectively creates an emitter of sub-wavelength dimensions.

The literature on terahertz generation by optical rectification60–65 is exten-
sive. However, the theoretical description of this process proves to be com-
plicated, because many approximations used in the description of other non-
linear optical processes are not valid in optical rectification. The terahertz
wavelength can, for instance, not be neglected compared to the dimensions of
the generation region. Also, the generated radiation does not propagate in one
strictly defined direction, but covers a range of directions. This means that the
terahertz electric field after collection and focussing of the emitted radiation
is a function of the angular dependence of the emission.

The goal of section 4.2 is to derive an expression that describes the electric
field of a terahertz pulse that is emitted by optical rectification and subse-
quently collected and focussed. Contrary to previous reports, we take into
account the full angular dependence of the emitted terahertz radiation. The
derived expression is used to gain insight in the influence of the width and
length of the generation volume, the terahertz wavelength and the duration
of the generating optical pulse.

The goal of section 4.3 is to experimentally verify the predicted depen-
dence of optical rectification on the wavelength of the generating pulse and
on the thickness of the generation crystal.

Optical rectification is a second-order (χ(2)) nonlinear process. Also pos-
sible, although uncommon, is the generation of terahertz radiation by third-
order (χ(3)) processes. The optical rectification theory in section 4.2 can be

53
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Figure 4.1: Schematic drawing of a photoconductive emitter. An optical pump
beam is focussed on a piece of semi-insulating (SI) GaAs. Across the GaAs sur-
face, two electrodes produce a bias electric field. Each pulse from the pump beam
induces a current surge, which emits a terahertz pulse.

straightforwardly adapted to χ(3) terahertz generation, as is shown in ap-
pendix A.

4.1 Photoconductive emitters

A much-used source of terahertz pulses is the photoconductive switch or pho-
toconductive antenna.66, 67 We also use it often, because of the high tera-
hertz electric fields that can be obtained with this device. Figure 4.1 shows a
schematic drawing of such an emitter. Key element of this emitter is a piece of
semiconductor, in this case GaAs, that under normal circumstances has a very
high resistance. However, when an optical pulse hits the semiconductor, free
carriers are created, which causes an instantaneous decrease of the resistance.
Between pump pulses, the resistance of the semiconductor is high enough to
prevent the bias field from producing any significant current in the semicon-
ductor. However, the bias field immediately accelerates the carriers generated
by the pump pulse, inducing a current across the semiconductor surface. The
pump pulse functions as a switch that turns on the current, which is why this
type of emitter is also called a photoconductive switch. We note that photo-
conductive switches can also be used for the detection of terahertz pulses, as
briefly discussed in section 1.2.2.

The time derivative of the current is very high, due to the short duration of
the ultrafast pump pulses. As will be shown in the next section (equation 4.9),
a time-dependent current gives rise to radiation. The radiated electric field is
proportional to the time derivative of the current, and a broadband terahertz
pulse is radiated. In a slightly modified configuration, the generated terahertz
pulse can contain frequency components up to 20 THz.

In practice, the bias field of a photoconductive emitter is modulated to
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facilitate the use of lock-in techniques. These lock-in techniques can signif-
icantly reduce the measurement noise, as is discussed in detail in appendix
B.

4.2 Theory of terahertz generation by optical non-
linearities

The nonlinear response of the polarization in a medium to an electric field was
discussed in chapter 2 in the context of the detection of terahertz radiation. This
nonlinear response can, however, also be used for the generation of terahertz
radiation. Terahertz radiation can, for instance, be generated by the mixing of
two optical beams, one with an electric field E0 sin ω1t and the other with an
electric field E0 sin ω2t. For non-dispersive media, the second-order nonlinear
polarization is given by

P(2)(t) = χ(2) {E0 sin(ω1t) + E0 sin(ω2t)}2

= χ(2)E2
0

{
1 − 1

2 cos(2ω1t) − 1
2 cos(2ω2t)

+ cos((ω1 − ω2)t) − cos((ω1 + ω2)t)
} (4.1)

Interestingly, each term of this polarization has a frequency different from
the two frequencies of the original electric fields. There is a constant term,
two terms at the double frequencies, a sum-frequency term and a difference-
frequency term. According to Maxwell’s equations, these polarization terms
can radiate new fields, which thus have a different frequency compared to the
generating beams. Here, we will uses the difference-frequency term, where
the difference-frequency ω1 − ω2 is in the terahertz region. Note that the
above equation is a simplification, which disregards the tensor character and
the dispersion of the second-order nonlinear susceptibility χ(2). These simpli-
fications will be used throughout this section.

Practically, terahertz difference-frequency generation can be used as fol-
lows. Two optical beams overlap in a medium that is usually chosen to have a
relatively large nonlinear response. The frequency of the optical beams can be
on the order of 1000 THz, but the frequency difference between the two beam
is much smaller, on the order of 1 THz. The nonlinear effects will induce a
polarization in the medium, which oscillates at the difference frequency. That
polarization radiates a terahertz beam at the difference frequency. In this way,
a continuous wave, single-frequency terahertz beam is generated.

It is, however, also possible to use difference-frequency generation to gen-
erate terahertz pulses in a process called optical rectification. In this process,
one optical beam is used that consists of a train of very short (10 - 100 fs)
pulses. Due to the short duration of the pulses, the frequency bandwidth can
be tens of terahertz wide. If the pulses travel through a nonlinear medium,
then difference-frequency generation can take place between different frequen-
cy components within the pulse bandwidth. The net effect of the difference-
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Figure 4.2: Schematic of the terahertz generation configuration. The picture
shows the beam shape of the two monochromatic pump beams. The pump beams
propagate in the z-direction. The generation region extends from the z = z1 plane
to the z = z2 plane.

frequency generation process between all these frequency components is that
each optical pulse can generate a terahertz pulse.

The subject of this section is the generation of terahertz pulses using the
second-order nonlinear polarization. We calculate the spectrum of the radi-
ated field, its angular dependence, and the electric field when the terahertz
radiation is focused. To make the calculation easier, we will first look at the
terahertz field generated by two monochromatic beams, and then make the
next step to a pulsed source containing many frequency components.

The remainder of this chapter is organized as follows. In section 4.2.1, the
nonlinear polarization induced by two monochromatic Gaussian beams will
be calculated. Section 4.2.2 discusses the far field radiated by a general po-
larization distribution. The results of section 4.2.1 and 4.2.2 are combined in
section 4.2.3 to find the far field radiated by the nonlinear polarization of the
two Gaussian-shaped beams. This result is further analyzed by considering
some special cases in section 4.2.4. In section 4.2.5 the angular dependence of
the radiated field is used to calculate the electric field in the focus, when the
radiation emitted in all forward directions is collected and focussed by a mir-
ror. Section 4.2.6 completes the analysis by moving from two monochromatic
pump beams to one pulsed pump beam (optical rectification).

4.2.1 Induced polarization

In this section, we calculate the low-frequency nonlinear polarization caused
by two monochromatic pump beams of almost equal frequency. To avoid hav-
ing to deal with reflections at crystal interfaces, we assume that our generation
crystal is embedded in a medium with an identical refractive index for both
pump beams and for the terahertz radiation, but with a zero χ(2). In this sec-
tion, the time dependent polarizations and electric fields are written in com-
plex notation. One can obtain measurable quantities by taking the real part of
each expression.

The coordinate system used has its origin in the center of the pump foci
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with the z-axis in the pump-beam propagation direction. The generation crys-
tal, which is the region with a nonzero χ(2), extends from z = z1 to z = z2,
as shown in figure 4.2. The beams are assumed to be collinear and to have
a Gaussian spatial profile transverse to the propagation direction. Also, the
length and position of both foci are assumed to be identical. The electric field
of these beams can be written as (ref. 68, p. 664)

Eg1(t, x, y, z) =
jzrEg10

(z + jzr)
exp

{
j(ω − ωT/2)t

− jk(ω − ωT/2)
(

z +
1
2

x2 + y2

z + jzr

)}

 jzrEg10

(z + jzr)
exp

{
j(ω − ωT/2)t

− j
(

k(ω) − (ωT/2)
∂k
∂ω

(ω)
)(

z +
1
2

x2 + y2

z + jzr

)}
(4.2)

Eg2(t, x, y, z)  jzrEg20

(z + jzr)
exp {j(ω + ωT/2)t

−j
(

k(ω) + (ωT/2)
∂k
∂ω

(ω)
)(

z +
1
2

x2 + y2

z + jzr

)}
,

(4.3)

where ω is the optical radial frequency, and ωT is the radial frequency of the
generated beam, which we assume to be in the terahertz region. The focus
length of the two beams is identical and determined by zr, which is equal to
half the confocal parameter. The optical wavenumber in the medium is k(ω),
and the waist spot size is W0 =

√
2zr/k(ω).68 The electric-field strengths in

the center of the focus are determined by Eg10 and Eg20. In the above equation,
the frequency dependence of the optical wavenumber has been approximated
by a Taylor expansion ( k(ω + ωT/2)  k(ω) + (ωT/2) ∂k

∂ω (ω) ).
In equations 4.2 and 4.3, the two beams have an identical beam waist and

an identical focus length. This is an approximation, since the focus length and
the beam waist depend on the wavenumber, and the wavenumber of the two
beams is not the same. However, the differences are very small, since their
frequencies are almost equal.

The induced second-order polarization in non-dispersive media is given
by69

Pg(t, x, y, z) = ε0χ(2)E∗
g1(t, x, y, z)Eg2(t, x, y, z)

=
ε0χ(2)z2

r E∗
g10Eg20(

z2 + z2
r
) exp

{
jωTt − jωT

∂k
∂ω

(ω)z
(

1 +
1
2

x2 + y2

z2 + z2
r

)

−zrk(ω)
x2 + y2

z2 + z2
r

}
,

(4.4)

where we have again disregarded the tensor character of the susceptibility. To
obtain the polarization at the difference frequency, the electric field of beam 2
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Figure 4.3: Geometry used to calculate the radiation produced by a limited area
(grey) with an arbitrary distribution of currents and currents. O indicates the
origin, R’ the generation point and R the observation point.

was multiplied by the complex conjugate of the electric field of beam 1. The
polarization at the sum frequency, which we do not use in this calculation, can
be obtained by multiplying the field without the complex conjugation (Pg =
ε0χ(2)Eg1Eg2).

4.2.2 Radiation integral

We calculate the electric field radiated by an arbitrary distribution of charges
and currents in the far-field approximation. The far-field approximation means
that the distance between our observation point and the region with charges
and currents is much larger than both the size of this region and the wave-
length of the radiated field. The electric field generated by an arbitrary distri-
bution of charges and currents (figure 4.3) is given by70

E(t, R) =
1

4πε0εr

∫∫∫
dR′

{
R − R′

‖R − R′‖3 [ρ] + nT
R − R′

c‖R − R′‖2

[
∂ρ

∂t

]

− n2
T

c2‖R − R′‖
[

∂J
∂t

]}
,

(4.5)

where c is the velocity of light in vacuum, nT is the terahertz refractive index
in the medium. The terahertz relative permittivity of the medium is εr, and the
permittivity of vacuum is ε0. The charge density is ρ and the current density
is J. The above equation is generally valid, provided that the medium has
a relative permeability of one (µr = 1). The vector R indicates the position
for which the electric field is calculated (observation point). After Lorrain,70

quantities within square brackets are taken at the retarded time t − nT‖R −
R′‖/c. For instance,

[
∂ρ
∂t

]
is equal to ∂ρ

∂t (t − nT‖R − R′‖/c, R′).

In the far-field approximation, the first term in the previous equation can
be neglected, since it is proportional to the inverse of the second power of
distance and thus decreases more rapidly with distance than the second and
third terms, which go as one over the distance. With this approximation the
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above equation becomes

E(t, R) =
nT

4πε0εrc

∫∫∫
dR′

{[
∂ρ

∂t

]
R − R′

‖R − R′‖ − nT
c

[
∂J
∂t

]}
/‖R − R′‖, (4.6)

There are two reasons not to be happy with this equation. First, the equation
contains both the charge density and the current density. This is unnecessarily
complicated, because these quantities are related to each other by charge con-
servation. Secondly, the direction of the electric field is unclear. In the far field,
the electric field should be perpendicular to the propagation direction. How-
ever, the first term in equation 4.6 points parallel to the propagation direction,
while the second term points in the direction of J, which can be a complex
function of the position R′. It is not immediately apparent from equation 4.6,
how the parallel component of the second term cancels the first term in the far
field. Both issues can be dealt with, using charge conservation to express the
time derivative of the charge density in the current density[

∂ρ

∂t

]
=
[−∇′ · J

]
= − (∇′ · J

) (
t − nT

c
‖R − R′‖, R′

)
= −∇′ ·

(
J
(

t − nT

c
‖R − R′‖, R′

))
+
(
∇′
(

t − nT
c
‖R − R′‖

))
·
(

∂J
∂t

(
t − nT

c
‖R − R′‖, R′

))

= −∇′ · [J] + nT
c

R − R′

‖R − R′‖ ·
[

∂J
∂t

]
,

(4.7)

where the prime in ∇′ indicates that the derivative is with respect to R′ =
(x′, y′, z′). It is important to understand the difference between [∇′ · J] and
∇′ · [J]. The difference is in the sequence of the substitution of the retarded
time and the calculation of the divergence. In [∇′ · J], first the divergence is
calculated and then the time is replaced with the retarded time. In ∇′ · [J],
first the retarded time is substituted, which means that the time has become
dependent on the position R′, the parameter to which the derivative is taken
in the divergence.

Substituting the previous equation into equation 4.6 we get

E(t, R)  n2
T

4πε0εrc2

∫∫∫
dR′

{
− c

nT

(∇′ · [J]) R − R′

‖R − R′‖
−
[

∂J
∂t

]
+

R − R′

‖R − R′‖
(

R − R′

‖R − R′‖ ·
[

∂J
∂t

])}
/‖R − R′‖.

(4.8)

We use the approximation R − R′  R, except in the expression for the
retarded time. This is valid, because the dimensions of the region with cur-
rents are much smaller then the distance R in the far-field approximation. The
reason for the exception for the retarded time is that a small variation in the
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propagation distance can already causes a phase-change of more that 2π. The
following expression for the generated electric field is obtained.

E(t, R)  − nT r̂
4πε0εrcr

∫∫∫
∇′ · [J] dR′

− n2
T

4πε0εrc2r

∫∫∫ [
∂J⊥
∂t

]
dR′,

(4.9)

where r ≡ ‖R‖ is the distance from the observation point to the generation
region, and r̂ ≡ R/‖R‖ is a unit vector in the direction from the generation
region to the observation point. We have also used J⊥ ≡ J − r̂ (r̂ · J), which
is the projection of J on the plane perpendicular to r̂. It is logical that J is
projected in this way, since the electric field of radiation in an isotopic medium
has to be perpendicular to the propagation direction.

The first term of equation 4.9 equals zero. The volume integral over the
divergence of the current density can be rewritten to a surface integral over
the current density using Gauss’ theorem. This surface integral is zero, be-
cause, by definition, the currents vanish at the boundary of the generation
region. Using J = ∂P/∂t70 the final equation for the electric field radiated by
a polarization distribution is given by

Erad(t, R) = − n2
T

4πε0εrc2r

∫∫∫
∂2P⊥
∂t2

(
t − nT‖R − R′‖/c, R′)dR′, (4.10)

where P⊥ is, similar to J⊥, the projection of the polarization on the plane per-
pendicular to r̂. The equation is easily interpreted. The source of the radiated
field is the second time derivative of the polarization. However, only the part
of the polarization that is perpendicular to the propagation direction R con-
tributes to the radiated field.

4.2.3 Generated field

In this section, the field radiated by the nonlinear polarization induced by two
monochromatic beams is calculated. For this purpose, we use the expression
for the induced nonlinear polarization of section 4.2.1, substitute it in the in-
tegral for the radiated field obtained in section 4.2.2, and solve the integral
analytically.

If equation (4.4) is substituted into equation (4.10), then we obtain the ra-
diated terahertz electric field

Erad(t, R) =
ω2

Tχ(2)E∗
g10Eg20z2

r

4πrc2

(
x̂ − r̂

x
r

)
exp (jωTt)∫∫∫

dR′ 1
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− jωT
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1 +
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2
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z′2 + z2
r

)
− zrk(ω)

x′2 + y′2

z′2 + z2
r

}
(4.11)
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where kT is the wavenumber at the terahertz frequency, and x̂ is the unit vector
along the x-axis. The direction of the induced polarization is chosen to be the
x̂ direction. We apply the following approximation

‖R − R′‖ =
√

(x − x′)2 + (y − y′)2 + (z − z′)2


√

x2 + y2 + z2 − xx′ + yy′ + zz′√
x2 + y2 + z2

.
(4.12)

This approximation is called the Fraunhoffer approximation in diffraction the-
ory. Note that this approximation for ‖R−R′‖ is one order more accurate than
the one used in section 4.2.2. It is necessary to be more accurate, since now
‖R − R′‖ is in the complex exponential, and even small distance differences
can cause significant phase differences. If approximation 4.12 is applied to the
equation for the generated field (equation 4.11), the result is
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(4.13)

where we have assumed that there is only a nonlinear polarization in the re-
gion between the z′ = z1 and z′ = z2 planes. The integrals over x′ and y′ are
solved with

∞∫
x=−∞

exp
(

jAx − jBx2 − Cx2
)

dx =
√

π

jB + C
exp

(
−1

4
A2

jB + C

)
, (4.14)
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which results in
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(
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(4.15)

This equation can be simplified with a transformation from the (x, y, z) coor-
dinate system to a spherical coordinate system (r, θ, φ)

Erad(r, θ, φ, t) = e
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Tχ(2)E∗
g10Eg20z2

r

4rc2 exp (jωTt − jkTr)
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(4.16)

The direction of the electric field is given by the vector e, where

e = x̂ − r̂
x
r

=


 1 − sin2(θ) cos2(φ)

− 1
2 sin2(θ) sin(2φ)

− 1
2 sin(2θ) cos(φ)


 . (4.17)

We define k′T ≡ ωT
∂k
∂ω (ω), and make the approximation that 2zrk(ω) �

z′k′T . This approximation is valid as long as the absolute value of z1 and z2 are
much smaller than zr times k(ω)/k′T . This is not a very stringent condition,
because k(ω)/k′T is a large number (≈ 100). Roughly speaking, the approxi-
mation is valid as long as the generation region does not extent far beyond the
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pump focus. We get the following expression
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(4.18)

where in the second step we have used that kT � k(ω) and k′T � k(ω). The
integral over z′ can be solved analytically, which results in
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(4.19)

where ”erf” stands for the error function. We now have a full description of
the radiated field. In the next section we will explore the physical meaning of
the expression by looking at two limit cases.

4.2.4 Additional approximations

Case I: Negligible focus effects

We will look at two limits for the expression of the radiated electric field found
in the previous section. First, we consider the case that max{|z1|, |z2|} kT �
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√
2k(ω)W0. Physically, this condition assures that the variation in the diame-

ters of the pump beams can be neglected within the generation crystal. Under
this condition equation 4.19 becomes
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1
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(
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))
,

(4.20)

where the sinc function is defined as sinc(x) ≡ sin(x)/x. To obtain equation
4.20, an approximation of the error function is required. This approximation
is derived starting from the integral notation of the error function71

erf(x − jy) ≡ 2√
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(4.21)

which can be approximated by

erf(x − jy)  erf(−jy) +
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(exp(2jxy) − 1) ,

(4.22)

for arbitrary real y and |x| � 1.
Equation 4.20 can be further simplified by going to a new coordinate sys-

tem (r′, θ′, φ′), which is translated a distance (z1 + z2) /2 in the pump prop-
agation direction. This new coordinate system has its origin in the center of
the generation crystal, instead of in the center of the pump focus. In the new
system, the radiated electric field can be written as

Erad(r′, θ′, φ′, t)  e ω2
Tχ(2)E∗

g10Eg20W2
0 exp
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))
,

(4.23)
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where we used the far field approximation (z1 + z2) /2 � r. With this approx-
imation, the coordinate transformation is given by

r′ = r − 1
2

(z1 + z2) cos(θ) (4.24)

θ′ = θ (4.25)
φ′ = φ (4.26)

In the nominator of the fraction of equation 4.20, but not in the complex expo-
nential, r was further approximated to r = r′.

Equation 4.23 can be analyzed as follows. The equation contains a constant
that includes the frequency of the terahertz electric field (squared), the nonlin-
earity of the medium (χ(2)), and E∗

g10Eg20W2
0 . The complex factor exp(−(z1 +

z2)k′T/2) is due to the propagation of the pump beams from the center of the
pump focus to the center of the generation crystal.

The factor exp (jωTt − jkTr′) /r′ on the second line of the equation repre-
sents a spherical wave of which the amplitude depends on the vector e. The
exponentially decaying factor represents the degree of focussing of the pump
beams, and is discussed in more detail in the second half of this section.

The sinc function on the last line of equation 4.23 is related to a process
called phase matching. If phase matching is achieved, then the electric fields
originating from different z-coordinates in the generation crystal add up con-
structively in the far field. How well the generation process is phase matched
is determined by the phase mismatch, which we define as kT cos(θ) − k′T .
Phase matching effects can limit the angles in which generation is possible
to a region around θ = arccos(k′T/kT) for kT ≥ k′T . The maximum and min-
imum angle that limit the generation cone, which we define as the cone in
which the sinc function > 0.5, are given by

θmin = arccos
(

k′T
kT

+
3.78

kT |z2 − z1|
)

for
∣∣∣∣ k′TkT

+
3.78

kT |z2 − z1|
∣∣∣∣ ≤ 1 (4.27)

θmax,k = arccos
(

k′T
kT

− 3.78
kT |z2 − z1|

)
for

∣∣∣∣ k′TkT
− 3.78

kT |z2 − z1|
∣∣∣∣ ≤ 1. (4.28)

If kT/k′T = 1 (no phase-mismatch), kT = 2 π / (100 µm), and z2 − z1 = 0.5 mm,
then θmax,k = 16.8◦. So even if the generation is perfectly phase-matched in the
forward direction, phase matching effects limit the generation to reasonably
small angles. Note that for a zero phase-mismatch equation 4.28 is not defined,
which means that θmin is simply zero.

If kT/k′T = 1.05, kT = 2π / (100 µm), and z2 − z1 = 0.5 mm, then θmax,k = 24.5◦
and θmin = 5.8◦. So, even a small phase mismatch can significantly change the
angular dependence of the generated terahertz radiation. Also, the radiation
in the strictly forward direction (θ = 0) is already reduced by more than a
factor of 2.

If kT ≥ k′T, then the phase velocity of the radiated field is smaller than
the group velocity of the optical beams. Under this condition, radiation is
generated on the cone, which is defined by kT cos(θ) = k′T, and which is called
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a Cherenkov cone.72 This in analog to classical Cherenkov radiation from
relativistic charged particles in dielectric media.

Case II: Negligible phase mismatch

We now go back to equation 4.19 and neglect phase matching effects (k′T =
kT cos(θ)). Under that condition, the radiated field is given by

Erad(r, θ, φ, t)  e
ω2

Tχ(2)E∗
g10Eg20W2

0

8rc2 exp (jωTt − jkTr) AB (4.29)

with
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, (4.30)

B =

√
πk(ω)zr

kT sin(θ)
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kT sin(θ)
2
√

k(ω)zr

)
− erf

(
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kT sin(θ)
2
√

k(ω)zr

)}
. (4.31)

The factor AB can be viewed as an effective generation length, which can
be equal to or smaller than the length of the nonlinear region (l = z2 − z1), de-
pending on the parameters of the pump foci. We analyze the influence of the
focus diameter of the pump beams by considering two cases: a very tight fo-
cus, and a very weak focus. When the pump beams are weakly focussed, then
the factor A limits the angles over which the induced polarization radiates to
a maximum of

θmax,a = arcsin
(

1.96
kTW0

)
for kTW0 ≥ 1.96, (4.32)

where θmax,a is defined as the angle for which A equals 1
2 . If the pump beams

are focussed weakly, then the factor B simply equals z2 - z1.
However, if the focus diameter W0 is much smaller than the crystal length

(second case), then the factor B limits the angles over which the induced po-
larization radiates. For z2 = l/2 and z1 = −l/2 the maximum angle is given
by

θmax,b  arcsin
(

2.81 k(ω)W0

kTl

)
for kTl ≥ 2.81 k(ω)W0, (4.33)

where θmax,b is defined as the angle for which B/l equals 1
2 .

So in the two limiting cases that the focus is tight or weak, the space angle
in which radiation is emitted, can be reduced. Contrary to phase matching,
there is no minimum generation angle associated to the degree of focussing.
For the strictly forward direction (θ = 0), AB is equal to l regardless of the
diameter of the focus. The relation between the pump focus and the effective
generation length is further illustrated in figure 4.4, where the factor AB is
plotted as a function of the waist of the pump beams. The plot shows five
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Figure 4.4: Calculated effective generation length (AB) as a function of the pump
beam waist size W0. The values that are used are z2 = 0.5 mm, z1 = -0.5 mm, kT =
2π * 3 / (150 µm), and k(ω) = 2π * 3 / (1 µm).

lines that correspond to five different angles between the pump beam propa-
gation direction and the propagation direction of the terahertz radiation. Note
that, when the pump beams are focused to different beam waists, the factor
E∗

g10Eg20W2
0 in equation 4.29 remains constant. Any decrease of W2

0 is com-
pensated by an equal increase of E∗

g10Eg20, since the total power in the beams
must remain constant.

Physically, the effective generation length AB is determined by the optical
beam waist in the generation crystal. At positions in the crystal where this
waist is larger than or on the order of the terahertz wavelength, the radiation
is restricted to the forward propagation direction. This is more obvious in the
limit of crystal lengths much smaller than the pump focus length. In this limit,
the beam waist is constant over the length of the crystal, and the factor B can
be approximated with

B = l exp


−

(
1
2 (z1 + z2)

)2
k2

T sin2(θ)

4zrk(ω)


 , (4.34)

where l = z2 − z1 � 2
√

2zr/(kTW0). The effective generation length then
becomes
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, (4.35)
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where W = W0

√
1 +

(
1
2 (z1 + z2)

)2
/z2

r is the diameter of the pump beam at

the center of the generation crystal, which is displaced a distance (z1 + z2)/2
from the center of the pump-beam foci. When phase mismatch is neglected,
the radiated field strength is thus determined by the diameter of the pump
beams at the generation crystal.

In conclusion, we learn from equation 4.29, 4.30 and 4.31, how the beam
waist of the pump beams influences the terahertz generation process. This
waist is not relevant for the on-axis generation. However, off-axis generation
is suppressed, if the average diameter of the pump beam in the generation
crystal is larger than the wavelength of the generated terahertz beam.

4.2.5 Effect of focussing in the detection

In common terahertz generation and detection setups, the terahertz radiation
is focussed onto the detector, so that the detected electric field is as high as
possible. To compare the measurements in such a setup with the theory de-
veloped here, the electric field in focus needs to be calculated. Starting point
of this calculation is the electric field as a function of angle derived in the pre-
vious section. Of course, the electric field in the focus depends strongly on
the exact configuration of the optics between the emission and the detection
crystal. However, it is still valuable to calculate the electric field for a model
system, because it creates some insight in how the electric fields radiated in
different directions add up in the focus.

In our model system, the emission source is in the center of a spherical
shell, where the half of the shell in the forward propagation direction is per-
fectly reflective and the other half is perfectly transparent, as is schematically
shown in figure 4.5. In this configuration all terahertz energy radiated in the
forward direction will be reflected and focussed back to the source. The shell
is assumed to be in the far-field of the emitter. This configuration cannot be
experimentally reached, because we cannot place both the emission and the
detection crystal on the same position. The configuration is, however, a good
model for cases where diffraction at the edges of lenses or mirrors and reflec-
tions at crystal interfaces is negligible.

The derivation is structured as follows. First, the results of the previous
section will be used to obtain the field incident on the spherical shell. Then,
the electric field of the reflected wave near the mirror is calculated. Finally,
Kirchhoff’s integral theorem is used to calculate the reflected electric field in
the center of the shell. Kirchhoff’s integral relates the electric field on an ar-
bitrary point within a closed surface to the electric field on the closed surface,
and is given by73

E(P0) =
1

4π

∫∫
S

exp (−jkr01)
r01

(
∂E
∂n

(P1) + jkE(P1)
)

dS, (4.36)

where the integral is over all positions P1 on the closed surface, ∂
∂n signifies a

partial derivative in the outward normal direction at each point of S, and r01
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Figure 4.5: Schematic of the focusing of the terahertz radiation. The radiation
originates from optical beams focussed into a nonlinear crystal, indicated by the
shaded region, and is collected by the reflecting shell of a half sphere, the thick
semicircle. The radiation reflects back, and is focussed. Both the thickness of the
nonlinear crystal and the optical beam waist are much smaller than the radius of
the spherical mirror R, but are drawn larger for clarity.

is the distance between the observation point P0 and the point on the closed
surface S.

The total terahertz electric field parallel to the reflective surface must be
zero. The total electric field is equal to the sum of the incident field and the
reflected field. The incident field is parallel to the reflective surface on each
point of the mirror, since the size of the nonlinear crystal is much smaller than
the radius of the spherical mirror. Therefore, the electric field of the reflected
wave at the surface is simply the electric field of the incident wave multiplied
by -1 (Ere f = −Erad). For Kirchhoff’s integral theorem, not only the electric
field at the surface is needed, but also the derivative of the field in the direction
of the surface normal. With equation 4.23 the derivative of the incident field
is given by

∂Erad
∂n

=
∂Erad

∂r′
= −

(
1
R

+ jkT

)
Erad  −jkTErad (4.37)

where the mirror is assumed to be in the far field of the source, so that the
radius of the mirror R � 1/kT. If this is substituted into equation 4.36, it is
seen that the term for the incident field multiplied by the factor jkT is can-
celled by the derivative of the incident field. This is a very useful property of
the Kirchhoff’s expression. Only radiation propagating inward (the reflected
field) contributes to the integral, and outward propagating radiation (the inci-
dent field) can be neglected. For the reflected field at the mirror, we take that
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∂Ere f /∂n = −jkTErad. The sign is chosen such that reflected field is propagat-
ing inward.

Combining the above considerations and equation 4.23 for the radiated
field, the electric field exactly in the center of the terahertz focus is found to be
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(4.38)

where l is the length of the generation crystal (z2 − z1).
The integral over φ′ is easily solved to get
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(4.39)

We rewrite this equation as
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with

func(C1, C2, C3) ≡ 3
4
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dx exp
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sinc
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1 + x2
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(4.41)

where the integral over θ′ has been replaced by an integral over x. A function
has been introduced by the appropriate name ”func”. This function, which
easily can be solved numerically, depends on three constants, C1, C2 and C3.
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Figure 4.6: Graphs of func(kTW0, 50, (k′T − kT)/kT), which plays an important
role in equation 4.40 for the focussed radiated field. The right graph shows cross-
sections of the 3D graph on the left for different values of kTW0.

These constants are equal to respectively the pump focus diameter, the length
of the generation crystal, and the phase mismatch in the pump propagation
direction, each normalized to the terahertz wavenumber. Note that func is
defined such that the input and output variables are dimensionless numbers.
Furthermore, the function reduces to unity, if C1 and C2 go to zero, which
corresponds to the limit of a tight focus in a very thin generation crystal. The
value of func(C1,C2,C3) can thus be seen as the extent to which the electric
field in the center of the terahertz focus E f oc is reduced by focussing and phase
matching effects.

We calculate the value of func(kTW0, kTl, (k′T − kT)/kT) under different
conditions to investigate the effect of focussing and phase-mismatching on
the electric field in the terahertz focus. In these calculations, we assume a con-
stant terahertz frequency and thus a constant kT . Figure 4.6 shows the results
of calculations, in which the pump focus diameter and the phase mismatch
are varied, while the length of the generation crystal was kept constant. The
length of the generation crystal l was fixed at l = 50/kT, which means that
l was about 8 terahertz wavelengths long. The calculations show a clear dif-
ference in the value of func(kTW0, 50, (k′T − kT)/kT) for positive and negative
values of k′T − kT , especially for small values of kTW0. For small values of
kTW0 figure 4.6 shows substantial values of func(kTW0, 50, (k′T − kT)/kT) for
(k′T − kT)/kT between -1 and 0, while for positive values of k′T − kT the value
of func(kTW0, 50, (k′T − kT)/kT) rapidly diminishes.

The asymmetry of func(kTW0, 50, (k′T − kT)/kT) with respect of the sign
of (k′T − kT)/kT , can be explained with the off-axis generation (Cherenkov
effect) described in section 4.2.4. k′T − kT is the phase mismatch in the strictly
forward direction (θ′ = 0). For negative k′T − kT , the terahertz generation
can be phase matched at an angle, which is not possible for positive k′T − kT .
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Figure 4.7: Graphs of func(5, kTl, (k′T − kT)/kT), which plays an important role in
equation 4.40 for the focussed radiated field. The right graph shows cross-sections
of the 3D graph on the left for different values of kTl.

This off-axis phase matching is necessary for the terahertz generation to occur
efficiently, which explains the calculated asymmetry. For large values of kTW0,
however, off-axis generation is prohibited by focussing effects, which reduce
the asymmetry with respect of the sign of k′T − kT .

Figure 4.7 shows calculations of the value of func(5, kTl, (k′T − kT)/kT),
where both the crystal length and the phase mismatch in the forward direction
are varied. The pump beam waist was kept constant at W0 = 5/kT. This corre-
sponds to a pump beam waist approximately equal to 0.8 times the terahertz
wavelength. Figure 4.7 shows a peak in the plot of func versus (k′T − kT)/kT
that becomes narrower and smaller as the crystal length is increased. For
longer crystal lengths, the terahertz electric field in focus is thus more sen-
sitive to the phase-mismatch in the forward direction (k′T − kT). Note that
off-axis generation is strongly suppressed due to the relatively large value of
kTW0. For kTW0 = 5, off-axis generation is limited to a maximum value of
θ′ of 23 degrees, as can be calculated with equation 4.32. The increased sen-
sitivity to the phase-mismatch for increasing crystal lengths can be explained
by considering the induced phase difference between the contributions to the
radiated field from the front and from the back of the crystal. If this phase dif-
ference becomes in the order of π, then these contributions will destructively
interfere. For small values of kTl (thin generation crystals), a large value of
(k′T − kT)/kT is needed to cause a significant phase difference between the
front and the back of the generation crystal. For thin crystals, phase matching
thus limits the radiated field only for large values of (k′T − kT)/kT . In thick
crystals, however, a small value of (k′T − kT)/kT can be sufficient to reduce the
electric field in the center of the terahertz focus.

Not only do the widths of the peaks in the right graph of figure 4.7 de-
crease for increasing kTl; the height of the maxima also decreases. Note that
this does not mean that the generated terahertz electric field decreases with
increasing crystal length. Equation 4.40 for the electric field in the terahertz
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focus (E f oc) contains an extra factor kTl, which is not included in func(kTW0,
kTl, (k′T − kT)/kT). The value of func(kTW0, kTl, (k′T − kT)/kT) can thus be
interpreted as a generation efficiency per unit of crystal length. This efficiency
indeed decreases for increasing crystal length, because of the narrowing of the
generation cone defined by equations 4.27 and 4.28.

Concluding, for efficient terahertz generation the pump beam waist should
be smaller than the terahertz wavelength so that off-axis generation is possi-
ble. Using this off-axis generation efficiently requires a value of the phase
mismatch k′T − kT that is smaller than zero.

4.2.6 Optical rectification

Up to here, we have investigated terahertz generation by difference-frequency
mixing of two monochromatic beams. In this way, terahertz radiation at one
single frequency is generated. Another way to generate terahertz radiation is
optical rectification, in which a very short optical pulse is focussed in a gen-
eration crystal. This optical pulse generates a nonlinear polarization pulse in
the crystal by nonlinear effects. This polarization pulse radiates a broadband
terahertz pulse.

In the calculation of terahertz generation by optical rectification, the results
for monochromatic pump beams will be used. First, the nonlinear polarization
caused by an optical pulse is calculated. As we will see, this polarization only
differs with respect to the polarization created by the monochromatic pump
beams by a position-independent constant. This means that we can use the
results describing the monochromatic-pump case for the pulsed-pump case
by simply making the appropriate change in the constants.

Equation 4.4, which gives the induced nonlinear polarization for mono-
chromatic pump beams, changes in the case of broadband sources to69

P̃g(ωT , x, y, z) = ε0
√

2π

∞∫
−∞

dω χ(2)(ω, ωT − ω)Ẽg(ω, x, y, z)Ẽg(ωT − ω, x, y, z)

(4.42)

= ε0
√

8π

∞∫
0

dω χ(2)(ω, ωT − ω)Ẽg(ω, x, y, z)Ẽg(ωT − ω, x, y, z),

(4.43)

where Ẽg is the Fourier transform of the generating electric field, and P̃g is the
Fourier transform of the induced polarization. To make the step from equation
4.42 to 4.43, we used that χ(2)(ω1, ω2) = χ(2)(ω2, ω1). We also used that the
pump pulses do not contain terahertz frequency components and that thus
Ẽg(ωT) = 0 for ωT in the terahertz range, so that

∫ −ωT
−∞ dω . . . =

∫ 0
−∞ dω . . ..

Note that the tilde ˜ is used to indicate quantities in the frequency domain. We
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define the Fourier transform as

Ẽg(ω, x, y, z) ≡ 1√
2π

∞∫
−∞

dt Eg(t, x, y, z) exp (−jωt) (4.44)

with the inverse transformation

Eg(t, x, y, z) ≡ 1√
2π

∞∫
−∞

dω Ẽg(ω, x, y, z) exp (+jωt) . (4.45)

For the electric field of the broadband generation beam, we write

Ẽg(ω, x, y, z) =




Ẽg0(ω) jzr
z+jzr

exp
{
−jk(ω)

(
z + 1

2
x2+y2

z+jzr

)}
if ω ≥ 0,

Ẽg0(ω) −jzr
z−jzr

exp
{

jk(ω)
(

z + 1
2

x2+y2

z−jzr

)}
if ω < 0.

(4.46)

This is a Gaussian beam, just like equations 4.2 and 4.3, only here the two con-
stant amplitudes Eg10 and Eg20 are replaced with the function Ẽg0(ω), which
is the Fourier transform of the electric field right in the center of the pump
focus. By definition k(ω) = k(−ω). If the above equation is substituted in
equation 4.43, and the wavenumber k(ω) is approximated with a Taylor ex-
pansion around the center frequency ω0, we find that

Pg(ωT, x, y, z) 
√

8πε0
z2

r
z2 + z2

r


 ∞∫

0

dω χ(2)(ω, ωT − ω)Ẽg0(ω)Ẽg0(ωT − ω)




exp
{
−jωT

∂k
∂ω

(ω0)z
(

1 +
1
2

x2 + y2

z2 + z2
r

)
− zrk(ω0)

x2 + y2

z2 + z2
r

}
.

(4.47)

This is exactly the same equation as equation 4.4, if we make the replacement

χ(2)E∗
g10Eg20 exp (jωTt) ⇒ 2

√
2π

∞∫
0

dω χ(2)(ω, ωT − ω)Ẽg0(ω)Ẽg0(ωT − ω).

(4.48)
This means that the complete derivation of the radiation terahertz field is the
same for a pulsed pump beam as for the two monochromatic pump beams.
From the equation for the monochromatic beams, it is possible to obtain the
equation for a pulsed pump beam by the above parameter replacement. Equa-
tion 4.40 can therefore directly be used to get the terahertz electric field, radi-
ated by a pulsed pump beam and then focussed

Ẽ f oc(ωT)  −1
6

√
2πj

ω2
TkTlW2

0
c2


 ∞∫

0

dω χ(2)(ω, ωT − ω)Ẽg0(ω)Ẽg0(ωT − ω)




exp
(
−2jkTR − 1

2
j (z1 + z2) k′T

)
func

(
kTW0, lkT,

k′T − kT

kT

)
,

(4.49)
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provided that ωT ≥ 0. The values of Ẽ f oc(ωT) for negative ωT are determined
by Ẽ f oc(ωT) = Ẽ∗

f oc(−ωT), because the terahertz electric field in the time do-
main has, of course, to be real.

The electric field of a Gaussian, bandwidth limited pump pulse in the cen-
ter of the pump focus is defined as

Eg0(t) ≡ Eg0 exp

(
jω0t − 2 ln(2)

(
t

τ0

)2
)

(4.50)

with the following Fourier transform

Ẽg0(ω) = Eg0
τ0

2
√

ln(2)
exp

(
−τ2

0 (ω − ω0)
2

8 ln(2)

)
, (4.51)

where τ0 is the full width at half maximum duration of the pump pulse inten-
sity.

We express our final equation of this section in measurable quantities.
Therefore, the electric field of the optical beam Eg0 is related to power in the
beam, which can be easily measured. This is done by integrating the square
of the electric field, as defined in equation 4.46 and 4.49, over ω, x and y. The
result of this integration is proportional to the energy in one pulse. In practice,
ultrafast laser systems emit trains of pulses. The average power of such a train
equals the energy in one pulse divided by the pulse repetition rate frep, and is
given by

Pavr =
π3/2W2

0 τ0 frepE2
g0cε0n

4
√

2 ln 2
, (4.52)

where n is the refractive index for the optical pulse, which is taken to be a
constant.

If we combine equation 4.49, 4.51 and 4.52, we finally reach an equation for
the electric field strength of the focussed radiation from an optical rectification
process

Ẽ f oc(ωT)  − 1
3
√

π
j

ω3
Tl

c4ε0
χ(2) Pavr

τ0 frep
exp

(
− τ2

0 ω2
T

16 ln(2)

)

exp
(
−2jkTR − 1

2
j (z1 + z2) k′T

)
func

(
kTW0, lkT,

k′T − kT

kT

)
,

(4.53)

where the second order susceptibility χ(2) has been assumed to be constant
within the bandwidth of the pump pulse.

In experiments, one usually wishes to make the detected electric field as
large as possible. In this context, we highlight a few properties of the above
equation. For small values of ωT , both exp(−τ2

0 ω2
T/(16 ln(2))) and func(kTW0,

lkT, (k′T − kT)/kT) reduce to one. Under that approximation, the generated
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field is proportional to ω3
T. This means that optical rectification is not a very

efficient method to generate low-frequency (for instance < 100 GHz) radia-
tion. Furthermore, the electric field is proportional to the average power of
the optical beam Pavr, which is expected for a second-order nonlinear pro-
cess. One would like the average power to be a high as possible, but practical
issues, such as damage thresholds, limit the average power of almost all ultra-
fast laser sources to about 1 W. The repetition rate frep, however, varies orders
of magnitude (1 kHz - 100 MHz) between different ultrafast laser systems. In
low-repetition-rate systems the peak optical fields are stronger, which results
in higher terahertz electric fields.

The duration of the optical pulses τ0 is also an important parameter in
equation 4.53, and influences the radiated field in two ways. First, a shorter
pulse duration corresponds to a broader optical spectrum and thus also a
broader terahertz spectrum. This is taken into account by the exponential
factor in the first line of equation 4.53. Second, a shorter optical pulse has
a higher peak electric field, which make the terahertz electric field inversely
proportional to τ0. It is clearly advantageous to have a very short pulse dura-
tion. Commercial Ti:Sapphire lasers can produce pulses with pulse durations
down to 10 fs.

The terahertz electric field is proportional to the length of the generation
crystal l, and therefore long generation crystals seem profitable. However, if
l � 1/kT , then the effect of any further increase in length will be countered
by a decrease of func. Since kT is a strong function of the terahertz frequency
ωT, this can result in an effective bandwidth limitation. Such a bandwidth
limitation can also arise from the other two parameters of func, kTW0 and
(k′T − kT)/kT , which also depend on the terahertz frequency.

4.2.7 Conclusion

We have calculated the angular dependent field radiated by an optical beam
with a cross-section with a Gaussian spatial profile. The beam consists of a
train of ultra-fast pulses with a temporal intensity profile which is also Gaus-
sian. We find an expression for the terahertz electric field in focus after fo-
cussing of this radiated field. From this expression, we draw the following
conclusions.

The diameter of the optical beam determines to which extent the radiated
field is limited to directions close to the propagation axis of the probe beam.
No such limitation exists if the optical beam diameter is much smaller than
the wavelength of the radiated field. If not, then the radiated field is limited
to a solid angle around the pump propagation axis, which decreases in size
for increasing optical beam diameter. Due to this limitation, the total field in
focus will also decrease.

The length of the generation crystal determines the extent to which the
terahertz radiation is limited by phase-matching. Provided that the phase ve-
locity for the terahertz radiation is equal to or smaller than the group velocity
for the optical beam, there is an angle for which the generation is perfectly
phase-matched. If the length of the generation crystal becomes larger than the
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wavelength of the radiation, then the radiation process will become increas-
ingly limited around the perfectly phase-matched direction. As long as the
generation crystal is much smaller than the terahertz wavelength, the tera-
hertz electric field in focus is proportional to the crystal length. However, for
longer generation crystals, the phase-matching effect can completely suppress
any radiated field.

The duration of the optical pulse has two effects. For low terahertz fre-
quencies, the terahertz field in focus is inversely proportional to the pulse
duration. At high frequencies, the field strength is decreased, when the pulse
duration times the terahertz frequency approaches unity.

4.3 Optical rectification measurements

Optical rectification, or χ(2) pulse generation, is an important and frequently-
used method to generate broadband terahertz radiation. As discussed in the
previous section, phase matching plays an important role in the optical recti-
fication process. Due to phase matching, terahertz radiation originating from
different parts of the crystal will not necessarily add up constructively, which
has a large influence on the size and shape of the generated terahertz pulse.

Many experimentalists tend to avoid phase-matching issues by the use
of a very thin generation crystal.74, 75 In a thinner crystal, a difference be-
tween the optical group velocity and the terahertz phase velocity will cause
a smaller phase difference, thus limiting the amount of destructive interfer-
ence. However, a thin crystal is not the best choice for each application. First
of all, decreasing the crystal thickness results in a decrease of the emitted te-
rahertz power. Secondly, terahertz radiation emitted from thin crystals will
suffer strongly from Fabry-Perot reflections at the crystal interfaces. Finally,
thin crystals can be very fragile, which can be a drawback in commercial ap-
plications.

For a designer of a broadband terahertz system based on optical rectifi-
cation it is important to understand how the generated terahertz spectrum is
affected by phase matching. There have been previous reports on this issue
focussing on both theory60, 62 and experiments.33, 64, 76 However, none of the
reported experiments show how the phase matching effects depend on the te-
rahertz frequency, the wavelength of the generating pulse and the thickness
of the generation crystal.

We investigated the role of phase mismatch on the generated terahertz
pulse shape by using generation crystals of different thicknesses. In contrast
to the previous section, which provides an extensive theoretical discussion, this
section presents an experimental study of optical rectification. We find that
changing the crystal thickness has a large effect on both the shape of the te-
rahertz pulse and of the spectrum, which contains an oscillatory structure.
Varying the pump-wavelength changes the oscillation period in the spectrum,
in excellent agreement with a theoretical model that we use to describe our
measurements. These results significantly increase our understanding of the
generation of terahertz radiation by optical rectification, and can be used to



78 Chapter 4. Terahertz generation

Figure 4.8: Schematic picture of the measurement setup. A beamsplitter (BS)
splits the Ti:Sapphire beam (solid lines) into two parts. The larger part is used
to pump the optical parametric oscillator (OPO), while the smaller part is used to
detect the THz radiation. The beam from the OPO (dashed lines) goes through a
photoelastic modulator (PEM) and an optical delay stage and is then focused onto
a ZnTe generation crystal. The generated THz beam is first collimated and then
focussed by two parabolic mirrors. In this focus the THz electric field is measured
with a standard electro-optic detection setup, which consists of a ZnTe detection
crystal, a quarter-wave plate (λ/4), a wollaston prism (WP) and a differential
photodetector.

optimize the generation process.

4.3.1 Measurement setup

Figure 4.8 shows a schematic of the measurement setup. A Ti:Sapphire oscil-
lator produces optical pulses with a duration of about 100 fs, a repetition rate
of 80 MHz and a wavelength of 810 nm. The beam from this oscillator is split
into two parts. The weaker part is used to detect the generated terahertz radi-
ation, while the stronger part is used to pump an optical parametric oscillator
(OPO). In the OPO, which is built around a KTiOPO4 (KTP) nonlinear crystal,
a parametric process converts the 810 nm, Ti:Sapphire pulses into pulses with
a wavelength tunable between 1070 nm and 1240 nm and a pulse duration of
about 150 fs. The OPO also produces a second beam, often referred to as the
idler beam, but this beam is not used in the experiments reported here.

A photoelastic modulator (PEM) modulates the polarization of the beam
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from the OPO. This polarization modulation results in a modulation of the
terahertz electric field, which we need for lock-in signal processing. More in-
formation regarding photoelastic modulators and lock-in signal processing is
given in appendix B. After the PEM, the beam from the OPO goes through
an optical delay stage and is then focused onto a ZnTe crystal. The focused
pulse generates a polarization in the crystal that follows the intensity enve-
lope of the pulses (optical rectification). This induced polarization radiates a
terahertz transient according to ETHz ∝ ∂2P

∂t2 (see section 4.2.2). The terahertz
radiation coming out of the crystal is collimated and then focussed onto a sec-
ond ZnTe crystal together with the weaker split-off beam from the Ti:Sapphire
oscillator. In this second ZnTe crystal, which is 1 mm thick, the terahertz elec-
tric field induces a change in the polarization of the Ti:Sapphire beam. This
change is measured in a conventional electro-optic detection setup, leading to
an electronic signal proportional to the terahertz electric field.32

With the above described setup, we have performed two sets of measure-
ments. In the first set, the terahertz electric field was measured in three dif-
ferent generation crystals with thicknesses of 0.5 mm, 1 mm and 4 mm. The
wavelength of the beam from the OPO is kept fixed at 1228 nm. In the second
set of measurements, the thickness of the generation crystal was 1 mm, and te-
rahertz pulses were generated with pump wavelengths of 1080 nm, 1148 nm
and 1228 nm.

4.3.2 Measurement results

Figure 4.9(A-C) shows the power spectra for three different thicknesses of the
ZnTe generation crystal, which were calculated from the measured THz elec-
tric fields displayed in Fig. 4.9(D-F). In the calculation of the spectra, zeros
were added at the end of the time traces to smooth the spectra.

The spectra show that for all three thicknesses the power is very low at
low frequencies (< 0.5 THz) and is zero above approximately 2.5 THz. At
intermediate frequencies, the effect of phase matching becomes clearly visible
in Fig. 4.9(A-C). The spectra show oscillations with a period that decreases
as the crystal thickness increases. The oscillations are far less pronounced in
the measurement with the 4 mm thick generation crystal, than in the mea-
surements with the other two crystals. In addition, for the 4 mm crystal the
oscillations strongly decrease in amplitude above 1.5 THz.

Further insight in the origin of the oscillations shown in Fig. 4.9A-C is
obtained by looking at Fig. 4.9F. Remarkably, this measurement shows that the
terahertz signal consists of two pulses separated by about 4.5 ps. These pulses
are not identically shaped; the second pulse is smaller and clearly contains
fewer high-frequency components. Reflections in the generation crystal and
the detection crystal have a delay of 78 ps and 21 ps respectively, and thus can
not explain the pulses observed in Fig. 4.9F.

Figure 4.10 shows results from the second set of measurements in which
we measured the terahertz radiation generated in a 1 mm thick ZnTe crystal
for three different wavelengths of the generation beam, 1080 nm, 1148 nm and
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Figure 4.9: The measured terahertz power spectrum with the corresponding time
traces. Fig. A and D show respectively the spectrum and the time trace for a 0.5
mm thick generation crystal, Fig. B and E for a 1.0 mm thick crystal, and Fig. C
and F for a 4.0 mm thick crystal.
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Figure 4.10: Measured power spectra of terahertz radiation generated and de-
tected in two, 1 mm thick, ZnTe crystals. The three spectra are generated with an
optical wavelength of 1080 nm, 1148 nm and 1228 nm respectively.

1228 nm. The measured electric fields have been divided by the power deliv-
ered by the OPO at each wavelength to enable a quantitative comparison of
the terahertz powers generated at different pump wavelengths. For all three
wavelengths, the spectra in Fig. 4.10 show strong oscillations. The period
of the oscillations increases as the wavelength of the generating beam is de-
creased. We also observe that the amplitude of the oscillations increases with
decreasing wavelength.

4.3.3 Model

The results of the previous section can be described with a simple model that
includes phase matching effects in both the generation crystal and the detec-
tion crystal, and absorption of terahertz radiation in the generation crystal.
We disregard various, less important effects, such as absorption of terahertz
radiation in the detection crystal, phase matching in off-axis directions, reflec-
tions at the crystal surfaces, and dispersion acting on the generation beam, as
it can be shown that these only produce small corrections.

We derive a simplified expression for the spectrum of the terahertz electric
field radiated by optical rectification. For on-axis generation with a negligible
pump-beam diameter, equation 4.23 gives

ETrad(ωT) ∝ ω2
Tlg exp

(
1
2

jlg

(
ωT

∂kg

∂ω
− kT

))
sinc

(
1
2

lg

(
ωT

∂kg

∂ω
− kT

))
(4.54)

where lg is the thickness of the generation crystal, ωT is the terahertz radial
frequency, kT is the complex wavenumber of the terahertz beam, and kg is the
wavenumber of the generating beam. Equation 4.54 does not contain a term
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representing the limited range of ωT that can be generated from the pump
pulse. This is valid as long as the terahertz wavelength is much larger than
the pump pulse length.

Using kT ≡ kTr − jα, where α is the terahertz absorption coefficient, equa-
tion 4.54 can be rewritten to

ETrad(ωT) ∝ ω2
T

1 − exp
(−αlg + j∆kglg

)
α − j∆kg

, (4.55)

where the phase mismatch in the generation crystal ∆kg is given by
(
ωT

∂kg
∂ω −

kTr
)
.

The fraction in Equation (4.55) can be viewed as the sum of two terms
that correspond to the contributions from the front and the back of the crys-
tal. The term 1/

(
α − j∆kg

)
can be regarded as the contribution from a part of

the crystal near the back face with a length on the order of |α − j∆kg|−1. The
second term corresponds to a contribution from a part with similar length
near the front of the crystal. This contribution is subject to absorption in the
crystal (exp(−αlg)) and gets an additional phase due to the phase mismatch
(exp(j∆kglg)). The additional phase ∆kglg is, neglecting dispersion in the tera-
hertz regime, linear with the terahertz frequency. A linearly-increasing phase
in the frequency domain corresponds to a delay in the time domain. The con-
tribution to the electric field of the second term will thus give rise to a sec-
ond pulse, delayed in time with respect to the contribution of the first term.
However, for small delays the two contributions will (partly) overlap in time,
will interfere, and will form one pulse. Note that in the limit of thin crystals
(|αlg − j∆kglg| � 1) Eq. (4.55) becomes ETrad ∝ ω2

Tlg.
As can be found in literature,39, 55, 77 phase matching in the detection crys-

tal leads to multiplication of the incident field with sin
(

1
2 ∆kdld

)
/
(

1
2 ∆kdld

)
,

where ld is the length of the detection crystal, and ∆kd is the phase mismatch in
the detection crystal. Using this factor and Eq. (4.55), we find that the detected
terahertz electric-field spectrum is proportional to

ETdet(ωT) ∝ ω2
T

1 − exp
(−αlg + j∆kglg

)
α − j∆kg

sin
(

1
2 ∆kdld

)
1
2 ∆kdld

. (4.56)

This equation is a strong function of the frequency of the emitted terahertz
radiation, since α, ∆kg, and ∆kd depend on the terahertz frequency ωT.

4.3.4 Discussion

An important aspect of the measurements is the oscillations visible in Fig.
4.9(A-C). These oscillations are due to phase matching in the generation crys-
tal. The mismatch between the group velocity of the generating pulse and the
terahertz phase velocity, determines the amount of destructive interference
between the terahertz electric fields generated on different positions of the
crystal. This phase mismatch is a strong function of the terahertz frequency,
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which in non-dispersive media causes oscillations in the spectrum with a fixed
period. However, the ZnTe crystal is dispersive, leading to variations in the
period of the oscillation, which are most clear in Fig. 4.9B.

For thick crystals, contributions to the terahertz electric field from the cen-
ter region of the crystal cancel. The 4 mm generation crystal is so thick that the
remaining contributions from the crystal regions near the front and the back
face are well separated in time, as seen in Fig. 4.9F. Hence, in this limit, the
generated terahertz field consists of two well-separated pulses. This limiting
shape of the generated terahertz field has been observed before in a study on
optical rectification in LiNbO3 and LiTaO3 crystals.64 The velocity of the tera-
hertz pulse is lower than that of the generating pulse, so that the contribution
from the back of the crystal arrives before the contribution from the front.

To explain the periodic feature in the measured spectra, we point out that
two, equally shaped pulses in the time domain, give rise to an oscillation in
the frequency domain. This remains true, if the separation between the two
pulses is such that the pulses (partly) overlap. In figure (4.9) this leads to clear
oscillations in the spectra, even for the 0.5 mm thick crystal, where the pulses
are barely separated.

The two peaks in Fig. 4.9F are not equally shaped; the pulse from the front
of the crystal is smaller and contains fewer high-frequency components. This
decreases the modulation depth of the oscillations seen in Fig 4.9C. The main
reason for the different shapes of the two pulses in Fig. 4.9F is that the pulse
generated at the front of the crystal has to travel all the way through the ZnTe
crystal and is thus strongly subject to absorption and dispersion. The power
absorption coefficient of ZnTe rises from 2 cm−1 at 1 THz to 13 cm−1 at 1.6
THz,78 which cannot be neglected for a 4 mm thick crystal. In addition, the
focal length of the generating beam is smaller than the length of the crystal,
which implies, in this case, that the diameter of the generating beam is larger
at the front of the crystal than it is at the back. This leads to a reduced radiation
efficiency at the front, and thus to less pronounced oscillations.

We now consider how the radiated terahertz spectrum depends on the
wavelength of the generation pulse. As can be seen in figure 4.10, the period
of the oscillations in the spectrum increases as the wavelength of the genera-
tion beam decreases. As this wavelength decreases, the phase mismatch in the
terahertz generation process becomes smaller, and the minima of the oscilla-
tions shift toward higher terahertz frequencies.

Figure 4.11 shows the terahertz intensity spectrum for the generation-beam
wavelengths of 1080 nm, 1148 nm and 1228 nm used in the experiments, calcu-
lated with Eq. (4.56). For the refractive indices of ZnTe at optical and terahertz
frequencies, we have used, respectively, reference79 and.80 The terahertz ab-
sorption coefficient α is obtained from reference.78 In the calculation ld and lg
are both 1 mm and the wavelength of the detection beam is 810 nm.

Comparing Fig. 4.11 with Fig. 4.10, we find that the model accurately
predicts the minima of the oscillations in the measured spectra. Closer exam-
ination shows that the largest distance between the measured and calculated
minima is 62 GHz. This is an excellent agreement, considering the expected
uncertainty in the values of the refractive indices.
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Figure 4.11: Terahertz intensity spectra calculated with Eq. (4.56). Three spec-
tra are shown, corresponding to three different wavelengths for the optical beam
used to generated the terahertz radiation.

The values of the oscillation minima in Fig. 4.10 do not reach zero intensity
around 2 THz, which contrasts with the results around 1 THz. This feature of
our measurement is also in good agreement with the calculated results of Fig.
4.11. Absorption weakens the contributions from the front of the crystal more
than the contributions from the back, since the contribution from the front
region has to travel longer through the crystal. This means that destructive
interference between the front and the back region cannot be complete.

We conclude the discussion of the spectrum of the emitted terahertz radia-
tion by considering the low- and high-frequency edges of the spectrum. From
figures 4.9(A-C) it can be seen that at low frequencies, the power decreases
to zero. This is due to the conversion from the nonlinearly induced polariza-
tion in the crystal to far-field radiation, since the radiated electric field of any
polarization is proportional to the second time derivative of the polarization
(ETHz ∝ ∂2P

∂t2 ). A second time derivative corresponds to a factor −ω2
T in the

frequency domain, where ωT is the terahertz radial frequency. The radiation
efficiency at low frequencies, where phase matching effects are still negligible,
is thus proportional to ω2

T.
The lack of spectral content roughly above 2.5 THz in Fig. 4.9(A-C) is

partly due to phase matching in the detection crystal as is confirmed in our
calculations in Fig. 4.11. We emphasize that the detection process, which uses
an 810 nm probe beam, is much better phase matched than the generation
process. We have calculated that the detection efficiency should decrease with
frequency due to phase matching in the detection crystal, until the detection
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efficiency reaches zero at 2.8 THz. The detected signal suffers from additional
frequency-dependent decreases due to absorption in the detection crystal, and
due to the non-zero pulse-length of both the detection and the generation op-
tical pulses. These effects are not included in our model, which explains the
difference between measurement and calculation of the oscillation amplitudes
at high frequencies.

4.3.5 Conclusion

We have presented measurements and calculations that show how the spec-
trum of a terahertz pulse generated by optical rectification depends on the
thickness of the generation crystal and on the wavelength of the optical, gener-
ation pulse. The measured spectra have strong oscillations, which are caused
by constructive and destructive interference between contributions to the ra-
diated field from different parts of the crystal. This phase-matching effect is
strongly dependent on the thickness of the crystal. In the measurement with
a 4 mm thick crystal, all contributions to the radiated field from the central
region of the crystal cancel out and only the contributions from regions near
the two faces of the crystal survive, leading to the formation of two terahertz
pulses, separated in time. The measured spectra depend on the wavelength
of the generation beam, because this wavelength determines the phase mis-
match.
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Chapter 5

Surface plasmon polaritons

Recently, there has been an increased interest in the search for a good wave-
guide for the transportation of terahertz radiation.81–86 The latest develop-
ment in this field is the propagation of terahertz waves along bare metal wires
with very little absorption and dispersion.87, 88 These waves are often denoted
as surface plasmon polaritons. Indeed, measurements were shown in which
two metal wires were combined to form, what could, eventually, become a
medical probe.

In some terahertz near-field imaging techniques (chapter 6), bare metal
wires, which function as antennas, are used to locally enhance the terahertz
electric field. In such imaging techniques, the propagation of terahertz waves
over metal wires might play an important role.

Many metal wires, however, are not bare. Thin dielectric layers can often
be found on the surface of metal wires, applied intentionally or unintention-
ally through oxidation or contamination, and the effects of these layers on the
propagation of terahertz pulses along the wire are not well-known.

In early literature, the propagation over metal wires is associated with the
names of Goubau (Goubau wire) and Sommerfeld (Sommerfeld wave).89–91

The Goubau wire has seldomly been applied in electronics, because the fields
extended too far away from the wire. This caused scattering and dispersion
due to coupling of the fields to the surroundings. At terahertz frequencies,
however, the field extent is expected to be smaller, which reduces the problem
of field coupling to the surroundings. It is therefore useful to evaluate the
potential of metal wires as waveguides for terahertz radiation.

This chapter investigates the applicability of electromagnetic waves with
frequencies in the terahertz range propagating over coated and uncoated metal
wires. Although the theory of propagation of terahertz radiation over coated
wires is known to a large extent, we re-derive this theory from first principles
for instructive purposes in section 5.1 and 5.2. Section 5.1 describes surface
plasmon polaritons on both uncoated and coated, planar metal surfaces, and
section 5.2 provides a theoretical description of surface plasmon polaritons
on coated metal wires. In section 5.3, we present the first measurements on
the influence of propagation over a coated metal wire on the amplitude and

87
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phase of ultrashort terahertz pulses. The measurements show the large dis-
persive impact of a polyurethane coating on the propagation along a copper
wire, which we explain using the theory from section 5.2. The conclusions
regarding the applicability of terahertz waves on metal wires, based on both
theory and experiment, are given in section 5.4.

5.1 General Properties of plasmons

5.1.1 Surface waves

Electromagnetic wave propagation is described by Maxwell’s equations. In
optics, one commonly uses electromagnetic waves that propagate in three-
dimensional space. However, Maxwell’s equations also have solutions that
propagate in two-dimensional space such as an interface between two media.
These waves can move freely along this interface, but are bound to the surface
by an exponential decay of the waves at both sides of the interface.

This subsection investigates under which circumstances electro-magnetic
surface waves can exist at an interface between two media. Electromagnetic
waves are described by Maxwell’s equations in matter56

∇ · D = ρ f (5.1)

∇× E = − ∂B
∂t

(5.2)

∇ · B = 0 (5.3)

∇× H = J f +
∂D
∂t

, (5.4)

where ρ f is the density of free charges, and J f is the volume current density
due to free charges. The electric displacement vector is related to the electric
field vector by D = εE. The H vector is related to the magnetic field vector by
µH = B. ε and µ are respectively the electric permittivity and the magnetic
permeability.

We assume that there are no free charges and currents (ρ f = 0, J f = 0).
This does not mean that our theory is only applicable to insulators. Conduc-
tors can, under certain conditions, be considered as dielectrics as discussed
in appendix C. In that case, the dielectric constant is modified to include the
influence of the free carriers on the electric and magnetic fields. We investi-
gate the propagation properties of the Fourier component of the fields with a
radial frequency ω. In complex notation, the time dependence of this Fourier
component is given by exp(jωt). Using this notation, Maxwell’s equations are
written as

∇ · D = 0 (5.5)
∇× E = −jωB (5.6)
∇ · B = 0 (5.7)

∇× H = jωD. (5.8)
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Figure 5.1: Surface wave geometry.

In homogeneous and isotropic media (ε and µ do not vary with position or
with field direction), the following wave equations can be deduced from equa-
tion 5.5–5.856

∇2E + ω2εµE = 0 (5.9)

∇2B + ω2εµB = 0. (5.10)

We consider surface waves propagating on the interface between two half-
spaces (figure 5.1). Half-space I (z > 0) has an electric permittivity εI and
a magnetic permeability equal to that of vacuum µ0. Half-space II (z < 0)
has an electric permittivity εI I and a magnetic permeability µ0. The two half-
spaces thus have a different electric permittivity, but identical magnetic per-
meabilities. As ansatz for the electric and magnetic field of the surface wave
in half-space I, we use

EI = EI


 1

0
−jkx/κI


 exp(−jkxx − κI z) (5.11)

BI =
j EI ω εI µ0

κI


 0

1
0


 exp(−jkxx − κI z), (5.12)

which is a valid solution to Maxwell’s equations for z > 0 if

ω2εIµ0 = k2
x − κ2

I . (5.13)

The complex wavenumber in the propagation direction kx determines both the
phase velocity and the absorption length of the surface wave. The real part of
κI is also an important quantity, as it determines how well the wave is bound
to the interface. The inverse of the real part of κI is equal to the penetration
depth of the surface wave in region I, which we define as the distance from
the interface for which the fields have decreased a factor e = 2.718 . . .. Note
that the real part of κI should be positive, because the fields would otherwise
increase exponentially for z → ∞.
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For the fields in half-space II, we use

EI I = EII


 1

0
jkx/κI I


 exp(−jkxx + κI I z) (5.14)

BI I =
−j EII ω εI I µ0

κI I


 0

1
0


 exp(−jkxx + κI I z) (5.15)

which is a valid solution to Maxwell’s equations for z < 0 if

ω2εI Iµ0 = k2
x − κ2

I I . (5.16)

Similar to κI , the real part of κI I determines the penetration depth in region II.
The fields need to match at the interface (z = 0). Hence, kx is the same

in both regions. Due to equation 5.6 and 5.8, the components of the electric
and the magnetic field parallel to the interface must be continuous across the
interface. The parallel component of the electric field is continuous if

EI = EII . (5.17)

The parallel component of the magnetic field is continuous if

EI εI κI I = −EII εI I κI . (5.18)

With equation 5.17 and 5.18, we obtain

εI κI I = −εI I κI . (5.19)

The boundary conditions are fulfilled for a wavenumber in the propaga-
tion direction kx given by (equation 5.13, 5.16 and 5.19)

kx = ω

√
µ0εIεI I
εI + εI I

, (5.20)

where the propagation direction is arbitrarily set towards positive values of x.
There are two possible set of values for κI and κI I . The first set is

κI = jωεI

√
µ0

εI + εI I
(5.21)

κI I = −jωεI I

√
µ0

εI + εI I
, (5.22)

and the second set is

κI = −jωεI

√
µ0

εI + εI I
(5.23)

κI I = jωεI I

√
µ0

εI + εI I
, (5.24)
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From the ansatz in equations 5.11–5.16 we thus find two valid solutions
to Maxwell’s equations.∗ However, only one of these two sets can describe
a surface wave. Surface waves, by definition, must decay exponentially on
both sides of the z = 0 interface. This means that the real parts of both κI
and κI I have to be positive. It is easy to see that if the real parts of both κI
and κI I are positive for one set, then they are both negative for the other set.
This corresponds to a solution where the fields exponentially increase with
the distance to the surface, which clearly is not proper behavior for a surface
wave.

As an example, we consider a ZnTe-air interface at 1.5 terahertz. The per-
mittivity of air εI  ε0, and the permittivity of ZnTe εI I  ε0(3.2 − 0.016j)2.92

Substituting these values in equation 5.20 gives kx = 300 − 0.1j cm−1. Equa-
tions 5.23 and 5.24 give κI = 0.4− 93.7j cm−1 and κI I = 5.2 + 960j cm−1. These
values for κI and κI I have positive real parts and are thus consistent with a
surface wave. In contrast, equations 5.21 and 5.22 give κI = −0.4 + 93.7j cm−1

and κI I = −5.2 − 960j cm−1, which is not consistent with a surface wave and
can be disregarded.

The above values for the surface wave on a ZnTe-air interface can be inter-
preted as follows. The real part of κI is 0.4 cm−1, which means that the fields
extend 1/0.4 = 2.5 cm in air. In the ZnTe medium, the real part of κI I is such
that the penetration depth is 1.9 mm. The field amplitudes of the surface wave
thus decay faster in ZnTe than they do in air. The real part of kx determines the
phase velocity of the surface wave, which in this case is approximately equal
to the phase velocity of a freely propagating plane wave in air. The imaginary
part of kx determines the absorption length of the surface wave. This absorp-
tion length is reasonably long; the surface wave can propagate approximately
10 cm before the field amplitudes are reduced a factor e.

Surface waves are not possible for all values of εI and εI I . For some values,†

the real part of either κI or κI I is negative for both sets of values for κI and κI I in
equations 5.21–5.24. This means that the fields increase exponentially on one
side of the interface. In that case, the wave is not bound to the surface.

5.1.2 Plasmon-polaritons on flat surfaces

Surface plasmon-polaritons are surface waves, where charge oscillations are
coupled to oscillations of the electromagnetic field. On the one hand, the
charges move under influence of an oscillating electric and magnetic field, ac-
cording to Lorentz’s force law. On the other hand, the moving charges change
the electric and magnetic field, as described by Maxwell’s equations (5.1–5.4).
By definition, surface plasmon-polaritons require freely moving charge carri-
ers, which means that they only arise at the surface of conductors.

To describe surface plasmon-polaritons, we use the results of the previ-
ous section, which are only valid in the absence of free carriers. However,
as discussed in appendix C, it is possible to model metals as dielectrics with

∗The total number of solutions is four, if one includes propagation in the negative x-direction.
†for instance, for εI = ε0(1 − 0.2j) and εI I = ε0(1 − 0.1j).
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Figure 5.2: Calculated complex relative permittivity and complex refractive index
of copper as a function of frequency.

a modified permittivity. This modified permittivity is approximated with a
Drude model93

ε = ε0

(
ε∞ − f 2

p

f 2 − j f fτ

)
, (5.25)

where f is the terahertz frequency, fp is the plasma frequency, which is deter-
mined by the free electron density, and fτ is the damping frequency, which is
determined by the electron scattering time. The high-frequency limit of the
dielectric constant ε∞ can be neglected for metals

ε = −ε0
f 2
p

f 2 − j f fτ
. (5.26)

Reference 93 provides the following Drude model parameters for copper:
fp = 1787 THz and fτ = 2.20 THz. Figure 5.2 shows the frequency de-
pendence of the permittivity of copper calculated with these parameters and
equation 5.26. Both the real and the imaginary part of the relative permittivity
are negative and large (104–107) at terahertz frequencies. The real part has a
low-frequency limit of −6.6 × 105. The imaginary part tends towards infin-
ity for low frequencies. Below the damping frequency fτ, the imaginary part
is larger than the absolute value of the real part. For frequencies above the
damping frequency, the imaginary part is smaller.

The refractive index of copper, equal to the square root of its relative per-
mittivity, is also shown in figure 5.2. With decreasing frequency, both the real
and imaginary part of the refractive index increase, while the difference be-
tween the two decreases. Note that the refractive-index values are much larger
than the typical refractive index of dielectrics at terahertz frequencies, which
have values on the order 1–10. The negative value of the imaginary part of
the refractive index is a consequence of our choice for an exp(jωt) time de-
pendence. For this time dependence, a negative imaginary part corresponds
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to absorption, while a positive imaginary part would correspond to an ampli-
fication.

The properties of surface plasmon-polaritons on flat metal-air interfaces
are determined by equations 5.20–5.24. We use the second solution, as this
solution gives positive real parts for κair and κmetal and thus describes a sur-
face wave. The permittivity of air is approximated with the value for vac-
uum, which is assumed to be much smaller than the permittivity of the metal
(εmetal). This results in

kx  ω

c

(
1 − ε0

2εmetal

)
(5.27)

κair 
−jω

c

√
ε0

εmetal
(5.28)

κmetal 
jω
c

√
εmetal

ε0
. (5.29)

These equations lead to the following properties of terahertz surface plasmon-
polaritons.

• For ε0/εmetal � 1, the wavenumber of the surface plasmon-polariton kx
is approximately equal to the free-space wavenumber in vacuum ω/c .
The plasmon-polariton thus propagates with almost no dispersion and
absorption over the metal-air interface.

• κmetal is proportional to the metal refractive index (=
√

εmetal/ε0). Due
to the large value of this refractive index, the fields will extend only a
short distance into the metal.

• κair is inversely proportional to the metal refractive index. The penetra-
tion depth in air will thus be much longer than the wavelength. For
1 THz and the previously mentioned values for copper, κair = 0.153 −
0.099j cm−1. This corresponds to a penetration depth of 1/0.153 = 6.5
cm.

For a plasmon-polariton propagating on a planar copper-air interface, fig-
ure 5.3 shows the frequency dependence of a number of physical properties,
which are calculated with equations 5.26–5.29. Both the penetration depth in
air and in the metal increase for decreasing frequency. At zero frequency the
fields extend infinitely far into both media. In the limit of high terahertz fre-
quencies, the penetration depth in air decrease rapidly, while the penetration
depth in copper has an asymptotic value of 27 nm, which is determined by
the plasma frequency. Note the large difference between the two media in the
value of the penetration depth, which is on the order of centimeters in air and
on the order of 50 nm in copper.

The phase velocity of the copper-air surface plasmon-polariton (right graph
of figure 5.3) is extremely close to the vacuum velocity of light. The relative
difference between the two is on the order of 10−6. This difference increases
approximately quadratically with increasing frequency. The absorption length
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Figure 5.3: Calculated frequency dependence of the properties of a plasmon-
polariton propagating on a planar copper-vacuum interface. The left graph shows
the penetration depth both in air and in copper. The right graph displays on the
left axis the difference between the plasmon-polariton phase velocity and the vac-
uum velocity of light divided by the vacuum velocity of light. The right graph
also shows the absorption length of the plasmon-polariton (right axis).

of the plasmon-polariton, which is defined as the length after which the power
in the surface wave is decreased by a factor e, is on the order of tens of meters.
This absorption length decreases rapidly with increasing frequency and has a
value of about 17 m at 2 THz.

5.1.3 Plasmon-polaritons on coated planar surfaces

Surface plasmon-polaritons are extremely sensitive to dielectric surface coat-
ings, even if the coating thickness is much smaller than the free-space wave-
length, which is the wavelength of a plane wave in vacuum with an identical
frequency. Such dielectric layers could be applied intentionally, but could also
arise from contaminations.

If a dielectric layer is applied to a metal in air, then electromagnetic waves
can bounce back and forth between the metal-dielectric and the dielectric-air
interface. Due to interference between the upward and the downward moving
wave, the electric field component in the propagation direction can be much
smaller near the dielectric-metal interface than it is near the the air-dielectric
interface. As we will show, this has a large impact on the profile of the fields
perpendicular to the interfaces.

For thin dielectric layers, the dielectric layer can be neglected, and the pen-
etration depth perpendicular to the metal is determined by the conductance
of the metal according to equation 5.28. For thick layers, however, the pene-
tration depth of the wave above the dielectric is determined by the thickness
and the refractive index of the dielectric layer. The purpose of this section is
to estimate what, in this context, constitutes a thin or a thick layer. To be more
precise, we calculate the penetration depth for a wave propagating along a di-
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Figure 5.4: Geometry for calculating the properties of a wave propagating along a
thin planar dielectric layer (II) between a perfect conductor (grey) and a dielectric
half-space (I).

electric coating with a sub-wavelength thickness on a metal with a finite con-
ductivity. From this calculation, we determine for which coating thicknesses
the radial profile of the wave is determined by the parameters of the coating,
and for which coating thicknesses the radial profile of the wave is determined
by the resistivity of the metal.

As a steppingstone towards the case of a coating on a resistive metal,
we first consider a dielectric layer with a thickness d on a planar, perfectly-
conducting metal (figure 5.4). The dielectric layer extends from z = 0 to z = d
(region II), and has a permittivity εI I . The permittivity in region I (z > d) is
given by εI . The permeabilities in region I and II are equal to µ0. Analogously
to equation 5.11, the electric field in region I is defined as

EI = EI


 1

0
−jkx/κI


 exp(−jkxx − κI (z − d)). (5.30)

The electric field in region II can be viewed as the sum of a plane wave moving
in the positive z direction (∝ exp(−jκI I z)) and one moving in the negative z
direction (∝ exp(+jκI I z)). An ansatz for this sum is given by

EI I = E+
I I


 1

0
−kx/κI I


 exp(−jkxx − jκI I z)

+ E−
I I


 1

0
kx/κI I


 exp(−jkxx + jκI I z), (5.31)

where
k2

x = ω2εIµ0 + κ2
I = ω2εIµ0 − κ2

I I . (5.32)

The four complex unknowns in these field equations (EI , E+
I I , E−

I I and kx) are
related to each other by the boundary conditions.

The electric field parallel to the surface of a perfect conductor is zero.
Therefore E+

I I + E−
I I = 0. With this relation, the electric field in the dielectric
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Figure 5.5: Geometry for calculating the properties of a wave propagating along
a thin planar dielectric layer (II) between a metal (III) and a dielectric half-space
(I).

layer can be written as

EI I = E+
I I


 −2j sin(κI I z)

0
−2 cos(κI I z)kx/κI I


 exp(−jkxx). (5.33)

The electric field in x-direction is continuous at z = d if

EI = −2jE+
I I sin(κI I d). (5.34)

The electric displacement in the z-direction is continuous at z = d if

−jεI kx

κI
EI =

−2εI Ikx

κI I
E+

I I cos(κI I d). (5.35)

Combining equation 5.34 and 5.35, we find the relation

εI IκI
εIκI I

= tan(κI I d). (5.36)

This relation can be solved together with equation 5.32 to get κI , which is the
inverse of the penetration depth in region I. In the limit of a dielectric layer
thickness much smaller than the free-space wavelength, this results in

κI = ω2µ0
εI(εI I − εI)

εI I
d. (5.37)

For example if ω = 2π × 1 THz, εI/ε0 = 1, εI I/ε0 = 2, and d = 1 µm then
κI = 2.2 cm−1. Note the large difference between the thickness of the dielec-
tric layer (1 µm) and the extent of the field outside the layer (1/2.2 = 0.46
cm). Although this penetration depth seems large compared to the dielectric
layer, it can be small compared to the penetration depth in air perpendicular
to an uncoated, imperfectly conducting metal. For copper, for instance, the
penetration depth is 6.5 cm, as was calculated in the previous section.

It is clear that a thin coating has a large impact on the propagation over
a perfectly conducting metal. With such a coating, a bound surface wave
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can exist with a penetration depth in air inversely proportional to the coat-
ing thickness. Section 5.1.2 showed that a similar surface wave can exist on
an uncoated, resistive metal with a penetration depth in air proportional to
metal refractive index. It is therefore logical to assume that the penetration
depth in air for a coated, resistive metal is a function of the properties of both
the coating and the metal.

We want to determine for which coating thicknesses the parameters for
propagation over a coated metal are determined by the coating and for which
coating thicknesses they are determined by the conductivity of the metal.
Therefore, we calculate the propagation parameters for the geometry in fig-
ure 5.5. We assume that the resistivity is small so that the electric field parallel
to the metal surface is much smaller than the electric field perpendicular to
the metal surface. Note that for a perfect conductor the electric field parallel
to the conductor is zero, while the electric field perpendicular to the conduc-
tor is, in general, nonzero. Also, we assume that the coating thickness is small
so that the phase difference between the top and the bottom of the coating is
much smaller than π. Under these conditions, the electric field in the coating
(0 < z < d) can be approximated with‡

EI I = exp(−jkxx)


 δE − jκI I zE0

0
−E0kx/κI I


 , (5.38)

where |δE| � |E0| and |κI I |d � 1, and

ω2εI Iµ0 = k2
x + κ2

I I . (5.39)

The electric field above the coating (z > d) is

EI = EI


 1

0
−jkx/κI


 exp(−jkxx − κI (z − d)), (5.40)

with
ω2εIµ0 = k2

x − κ2
I . (5.41)

The electric field in the metal (z < 0) is

EI I I = EIII


 1

0
jkx/κI I I


 exp(−jkxx + κI I I z), (5.42)

with
ω2εI I Iµ0 = k2

x − κ2
I I I . (5.43)

These field equations combined with the proper boundary conditions§ lead to
a dispersion relation given by

κ2
I I d
εI I

− κI
εI

=
κI I I
εI I I

 jω
√

µ0

εI I I
, (5.44)

‡this equation is derived from equation 5.31 with δE = E+
I I + E−

I I and E0 = E+
I I − E−

I I
§The x-component of the electric field and the z-component of the electric displacement must

be continuous across both interfaces.
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where we used the result from section 5.1.2 that κI I I � kx so that κ2
I I I 

−ω2εI I I µ0 (equation 5.43). With equations 5.39, 5.41 and 5.44, we get

κI  − εI I
2εId

+
εI I

2εId

√
1 + 4ω2(εI I − εI)

ε2
I

ε2
I I

µ0d2 − 4jω
ε2
I

εI I
√

εI I I

√
µ0d

 ω2(εI I − εI)
εI
εI I

µ0d − jω
εI√
εI I I

√
µ0.

(5.45)

This equation clearly indicates the transition between the limit that the coating
can be neglected (equation 5.28) and the limit that the resistivity of the metal
can be neglected (equation 5.37). From equation 5.45, it follows that a thin
coating can be neglected for the propagation over a metal surface if

ωd
c

�
∣∣∣∣ εI I
εI I − εI

√
ε0

εI I I

∣∣∣∣ (5.46)

This is a very stringent condition. For instance, if the frequency is 1 THz, the
medium in region I is air, the coating has a dielectric constant of 4, and the
metal is copper, then the condition states that d must be much smaller than 65
nm to neglect the effect of the coating on the propagation of the surface wave.
If there is sufficient contrast between the dielectric constant in and above the
coating (εI I/(εI I − εI) on the order of 1), then condition 5.46 is satisfied if the
coating thickness d is much smaller than the penetration depth in the metal.
Concluding, even coatings that are much thinner than the free-space wave-
length of the radiation can have a large impact on the propagation of surface
plasmon-polaritons.

5.2 Terahertz plasmon-polaritons on metal wires

Section 5.1 discussed the propagation of plasmon-polaritons on planar metal
surfaces. Plasmon-polaritons can, however, also exist on curved surfaces.
In this section, the propagation of plasmon-polaritons on metal wires is dis-
cussed. Wire plasmon-polaritons can propagate along the wire, which makes
a metal wire a good candidate for a terahertz waveguide. Another possible
application of a theory for wire plasmon-polaritons is the modelling for the
propagation of electro-magnetic waves over antennas that are long compared
to the wavelength of the radiation. Such antennas play an important role in
some terahertz near-field imaging techniques (chapter 6), where they are used
to locally enhance the terahertz electric field.

5.2.1 Dispersion relation for a cylindrical wire

The dispersion relation is derived for propagation over a coated wire in the
cylindrically symmetric geometry shown in figure 5.6. We choose a cylindri-
cal coordinate system, where r is the radial coordinate and φ is the azimuthal
angle. The axis of a straight metal rod is the z-axis of our coordinate sys-
tem. The model takes the possible presence of a coating into account with a
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Figure 5.6: Geometry that is used in the calculations for the electromagnetic prop-
agation over a coated metal wire. The metal wire has a radius rm, and the coating
has an outer radius rd. The axis of the wire coincides with the z axis.

thickness rd − rm, because section 5.1.3 showed that such a coating can have a
large impact on the propagation of a surface plasmon-polariton. The method
used here to calculate the dispersion relation is similar to previously-reported
methods.91, 94

The propagation over the wire is determined by the electromagnetic wave
equations (equation 5.9 and 5.10). In appendix D it is shown that the solutions
of the wave equation in cylindrical coordinates consist of linear combinations
of a Bessel function of the first kind and a Bessel function of the second kind.
We consider only the so-called transversal magnetic (TM) solution, in which
the magnetic field is strictly in the φ direction, since it can be shown that only
this solution propagates with little absorption.95

The electric and magnetic fields of a coated metal wire in air are described
by (see appendix D)

air
(r > rd)




Bφ = [B1J1(κar) + B2Y1(κar)] exp(−jk′z)

Ez =
−jωκa

k2
a

[B1J0(κar) + B2Y0(κar)] exp(−jk′z)

Er =
ωk′

k2
a

[B1J1(κar) + B2Y1(κar)] exp(−jk′z)

(5.47)

dielectric
(rm < r < rd)




Bφ = [B3J1(κdr) + B4Y1(κdr)] exp(−jk′z)

Ez =
−jωκd

k2
d

[B3J0(κdr) + B4Y0(κdr)] exp(−jk′z)

Er =
ωk′

k2
d

[B3J1(κdr) + B4Y1(κdr)] exp(−jk′z)

(5.48)

metal
(0 < r < rm)




Bφ = [B5J1(κmr) + B6Y1(κmr)] exp(−jk′z)

Ez =
−jωκm

k2
m

[B5J0(κmr) + B6Y0(κmr)] exp(−jk′z)

Er =
ωk′

k2
m

[B5J1(κmr) + B6Y1(κmr)] exp(−jk′z)

, (5.49)
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where ka, kd and km are the wavenumbers of respectively air, the dielectric
and the metal. Jn is a n’th order Bessel function of the first kind, and Yn is a
n’th order Bessel function of the second kind. The complex constants B1 to B6
are to be determined by the boundary conditions. The parameters κa, κd and
κm are defined as

κ2
a ≡ k2

a − k′2 (5.50)

κ2
d ≡ k2

d − k′2 (5.51)

κ2
m ≡ k2

m − k′2 (5.52)

Proper behavior for r → ∞ is ensured by setting B2 = jB1.95 Under that
condition, the field strength at infinity tends to zero. Yn(κmr) goes to minus
infinity for r = 0, so, to avoid a nonphysical singularity in equation 5.49, B6
must be set to zero. Substituting these values of B2 and B6 into equations 5.47
and 5.49 gives

air
(r > rd)




Bφ = B1H(1)
1 (κar) exp(−jk′z)

Ez =
−jωκa

k2
a

B1H(1)
0 (κar) exp(−jk′z)

Er =
ωk′

k2
a

B1H(1)
1 (κar) exp(−jk′z)

(5.53)

metal
(0 < r < rm)




Bφ = B5J1(κmr) exp(−jk′z)

Ez =
−jωκm

k2
m

B5J0(κmr) exp(−jk′z)

Er =
ωk′

k2
m

B5J1(κmr) exp(−jk′z)

, (5.54)

where H(1)
n ≡ Jn + jYn is a n’th order Hankel function of the first kind.

Bφ and Ez should be continuous across both the air/dielectric and the di-
electric/metal interface. This leads to the following dispersion relation.

κa

k2
a

H(2)
0 (κard)

H(1)
1 (κard)

=
κd

k2
d

κd
k2

d
J1(κmrm)F1 + κm

k2
m

J0(κmrm)F2

κd
k2

d
J1(κmrm)F3 + κm

k2
m

J0(κmrm)F4
, (5.55)

where

F1 = J0(κdrm)Y0(κdrd) − J0(κdrd)Y0(κdrm) (5.56)
F2 = J0(κdrd)Y1(κdrm) − J1(κdrm)Y0(κdrd) (5.57)
F3 = J0(κdrm)Y1(κdrd) − J1(κdrd)Y0(κdrm) (5.58)
F4 = J1(κdrd)Y1(κdrm) − J1(κdrm)Y1(κdrd). (5.59)

This complex set of equations can be simplified, if the coating is sufficiently
thin. For (rd − rm) � rm, kd(rd − rm) � 1 and kd(rd − rm) � |k2

mJ1(κmrm)|/
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|κmkdJ0(κmrm)| the dispersion relation (equation 5.55) can be approximated
with

κaH(1)
0 (κard)

k2
aH(1)

1 (κard)
=

κmJ0(κmrm)
k2

mJ1(κmrm)
− κ2

d
k2

d
(rd − rm). (5.60)

From which we can obtain the dispersion relation for an uncoated wire by
setting rd − rm = 0.

5.2.2 Terahertz plasmons on uncoated wires

In this section, the properties of a terahertz plasmon polariton propagating
over an uncoated metal wire are calculated with equation 5.60. In particular,
we consider the penetration depth both in air and in the metal, the phase ve-
locity and the absorption length. The second part of this section discusses the
frequency dependence of these properties, while the third part investigates
the dependence of these properties on the radius of the wire. First, however,
we discuss the penetration depth in air, which is difficult to define due to the
complicated radial dependence of the field in this region.

Penetration depth in air

Equations 5.53 show that the radial dependence of Bφ and Er is governed by

H(1)
1 (κar), and that the radial dependence of Ez is determined by H(1)

0 (κar).
Although Ez is, in general, much smaller than Er, the radial dependence of
both H(1)

1 (κar) and H(1)
0 (κar) have physical importance.

The total power transported in the propagation direction from r to r + dr
is proportional to BφErrdr. In equation 5.53, it can be seen that this is propor-

tional to r|H(1)
1 (κar)|2. So by studying the radial dependence of r|H(1)

1 (κar)|2,
it can be found how close to the wire the plasmon polariton transports its en-
ergy.

The radial dependence of r|H(1)
1 (κar)|2 is quite complicated. In fact one can

distinguish two subregions within the air region, where the rate at which the
function decays with radial distance is different. Close to the wire (|κar| � 1
but r ≥ rm), the function can be approximated with71

r|H(1)
1 (κar)|2  4

π2κ2
ar

. (5.61)

Using this approximation, r|H(1)
1 (κar)|2 has decayed a factor e at a radial dis-

tance from the wire of erm  2.718rm. For a wire with a diameter of 1 mm this
corresponds to a distance of 1.36 mm. However, it cannot be concluded that
most energy is transported within the erm radius, since the integral over equa-
tion 5.61 from r = rm to r = ∞ diverges. To find the radius within which most
energy is transported, the second subregion should be taken into account.

For |κar| � 1, r|H(1)
1 (κar)|2 can be approximated with71

r|H(1)
1 (κar)|2  2

πκa
exp (−2Im{κa}r) . (5.62)
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Figure 5.7: The radial dependence of the r|H(1)
1 (κar)|2 function that describes the

radial decay of the energy transported by a plasmon polariton propagating over
a 1 mm thick copper wire at a frequency of 0.54 THz. The function is normalized
to 1 at the surface of the wire. Also shown are the two approximations of the
function as given by equations 5.61 and 5.62.

Under this approximation, r|H(1)
1 (κar)|2 decays a factor e for an increase of the

radial distance given by 1/2Im{κa}, where Im{κa} is the imaginary part of κa.
The energy transported at a certain radial distance thus decreases proportion-
ally to 1/r, up until |κar| � 1 where an exponential decay sets in.

The radial dependence of r|H(1)
1 (κar)|2 is illustrated in figure 5.7. This

graph shows r|H(1)
1 (κar)|2 as a function of r for a 1 mm thick copper wire

at 0.54 THz. The graph also shows the two approximations of this function
given by equations 5.61 and 5.62. For low r (� 3 mm) the Hankel function’s
decay is well described by equation 5.61, which is inversely proportional to
the radial distance. However, for high r (� 4 cm) the Hankel function decays
exponentially and is well described by equation 5.62.

We now turn from the radial dependence of Bφ and Er (H(1)
1 (κar)) to the

radial dependence of Ez (H(1)
0 (κar)). This radial dependence is important, as

it determines how far any neighbouring objects should be removed from the
wire to avoid a significant change in the propagation of the plasmon polari-
ton. If an object is too close to the wire, then the electric field of the wave
propagating on the wire can couple to the object, which can result in scatter-
ing, reflections, absorption, and dispersion. To estimate the minimum radial
distance between the wire and neighbouring objects, assume that the neigh-
bouring object is a metal cylindrical surface at a distance rn from the center
of the wire. The plasmon polariton will induce a current on this surface pro-
portional to Ez(rn). The power dissipated per unit length by this current is
proportional to 2πrn|Ez(rn)|2. The power absorbed in the neighbouring object
should be negligible compared to the power absorbed in the wire, which is
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Figure 5.8: The radial dependence of the r|H(1)
0 (κar)|2 function, which is relevant

to estimate the influence of a neighbouring object, for a plasmon polariton propa-
gating over a 1 mm thick copper wire at a frequency of 0.54 THz. The function is
normalized to 1 at the surface of the wire.

proportional to 2πrm|Ez(rm)|2. This provides us with the following condition

rn|H(1)
0 (κarn)|2 � rm|H(1)

0 (κarm)|2. (5.63)

We thus estimate that the value of rn|H(1)
0 (κarn)|2, where rn is the radial dis-

tance of the neighbouring object closest to the wire, should have decayed suf-
ficiently to avoid a significant impact of the object on the propagation of a
plasmon polariton over the metal wire. Figure 5.8 shows the radial depen-
dence of r|H(1)

0 (κar)|2 for a plasmon polariton propagating over a 1 mm thick
copper wire at a frequency of 0.54 THz. Surprisingly, the function first in-
creased with radial distance, until for |κar| > 1 an exponential decay sets in
similar to approximation 5.62. Note that the surroundings of the wire should
be clear of objects up to distances that are fairly large compared to both the
diameter of the wire and the free-space wavelength of the terahertz radiation.

Concluding, the radial dependence of the fields in air of a wire plasmon
polariton is complicated, which makes it difficult to define a penetration depth
in the region. However, the quantity 1/Im{κa}, which determines the expo-
nential decay in both figure 5.7 and 5.8, provides us with a length scale that
is relevant both for the radial dependence of the energy transport and for the
influence of neighbouring objects. The dependence of this length scale on te-
rahertz frequencies and diameter of the metal wire will be discussed in the
next parts of this subsection.

Frequency dependence

Figure 5.9 shows results of calculations using equation 5.60 for a copper wire
with a diameter of 1 mm. On the left axis of figure 5.9(a), the relative phase
velocity difference, defined as the difference between the plasmon-polariton
phase velocity and the vacuum velocity of light divided by the vacuum ve-
locity of light, is plotted as a function of frequency. Although still very small



104 Chapter 5. Surface plasmon polaritons

Figure 5.9: Calculated frequency dependence of the properties of a plasmon-
polariton propagating on a copper wire with a 1 mm diameter in vacuum. Figure
(a) displays on the left axis the difference between the plasmon-polariton phase
velocity and the vacuum velocity of light, divided by the vacuum velocity of light.
Figure (a) also shows the absorption length of the plasmon-polariton (right axis).
Figure (b) shows the penetration depth in copper and 1/Im{κa}, which is the
exponential decay length at large distances from the wire.

(about 10−5), this difference is about an order of magnitude larger than the
relative phase velocity difference for a planar copper surface, which has been
plotted in figure 5.3. The relative phase velocity difference rapidly increases
with decreasing frequency below 1 THz, which is also not the case for a plas-
mon-polariton on the flat metal surface.

The absorption length for the copper wire, which is plotted on the right
axis of figure 5.9(a), decreases with increasing frequency and has a value of
2.8 m at 1 THz. This is about a factor 25 lower than for the flat copper surface.
A plasmon polariton propagating over a wire has thus both more absorption
and more dispersion than a plasmon polariton propagation over a planar sur-
face. This is due to the cylindrical geometry of the wire. In the cylindrical
geometric, the field lines are radially concentrated towards the wire, which
leads to relatively higher fields at the metal interface. Therefore, a larger part
of the energy in the wave is transported through the metal, which leads to an
increased absorption and dispersion.

We also calculate the penetration depth of the electric field into the metal.
The electric field in the metal is proportional to (equation 5.54)71

J0(κmr) 
√

1
2πκmr

exp
(
−jκmr + j

π

4

)
, (5.64)

which is valid if the imaginary part of κmr is negative and has an absolute
value much larger than one. This is quite generally true, as the condition
implies a diameter of the wire that is much larger than the skin depth of the
metal.
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We define the penetration depth in the metal wire as the distance over
which the absolute value of

√
rEz(r) has decreased by a factor e with respect to

its value at the metal surface. The square root of r is included in this definition
to take the cylindrical geometry into account. In the cylindrical geometry the
energy transported at different radial distances is constant, if the field decay is
proportional to r−1/2. The field strength thus must decrease faster than r−1/2

to make the transported energy decrease with increasing radial distance.
With equation 5.64, we find that the penetration depth in metal is equal

to one over the imaginary part of κm. The penetration depth of copper as a
function of frequency is plotted in figure 5.9(b) for a wire diameter of 1 mm.
This penetration depth increases for decreasing frequency and is practically
identical to the penetration depth for a plasmon polariton on a planar copper
surface, which has been shown in figure 5.3.

In figure 5.9(b), 1/Im{κa} is plotted as a function of frequency for a copper
wire with a diameter of 1 mm. 1/Im{κa} decreases for increasing frequencies
similar to the penetration depth in air of a planar-surface plasmon in figure
5.3. However, the value of 1/Im{κa} is about an order of magnitude smaller
than the penetration depth for a planar surface. The energy in a wire plasmon
polariton thus travels closer to the metal surface than the energy of a plasmon
polariton on a planar surface. From the value for 1/Im{κa} in figure 5.9(b), we
estimate that there should be no objects within a radius of about a decimeter
around the wire to ensure a free propagation of the surface plasmon polariton.

Dependence on the wire radius

The dispersion relation that governs the properties of a wire plasmon polar-
ition (equation 5.60) depends on the diameter of the wire. Figure 5.10 shows
calculations of this dependence for an uncoated copper wire in air with a
frequency of 1 THz. The figure shows the relative difference between the
phase velocity and the free-space velocity of light, the absorption length and
1/Im{κa}, which determines the exponential decay of the field at large radial
distances. The penetration depth in the copper wire is not plotted, because its
relative variation over the plotted range is negligible (< 10−8).

None of the parameters in figure 5.10 reaches the values typical for a plas-
mon polariton on a flat surface, which have been calculated in section 5.1.2,
even for a wire diameter of 1 cm. So even if the circumference of the wire is
about a hundred times larger than the free-space wavelength, then the curva-
ture of the wire still has a large impact on the properties of the surface plasmon
polariton. In fact, a wire diameter on the order of meters is required to let the
properties of the wire plasmon polariton approach that of a planar surface.
The curvature of the wire is only negligible if the radius of curvature is much
larger than the penetration depth in air of a planar-surface plasmon polariton,
which we calculate to be on the order of a decimeter (figure 5.3).

The phase velocity of the wire plasmon polariton decreases with the diam-
eter of the wire. However, this decrease is only significant for thin wires. For a
100 µm wire diameter, the relative difference in the velocity is only 7.6 × 10−5,
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Figure 5.10: Calculated properties of a plasmon-polariton with a frequency of 1
THz propagating on a copper wire in vacuum as a function of the wire diameter.
Figure (a) displays on the left axis the difference between the plasmon-polariton
phase velocity and the vacuum velocity of light divided by the vacuum velocity of
light. Figure (a) also shows the absorption length of the plasmon-polariton (right
axis). Figure (b) plots 1/Im{κa}, which is the exponential decay length at large
radial distances.

while at a wire diameter of 1 µm the phase velocity has decreased 0.5% com-
pared to the vacuum velocity of light.

The absorption length decreases with the wire diameter. At a 1 µm wire
diameter, the absorption length is only 6 mm. This means that the energy of
the surface wave is absorbed after propagating over just millimeters of the
wire. It is thus clear that for decreasing wire diameter, the wire becomes a less
efficient waveguide for terahertz radiation.

In figure 5.10(b), 1/Im{κa} is plotted as a function of the wire diameter.
This property, which governs the exponential decay of the fields in equation
5.62, decreases slowly with the wire diameter. At a wire diameter of 1 µm,
it still has a substantial value of 0.45 mm. For thin wire diameters, the expo-
nential decay length is orders of magnitude larger than the diameter of the
wire.

There proves to be little advantage in using micrometer-sized metal wires
as a terahertz waveguide. The plasmon-polariton is bound closer to the wire
surface for thinner wires, which can be helpful as it reduces the field coupling
to the surroundings. However, very thin wires are required to significantly
reduce the exponential decay length. Such thin wires have the considerable
disadvantages that absorption and dispersion increase rapidly for decreasing
wire diameter.

5.2.3 Terahertz plasmons on coated wires

As is shown in section 5.1.3, plasmon polaritons on planar surfaces are sen-
sitive to thin coatings applied to the surface, even if the coating thickness is
much smaller than the wavelength of the plasmon polariton. This section in-



5.2. Terahertz plasmon-polaritons on metal wires 107

vestigates to which extent this is also true for plasmon polaritons on wires.
From equation 5.55 the properties of a surface wave propagating on a

coated copper wire in vacuum are calculated as a function of the thickness
of the coating for the following parameters: the frequency is assumed to be 1
THz, the wire diameter is 1 mm and the refractive index of the coating is 2.
The results of this calculation are shown in figure 5.11. The figures show two
curves, which represent two independent solutions of the dispersion relation
(equation 5.55). For thin coatings, there is only one solution to the dispersion
relation, but as the coating becomes thicker other solutions become possible.
Note that, although we have plotted only the first two solutions, these are not
all solutions existing within the plotted range for the coating thickness. When
the coating thickness reaches 171 µm, for instance, a third solution is possible,
while the fourth solution is possible when the thickness becomes larger than
257 µm.

Figure 5.11(a) shows the effective refractive index, which is defined as the
free-space velocity of light divided by the phase velocity of the surface wave.
The refractive index is approximately 1.0 for thin coatings (<10 µm) and has a
transition towards a value of 2.0, which is the refractive index of the coating,
at larger coating thicknesses. For thin coatings most of the energy of the sur-
face wave is transported through vacuum, while only a fraction of the energy
is transported in the coating. Therefore, the effective refractive index for a thin
coating is dominated by the refractive index of vacuum. However, if the coat-
ing thickness is on the order of or larger than the wavelength, then most of the
energy is transported through the coating. In that case, the effective refractive
index is dominated by the refractive index of the coating.

Figure 5.11(b) shows the absorption length as a function of the coating
thickness. The absorption length decreases with increasing coating thickness
approximately up to the thickness where the refractive index makes it transi-
tion from 1.0 to 2.0. Above this point, the absorption length increases again.
Note that the absorption takes place in the metal, as the refractive index of the
dielectric coating is assumed to be strictly real.

In figure 5.11(c), we have plotted 1/Im{κa}, which determines the expo-
nential decay of the fields in air as discussed in section 5.2.2. This value
decreases monotonically for increasing coating thickness until it reaches the
asymptotic value of 28 µm. This asymptote is determined by the difference in
the dielectric constant of air and the coating, as is easily verified with equa-
tions 5.32 and 5.36. Note that for large coating thickness (> 100 µm) 1/Im{κa}
is smaller than the coating thickness. In that case, most of the energy is trans-
ported through the coating, instead of though air.

The dip in the absorption length in figure 5.11(b) is caused by an increase
of the portion of the transported energy that flows through the metal. The por-
tion of the total energy transported through either air, copper or the coating is
logically a strong function of the penetration depth in air and in copper and of
the coating thickness, since they determine the size of the area through which
the energy in transported in the three regions. Due to the large value of the di-
electric constant of copper, the penetration depth into the copper is practically
independent of the coating thickness. However, figure 5.11(c) shows that the
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Figure 5.11: Calculated properties of a surface wave propagating on a coated cop-
per wire in vacuum as a function of the thickness of the coating for the following
parameters : 1 THz frequency, 1 mm wire diameter, and refractive index coat-
ing equal to 2.0. Figure (a) shows the effective refractive index, figure (b) shows
the absorption length and figure (c) shows 1/Im{κa}. The two curves (solid and
dashed) represent the first two independent solutions of the dispersion relation.
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penetration depth in air is a strong function of the coating thickness. As the
penetration depth in air decreases for increasing coating thickness, a smaller
portion of the energy is transported through air. This means that a larger
portion is transported through the metal, leading to more absorption. After
the transition point, however, the portion of the energy that is transported in-
side the metal is decreased, due to the contribution of the energy transported
within the increasingly thick coating, leading to a decrease in the absorption.

5.2.4 Model limitations

In section 5.2 a model has been developed describing the propagation of plas-
mon-polaritons on metal wires. As can be expected from a joint oscillation of
electromagnetic waves and charge density waves, the properties of plasmon-
polariton prove to be a strong function of the metal properties. Two comments
are in order regarding the model used for the surface properties of the metal.

The first comment regards the surface roughness of the metal. In our
model we have assumed that the surface is smooth. The reader should note
that this means that the surface roughness is small compared to the penetra-
tion depth of the metal, which is on the order of 50 nm. On rough surfaces,
the currents, which follow the surface, flow through more material, leading to
an increased surface resistance.

The second comment regards the accuracy of the Drude model at terahertz
frequency. This accuracy may be reduced due to the so-called anomalous skin
effect. The anomalous skin effect arises if the penetration depth in the metal
reaches the mean-free-path length of the electrons in the metal. The field can
then no longer be assumed constant between two scattering events, as is as-
sumed in the Drude model. The anomalous skin effect is discussed in more
detail in appendix C.

With surface plasmons the terahertz surface properties of metals can be
probed possibly with a very high sensitivity. This is especially interesting re-
lated to the anomalous skin effect, of which there is little to no experimental
data at room temperature and terahertz frequencies. Concluding, the theory
developed in the section has slight deficiencies, but a future study of these de-
ficiencies might significantly increase our knowledge regarding the terahertz
properties of metals.

5.3 Measurements of surface plasmon polaritons on
coated wires

This section discusses measurements on the propagation of terahertz pulses
over copper wires with and without a thin polyurethane coating. Our time-
domain measurements of a terahertz pulse propagating along a 4 cm long
wire, show that a coating of tens of micrometers thickness strongly distorts
the terahertz pulse resulting in a chirped terahertz signal that lasts tens of
picoseconds. A comparison with calculations based on the theory developed
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in section 5.2, shows that the distortion of the terahertz pulse originates from
the dispersive propagation of these waves along the coated wire. Remarkably,
the propagation is dispersive although we assume that the coating material
itself has a frequency-independent refractive index. Our work indicates that
thin coatings can seriously distort terahertz pulses propagating along metal
wires. At the same time, however, this offers the possibility to use metal wires
as sensitive detectors of thin layers.

Figure 5.12 shows a schematic drawing of our setup. The terahertz pulses
from our emitter are focussed onto one of two types of metal wires. The first
wire is a bare copper wire with a diameter of 1 mm. The second wire is a cop-
per wire with a diameter of 1 mm having a polyurethane coating, specified to
be about 34 µm thick.¶ A sharp copper needle is used to couple the terahertz
radiation onto the wire.88 The terahertz surface plasmon polariton propagates
over the wire towards the detection crystal, which is a 1 mm thick 〈110〉 ori-
ented ZnTe crystal and is held close to the end of the wire. For both the coated
and the uncoated wire, the propagation distance from the detection crystal to
the point where the terahertz pulse is coupled onto the wire is 4 cm. In the
detection crystal, a birefringence is induced proportional to the instantaneous
strength of the electric field of the terahertz wave. The induced birefringence
is measured by a probe beam, which enters the detection crystal from the back
and back-reflects at the front face. The terahertz-induced polarization change
of the probe beam is then measured by a conventional electro-optic detection
setup. More information regarding electro-optic detection is given in chapter
2. We note that large variations in the spectral content of the measured tera-
hertz electric fields were observed for small changes in the exact position of
the needle used to couple the terahertz pulses onto the system. This is not alto-
gether unexpected, since moving the needle changes its position with respect
to the frequency-dependent focus of the incident terahertz beam. In our mea-
surements we optimized the position of this wire to maximize the measured
spectral bandwidth.

In figure 5.13(a), we plot a time-domain measurement of the electric field
of the terahertz pulse incident on the wire. The terahertz pulse is character-
ized by a sharp peak, followed by many oscillations, which are caused by
absorption and re-emission of terahertz radiation by watervapor molecules
in the atmosphere. Figure 5.13(b) shows the measured electric field versus
time of the terahertz pulse after propagating over the 4 cm long bare copper
wire. The striking differences between the pulse after propagation over the
wire and the pulse incident on the wire, are the difference in the pulse shape
and the increase of the pulse duration; The duration of the first positive peak
changes from 0.7 ps for the incident pulse to 2.3 ps after coupling onto and
propagation over the bare wire. This difference is probably caused by the
frequency-dependent coupling of the terahertz pulse to the wire.96 The dot-
ted line in figure 5.13(c) shows the measured electric field as a function of time
after propagation along the 4 cm long coated wire. The figure shows that the
terahertz pulse has acquired a remarkably long tail having a time-dependent

¶The coated wire was obtained from Farnell (product #146531).
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Figure 5.12: Schematic of the setup. A time-delayed pump pulse is focussed onto
the biased GaAs emitter. The terahertz pulses generated by the emitter, are fo-
cussed and coupled onto the copper wire by a sharp copper needle, placed un-
derneath the wire. The pulses then propagate over the wire to the ZnTe detection
crystal. The electric field of the terahertz pulses in the detection crystal is then
measured with a synchronized probe pulse, using a conventional electro-optic
detection setup, consisting of a quarter-wave plate(λ/4), a wollaston prism (WP)
and a differential detector (Diff. Det.).

frequency, which clearly contrasts with the result for the uncoated wire.
In figure 5.13(c), we plot the electric field of a terahertz surface wave after

propagation over 4 cm of coated wire, which is calculated with the dispersion
relation derived in section 5.2.1 (equation 5.55). Results of the uncoated wire
are not shown, as in the calculation the pulse shape is not changed signifi-
cantly after propagation along this wire. In our calculations, we used a diam-
eter of the copper wire of 1 mm and a coating thickness of 34 µm. We use 1.0 as
the refractive index of air, and 2.5 as the refractive index of the coating, which
is a reasonable value for polyurethane.97 For the frequency-dependent refrac-
tive index of copper, we use the previously-mentioned model from Ordal et
al.93 For the initial, undistorted, surface wave, we assume a temporal shape
that corresponds to the time-derivative of a Gaussian that has a duration of 2.1
ps. The results of the calculation are in remarkably good qualitative agreement
with the measurement. The minor differences between calculation and mea-
surement can easily be explained by the uncertainty in the exact shape of the
input pulse or by the uncertainty in the refractive index of the polyurethane
coating.

We can now understand the chirped terahertz signal as arising from the
dispersion of the full system, consisting of the wire and the coating. To pro-
vide a physical picture for the origin of this dispersion, we calculated the elec-
tric and magnetic fields after 4 cm of propagation as a function of the radial
distance ρ with equations 5.48 and 5.53. The results are plotted in figure 5.14
for four different frequencies: 50 GHz, 0.2 THz, 0.5 THz, and 1.5 THz. The
fields were normalized to unity at the metal-coating interface. Figure 5.14
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Figure 5.13: Measured electric fields as a function of time of the terahertz pulse
incident on the wire (a) and of the pulse after propagating over 4 cm of the bare
wire (b). Figure (c) shows the measured and the calculated pulse after propaga-
tion over the coated wire.
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Figure 5.14: Magnetic field in the azimuthal direction (a) and electric field ampli-
tude in the radial direction (b), both as a function of the radial distance from the
center of the wire ρ. The metal surface is located at a radial distance of 0.5 mm.
The position of the coating-air interface is indicated by the vertical thin dotted
line.

clearly shows that for increasing frequency the decay of the fields with radial
distance becomes faster. It is also shown that the strength of the electric and
magnetic fields in the coating relative to the fields in air increases with fre-
quency. Therefore, the fraction of the total terahertz energy that is transported
within the coating increases with frequency. This means that the effective re-
fractive index experienced by the surface wave increases with frequency, re-
sulting in the dispersive pulse propagation seen in our measurements. The
dispersion above is not an intrinsic property of the coating material itself, for
which we have assumed a frequency-independent refractive index. In fact,
the dispersion of the coating material plays only a small role in the dispersive
wave propagation, and has been neglected here.

It is interesting to speculate on the sensitivity of the technique to detect the
presence of extremely thin dielectric layers on wires. Surface plasmon polari-
tons on wires do not spread out, as surface plasmon polaritons on flat surfaces
do,98 thus enabling long interaction lengths. A calculation for a copper wire
with a diameter of 1 mm and a 100 nm thick coating (refractive index 2.0)
shows a measurable π/20 phase shift at 0.5 THz for a 59 cm long wire. We
believe, therefore, that the detection of coatings with thicknesses in that range
should be feasible.

In conclusion, we have presented time-domain measurements that show
the effect of a thin coating on the propagation of terahertz surface plasmon
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polaritons along metal wires. After propagation over 4 cm of coated wire, we
found that the terahertz surface wave becomes fully dispersed, resulting in
a terahertz signal that lasts tens of picoseconds, which is not the case in the
measurements of an uncoated wire. A comparison with a theoretical model
based on Maxwell’s equations shows that the pulse distortion originates from
the dispersive nature of wave propagation along the coated wire. This disper-
sion is due to the frequency dependence of the fraction of the wave’s energy
that travels through the coating. Our work shows that metal-wire waveguides
could serve as sensitive probes of thin layers at terahertz frequencies.

5.4 Conclusion

We have studied the propagation of terahertz waves over coated and uncoated
wires both experimentally and theoretically. The calculations for uncoated
copper wires show that the electric fields extend millimeters to centimeters
away from the wire surface. This means that a substantial region around the
wire should be kept free of objects to avoid coupling of the electro-magnetic
field to these objects. The distance that the fields extend from the wire can be
decreased by decreasing the diameter of the wires, but only at the expense of
an increase in the absorption and the dispersion.

An alternative method to confine the fields to a region closer to the wire is
by applying a thin coating on the wire. However, both our calculations and
our measurements show that even coatings that are much thinner than the
wavelength of the terahertz radiation can strongly increase dispersion. Due to
this large sensitivity, terahertz pulses on metal wires could be used to measure
the properties of thin coatings.

In our calculations, we used a Drude model for the frequency-dependent
dielectric constant of copper. However, the validity of this model at terahertz
frequencies is under debate. The study of terahertz waves on metal wires may
play an important role in this debate, because of the sensitivity of these waves
to the metal properties.



Chapter 6

Near-field terahertz imaging

Diffraction, which limits the resolution in far-field imaging to about a wave-
length, is an obstacle for a number of interesting new terahertz applications,
as has been discussed in section 1.3.4. Breaking the diffraction limit would,
for instance, make it possible to perform terahertz spectroscopy on extremely
small volumes, and, ultimately on living cells. Work on the label free probing
of DNA28 and work by Walther et al.,27 show that terahertz radiation can be
used to distinguish between different biomolecules.

One way to overcome the diffraction limit is to limit the detection area with
an aperture. For example, Mitrofanov et al.99 have shown that, using a detec-
tor with an integrated aperture, near field images can be made with a spatial
resolution determined by the aperture size, and not by the THz wavelength.
Unfortunately, this method relies on extensive micro-fabrication and requires
two parallel plates, namely one carrying the object and the other the detec-
tor, to be scanned along each other at close distance, which is difficult to do
in practice. Also, since the aperture has a finite thickness, waveguide effects
strongly attenuate long wavelength components,100 which makes their detec-
tion difficult. Another approach to obtain sub-wavelength resolution37 uses
a laser to modulate the THz transmission of a small area on a semiconductor
surface near the object. In this method, however, signals are small and the
resolution is limited to the focus diameter of an optical beam, which is itself
limited by diffraction.

An alternative for the use of apertures in near-field imaging is the use of
sharp metal tips as local field enhancers.101–103 The sharp metal tip is held
in close contact to the sample under study, while light is scattered by the
tip. The amount of scattered light is a function of the dielectric environ-
ment of the tip apex, which has sub-micrometer dimensions. By measuring
the scattered light, while scanning the tip over the sample, an image can be
obtained with a subwavelength resolution, determined by the size of the tip
apex. A big advantage of this imaging technique is that it does not suffer
from a waveguide cutoff, which limits the resolution in aperture techniques.
Apertureless near-field imaging, which was originally developed at visible
and mid-infrared wavelengths, has recently been demonstrated at terahertz
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wavelengths.38, 104, 105

We developed an apertureless technique in which not the radiation scat-
tered into the far field, but instead the near field close to the tip is measured.
The advantage of near-field detection with respect to far-field detection is that
one can directly measure the enhanced field around the tip, resulting in rela-
tively strong signals. Our method to obtain a sub-wavelength resolution has
four advantages. (i) The resolution is ultimately determined by the dimen-
sions of the tip, not by the incident terahertz beam size. (ii) The measurements
are background free. (iii) The detection setup measures in the near field, where
the electric field can be strong. This provides sufficiently large signals and
thus reduces the measurement time. (iv) The method has the more practical
requirement of scanning a tip along a surface, instead of two surfaces parallel
to each other.

We note that for none of the reported terahertz near-field apertureless tech-
niques a sound direct measurement of the resolution has been reported. Res-
olution measurements for this kind of systems are tricky, due to so-called to-
pographical artifacts. If the object under study is not flat, then the signal will
be a function of the height of the tip with respect to the object’s surface. This
makes it difficult to separate signals from height variations from signals aris-
ing from changes in the frequency-dependent dielectric constant of the object.
When the signal is caused by height variations one essentially measures the
shape of an object which is not very exciting, because such measurements can
be performed much better with, for instance, an atomic force microscope. The
resolution should therefore be obtained from an image of a flat object, where
the contrast mechanism is not caused by height variations but by refractive
index or absorption variations.

This chapter describes a new terahertz near-field detection method, which
shows a large potential for future terahertz microscopy measurements. Sec-
tion 6.1 presents results from the near-field terahertz detection method. The
frequency dependence of the signal obtained with this method is discussed in
section 6.2. Section 6.3 concludes with an outlook on the resolution that might
be obtained with our system.

6.1 Near-field terahertz detection

Figure 6.1 show a schematic of our near-field detection setup. As is displayed
in this figure, the terahertz pulses, which have an average power of 40 µW,
are focussed onto a copper tip, which has been sharpened in a FeCl etch bath.
Our setup to generate terahertz pulses is described in section 4.1 and in refer-
ence 23. A 300 µm thick, (100) oriented GaP detection crystal is placed within
a distance of several microns of the tip. The crystal surface closest to the tip
is coated with a 300 nm thick Ge layer on top of a 133 nm thick SiO2 layer.
A synchronized, 800 nm probe pulse, derived from the same laser that gener-
ates the terahertz pulse, is focussed to about a 20 µm spot size on the coating,
initially counter propagating with respect to the terahertz pulse. The thick-
ness of the SiO2 layer is chosen such that the amount of probe light reflected is



6.1. Near-field terahertz detection 117

Figure 6.1: Schematic picture of the setup used. The terahertz radiation comes in
from the right, and scatters at the tip. The probe beam comes in from the left, and
is focussed on the crystal-air interface of an (100) GaP crystal. At this interface
the probe beam polarization is changed by the terahertz electric field near the tip.
The probe beam reflects back at the crystal interface, and is sent to the differential
detection setup (not shown). The inset on the bottom left zooms in on the tip, and
schematically shows the near-field electric field lines near the tip, which have a
component perpendicular to the crystal surface.

maximized. The Ge layer is chosen sufficiently thick to absorb the transmitted
probe beam. The coating, which has a negligible effect on the terahertz beam,
thus prevents any probe light from reaching the tip. This eliminates any mea-
surement errors that would have been caused by probe light scattered off the
tip back towards the detector.

After the reflection at the coating the probe pulse is sent through a λ/4
plate and a Wollaston prism to a differential detector. When a terahertz elec-
tric field is present in the crystal, the electro-optic effect changes the probe
polarization from linear to slightly elliptical. The amount of ellipticity is pro-
portional to the instantaneous terahertz electric field, and is measured by the
differential detector setup.

Section 2.1 describes that by selecting the orientation of the detection crys-
tal, it is possible to select to which component of the terahertz electric-field
vector an electro-optic detection setup is sensitive. We remind the reader that
in an (110) oriented crystal, which is the conventionally used orientation in
electro-optic detection, the probe polarization is only affected by electric fields
parallel to the crystal surface. Here, however, using an (100) oriented crystal,
the probe polarization is only changed by electric fields perpendicular to the
crystal surface making the probe ”blind” to the parallel polarized electric field
of the incident terahertz pulse. Near the tip, however, as is illustrated in the
inset of Fig. 6.1, the terahertz near field must have a component perpendicular
to the crystal surface, since the electric field near a metal, in this case the tip,
has to be perpendicular to the metal surface.

The inset of Fig. 6.2 shows the terahertz electric field as a function of the
delay between probe and terahertz pulse, measured directly under the copper
tip, which is pressed against the crystal. The power spectrum of this pulse is
plotted in Fig 6.2. It contains frequencies from 0.1 THz to 2.5 THz and peaks
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Figure 6.2: Terahertz power spectrum, calculated from the terahertz electric field
as a function of delay shown in the inset. The measurement was performed with
the tip pressed against the crystal, directly above the probe beam.

around 0.15 THz. The spectrum measured directly under the tip is substan-
tially different from the spectrum of the pulse incident on the wire, as is dis-
cussed in section 6.2.

Although the measurement in figure 6.2 was obtained in less than a minute,
we note that, in our setup, a measurement of a 25 ps long terahertz electric
field pulse is obtained in 20 ms with a dynamic range of 50. This dynamic
range was achieved with an optical probe beam power on the order of 200
µW. It has been shown in section 3.1 that the noise level in electro-optic detec-
tion is limited by probe laser shot-noise and that the dynamic range in a shot-
noise limited system can be improved by increasing the power in the probe
beam. The maximum power is determined by the saturation properties of the
photodiodes in the differential detector, which are investigated in section 3.2.
Using the recommendations in this section, probe beam powers on the order
of 10 mW are feasible. It is thus clear that there is much room to improve our
dynamic range, which is already superior to alternative methods.104, 105

Fig. 6.3 shows the measured peak terahertz electric field as a function of
the tip-crystal separation. The measurement covers a total distance of about
30 µm. The inset shows an additional measurement, which zooms in on the
region close to the crystal. We have chosen the 0 µm position arbitrarily as
the position where the signal reaches its maximum. The figure shows that
the terahertz electric field decreases to 30% of its maximum value, when the
tip-crystal distance increases to 6.5 µm, which clearly indicates near field be-
havior. When the tip is close to the crystal (∼ 1 µm), it is abruptly attracted
to the crystal, presumably by electrostatic forces, which gives rise to a sudden
increase in the signal at 0 µm. The sharp, but smooth, decrease of the terahertz
electric field when the distance to the crystal is increased only a few µm, is re-
lated to results obtained by Knoll et al.106 at the much shorter wavelength of
10 µm. They found that the scattering cross-section of a tip close to a dielectric
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Figure 6.3: Measured peak terahertz electric field as a function of the tip-crystal
distance. The inset shows a separate measurement of the region close to the crys-
tal.

half-space is strongly increased due to an image charge induced in the dielec-
tric medium. It is likely, that this effect also applies in our case, and that an
increase of the scattering cross-section is related to the strong enhancement of
the local terahertz electric field when the tip approaches the crystal.

In Fig. 6.4(a-d), we plot the integrated power of the terahertz pulses, mea-
sured while raster-scanning the tip across the crystal surface, for 4 different
tip-crystal separations. The four measurements clearly show a rapid increase
in the terahertz spot size for increasing tip-crystal distances. This is quanti-
tatively expressed by the results in Fig. 6.4(e), where we plot the measured
terahertz spot size, defined as the full width at half maximum (FWHM) of
the intensity, as a function of the tip-crystal distance. The 0 µm point is cho-
sen arbitrarily as the position where the spot size reaches its minimum. Fig.
6.4(e) clearly shows that the spot diameter increases more than a factor of 6
when the tip-crystal separation increases to 30 µm. This again strongly sug-
gests that, close to the crystal, we are measuring in the near field of the tip.
The figure also shows, that sub-wavelength resolution is easily obtained, even
for relatively large tip-crystal distances. The smallest observed spot diameter
in this measurement is 18 µm. A spectral analysis (not shown here) clearly
proves that the spot diameters are independent of frequency, with a smallest
spot corresponding to a maximum resolution of λ/110 at 0.15 THz.

Earlier measurements with a probe beam focal spot size of 50 µm gave a
smallest terahertz spot size of 50 µm. The measured smallest spot size of 18
µm is again similar to the probe beam focal diameter of 20 µm, suggesting that
the observed terahertz spot sizes are determined by the focal diameter of the
probe. This indicates, that a spot size better than 18 µm is achievable in our
setup, if we focus the probe beam tighter. Indeed, experiments in which the
diameters of both the probe focus and the tip apex are further reduced show
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Figure 6.4: Terahertz intensity as a function of the xy position of the tip along the
crystal. The scans (a) and (b) are 50 x 50 pixel images with a 3 x 3 µm2 pixel size,
and (c) and (d) are 30 x 30 pixel images with a 5 x 5 µm2 pixel size. In the pictures
(a), (b), (c), and (d), the tip is positioned at 0, 10, 20, and 30 µm distance from the
crystal, respectively. The gray-levels run from zero (black) to maximum intensity
(white), and are separately normalized for each scan. The black line is the FWHM
of the spot. Graph (e) shows the measured FWHM spot diameter as a function of
tip-crystal distance. The solid line is a linear fit through all points but the first.



6.2. Frequency dependence of the signal strength 121

Figure 6.5: Terahertz intensity as a function of the xy position of the tip along the
crystal. The scan is a 50 x 50 pixel image with a 1 x 1 µm2 pixel size obtained
with the tip in contact with the crystal. The gray-levels run from zero (black) to
maximum intensity (white), and the black line indicates the FHWM of the spot.

spot sizes down to 7 µm (figure 6.5).
Ultimately, we envisage an experiment in which a thin sample is placed on

the crystal underneath the tip. When the crystal is raster-scanned underneath
the tip, a two-dimensional terahertz image of the sample is obtained. A high
resolution, however, is only possible, if the physical size of the tip is smaller
than the desired resolution. The obtainable resolution is further discussed in
section 6.3.

The advantages of our method to use THz-TDS to produce near-field im-
ages are that it is coherent, intrinsically broadband, and uses only 40 µW of
input power. Coherent detection offers the advantage of measuring both am-
plitude and phase, while broadband detection allows us to obtain informa-
tion on a wide range of frequencies in one measurement. The possibility that
a sample is heated significantly or even damaged is negligible in our setup,
since we use low input powers. We note that the time-dependent nature of
terahertz pulses makes it possible to use our setup for visible pump-terahertz
probe measurements on microscopic systems.

In conclusion, we have presented a method to obtain a sub-wavelength
resolution in terahertz imaging by electro-optically measuring the terahertz
electric field close to a sharp copper tip in a (100) oriented GaP crystal. We
demonstrate a smallest terahertz spot size of 7 µm, which is probably limited
by the probe beam diameter.

6.2 Frequency dependence of the signal strength

In the measurements described in section 6.1, the terahertz electric field mea-
sured in the near field of a metal tip was different from the field incident on
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this tip. This is further illustrated in figure 6.6, which shows measurements
of both the incident field (a) and the near field (b). Compared to the incident
field, the measured near field clearly decays faster with increasing frequency.
The purpose of this section is to investigate the physical nature of this fre-
quency dependence.

Focussing on the frequency dependence, we derive a proportionality be-
tween the incident field and the near field. In this derivation, two steps are
distinguished. First, the incident field couples to the tip, which functions as
an antenna, leading to currents and charges on the tip. Second, the electric
charges on the tip induce a near field according to Coulomb’s law.

The tip can be modelled as an antenna with a resistance, a capacitance and
an inductance. In such a model, the current induced on the tip is related to the
incident terahertz electric field by

I(ω) ∝ Einc(ω)/
(

R + jωL +
1

jωC

)
, (6.1)

where Einc is the strength of the incident electric field at the radial terahertz
frequency ω. R is the total resistance, including the physical resistance, which
accounts for losses due to the nonzero conductivity of the tip, and the radia-
tion resistance, which accounts for losses due to re-emission by the tip. Capac-
itive coupling between different parts of the wire gives rise to the capacitance
C. Inductive coupling between the current on different positions on the wire
is incorporated by the inductance L.

The electric near field is not determined by currents, but by charges, as can
be seen from equation 4.5. These charges arise on the tip, because the current
must decrease towards the end of the tip. Assuming that the current abruptly
goes to zero at the end of the tip, a point charge arises on the tip apex given
by

Q(ω) ∝
j

ω
I(ω). (6.2)

The relation between the near field and the point charge is closely related to
Coulomb’s law and can be calculated from equation 4.5

Enear(ω) ∝ Q(ω). (6.3)

With equations 6.1, 6.2 and 6.3, the following proportionality is obtained

Enear(ω) ∝ Einc(ω)/
(
−jωR + ω2L − 1

C

)
(6.4)

R, C and L are determined by the shape and size of the tip and also by the
properties of the objects close to the tip, such as the detection crystal. An exact
calculation of R, C and L would require a complicated 3D simulation of the
system. However, physical insight is obtained using reasonable assumptions
for the values of R, C and L. Here, we use R = 150 Ω, L = 20 pH and C
= 0.1 pF. For these values, the coupling to the wire is dominantly capacitive
for frequencies below 1.1 GHz, inductive for frequencies above 1.2 THz and
resistive between these two frequencies.
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Figure 6.6: (a) Measured power spectrum of the terahertz pulse incident to the tip.
(b) Power spectrum measured in the near field of the tip. (c) Calculated power
spectrum of the terahertz near field, with R = 150, C = 0.1 pF, and L = 20 pH (solid
line), and the power spectrum of the near-field calculated using resistive coupling
only (dotted line).
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Figure 6.6(c) shows the results of a calculation of the near field spectrum
using equation 6.4 and the spectrum of the incident field in figure 6.6(a). The
calculated near-field is in good agreement with the measured near-field in
figure 6.6(b). The dotted line in figure 6.6(c) is the result of a calculation in
with both capacitive and inductive coupling is neglected and the near field
is assumed proportional to Einc(ω)/ω. This approximation is already in rea-
sonable agreement with the measurement, especially a low frequencies. We
thus conclude that the frequency dependence of the near field can be approx-
imated by that of a resistively coupled antenna up to a frequency of about 1
THz. Above 1 THz the inductance of the wire should be taken into account.

6.3 Obtainable resolution

In the near-field imaging experiment that we envisage, a thin sample is placed
on top of the crystal, which is raster-scanned beneath the tip. As discussed
previously, the resolution obtained in this system has not yet been directly
measured. This section discusses the resolution that could be obtained with
our system, the theoretical limits of the resolution and the relation between
the resolution and the spot size measured in section 6.1.

The resolution is defined as the minimum distance between two point-like
objects at which the objects can still be distinguished in the image. In the
image formation of point-like objects, there are two important steps. First, the
near-field around the tip polarizes the object. Due to its assumed small size,
the polarized object can be regarded as a dipole. Second, the near-field of this
dipole is measured by the probe beam in the detection crystal. This probe
beam also measures the near-field coming directly from the tip. However, this
contribution does not change as the crystal (with the objects on top) is scanned
underneath the tip, because the probe beam maintains a fixed position with
respect of the tip. Therefore, the contribution coming directly from the tip
provides a background in the imaging process.

The probe beam diameter determines the resolution, if the diameter of the
probe beam is much smaller than the dimensions of the tip. In that case (fig-
ure 6.7(a)), the near-field from the tip is approximately equal at two closely
spaced, point-like objects (1 and 2). The strength of the dipoles induced in
the two objects, which are proportional to the near field of the tip, is thus also
approximately equal. Therefore, the objects can only be distinguished, if the
probe beam is selectively sensitive for only one of the two dipoles. This is
only possible if the diameter of the probe beam is smaller than the distance
between the objects.

The tip, on the other hand, determines the resolution, if the diameter of the
probe beam is much larger than the dimensions of the tip. In that case (figure
6.7(b)), the polarizations of two closely spaced, point-like objects (1 and 2)
are measured with approximately equal sensitivity. Therefore, the objects can
only be distinguished, if the near field of the tip decays sufficiently fast as
a function of the distance from the tip to cause a sufficient difference in the
polarization of object 1 and 2. The near-field decay length is approximately
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Figure 6.7: Schematic illustrating the resolution for the case that the tip dimen-
sions are either much larger (a) or much smaller (b) than the diameter of the probe
beam, which is indicated by the dashed regions. In both cases the point-like ob-
jects 1 and 2 can be distinguished separately.

proportional to the typical dimension of the tip. Smaller tips will thus result
in improved resolutions.

Based on the considerations above, we conclude that the resolution is de-
termined by the smallest value of the typical dimension of the probe beam in
the detection crystal and the typical dimension of the tip. Note the difference
with the spot size measured in section 6.1, which is determined by the largest
value of these two typical values. The measured spot size thus give a upper
limit for the obtainable resolution.

The minimal dimensions of the tip and of the probe focus determine the
theoretical limit on the resolution in our method. Due to diffraction, the min-
imum diameter of the probe beam is on the order of the wavelength of the
probe. For Ti:Sapphire-based laser systems, this wavelength is about 800 nm.
It may seem that there is no theoretical limit on the dimensions of the tip.
However, if the tip becomes much smaller than the diameter of the probe
beam, then the volume of the detection crystal used to probe the near field
decreases proportional to the third power of the tip dimension. The electro-
optic signal is proportional to the detection volume and thus also decreases
rapidly for decreasing dimension of the tip. A factor two decrease of the res-
olution, requires a factor two decrease of the tip dimension, which results in
a factor eight decrease in the signal strength. The signal can, of course, not
be measured if it drops below the noise level of the system. Thus, although
there is no theoretical limit on the resolution, a practical limit arises from the
demand for a reasonable signal-to-noise ratio.

It is clear that a high resolution requires small tips. Not only the apex di-
ameter matters, but also the length of the tip, since the shaft of the tip also
contributes to the signal.107 It is, however, not necessary to use short tips, be-
cause the effective length of the tip can be strongly reduced by a modulation
technique. In this technique, a piezoelectric modulator vibrates the tip perpen-
dicular to the surface. Contributions to the signal from the tip apex are more
sensitive to the modulation of the tip-sample distance than the contributions
from the tip shaft. It is thus possible to suppress the contributions from the
shaft by demodulation at an integer times the vibration frequency. This mod-
ulation technique was developed in the microwave region,108 has been used
in the infrared106 and has also been introduced in the terahertz field.104, 107
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We note that, using this modulation technique, resolutions <20 nm have been
obtained at mid-infrared frequencies.109 We do not see any reasons why our
method could not reach a similar resolution at terahertz frequencies.

6.4 Conclusion

A terahertz near-field detection scheme is presented that shows great poten-
tial for the near-field imaging of subwavelength-sized objects. Measured spot
sizes down to 7 µm are strong indicators that a resolution at least on the order
of microns is feasible. Based on results obtained at mid-infrared wavelengths,
we estimate that resolutions on the order of tens of nanometer are feasible. In
follow-up research, such a resolution should be measured directly with flat
samples to avoid topographical artifacts.



Appendix A

χ(3) terahertz generation

Section 4.2 discusses terahertz generation by the second-order (χ(2)) nonlinear
polarization. It is, however, also possible to generate terahertz radiation using
the third-order (χ(3)) nonlinear polarization, which is proportional to the third
power of the electric field.110 This appendix considers the radiated electric
field in χ(3) terahertz generation, and discusses some of the differences with
χ(2) terahertz generation.

We consider the mixing of three optical, monochromatic beams. The beams
propagate collinear, and are focussed in a generation medium, which extends
from z = z1 to z = z2. We assume that the generation medium is embed-
ded in a medium with an identical refractive index to avoid reflections at the
interfaces. Two of the three beams have nearly identical frequencies and are
called fundamental beams. The third beam is called the harmonic beam, and
has a frequency that is approximately twice the frequency of the fundamental
beams. Analogous to the situation for χ(2) terahertz generation (equation 4.2
and 4.3), we write for the electric fields of the generating beams

Ef 1(t, x, y, z) =
jzrf E f 10(
z + jzrf

) exp

{
jω0t − jk(ω0)

(
z +

1
2

x2 + y2

z + jzrf

)}
(A.1)

Ef 2(t, x, y, z) =
jzrf E f 20(
z + jzrf
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Eh(t, x, y, z) =
jzrhEh0

(z + jzrh)
exp
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(A.3)

where Ef 1 and Ef 2 are the electric fields of the fundamental beams, and Eh
is the electric field of the harmonic beam. The strength and relative phase
of the beams is determined by the complex constants Ef 10, Ef 20 and Eh0. The
radial frequencies of the two fundamental beams are ω0 and ω1, and the radial
frequency of the harmonic beam is ω0 + ω1 − ωT. We have approximated
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the wavevector of the second fundamental beam with k(ω0). Likewise, the
wavevector of the harmonic beam is approximated by k(2ω0). The Rayleigh
ranges of the fundamental beams are assumed equal and are denoted by zrf .
The Rayleigh range of the harmonic beam is denoted by zzh.

For a frequency independent χ(3), the induced third-order polarization at
the terahertz wavelength is given by69

Pg(t, x, y, z) = ε0χ(3)Ef 1(t, x, y, z)Ef 2(t, x, y, z)E∗
h(t, x, y, z)

=
−jε0χ(3)z2

rf zrhEf 10Ef 20E∗
h0(

z + jzrf

)2
(z − jzrh)

exp

{
jωTt

− 2jk(ω0)

(
z +

1
2

x2 + y2

z + jzrf

)
+ jk(2ω0)

(
z +

1
2

x2 + y2

z − jzrf

)}

=
−jε0χ(3)z2

rf zrhEf 10Ef 20E∗
h0(

z + jzrf

)2
(z − jzrh)

exp

{
jωTt − jz (2k(ω0) − k(2ω0))

− 1
2

j
(

x2 + y2
)( 2k(ω0)

z + jzrf
− k(2ω0)

z − jzrh

)}
.

(A.4)

Just as for χ(2) generation, we can use the radiation integral (equation 4.10)
to calculate the terahertz electric field radiated by the third-order polarization.
The details of this calculation can be found in section 4.2.3, which discusses the
similar situation for χ(2) generation. The calculated electric field is given by

Erad(x, y, z, t) =
ω2

Tχ(3)Ef 10Ef 20E∗
h0z2

rf zrh

4πc2
√

x2 + y2 + z2
exp

(
jωTt − jkT

√
x2 + y2 + z2

)

e

∞∫
x′=−∞

dx′
∞∫

y′=−∞

dy′
z2∫

z′=z1

dz′
1(

z′ + jzrf

)2
(z′ − jzrh)

exp

{
jkT

xx′ + yy′ + zz′√
x2 + y2 + z2

− jz (2k(ω0) − k(2ω0))

−1
2

j
(

x′2 + y′2
)( 2k(ω0)

z′ + jzrf
− k(2ω0)

z′ − jzrh

)}
.

(A.5)
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Solving the integrals over x’ and y’ we get

Erad(r, θ, t) =
ω2

Tχ(3)Ef 10Ef 20E∗
h0z2

rf zrh

2c2r
exp (jωTt − jkTr) e

z2∫
z′=z1

dz′
1(

z′ + jzrf

) (
jz′k′T + 2k(ω0)zrh + k(2ω0)zrf

)

exp

{
jz′
(
kT cos(θ) − k′T

)

− 1
2

k2
T sin2(θ)

(
z′ + jzrf

)
(z′ − jzrh)

2k(ω0)zrh + k(2ω0)zrf + jk′Tz′

}
,

(A.6)

with k′T = 2k(ω0)− k(2ω0), which is the value for kT for which the generation
is phase matched for θ = 0. We again find the same expression for the phase
mismatch kT cos(θ)− k′T as in equation 4.23, only with a different definition of
k′T.

If we make the same approximations as for χ(2) generation, namely that
z′k′T � 2k(ω0)

(
zrf + zrh

)
, zrf k′T � 2k(ω0)

(
zrf + zrh

)
and kT � k(ω0), the

above equation changes to

Erad(r, θ, t) =
ω2

Tχ(3)Ef 10Ef 20E∗
h0zrf zrh

4c2rk(ω0)
(

zrf + zrh

) exp (jωTt − jkTr) e

exp

{
− k2

T
4k(ω0)

sin2(θ)
zrf zrh

zrf + zrh

} z2∫
z′=z1

dz′
zrf(

z′ + jzrf

)

exp

{
jz′
(
kT cos(θ) − k′T

)− k2
T

4k(ω0)
sin2(θ)

z′2

zrf + zrh

}
.

(A.7)

This equation can be compared with equation 4.18 for the field radiated by
the χ(2) process. The form of the two equations is strikingly similar. The
radiated electric field for χ(3) terahertz generation follows from the field for
χ(2) generation after this substitution of variables:

original in eq. 4.18 → equivalent in eq. A.7
χ(2)E∗

g10Eg20 → χ(3)Ef 10Ef 20E∗
h0

z2
r → zrf zrh

W2
0 =

2zr

k(ω0)
→ 2zrf zrh

(zrf + zrh)k(ω0)

Besides the proper change of variables, there is only an extra factor zrf /(z′ +
jzrf ) in the integral over z′. This extra factor is due to the Gouy phase shift of
the pump beams. The Gouy phase shift is an extra 180 degrees phase shift that
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is acquired by an electromagnetic wave as it propagates through a focus.68, 111

χ(2) terahertz generation is not sensitive to the Gouy phase shift of the pump
beams, because its radiated field is proportional to EE∗ = |E|2 with E the elec-
tric field of the pump beam. The χ(2) generation process is thus not affected
by the phase of the pump beams. In contrast, the electric field radiated by a
χ(3) process is proportional to E2E∗, and thus is sensitive to the Gouy phase
shift.

To investigate the influence of the extra factor in equation A.7 due to the
Gouy phase shift, we consider the value of the integral when the effect of the
nonzero focus diameters is negligible ( k2

Tz′2 � k(ω0)(zrf + zrh) ), and the
integral over z′ in equation A.7 can be written as

Cph.match ≡ j
l

l/2∫
−l/2

dz′
zrf

z′ + jzrf
exp

(
jz′∆kzrf

)
, (A.8)

where ∆k = kT cos(θ) − k′T is the phase mismatch. The generation crystal
has a length l = z2 − z1, and is positioned in the center of the focus. Note
that the above expression is always completely real. For very small values
of l, Cph.match approaches unity. For larger values of l, the value of Cph.match

changes due to phase matching. Unlike in the χ(2) phase-matching process,
the Gouy phase shift plays an important role in the χ(3) phase matching pro-
cess. To investigate the effect of the Gouy phase on the phase matching pro-
cess, equation A.8 is calculated as a function of the length of the generation
crystal for five different value of the phase mismatch (Figure A.1). We obtain
results that are independent of the length (and diameter) of the pump beam
focus by normalizing both l and ∆k to the Rayleigh length zr f .

Figure A.1 shows that the radiation is produced more efficient, if ∆k is neg-
ative, when we compare it with a value of ∆k that is equal in size but positive.
Note that for χ(2) generation, the strength of the radiated field is insensitive to
the sign of ∆k. In figure A.1, the line for ∆kzrf = −1 is even above the line for
zero phase mismatch. The phase mismatch, in that case, partly compensates
the effects of the Gouy-phase related factor. If the phase mismatch is zero,
then the Gouy phase shifts on the generating beams will cause the terahertz
radiation generated before the focus to be in opposite phase with the terahertz
radiation generated beyond the focus point. Contributions from before the fo-
cus will (partly) cancel the contributions from after the focus. This results in
an efficiency drop, when the crystal becomes larger then the focal lengths of
the generating beams.
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Figure A.1: The value of Cph.match as a function of the length of the generation
crystal l for five different values of the phase mismatch ∆k. Both l and ∆k are
normalized to the Rayleigh length of the fundamental beams zrf
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Appendix B

Modulation techniques

Figure B.1 show typical noise spectra of a Ti:Sapphire laser. The spectra show
a strong increase in the noise below 200 Hz, a broad peak around 3 kHz and
a series of sharp peaks with a 4 kHz spacing. Note that the power spectral
density of the noise varies four orders of magnitude between 0 and 50 kHz.
Because of this strong frequency dependence of the noise, it important to use
modulation techniques in terahertz time-domain spectroscopy. This appendix
explains and compares different modulation techniques within the context of
terahertz time-domain spectroscopy.

The noise level within the frequency bandwidth that contains the measure-
ment information should be as low as possible. Noise outside this information
bandwidth is far less relevant, since this noise can be suppressed with elec-
tronic filters. Unfortunately, the information bandwidth usually starts at zero
frequency, where the noise levels are high. Modulation can be used to shift the
information to higher frequencies. In modulation techniques, the quantity that
is measured, which in our case is the electric field of a terahertz pulse, is mul-
tiplied by a periodic function. We call this periodic function the modulation
function and the inverse period of this function the modulation frequency. By
modulation, the information is copied to higher frequencies, where the noise
level is lower.

Figure B.2 illustrates modulation in the measurement of a terahertz pulse.
The terahertz pulse is modelled by a Gaussian pulse, and is measured by
slowly scanning the delay between terahertz pulse and probe pulse, where
typically a 20 ps time delay is scanned in about 10 ms. The spectrum of the
measured Gaussian pulse runs from DC to about 10 kHz, a region where the
laser produces lot of noise. In this example, a chopper modulates the tera-
hertz beam, and thus copies the information of the Gaussian pulse to higher
frequencies, where these is less noise. A chopper is a device that alternatingly
blocks and transmits either the optical beam that generates the terahertz beam
or the terahertz beam itself. This results in the modulation function shown in
figure B.2. As all periodic functions, the spectrum of the modulation func-
tion consists of delta peaks. As we will see, the amplitudes of these peaks are
important parameters that can be used to compare different modulation tech-

133



134 Appendix B. Modulation techniques

Figure B.1: Measured noise spectra of a Ti:Sapphire oscillator

Figure B.2: Amplitude as a function of time (left graphs) and power spectra (right
graphs) of an unmodulated Gaussian pulse, the modulation function and the
modulated Gaussian pulse. The Gaussian pulse has a full width at half maxi-
mum of the intensity of 50 µs. The modulation function is a square wave with a
frequency of 50 kHz.
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niques. The bottom graphs display the amplitude as a function of time and
the power spectrum of the modulated Gaussian pulse. The power spectrum
graph shows three peaks, at DC, 50 kHz and 150 kHz. These peaks are all
exact copies of the original spectrum of the Gaussian pulse, although the am-
plitudes of the peaks are different. With lock-in amplifiers, frequencies with a
bandwidth around of one of the peaks can be selected, suppressing all noise
and information outside this bandwidth with an electronic filter. For instance,
the peak at 50 kHz can be selected with a lock-in amplifier synchronized to
the 50 kHz component of the modulator signal. The signal-to-noise ratio of
the measurement is then determined by the spectral amplitude of the 50-kHz
pulse and the noise around 50 kHz.

It is clear that a good modulation technique should have a delta peak in
the spectrum of the modulation function with two characteristics: a frequency
at which the noise level is low, and an amplitude that is as high as possi-
ble. This provides us with a good quantitative measure to compare differ-
ent modulation techniques. We will compare three different modulation tech-
niques: modulation with a chopper, modulation by alternating the bias volt-
age of a photoconductive emitter and modulation with a photoelastic modu-
lator (PEM). Modulation with a PEM has, until recently, never been used in
the terahertz field, and is discussed in section B.1. Section B.2 continues with
a comparison of different modulation techniques.

B.1 Photoelastic modulator

The photoelastic effect is the effect that stress in a solid causes a birefringence
proportionally to the stress. A photoelastic modulator (PEM) uses the photoe-
lastic effect to cause a polarization change of an optical beam that oscillates in
time. We can use a PEM to modulate the output of optical rectification, since
this terahertz generation method strongly depends on the polarization.

A PEM consists of a bar of an optically transparent material, in our case cal-
cium fluoride, to which piezo-electric actuators are attached. These actuators
vibrate at precisely the resonance frequency of the bar (≈ 50 kHz), thus creat-
ing a standing acoustic wave. The period of this standing wave (the distance
between two adjacent nodes) equals the length of the bar. The birefringence
is proportional to the amplitude of the standing wave, and is thus a function
of the position in the bar. However, due to the large period of the standing
wave, the amplitude of the wave can be assumed constant over a relatively
large aperture with a diameter on the order of 1 - 2 cm. A PEM, therefore,
does not require any focussing of the optical beam, as is for instance the case
with an acousto-optic modulator.

We consider the following configuration. A linearly polarized optical beam
that consists of ultrafast pulses propagates through a PEM into a 〈110〉 ori-
ented ZnTe crystal. In the ZnTe crystal, each optical pulse generates a tera-
hertz pulse through the process of optical rectification (section 4.2). The effi-
ciency of this generation process is a strong function of the polarization of the
ultrafast pulse in the ZnTe crystal, and thus of the time-dependent birefrin-
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Figure B.3: Schematic display of the (x,y,z) and the (x′,y′,z′) coordinate system.

gence of the PEM.
The original, linear polarization of the optical beam is aligned at 45 degrees

with the birefringence axes of the PEM. After the PEM, we can write for the
electric field of the optical beam

Ey′ =
1√
2

E0 exp(iφ/2) (B.1)

Ez′ =
1√
2

E0 exp(−iφ/2), (B.2)

where φ is the time-dependent phase difference induced by the time-depend-
ent birefringence, and E0 is the total electric field amplitude. Figure B.3 illus-
trates the coordinate systems used in this section. The axes of the coordinates
y′ and z′ are along the birefringence axes of the PEM. The (x,y,z) coordinate
system has its axes aligned with the crystalographic axes of the ZnTe crystal.
The optical beam propagates parallel to the x′ axis, which is 〈110〉 direction
of the crystal. The 〈11̄0〉 direction is parallel to the y′ axis, and 〈001〉 is par-
allel to the z′ axis. Note that in this configuration the original pump beam
polarization is in the 〈11̄

√
2〉, and is thus not along the 〈11̄1〉 direction, which

is the polarization direction for which the highest peak terahertz electric-field
strength is obtained without modulation.50 However, when modulating, the
modulation depth should be optimized, which leads to the configuration pre-
sented here.

If we assume that the absorption in the ZnTe crystal is negligible, we can
write for the nonlinear polarization in the ZnTe crystal69

Px =
1
2

ε0χ(2)
(

EyE∗
z + EzE∗

y

)
(B.3)

Py =
1
2

ε0χ(2) (EzE∗
x + ExE∗

z ) (B.4)

Pz =
1
2

ε0χ(2)
(

ExE∗
y + EyE∗

x

)
, (B.5)

where the x, y and z axes are defined in figure B.3. These equations can be
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rewritten to the lab (x′, y′, z′) coordinate system using

x̂′ = (x̂ + ŷ) /
√

2 (B.6)

ŷ′ = (x̂ − ŷ) /
√

2 (B.7)
ẑ′ = ẑ (B.8)

In the x′, y′, z′ coordinate system, the nonlinear polarization is given by

Px′ = 0 (B.9)

Py′ = −1
2

ε0χ(2)
(

Ey′E∗
z′ + Ez′E∗

y′
)

(B.10)

Pz′ =
1
2

ε0χ(2)Ey′E
∗
y′ , (B.11)

where we have used that there is no electric field in the propagation direction
(Ex′=0). Substituting equations B.1 and B.2 in the equation above yields

Py′ = −1
2

ε0χ(2)|E0|2 cos(φ) (B.12)

Pz′ =
1
4

ε0χ(2)|E0|2. (B.13)

We find that the nonlinear polarization in the 〈11̄0〉 direction (Py′) is pro-
portional to the cosine of φ. The polarization in the 〈001〉 direction (Pz′) is not
modulated, and is thus not interesting for our purpose. The nonlinear polar-
ization without PEM with a linear pump polarization in the 〈11̄1〉 direction
is given by Pmax = − 1

3

√
3ε0χ(2)|E0|2.50 This is the maximum nonlinear po-

larization than can be reached with an optical beam propagating along the
〈110〉 direction of a nonlinear cubic crystal. It is instructive to express the po-
larization for the modulated case in terms of this maximum polarization, as
it provides an idea of the efficiency of the measurement technique. For the
nonlinear polarization in the 〈11̄0〉 direction this expression is

Py′ =
1
2

√
3Pmax cos φ (B.14)

The maximum of the modulated nonlinear polarization is thus a factor 1
2

√
3 

0.866 smaller than the optimal nonlinear polarization without PEM.
We set the amplitude of the acoustic wave in the PEM such that φ has a

maximum value of π. φ is then equal to π cos (2π fmt), where t is the time,
and fm is the frequency of the acoustic wave in the PEM. The electric field of
the radiated terahertz pulse is proportional to the nonlinear polarization. The
modulation function of a PEM is thus given by

Mpem =
1
2

√
3 cos (π cos (2π fmt)) . (B.15)

where we consider only the radiated field in the y′ direction, because the field
in the z′ direction is not modulated.
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Figure B.4: Time domain and frequency domain calculation of the modulation
function of three modulation techniques: modulation with a chopper (dashed
line), with a square wave modulation of the emitter bias voltage (dotted line) and
modulation with a PEM (solid line). In both graphs, the data for the chopper has
been given an offset for clarity.

B.2 Comparison of modulation techniques

This section discusses and compares three modulation techniques. The first
technique is modulation with a chopper, which alternatingly blocks and trans-
mits the terahertz beam. The second method is to periodically switch the bias
voltage of a photoconductive emitter between plus and minus its maximum
value. The third technique is to use a PEM to modulate the terahertz beam
generated by optical rectification, as described in the previous section.

Note that the purpose of this section is not to determine which is the best
modulation technique. The choice for a modulation technique cannot be con-
sidered separately from the choice of a generation method. For instance, a
photoconductive antenna is insensitive to the polarization of the generating
pulse, and therefore cannot be modulated with a PEM.

Figure B.4 shows the modulation function of three different modulation
techniques. The maximum phase difference in the PEM (φ) is set to π. The
frequency of the chopper, of the bias-voltage square wave and of the acoustic
wave in the PEM are all set at 50 kHz. Note that the modulation frequency
of the PEM is 100 kHz, which is twice the frequency of the acoustic wave.
This is a favourable property of modulation with a PEM, since the noise levels
usually decrease with frequency. The spectra in figure B.4 show the multi-
ple peaks in the frequency domain associated with each modulation function.
The amplitude of these peaks is given by a Fourier series of the modulation
function

mk =
1
τ

τ∫
0

dtM(t) exp
(
−2πik

t
τ

)
, (B.16)

where M(t) is the modulation function, τ the modulation period and k ∈ Z is
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the peak number.
The peaks in the spectra at zero frequency can be disregarded, since these

peaks do not constitute any modulation. The following table gives the ampli-
tudes of the first nonzero-frequency peaks.

frequency amplitude
chopper 50 kHz 0.318
bias voltage 50 kHz 0.637
PEM 100 kHz 0.420

Neither of these modulation methods has a peak with an amplitude of one.
In fact, the value for the bias-voltage modulation (= 2/π) is the best possible
value for any modulation scheme. In this modulation scheme, the amplitude
of the terahertz electric field is constantly at its maximum value, while only
the polarity of the electric field is modulated.

It is interesting to compare the signal-to-noise ratio (SNR) with and with-
out modulation for the case that the noise amplitude is constant with fre-
quency. As we will see, in that case the SNR is reduced, which makes it dis-
advantageous to modulate. However, by calculating how much the SNR is
reduced, we can quantify how large the differences in spectral noise levels
need to be to justify the use of a modulation scheme.

We step-by-step go through the modulation and demodulation process,
and investigate how the SNR changes for a frequency-independent noise spec-
trum. The SNR is defined as the spectral amplitude of the signal divided by
the spectral noise amplitude. In the modulation process, the signal ampli-
tude spectrum is changed by a factor mk, as defined in equation B.16. The
noise spectrum is not affected by the modulation process. For a frequency-
independent noise spectrum this means that modulation changes the SNR by
a factor mk. In the demodulation process, both signal and noise are copied
from a bandwidth around the demodulation frequency to a bandwidth around
frequency zero. It is important to note that the signal and the noise that end up
at frequency f originate from two locations in the modulated spectrum. One
part originates from frequency fd − f and the other from frequency fd + f ,
where fd is the demodulation frequency. Provided that the phase of the lock-in
is set correctly, the signal contributions of the two locations add up construc-
tively in the demodulation process. However, the noise values at the two fre-
quencies are not equal, but are independent stochastic parameters. Stochastic
parameters need to be summed quadratically, which means that of the sum
of these two noise contribution equals

√
2 times the noise spectral density.

Since the signal adds up constructively and the noise does not, demodulation
increases the SNR by a factor

√
2. The combined effect of modulation and de-

modulation for a frequency-independent noise spectrum is thus a change of
the SNR by a factor

√
2mk. This factor is smaller than unity, which means that

lock-in techniques reduce the SNR, if the noise spectrum is flat.
Lock-in techniques can only be beneficial, if the noise spectral density at

frequencies around (harmonics of) the modulation frequency is smaller than
the noise spectral density at low frequencies. Assuming that the noise spectral
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density is constant on the scale of the information bandwidth, but is variable
on the scale of the modulation frequency, the change in the SNR is given by

SNR with lock-in
SNR without lock-in

=
√

2mk
N(k/τ)

N(0)
, (B.17)

where N( f ) is the noise amplitude spectral density at frequency f . With equa-
tion B.17, we can give clear recommendations for the use of modulators in ex-
periments: Use a chopper only, if the amplitude noise level at low frequencies
is more than 1/(

√
2m1) = 2.2 times larger than the noise level at the modu-

lation frequency N(1/τ). Use a bias-voltage modulation scheme only, if the
N(0) is more than 1/(

√
2m1) = 1.1 times larger than N(1/τ). Use a PEM only,

if the N(0) is more than 1/(
√

2m1) = 1.7 times larger than N(1/τ).
In the above, we assumed that the noise is approximately constant within

the information bandwidth. This is no longer the case, if the noise spectrum
contains sharp peaks. Such peaks can, for instance, be caused by interference
from power lines. The noise spectrum of the Ti:Sapphire oscillator in figure
B.1 has strong peaks with a 4 kHz spacing, which, we assume, are due to the
feedback-system of the Millenia pump laser.

The influence of noise peaks on a measurement is completely different
from the influence of a weakly frequency-dependent noise spectrum. In elec-
tronics, these peaks are not even referred to as noise, but as disturbances (for
our definition of noise: section 3.1). An example of the different influence on
a measurement is in averaging. Normally the noise level reduces proportion-
ally to the square root of the number of averages, but the noise contribution of
asynchronous peaks reduces proportionally to the number of averages. Noise
peaks that are synchronous to the measurement are especially annoying, since
averaging has no effect on these kinds of peaks. Synchronous peaks can, for
instance, arise, if the loudspeaker used to vary the time delay couples vibra-
tions to other mirrors. Concluding, noise peaks can be a big nuisance, and the
modulation scheme should ensure that they do not occur within the informa-
tion bandwidth.

When choosing between different types of modulators, the modulation fre-
quency is also an important property. Experimenters need a modulation fre-
quency around which the noise is minimal. Which modulation frequencies are
possible, strongly depends on the modulation technique. A mechanical chop-
per is usually limited to lower frequencies (< 10 kHz), and can itself cause
noise due to vibrations. An acousto-optic modulator can be used as a chopper
at high frequencies, up to the tens of megahertz range. Unlike the modulation
frequency of a chopper, the modulation frequency of a particular PEM is fixed.
This frequency is determined by the physical size of the active medium, and
is usually in the range of 50 kHz - 200 kHz. The modulation frequency of the
bias voltage of a photoconductive emitter is easily controlled with a function
generator, and has a maximum value in the order of 1 MHz, determined by
the capacitance and resistance of the emitter.

In our optical rectification experiments, we have used a PEM from Hinds
Instruments. This PEM has a modulation frequency of 113 kHz, and has an



B.2. Comparison of modulation techniques 141

active element of calcium fluoride with an useful aperture of 23 mm. This
modulator has been chosen, because is allows a reasonably high modulation
frequency, it is broadband and does not significantly lengthen our ultrafast
pulses. In the experiments with a photoconductive emitter, we modulated the
bias voltage at 50 kHz. We found that modulation with a PEM gave better
experimental results than modulation with an optical chopper.
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Appendix C

EM propagation through
conducting media

The propagation of electromagnetic radiation through a conducting medium
is often approximated by the wave equation with a dielectric constant that
is modified to account for the conductivity. This is an approximation that
requires two implicit assumptions; Ohm’s law should be valid and the free
charge carrier density should be negligible. This appendix discusses the va-
lidity of these assumptions at terahertz frequencies.

Anomalous skin effect

The validity of Ohm’s law at terahertz frequencies is limited due to the so-
called anomalous skin effect. In Ohm’s law it is assumed that the current on
a particular point is proportional to the local electric field. However, this is
not valid if the electric field varies spatially on the scale of the mean free path
of the carriers. It that case the current is not proportional to the electric field
at a point, but is determined by the electric field averaged over the different
points along the mean free path. This effect reduces the penetration depth into
a conductor and is therefore called the anomalous skin effect.112, 113

In a metal at room temperature, where electron-phonon scattering is dom-
inant, the mean-free-path length is given by112

lm f p =
vF h̄
kBT

, (C.1)

where vF is the Fermi velocity of the electrons, which is 1.57 × 106 m/s for
copper at room temperature.114 This corresponds to a value for lm f p of 40 nm.

Assuming that the Drude model (equation 5.26) is valid, the electric field
penetration depth in a metal is

lpen =
c

2π f
Re

{
fp√

f 2 + j f fτ

}−1

. (C.2)
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For copper ( fτ = 2.2 THz and fp = 1787 THz)93 at 2 THz, lpen = 36 nm. The
mean free path and the penetration depth are thus of the same order of mag-
nitude. It seems therefore that an anomalous skin effect on the electromagnetic
properties of metals is to be expected at terahertz frequencies.

Can the charge density be neglected?

We consider, assuming that Ohm’s law is valid, under which condition the
electromagnetic properties of a conducting medium can be described through
a complex dielectric constant. Faraday’s law for the rotation of the electro-
magnetic field is given by (equation 5.6)

∇× E = −jωB, (C.3)

where we have assumed a time dependence of exp(jωt). This equation can be
rewritten by taking the rotation of both sides

∇(∇ · E) −∇2E = −jω∇× B. (C.4)

In this equation we substitute Ampère’s law for the rotation of the magnetic
field, which is given by (equation 5.8)

∇× 1
µ

B = J f + jωεE, (C.5)

where µ is the magnetic permeability and ε is the electric permittivity without
free charge carriers. The current density of the free carriers is given by J f .

The result of the substitution of equation C.5 into equation C.4 is

∇(∇ · E) −∇2E + jωµJ f − ω2εµE = 0, (C.6)

which is valid provided that µ does not depend on position.
We will use Ohm’s law J f = σE, where σ is the complex conductivity of

the medium, to get

∇(∇ · E) −∇2E − ω2ε′µE = 0, (C.7)

where ε′ ≡ ε − j σ
ω is the electric permittivity modified to account for the con-

ductivity of the medium.
Assuming that ∇ · E = 0 results in the wave equation

∇2E + ω2ε′µE = 0. (C.8)

A conducting medium can thus be described as a dielectric with a permit-
tivity ε′, if divergence of the electric field can be neglected. To see under which
condition this divergence is negligible, we consider Gauss’ law (equation 5.5)

∇·εE = ρ f (C.9)
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with ρ f the charge density of free charges. If the permittivity is isotropic and
homogeneous, then this equation can be rewritten as

∇·E =
ρ f

ε
(C.10)

So if the divergence of the electric field is to be zero, then the charge density
should be zero. The charge density is coupled with the current density by
charge conservation

jωρ f = −∇ · J f . (C.11)

Combining this equation with Ohm’s law J f = σE we get

ρ f =
j

ω
∇ · J =

j
ω

(σ∇ · E + E · ∇σ) , (C.12)

which with equation C.10 gives

∇ · E = −E · ∇σ

jωε′
(C.13)

where ε′ is, as before, defined as ε − j σ
ω .

The conclusion is that the divergence of the electric field can be assumed
zero, if the conductivity can be assumed to be homogeneous (∇σ = 0). This
is generally true in metals. In metals, the free carrier density is sufficiently
high to neglect any changes in the conductivity due to the electromagnetic
field. However, there are a number of situations where the conductivity is
not homogenous. The conductivity is, for instance, spatially dependent in the
depletion layer of semiconductors. The conductivity is also not homogeneous
in turbulent flows of plasmas, where local fluctuations in the density of the
plasma will cause variations in the conductivity. A third example of a situation
where the divergence of the electric is nonzero, is when the conductivity is
changed by local excitation of carriers in semiconductors.

In general, it is valid to describe the electromagnetic properties of a con-
ductor with a complex dielectric constant as long as Ohm’s law is valid with
a homogeneous complex conductivity.
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Appendix D

Wave equation in cylindrical
symmetric problems

The appendix derives cylindrical symmetric solutions to the wave equation.
The calculation will be performed for the electric field, but is equally valid for
the magnetic field. The wave equations are given by (equation 5.9)

∇2Ex + k2Ex = 0 (D.1)

∇2Ey + k2Ey = 0 (D.2)

∇2Ez + k2Ez = 0 (D.3)

where �E = (Ex , Ey, Ez) is the electric field vector and k is the wavenumber in
the medium.

In a cylindrical coordinate system with coordinates (r, φ, z), ∇2 is given
by115

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂φ2 +
∂2

∂z
(D.4)

If this equation is substituted in the wave equations we get

1
r

∂

∂r

(
r

∂Ex

∂r

)
+

1
r2

∂2Ex

∂φ2 +
∂2Ex

∂z2 + k2Ex = 0 (D.5)

1
r

∂

∂r

(
r

∂Ey

∂r

)
+

1
r2

∂2Ey

∂φ2 +
∂2Ey

∂z2 + k2Ey = 0 (D.6)

1
r

∂

∂r

(
r

∂Ez

∂r

)
+

1
r2

∂2Ez

∂φ2 +
∂2Ez

∂z2 + k2Ez = 0. (D.7)

The field vectors are also transformed into the cylindrical system with

Ex = cos(φ)Er − sin(φ)Eφ (D.8)

Ey = sin(φ)Er + cos(φ)Eφ. (D.9)
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We only look at solutions with cylinder symmetry, which means that Er, Eφ

and Ez are independent of φ. Using this symmetry and the above substitution,
equations (D.5) to (D.7) can be rewritten as

1
r

∂

∂r

(
r

∂Er

∂r

)
− 1

r2 Er +
∂2Er

∂z
+ k2Er = 0 (D.10)

1
r

∂

∂r

(
r

∂Eφ

∂r

)
− 1

r2 Eφ +
∂2Eφ

∂z
+ k2Eφ = 0 (D.11)

1
r

∂

∂r

(
r

∂Ez

∂r

)
+

∂2Ez

∂z
+ k2Ez = 0. (D.12)

As an ansatz, the following solutions are used

Er(r, z) = E′
r(r) exp(−jk′z) (D.13)

Eφ(r, z) = E′
φ(r) exp(−jk′z) (D.14)

Ez(r, z) = E′
z(r) exp(−jk′z), (D.15)

which leads to the following wave equations

r
∂

∂r

(
r

∂E′
r

∂r

)
+
(
(k2 − k′2)r2 − 1

)
E′

r = 0 (D.16)

r
∂

∂r

(
r

∂E′
φ

∂r

)
+
(
(k2 − k′2)r2 − 1

)
E′

φ = 0 (D.17)

r
∂

∂r

(
r

∂E′
z

∂r

)
+
(

k2 − k′2
)

r2E′
z = 0. (D.18)

These differential equation are known as Bessel differential equations. The
solutions to these equations are given by71

E′
r = C1rJ1

(√
k2 − k′2r

)
+ C2rY1

(√
k2 − k′2r

)
(D.19)

E′
φ = C1φJ1(

√
k2 − k′2r) + C2φY1

(√
k2 − k′2r

)
(D.20)

E′
z = C1zJ0

(√
k2 − k′2r

)
+ C2zY0

(√
k2 − k′2r

)
, (D.21)

where Jn(x) is a Bessel function of the first kind and of the n’th order and
Yn(x) is a Bessel function of the second kind and of the n’th order. Various
constants are indicated by subscripted Cs.
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List of symbols

symbol unit description
B T magnetic field
c ms−1 speed of light in vacuum
C F capacitance
d m layer thickness
D Cm−2 electric displacement
E Vm−1 electric field
h Js Planck’s constant
H Am−1 the “H” field
I A electric current
I Wm−2 intensity
j – imaginary unit
J Am−2 volume current density
kB JK−1 Boltzmann’s constant
k m−1 wavenumber
l m length
L H inductance
M – modulation function
n – refractive index
N V Hz−1/2 Noise amplitude spectral density
P Cm−2 polarization
P W power
Q C electric charge
rc – direction of the polarization modes of the detection crystal
rl – direction of the polarization modes of a quarter-wave plate
rw – polarization direction of the axis of a Wollaston prism
r41 mV−1 41 component of the electro-optic tensor
R Ω resistance
s – probe-beam propagation direction
t s time
T K temperature
u Jm−3 energy volume density
v ms−1 velocity
V – sensitivity vector of electro-optic detection
δij – Kronecker delta
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160 List of symbols

ε Fm−1 permittivity tensor
ε0 Fm−1 permittivity of vacuo
εr – relative permittivity or dielectric constant
ζ rad induced phase difference in electro-optic detection
λ Cm−1 line charge density
µ Hm−1 magnetic permeability
ρ Cm−3 charge density
χ(1) – first order electric susceptibility
χ(2) mV−1 second order electric susceptibility
χ(3) m2V−2 third order electric susceptibility
ψ rad phase difference
ω rad s−1 radial frequency
τ s period (time)
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Summary

In the daily life we encounter many devices that are able to make images, such
as a camera, night-glasses, a radar-installation or an X-ray machine. These
devices use different forms of radiation: visible light for a camera, infrared
radiation for some types of night-glasses, microwave radiation for a radar-
installation and Röntgen radiation for an X-ray machine. Whether a radiation
type is suitable to image a particular object depends to a large extent on the
interaction of the radiation with different materials. Röntgen radiation, for
example, is very suitable to image the human skeleton, because it goes unhin-
dered through skin, fat and muscles, but is absorbed by bones.

Terahertz (=1012 Hz) radiation is a form of electromagnetic radiation that
is at this moment used rarely for imaging purposes. For a long time, there has
been little attention for possible applications of terahertz radiation, because
of a lack of good sources and detectors. However, there are indeed reasons
to assume that imaging with terahertz radiation could be very useful. First,
many materials, such as paper, plastics and clothing are transparent for tera-
hertz radiation, while they block visible light. This opens the opportunity to
look through objects. One can, for instance, consider checking the storage life
of milk without opening the milk carton, or the security checks on concealed
weapons at airports. Secondly, many materials have characteristic properties
in the terahertz region that make a clear contrast between these materials pos-
sible. For instance, it is possible to specifically measure the concentration of
gasses in a gas mixture. Also, different forms of DNA can be distinguished.

By the development of stronger sources and more sensitive detection meth-
ods, imaging with terahertz radiation becomes ever more attractive. How-
ever, for some applications, such as imaging biological cells, the resolutions
of many terahertz imaging techniques are not good enough. This is caused
by a fundamental physical limit, the diffraction limit, which dictates that the
resolution of ordinary imaging techniques is limited to about half the wave-
length of the radiation used. This effect also occurs in visible-light micro-
scopes, where it limits the resolution to about 0.25 µm. However, since the
wavelength of terahertz radiation is about a factor 1000 larger than that of
visible light, the diffraction limit is a much bigger problem with terahertz ra-
diation. For terahertz radiation, the diffraction limit on the resolution is about
0.1 mm. To use terahertz radiation for imaging microscopic objects, such as
cells, the diffraction limit will thus have to be circumvented.
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This thesis explores different aspects of terahertz imaging with the ulti-
mate goal of the development of a terahertz microscopy technique. Two of
these aspects are the generation and detection of terahertz pulses. By using
terahertz sources that produce extremely short pulses, the reflection and ab-
sorption of objects can be measured rapidly at a large number of frequencies.
We also describe the different noise sources in our measurements and discuss
how the influence of these sources can be minimized. Terahertz waves that
propagate over metal surfaces are studied, because of the possibly large in-
fluence of these waves in our microscopy setup. The last part of this thesis
presents a new terahertz microscopy technique.

The four most important results of the research described in this thesis,
are as follows: First, a detail description of our detection method has led to
a extension of this method, which makes it possible to simultaneously mea-
sure not only the strength of a terahertz wave, but also its direction of vibra-
tion. Second, adverse effects prove to arise, if the power of the optical light
beam used to measure the terahertz radiation is too high. Such high powers,
however, are desirable, since the relative noise level is lower at high pow-
ers. We present different recommendations that suppress the adverse effects
without increasing the average noise level. Third, the propagation of tera-
hertz waves over metal surfaces proves to be very sensitive to extremely thin
coatings applied on the metal surface. This result can potentially be applied
to sensitive measurements on coatings. One can, for instance, consider the
determination of the thickness and quality of the insulation on electricity ca-
bles. Finally, a new microscopy technique is presented, which circumvents
the diffraction limit. With this technique, microscopy can be performed, po-
tentially with resolutions on the order of tens of nanometers. However, more
research is needed to scientifically demonstrate resolutions that are sufficient
for microscopy.

Concluding, the different aspects of the use of terahertz pulses for mi-
croscopy purposes has been explored intensively. This has led to a new imag-
ing technique that constitutes an important step towards terahertz microscopy.
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Samenvatting

In het dagelijks leven komen we vele apparaten tegen die afbeeldingen kun-
nen maken, zoals een fotocamera, een nachtkijker, een radarinstallatie of een
Röntgenscanner. Deze apparaten gebruiken verschillende vormen van stra-
ling: zichtbaar licht voor de fotocamera, infrarood straling voor sommige
nachtkijkers, microgolfstraling voor de radarinstallatie en Röntgen straling
voor de Röntgenscanner. Of een stralingsvorm geschikt is om een bepaald
object af te beelden wordt in belangrijke mate bepaald door de interactie van
de straling met verschillende materialen. Röntgenstraling, bijvoorbeeld, is erg
geschikt om het menselijk skelet af te beelden, omdat het ongehinderd door
huid, vet en spieren heen gaat, maar geabsorbeerd wordt door botten.

Terahertz (= 1012 Hz) straling is een vorm van elektromagnetische straling,
die op dit moment nog weinig gebruikt wordt voor het maken van afbeel-
dingen. Lange tijd is er nauwelijks aandacht geweest voor de mogelijke toe-
passingen van terahertz straling, omdat er geen goede bronnen en detectoren
voorhanden waren. Er zijn echter wel degelijk redenen om aan te nemen dat
het afbeelden met terahertz straling erg nuttig zou kunnen zijn. Ten eerste zijn
vele materialen, zoals papier, plastics en kleding, transparant voor terahertz
straling, terwijl ze zichtbaar licht blokkeren. Dit opent de mogelijkheid om
door objecten heen te kijken. Hierbij valt bijvoorbeeld te denken aan het con-
troleren van de houdbaarheid van melk zonder het melkpak te openen, of het
controleren van vliegtuigpassagiers op wapens die onder hun kleren verbor-
gen zijn. Ten tweede hebben vele materialen karakteristieke eigenschappen in
het terahertz gebied die een duidelijke contrast tussen deze materialen moge-
lijk maakt. Zo is het bijvoorbeeld mogelijk om specifiek de concentratie van
gassen zoals waterdamp te meten in gasmengsels. Ook kunnen verschillende
vormen van DNA van elkaar onderscheiden worden.

Door de ontwikkeling van sterkere bronnen en gevoeligere detectiemetho-
den wordt het afbeelden met terahertz straling steeds aantrekkelijker. Echter,
voor sommige toepassingen, zoals het afbeelden van biologische cellen, is de
resolutie van veel afbeeldingstechnieken met terahertz straling te beperkt. Dat
komt door een fundamentele natuurkundige grens, de diffractielimiet, die be-
paald dat de resolutie van gewone afbeeldingstechnieken wordt beperkt tot
ongeveer de helft van de golflengte van de gebruikte straling. Dit effect treed
ook op bij zichtbaar-licht microscopen, waar het de resolutie begrenst tot on-
geveer 0.25 µm. Echter, doordat de golflengte van terahertz straling ongeveer
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een factor 1000 groter is dan die van zichtbaar licht, is de diffractielimiet bij
terahertz straling een veel groter probleem. Voor terahertz straling beperkt de
diffractielimiet de resolutie tot ongeveer 0.1 mm. Om met terahertz straling
microscopische objecten, zoals cellen, af te beelden, moet de diffractielimiet
dus omzeild worden.

Dit proefschrift onderzoekt verschillende aspecten van het afbeelden met
behulp van terahertz straling met als uiteindelijk doel de ontwikkeling van
een terahertz microscopietechniek. Deze aspecten bevatten onder meer de ge-
neratie en detectie van terahertz pulsen. Door gebruik te maken van terahertz
bronnen die korte pulsen uitzenden, kan in korte tijd de reflectie en absorptie
worden gemeten voor een groot aantal terahertz frequenties. We beschrijven
ook de verschillende ruisbronnen in onze metingen en bediscussiëren hoe de
invloed van deze ruisbronnen kan worden geminimaliseerd. Terahertz golven
die zich voortplanten over metalen oppervlakken, worden bestudeerd vanwe-
ge de mogelijk grote invloed van deze golven in onze terahertz microscopie-
opstelling. Het laatste gedeelte van dit proefschrift presenteert een nieuwe
terahertz microscopietechniek.

De vier belangrijkste resultaten van het onderzoek beschreven in dit proef-
schrift, zijn als volgt: Ten eerste heeft een gedetailleerde beschouwing van on-
ze detectiemethode geleid tot een aanpassing van deze methode, waardoor
het mogelijk is om tegelijk niet alleen de sterkte van een terahertz golf te me-
ten, maar ook zijn trillingsrichting. Ten tweede blijken er nadelige effecten
op te treden als het vermogen van de optische lichtbundel die gebruikt wordt
om de terahertz straling te meten, te hoog wordt. Zulke hoge vermogen zijn
echter wel gewenst, aangezien het relatieve ruisniveau bij hoge vermogens
lager is. Er zijn verschillende aanbevelingen gedaan om de nadelige effec-
ten te onderdrukken, zonder het relatieve ruisniveau te laten toenemen. Ten
derde blijkt dat de propagatie van terahertz golven over metalen draden erg
gevoelig is voor extreem dunne deklagen op het metaaloppervlak. Dit resul-
taat kan potentieel worden toegepast voor zeer gevoelige metingen aan dek-
lagen. Hierbij kan bijvoorbeeld worden gedacht aan het bepalen van de dikte
en de kwaliteit van de isolatielaag op elektriciteitsdraden. Tenslotte wordt een
nieuwe microscopietechniek gepresenteerd, waarmee de diffractielimiet kan
worden omzeild. Met deze techniek kan microscopie worden bedreven, po-
tentieel met resoluties in de orde van tientallen nanometers. Er is echter nog
meer onderzoek nodig om een resolutie die voldoende is voor microscopie,
wetenschappelijk aan te tonen.

Concluderend is er intensief gekeken naar de verschillende aspecten van
het gebruik van terahertz pulsen voor microscopiedoeleinden. Dit heeft geleid
tot een nieuwe afbeeldingstechniek die een belangrijke stap is op weg naar
terahertz microscopie.
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