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SUMMARY

As mobility advances toward full automation, the role of the human within the vehi-
cle is undergoing a profound transformation. Automated vehicles promise enhanced
safety, increased convenience, and optimised traffic flow. Yet, these benefits introduce
new challenges in user experience, chief among them is motion comfort. When passen-
gers relinquish control and assume a passive role, conflicts between what is seen and
what is expected become more prominent. This mismatch can lead to motion sickness
and disengagement, and in more severe cases, undermine user acceptance and trust in
automated systems.

This thesis confronts the motion sickness problem from both sides of the human-
machine interaction. On one hand, it introduces a method for planning vehicle motion
that inherently considers motion sickness-inducing stimuli. On the other, it proposes
algorithms that ensure that driving simulators can deliver more immersive and percep-
tually accurate feedback, enabling both effective evaluation and real-world deployment
of comfort-aware automated driving strategies.

In Chapter 2, the Motion Sickness Mitigating (MSM) Trajectory Planner is developed
using a model-based optimal control framework, where motion sickness, quantified via
the motion sickness dose value (MSDV) metric, is embedded directly in the cost func-
tion. Rather than optimising solely for traditional performance metrics such as travel
time or energy efficiency, the approach integrates a human-centric discomfort metric
into the planning process. This is achieved through a model-based optimal control
framework that generates trajectories which are both dynamically feasible and better
suited to reducing motion sickness.

Subjective evaluations demonstrated a reduction in motion sickness of over 65%
among participants. However, this improvement came at the cost of a 50% increase in
travel time. These results underscore an inherent trade-off in automated mobility: more
comfortable trajectories may require longer durations, while faster trajectories can in-
crease passenger discomfort. The findings highlight the potential for future trajectory
planners to be adaptive, not only to traffic and environmental conditions, but also to
individual user preferences or physiological states.

However, evaluating and tuning such comfort-aware planners requires tools capable
of faithfully reproducing the specific forces experienced during real driving. This leads
to the second core contribution of the thesis: the design of motion cueing algorithms
(MCAs) for high-fidelity driving simulators. These systems must accurately replicate ve-
hicle motion within the constraints of limited motion platforms, ensuring that the expe-
rience inside the simulator closely mimics that of the road. This fidelity is crucial when
assessing human-centered metrics like motion sickness. Additionally, since the primary
focus of this thesis is on automated driving, motion cueing strategies were specifically
designed and implemented for passive driving cases where the driver becomes the pas-
senger.

ix



x SUMMARY

A central development in this domain is presented in Chapter 3, where the frequency-
splitting MPC-based MCA is introduced. The proposed MCA decomposes the motion
signal into frequency components, delivering low-frequency cues via tilt coordination,
high-frequency cues through translational motion, and incorporating full vehicle accel-
erations to reconstruct the total specific force. By leveraging the predictive capabilities
of the MPC framework, the frequency-splitting MCA improves cueing accuracy and con-
straint handling.

Compared to the widely used filter-based Adaptive Washout algorithm, the frequency-
splitting MCA demonstrates significantly higher physical accuracy in reproducing spe-
cific forces. Subjective evaluations further confirm participants’ preference for frequency-
splitting MCA over Adaptive Washout.

However, a key perceptual limitation remains: pre-positioning, where anticipatory
tilt movements occur before large accelerations. Although mathematically justified, of-
ten yielding a net-zero specific force, these motions can appear perceptually unnatural
to human occupants, disrupting immersion and causing false cues.

To overcome this issue, a more refined control strategy, Autoscaling MCA, was de-
veloped in Chapter 4. This algorithm reduces the manual scenario-specific tuning effort
by introducing a dynamic scaling mechanism that automatically adapts to the reference
input. Crucially, it scales only the tilt-coordination component, prioritising motion re-
production via translational movement, which produces a more perceptually congruent
experience (as accelerations in real vehicles are majorly translational). This innovation
solves two problems in MPC-based motion cueing: it minimises pre-positioning arti-
facts and removes the burden of tuning scaling factors for different driving scenarios.
The result is a more realistic, adaptable, and immersive simulation experience, crucial
not only for user testing but also for driver training and vehicle development. Moreover,
the computational efficiancy is further improved compared to the frequency-splitting
MCA,

Returning to the primary goal of reducing motion sickness, Chapter 5 proposes a fun-
damental shift in motion cueing via the Subjective Vertical Conflict MCA (SVC-MCA), the
first MCA to embed a predictive motion sickness model within an MPC framework. By
simulating how the brain resolves discrepancies between visual and vestibular inputs,
the algorithm proactively adjusts the simulator’s motion to reduce predicted sickness. It
introduces a tunable control balance between physical accuracy (specific force track-
ing) and motion sickness mitigation, enabling flexible operation across a wide range
of simulator scenarios. This marks a fundamental shift in cueing philosophy—from
merely replicating physical dynamics to intelligently accounting for human perception
and comfort.

Objectively, the SVC-MCA algorithm demonstrated an effective trade-off between
specific force fidelity and sickness reduction. Subjectively, user studies revealed sig-
nificant reductions in reported motion sickness levels with marginal loss in realism or
immersion. These results confirm that embedding perceptual models within the control
loop can enhance comfort without compromising simulator effectiveness.

Yet, MPC-based MCAs are inherently computationally demanding, due to the com-
plexity of optimising system dynamics in real time. To support real-time execution,
Chapter 6 develops a Hybrid MPC framework that combines an offline-trained explicit
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MPC component—using regression-based lookup tables—with an online implicit MPC
solver. The explicit component provides a warm-start estimate, enabling the implicit
MPC to converge more quickly. This hybrid approach balances model complexity with
computational efficiency, improving the feasibility of deploying MCAs in operational
simulators.

Across all of these efforts, from planning AV trajectories that respect human comfort
to building simulator control systems that adapt to both physical and perceptual con-
straints, this thesis delivers a unified, perception-aware framework for reduced sickness
in automated mobility. It makes the case that motion sickness is not merely a side effect
to be tolerated, but a design constraint to be actively managed. By integrating knowledge
from vehicle dynamics, control systems, and human perception, this research redefines
how we think about comfort and control in the age of autonomy.

Ultimately, this thesis advocates for a new direction in automated vehicle design,
one that moves beyond raw performance and embraces the complexity of human expe-
rience, encompassing the subjective dimensions of ride comfort, motion sickness, and
perceptual coherence. It shows that with thoughtful modelling, clever control, and an
emphasis on perception, we can design automated systems that are not only capable
and efficient but also deeply comfortable and genuinely human-centred.





1
INTRODUCTION

Aim for the moon.
If you miss, you may hit a star.

William Clement Stone

Dream the impossible. Dream big.
You have to believe in yourself and work hard for your dreams.

Sir Lewis Hamilton

1
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2 1. INTRODUCTION

1.1. OVERVIEW
The advent of automated vehicles (AVs) is driving a major shift in the transportation
landscape, with significant implications for safety, traffic efficiency, and cost reduction.
Predictions indicate that by 2050, AVs could account for as much as 50% of all vehicle
sales, signaling a fundamental change in how society perceives and utilizes transporta-
tion [1], [2]. This shift brings new opportunities but also presents challenges related to
passenger comfort, particularly as more people transition to passive roles during travel.
Among these, motion sickness (MS) emerges as a major impediment to the widespread
acceptance and daily use of AVs.

Traditionally, MS has been an issue primarily associated with maritime and aerial
transport. However, as AVs free occupants from the task of driving and offer opportuni-
ties to engage in non-driving activities while unable to view the external environment,
the probability of MS increases significantly [3]. This is primarily due to the sensory
mismatch between vestibular, visual, and proprioceptive cues, often exacerbated when
passengers look at screens or read while in motion. As such, MS must be addressed not
as a secondary concern but as a core design objective in AV systems.

In parallel, the advancement of AV technology requires extensive testing and vali-
dation, particularly regarding the interaction between automated systems and human
passengers. Driving simulators are playing an increasingly important role in providing
a safe, controlled environment for testing these systems, enabling engineers to evalu-
ate performance and refine algorithms without the risks and costs of real-world trials.
Yet, they too can induce discomfort through simulator sickness, stemming from visual-
vestibular conflicts due to imperfect motion cueing. As simulation fidelity improves, the
demand for more perceptually accurate and physiologically compatible motion cueing
algorithms increases.

This thesis addresses the overarching challenge of motion sickness in the context of
automated driving and simulation. It contributes to the body of knowledge by proposing
control strategies that explicitly consider human discomfort, integrating physiological
models into motion planning and cueing processes. The work bridges the domains of
control systems, vehicle dynamics, human factors, and perceptual psychology, present-
ing a unified framework for sickness-free mobility.

1.1.1. AUTOMATED VEHICLES
Automated vehicles (AVs) are typically classified into six levels of automation as defined
by the Society of Automotive Engineers (SAE) in the SAE J3016 standard. These levels
describe the extent to which the vehicle’s automated systems can control driving tasks,
ranging from fully manual control by the driver to full autonomy. The levels are as fol-
lows:

• Level 0 (No Driving Automation): The driver is entirely responsible for controlling
the vehicle, with no automation support.

• Level 1 (Driver Assistance): The vehicle may assist the driver with either steering
or acceleration/braking, but not both at the same time. The driver remains fully
engaged in the driving task. Examples include adaptive cruise control or lane-
keeping assist.
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• Level 2 (Partial Driving Automation): The vehicle can take over acceleration, brak-
ing, and steering in specific conditions, but the driver must remain engaged and
monitor the environment. Tesla’s Autopilot [4] is an example of this level.

• Level 3 (Conditional Driving Automation): The vehicle can handle all aspects of
driving under certain conditions, including environmental monitoring, but the
driver must be available to take over if necessary. Audi’s Traffic Jam Pilot [5] is
an example of Level 3.

• Level 4 (High Driving Automation): These vehicles can fully control all driving
tasks within specific conditions (e.g., designated geographical areas or weather
conditions) without human intervention. Waymo’s robotaxi is an example of Level
4 automation [6].

• Level 5 (Full Driving Automation): The vehicle is fully autonomous, capable of
handling all driving tasks in any environment, under any conditions, without hu-
man intervention. No such vehicle/system exists to date.

As automation levels increase, AVs offer passengers the opportunity to engage in
non-driving tasks such as work or leisure, which could redefine societal expectations
of comfort and productivity during travel [7]. However, this shift towards passive oc-
cupancy introduces challenges, particularly with regard to motion sickness. Passengers
who focus on non-driving activities without a view of the external environment are at
greater risk of experiencing MS, a problem that worsens as automation increases. To
ensure widespread adoption of AVs, addressing these comfort-related challenges is es-
sential.

1.1.2. MOTION SICKNESS
Motion sickness is a condition that can arise when an individual is exposed to motion,
leading to a mismatch between the signals detected by the inner ear (vestibular system)
and the expected sensory input based on prior experience. This discrepancy between
perceived movement and expectation can trigger symptoms such as nausea, dizziness,
headaches, and general discomfort. Motion sickness is commonly experienced in vari-
ous modes of transportation, including cars, planes, boats, and trains, particularly when
passengers are exposed to unfamiliar or irregular motion patterns.

The most widely accepted explanation for motion sickness is the sensory conflict
theory, which posits that symptoms arise from a mismatch between the motion sensed
by the body (via vestibular, visual, and proprioceptive systems) and the motion expected
by the brain’s internal models. This conflict can occur even in the absence of visual in-
put, indicating that motion sickness is not solely due to visual-vestibular mismatch. It
is especially prevalent during conditions involving unexpected accelerations or limited
motion predictability.

Motion sickness manifests as discomfort and nausea when an individual is subjected
to specific motion stimuli. The primary symptoms include nausea and vomiting, ac-
companied by objective signs such as retching, pallor, sweating, belching, yawning, and
salivation. The aversive nature of motion sickness has been exploited historically, both
as a form of punishment [8] and as a peculiar form of therapy [9].
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There are several theories on how motion sickness is induced in humans. The most
widely accepted explanation is the Sensory Conflict Theory [8], which indicates that mo-
tion sickness arises due to conflicts between different sensory systems: visual, vestibu-
lar, and non-vestibular proprioceptors. This conflict occurs when the perceived motion
does not match the actual motion, triggering motion sickness. Hence, the condition
arises when sensory information contradicts one’s expectations based on past experi-
ences. Another widely accepted theory is the Postural Instability Theory [10], which sug-
gests that motion sickness symptoms occur when an individual has not yet adapted to
postural instability, particularly in response to motion stimuli.

A third theory, the Eye Movement Theory, proposed by Ebenholtz [11], [12], attributes
motion sickness to the stimulation of the vagus nerve due to specific eye movements
(such as optokinetic nystagmus and vestibular ocular response). These eye movements
cause tension in the eye muscles, which in turn stimulates the vagus nerve, resulting in
motion sickness symptoms. However, studies, such as those by Irmak et al. [13], show
that even blindfolded individuals exposed to motion stimuli experience motion sickness
symptoms. This suggests that eye movements may exacerbate symptoms but are not the
sole cause of motion sickness.

In the case of driving simulators, due to two different stimuli arrising from the visual
cues and the motion of the platform, the case of motion sickness can be exacerbated and
hence a higher chance of motion sickness development occurs. This is generally termed
as simulator sickness.

1.1.3. DRIVING SIMULATORS

The development of automation technology in AVs requires extensive testing to ensure
the systems are safe, reliable, and comfortable for passengers. Driving simulators play
a pivotal role in this process by providing a controlled, crash-free environment where
different driving scenarios can be replicated without the risks and costs associated with
real-world trials. These simulators allow developers to evaluate the performance of au-
tomated systems, such as perception algorithms, control strategies, and user interfaces,
while interacting with human users, under a wide variety of dynamic conditions.

One of the key advantages of simulators is their ability to replicate extreme or rare
events that are difficult to test on real roads, thereby reducing risk while accelerating the
development cycle. Additionally, simulators are invaluable for testing human factors, in-
cluding how passengers interact with autonomous systems at varying levels of automa-
tion. This is crucial for understanding user behaviour and acceptance as AVs transition
from semi-autonomous to fully autonomous systems.

Simulators also provide a potential tool for evaluating passenger comfort, particu-
larly in terms of motion sickness. As AVs transition to higher levels of automation, pas-
sengers no longer need to focus on driving, which can lead to discomfort and MS. By
using simulators, developers can test how different motion cues and control strategies
influence MS symptoms in a safe and controlled environment. This allows for the iden-
tification and resolution of comfort-related issues before AVs are deployed on the road.

Moreover, simulators enable the validation of emerging automated driving technolo-
gies. These technologies need to be tested in a controlled virtual environment to ensure
they are safe and reliable before being implemented in real-world vehicles. Beyond test-
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ing the algorithms themselves, simulators also offer a means of evaluating human ac-
ceptance of these new technologies, which is critical for their successful deployment.

In summary, driving simulators are essential tools for advancing automated driving
technology, allowing for safe testing, validation, and refinement of both the systems and
human interactions with these systems. This thesis will explore how driving simulators
can be used to address the challenges of motion sickness and improve the human accep-
tance of automated driving technologies, contributing to the broader goal of developing
safe and comfortable AVs.

Driving simulators are increasingly integral to the development and validation of
automated driving systems, especially in domains involving human perception, com-
fort, and motion sickness. Central to these simulators are Motion Cueing Algorithms
(MCAs), which aim to replicate the forces experienced in real vehicles using limited
physical motion. These algorithms blend platform translations and tilt-coordination to
recreate high- and low-frequency vehicle accelerations respectively, ensuring that the
induced specific force mimics real driving experiences without exceeding human per-
ceptual thresholds for motion [14]–[16].

Filter-Based Approaches: Early MCAs relied on classical washout filters, which use
high-pass and low-pass filtering to distribute specific force tracking between transla-
tion and tilt. These were later extended into adaptive washout filters, which dynamically
scale reference signals based on workspace limits and motion perception mismatches
[17], [18]. Collectively, these are known as filter-based MCAs.

Model Predictive Control (MPC)-Based Approaches: Recent advancements in simu-
lator fidelity have been driven by MPC-based MCAs, which leverage predictive models
and platform constraints to optimize motion cues [19]–[21]. These algorithms offer en-
hanced realism, especially for complex dynamic maneuvers. However, their computa-
tional complexity remains a key barrier for real-time applications. Strategies to mitigate
this include:

• Linearised actuator models for reduced solver complexity [22].

• Explicit MPC approaches that pre-compute control policies and use them as look-
up tables [23].

• Hybrid MPC frameworks combining explicit and implicit control for faster conver-
gence [24].

Integration of Perception Models and Learning-Based Techniques MPCs have also
been enhanced by integrating human perception models, allowing the algorithm to track
perceived, rather than raw, vehicle accelerations [19], [20], [25]. This perceptual filtering
further aligns motion cues with what humans actually experience.

Recent studies have explored parameter tuning via genetic algorithms [26], [27], as
well as reinforcement learning (RL) techniques—including deep RL for direct control
and RL-based horizon selection for faster convergence [28], [29]. Dynamic algorithm
switching has also been proposed using sequential MCAs to adaptively choose the best
algorithm for each situation [30].



1

6 1. INTRODUCTION

Limitations and Gaps: While several studies have compared classical and MPC-based
MCAs both objectively and subjectively [20], [25], [31], the focus has largely been on im-
proving specific force fidelity. However, no existing work explicitly addresses simulator
sickness mitigation as a design goal within the motion cueing algorithm.

Furthermore, a recent meta-analysis of simulator sickness studies indicates modest
but significant sickness levels across simulator configurations. Notably, active driving in
simulators tends to result in higher simulator sickness than passive driving, though this
contrast is not observed in real vehicles, where passive occupants are more susceptible
[32]. Studies comparing different motion cueing strategies found improved perceived
fidelity with motion-enabled platforms but did not show corresponding reductions in
sickness [33].

This thesis addresses this critical research gap by proposing and validating motion
cueing strategies that explicitly target the reduction of simulator sickness, in addition to
enhancing motion fidelity and computational efficiency. Additionally, since the primary
focus of this thesis is on automated driving, motion cueing strategies were specifically
designed and implemented for passive driving cases where the driver becomes the pas-
senger—an aspect that has been largely overlooked in prior simulator fidelity research.

1.2. RESEARCH OBJECTIVES
The core objective of this thesis is to reduce motion sickness in both AVs and driving
simulators through optimal control strategies. The specific research objectives include:

• R1: Developing trajectory planning algorithms for AVs that minimise motion sick-
ness by optimising velocity and curvature profiles.

• R2: Designing motion cueing algorithms for simulators that balance motion fi-
delity, workspace limitations, and computational efficiency.

• R3: Integrating 6-DoF sensory conflict models into control frameworks to predict
and reduce human discomfort in real-time.

• R4: Validating the effectiveness of these control strategies using both simulation
tools and human-in-the-loop experiments.

1.3. STRUCTURE OF THE THESIS
This dissertation is organized into seven chapters, each building upon the previous to
develop a comprehensive strategy for sickness-free automated mobility.

• In Chapter 1, the motivation, research challenges, and overall structure of the the-
sis are introduced.

• A trajectory planning framework based on nonlinear model predictive control is
presented in Chapter 2, where motion sickness is reduced by minimising the mo-
tion sickness dose value (MSDV) during automated vehicle navigation. This chap-
ter addresses research objective R1.
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Figure 1.1: Structure of the Thesis

• In Chapter 3, motion perception in simulators is enhanced through a frequency-
splitting MPC-based motion cueing algorithm that integrates filter-based tech-
niques, enabling realistic cueing under platform constraints. This chapter ad-
dresses research objective R2 and is further validated with human-in-the-loop ex-
periments in a driving simulator, thereby also addressing research objective R4.

• Autoscaling MCA is proposed in Chapter 4, where perceptual accuracy is improved
by minimising unnatural pre-positioning effects associated with tilt coordination.
This chapter addresses research objective R2 and, through validation with human
driving simulator experiments, also addresses research objective R4.

• A perceptually motivated motion cueing strategy is developed in Chapter 5, in-
corporating a 6 DoF Subjective Vertical Conflict motion sickness model, within
an MPC framework to actively minimise predicted simulator sickness. This chap-
ter addresses research objective R3 and, following algorithm development, is val-
idated with human experiments in a driving simulator, thereby also addressing
research objective R4.

• In Chapter 6, a hybrid motion cueing approach is introduced to improve the com-
putational efficiency of MPC-based algorithms. While the methods in Chapter 2–
5 rely on implicit MPC—effective for handling nonlinear systems but computa-
tionally demanding—the hybrid formulation combines explicit and implicit MPC,
where the explicit solution is used as a warm-start for the implicit solver to en-
hance real-time applicability. This chapter addresses research objective R2 by
tackling the problem of computational expense within an MCA.
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• In Chapter 7, the findings are synthesized, broader implications are discussed, and
potential directions for future research and application are outlined.

Each chapter is validated through a combination of simulation and human subject
studies, ensuring both technical soundness and practical relevance. An exception is
Chapter 6, where simulation alone was sufficient to evaluate the computational per-
formance of the proposed methods. The work concludes by emphasising the need for
continued interdisciplinary collaboration to develop mobility systems that are not only
intelligent but also comfortable, acceptable, and aligned with human physiology.

By centering motion sickness within the control design space, this thesis contributes
a paradigm shift in automated transport—moving from performance-centric to human-
centric design. The methodologies proposed have direct implications for AV deploy-
ment, simulator fidelity, and the broader field of human-centered mobility engineering.

1.4. SCIENTIFIC CONTRIBUTIONS
This thesis makes several novel contributions to the domains of trajectory planning and
motion cueing for automated driving and driving simulators. The work spans algorith-
mic development, simulation-based validation, and human-in-the-loop experiments,
resulting in both theoretical and practical insights. The scientific contributions per com-
ponent of the thesis are as follows:

OPTIMAL TRAJECTORY PLANNING FOR MOTION COMFORT
• We use a standardised motion sickness dose value metric instead of solely min-

imising jerk, acceleration or both. At the same time, we not only consider this
metric for the current prediction horizon, but also take into account travel time
and the accumulation of sickness across the entire journey.

• To improve the accuracy, in addition, we use a non-linear bicycle model as the
internal model for the optimal control problem, instead of the commonly used
point mass model, which oversimplifies the dynamics of a real vehicle.

• We perform a first-ever human-in-the-loop experimental validation to subjectively
validate an MS mitigation algorithm, using a moving-base driving simulator. Mo-
tion cueing parameters were selected to optimally transmit the sickening stimuli,
resulting in close to full vibration transmission above 0.2 Hz. Results confirm the
effectiveness of the proposed trajectory planning in reducing motion sickness.

FREQUENCY-SPLITTING MOTION CUEING ALGORITHM
• We developed a novel frequency-splitting algorithm that integrated elements of

classical washout and model predictive control-based motion cueing, combining
the strengths of both approaches within a single framework.

• We demonstrated through objective analysis that the proposed algorithm signif-
icantly outperformed conventional adaptive washout in specific force tracking,
while also achieving higher computational efficiency than traditional MPC-based
cueing algorithms.
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• We conducted human-in-the-loop evaluations in an automated driving scenario,
where participants clearly preferred the proposed algorithm compared to adap-
tive washout. In specific manoeuvres, the algorithm also effectively reduced the
perception of false cues.

AUTOSCALING MOTION CUEING ALGORITHM
• Proposed a novel autoscaling strategy for model predictive control-based motion

cueing, developed in response to the prepositioning issues observed in the frequency-
splitting algorithm. This strategy dynamically scales the tilt contribution based
on simulator constraints and human perceptual thresholds, improving motion fi-
delity by better aligning the onset of motion with visual cues.

• Eliminated the need for manual tuning of scaling factors for vehicle acceleration
across driving scenarios by dynamically adjusting the acceleration magnitude, while
maintaining motion realism and minimising undesirable pre-positioning.

• Improved immersion and adaptability of driving simulations by modifying the ref-
erence signal to comply with human perceptual thresholds, ensuring realistic mo-
tion without disrupting immersion.

SENSORY CONFLICT MODEL-BASED MOTION CUEING (SVC-MCA)
• Incorporated a six-degree-of-freedom Subjective Vertical Conflict motion sickness

model, for the first time, directly into a motion cueing algorithm as part of its cost
function.

• Formulated a multi-objective optimisation framework that jointly considers mo-
tion sickness reduction and reproduction of motion perception compared to real-
world driving.

• We demonstrated that the inclusion of the motion sickness model allows for an
adjustable trade-off between motion fidelity and predicted motion sickness, en-
abling the algorithm to prioritise either physical realism or passenger comfort based
on application-specific requirements. The highest motion sickness reduction was
predicted with negligible motion, and a compromise was found balancing fidelity
and sickness.

• Conducted human-in-the-loop experiments confirming that the proposed algo-
rithm effectively mitigates motion sickness symptoms, while having minimal im-
pact on motion perception.

HYBRID MOTION CUEING ALGORITHM
• We proposed a hybrid motion cueing algorithm that integrates an explicit model

predictive control formulation into an existing implicit MPC-based structure. While
the other model predictive control-based cueing algorithms presented in this the-
sis are purely implicit, this hybrid approach significantly enhances computational
efficiency without degrading specific force tracking performance.
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• Demonstrated superior computational efficiency over state-of-the-art implicit model
predictive control-based cueing algorithms in simulation scenarios representative
of urban and highway driving.

• Established a foundation for future work which can extend the hybrid model pre-
dictive control approach to non-linear systems, offering a pathway to real-time
deployment of human-centred optimised cueing algorithms.



2
OPTIMAL TRAJECTORY PLANNING

FOR MITIGATED MOTION SICKNESS:
SIMULATOR STUDY ASSESSMENT

You have to sacrifice something
in order to achieve something greater.

David Brooks

Trade-offs have always been a part of life.
The trick is in knowing which ones to make.

C. S. Lewis

This chapter is based on V. Jain, S. Kumar, G. Papaioannou, R. Happee and B. Shyrokau, "Optimal trajec-
tory planning for mitigated motion sickness: Simulator study assessment." in IEEE Transactions on Intelligent
Transportation Systems 24, no. 10 (2023): 10653-10664.[34].
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ABSTRACT
In the transition from partial to high automation, occupants will no longer be actively
involved in driving. This will allow the use of travel time for work or leisure, where high
comfort levels preventing motion sickness are required. In this paper, an optimal trajec-
tory planning algorithm is presented in order to minimise motion sickness in automated
vehicles. A predefined path is provided as an input to the algorithm, to generate an op-
timal path with limited lateral deviation and the corresponding optimal velocity profile,
for the minimisation of motion sickness. An optimal control problem is formulated with a
cost function combining both motion sickness and travel time. For a sickening curvy road,
the algorithm reduced the motion sickness dose value (MSDV) up to 52% depending on the
allowed lateral deviation and the weighting on travel time. The efficacy of the proposed
algorithm has been evaluated via human-in-the-loop experiments using a moving-base
driving simulator. Motion cueing parameters were selected to optimally transmit the sick-
ening stimuli resulting in close to full vibration transmission above 0.2 Hz. During the
experiment, the participants were asked to rate their experience based on the standard
MIsery SCore ratings. According to these, sickness levels were reduced on average by 65%
with reduced motion sickness in all 16 participants.
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2.1. INTRODUCTION

A UTOMATED vehicles (AVs) are projected to be safer than manual driving, efficient in
terms of traffic flow and cheaper in the cost of transportation [1]. In fact, by 2050,

AVs are predicted to have a market share of about 50% of all on-road vehicle sales [2].
The wide adoption of this disruptive innovation could create a massive impact on public
mobility. With higher automation levels, the occupants are not required to be actively
involved in driving. This will enable the productive use of travel time for work or leisure
[7], an appeal that is a major driving force behind the adoption of AVs by the public
[35]. However, when using the time inside the vehicle for non-driving tasks, where there
is limited awareness about the surrounding of the AV, the ride experience and comfort
for the passengers will deteriorate, making them more prone to motion sickness (MS)
[3]. Hence, high levels of comfort should be achieved within AVs, preventing MS and
excessive body motion, both of which can lead to discomfort. In this direction, the “AV
driving style” should not only be carefully designed, but also experimentally tested to
check the comfort perceived by occupants, when exposed to this driving style.

This work aims to reduce sickening stimuli by planning the vehicle motion around a
predefined path, using optimal control, and thus mitigating its sickening effects on pas-
sengers in automated vehicles. While generating an optimal path that is more suitable
for mitigating MS, the algorithm also searches the optimal velocities for different sec-
tions of the path as well as deceleration and acceleration profiles negotiating curves. The
effectiveness of the proposed algorithm in reducing MS has been assessed via human-
in-the-loop experiments. The occupants of an AV are expected to be involved in non-
driving tasks, without the visual awareness of the surrounding environment. Therefore,
in the conducted experiment, the participants performed a non-driving task in absence
of visual cues related to the road. This ensures participants’ exposure to an environment
similar to that of an AV and eliminates any additional sickening effects of the sensory
conflicts arising through visual cues.

The contributions of the paper are as follows:

• We use a non-linear bicycle model as the internal model for the optimal control
problem (OCP), instead of the commonly used point mass model which oversim-
plifies the dynamics of a real vehicle.

• We use a standardized motion sickness metric (MSDV) instead of solely minimis-
ing jerk, acceleration or both. At the same time, we not only consider this metric
for the current prediction horizon, but also take into account travel time and the
accumulation of sickness across the entire journey.

• We perform a first ever human-in-the-loop experimental validation to subjectively
validate an MS mitigation algorithm, using a moving-base driving simulator. Mo-
tion cueing parameters were selected to optimally transmit the sickening stimuli
resulting in close to full vibration transmission above 0.2 Hz. Results confirm the
effectiveness of the proposed trajectory planning in reducing motion sickness.

The chapter is organized as follows: Section 2.2 discusses the existing works in the
domain of driving comfort and MS reduction; Section 2.3 provides the details of the pro-
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posed algorithm and formulates the optimal control problem (OCP); section 2.4 presents
the experiment design for the validation of the proposed algorithm; Section 2.5 illus-
trates the results of the experiments; then, Section 2.6 follows, where the results are anal-
ysed and their significance is discussed; finally, conclusions are extracted in Section 2.7.

2.2. EXISTING STUDIES
Various geometric, constraint and optimisation-based motion control methods have
been investigated to enhance occupants’ comfort in automated driving [36]. Geometric-
based and heuristic-based methods mainly address path generation, while optimal
control-oriented methods focus on generation of a feasible trajectory, by assigning a ve-
locity profile over a pre-defined path.

Geometrical methods employ clothoids, bezier curves, and others to generate a smooth
path or to smooth an existing one [37]–[39]. In addition to the design of the path, quintic
bezier curves have been used to assure smooth and continuous velocity and acceleration
profiles [40]. Constraint-based methods set upper comfort limits to acceleration and jerk
[41], while iterative numerical methods that restrict vehicle acceleration and jerk within
a comfortable range have also been explored [42]. The restrictions are set according to
comfort limits. Then, the solution is searched for the vehicle to have the maximum al-
lowable jerk according to the comfort range. This search runs in a loop, where if the
solution fails or is unachievable, the jerk values are reduced and a new search starts until
a feasible solution is achieved. Numerical iterative methods for minimum time veloc-
ity planning utilize the upper limits of the defined jerk range to obtain minimum travel
time [43]. However, constraint-based methods predominantly work in the defined upper
limits to plan the motion, which may lead to accumulated discomfort over long periods.

Although the restriction of jerk and acceleration, using numerical methods, demon-
strates positive effects on motion comfort, a more common approach is the use of op-
timisation for motion planning. By applying cost functions for the translation of vehi-
cle motion to perceived comfort, higher levels of comfort can be obtained in compari-
son to methods only constraining acceleration, velocity, and jerk. Motion planning has
been conducted minimising the lateral and longitudinal accelerations using optimisa-
tion [44]. The addition of journey time in the cost function, to make the algorithm time
efficient and comfortable has also been explored [45]. Trajectory planning has also been
conducted using a combination of jerk, acceleration, and travel time as the cost function
to be minimised [46]. Additionally, velocity and yaw rate inclusion in the cost function
has been analysed [47]. Moreover, several studies explore combinations of the above-
mentioned strategies, to achieve a more comfortable ride. Optimisation over a smooth
path for the planning of vehicle motion has been investigated using geometric curves
[48], [49]. Where a path is first smoothed using quintic bezier curves, an optimal veloc-
ity planning is then run over this path. These studies focus on motion comfort through
minimisation of acceleration and jerk over a wide frequency range. To address motion
sickness, low-frequency motion requires particular attention and different approaches
have been considered.

Emphasising MS mitigation, use of vibrational cueing in the seat, to generate an-
ticipation of the future motion of the vehicle, has been explored [50]. Vibrational cues
resulted in lower MS levels for the participants of the study. However, no MS model
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was involved in this work. Only a few studies use MS models to plan vehicle motion.
A vehicle-following algorithm has been designed, which minimises the sensory conflict
obtained through the 6-DoF Subjective Vertical Conflict model [51]. The use of opti-
misation to obtain velocity profiles to reduce MS is explored [52]. The effectiveness of
MS mitigation was gauged numerically, comparing the respective motion sickness inci-
dence (MSI) obtained using different cost functions. The results showed that adaptive
MS cost was the most effective in MS mitigation; however, acceleration cost showed very
similar results, with a significantly lower computational expense. This indicates that the
acceleration cost is a promising candidate for MS mitigation. However, in this study,
the lateral dynamics were simplified using a point mass vehicle model. The model only
considered longitudinal jerk as the input, the lateral accelerations were calculated us-
ing longitudinal velocity and road curvature. Similarly, an optimal velocity profiling ar-
chitecture using optimal control-oriented methods is proposed using Motion Sickness
Dose Value (MSDV) as a cost function for minimisation [53]. Such an approach allowed
deviation of the vehicle from the predefined path and showed substantial MSDV reduc-
tion when more lateral deviation is allowed. However, the adopted point mass model
does not accurately represent the dynamics of a real vehicle, and thus the algorithm
may provide sub-optimal results. A frequency-shaping approach to motion planning
has also been proposed, which uses frequency-weighted MSDV as a cost function in
the OCP framework [54]. This approach reduced acceleration in the frequency range
which provokes motion sickness to the occupants. However, the effectiveness of the
algorithm wasn’t confirmed using any human-in-the-loop experiment. Moreover, the
vehicle model was highly simplified. At the same time, the journey time was not in-
cluded in the cost function, and the motion planner could conclude in long rides that
can decrease the occupant’s satisfaction. Our proposed algorithm considers a more so-
phisticated vehicle model, which allows the algorithm to look for a more suitable path
for mitigating MS. The algorithm also considers journey time minimisation along with
MSDV to reach the destination within a desirable time, illustrating the trade-off between
comfort and travel time. Additionally, our study involved human-in-the-loop driving
simulator experiments, which demonstrated the effectiveness of the algorithm in miti-
gating MS. Motion sickness modelling is known to require objective measures capturing
low-frequency motion and representing sickness accumulation over longer time periods
[13]. This work accounts for the accumulation of motion sickness over longer periods.
This is achieved by optimizing motion over the shifting-control horizon window Nc , us-
ing the current MSDV as an initial state representing MS accumulation due to past mo-
tion. Finally, results are presented recalculating MSDV over the entire trip. Furthermore,
to the best of authors’ knowledge, the proposed algorithms to date have been analysed
only via simulation. However, human beings are differently susceptible to motion sick-
ness, and no single metric represents this individuality accurately and hence can’t effec-
tively evaluate the efficacy of such algorithms in mitigating motion sickness. Therefore,
experimental validation with human participants was performed, using a driving simu-
lator.
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Figure 2.1: Depiction of the vehicle on the road

2.3. OPTIMAL CONTROL STRATEGY
This section describes our novel AV trajectory planning algorithm for MS mitigation. The
problem is defined as an OCP applied to driving on a predefined path without other road
users. The cost functions are considered to represent MS accumulation and journey
time. Constraints secure the feasibility of the optimal solutions.

2.3.1. VEHICLE MODEL
A 3-DOF nonlinear bicycle model with linear tyre model is used to represent the vehicle
dynamics. The modeling equations are given in vehicle’s frame of reference. Figure 2.1
depicts the variable nomenclature used in the modeling. The vehicular accelerations (ax

and ay ), and yaw rate (r ) are defined as:

v̇x = ax + vy r (2.1)

v̇y = −
(

Cα f +Cαr

mvx

)
vy

+
(

lr Cαr − l f Cα f

mvx
− vx

)
r + Cα f

m
δ (2.2)

ṙ =
(

lr Cαr − l f Cα f

Iz vx

)
vy (2.3)

where vx and vy are the longitudinal and lateral velocities respectively; δ is the road
wheel angle; Cα f and Cαr are the front and rear cornering stiffness respectively; m is
the mass of the vehicle; Iz is the inertia moment of vehicle about vertical axis; l f and
lr are the distances of the vehicle centre of gravity from the front and the rear axles,
respectively.

The road is defined using curvilinear coordinates. The road co-ordinates and the
road heading angle θ are described by:

d x

d s
= cosθ;

d y

d s
= si nθ;

dθ

d s
= κ(s); (2.4)
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where κ is the road curvature. Additionally, the distance covered by the vehicle (s), the
lateral deviation of the vehicle from the lane center (sn) and the deviation of the vehicle
heading angle from the road heading angle (α=ψ−θ) are given as:

ṡ = vx cosα− vy si nα

1− snκ(s)
(2.5)

ṡn = vx si nα+ vy cosα (2.6)

α̇ = r − ṡκ(s) (2.7)

2.3.2. OPTIMAL CONTROL PROBLEM
The problem is to find a reference trajectory for the vehicle to follow. It is assumed that
the vehicle shall approximately follow a predefined path from an initial position (s0) to a
final position (s f ). As objective a weighted combination of MS metric and travel time is
considered, to reduce the sickening effect of the ride and incorporate time efficiency as
well.

MOTION SICKNESS METRIC

MSDV is a metric quantifying motion sickening accumulation in time as defined in ISO
2631 standard [55]. This metric accounts for the frequency related sickening stimuli by
weighting the acceleration for different frequency ranges, as MS depends on the fre-
quency of motion an individual is subjected to [56]. The metric is defined as:

MSDV =
√∫ T

0
[ax,w (t )]2d t +

√∫ T

0
[ay,w (t )]2d t (2.8)

where ax,w (t ) and ay,w (t ) are frequency weighted accelerations in longitudinal and lat-
eral directions in time domain; t , d t is the time increment, and T is the exposure time.
The weighting curve constitutes of a 0.02-0.63 Hz bandpass filter based on [57]. The
weightings for the longitudinal and lateral acceleration are assumed to be the same in
this study, as there is no clear guideline in the literature for the longitudinal filters.

COST FUNCTION

The cost function for the prediction horizon is given by:

Jc =
Nc∑
i=0

wm MSDVi +wt Ti (2.9)

where wm and wt are the weighting coefficients for MSDV and travel time respectively,
and Nc is the length of the prediction horizon.

As travel time is one of the criteria to be minimised, the problem is solved in space
domain instead of time domain. The whole state space is converted from time domain
to space domain using the relation given in Equation 2.10.

d p

d s
= p ′ = d p

d t

d t

d s
= ṗ ṡ−1 (2.10)
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where p is the time dependent variable represented in space domain instead of time.
Thus the OCP horizon is expressed in distance instead of time.

The travel time can be represented as:

T =
∫ T

0
d t =

∫ s f

s0

d t

d s
d s =

∫ s f

s0

ṡ−1d s (2.11)

For the dynamics of the problem as defined in Subsection 2.3.1, the feasibility and
continuity of the acceleration and road wheel angle should be considered. Thus, their
time derivatives i.e. jerk, Jx and rate of road wheel angle, dδ, are chosen as the control
inputs. Hence, the vehicle model is described as:

x ′
v = fv (xv ,u) (2.12)

where xv = [vx vy r sn α ax δ]T are the vehicle states, and u = [Jx dδ] are the control
inputs.

The constraints on the state sn are kept non zero allowing some deviation from the
predefined path (lane centre line) to obtain a further reduction in MS levels. Along with
the constraints on the states of the vehicle model, an additional constraint representing
the friction circle is added to the problem, to ensure that the vehicle remains in its func-
tional limits. The friction circle defines the maximum acceleration that the vehicle can
attain due to limited friction between road and the tyre. This constraint is defined as :√

a2
x +a2

y ≤µmg (2.13)

where µ is the road friction coefficient and g is the acceleration due to gravity.
The OCP is formulated as:

min
u∈U

Jc (2.14)

s.t . x ′
v = fv (xv ,u) (2.15)

φ(xv ,u) ≤ 0 (2.16)

b
(
x (s0) , x

(
s f

))= 0 (2.17)

The dynamics of the system are represented in Equation 2.15 using equality constraints,
defined by the function fv . The parameter φ in Equation 2.16 defines/represents the
constraints on the vehicle limits (acceleration, velocities, etc.) including the friction
circle constraint represented in Equation 2.13. Lastly, function b(x(s0), x(s f ))) in Equa-
tion 2.17 defines/represents the boundary conditions for the vehicle i.e. the initial states
and the final states of the vehicle.

The optimal driving style obtained by the algorithm will hereon be referred to as ’Mo-
tion sickness mitigation drive’ (MSM drive).

The optimisation is conducted with the ForcesPro solver [58], using sequential
quadratic programming. The optimisation was run for the whole road but due to the
long length of the road, a sliding window (where the optimisation is solved as smaller
OCPs, sliding the prediction horizon forward by a defined number of steps over the com-
plete horizon) has been applied to reduce the computational load on the solver. The
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detailed settings can be referred to in Appendix A.4. The shifting-control horizon win-
dow Nc was chosen to be 100 steps (100 m) to reduce the computation time. It should
be emphasised that as a sliding window approach has been used, MSDV is added as a
state during the optimisation. This allows us to initialise MSDV with its current value,
which ensures that accumulation of the sickness dose over the entire journey is consid-
ered. The number of solver iterations is chosen to be 2000, to ensure convergence and
avoid sub-optimal solutions. The optimisation has been performed on Intel(R) Xeon(R)
W-2223 CPU @3.60GHz with 32GB RAM.

With the above-mentioned settings, the computation time for the algorithm is re-
ported. The time taken for the algorithm to arrive at a solution varies based on the com-
plexity of the road and the initial guess provided to the algorithm. To analyse the effect
of the length of the shifting-control horizon, simulations were conducted considering
100, 150, 200 and 250 steps as prediction horizon respectively (for even larger horizons
ForcesPro failed to converge). The simulations were conducted for a reduced drive with
a length of 500 steps, keeping all the conditions apart from the prediction horizon the
same. The obtained results are presented in Figure 2.2.
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Figure 2.2: Velocity profiles for horizon lengths of 100, 150, 200 and 250 steps
respectively

Comparing the different horizons, a similar trend in acceleration and deceleration is
observed, however, there is a difference in the resultant velocity profile. This behaviour
aligns with the expectation. For a smaller prediction horizon, the algorithm takes more
aggressive actions due to the lack of information about the future. The obtained travel
time and MSDV at the end of the 500 m (500 step) journey, along with the time taken for
the OCP solution is reported in Table 2.1
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Table 2.1: Obtained travel time, MSDV and the computation time for different
prediction horizon lengths

Prediction Travel MSDV Computation
horizon time [s] [m/s1.5] time [s]

100 steps 122 6.97 39
150 steps 133 6.00 54
200 steps 144 5.58 69
250 steps 154 5.47 79

This indicates that reducing the size of the prediction horizon makes the solution
much faster. Thus a smart choice of prediction horizon should be made for obtaining
desired MS reduction and at the same time keeping the algorithm computationally in-
expensive.

As can be observed from Table I, using the above-mentioned PC configuration, for a
122 second simulation the algorithm takes a simulation time of 39 seconds. This corre-
sponds to a real-time factor of 0.32. Thus, the algorithm is real-time implementable, as
it takes less computation time than the real-time factor permits.

The pseudo-code for the OCP is presented in Algorithm 1:

Algorithm 1 NL-OCP for MSM drive

choose s0 = 0, s f = end di st ance
Input: x0,xguess ,uguess , wm , wt , s0, s f ,κ(s)∀s0 → s f

while k +Nc ≤ s f do
∀ k → k + Nc

Calculate: cost function using Equation 2.8
Solve: OCP using Equations 2.14-2.17
Find: uopt mi ni mi se

u
J

Calculate: x(k → k +Nc ) with uopt with Equation 2.12
Update: x0=x, xguess ,uguess

Shifting window: k = k + 1
end while

Return NL-OCP solution : states and control inputs (x,u) Display vx ,ax , ay , sn , MSDV,
travel time for MSM drive

2.4. EXPERIMENT DESIGN
To assess the efficacy of the trajectory planning algorithm in reducing MS, experiments
need to be performed to subjectively assess the occupants’ MS levels. In this direction,
a driving simulator is employed and human participants are tested regarding the accu-
mulated MS levels using different driving styles. This section entails the design of the
experiment and presents the justification for using the selected settings.
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2.4.1. APPARATUS

DRIVING SIMULATOR

Delft Advanced Vehicle Simulator (DAVSi, Figure 2.3) is used for assessing the effective-
ness of optimal trajectories obtained from the proposed algorithm, in the mitigation of
motion sickness via human-in-the-loop experiments. DAVSi is a 6-DoF motion platform
driving simulator [20], capable of generating acceleration up to 1 g in all directions and
can simulate motions in the wide frequency range up to 10 Hz. The half-car Toyota Yaris
mock-up with a controllable interface via CAN (levers, buttons, air-con, etc.) is used
and extended by the control loading system to provide haptic feedback. The simulator
is operated in hard real-time using a dSPACE Scalexio system.

Figure 2.3: Delft Advanced Vehicle Simulator

A high-fidelity vehicle model in IPG CarMaker is used to simulate the optimal solu-
tions obtained from the algorithm. The high-fidelity vehicle model, which is the digi-
tal twin of the Toyota Yaris, was parameterized using mass-inertia parameters obtained
from a vehicle inertia measuring facility. The suspension kinematics and compliance
were measured on a Kinematics and Compliance test rig for wheel suspension charac-
terization, and finally, validated using field tests by Toyota.

2.4.2. DRIVING SCENARIO
To investigate the sickness of the participants within a limited time of 45 min, an ac-
celerated sickening road path is designed providing high magnitude sickening stimuli.
The design of this road path can be found in Appendix A.1. The path consists of abun-
dant curves and corners eliciting sickening lateral accelerations within the curvy sec-
tions. Along with the lateral acceleration, the vehicle also decelerates before the curve
and accelerates after exiting the curve. This reduces lateral acceleration, but increases
longitudinal sickening stimuli. The sickening path is designed with a limited lateral dis-
placement to better (but not completely) fit the motion range of the driving simulator.

In the OCP described in Section 2.3, the desired path is defined using its curvilinear
co-ordinates, distance and curvature. Additionally, the operational driving limits were
restricted to comply with highway driving. Along with these driving limits, several con-
straints related to comfort and actuators were introduced (Table 2.2). Limits on lateral
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deviation were defined to offer the vehicle lateral maneuverability and help the algo-
rithm to find a better path for MS mitigation, while staying within the road boundaries.

Table 2.2: Motion & actuators constraints

Quantity Lower limit Upper limit

Longitudinal velocity (vx ) 3m/s 40m/s
Longitudinal acceleration (ax ) −1.5m/s2 1.5m/s2

Lateral acceleration (ay ) −4m/s2 4m/s2

Longitudinal jerk (Jx ) −1m/s3 1m/s3

Deviation from road centre line (sn) −2m 2m
Rate of road wheel angle (dδ) −0.22rad/s 0.22rad/s
Road wheel angle (δ) −0.52rad 0.52rad
Yaw rate (r ) −0.1rad/s 0.1rad/s

The travel time and the MSDV vary with the change in weights on their cost terms,
wm and wt . Considering the restriction on experiment duration of 45 min, the trade-off
between the accumulated MSDV over the journey, and the distance travelled was anal-
ysed for different configurations of the ratio wm/wt (see Figure 2.4). As the solution re-
mains invariant when both weights wm and wt are scaled with the same factor, only the
ratio wm/wt affects the results. Based on Figure 2.4, an increase in the distance travelled
results in high MSDV. Since every individual is differently susceptible towards MS [59],
there are no unique settings suitable for all passengers. Different settings can be used
in accordance with the occupant’s preference. In this study, we further selected settings
represented by the larger black dot in Figure 2.4 which results in around 60% reduction
of MSDV, when compared to the least MS mitigating setting (red dot in Figure 2.4) from
the simulated cases. The selected settings resulted in an MSDV of 34 m/s1.5 and travel
distance of 16.7 km. This setting was chosen for the MSM drive in the following analysis.
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Figure 2.4: Effect of OCP cost function weight factor on MSDV and travel distance. Dots
represent OCP results where the large black dot represents the selected MSM drive. The

square represents the more aggressive reference drive.
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2.4.3. REFERENCE DRIVING STYLE
To compare the effectiveness of the proposed algorithm in reduction of MS, a benchmark
case has been defined based on the driver model used in IPG CarMaker [60]. For the lon-
gitudinal control, the artificial driver model (aggressive driving with a speed limit of 40
m/s) is used, coupled with path-following lateral control. From here on, the benchmark
algorithm will be referred to as ’reference automation drive’ (REF drive). The acceleration
limits are kept the same as in the MSM drive, to create a dynamic yet not overly aggres-
sive driving style.

The resultant MSDV for the REF case is 72.7 m/s2, which is higher than the selected set-
tings for MSM drive, but 12% lower when compared to the least MS mitigating setting
(red dot in Figure 2.4) from the simulated cases. The REF drive is also 1.5 times faster in
completing the journey.

2.4.4. MOTION CUEING TUNING
The moving-base simulator has a limited workspace envelope. Therefore, a motion cue-
ing algorithm (MCA) is adopted and the MCA parameters were tuned to utilise the
workspace of the simulator as much as possible, but at the same time ensuring that the
workspace limits are not violated. Maximum utilisation of simulator workspace results
in a higher motion range and corresponding motion sickening stimuli. To that end, an
adaptive washout filter was used for motion cueing; as this filter is known to be more
effective in terms of reducing false cueing [61]. Various gains and cut-off frequencies for
fore-aft and sway motion have been explored to maximise workspace utilisation and to
obtain the maximum sickening stimuli (Table 2.3). According to Table 2.3, with setting
3, the simulator realises the highest MSDV of 17.1 which is around 50% of the MSDV re-
sulting from the actual vehicle acceleration. However, setting 3 obtains a much higher
MSDV as compared to setting 6 which applies a quite common 50% motion scaling al-
lowing a larger motion bandwidth. In both REF drive and MSM drive, the same motion
cueing parameters are adopted for a uniform comparison.

Table 2.3: Motion cueing parameters

Setting Cut-off frequency Gain MSDV
(r ad/s)

1 2 0.9 12.1
2 1 0.9 15.54
3 1 1 17.1
4 0.5 0.8 15.4
5 0.4 0.5 16.2
6 0.5 0.5 10.4

To verify the simulator capability for recreation of the desired accelerations, power
spectral analysis of the accelerations was performed (Figure 2.6 and Figure 2.7). Accord-
ing to Figure 2.6, the longitudinal acceleration power spectra for the virtual vehicle and
the driving simulator overlap after 0.25 Hz. Similarly, based on Figure 2.7, the lateral
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acceleration power spectrum for the simulator and the virtual vehicle are fairly close be-
yond 0.2 Hz. Based on these figures, motions beyond 0.2 Hz are sufficiently replicated
with the selected motion cueing algorithm parameters.

2.4.5. EXPERIMENTAL PROCEDURE

Figure 2.5: Participant performing the non-driving task in the simulator

All participants gave informed consent before participation. The Human Research
Ethics Committee of TU Delft, Netherlands approved the experiment protocol under ap-
plication number 1675.

In total, 16 participants from the pool of students and employees of TU Delft partic-
ipated in the study (mean age: 24.9, std: 1.61 years, 1 female, 15 males). All participants
were subjected to both MSM and REF drive. To avoid habituation [62] to the simulator
motions, there was at least a week’s gap between the two sessions for any participant.
Additionally, for the same reason, half the participants were subjected to the MSM drive
first and the rest to the REF drive first. Before the initiation of the experiment, the par-
ticipants were given a safety briefing, which was then followed by the motion sickness
susceptibility questionnaire (MSSQ). This questionnaire gives information on the sus-
ceptibility of an individual towards getting motion sick. Two-way communication be-
tween the researchers and the participants was established via bluetooth headphones
and microphones. Although the participants were not intended to reach retching, sick
bags were positioned within easy reach. The participants were also instructed to not
consume food at least two hours before the experiment.
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Figure 2.7: Lateral acceleration in the
virtual vehicle and the driving simulator

for MSM drive

As soon as the participants were ready to start the experiment, they were driven in
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fully automated mode for 45 min in case of MSM drive and 30 min in case of REF drive.
The distance travelled in both drive cases was kept constant (16.7 km), resulting in a
longer duration for the MSM drive, enabling a fair comparison between the accumu-
lated sickness over the trip for the two driving styles. During the driving session, the
participants performed a non-driving task, answering a simple yes/no question quiz on
a tablet. During the non-driving activity, the participants were instructed to place the
tablet in front of them, around chest level, while operating it (see Figure 2.5). They were
also asked to not look out of the simulator, resulting in ’internal vision’ (eyes-off-the-
road), which is a representative scenario for automated driving.

During the experiment, sickness ratings were queried based on the 11-point subjec-
tive MIsery SCale (MISC) [63] in 30 s intervals and their verbal responses were recorded.
If the participant reached a MISC level of 6, the experiment was terminated, because
this level corresponds to the inception of slight nausea and is deemed an appropriate
threshold as observed in pilot runs. Upon the completion of an experimental session,
the participants filled out the Motion Sickness Assessment Questionnaire (MSAQ). In
this questionnaire, the participant rated the severity of experienced symptoms of MS in
detail, at the end of the experimental session.

Figure 2.8: Trajectories of MSM drive and REF drive for a small section of the path

2.5. RESULTS

2.5.1. OPTIMAL TRAJECTORY PLANNING

VELOCITY AND PATH PROFILE

The optimal velocity and path for a small section of the path is presented in Figure 2.8.
According to the figure, the velocity for the displayed part of the path ranges from 5m/s
to 10m/s, and between 5m/s and 6m/s for the REF drive and the MSM drive, respec-
tively. Similarly, for the entire journey (road path), the velocity ranges from 5m/s to
22m/s, and between 3m/s and 10m/s for the REF drive and the MSM drive, respec-
tively. The REF drive executes a limited reduction in its velocity while approaching the
corners. Whereas, in case of MSM drive, the vehicle slows down to velocities near 3m/s
(lowest allowed velocity). Moreover, the MSM drive does not follow the center-line of the
path and cuts the corners within the selected limits, to reduce the lateral acceleration.
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This driving behavior provides a more suitable path for reducing the motion sickening
stimuli.

ACCELERATION

The G-G diagram obtained from the simulation is presented in Figure 2.9. The blue and
the red dots depict the acceleration achieved through the REF and the MSM drive, re-
spectively. Based on the figure, higher longitudinal accelerations are achieved in the
REF drive, whereas the lateral acceleration ranges are similar in both drives. Further-
more, Figure 2.9 shows that higher accelerations have a lower occurrence in the MSM
drive rather than in the REF drive. Occasionally the defined acceleration constraints are
violated in the MSM drive. The latter occurs as the optimal solution is obtained using
a 3-DOF vehicle model, but the G-G diagram is extracted after simulating the optimal
solution with a high-fidelity vehicle model. Due to the low occurrence of high amplitude
accelerations, the MSDV obtained for the MSM drive is 34 m/s1.5, whereas the MSDV ob-
tained for the REF drive is 72.7 m/s1.5. This indicates a significant decrease in motion
sickening stimuli.
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Figure 2.9: G-G diagram of the virtual vehicle acceleration achieved for REF and MSM
drive

LATERAL DEVIATION

The proposed algorithm was analyzed for the effect of allowed lateral deviation from the
road lane centre. The cases considered were from 0.5 to 2 m with steps of 0.5 m. No
values lower than 0.5 m were considered, as constraining the lateral deviation to a lower
value resulted in infeasible optimisation at some stages (horizons of the sliding window).
A possible reason for this occurrence is the complexity of the path, for which the solver
could not converge to a feasible solution that follows the path without violating the con-
straints.

According to Table 2.4, when the allowed lateral deviation was increased, the MSDV
through the whole path reduced. Moreover, the travel time reduced with increased lat-
eral deviation; as corner cutting allows the vehicle to continue at slightly higher velocities
(as the lateral accelerations reduce with corner cutting) and also reduces the actual over-
all distance travelled marginally. Specifically, when the lateral deviation was increased
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from 0.5 m to 1 m the MSDV reduced by 19.25%. Increasing it further from 1 m to 1.5 m,
the MSDV reduced by 6.78%, and finally from 1.5 m to 2 m, the reduction in MSDV was
3.38%. This illustrates that the initial increment in the lateral deviation has the highest
impact on MS reduction, and as the lateral deviations are increased further the impact
on MS mitigation reduces.

Regarding the travel time, it also showed decrements with the increase of lateral devi-
ation. Particularly, when the lateral deviation was increased from 0.5 m to 2 m the travel
time reduced by 15.6%. Increasing it from 0.5 m to 1 m reduced the travel time by just
3.96%. Increasing it further from 1 m to 1.5 m reduced the travel time by 8.45% and lastly,
increasing it from 0.5 m to 2 m reduced the travel time by 4.08%.

Table 2.4: Effects of allowed lateral deviation from the road center line on MSDV and
travel time

Allowed deviation MSDV Travel time

0.5 m 46.74 m/s1.5 53.0 min
1.0 m 37.75 m/s1.5 50.9 min
1.5 m 35.19 m/s1.5 46.6 min
2.0 m 34.0 m/s1.5 44.7 min

2.5.2. DRIVING SIMULATOR VALIDATION

REALISED ACCELERATIONS

Figure 2.10 shows the G-G diagram for the accelerations realised in the driving simula-
tor. According to Figure 2.9 and Figure 2.10, the accelerations attained by the two drives
are lower in magnitude inside the simulator, which is expected due to limited simulator
workspace. However, based on Figure 2.6 and Figure 2.7, the power is reduced below 0.2
Hz, but is replicated fairly beyond that point. Thus, the selected MCA parameters retain
motion characteristics above 0.2 Hz in the applied driving simulator motion.
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Figure 2.10: G-G diagram of the simulator platform acceleration realised in the driving
simulator for REF and MSM drive
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PARTICIPANTS’ SICKNESS LEVELS

General motion sickness susceptibility assessed prior to the experiment yielded a mean
MSSQ of 17.14 with a standard deviation of 10.03 over the selected participants. This
mean translates to a percentile of 69%, which indicates that our participants have a
slightly above-average motion sickness susceptibility. The standard deviation translates
to 52.94% to 81.49% percentiles, indicating that our participants cover a reasonable range
of susceptibility.

Figure 2.11: Mean MISC scores for MSM and REF drive

For the MSM drive only one participant dropped out reaching MISC level of 6,
whereas in case of REF drive 7 out of 16 participants dropped out of the experiment.
Hence, the algorithm was effective in motion planning to reduce the amount of partici-
pants stopping the experiment approaching retching levels. The mean MISC scores rep-
resenting the sickness levels of the participants are shown in Figure 2.11. The blue line
depicts the mean MISC for the REF drive, whereas the red line shows the mean MISC for
the MSM drive. The shaded areas around the plotted lines depict the standard deviation
of MISC ratings for the participants. It should be noted that, in cases of a participant
stopping the experiment, their MISC score was considered to be 6 till the end of the ex-
periment for the calculation of mean MISC (in practice it should rise further).

According to Figure 2.11, the MSM drive is less sickening during the entire journey.
In fact, the mean MISC value at the end of the experiment for MSM drive is 65% lower
compared to REF drive. Overall, the participants showed a very high variability in the
MISC scores during the experiment due to their motion sickness susceptibility. Even
with this variability in the MISC scores, all the participants had reduced sickness levels
when they were subjected to MSM drive, compared to REF drive (Figure A.1 in Appendix
A.2).

The onsets of increasing motion sickness levels were analysed through boxplots in
Figure 2.12. The onsets up to MISC level of 3 are provided, as, with the MSM drive, not
many participants reached a MISC level beyond 3. This is another indication of the algo-
rithm’s ability to successfully mitigate motion sickness. Furthermore, the mean distance
travelled before a participant reaches a specific MISC level and its standard deviation
are given in Table 2.5. This shows that the distance travelled by the participants before
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reaching each and every MISC level is more in case of MSM drive compared to REF drive.

Table 2.5: Distance travelled by participants before reaching specific MISC levels

MISC level AV driving style Mean distance (std), km

1
MSM drive 2.8 (1.83 )
REF drive 1.52 (1.29 )

2
MSM drive 6.3 (4.21 )
REF drive 3.14 (2.01 )

3
MSM drive 6.91 (2.82 )
REF drive 4.47 (2.04 )
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Figure 2.12: Boxplot of onset of the levels of motion sickness with respect to distance
travelled

Along with the continuous MISC measurements during the experiment, post experi-
ment MSAQ ratings were collected. For REF drive the mean MSAQ for all the participants
was 65.56 with a standard deviation of 18.91, whereas, for MSM drive, the mean MSAQ
for all the participants was 37.69 with a standard deviation of 17.71. All the participants
reported a reduced MSAQ score with MSM drive. The results of the single-tailed t-test
(p = 4.9e − 4) on this dataset confirm the assertion that the algorithm effectively miti-
gates MS.

Finally, the general sickness susceptibility using MSSQ prior to the experiment was
evaluated in relation to the actual sickness. Based on Table 2.6, the correlation of MSSQ
with any of the sickness indicators is not significant. This implies that MSSQ is not a
reliable metric to predict the susceptibility of an individual to motion sickness in the
conditions tested. This is coherent with [64] reporting a moderate correlation with MSSQ
(ρ = 0.5, p = 0.05) in 0.3 Hz fore-aft motion.
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Table 2.6: Correlation coefficients between MSSQ scores and different sickness indica-
tors and their respective p-values

Data-set Correlation coefficient p-value

Max MISC: MSM drive case 0.3493 0.1849
Max MISC: REF case 0.1877 0.4864
MSAQ: MSM drive case 0.3623 0.1679
MSAQ: REF case 0.4349 0.0922

2.6. DISCUSSION
The effectiveness of the optimal trajectory planning for mitigating MS has been evalu-
ated. This was conducted by comparing the optimal MSM drive with REF drive (base-
line) in human-in-the-loop experiments using a moving-base driving simulator.

In MSM drive, the vehicle reduces its velocity during the corners, leading to de-
creased lateral accelerations that a passenger is subjected to. This is a desired behaviour
to reduce the sickening stimuli. The algorithm also modifies the pre-defined path allow-
ing the vehicle to perform corner cutting. Such adjustments to the path led to a further
reduction in lateral acceleration, since corner cutting increases the turning radius. This
renders the ride more comfortable and less sickening.

The G-G diagram in Figure 2.9 indicates a large reduction in longitudinal and lateral
accelerations in MSM drive. The objective of the algorithm is to minimise MSDV; hence,
the algorithm limits the velocity reduction in cornering, attaining a higher lateral accel-
eration, but limiting the longitudinal deceleration. This results in a lower overall MSDV.

For the selected weight settings, the MSDV for the journey reduced by 53% with the
proposed MSM algorithm. This aligns with the projections made in the literature [52],
[53], as expected due to the presence of MSDV in the cost function. According to Fig-
ure 2.4 as the weight ratio wm/wt is increased, the MSDV through the journey reduces.
Moreover, as MSDV minimization reduces the vehicle velocities/accelerations, a very
high ratio of the weight, wm/wt , would result in an optimal solution with very low ve-
locities, which are preferable for MS mitigation. However, the excessive reduction of
velocity leads to the occupants’ dissatisfaction [65], [66]; as the journey time will be too
long, violating their expectation for travelling long distances in a short period of time. An
alternative would be to prompt users to watch the road during sickening road sections,
and avoid engagement in non-driving tasks.

The experimental study in the driving simulator was conducted to gauge the effec-
tiveness of the proposed method in reducing MS using human beings. The recent state-
of-the-art studies for MS mitigation assess their proposed algorithms only via simula-
tions and lack experimental validation with humans. The experiments in this study
demonstrate that the proposed algorithm is effective in reducing experienced motion
sickness with human participants across a substantial range of individual susceptibility.
In general, our results are in line with the simulation studies mentioned earlier. Regard-
ing the efficiency of the driving simulator, the accelerations (Figure 2.6 and Figure 2.7)
beyond 0.2 Hz were replicated closely in the driving simulator, whereas the accelerations
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below that frequency could not be captured due to the limited workspace of the simula-
tor. Although the range of frequency for human susceptibility to motion sickness is from
0.1 Hz to 0.8 Hz, the tuned settings of the simulator allowed us to replicate the frequency
range beyond 0.2 covering a large part of the focus range.

Regarding the experiment, an accelerated sickening path was used to seek the op-
timal solution and subjectively test the occupants’ motion sickness levels. During the
experiment, only one participant dropped out when the proposed algorithm was used,
i.e. in MSM drive. Meanwhile, even this participant travelled a longer distance until
dropping out compared to the REF drive. This indicated that the algorithm had a pos-
itive effect on MS mitigation for each and every individual, when compared to the REF
drive which tries to follow the lane center and is not close to human-like negotiating
curves. Our proposed algorithm is expected to outperform any human-like driving algo-
rithm since it optimises both velocity and path for the mitigation of MS. However, such
comparison is considered as scope for future study. The proposed algorithm suffers from
certain limitations as well. All the participants showed differing MS susceptibility during
the experiment. Thus, there is no single weight setting for the cost function that would
suit the entire population. Weight sets need to be defined for different individuals or dif-
ferent susceptibility groups. We recommend performing user groups studies to assess if
different comfort pre-sets would provide a benefit to more people.

The algorithm also makes a trade-off between the travel time and sickness reduc-
tion, which adheres to the findings from [53]. In the conducted experiment, the travel
time of the journey increased by 50% with mitigation of MS. The road profile used for
the experiment was high on sickening stimuli. For paths with lower sickening stimuli
as occurring in many highways, the vehicle velocity will often be constrained by speed
limits, and hence the travel time increase will be limited.

2.7. CONCLUSION
Trajectory planning for mitigation of motion sickness in automated vehicles through op-
timal control has been proposed. The algorithm outputs a comfortable reference veloc-
ity profile. Moreover, it generates a preferred path through corner cutting within the
allowable road area. This allows the vehicle to corner with lower lateral acceleration re-
ducing the sickening motion stimuli.

The effectiveness of the proposed algorithm in reduction of motion sickness was
studied using a driving simulator experiment. The proposed algorithm successfully re-
duced the levels of motion sickness for the 16 participants, where, the mean MIsery
SCale scores reported by the participants reduced by 65% compared to the benchmark
controller. Each and every participant reported reduced levels of sickness, when sub-
jected to the proposed driving style, and the number of dropouts reduced from 6 to 1.
The overall journey was also rated as more comfortable by the participants, indicated
by a 57.48% reduction in the mean score of Motion Sickness Assessment Questionnaire,
which confirms the algorithm’s capability in reduction of motion sickness in each and
every individual.

Although all participants reported reduced motion sickness with the proposed al-
gorithm, the individual sickness levels displayed a substantial variance. This calls for
subject-specific comfort settings in automated vehicles.
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ABSTRACT
Motion cueing algorithms in driving simulators ensure coherence with the scenario’s vi-
sualisation. Model predictive control is a promising motion cueing technique, but its
widespread real-time application is hindered by its high computational demands.

This paper introduces a novel algorithm that combines filter-based and optimisation-
based methods to enhance specific force tracking while improving computational effi-
ciency. The proposed frequency-splitting algorithm decomposes reference vehicular accel-
eration into low- and high-frequency components. The high-frequency component guides
translational motion, avoiding workspace limits, while the low-frequency component guides
tilt coordination to replicate sustained accelerations. This guidance enhances computa-
tional efficiency and tracking performance. The total acceleration acts as a reference for
specific force, with the highest priority, ensuring optimal specific force tracking.

The performance of the proposed approach was evaluated in comparison to state-of-the-
art model predictive control-based motion cueing and conventional adaptive washout.
The proposed approach at least matches, if not outperforms, the state-of-the-art model
predictive control-based cueing algorithm in specific force tracking. It also demonstrates
potential for real-time implementation in driving simulators.

To complement the objective findings, we conducted a comprehensive human-in-the-loop
assessment. We gathered user feedback to validate the effectiveness in providing a realis-
tic driving experience in passive driving representative of being driven by an automated
vehicle. The algorithm was rated equally or more realistic compared to adaptive washout
by 76.3% of the participants, with a reduction of false cues in specific manoeuvres. It was
also rated to be more aggressive by 68.4% of participants, demonstrating that it captures
the aggressiveness of the original drive better.
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3.1. INTRODUCTION

I N the realm of moving-based driving simulators, achieving realism in motion cueing
algorithms (MCAs) has been a long-standing challenge. Despite the advancements

in cueing algorithms based on model predictive control (MPC) over the years, adaptive
washout filter-based approaches continue to prevail in industry applications. The dom-
inance of washout filter-based algorithms is primarily attributed to their computational
efficiency, a critical factor for real-time application in driving simulators.

While MPC-based algorithms offer superior fidelity in motion cueing, their computa-
tional demands often outweigh their benefits, making them less practical for widespread
adoption in real-time applications.

To address this gap, this paper introduces a novel frequency-splitting motion cue-
ing algorithm that integrates the computational efficiency of washout filters with the
optimal control capability of MPC-based MCAs. The key idea is to decompose the ref-
erence specific force signal into low- and high-frequency components, as illustrated in
Figure 3.1. The MPC now jointly uses three references. The high-frequency component
guides the translational motion of the platform, while the low-frequency component
guides the tilt coordination, similar to classical washout schemes. The total acceleration
acts as a reference for specific force, with the highest priority, ensuring optimal specific
force tracking.

Within this framework, the MPC formulation ensures optimal workspace utilization
by adapting to varying driving scenarios and respecting platform constraints. This ap-
proach is motivated by the need for computationally efficient yet perceptually accurate
motion cueing in next-generation simulators used for human-in-the-loop testing and
automated driving research. By maintaining real-time performance without sacrificing
motion realism, the proposed method offers a practical solution for automotive and re-
search simulators alike.

The contributions of the work are outlined below:

• Development of a novel frequency-splitting algorithm including elements of clas-
sical washout and MPC-based motion cueing algorithms, combining advantages
of both approaches within a single algorithm.

• Objective analysis demonstrating that the proposed algorithm strongly outper-
forms conventional adaptive washout in terms of specific force tracking, while also
achieving higher computational efficiency than traditional MPC-based MCAs.

• Human-in-the-loop evaluation replicating an automated driving scenario, show-
ing a clear preference among participants for the proposed algorithm. Addition-
ally, for specific manoeuvres, the algorithm effectively reduces perceived false cues.

The paper is structured as follows: Section 3.2 discusses the existing works in the do-
main of motion cueing and driving simulator experiments; Section 3.3 provides the de-
tails of the proposed algorithm and formulates the optimal control problem; Section 3.4
establishes the configuration of the frequency-splitting MCA; Section 3.5 compares the
proposed MCA to two benchmark MCAs through objective metrics, followed by human
experiment design and subjective validation in Section 3.6; Section 3.7 discusses the re-
sults presented in previous sections. The conclusion is laid out in Section 3.8.



3

36 FREQUENCY-SPLITTING MOTION CUEING

3.2. RELEVANT STUDIES
Motion cueing algorithms implemented in driving simulators aim to emulate the mo-
tion of a vehicle through various control strategies. The typical approach is to recreate
low-frequency translational accelerations with tilt-coordination, and high-frequency ac-
celerations by linear accelerations of the platform [14]–[16]; such MCAs are referred to
as "washout" filters.

As a next step, optimisation-based washout-filter algorithms have been established.
These algorithms adaptively scale the reference accelerations based on the current states
of the platform and the mismatch in motion perception [17], [18]. These MCAs are gen-
erally referred to as "adaptive washout".

Classical and adaptive washout algorithms, are collectively referred to as filter-based
approaches, and remain widely used due to their simplicity, low computational cost,
and suitability for real-time implementation. Their intuitive structure and fast execution
make them particularly attractive for industrial applications, despite their limited ability
to explicitly handle motion constraints.

A more enhanced approach is based on using model predictive control [19]–[21]. By
anticipating future states, MPC-based MCAs optimise motion control inputs, providing
more optimal solutions compared to (adaptive) washout MCAs.

Nonlinear Model Predictive Control (NMPC)-based MCAs enable the prediction and
optimization of future system behavior while explicitly considering nonlinearities and
constraints. This approach allows more accurate control actions and improved workspace
utilization, as the controller is aware of the motion system’s physical limitations includ-
ing actuator capabilities.

Previous studies [68], [69], have explored the inclusion of actuator dynamics and
constraints within NMPC-based MCAs. By modeling the nonlinear actuator behavior,
these works demonstrated enhanced performance and more efficient use of the plat-
form workspace, leading to smoother and more realistic motion rendering.

Restriction of motion through additional constraints is also explored. Dynamic con-
straints utilise a non-linear combination of acceleration, velocity, and displacement to
reduce abrupt motion of the platform, aiding in better workspace utilisation [23]. A de-
coupled MPC-based motion cueing strategy has also been proposed, in which vehicular
translational and rotational motions are controlled independently [70]. In this archi-
tecture, translational accelerations—sensed by the otolith organs—are handled by one
MPC, while rotational cues—sensed by the semicircular canals—are handled by a sep-
arate MPC. The rotational motion arising from the vehicle dynamics is combined with
the tilt coordination component, and the resulting signal is applied to the tilt channel
to reproduce both the vehicle rotations and part of the specific force. This decoupling
relaxes the constraint of imposing tilt perception thresholds on vehicular rotations, as
the vehicle rotations themselves do not need to remain below the human perception
threshold.

However, MPC-based MCAs face a drawback in terms of their high computation
time, which poses a limitation for real-time applications.

To reduce computational costs, explicit (offline) MPC has been used to pre-compute
solutions and use these as look-up table. This significantly reduces online computation
time [23]. While explicit MPC reduces online computation time, it encounters challenges
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related to memory storage and limitations on utilising large prediction horizons with fast
sampling rates. Thus, a more practical alternative is needed to address these challenges.
As an alternative, a four DoF MCA is proposed using a combination of explicit (offline)
and implicit (online) MPCs [24]. The four DoF explicit MPC provides an initial educated
guess to the implicit MPC, resulting in faster convergence.

It is interesting to note that, for real-time implementation, short prediction horizons
are often explored in MPC-based MCAs. While this reduces computational effort, it typ-
ically compromises stability. To mitigate this, terminal weights have been introduced to
retain stability even with short horizons [71]. Exponential weighting of the future pre-
dicted trajectory has been shown to accelerate convergence [72], although this comes at
the cost of reduced tracking performance.

Both washout and MPC-based MCAs include several parameters which can be se-
lected by users to enhance performance for specific driving scenarios. These parame-
ters include scaling factors for vehicular accelerations, filter frequencies, penalisation
weights for washout (to bring back the platform to its neutral position), jerk penalisa-
tion, etc. The performance of an MCA can depend heavily on these parameters. The use
of genetic algorithms has been explored [26] to tune the algorithm parameters, elimi-
nating the need for weight tuning based on user feedback. A genetic algorithm has also
been employed to scale the reference signal online to achieve better specific force track-
ing. The scaling is based on the workspace available for the upcoming motion and the
motion perception error [27].

While MPC-based MCAs generally use the specific force as a reference to be tracked,
human perception models have been added to MPCs to enhance perceptible motion
while ignoring the motion that humans do not perceive [19]–[21], [25], [70], [73]. In these
studies, human perception models are included to convert the actual vehicle accelera-
tions into perceived accelerations, and then the MPC aims to recreate these perceived
accelerations through the platform motion. However, we found no comparison quanti-
fying benefits, including and excluding human perception model, using simulations nor
via subjective experimental evaluation.

Sequential motion cueing algorithms, where the most suitable algorithm is selected
for each situation, have also been explored [30]. In this approach, different motion cue-
ing algorithms were switched dynamically to utilize the best-suited MCA or MCA setting
at the appropriate instances.

Reinforcement learning (RL) has also been investigated in the field of motion cue-
ing to enhance fidelity. Prior studies have explored RL for selecting the prediction hori-
zon length [29] and deep reinforcement learning (DRL) for directly controlling platform
actuation based on reference signals [28]. The use of RL to adaptively determine the
horizon length demonstrated reduced computation times for MPC-based MCAs. Mean-
while, the DRL-based MCAs demonstrated the ability to learn the underlying control
strategy directly and improve motion cue realism and immersion quality based on a
human perception model, outperforming optimised filter-based classical washout al-
gorithms in objective evaluations. However, such machine learning approaches face the
drawback of limited generalizability when encountering unforeseen scenarios. The use
of deep neural networks to derive explicit MPC formulation for an MCA has also been
explored [74]. A Gaussian radial basis function–based neural network (RBF-NN) was
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developed in [75]; however, the resulting explicit MPC formulation exhibited degraded
performance compared to conventional approaches.

Several studies report objective comparisons of washout algorithms and MPC-based
MCAs (e.g. [20], [25]) and demonstrate that MPC-based algorithms outperform washout
algorithms in terms of specific force tracking. However, only few studies compare sub-
jective evaluation of multiple MCAs with human in the loop experiments.

Experimental subjective validation [31] compared a classical filter-based algorithm
and MPC-based MCA. Participants rated the perceived mismatch between the motion
profile and the visual stimuli continuously during the simulation via a knob mechanism.
The mismatch rating using the classical filter-based algorithm was scored approximately
2.5 times higher (based on the conducted MANOVA test). Experimental validation in [21]
also indicated that 70% of the participants rated the motion rendered through a non-
linear MPC-based MCA as more realistic compared to a filter-based algorithm.

This work proposes a novel algorithm combining elements of classical washout filter-
based and MPC-based approaches. It utilises an MPC framework to incorporate
workspace and dynamic constraints. The three references for the algorithm are the to-
tal specific force and filtered accelerations, with high frequency for translational ac-
celeration and low frequency for tilt coordination. The proposed frequency-splitting
algorithm is evaluated through a comparative analysis with a benchmark MPC based
MCA and with a widely employed adaptive washout algorithm with optimisation-based
workspace management [76].

Ample studies evaluate driving simulator fidelity as perceived by active drivers. Con-
sidering that driving simulators have started to be intensively used in research and de-
velopment regarding comfort in automated vehicles, we validate the proposed algorithm
from the perspective of passive driving. We evaluate simulator fidelity by examining vi-
sual and motion realism, as well as assessing aggressiveness and motion sickness. To
guide our evaluation, we utilise a questionnaire inspired by a validation study on cyclist
behavior in a bike simulator [77]. This approach ensures a comprehensive assessment
of the simulation experience, focusing on key factors that contribute to overall realism
and user comfort.

3.3. METHODOLOGY
This section describes the proposed frequency-splitting MCA, which combines elements
from both filter-based and MPC-based MCAs. The algorithm utilises high-pass and low-
pass (first-order) filters to split the reference acceleration signal into high and low-frequency
components (cut-off frequency, νF S =0.5 Hz). The high-frequency component serves as
a reference for translational platform accelerations, while the low-frequency component
guides tilt coordination, resembling the washout-filter approach. Furthermore, the al-
gorithm incorporates an MPC framework to address workspace constraints.

While several studies include vestibular perception models in MPC-based MCA (see
Section 3.2), this increases computational complexity. Our preliminary exploration indi-
cated that incorporating these models (second-order transfer functions for otoliths and
semicircular canals) adversely affected computation load with no significant change in
specific forces. Given that our MCA already tracks specific forces effectively without a
vestibular model, we decided against including it.
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Figure 3.1: Structure of the five DoF frequency-splitting algorithm

Within the MPC framework, control is exercised over four DoFs responsible for pitch,
roll, and translation in both longitudinal and lateral directions. The vertical motion is ig-
nored in this study assuming a perfectly flat road. Due to no contribution of yaw for
specific force generation, it can be decoupled from the MPC framework. It is directly in-
corporated into the simulator’s rotational channel input after passing through a washout
filter. The schematic representation of the algorithm’s structure is depicted in Figure 3.1.
In this study, pitch and roll corresponding to vehicle motion are neglected, as they re-
main below 2 degrees through the entire maneuver for the used experimental real driv-
ing data. However, these can be directly added to the rotational inputs (which are the
rotational optimised control inputs to the driving simulator in Figure 3.1).

3.3.1. HEXAPOD/DRIVING SIMULATOR DYNAMICS
The motion of the hexapod platform is defined in a state space form to facilitate im-
plementation in the MPC. The base states include hexapod position (shex ) and angular
orientation (θhex ). These base states are added to the state-space model with the relation

ẋhex = Ahex xhex +Bhex uhex (3.1)

where the state vector, xhex , comprises of the position, shex , translational velocity,
vhex , angular orientation, θhex , and angular velocity, ωhex , of the hexapod and the in-
put vector, uhex , comprises of translational acceleration, ahex and angular acceleration,
αhex . The matrices Ahex and Bhex represent the double integrator systems of the states
and inputs, adapted from [78].

As the algorithm is designed for both longitudinal and lateral degrees of freedom,
each state comprises of components in x and y directions (roll and pitch for orientation).
In this study, positive values correspond to forward, left, and upward orientations along
the x, y, and z axes, with counterclockwise rotations indicated as positive.

3.3.2. MPC FORMULATION
To achieve realistic motion perception, vehicular accelerations are tracked using spe-
cific forces generated by the driving simulator. These specific forces encapsulate the
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combined effects of accelerations and gravity as perceived by the human via the otoliths
(part of the vestibular system). Therefore, the specific force is calculated at the estimated
head location.

The translational component is the acceleration of the platform. The gravitational
force vector Gloc , at the estimated head location, is defined by the relation

Gloc = RT [0 0 g ]′ (3.2)

where R is the transformation matrix that resolves gravitational force corresponding to
longitudinal, lateral and vertical directions and g is the acceleration due to gravity, acting
on the occupant’s body vertically.

The total specific force is then defined as

fspec = ahex +Gl oc (3.3)

where ahex is the translational acceleration of the platform. The tilt component, Gl oc ,
provides an additional pseudo acceleration to the occupant of the simulator.

The specific force is the quantity to be tracked to achieve realistic motion perception.
Additionally, it is essential to restrict the platform rotation rates to levels below the hu-
man perception threshold to prevent the rotations from being perceived. This threshold
is generally kept between 2-4 deg/s [20], [21], [79]. For this work, we selected 3 deg/s
as the perception threshold. To ensure a more robust specific force tracking, this limit
is incorporated as a soft constraint rather than a hard constraint. This means that the
constraint is allowed to be violated when necessary to enhance specific force tracking.

OBJECTIVE / COST FUNCTION

The cost function minimises the squared error between the reference values and the
actual values of the outputs yk , inputs uk , and states xk , over a prediction horizon of N
future samples. The structure of the cost function used for this work is adapted from [80]
and is given by

Jc =[(Y (xk ,uk )− Ŷk )T WY (Y (xk ,uk )− Ŷk )︸ ︷︷ ︸
out put ter ms

+ (Xk − X̂k )T WX (Xk − X̂k )︸ ︷︷ ︸
st ate ter ms

+ J T
k WJ Jk︸ ︷︷ ︸

j er k ter ms

+ (Uk )T WU (Uk )︸ ︷︷ ︸
i nput ter ms

+ δT wδδ︸ ︷︷ ︸
sl ack ter m

] (3.4)

Y (xk ,uk ) = [ fspec ahex Gloc ] (3.5)

WY = [w f ,spec w f ,tr ans wG ,loc ] (3.6)

Jk = [ jtr ans jang ] WJ = [w j ,tr ans w j ,ang ] (3.7)

In MPC-based MCAs, it is common practice to penalise the difference between the
simulator and vehicle motion output, i.e. specific force, as the reference output term.
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In this work, we include two additional references (see Equation 3.4 and 3.5) for the tilt-
coordination Gloc and the translational acceleration ahex , which are the high-frequency
and low-frequency components of the reference specific force respectively.

Additionally, penalising jerk in the cost function of an MPC-based MCA is a well es-
tablished practice to reduce oscillations in the specific force. We approximate jerk using
the acceleration change over time-steps divided by the time-step j (k) = a(k)−a(k−1)

Ts . This
approach avoids the need to add jerk as a system state, thereby decreasing the compu-
tational complexity of the optimal control problem. The state term (xk − x̂k ) introduces
’washout’ to the platform by consistently attempting to return it to its neutral position
x̂k . The input term (Uk −Ûk ) penalises high input values.

In Equation 3.4, the main user defined (tunable) parameters are represented by the
weighting matrices WY , WU , WX and wδ. It is worth mentioning that WX is a diago-
nal matrix with weights corresponding to the states being its diagonal elements. The
weights for washout namely ws and wθ are defined in Subsection 3.3.2 (Workspace Man-
agement).

The slack variable, denoted as δ, in the cost function represents the deviation of the
tilt-rate from the soft constraint limit (the perception threshold).

The optimal control problem is then formulated as

min
u∈U

Jc (3.8)

s.t . x ′
k = f (xk ,uk ) (3.9)

φ(xk ,uk ) ≤ 0 (3.10)

b (x (s0)) = 0 (3.11)

The dynamics of the system, as defined in Subsection 3.3.1, are used as equality con-
straints in Equation 3.9. The function φ in Equation 3.10 represents the inequality con-
straints on the system as defined in Subsection 3.3.2. Lastly, function b(x(s0)) in Equa-
tion 3.11 defines the boundary conditions for the platform, i.e. the initial states of the
platform.

CONSTRAINTS

Unlike a real vehicle, in a driving simulator, movements are restricted to a maximum
displacement and maximum tilt angle. These quantities are specific to the simulator
being used. In this work, the workspace limitations of Delft Advanced Vehicle Simula-
tor (DAVSi) are used. DAVSi is a 6-DoF moving-based driving simulator [20], capable of
generating acceleration up to 1 g in all directions and can simulate motions in the wide
frequency range up to 10 Hz. The considered limits of the platform motion are given
in Table 3.1. It is worth mentioning that, as the algorithm includes yaw washout as a
separate controller, conservative limits are chosen for translational and rotational dis-
placement.

Additionally, the soft constraint used to define the tilt-rate perception limit is formu-
lated as

−ωthd ≤ ωhex +δ
ωhex −δ ≤ ωthd

0 ≤ δ (3.12)
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Table 3.1: Limits for the simulator and the used MPC limits

Quantity Platform physical limit Defined MPC limit

θhex ±30deg ±20deg
vhex ±7.2m/s ±7.2m/s
ahex ±9.81m/s2 ±9.81m/s2

shex ±0.5m ±0.3m

where ωthd is the perception threshold limit (3 deg/s). δ is a positive slack variable
which is penalised in the cost function to keep its value low. Hence, the tilt-rate soft
constraint limit is allowed to be violated, however, any violation of the constraint is pe-
nalised, to minimise it.

WORKSPACE MANAGEMENT

The MPC takes these constraints into account over the MPC prediction horizon, thereby
optimally using the workspace to generate realistic motion. For proper workspace man-
agement, two additional strategies are employed, namely washout and dynamic con-
straints.

Washout: The simulator platform has the maximum potential of recreating the spe-
cific forces at its neutral position. Hence, it is a common practice to consistently push
the platform back to its neutral position. This is done by penalising the states of the plat-
form in the cost function as described in Subsection 3.3.2 (Objective/Cost function). In
this work, we use non-linear weights (based on the platform orientation and position)
for the washout instead of constant weights. This allows a single non-linear setting for
all scenarios rather than tuning the washout weights for each scenario.
The non-linear weights are defined as

ws = g1

g2 ∗ (|shex |− sl i m)2 +∆ (3.13)

wθ = g1

g2 ∗ (|θhex |−θl i m)2 +∆ (3.14)

where the parameters g1, g2 and g3 define the shape of the weight function, sl i m and
θl i m are the defined limits for the platform for displacement and tilt angle. ∆ (here 0.01)
is a small value added to the denominator to avoid singularity. The values selected for
the algorithm are g1 = 1, g2 = 50 and g3 = 0.1, these values ensure that the penalisation
is low near the neutral position while being high close to the platform limits. The values
were manually tuned to obtain a desirable response. The resulting weight variation with
the platform displacement can be seen in Figure 3.2.

Dynamic constraints: In this study, we incorporate a dynamic bound on the posi-
tion and orientation of the platform rather than fixed bounds. The constraints pro-
posed in [23], as ’braking constraints’, are incorporated in this work. These dynamic
constraints restrict the platform from taking actions which may drive the platform out
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Figure 3.2: Non-linear position weight for the platform displacement (Equation 3.13)

of the workspace limits. The formulation of the constraints is

shex,mi n ≤ sd yn ≤ shex,max (3.15)

θhex,mi n ≤ θd yn ≤ θhex,max (3.16)

with

sd yn = shex + cv vhex Td yn,s +0.5cu ahex,tr anT 2
d yn,s (3.17)

θd yn = θhex + cwωhex Td yn,θ+0.5cu ahex,r ot T 2
d yn,θ (3.18)

where, cv = 1,cw = 1,cu = 0.45,Td yn,θ = 0.5, Td yn,s = 2.5 and sp ,θp limits are 0.3 m
and 20 deg respectively. The selected values were adopted from [73]. When the platform
approaches its limits, the platform’s acceleration and velocity reduce, aiding in main-
taining the platform within the workspace envelope.

3.3.3. YAW CHANNEL
The fifth DoF, yaw, is controlled separately using a parallel washout channel, ensuring
reduced computational complexity. The first-order high-pass filter used for this purpose
is given as

HP = s

s +2πνy aw
(3.19)

where νy aw is the cutoff frequency for the high pass filter. In this work, we use the value
of 0.0159 Hz for the cutoff frequency. The choice of the selected value is motivated in
Subsection 3.4.2 (Yaw Channel).

3.4. ALGORITHM CONFIGURATION
This section outlines the simulation settings employed for the results presented in this
study. A cut-off frequency νF S = of 0.5 Hz was chosen for the filters utilised to split the
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reference accelerations. This selection was informed by human-in-the-loop pilot tests
conducted to establish the experimental parameters.

For the simulations presented in this work, the optimisation is performed using
ForcesPro [58], using the Primal dual interior point (PDIP) algorithm. The maximum
iterations are chosen to be 100, to ensure convergence and avoid sub-optimal solutions.
The optimisation has been performed on Intel(R) Xeon(R) W-2223 CPU @3.60GHz with
32GB RAM.

3.4.1. PENALISATION WEIGHTS FOR THE OUTPUT TERMS
The frequency splitting algorithm requires three weighting factors for tracking specific
force, acceleration and tilt. We selected Wy = [5 1 1], as defined in Equation 3.6. This
weighting prioritizes the tracking of the specific force, with a modest weighting of accel-
eration and tilt. Varying this weighting had modest effects on the solution (see Figure B.4
in Appendix B.7); therefore, the authors proceeded with this weight selection.

3.4.2. SENSITIVITY ANALYSIS
This section describes the procedure for configuring the FS-MCA parameters using real
driving data (described in Subsection 3.5.2).

TIME STEP

The DAVSi can well attain frequencies up to 10 H z, corresponding to a Nyquist frequency
with a time step of 0.05 s. While smaller time steps can yield smoother responses, they
impede real-time implementation of the MPC algorithm. Consequently, a time step of
0.05 s is selected to discretise the control inputs in the MPC.

PREDICTION HORIZON LENGTH

The length of the MPC prediction horizon was varied between 20 and 120 steps with an
increment of 20 steps to examine the performance of the algorithm with different look-
ahead times.

As depicted in Figure 3.3, the algorithm exhibits nearly identical responses for pre-
diction horizon lengths of 60 steps and above. Increasing the prediction horizon length
affects the algorithm’s computation complexity adversely (this can be seen in Table B.3a
in Appendix B.4). It can also be observed that the prediction horizon of 60 steps has
real-time capability. Thus, a prediction horizon length of 60 steps is chosen for most
simulations in this work.

ANGULAR JERK PENALISATION

Undesirable abrupt changes in tilt rate, which are not achievable by the simulator plat-
form, are mitigated by introducing a penalty on angular jerk.

The angular jerk weight was varied between 1e-2 and 1e2. Weights below unity led
to significant oscillations, and increasing the weight above unity negatively affected the
specific force tracking. Consequently, a weight of 1 was chosen.

TRANSLATIONAL JERK PENALISATION

The weight for the translational jerk was varied between 1e-2 and 1e2, similar to the
analysis of the angular jerk sensitivity. While different weights yielded similar results,



3.4. ALGORITHM CONFIGURATION

3

45

Figure 3.3: Real-drive data tracking performance in lateral direction of the proposed
algorithm for various prediction horizon lengths (results for 80 and 100 steps practically

coincide)

a weight of 1 was chosen for translational jerk penalisation as it resulted in the closest
specific force tracking. The authors believe that selecting another value within this range
is unlikely to affect the results significantly.

SLACK VARIABLE

A high penalty on the slack variable indicates a stricter adherence to the tilt rate con-
straint. In this study, we restrict the maximum tilt rate to 3deg /s. However, some flexi-
bility is given to this limit to avoid instability (described in [67]). This was done using soft
constraints as described in Equation 3.12. A penalisation weight, wδ, of 1e5 resulted in
the tilt-rate staying desirably close to the limit of 3deg /s. Increasing this weight further
caused undesirable oscillation in the tilt-rate when it reached or exceeded the tilt-rate
limit.

YAW WASHOUT

The tuning parameter for the yaw washout was the cut-off frequencyνy aw of the washout
filter. This cut-off frequency was varied between 0.0159 H z (0.1 rad/s) and 0.1592 H z (1
rad/s). The yaw response is shown in Figure 3.4.

Since human perception is primarily sensitive to rotational velocities, the cut-off fre-
quency is chosen based on yaw velocity tracking rather than yaw angle or acceleration.
Additionally, it is essential to ensure that the yaw angle remains within acceptable limits
(20 deg for this work, considering the simulator’s maximum of 30 deg and potential cou-
pled motion effects coming from the MPC framework). Based on these considerations,
a cut-off frequency of 0.0159 H z is chosen for this study.
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Figure 3.4: Yaw response for different cut-off frequencies νy aw for the real driving
described in Subsection 3.5.2

3.5. SIMULATION ASSESSMENT
This section presents two benchmarking algorithms and the scenarios considered for
this work. An objective comparison is then carried out with both benchmark algorithms.

3.5.1. BENCHMARK MCAS
For comparison, we employ two algorithms: a state-of-the-art MPC-based MCA and an
Adaptive Washout (AW) MCA.

MPC-BASED MCA
The benchmark MPC-based MCA retains the structure of the proposed FS MCA with
the absence of tilt-coordination and translational acceleration tracking terms in the cost
function (Wy = [5 0 0] as defined in Equation 3.6). To ensure a fair comparison, all other
settings are kept the same as the proposed algorithm.

ADAPTIVE WASHOUT

The adaptive washout algorithm dynamically adjusts the scaling of the reference signal
according to the platform’s current state, including the available workspace and motion
perception error. It should be noted that the adaptive washout MCA does not incor-
porate any knowledge of upcoming maneuvers, whereas the proposed MCA has access
to perfect preview of the future trajectory. This provides the proposed approach with
a fundamental advantage in terms of anticipatory control. Nevertheless, the AW MCA
is included as a benchmark since it represents the state-of-the-art in industrial motion
simulation. For benchmarking, we employ an industrial state-of-the-art AW algorithm
with MPC-based direct workspace management [76].

This adaptive washout consists of the following components

• Translation channels: 1st order high-pass filter
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• Rotation channels: 3rd order high-pass filter

• Tilt coordination: 2nd order low-pass filter

The used configuration of the adaptive washout is kept consistent with the proposed
algorithm for a fair comparison. The used values are summarised in Table 3.2

Table 3.2: Configuration of the adaptive washout algorithm

Parameter Value

Cut-off frequency (long. and lat.) 0.5 H z
Max tilt angle (roll and pitch) 30 deg
Maximum tilt rate (roll and pitch) 3 deg /s
Scaling Factor (Lateral) 0.4
Scaling Factor (Longitudinal) 0.3

3.5.2. SCENARIOS
This study employs two scenarios for benchmarking: one for objective and one for both
objective and subjective evaluation.

An artificially generated step signal is used for the objective benchmark, focusing on
evaluating the algorithm’s capability to reproduce specific forces. The artificially gener-
ated step signal, although not intended for subjective comparison due to its non-realistic
nature, plays a crucial role in objectively evaluating the algorithm’s proficiency in repli-
cating specific forces. In contrast, real driving data is selected for subjective evaluation,
aiming to assess the realism and immersion of the algorithm in the driving simulator.

STEP SIGNAL

The step signal introduces a sudden increment in the reference specific force, simulating
an extreme dynamic maneuver. This signal includes a rest period, followed by a consis-
tent magnitude of +0.8 m/s2 for 8 seconds and another rest period. It serves as a ref-
erence in both longitudinal and lateral directions and has also been employed in other
works to evaluate MCA tracking performance [24], [73].

Figure 3.5: Valkenburg track
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Figure 3.6: Longitudinal acceleration for the real driving data

REAL DRIVING DATA

To compare the realism and immersion of the algorithm in the driving simulator, real-
experiment driving data from the Valkenburg experiment conducted by our group was
utilised [81] (the track can be seen in Figure 3.5). The experiment focused on motion
sickness development during dynamic driving in our automated Prius vehicle. Given the
experiment’s duration, specific sections were chosen for this study. These sections in-
cluded multi-turns with acceleration and braking, a slalom maneuver, and a lane change
maneuver, capturing various naturalistic driving scenarios.

Figure 3.7: Lateral acceleration for the real driving data

The overall scenario duration was intentionally kept brief at 110 seconds to minimise
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the risk of inducing simulator sickness and introducing bias to the study (see Subsec-
tion 3.6.1 for details on the algorithm sequencing process implemented to mitigate po-
tential biases). Scaling factors of 0.3 and 0.4 were applied to the longitudinal and lateral
directions, respectively, based on participant feedback obtained during pilot studies to
enhance realism. This choice aligns with the general trend of using scaling factors be-
tween 0.2 and 0.6 [21], [82]. Moreover a recent paper found no effect on perceived fidelity
when reducing scaling factors from 0.8-0.4 [83].

Figure 3.6 and Figure 3.7 show the acceleration profile extracted from the different
sections of the drive utilised for the simulations.

3.5.3. STEP RESPONSE
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Figure 3.8: Step signal tracking for benchmark MPC-based MCA and the proposed MCA
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Figure 3.9: Step signal tracking for adaptive washout and the proposed algorithm
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BENCHMARK WITH MPC-BASED MCA
The step response plot depicted in Figure 3.8 illustrates this comparison. In the case
of the benchmark MPC-based MCA, major oscillations in platform acceleration and tilt
are observed, resulting in a combined motion that yields zero specific force. These os-
cillations are obtained with a prediction horizon of 20 steps. This abnormality can be
resolved by using longer and more effective prediction horizons. However, this example
illustrates that the additional references of the frequency splitting MCA enhance conver-
gence towards realistic motion cues.

BENCHMARK WITH ADAPTIVE WASHOUT

The responses for the same step signal, through the adaptive washout algorithm, are de-
picted in Figure 3.9. Notably, the adaptive washout algorithm exhibits limitations in gen-
erating desirable outcomes, manifesting as high-magnitude false cues at the beginning
and end of the step signal. In contrast, the proposed algorithm consistently produces
favourable results.

3.5.4. SIMULATIONS WITH REAL DRIVING DATA
The performance of the algorithms in terms of specific force tracking, computation time,
and workspace utilisation is presented for the benchmark MPC-based MCA, the pro-
posed algorithm, and the adaptive washout approach in Table B.3a and Table B.3b in
Appendix B.4. Both tables also illustrate the effect of varying the MPC prediction hori-
zon on tracking accuracy, real-time feasibility, and workspace usage. With a horizon of
60 steps (3 seconds) or higher both MPC-based solutions provide a better specific force
tracking compared to adaptive washout. The proposed algorithm either outperforms
the benchmark MPC algorithm or matches its performance while achieving faster con-
vergence. Even with short horizons the proposed algorithm provides stable responses
with low error values due to the presence of the filtered references for the translation
and tilt-coordination. With longer horizons the proposed algorithm remains more effi-
cient computationally, whereas results remain close to the benchmark MPC.

The similar RMSE values observed between the two algorithms indicate that their
expected performance in terms of motion fidelity would also be similar. Additionally, in
pilot studies, participants reported no discernible differences. Thus it was not expected
that the subjective evaluation for the two algorithms would differ significantly and thus
the MPC-based MCA was dropped from the experimental validation.

Additionally, prolonged exposure to driving simulations increases the likelihood of
motion sickness in participants, which could bias the results and compromise the va-
lidity of the evaluation. Hence the experimental comparison was kept between only FS
MCA and AW MCA.

We further adopt a horizon of 60 steps for the proposed MCA and illustrate the spe-
cific force tracking in time for longitudinal motion in Figure 3.10 and for lateral motion
in Figure 3.11. The response of the proposed MCA is quite similar to that of the adaptive
washout in the longitudinal direction, but the proposed algorithm provides an overall
better specific force tracking, with a root mean squared error (RMSE) for the adaptive
washout being 0.0846 m/s2, and that for the proposed algorithm being 0.0608 m/s2.
The distinction in performance of the algorithms is more evident in the lateral direction,
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where the adaptive washout loses tracking in various sections, resulting in false cues,
whereas this occurrence is minimal for the proposed algorithm. The RMSE for adaptive
washout was found to be 0.3283 and that for the proposed algorithm was 0.2536.

Figure 3.10: Real-drive data tracking in longitudinal direction for the adaptive washout
and the proposed algorithm

Figure 3.11: Real-drive data tracking in lateral direction of the adaptive washout and the
proposed algorithm

Hence, substantial differences between adaptive washout and the proposed algo-
rithm were observed in the specific force, and the applied platform translation and ro-
tation also show marked differences, particularly at the onset of dynamic manoeuvres.
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Figure 3.12: Driving simulator with side window and part of the windshield covered for
frontal visual focus on the left; right side featuring visualisation projection

Therefore, we expect the two algorithms to differ substantially in terms of subjective
evaluation and selected these MCAs for human-in-the-loop evaluation.

3.6. HUMAN-IN-THE-LOOP EVALUATION
This section describes the human-in-the-loop driving simulator experiment and its sub-
jective evaluation results. Perceived driving simulator fidelity was evaluated from the
perspective of passive users, representative of users of automated vehicles. In pilot stud-
ies, we even aimed to evaluate perceived fidelity with the eyes off the road using a tablet
for a non-driving task. However, with vision limited to the vehicle interior, the MCAs
were not perceived as representative of driving. This was resolved by adding exterior
vision and instructing participants to observe the road.

3.6.1. EXPERIMENTAL PROCEDURE

All participants gave their informed consent prior to participating. The Human Research
Ethics Committee of TU Delft, The Netherlands, approved the experiment protocol un-
der application number 3965.

In total, 38 participants from the pool of students and employees of TU Delft par-
ticipated in the study (mean age: 28.45, std: 4.81 years, 10 females, 28 males). All par-
ticipants were subjected to both the proposed algorithm and adaptive washout drives.
The two algorithms were played sequentially in a randomised order within one session
to compare the subjective evaluation of the realism and feel of the MCAs.

Before the experiment, the participants underwent a concise briefing session to fa-
miliarise themselves with the questionnaire and to understand the objective of the ex-
periment. During the experiment, two-way communication was established between
the experimenter and the participant via bluetooth headphones and microphones.

Measures were taken to ensure that the video remained their sole visual focus, in-
cluding blocking side window views and part of the windshield to eliminate external
cues indicating platform tilt (see Figure 3.12).

Following the briefing, participants underwent a series of two-minute rides in fully
automated mode, following the scenario outlined in Subsection 3.5.2. After each drive,
participants completed an absolute grading questionnaire (refer to Appendix B.1) to as-
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Table 3.3: Subjective evaluation and statistical analysis (on a scale from 0–5). P-values
below 0.05 are considered statistically significant.

Criterion Algorithm
All data Inconsistent Data excluding inconsistent responses

mean std. median p-value responses mean std. median p-value

Coherence with AW 3.61 0.69 4
0.0266 3

3.64 0.68 4
0.0672

the video FS 3.88 0.69 4 3.87 0.68 4

Cornering realism AW 3.21 0.84 3
0.0546 3

3.27 0.79 3
0.0730

FS 3.58 0.85 4 3.57 0.85 4

Braking realism AW 2.84 1.01 2.5
2.9e-5 4

2.82 1.04 2.5
1.2e-5

FS 3.55 0.86 3.5 3.63 0.86 3.75

Aggressiveness: AW 2.95 0.93 3
2.3e-3 3

2.94 0.94 3
0.0013

Multi-turn FS 3.41 0.97 3.5 3.44 1.01 3.5

Aggressiveness: AW 2.49 0.91 2.25
6.5e-5 5

2.50 0.95 2
0.0053

Slalom FS 2.92 0.75 3 2.85 0.77 3

Aggressiveness: AW 2.28 0.78 2
5.7e-5 6

2.33 0.79 2.25
0.0072

Lane change FS 2.67 0.79 2.5 2.65 0.82 2.5

Sickening AW 2.04 0.96 2
0.6588 -

2.04 0.96 2
0.6588

FS 1.99 0.90 2 1.99 0.90 2

Unnatural motions AW 2.49 0.80 2.25
0.5935 0

2.49 0.80 2.25
0.5935

FS 2.45 0.96 2 2.45 0.96 2

sess various aspects of the driving experience. Subsequently, participants engaged in a
second drive, with minimal time between drives to facilitate a clear comparison.

To ensure a consistent evaluation, each scenario was played a total of six times: three
times using the proposed algorithm and three times using the adaptive washout MCA.
The first round of each algorithm ride aimed to immerse participants in the simulation
environment and was not graded. Participants provided ratings in a 5-point scale for
the second and third rounds based on the provided questionnaire. At the end of the
experiment, the participants were asked to fill in a comparative questionnaire (refer to
Appendix B.1). To ensure fair comparison, the sequence of algorithms was randomised
for different participants, maintaining either the pattern (A B A B A B) or (B A B A B A),
where A represents AW and B represents FS algorithm.

Additionally, to analyze the instances of false cues, which can be perceived as unnat-
ural motion, the participants were asked to report any instances of unnatural motions
by saying ’Now’. The participants were briefed to consider any motion that does not re-
semble a real vehicle motion to be unnatural. The time stamps of such instances were
recorded to study the reason for their occurrence.

Additionally, at any point, participants could indicate their desire to terminate the
experiment.

3.6.2. SUBJECTIVE EVALUATION

This subsection draws the comparison of the algorithms based on the conducted ex-
periment. The obtained responses are presented in Figure 3.13 and detailed including
statistical significance in Table 3.3.
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Inconsistencies in a participant’s response to the questionnaire pose a challenge to
the reliability of evaluations. To address this issue, a method was established. Each al-
gorithm was rated twice by each participant. If the discrepancy in ratings for a criterion
within the same algorithm exceeded 2 points (40%), the question was excluded for that
specific participant’s analysis. This method was not followed for the sickness criterion,
as sickness may develop over time with exposure to multiple simulations. A total of 24
(8%) inconsistencies were eliminated from the pool of 304 responses. Table 3.3 lists the
results without removal (left), the number of inconsistent responses per question (mid)
and results when removing these inconsistent responses (right).

The realism, in this work, was evaluated based on three factors.

- Coherence of the motion with the video: For an immersed experience within the
simulator environment, the motion of the simulator should always be coherent
with the video.

- Cornering realism: In recreating the accelerations of the vehicle, an algorithm should
generate motions that follow the dynamics of the vehicle and should feel like mo-
tion in a real vehicle.

- Braking realism: Just like cornering, the vehicle’s deceleration should also resem-
ble a real-vehicle motion.

Additionally, the aggressiveness of the three sections (Figure 3.5.2) of the experiment
scenario was evaluated separately.

The proposed algorithm was rated higher for all questions related to realism and ag-
gressiveness in matching the actual scenario. Initially, five measures showed a significant
difference, but after omitting inconsistent responses, this dropped to four.

COHERENCE OF THE MOTION WITH THE VIDEO

In general, both the algorithms are rated high by the participants in terms of realism
of the simulation. For coherence with the video, the proposed algorithm, on average,
was rated 3.88 out of 5 which translates to approximately 78% realism, compared to 73%
(avg. 3.61) for the adaptive washout, with the median for both the algorithms being 4.
This indicates that both the algorithms rendered motion coherent with the video, not
significantly different with the removed inconsistent responses (see Table 3.3 right side).
It is worth mentioning that the quality of the video was the limiting factor restricting
the realism of the simulation and not the coherence of the motion, as indicated by the
participants’ verbal feedback after the experiment.

CORNERING REALISM

The proposed algorithm was rated 3.57, and the adaptive washout MCA was rated 3.27
on average, with their medians being 4 and 3 respectively, with no statistically significant
difference.
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Seven participants (18%) observed pre-positioning of the platform before approach-
ing a corner with the proposed algorithm. This is discussed further in Subsection 3.6.2
where these instances of false cues are reported (see Figure 3.14). Pre-positioning is
described further in Appendix B.6. The response describing prepositioning is also pre-
sented in Figure B.3. This figure also illustrates the components of the specific force,
the translational and tilt components, cancelling each other to create a zero net spe-
cific force in the periods before the corners. Pre-positioning is inherent in MPCs, which
prepares the platform for optimal tracking of the specific force looking at the upcoming
manoeuvre. On the other hand, for adaptive washout, after the corner, the platform re-
turns to its neutral position slowly without any compensation through translational ac-
celeration (see Figure 3.11). This causes a drifting sensation because the platform keeps
moving even after the turn has ended. This drifting phenomenon was perceived by 12
participants (32%) in adaptive washout MCA. Seven participants (18%) observed a sim-
ilar drifting phenomenon in the proposed algorithm as well, however, it was reported to
be milder than in adaptive washout MCA.

Coherence w
ith

 video

Cornerin
g re

alism

Braking re
alism

Aggressiveness: 1
st s

cen.

Aggressiveness: 2
nd scen.

Aggressiveness: 3
rd scen.

Sickening

False cues
0

1

2

3

4

5

S
c
o

re

AW MCA

Proposed MCA

Figure 3.13: Subjective responses obtained during the experiment. Boxes represent the
interquartile range (IQR) with the lower quartile (Q1) at the bottom and the upper

quartile (Q3) at the top. The line inside the box indicates the median. Whiskers extend
to the minimum and maximum values within 1.5 times the IQR from the quartiles.

Points outside this range are considered outliers and are plotted individually.

REALISM OF BRAKING

The proposed algorithm was rated 3.63, and the adaptive washout MCA was rated 2.82
on average, with a statistically significant difference (p = 2.9e −5).

This more realistic perception can be attributed to the fact that the proposed algo-
rithm uses more translational motion to recreate the specific forces, whereas, the adap-
tive washout MCA predominantly relies on the tilt-coordination of the platform.

Overall realism
In the comparative questionnaire, the proposed algorithm was rated as the algorithm
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that provided a more realistic experience by 23 participants, 9 participants indicated
adaptive washout algorithm to be more realistic and 6 participants rated the algorithms
to be equally realistic. This indicates that 75% of the participants either preferred or
found the motion to be equally realistic for the proposed algorithm compared to adap-
tive washout MCA.

AGGRESSIVENESS

The aggressiveness of the different sections was also enquired from the participants of
the experiment via the absolute grading questionnaire. The recorded scenario corre-
sponds to an aggressive drive (evident from the vehicle accelerations in Figure 3.6 and
Figure 3.7). Thus, preserving this aggressiveness in the simulation within the driving
simulator is important.

The scenario was divided into 3 different sections: multi-turn, slalom and lane change.
All three sections were graded separately in the questionnaire.

Aggressiveness of section 1: Multi-turn
The proposed algorithm was rated 3.44, and the adaptive washout MCA was rated 2.94
on average, with their medians being at 3.5 and 3 respectively, with a statistically signifi-
cant difference.

Aggressiveness of section 2: Slalom
The proposed algorithm was rated 2.84, and the adaptive washout MCA was rated 2.5 on
average, with their medians being at 3 and 2 respectively, with a statistically significant
difference.

Aggressiveness of Section 3: Lane change
The proposed algorithm was rated 2.65, and the adaptive washout was rated 2.33 on av-
erage, with their medians being at 2.5 and 2.25 respectively, with a statistically significant
difference.

These results demonstrate that the proposed algorithm provided a more aggressive
drive in every section of the experiment. Likewise, according to the comparative ques-
tionnaire, 26 participants (68.4%) found the proposed algorithm to be more aggressive
compared to the adaptive washout, 11 participants (28.9%) found adaptive washout to
be more aggressive and one participant marked both the algorithms to be equal in terms
of aggressiveness.

After the completion of the experiment many participants verbally indicated that
both algorithms fall short in recreating the aggressiveness corresponding to the
described/briefed scenario. However, as outlined above, the proposed algorithm was
rated as more aggressive and thereby more realistic.

SICKNESS

The experiment consists of six two minute drives, which limits the probability of motion
sickness development. After exposure to each ride, the participants rated the sickness
intensity induced by the algorithms. The average rating for the proposed algorithm is
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1.99 and that for adaptive washout MCA is 2.04, with both their medians lying at 2. This
demonstrates that there is no significant difference between the sickening effect of the
motion profiles generated by the two algorithms. A reason for this occurrence may be
that both algorithms do not take into account motion sickness within their framework.

UNNATURAL MOTION/ FALSE CUES

The participants rated the proposed algorithm 2.45 on average and the adaptive washout
MCA was graded 2.49 on average, with their median values lying at 2 and 2.25 respec-
tively, with no significant difference.

Based on the comparative questionnaire, 16 participants indicated that the adaptive
washout MCA caused higher instances of false cues, 13 participants suggested that the
proposed algorithm has higher unnatural motions (false cues), whereas 9 participants
rated them to be equal in terms of unnatural motion.

Based on the recorded instances of unnatural motion, a total of 76 false cues were re-
ported for the adaptive washout algorithm, compared to 40 for the proposed algorithm.
These instances were classified into 5 main events:

• Acceleration/deceleration: corresponding to pitch and longitudinal translations.

• Coupled motion: When both longitudinal and lateral motion have varying acceler-
ation.

• Pre-positioning of the platform: the platform positions itself in anticipation of the
manoeuvre so that when the manoeuvre is performed, it recreates the desired spe-
cific forces better (described above and in Appendix B.6).

• Corner/turning: When the vehicle and the video are turning.

• Exiting a corner: After a corner is over and the vehicle is expected to go straight.

Figure 3.14 presents the false cues observed during the above defined events. It can
be seen that the proposed algorithm in general produces fewer instances of false cues
compared to the adaptive washout. However, pre-positioning of the platform before the
corner is observed only for the proposed algorithm.

3.7. DISCUSSION
In conventional washout-filter-based algorithms, both tilt-coordination and translational
acceleration rely on their defined references. If translational acceleration fails to repli-
cate its reference, no compensatory mechanism is present through tilt-coordination and
vice-versa.

On the other hand, in the benchmark MPC-based algorithm, the objective is to track
the overall specific force. Hence the two components, translation and tilt coordination,
work together to systematically follow the reference specific force. However, as various
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Figure 3.14: False cues observed during different events

platform motions can result in the same specific force, the algorithm may output sub-
optimal results. This sub-optimal solution may even lead to oscillating platform mo-
tions, as observed in the step response with short MPC horizon (Figure 3.8).

The proposed frequency splitting algorithm is guided by additional references for
tilt-coordination and translational motion. These references push the algorithm to con-
verge to a consistent combination of translational and tilt motion, similar to classical
washout cueing algorithms. The total specific force is used as the primary reference,
with the highest level of penalisation for deviations. This approach enables the com-
pensatory mechanism in the proposed algorithm, allowing it to adjust for any missing
component in translation or tilt coordination. Unlike washout algorithms, if one com-
ponent fails to meet its reference, the other component can compensate, as long as the
platform remains within its defined workspace limits. As these references guide the plat-
form motion, the computational efficiency of the algorithm also improves. This can be
clearly observed from Table B.3a, where the computation time needed to generate the
solution for the proposed algorithm is lower than that for the benchmark MPC-based
MCA. Table B.3a also indicates that the proposed algorithm outperforms the benchmark
MPC in terms of tracking performance with short prediction horizons. This is due to the
sub-optimality of the obtained solutions for the benchmark MPC with short prediction
horizons. It can also be seen that for very long prediction horizons (100 steps and above
[5s + look-ahead]), the benchmark MPC produces slightly better tracking performance.
This is due to the fact that it only has total specific force as the reference, which for long
prediction horizons generates a solution that is closer to optimal than the components
obtained using frequency splitting.

Compared to conventional filter-based-algorithms, the proposed algorithm’s predic-
tive capability enables it to anticipate future vehicle motions, thereby enhancing specific
force tracking, which is absent in filter-based algorithms. For instance, in Figure 3.9 and
Figure 3.11, during the onset of a step signal or a lane change maneuver, the adaptive
washout algorithm generates false cues. This occurs because one component success-
fully tracks its reference while the other can not. On the other hand, in the proposed
algorithm, the total specific force is tracked desirably.
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The proposed frequency splitting MPC algorithm includes adaptive washout weights
and dynamic constraints to enhance workspace utilisation (see Subsection 3.3.2). The
adaptive weights allow for a single setting applicable to various simulation scenarios,
eliminating the need for re-tuning washout weights. Dynamic constraints can play a
crucial role in mitigating abrupt platform motion, thereby reducing false cues induced
by such movements. The parameters used for the dynamic constraints are consistent
with those reported in [73]. While adjusting these parameters may yield a more respon-
sive platform trajectory, the experimental validation was conducted using the original
configuration. Therefore, the results are reported based on the implemented setup to
ensure consistency and reproducibility.

Additionally, the integration of high-pass and low-pass filters for distinct references
to tilt coordination and translational accelerations guides platform movements. This
integration prevents the motion cueing algorithm from generating excessive motion or
false cues, promoting better workspace utilisation triggering motion only when neces-
sary.

To enhance computation and real-time performance, jerk penalisation is implemented,
penalising the change in acceleration with time. This eliminates the need to add jerk as
an additional system state, thereby reducing the computational complexity.

In the human-in-the-loop validation, 60.5% of participants rated the proposed al-
gorithm higher, and 15.8% rated it equal to the adaptive washout in terms of realism.
Although these results indicate that the proposed algorithm outperforms the adaptive
washout, several limitations were noticed. While tilting was generally not noticed by the
participants, it is perceivedin instances when the tilt is not coherent with the motion. In
the adaptive washout algorithm, this is predominantly noticed after the completion of a
maneuver, when the algorithm slowly returns the platform to its neutral position. This
is perceived as a drifting sensation as visually the maneuver has ended, but the plat-
form motion continues. In contrast, the proposed algorithm does not exhibit this issue
as strongly, with a lower magnitude of false cues at the end of maneuvers. However, as
the algorithm pre-positions the platform for the upcoming maneuvers, the platform tilts
before the corner starts, and the specific force is compensated by the translation in the
opposite direction.

The false cues reported by the participants showed that 40 instances were observed
with the proposed algorithm compared to 76 instances with adaptive washout. How-
ever, the issue of pre-positioning before the corners was only noticed with the proposed
algorithm. This phenomenon is also reported in some other works (described using "ve-
locity buffering") [31], [84]. However, no comment is made on its effect on the subjective
evaluation or perception of this anomaly. In our experiment however, this anomaly was
perceived by seven participants (18%).

3.8. CONCLUSION
This study presents a novel motion cueing algorithm developed for enhancing motion
perception in driving simulators. It integrates elements from motion cueing algorithms
using adaptive washout and model predictive control. Hence, the proposed algorithm
capitalises on the strengths of both approaches.

Despite the inherent advantages of optimal motion cueing algorithms in specific
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force tracking and predictive capability, our investigation illuminated challenges asso-
ciated with sub-optimal workspace utilisation. The inclusion of the high-pass and low-
pass filters within the model predictive framework, coupled with dynamic constraints
aids in smarter workspace utilisation. Additionally, to address computational efficiency
concerns, our algorithm incorporates a novel technique for jerk penalisation. By penal-
ising the change rate in acceleration, we eliminate the inclusion of jerk in the state space
of the prediction model. The algorithm is also guided for the total specific force through
references for translational acceleration and tilt coordination, resulting in faster conver-
gence.

An experimental evaluation is conducted for the proposed algorithm comparing it
with an adaptive washout MCA, which is widely used in the industry. The experimental
results underscore the effectiveness of the proposed algorithm in providing a more im-
mersive driving experience compared to adaptive washout. 76.3% of participants indi-
cated that the proposed algorithm was equally (15.8%) or more realistic (60.5%) than the
adaptive washout, while 23.7% participants preferred the simulation obtained through
the adaptive washout. The experimental evaluation also depicts that the proposed algo-
rithm can replicate the aggressiveness of the drive better compared to adaptive washout,
with 68.4% participants rating it to be more aggressive.

The analysis of the reported instances of false cues indicated that the proposed algo-
rithm generated a low amount of false cues for acceleration and deceleration. For lateral
motion, the adaptive washout produced higher instances of false cue while exiting a cor-
ner, creating a drifting sensation. On the other hand, the proposed algorithm produces
an additional false cue, pre-positioning the platform before approaching the corners,
due to the usage of the model predictive framework. This pre-positioning will be a focus
of future work to enhance simulation realism.
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AUTOSCALING: MINIMIZING

IMMERSION DISRUPTION IN

MOTION CUEING USING MODEL

PREDICTIVE CONTROL

I find inspiration in every moment;
life is full of beautiful melodies.

Worakls

You have to sacrifice something
in order to achieve something greater.

David Brooks

This chapter has been published in V. Jain, A. Lazcano, R. Happee, B. Shyrokau “Autoscaling: Minimizing Im-
mersion Disruption in Motion Cueing Using Model Predictive Control”. In Proceedings of the Driving Simula-
tion Conference 2025 Europe, Stuttgart, Germany. 2025.
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ABSTRACT
Driving simulators aim to replicate real-world vehicle experiences by recreating acceler-
ations acting on occupants using a combination of translational accelerations and tilt-
coordination. Due to space constraints, translational accelerations alone are insufficient,
and platform tilting generates additional gravitational forces to enhance realism. How-
ever, ensuring the tilt motion remains imperceptible is critical to maintaining immersion.

Model Predictive Control-based motion cueing algorithms demonstrate superior specific
force tracking and platform workspace utilization. Despite these benefits, MPC algorithms
can exhibit pre-positioning, a phenomenon where the platform tilts prematurely in antic-
ipation of future motion, causing perceptible false cues that disrupt immersion. This phe-
nomenon is particularly noticeable in tilt-coordination due to sustained specific forces.

This work proposes a solution to mitigate pre-positioning by introducing a dynamic scal-
ing factor for tilt-coordination. By scaling down the reference signal for tilt coordination,
it stays within the simulator’s tilt angle and tilt-rate capabilities, and platform tilt rates
are kept below human perception thresholds. The scaling factor is derived from two key
parameters: the maximum specific force generated by platform tilt and the tilt rate per-
ception threshold. The reference for specific force is unscaled to optimally use the transla-
tional workspace.

This approach enhances driving simulator realism by minimizing the perceptibility of
pre-positioning while optimizing specific force recreation. Subjective evaluations also
indicate improved immersion, illustrating the effectiveness of the scenario-adaptive Au-
toscaling MCA.
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4.1. INTRODUCTION

D RIVING simulators play a crucial role in replicating real-world driving experiences
by providing visual, auditory, vestibular, and haptic cues [16]. A key aspect of re-

alism in driving simulation is motion cueing, which is achieved through reproduction
of specific forces. Motion cueing algorithms (MCAs) synchronize platform motion with
visual stimuli, ensuring a coherent, immersive experience.

MCAs simulate the vehicle dynamics by replicating the accelerations and forces ex-
perienced by occupants. However, due to the physical constraints of simulators such as
limited motion space, realistic accelerations cannot be generated through translational
movement alone. Thus, simulators employ a combination of translational accelerations
and tilt-coordination, where platform tilting induces additional gravitational forces. This
technique helps recreate the specific forces acting on an occupant’s head, mimicking the
perception of real-world driving. The classical approach uses tilt-coordination for low-
frequency accelerations and platform translation for high-frequency accelerations [14],
[15].

A key challenge is keeping platform rotations imperceptible, as exceeding human
perception thresholds disrupts immersion and makes specific forces feel unnatural. Thus,
tilt rates must remain below perceptible limits.

Recent advancements in motion cueing, particularly through model predictive con-
trol (MPC)-based algorithms, have improved the fidelity of driving simulations [19]–[21].
These algorithms predict future platform motion and optimise specific force tracking
while accounting for platform workspace constraints. Despite their advantages, MPC-
based algorithms are not flawless. The predictive nature of these algorithms can lead
to pre-positioning, where the platform moves prematurely in anticipation of future mo-
tion. This is particularly disturbing in transitions from steady state driving to dynamic
manoeuvres where in steady state the slightest motion is noticeable. While the specific
force can remain zero, the constituent components of the specific force arising from
translational acceleration and tilt-coordination can be non-zero, resulting in perceptible
platform motion. In a subjective assessment of a frequency-splitting MPC-based cueing
algorithm [67], 7 out of 38 participants reported these premature movements as false
cues. This phenomenon is also reported in some other works (described as "velocity
buffering") [31], [84]. However, due to the objective nature of these studies, no comment
on subjective feedback is made in these works.

In moving-base driving simulators, it is a common trend to scale down the refer-
ence accelerations by a factor of 0.2 to 0.6 to better fit the available workspace [21], [82].
Scenario-specific scaling factors are typically used to precondition the reference signal
and optimise tracking within the simulator’s physical limits. The quality of the driving
simulation heavily depends on this factor. In MPC-based MCAs, the scaling factor is
generally kept constant throughout the simulation, requiring a conservative choice that
suits the entire scenario rather than optimizing for different sections. This paper ad-
dresses the challenge of pre-positioning by proposing a method to dynamically adjust
the scaling factor for tilt-coordination based on the simulator capabilities. By ensuring
that platform tilt remains within human perception thresholds, pre-positioning is mini-
mized, enhancing the realism and immersion of the driving experience, while eliminat-
ing the need for scaling factor tuning for every scenario.
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4.2. METHODOLOGY
Figure 4.1 presents the proposed algorithm’s structure, where the MPC receives two sep-
arate references: for tilt coordination and for total specific force. This ensures that a
reproducible component of the specific force is provided to tilt coordination as a refer-
ence, preventing premature platform movements.

The MPC controls four degrees of freedom (DoFs) of the platform motion, with vehic-
ular roll and pitch assumed to be negligible for the vehicle dynamics. Hence the applied
platform pitch and roll serve only to recreate vehicle acceleration through tilt coordi-
nation. However, if available, vehicle pitch and roll data can be directly incorporated
into the rotational channels as additional input. Additionally, since yaw does not affect
the specific force generation, the yaw controller can be decoupled from the MPC. Thus,
the yaw motion is managed separately using a simple washout filter to avoid additional
computational expense.

Figure 4.1: Structure of the five-DoF Autoscaling MCA

4.2.1. REFERENCES FOR THE ALGORITHM

REFERENCE FOR TILT COORDINATION

The algorithm aims to prevent platform pre-positioning by addressing its root cause in
MPC: anticipatory motion triggered when required accelerations exceed what can be
achieved within tilt rate limits. Unable to generate the desired force in time, the plat-
form moves early, resulting in unrealistic specific force cues. This issue is mitigated by
providing the tilt coordination with a reference signal that can be accurately followed
while staying within the tilt-rate limit. Thus, the tilt-coordination receives a scaled-down
low-pass vehicle acceleration data as a reference.

To enforce strict reference tracking, a high penalty is applied to the tilt coordination
term in the objective function, preventing tilt components from compromising the ac-
curate recreation of the total specific force.

DYNAMIC SCALING FACTOR DESIGN

To ensure accurate reference signal recreation, the required specific force and its rate of
change must be less than or equal to the simulator’s potential. Two scaling factors are
derived, based on maximum achievable tilt angle and maximum rate change of tilt angle.
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The first scaling factor, kθ, is based on the maximum tilt angle, ensuring the reference
specific force remains within the platform’s tilt coordination capability:

max | fspec,r e f | ≤ max|g si n(θt i l t )| (4.1)

kθ = | g si n(θl i m |)
max | fspec,r e f

| (4.2)

where ’θl i m ’ is the maximum platform tilt angle.
The second scaling factor, kω , is derived from the tilt rate constraint to prevent false

cues.

max | ḟ spec,r e f | ≤ max |ωt i l t g cos(θt i l t )| (4.3)

here, the maximum value of ’cos(θt i l t )’ is 1, and the tilt rate is limited to the perception
threshold, ωthd , (3°/s). The scaling factor is thus given by:

kω ≤ωthd
g

max ḟspec,r e f
(4.4)

k = mi n(kθ,kω,1) (4.5)

where k is the dynamic scaling factor that scales down the reference signal for the tilt
coordination. In this work, for the choice of scaling factor the reference signal within the
MPC prediction horizon is considered.

REFERENCE FOR TOTAL SPECIFIC FORCE

In this work, unscaled vehicular accelerations are used as the reference for total specific
force. Given that tilt coordination has a separate reference, the MPC reproduces the re-
maining specific force solely through translational accelerations. This ensures optimal
use of translational space while employing tilt coordination to enhance realism by com-
plementing specific force reproduction through translational motion.

4.2.2. HEXAPOD DYNAMICS
The motion of the hexapod platform is defined in a state space form to facilitate im-
plementation in the MPC. The base states include hexapod position (shex ) and angular
orientation (θhex ). These base states are added to the state-space model with the relation

ẋhex = Ahex xhex +Bhex uhex (4.6)

where the state vector, xhex , comprises of the position, shex , translational velocity, vhex ,
angular orientation, θhex , and angular velocity, ωhex , of the hexapod and the input vec-
tor, uhex , comprises of translational acceleration, ahex and angular acceleration, αhex .
The matrix Ahex and Bhex represent the double integrator system of the inputs, adapted
from [78].

As the algorithm is designed for both longitudinal and lateral degrees of freedom,
each state comprises of components in x and y directions (roll and pitch for orientation).
In this study, positive values correspond to forward, left, and upward orientations along
the x, y, and z axes, with counterclockwise rotations indicated as positive.
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4.2.3. OBJECTIVE FUNCTION
The objective function structure is similar to that of the frequency-splitting algorithm in
Equation 3.4, but with changes in output terms and references. Instead of using transla-
tional motion, total specific force, and tilt coordination as output terms, this algorithm
includes only tilt coordination and total specific force.

Jc = [(Y (xk ,uk )− Ŷk )T WY (Y (xk ,uk )− Ŷk )︸ ︷︷ ︸
out put ter ms

+ (Xk − X̂k )T WX (Xk − X̂k )︸ ︷︷ ︸
st ate ter ms

+ J T
k WJ Jk︸ ︷︷ ︸

j er k ter ms

+ (Uk )T WU (Uk )︸ ︷︷ ︸
i nput ter ms

+ δT wδδ︸ ︷︷ ︸
sl ack ter m

] (4.7)

Y (xk ,uk ) = [ fspec Gl oc ] (4.8)

WY = [w f ,spec wG ,l oc ] (4.9)

Jk = [ jtr ans jang ] WJ = [w j ,tr ans w j ,ang ] (4.10)

Penalising jerk in the cost function of an MPC-based MCA is a well established prac-
tice to reduce oscillations in the specific force. We approximate jerk using the accelera-
tion change over time-steps divided by the time-step j (k) = a(k)−a(k−1)

Ts . This approach
avoids the need to add jerk as a system state, reducing computational complexity. The
state term (xk − x̂k ) introduces ’washout’ by bringing the platform back to its neutral
position x̂k . The input term (Uk ) penalises high input values.

In Equation 4.7, the user defined (tunable) parameters are the weighting matrices
WY , WU , WX and wδ. WX is a diagonal matrix with weights corresponding to the states
being its diagonal elements. The washout weights ws and wθ are time varying and are
defined in a later subsection.

The slack variable, δ, represents the deviation of the tilt-rate from the soft constraint
limit (perception threshold).

PLATFORM CONSTRAINTS

Unlike a real vehicle, a driving simulator is restricted to a maximum displacement and
maximum tilt angle, specific to the simulator used. This work uses the workspace limi-
tations of Delft Advanced Vehicle Simulator (DAVSi).

DAVSi is a 6-DoF moving-based driving simulator [20], capable of generating accel-
eration up to 1 g in all directions and can simulate motions up to the frequency of 10 Hz.
The considered limits of the platform motion are given in Table 4.1. As the algorithm
includes yaw washout as a separate controller, conservative limits are chosen for trans-
lational and rotational displacement. Additionally, the soft constraint used to define the
tilt-rate perception limit is formulated as

−ωthd ≤ ωhex +δ
ωhex −δ ≤ ωthd

0 ≤ δ (4.11)
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Table 4.1: Limits for the simulator and the used MPC limits

Quantity Platform physical limit Defined MPC limit

θhex ±30deg ±20deg
vhex ±7.2m/s ±7.2m/s
ahex ±9.81m/s2 ±9.81m/s2

shex ±0.5m ±0.3m

where ωthd is the perception threshold limit (3 deg/s). δ is a positive slack variable
which is penalised in the cost function to keep its value low. Hence, the tilt-rate soft
constraint limit is allowed to be violated, however, any violation of the constraint is pe-
nalised, to minimise it.

WORKSPACE MANAGEMENT

The simulator platform has the maximum potential of recreating the specific forces at its
neutral position. To ensure the platform remains near its neutral position, we penalize
its states in the cost function. In this work, we use non-linear weights (based on the
platform orientation and position) for the washout instead of constant weights. This
allows a single non-linear setting for all scenarios rather than tuning the washout weights
for each scenario.
The non-linear weights are defined as

ws = k1

k2 ∗ (|shex |− sl i m)2 +∆ (4.12)

wθ = k3

k2 ∗ (|θhex |−θl i m)2 +∆ (4.13)

where k1, k2 and k3 define the shape of the weight function, sl i m and θl i m are the defined
limits for the platform for displacement and tilt angle. ∆ (here 0.01) is a small value
added to the denominator to avoid singularity. The selected values are k1 = 1, k2 = 50
and k3 = 0.1, these values were manually tuned to ensure that the penalisation is low
near the neutral position, while high, close to the platform limits.

4.2.4. YAW CHANNEL
The fifth DoF, yaw, is controlled separately using a parallel washout channel, ensuring
reduced computational complexity. The first-order high-pass filter used for this purpose
is given as

HP = s

s +2πνy aw
(4.14)

where νy aw is the cutoff frequency for the high pass filter. In this work, we use the value
of 0.0159 Hz for this cutoff frequency.

4.2.5. WEIGHT SETTINGS
To ensure a fair comparison the penalisation weights on tilt angle, translational displace-
ment, translational jerk, angular jerk and slack variable are kept the same as used in Sub-
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section 3.3.2. Additionally the time step and prediction horizon length is also kept the
same as in Chapter 3. As the output terms vary in the cost terms of the two MCAs, the
weights for these terms also change. In the autoscaling MCA priority is given to the tilt-
coordination to follow its reference accurately, hence the weight for tilt-coordination ref-
erence tracking is selected to be 5 times higher than for specific force tracking (the weight
used for specific force tracking is unity). However, as the tilt-coordination is forced to be-
gin at the onset of the manoeuvres, pre-positioning in the translational workspace can
be observed by the occupant of the simulator. To resolve this, the translational velocity
of the platform is penalised. Varying the velocity penalty from 0 to 1 shows an insignifi-
cant difference. However, a penalty of 10 resulted in an improved solution, with reduced
pre-positioning and limited adverse effect on the rendered profile.

YAW WASHOUT

The tuning parameter for the yaw washout was the cut-off frequency of the washout
filter. The cut-off frequency for the yaw washout was varied between 0.0159 H z (0.1
rad/s) to 0.1592 H z (1 rad/s).

Since human perception is primarily sensitive to rotational velocities, the selection
of the cut-off frequency is chosen based on desirable rotational velocity tracking. It is
also essential to ensure that the yaw angle remains within acceptable limits (20 deg for
this work). Based on these considerations, a cut-off frequency of 0.0159 H z is chosen for
this study.

4.2.6. BENCHMARKING

As pre-positioning was identified to occur with the subjective validation of the frequency
splitting algorithm Chapter 3, it is chosen as the benchmark for this study.

SCENARIO DESCRIPTION

To compare the realism and immersion of the algorithm in the driving simulator, real-
vehicle driving data from an experiment conducted by our group at the Valkenburg track
was utilised [81]. Given the experiment’s duration, specific sections were chosen for this
study, including multi-turns with acceleration and braking, a slalom maneuver, and a
lane-change maneuver, capturing a variety of naturalistic driving scenarios.

The total scenario duration was deliberately limited to 110 seconds to minimize the
risk of simulator sickness and potential bias in the study.

4.2.7. FIDELITY CRITERIA

In this work, the algorithm is evaluated both subjectively and objectively. For the objec-
tive comparison, the shape similarity, root mean squared of the specific force and the
timing of the initiation of the tilt-coordination compared to the onset of the vehicle ma-
neuvers is considered. On the other hand, for subjective assessment the participants
were asked to rate the realism of the ride based on realism of cornering and braking, the
amount of unnatural instances/false cues observed during the ride and are asked for any
instance of pre-positioning observed.
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4.3. HUMAN-IN-THE-LOOP EVALUATION

This section describes the human-in-the-loop driving simulator experiment and its sub-
jective evaluation. Perceived driving simulator fidelity was evaluated from the perspec-
tive of passive users, representative of users of automated vehicles. In pilot studies, we
even aimed to evaluate perceived fidelity with the eyes off the road using a tablet for a
non-driving task. However, with vision limited to the vehicle interior, the MCAs were not
perceived as representative of driving. This was resolved by adding exterior vision and
instructing participants to observe the road.

4.3.1. EXPERIMENTAL PROCEDURE

All participants gave their informed consent prior to participating. The Human Research
Ethics Committee of TU Delft, The Netherlands, approved the experiment protocol un-
der application number 3965.

In total, 8 participants from the pool of students and employees of TU Delft partic-
ipated in the study (mean age: 25.5, std: 2.5 years, 3 females, 5 males). All participants
were subjected to both the proposed algorithm and frequency splitting drives sequen-
tially within one session, to compare the subjective evaluation of the realism and feel of
the MCAs.

Before the experiment, the participants underwent a concise briefing session to fa-
miliarise themselves with the questionnaire and to understand the objective of the ex-
periment. During the experiment, two-way communication was established between
the experimenter and the participant via bluetooth headphones and microphones.

The visualisation was projected onto a screen in front of the simulator, with side
windows and windshield partially covered to block peripheral views and eliminate cues
revealing platform motion. Dynamic visual compensation adjusted the projection to
match the platform’s movements, ensuring the visuals stayed aligned with the motion
felt by the participants despite the screen being outside the cockpit.

Following the briefing, participants underwent a series of six two-minute drives in
fully automated mode with minimal time between drives to facilitate a clear compari-
son. After each drive, participants completed an absolute grading questionnaire to as-
sess various aspects of the driving experience. These questions can be found in Table 4.4.
To ensure fair comparison, the sequence of algorithms was varied for different partici-
pants, maintaining either the pattern (A B A B A B) or (B A B A B A), where A represents
the frequency-splitting and B represents autoscaling MCA respectively.

The first round for each algorithm aimed to immerse participants in the simulation
environment and was not graded. Participants provided ratings in a 5-point scale for
the second and third rounds based on the provided questionnaire. At the end of the
experiment, the participants were asked to fill in a comparative questionnaire.

RESULTS AND DISCUSSION

This section presents the results of both objective and subjective evaluations of the two
algorithms, followed by an analysis of the findings.
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4.3.2. OBJECTIVE EVALUATION

SPECIFIC FORCE TRACKING

The comparison between the profiles rendered through the autoscaling MCA and the
benchmarking frequency-splitting algorithm for real driving data is presented in Fig-
ure 4.2 and Figure 4.3.
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Figure 4.2: Comparison of the response of Autoscaling and Frequency-splitting MCAs:
longitudinal acceleration.

Figure 4.3: Comparison of the response of Autoscaling and Frequency-splitting MCAs:
lateral acceleration.
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It is worth mentioning that the autoscaling MCA receives unscaled vehicle accelera-
tions, whereas the frequency-splitting algorithm used a reference scaled down by a fac-
tor of 0.3 for longitudinal acceleration and 0.4 for lateral acceleration. The reference
signal presented in Figure 4.2 and Figure 4.3 corresponds to the reference chosen for the
frequency splitting algorithm, where coincidentally, the rendered profiles via the two al-
gorithms have a similar magnitude.

For the frequency-splitting algorithm, the RMSE of the longitudinal specific force
tracking is 0.0466 while for the lateral tracking it is 0.1943. On the other hand, for the au-
toscaling MCA the RMSEs for longitudinal and lateral specific force tracking are 0.1210
and 0.2459 respectively.

Additionally, the shape similarity factors for the rendered profiles were analysed. For
the longitudinal direction, the shape similarity factor is 0.9787 for the frequency-splitting
algorithm and 0.9312 for the autoscaling MCA. Similarly, for the lateral direction, the
frequency-splitting algorithm achieves a shape similarity coefficient of 0.9519, whereas
the autoscaling MCA yields 0.9208.

Table 4.2: Tracking Performance for the two algorithms

Algorithm
Performance

Specific force tracking Shape similarity factor
RMSE long. RMSE lat. RMSE tot. long. lat.

[m/s2] [m/s2] [m/s2] [-] [-]
Autoscaling MCA 0.1210 0.2459 0.2740 0.9312 0.9208

Frequency-splitting MCA 0.0466 0.1943 0.1998 0.9787 0.9519

WORKSPACE UTILISATION

A comparison of workspace utilisation, based on profiles generated by the autoscaling
MCA and the benchmarking frequency-splitting algorithm, is presented in Table 4.3. The
autoscaling MCA utilises the translational workspace more, while the frequency-splitting
algorithm exhibits higher usage of the rotational workspace. Although both algorithms
respect the tilt-rate perception threshold, the FS MCA achieves higher platform tilts by
initiating tilt earlier, causing pre-positioning, whereas autoscaling MCA avoids this by
reducing the reference specific force, eliminating the need for early motion.

Table 4.3: Workspace utilisation for the two algorithms

Algorithm
Workspace utilisation

RMS displacement RMS velocity RMS angular displacement RMS angular velocity
[m] [m/s] [deg] [deg/s]

Autoscaling MCA 0.0423 0.0770 2.2339 1.8113
Frequency-splitting MCA 0.0334 0.0682 2.6181 2.0091

PRE-POSITIONING

In Figure 4.2, it can be observed that, for the autoscaling MCA the translational ac-
celerations generate a higher component of specific force compared to the frequency
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splitting MCA. Additionally, the onsets of the manoeuvres are also at the correct in-
stances, however, due to the gradually varying and continuous nature of longitudinal
acceleration, this difference is not distinctly observed. On the other hand, it can be ob-
served in Figure 4.3, that for lateral motion, the frequency-splitting algorithm exhibits
pre-positioning within the rotational workspace at various instances to prepare for fu-
ture motion. In contrast, the autoscaling MCA significantly reduces pre-positioning. The
motion onset in the autoscaling MCA occurs at the correct instances, with a higher con-
tribution from translational motion compared to the frequency-splitting algorithm.

SUBJECTIVE EVALUATION

This subsection compares the two algorithms based on the conducted experiment. Ta-
ble 4.4 presents the obtained responses in detail, including their statistical significance.

Table 4.4: Subjective evaluation and statistical analysis (on a scale from 0-5)

Criterion Algorithm
All data

mean std. median p-value significance

How closely did the ride’s motion correspond to the video?
AU 3.75 0.71 4

0.0796 No
FS 3.38 0.52 3

How close did the cornering feel compared to a real car?
AU 4 0.76 4

0.0072 Yes
FS 3 0.53 3

How realistic did the deceleration feel compared to a real vehicle drive?
AU 3.5 0.53 3.5

0.1705 No
FS 3.75 0.46 4

Aggressiveness of Section 1 : multi-turn
AU 3.75 0.46 4

0.0750 No
FS 3.125 0.64 3

Aggressiveness of Section 2 : slalom
AU 2.5 0.76 2

0.5983 No
FS 2.625 0.52 3

Aggressiveness of Section 3 : lane change
AU 2.75 0.46 3

0.0112 Yes
FS 2.125 0.35 2

Was the ride disorienting or sickening?
AU 2 0.89 2

0.3506 No
FS 1.75 0.76 2

Were there any unnatural motions that did not match real driving?
AU 2.25 0.46 2

0.0025 Yes
FS 3 0.76 3

COHERENCE OF THE MOTION WITH THE VIDEO

The autoscaling MCA received an average rating of 3.75 out of 5 (75% realism), while
the frequency-splitting algorithm scored 3.25 (65% realism). Both algorithms provided a
coherent ride experience relative to the video, with no statistically significant difference
between them.

Post-experiment verbal feedback indicated that the limiting factor in perceived co-
herence was the video quality, rather than the platform’s motion.

CORNERING REALISM

The autoscaling MCA received an average rating of 4.0 out of 5, with a median of 4.0,
whereas the frequency-splitting algorithm was rated 3.0 on average, with a median of
3.0. A statistically significant difference was observed between the ratings, indicating a
preference for the autoscaling MCA in terms of cornering realism.

Participants reported instances of pre-positioning in the frequency-splitting algo-
rithm during post-experiment verbal feedback, which may have influenced its lower re-
alism rating.
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REALISM OF BRAKING

The autoscaling MCA received an average rating of 3.5 (median: 3.5), while the frequency-
splitting algorithm scored 3.75 (median: 4). However, the difference was not statistically
significant. In post-experiment feedback, participants found the frequency-splitting al-
gorithm more comfortable, whereas the autoscaling MCA felt abrupt during acceleration
and braking.

OVERALL REALISM

In the comparative questionnaire, 7 out of 8 participants found the autoscaling MCA
more realistic overall, showing a clear preference for its motion cueing.

AGGRESSIVENESS

The autoscaling MCA was rated more aggressive in the first and third sections, while the
second section scored higher for the frequency-splitting algorithm. However, statistical
significance was found only in the third section, preventing a general conclusion on the
autoscaling MCA’s aggressiveness, especially given its dynamic scaling. Detailed statis-
tics are provided in Table 4.4.

Despite this, 6 out of 8 participants in the comparative questionnaire perceived the
autoscaling MCA as more aggressive overall.

SICKNESS

After the 2-minute ride, participants rated the algorithms on their sickening or disorient-
ing effects. The autoscaling MCA received an average rating of 2, while the frequency-
splitting MCA scored 1.75, with both medians at 2. This indicates no significant differ-
ence in the motion profiles’ sickening effects.

UNNATURAL MOTION/ FALSE CUES

The autoscaling MCA received an average rating of 2.25 (median: 2), while the frequency-
splitting MCA scored 3.0 (median: 3). This statistically significant difference suggests
that the autoscaling MCA generates fewer false cues.

In the comparative questionnaire, seven participants reported more false cues with
the frequency-splitting MCA, while one found the autoscaling MCA to produce higher
unnatural motions. Additionally, six out of eight participants observed pre-positioning
in the frequency-splitting algorithm, whereas only one reported it in the autoscaling
MCA, occurring during a single corner.

DISCUSSION
The autoscaling MCA aims at eliminating two major issues encountered in MPC-based
MCAs, one being pre-positioning, where the platform prepares itself for the future mo-
tion, moving prematurely. The second issue being the necessity to scale down the refer-
ence signal to precondition it for desirable recreation of specific scenarios. The perfor-
mance of traditional MCAs depends highly on the preconditioning (scaling) parameters.
In this work, we present the autoscaling MCA which automatically derives a time varying
scaling factor for the tilt coordination reference.



4

74 AUTOSCALING MOTION CUEING

As shown in Figure 4.3, the autoscaling MCA reduces roll pre-positioning in lateral
motion, though it does not eliminate it entirely. This is due to total specific force error
minimization in the objective function. A higher penalty on tilt coordination improves
adherence to the reference, leading to reduced pre-positioning, as the platform produces
dynamically scaled-down accelerations via tilt coordination.

The scaling factor is determined based on the platform’s capability to reproduce the
maximum specific force via tilt coordination, while ensuring that the resulting rotational
velocity remains within human perception thresholds. In this context, the maximum
allowable tilt rate governs the maximum rate of change of specific force, thereby playing
a critical role in defining the scaling factor. This ensures the simulator always has the
potential to generate the scaled-down reference for tilt coordination, maximising the
simulator’s potential in recreating specific forces. Since the platform can always achieve
its reference tilt coordination, premature tilting is avoided, reducing pre-positioning.

Referencing tilt coordination and total specific force ensures that the algorithm tracks
the scaled-down tilt reference while using translational motion to recreate the remaining
specific force. This is evident in workspace utilization, where the autoscaling MCA relies
less on tilt workspace and more on translational workspace compared to the frequency-
splitting algorithm. As a result, tilt coordination serves as a supporting mechanism for
generating higher specific forces rather than being the primary contributor. Studies have
shown that translational motion has a greater impact on realism than tilt coordination
[85], [86].

Based on the objective performance indicators, however close, the frequency split-
ting algorithm showed a better performance, with higher shape similarity and lower
RMSE for the specific force tracking. Both the algorithms achieved high values for their
performance, however the objective KPIs indicated frequency splitting algorithm to per-
form better. However, these KPIs are based on the total specific force, combining tilt
coordination and translational accelerations. Thus, conflicting motions in translational
workspace and tilt coordination may create a motion that does not correspond to the
actual specific force. One such case is when the tilt and translational components can-
cel each other to create a zero net specific force. This corresponds to the no motion
case, however, the opposite motions of tilt and translation can still be picked up by the
participant.

Hence, in this work, the tilt coordination is treated as a separate reference with higher
penalisation, and the rest of the specific force is left for the translational motion to gener-
ate. The reference on tilt coordination is scaled down rather than that on the translation
motion, as tilt produces sustained forces on the occupant’s head, thus a premature mo-
tion creates a sustained acceleration perception which is probable to be perceived more
than a pre-positioning motion in translational workspace.

4.4. CONCLUSION
In this work, an autoscaling framework for a model predictive control-based cueing al-
gorithm is developed. The developed algorithm is capable of scaling the vehicular ac-
celerations on itself without the need to precondition the vehicular accelerations or the
reference specific force.
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The dynamic scaling factor ensures that the reference can be tracked without the
need to prematurely tilt the platform to obtain the demanded specific force. As the dy-
namic scaling factor reduces the demanded acceleration to an achievable reference, the
problem of pre-positioning reduces.

In the conducted experimental validation, 87.5% of participants (7 out of 8) indicated
autoscaling algorithm renders a more realistic ride. Additionally, only one participant in-
dicated having observed pre-positioning in the simulation generated via the autoscaling
algorithm, compared to 6 participants for the frequency-splitting algorithm.

Even when the objective metrics like RMSE specific force and shape correlation fac-
tors are higher for the frequency splitting algorithm, the autoscaling algorithm is rated
to be more realistic by human participants. This indicates that while specific force RMSE
and shape correlation factor are essential and good metrics to evaluate the performance
of the cueing algorithms. Additional considerations must be taken into account to en-
sure satisfactory recreation of a driving scenario. The difference between the onset of
the platform motion and the onset of the manoeuvre is one of them.

Additionally, the autoscaling algorithm utilises the translational workspace more than
the frequency-splitting algorithm while relying less on tilt coordination. As a result, a
higher proportion of specific force is recreated through translational motion compared
to the frequency-splitting algorithm, making it closer to an actual vehicle ride, which
primarily consists of translational accelerations.
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ABSTRACT
The utilisation of driving simulators in the automotive industry is on the rise, serving as
an invaluable tool for evaluating vehicle comfort and user acceptance of emerging tech-
nologies. While driving simulators aim to replicate the real-world driving experience, dis-
parities in motion between the simulator platform and actual vehicles can lead to varying
degrees of motion sickness. This paper presents a Motion Cueing Algorithm that explic-
itly and uniquely incorporates motion sickness mitigation into a model predictive con-
trol formulation. A 6-DoF subjective vertical conflict model is used within the motion
cueing algorithm’s cost function to penalise predicted sensory conflict directly, alongside
platform-specific force error. This enables the algorithm to optimise for both accurate mo-
tion reproduction and reduced motion sickness

Objective evaluations show that increasing the weight on predicted sensory conflict in the
motion cueing algorithm cost function leads to a reduction in predicted sickness levels by
up to 70%, when transitioning from a configuration focused solely on specific force track-
ing to one prioritising sickness mitigation. This improvement comes at the cost of reduced
specific force tracking accuracy. The lowest sickness levels were predicted with negligible
mechanical motion.

To balance motion fidelity and sickness reduction, a compromise weighting was selected
based on pilot studies, with a 1:9 ratio between specific force tracking and motion sickness
mitigation. In the objective analysis, this compromise weighting achieved a 33% reduction
in predicted motion sickness (from MISC 3 to 2) while increasing specific force error from
0.0272m/s2 to 0.2157m/s2, where shape similarity was reduced from 0.9990 to 0.9705.

Human-in-the-loop driving simulator experiments with a realistic automated driving
scenario were conducted using four algorithm configurations: adaptive washout (indus-
try benchmark), No Motion, and two novel optimisation-based algorithm variants (opti-
mal specific force tracking and compromise weighting, which accounts for both specific
force fidelity and motion sickness mitigation). Participants reported motion sickness lev-
els every 30 seconds. Optimal specific force tracking and adaptive washout achieved sim-
ilar motion sickness and perceived realism ratings. Compared to these, the compromise
weighting resulted in over 50% reduction (average MISC level 3 to 1.5) in reported sick-
ness without a statistically significant reduction in perceived realism. As predicted, the
no-motion condition provided the lowest sickness level, which came at the cost of a lower
perceived realism.

The proposed algorithm thus offers a significant advancement in achieving an optimal
balance between comfort and realism in driving simulator motion cueing, supporting
simulators’ expanded use in vehicle development.
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5.1. INTRODUCTION

S INCE the inception of driving simulator technology, a key challenge has been to bring
the driving simulator experience closer to the real vehicle experience.
One such challenge is an escalated risk of motion sickness in the driving simulator

environment. Motion sickness is a malady characterised by symptoms such as nausea,
dizziness, and discomfort. It can be experienced by regular travellers, astronauts, and
simulator users alike. Around 60% of the population experiences motion sickness symp-
toms and about a third of the population has suffered from nausea at least once by car
travel before the age of 12 [87].

Various theories have been proposed to explain the underlying cause of motion sick-
ness [8], [10], [88]. Among these, the most widely accepted explanation is the Sensory
Conflict Theory [8], which posits that motion sickness arises when there is a mismatch
between the motion perceived by the sensory systems and the motion expected to be
sensed by the brain. In essence, any discrepancy between sensed and expected motion
contributes to the onset and severity of motion sickness.

In the context of driving simulators, the problem of motion sickness is amplified due
to the intricate interplay of visual, vestibular, and proprioceptive cues. When the motion
experienced in the simulator diverges from the expectation of a real vehicle, it triggers a
sensory conflict that can lead to motion sickness.

The issue is further exacerbated by variations in visual fidelity and motion cueing
strategies. A recent meta-analysis demonstrated that the development of simulator sick-
ness is influenced by the visual fidelity of the simulated environment [32]. In another
comparative study [33], three motion cueing strategies were assessed against a fixed-
base setup. While motion-enhanced simulations improved perceived realism, they were
also associated with increased sickness incidence, highlighting a trade-off between im-
mersion and physiological comfort.

This paper addresses the critical issue of motion sickness in driving simulators and
presents an innovative solution, a motion cueing algorithm crafted to reduce motion
sickness while preserving a realistic perception of motion. The algorithm integrates a
6-Degree of Freedom (6-DoF) Sensory Conflict (SVC) model, a predictive framework ca-
pable of assessing motion sickness [89].

Recent developments in motion cueing increasingly rely on Model Predictive Control
(MPC)-based strategies, owing to their ability to generate high-fidelity motion cues while
respecting the physical workspace limitations of the simulator. By incorporating a pre-
dictive horizon, these methods anticipate future motion demands, enabling smoother
and more perceptually accurate platform behaviour. The algorithm proposed in this
study builds on this optimisation-based approach, extending it to directly account for
motion sickness through an integrated cost formulation.

Various machine learning models have been proposed for motion sickness predic-
tion[90]–[92]. However, they typically rely on physiological data which has to be col-
lected with human in the loop experiments. Such models may become valuable when it
is proven that they accurately predict the MISC. This would enable replacing the distract-
ing collection of MISC data by collecting physiological data. The SVC model only uses
the motion stimuli experienced by occupants, making it particularly suitable for mitigat-
ing motion sickness through motion cueing. Its simplicity is especially advantageous in
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this context, as future physiological states cannot be predicted, whereas future motion
profiles are explicitly determined within the MPC optimization, which incorporates the
motion sickness prediction model.

The MCA minimises the sensory conflict predicted based on the motion data gener-
ated by the simulator platform. Machine learning models would not have such an inter-
mediate measure as sensory conflict and thus would not fit this approach. To minimise
the sensory conflict, the MCA incorporates a cost function that simultaneously accounts
for specific force errors as well as sensory conflict errors. By doing so, the balance be-
tween optimised motion perception (specific force tracking) and reduced likelihood of
inducing motion sickness (sensory conflict minimisation) can be actively controlled.

This research represents a pivotal step toward enhancing the utility and overall safety
of driving simulators, both by improving user comfort and by enabling safe, controlled
testing of automated driving systems. The motion cueing algorithm presented herein of-
fers a flexible solution for balancing motion perception and user comfort, enabling the
simulator to maintain perceptual credibility while reducing motion sickness. However,
this comes at the cost of real-time feasibility — the algorithm operates with a real-time
factor of approximately 2.1, requiring offline execution. In this pursuit, we explore the
intricate relationship between human perception, motion simulation, and motion sick-
ness.
The contributions of the work are outlined below:

• Incorporated a six-degree-of-freedom Subjective Vertical Conflict motion sickness
model, for the first time, directly into a motion cueing algorithm as part of its cost
function.

• Formulated a multi-objective optimisation framework that jointly considers mo-
tion sickness reduction and reproduction of motion perception compared to real-
world driving.

• Demonstrated that the inclusion of the motion sickness model allows for an ad-
justable trade-off between motion fidelity and predicted motion sickness, enabling
the algorithm to prioritise either physical realism or passenger comfort based on
application-specific requirements.

• Conducted Human-in-the-loop experiments, which confirm that the proposed al-
gorithm effectively mitigates motion sickness symptoms, while having minimal
impact on motion perception.

The chapter is organised as follows: Section 5.2 discusses existing work in the domain
of motion cueing and driving simulator experiments related to motion sickness. The
proposed algorithm and the formulation of the optimal control problem (OCP) are de-
tailed in Section 5.3, followed by the algorithm configuration in Section 5.4. The bench-
mark used for the study is described in Section 5.5. Objective evaluation is presented in
Section 5.6, while the experimental procedure and subjective assessment are addressed
in Section 5.7. The results are analysed and discussed in Section 5.8, and the conclusions
are presented in Section 5.9.
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5.2. RELEVANT STUDIES
In the field of motion cueing, recent research primarily focuses on Model Predictive Con-
trol (MPC)-based strategies, aiming to reduce false cues while improving computational
efficiency.

To address computational cost, explicit MPC techniques precompute control solu-
tions for offline storage in look-up tables [23]. This significantly reduces online compu-
tation but presents challenges in terms of memory requirements and scalability, partic-
ularly for large prediction horizons and fast sampling rates due to exponential increases
in control region complexity.

A hybrid MPC approach was proposed to balance these trade-offs by combining ex-
plicit (offline) and implicit (online) MPCs [24]. In this method, a 4 DoF explicit MPC
provides an initial guess to the implicit MPC, facilitating faster convergence.

Further, performance improvements have been realised by efficiently splitting accel-
eration references within the MPC framework [67]. This method separates vehicle accel-
erations into high-frequency and low-frequency components using filters, then applies
them to translational acceleration and tilt coordination, respectively. This enhances spe-
cific force tracking and convergence speed.

Although these approaches improve motion fidelity and computational efficiency,
they do not explicitly aim to reduce simulator sickness. In contrast, research on mo-
tion planning in real vehicles has investigated motion sickness mitigation more directly.
These studies focus on modifying trajectories to reduce discomfort from accelerations
and jerks.

To reduce motion sickness in trajectory planning, several studies incorporated the
Motion Sickness Dose Value (MSDV) into optimisation criteria [34], [38], [39], [93]. While
effective in real vehicles, such methods inherently alter the drive experience by modify-
ing the vehicle’s dynamics, an approach unsuitable for simulators where maintaining
perceived fidelity is critical.

A recent meta-analysis on simulator sickness [32] reviewed 41 studies and reported
modest sickness levels across different simulator configurations. It found that visual
fidelity significantly reduced sickness in motion-base simulators but not in fixed-base
systems. Mechanical motion had a minor, non-significant effect on sickness (SS=0.077
for motion base vs. SS=0.096 for fixed base; p=0.105). Active driving reduced sickness
compared to passive driving (SS=0.073 vs. SS=0.117; p=0.073), although these compar-
isons were across different studies. Notably, active driving rarely induces sickness in real
vehicles, highlighting a gap between simulation and reality.

Romano et al. [33] compared fixed-base and three motion-cueing strategies, finding
that motion improved perceived fidelity but did not significantly affect sickness levels.
Similarly, while motion cueing research often targets perceptual fidelity, there is a lack of
approaches explicitly designed to reduce simulator sickness.

Several studies suggest that driving simulators hold potential for motion comfort and
sickness research. Bellem et al. [82] showed strong correlation in comfort ratings be-
tween real and simulated driving using appropriate MCA scaling. Works in[94] and [95]
emphasised that moving-base simulators can effectively evoke motion sickness when
tuned correctly. However, none of these studies propose an algorithm to mitigate mo-
tion sickness in driving simulators.
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Figure 5.1: Structure of the SVC MCA; the two blocks at the bottom right, highlighted by
the dashed gray box, are not part of the MCA and are only used to predict the actual

resulting Motion Sickness over the whole experiment duration.

To the best of the authors’ knowledge, no prior work has established a motion cueing
strategy explicitly aimed at reproducing or reducing motion sickness in a simulator envi-
ronment. This work tackles the mitigation of sickening stimuli arising from the platform
motion stimuli of the driving simulator.

5.3. MOTION CUEING STRATEGY
Figure 5.1 illustrates the structure of the proposed MPC-based motion cueing algorithm.
The MPC receives two reference inputs: one for motion sickness and one for vehicle
specific forces. The reference sensory conflict is chosen to be zero in this paper, aiming
to minimise motion sickness. However, this framework can also be used to reproduce
sickness as occurring in real vehicles. This can be achieved adding another SVC block
which derives the conflict occurring in vehicles.

In this work, the proposed algorithm explicitly optimises the trade-off between mo-
tion sickness mitigation and motion perception fidelity. The corresponding optimal con-
trol problem cost function is introduced later in the chapter (see Equation 5.17).

5.3.1. MOTION SICKNESS MODEL

The MPC-based algorithm needs a motion sickness prediction model to calculate a mo-
tion sickness metric (JMS ) for the cost function (Jc ). For this, we use the Subjective Ver-
tical Conflict with Visual Rotational velocity (SVC-VR) as described by [96]. The model
was first introduced by [97] and later validated and found to be favourable for motion
sickness predictions in vehicles for a population by [98]. This model ([97]) gave Motion
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Sickness Incidence (MSI) as output a group-averaged metric giving the percentage of
people who will get motion sick. This is not suitable as we need a scale based on the
severity of motion sickness in an individual. This way we will have better control on
how much the severity of sickness varies with different algorithms. For this, we used
the model by [96], which adapted the model by [97] to predict motion sickness for an
individual in MIsery SCale (MISC). This model accepts specific forces, angular rotations
and visual flow (visual angular rotation) as inputs and gives motion sickness in MISC as
output.

It is important to mention that the platform’s motion is different from the visual cues.
In this study we simulate conditions with out of the window view. Thus, the vehicle
angular velocities are given for the vision angular velocity input to the SVC model, while
the vestibular system is provided with the platform motion.

The motion sickness score output from the accumulation model has a large time
constant due to the slow dynamics of the accumulation model. The high time constant
of the accumulation model implies that a long prediction horizon would be required for
it to function effectively. However, as demonstrated in Chapter 2, optimising for motion
sickness over a short horizon can still lead to effective reduction of accumulated sickness
over longer durations, provided that an appropriate short-term proxy, such as instanta-
neous sensory conflict, is used. As we optimise the motion at each time instant, we want
to calculate the instantaneous response to the motion stimuli which drives motion sick-
ness. This is the sensory conflict that can be obtained by the first half part of the model,
often termed the ‘sensory conflict generation’ model shown in Figure 5.1.

We converted a Simulink implementation of the SVC-VR model into ordinary differ-
ential equations, which our MPC solver can use. The ordinary differential equations for
the SVC-VR model are given below:

v̇s = fspec − vs

τ
−ωs × vs (5.1)

ω̇s = ω̇− ωs

τd
(5.2)

˙̂vs = f̂s − v̂s

τ
− ω̂s × v̂s (5.3)

˙̂ωs =
(Kω,c +Kω)ω̇+Kω,vi sω̇vi s − Kω,c

τd
(ωs − ω̂s )

1+Kω,vi s +Kω,c
− ω̂s

τd
(5.4)

˙̃v = Kvc (vs − v̂s )+Kg ,vi s (vvi s − ṽ) (5.5)

˙̂fs = Kvc (vs − v̂s )+Kg ,vi s (vvi s − ṽ)+Kac ( fs − vs − f̂s + v̂s )+Ka ȧ (5.6)

where f̂s represents the estimated specific force vector, vs and v̂s are the sensed sub-
jective vertical and estimated subjective vertical, respectively. ωs and ω̂s are the sensed
angular velocity and estimated angular velocity respectively. τ= 5 s, τd = 7 s, Kω,c = 10,
Ka,c = 1, Kv,c = 5, Ka = 0, Kω = 0, Kω,vi s = 10, Kg ,vi s = 0 are the parameters used for the
SVC model taken from [89]. Here, τ and τd are the time constants corresponding to the
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otoliths and the semicircular canals respectively. Kω,c , Ka,c , and Kv,c are the vestibu-
lar feedback gains, Ka and Kω are the anticipatory gains, Kω,vis and Kg ,vis are the visual
feedback gains.

The sensory conflict is derived by calculating the Euclidean norm or 2-norm of the
difference between the sensed subjective vertical and estimated subjective vertical:

cv = ∥vs − v̂s∥2 =
(

3∑
i=1

(vsi − v̂si )2

)1/2

(5.7)

JMS = wcon cv
2 (5.8)

where, wcon is the weight on the conflict, cv , to create the sensory conflict term quanti-
fying motion sickness (JMS ) used in the objective function in Equation 5.14.

The sensory conflict is one-dimensional. The accumulation of this sensory conflict
drives the overall motion sickness scores. Minimising this sensory conflict over the MPC
time horizon will result in a reduction of motion sickness.

However, for the weight selection of the cost function, it is better to calculate the mo-
tion sickness score in MISC over the full experiment duration to better understand the
difference it makes in symptoms. Also, it is interesting to compare the calculated MISC
at the end of the experimental session between the different weights. Hence, we use the
entire model framework by [96], including the ‘conflict accumulation’ model as shown
in the bottom right in Figure 5.1. To predict the variance in MISC across a population
we simulate the MISC for 1000 individuals with varying motion susceptibilities. These
parameters are sampled from the parameter distribution described in [89]. In that work,
a 3-component probability distribution of parameter sets was generated for the model
by [96], which can be sampled according to the desired motion sickness susceptibility.
These parameter sets have been shown to generalise well for MISC predictions in new
driving scenarios [89]. This makes it ideal to use for testing and selecting algorithms.

5.3.2. HEXAPOD/DRIVING SIMULATOR DYNAMICS
The motion of the hexapod platform is defined in a state-space form to facilitate im-
plementation in the MPC. The base states include hexapod position (shex ) and angular
orientation (θhex ). These base states are added to the state-space model with the relation

ẋhex = Ahex xhex +Bhex uhex (5.9)

where the state vector, xhex , comprises of the position, shex , translational velocity,
vhex , angular orientation, θhex , and angular velocity, ωhex , of the hexapod and the in-
put vector, uhex , comprises of translational acceleration, ahex and angular acceleration
of each euler angle, αhex . The matrices Ahex and Bhex represent the double integrator
system of the inputs, adapted from [78].

As the algorithm is designed for both longitudinal and lateral degrees of freedom,
each state comprises of components in x and y directions (roll and pitch for orientation).
In this study, positive values correspond to forward, left, and upward orientations along
the x, y, and z axes, with counterclockwise rotations indicated as positive.
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5.3.3. MPC FORMULATION
To achieve realistic motion perception (one of the primary objective of the algorithm),
vehicular accelerations are tracked using specific forces generated by the driving sim-
ulator. The specific force consists of two components that arise through translational
accelerations and gravity. This specific force encapsulates the combined effects of ac-
celerations and gravity as perceived by the human via the otoliths (part of the vestibular
system). Therefore, the specific force is calculated at the estimated head coordinate sys-
tem, thereby incorporating the effects of platform rotation.

The translational component is the acceleration of the platform. The gravitational
force vector at the estimated head location, Gloc , is defined by the relation:

Gl oc = RT [0 0 g ]′ (5.10)

Here R is the transformation matrix that resolves gravitational force to the vectors
corresponding to longitudinal, lateral and vertical body reference frame directions and
g is the acceleration due to gravity, acting in the inertial vertical direction.

The total specific force is defined as:

fspec = ahex −Gloc (5.11)

where a is the translational acceleration of the platform. The tilt component, Gloc ,
provides an additional pseudo acceleration to the occupant of the simulator. The spe-
cific force is the quantity to be tracked to achieve realistic motion perception.

This shapes our cost function term for the MCA defining the motion perception term
(JMP ), which is given by:

JMP = ( fspec − fr e f ) wspec ( fspec − fr e f )T (5.12)

To reduce motion sickness stimuli (the secondary objective of the algorithm), sen-
sory conflict (Equation 5.7) needs to be minimised. Thus, the MPC includes the hexapod
dynamics and the 6-DOF SVC model to predict the development of motion sickness over
the prediction horizon.

Thus the complete analytical description of the dynamics of motion sickness devel-
opment, through the platform motion, includes the following states:

x = [θhex ,ωhex , shex , vhex , ft i l t , fal l , f̂al l , v̂s ,ωs ,ω̂s , vs ] (5.13)

Here, fal l denotes the vector of specific forces in all three directions (x, y , z); f̂al l

represents the estimated specific forces in those directions; and ft i l t corresponds to the
tilt-generated specific force, which is equal to the local gravitational vector Gloc .

Having outlined the essential states for modeling motion sickness, we now delve into
the objective function, a critical component guiding the optimization process.

OBJECTIVE/ COST FUNCTION

The objective of the algorithm is to reduce motion sickness through sensory conflict
minimization, while maintaining a similar motion perception, via specific force track-
ing, these are the primary objectives of the algorithm.
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In addition to the primary objectives, several auxiliary penalty terms are incorpo-
rated into the cost function. These terms support the performance of the Model Predic-
tive Control (MPC) framework, particularly in the absence of an infinite horizon. Specif-
ically, they assist in achieving the washout effect (see Subsection 3.3.2) and in enforcing
input constraints. Together, these components contribute to a more robust and effective
control strategy over the prediction horizon. The structure of the cost function can be
given as:

Jc = JMS + JMP + Jpenal t y

Jc = [(Y (xk ,uk )− Ŷk )T WY (Y (xk ,uk )− Ŷk )︸ ︷︷ ︸
ob j ect i ve ter ms

+ (Xk − X̂k )T WX (Xk − X̂k )+ J T
k WJ Jk + (Uk )T WU (Uk )+δT wδδ︸ ︷︷ ︸

penal t y ter m

](5.14)

Y (xk ,uk ) = [ fspec cv ]

WY = [wspec wcon]

X = [θhex ωhex shex jhex jang ,hex δ] (5.15)

WX = [wθ wω ws w j wang , j wδ] (5.16)

Jk = [ jtr ans jang ] WJ = [w j ,tr ans w j ,ang ]

The output terms (Y ) consist of the sensory conflict (cv ) and specific force ( f ), Yr e f

defines the reference for the sensory conflict and specific force, wY is the weight vec-
tor corresponding to the components of the output vector; X is the vector consisting of
platform states that are penalised in this work, WX is the weight vector corresponding to
the platform state being penalised (for washout effect), and u and wu correspond to the
inputs and the weight penalisation for the inputs to restrict it. δ is the slack variable and
wδ is the weight for the slack variable in the cost function.

Penalising jerks in the cost function of an MPC-based MCA is a well established prac-
tice to mitigate oscillations in specific force. We approximate jerk using the acceleration
change over timesteps divided by the timestep ( j (k) = a(k)−a(k−1)

Ts ). This approach avoids
the need to add jerk as a system state, thereby decreasing the computational complexity
of the optimal control problem (OCP).

min
u∈U

Jc (5.17)

s.t . x ′
v = fv (xv ,u) (5.18)

φ(xv ,u) ≤ 0 (5.19)

b
(
x (s0) , x

(
s f

))= 0 (5.20)

The dynamics of the system states, as defined in Section 5.3, are used as equality con-
straints in Equation 5.18. The parameterφ in Equation 5.19 represents the constraints on
the system as defined in Equation 5.3.3. Lastly, function b(x(s0), x(s f )) in Equation 5.20
defines the boundary conditions for the platform i.e. the initial and final state of the
platform.
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CONSTRAINTS

Unlike a real vehicle, in a driving simulator movements are restricted to a maximum dis-
placement and maximum tilt angle. These quantities are specific to the simulator being
used. For defining such constraints, the workspace limits of Delft Advanced Vehicle Sim-
ulator (DAVSi) are used (Table 5.1).

Table 5.1: Workspace limits of the DAVSi

Quantity Limit

θhex ±30deg
vhex ±7.2m/s
ahex ±9.81m/s2√

s2
hex,l ong + s2

hex,l at 0.5m

acmd ±5m/s2

Additionally, to minimise the perception of platform motion and avoid introducing
false cues, it is essential to limit platform rotation rates below the human perception
threshold. This threshold is typically considered to lie between 2–4°/s [20], [21], [79]. In
this work, a value of 3°/s was selected based on subjective feedback from participants
during a pilot study.

Rather than enforcing this as a hard constraint, we model it as a soft constraint to
allow occasional violations when necessary to improve specific force tracking perfor-
mance. This approach enables flexibility in generating higher specific forces without
introducing excessive perceived motion. The tilt-rate constraint is therefore defined as:

−ωthd ≤ωhex +δ ωhex −δ≤ωthd (5.21)

Here, ωthd is the selected perception threshold (3°/s for both pitch and roll rates),
and δ is a positive slack variable included in the cost function. While violations of the
threshold are permitted, they are penalized to encourage minimal deviation, balancing
perceptual fidelity with motion cueing performance.

WORKSPACE MANAGEMENT

For proper workspace management we use non-linear weights (based on the platform
orientation and position) for the washout instead of constant weights. This strategy
remains consistent with the frequency splitting algorithm and is described in Subsec-
tion 3.3.2.

5.3.4. YAW CHANNEL
The fifth DoF (yaw) is controlled separately using a parallel washout channel, ensuring
reduced computational complexity. For the simulator used in this work (DAVSi), the con-
trol commands we require to provide are yaw position velocity and acceleration. This is
done by passing the acceleration through a high-pass filter to obtain the desired plat-
form yaw acceleration. To ensure that the yaw angle returns back to it’s neutral position



5

88 MOTION CUEING FOR MITIGATED MOTION SICKNESS

at the end of the simulation, we use a second order high pass filter instead of a first order
filter. The second-order high-pass filter used for this purpose is given as

HP (s) = s2

s2 +2∗νy aw ∗ s +ν2
y aw

(5.22)

Here, νyaw denotes the cut-off frequency of the high-pass filter. A value of 0.0159
Hz is used, consistent with the configuration described in Chapter 3. Additionally, for
simplicity, the damping ratio is kept to be 1 (critically damped).

As yaw motion also affects motion sickness, the yaw prediction for the future should
also be communicated to the MPC. As the yaw washout is highly computationally effi-
cient, it can calculate the solution to the reference yaw for the prediction horizon almost
instantly. In our implementation, we include yaw information as online data for com-
munication with the MPC.

5.4. MPC ALGORITHM CONFIGURATION
In this section, the simulation settings used for the results presented in this chapter are
outlined. The MPC algorithm and settings, including the penalty terms in Equation 5.14
are detailed in Section D.1, Appendix D for completeness. As in Chapter 3, the MPC time
horizon was 3 seconds (60 steps of 0.05s).

In this work, we consider two major contribution terms that define the primary ob-
jective of the algorithm, along with several minor terms that help guide the Model Pre-
dictive Control (MPC) problem toward the desired performance. The two primary ob-
jective terms should have the highest contribution in the cost function.

Since the cost terms have different units, their relative contributions cannot be di-
rectly determined by the weights alone. To address this, we normalise the cost terms in
the cost function. This is done by running a sample simulation and recording the max-
imum values attained by each error term. The cost terms are then scaled by dividing
them by their corresponding maximum error values. The motivation for the selection of
weight parameters can be found in Section D.1. The selected weights are tabulated in
Table 5.2

Table 5.2: Penalization weights for the objective function terms, where In corresponds
to identity matrix of order n

Penalisation weight used Value

wθ (angular orientation) 1e −4∗ I2

wω (angular velocity) 1e −1∗ I2

ws (displacement) 1e −2∗ I2

w j (translational jerk) 1e −4∗ I2

wang , j (angular jerk) 1e −4∗ I2

wδ (slack variable) 1e-4

The ws and wθ , correspond to the parameters k1 and k3 respectively, in Section 3.3.2,
that affect the shape of the non-linear weight function. wω, w j , wang , j and wδ are the



5.5. ADAPTIVE WASHOUT REFERENCE MCA

5

89

penalisation weights for angular velocity, translational jerk, angular jerk and the slack
variable. Note that all weights are represented as 2 × 2 diagonal matrices to apply sep-
arate penalties in the longitudinal and lateral directions, except for the slack variable
weight wδ , which remains scalar since it does not relate to spatial dimensions.

5.5. ADAPTIVE WASHOUT REFERENCE MCA
In the results below we compare the MPC-based MCA to an adaptive washout (AW) MCA
introduced in [76], with MPC-based direct workspace management. The configuration
of the AW MCA is kept consistent with that described in Chapter 3. We use this adap-
tive washout as it is a widely used MCA in industrial applications. Thus it serves as the
industrial standard to which we can compare our results.

5.6. OBJECTIVE EVALUATION
This subsection evaluates the performance of the algorithms objectively. Based on the
objective evaluation, suitable MCA conditions are selected for the experimental evalua-
tion. Here we already use the driving conditions defined in Subsection 5.7.2.

VARIATION OF CONFLICT WEIGHT

The algorithm under consideration addresses two primary objectives: accurate specific
force tracking and minimisation of sensory conflict. To comprehensively explore the
trade-off between these competing goals, we vary the ratio between the specific force
tracking weight and the sensory conflict weight across the entire range, from pure con-
flict minimisation to pure force tracking. This is done by varying the sensory conflict
weight, wcon , between 0 to 1 while maintaining the relation wcon +wspec = 1.

Figure 5.2 illustrates the resulting performance metrics for different values of wcon .
This variation is then checked for its effect on workspace utilisation and motion sickness
development as opposed to the specific force tracking. The analysed metrics consider
root mean square of specific force tracking error, sensory conflict, platform displace-
ment, platform velocity, platform tilt, and the tilt rate. MISC is also checked against
specific force tracking.

The green triangle represents the no motion case, which practically coincides with
the conflict weight of unity in our algorithm. Thus, the algorithm indicates the reduction
of motion sickness to be the most when the simulator platform does not move at all.

For the experimental evaluation, it is important to ensure a clear distinction between
the MISC levels of the different algorithm configurations. Therefore, a minimum differ-
ence of at least one MISC level is desired. As shown in Figure 5.2, the profiles corre-
sponding to MPC wcon0, MPC wcon0.9, and N M exhibit a difference of one MISC level,
namely, MPC wcon0: 3, MPC wcon0.9: 2, and N M : 0.9.

FIDELITY CRITERIA

For objective comparison, shape similarity and the RMSE of specific force are consid-
ered.

Shape similarity ensures the effectiveness of the algorithm. A maneuver with a simi-
lar shape to its obtained specific force results in a similar experience. Despite magnitude
scaling, a higher shape similarity provides a better recreation of the maneuver.
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Figure 5.2: Effect of varying the specific force tracking to sensory conflict weight ratio
on sensory conflict tracking accuracy and workspace utilisation. The specific force

tracking error is computed as the square root of the sum of the longitudinal and lateral
root-mean-square errors (RMSE) of specific force. MISC development is evaluated over

5 laps; all other metrics are calculated based on the response over a single lap.
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Additionally, the RMSE between the reference and obtained specific force response
portrays how closely the magnitudes of the reference and generated profile match/align.

SPECIFIC FORCE PROFILES

The selected MCA configurations were further analysed based on the rendered specific
force profiles and shape similarity.

Figure 5.3 presents the specific force profiles produced by each configuration. For
comparability, the reference signals were scaled—longitudinal acceleration by a factor
of 0.3 and lateral acceleration by 0.4. The results show that the AW algorithm and the
MPC wcon0 configuration yield very similar profiles, whereas the MPC wcon0.9 configu-
ration results in noticeably lower specific force magnitudes.

SPECIFIC FORCE TRACKING

The root mean square error (RMSE) values quantify these differences. For the AW method,
the RMSE is 0.0632 in the longitudinal direction and 0.0732 in the lateral direction. The
MPC wcon0 configuration achieves lower RMSE values of 0.0256 (longitudinal) and 0.0092
(lateral), indicating a closer match to the reference. In contrast, the MPC wcon0.9 config-
uration results in higher RMSE values of 0.1562 (longitudinal) and 0.1488 (lateral), re-
flecting the reduced motion magnitudes.

SHAPE SIMILARITY

In addition to RMSE, the shape similarity between the rendered profiles and the refer-
ence signals was assessed. The AW method achieved shape similarity scores of 0.8377
(longitudinal) and 0.9432 (lateral). The MPC wcon0 configuration yielded higher shape
similarity scores of 0.9981 (longitudinal) and 1.0000 (lateral), indicating near-perfect align-
ment. The MPC wcon0.9 configuration also performed well, with scores of 0.9648 (longi-
tudinal) and 0.9762 (lateral).

Table 5.3: Performance of the selected MCAs along with their descriptions. The
algorithm configuration marked with ’*’ is excluded from the experiment, as pilot tests

with three participants revealed that, for a significant portion of the simulation, it
closely resembled the no-motion condition.

Algorithm
Specific force RMSE [m/s2][√

long .2 + l at .2
] Shape similarity[

l ong .+l at .
2

] End MISC (predicted) Description

NM 0.5364 0 0.9
No motion of platform

coincides with MPC wcon1

MPC wcon0.97* 0.3551 0.8960 1.5 MPC based MCA with wcon = 0.97
MPC wcon0.9 0.2157 0.9705 2.0 MPC based MCA with wcon = 0.9
MPC wcon0 0.0272 0.9990 3.0 MPC based MCA with wcon = 0
AW 0.0967 0.8904 2.8 Widely accepted motion cueing in industry

WORKSPACE UTILISATION

The workspace utilisation for each algorithm, including RMS displacement, RMS veloc-
ity, RMS angular displacement, and RMS angular velocity is presented in Table 5.4. These
quantities reflect how much of the simulator’s translational and rotational workspace is
engaged during motion cueing.
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Figure 5.3: Specific force and its components, along with the sensory conflict generated
over one lap of the simulation, shown for different algorithm configurations
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The variation of the workspace utilisation along with the variation of the conflict
weight can also be seen in Figure 5.2.

Table 5.4: Workspace utilisation for the algorithms tested experimentally

Algorithm
Workspace utilisation

RMS displacement RMS velocity RMS angular displacement RMS angular velocity
[m] [m/s] [deg] [deg/s]

MPC wcon0 0.0273 0.0193 3.0661 1.6636
MPC wcon0.9 0.0224 0.0140 2.0761 0.7587

AW MCA 0.3477 0.0518 3.0281 1.4229
No motion 0 0 0 0

5.7. HUMAN-IN-THE-LOOP EVALUATION
This section describes the human-in-the-loop driving simulator experiment and its sub-
jective evaluation method. Perceived driving simulator fidelity and motion sickness was
evaluated from the perspective of passive users, representative of users of automated
vehicles. This work utilises the Delft Advanced Vehicle Simulator (DAVSi) for the exper-
iment conduction. DAVSi is a 6-DoF moving-based driving simulator [20], capable of
generating acceleration up to 1 g in all directions and can simulate motions up to the
frequency of 10 Hz.

5.7.1. EXPERIMENTAL PROCEDURE
All participants provided informed consent before participating in the study. The Hu-
man Research Ethics Committee of TU Delft, The Netherlands, approved the experimen-
tal protocol (application number 4819).

In total, 20 participants from the pool of students and employees of TU Delft partici-
pated in the study (mean age: 27.70 years, std: 3.42 years, 6 females, 14 males).

Individuals with no prior history of motion sickness were excluded from the study.
The Motion Sickness Susceptibility Questionnaire-Short (MSSQ-Short) was administered
to the participants of the experiments, as described by [99]. The participants had a mean
MSSQ-Short score of 49.6 (SD = 24.9), substantially higher than the population mean of
12.9 reported in [99], indicating a high level of motion sickness susceptibility.

Each participant experienced all four selected motion cueing algorithm (MCA) con-
figurations, in a randomised order. To minimize carry-over effects and mitigate motion
sickness influence from previous exposures, sessions were spaced at least 48 hours apart
for each participant.

It is important to mention that, since the MPC algorithm is not capable of real-time
execution (real-time factor ≈ 2.0), the MCA first renders the motion profile for the entire
scenario. This rendered profile is then replayed in the driving simulator in an offline
mode. Such an approach is particularly suitable for passive driving scenarios, where the
driver does not actively control the vehicle. In these cases, online generation of motion
cues is not required.

Before the experiment, the participants underwent a concise briefing session to fa-
miliarise themselves with the questionnaire and to understand the objective of the ex-
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periment. During the experiment, two-way communication was established between
the experimenter and the participant via blutooth headphones and microphones.

Measures were taken to ensure that the driving scene remained their sole visual fo-
cus, including blocking side window views and part of the windshield to eliminate exter-
nal cues indicating platform tilt (same as presented in Figure 3.12, Chapter 3).

During each session, participants reported their motion sickness levels every 30 sec-
onds using the Misery Scale (MISC) [100], prompted by an auditory beep in the head-
phones. After completing a session, participants filled out an absolute grading ques-
tionnaire (listed below) assessing different aspects of the driving experience.

To ensure a fair comparison, the sequence of algorithm exposures varied across par-
ticipants. A Latin square design was employed to balance the experimental testing order.
Participants could withdraw from the experiment at any time.

QUESTIONNAIRE

Participants rated realism on a 5-point Likert scale with the following questions:

• How closely did the ride’s motion correspond to the video?

[0 = Not at all, 5 = Completely coherent]

• How close did the cornering feel compared to a real car?

[0 = Not at all, 5 = Exactly like a real car]

• How realistic did the acceleration and deceleration feel compared to a real car?

[0 = Not at all, 5 = Exactly like a real car]

• Were there any unnatural motions that did not match real driving?

[0 = Not at all, 5 = A lot of them]

5.7.2. SCENARIO
The aim of this study is to investigate simulator sickness in relation to motion cueing
in driving simulators. To this end, a virtual driving scenario was designed to simulate
a naturalistic urban drive that would not typically induce motion sickness in real-world
driving, but may do so in a simulator due to sensory mismatch.

Since the ultimate goal is to develop strategies to mitigate simulator sickness, the ex-
periment must first ensure a sufficiently high likelihood of inducing sickness. Given the
naturalistic and non-aggressive nature of the driving scenario, participants need to be
exposed to it for an extended period to allow the gradual onset of sickness symptoms.
Based on this consideration, the total session duration was set to approximately 30 min-
utes.

The driving scenario consists of 240-second laps, followed by a 10-second pause, re-
peated six times per session. This structure provides consistency across participants
while maintaining manageable session length and data segmentation for analysis.

The urban driving scenario includes vehicle speeds ranging from 0 to 70 km/h and
consists of a diverse set of maneuvers: stop-and-go sequences at traffic lights and pedes-
trian crossings, moderate cornering, a tunnel section, and a double lane-change maneu-
ver due to a road diversion caused by an accident. These dynamic events are chosen to
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Figure 5.4: Vehicle accelerations along with their scaled down references

replicate realistic driving conditions while introducing sufficient variations in accelera-
tion to challenge the simulator’s motion rendering capabilities.

The scenario was created using IPG CarMaker, which provides a realistic virtual envi-
ronment and high-fidelity vehicle dynamics simulation. CarMaker’s vehicle models are
experimentally validated, ensuring that the generated accelerations are representative
of actual driving conditions. These acceleration signals serve as the reference specific
forces for the motion cueing algorithm that drives the simulator platform.

Figure 5.4 presents the acceleration profiles generated by the vehicle model for one
lap of the defined scenario. The reference provided to the MPC is scaled down by a fac-
tor of 0.3 and 0.4 for the longitudinal and lateral vehicle accelerations, respectively. The
choice of the scaling factor is coherent with the selected values in Chapter 3. The result-
ing data shows lateral accelerations within the range of approximately ±4m/s2, longitu-
dinal accelerations up to 1.25 m/s2, and decelerations reaching −5m/s2. These dynamic
variations are used to evaluate the simulator’s motion cueing effectiveness and its rela-
tionship with simulator sickness development.

5.7.3. RESULTS

SUBJECTIVE REALISM RATINGS

Based on participant realism scores collected during the experiment, a subjective evalu-
ation of the motion cueing algorithms was conducted. Figure 5.5 presents a summarised
boxplot of the ratings for the different motion cueing configurations. The results in-
dicate that the three platform motion configurations—MPC wcon0.9, MPC wcon0, and
AW—received closely clustered ratings across all realism criteria. In contrast, the N M
(no motion) configuration consistently received the lowest scores, suggesting that par-
ticipants perceived it as the least realistic.
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These findings imply that the absence of motion cues in the N M configuration sig-
nificantly reduced the sense of immersion, making it feel less like a real vehicle drive.
Conversely, the other configurations were perceived to deliver comparable levels of real-
ism and immersion, reinforcing the value of motion-based cues in enhancing perceived
driving authenticity.

Furthermore, Figure 5.5 highlights statistically significant differences between the
configurations using asterisks (’*’). These markers indicate that each motion-based con-
figuration exhibits a statistically significant difference in perceived realism when com-
pared to the N M configuration. However, no significant difference is observed among
the motion-based configurations themselves, further supporting the conclusion that they
provide a comparable level of immersive experience.

NM MPCwcon0.9 MPCwcon0 AW

Figure 5.5: Realism scores obtained for the different algorithm configurations during
the human-in-the-loop validation experiments. ‘*’ represent significant differences,

circles represent the mean, solid lines represent the median, boxes represent 25th and
75th percentile, with ’×’ capturing the full range including outliers.

MOTION SICKNESS RATINGS

Figure 5.6 presents the experimental motion sickness results alongside the predictions
from the model framework by [96] as described in Subsection 5.3.1. It can be observed
that the N M configuration results in the lowest levels of motion sickness. Slightly higher
levels are seen with the MPC wcon0.9 configuration, followed by AW , and the highest lev-
els are recorded for MPC wcon0. This trend confirms that increasing the weight on sen-
sory conflict leads to reduction in motion sickness, as expected from the offline analysis
in Figure 5.2. Additionally, only one participant dropout occurred in the MPC wcon0.9

condition, compared to six in MPC wcon0 and four in the AW condition. This confirms
that SVC MCA is capable of extending the exposure time in the simulator.
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Figure 5.6: Experimental MISC responses along with model predictions for all scenarios
considered in the experiment. The solid lines represent the data collected during the
experiment, the dashed lines represent the predictions coming from the SVC model.

Mean response (upper graph), dropout rates (second graph) and variance (four
separate graphs) where the shaded region spans from 25th to 75th percentile.
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Furthermore, the experimental data aligns with the predicted MISC levels predicted
by the model framework. Although the predicted values do not exactly match the ex-
perimental outcomes, they follow a similar trend across configurations (see Figure 5.6).
The SVC model generally overestimates MISC levels relative to the observed data, with
the exception of the MPC wcon0 configuration, where the predictions are lower than the
measured values at the end of the experiment.

Table 5.5: Analysis of the experimental MISC data using ANOVA

Session Order effects
(Overall p-value = 0.4569)

pairs p-value

S1 S2 0.9146
S1 S3 0.5717
S1 S4 0.4727
S2 S3 0.9183
S2 S4 0.8537
S3 S4 0.9985

MCA Condition effects
(Overall p-value = 6.3897e-08)

pairs p-value

NM MPC wcon0.9 0.2624
NM MPC wcon0 9.6973e-08
NM AW 1.9748e-04
MPC wcon0.9 MPC wcon0 8.9266e-05
MPC wcon0.9 AW 0.0497
MPC wcon0 AW 0.1732
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Figure 5.7: Order effect (left) and MCA effect for mean MISC at the end of the last lap in
the experiment with ’*’ representing significant difference between the algorithm

configurations.

The experimental data was also checked for condition effects and order effects based
on the mean of the collected MISC data levels obtained for the participants. For this anal-
ysis, participants who dropped out had their MISC level assumed to be 6 from the point
of dropout until the end of the experiment. The analysis for the statistical significance is
tabulated in Table 5.5 and the boxplots are shown in Figure 5.7. The table indicates that
there were no significant differences because of order effects i.e. the order with which
the participant was subjected to the algorithms did not have a significant effect on the
output of the experiment. However, there was a significant effect of conditions on the
mean MISC in the last lap. It also indicates that there was a significant difference in the
motion sickness levels between the pairs (a) N M and MPC wcon0 (b) N M and AW (c)
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MPC wcon0.9 and AW (d) MPC wcon0.9 and MPC wcon0. Whereas, no significant differ-
ence were found between (a) N M and MPC wcon0.9 and (b) AW and MPC wcon0.

In Figure 5.8, we compare the histogram of MISC levels at the end of the experiment,
as predicted by the model framework and as observed in the experimental data.

While there are some deviations in the exact occurrence percentages across MISC
levels, the overall trend is reasonably well captured by the motion sickness model.

The most notable discrepancy occurs at MISC level zero, where the model underes-
timates the proportion of participants reporting no motion sickness, failing to predict a
MISC of zero for a substantial segment of the population.
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Figure 5.8: Histogram of MISC at the end of the experiment. Experimentally observed
MISC in dark colours and predicted MISC in lighter colours.

5.8. DISCUSSION
This work addresses a pivotal gap in the domain of motion cueing algorithms by directly
integrating motion sickness mitigation as an explicit control objective. Historically, the
development of MCAs has emphasised fidelity in motion perception, often overlooking
the physiological consequences of simulator use, especially motion sickness. While prior
works have explored high-fidelity motion rendering through MPC (also in Chapter 3 and
Chapter 4), to the best of the authors’ knowledge, no work has incorporated advanced
physiological models, specifically the 6-DoF Sensory Conflict model (SVC) to anticipate
and suppress motion sickness.

The algorithm introduced here not only balances the perceptual accuracy of motion
(via specific force tracking), but also integrates a predictive layer that quantifies human
discomfort through sensory conflict. This dual-objective formulation represents a sig-



5

100 MOTION CUEING FOR MITIGATED MOTION SICKNESS

nificant methodological advancement, transcending traditional MPC frameworks that
focused solely on mechanical accuracy or visual congruence.

A notable strength of this work is the comprehensive validation strategy. Through
simulation, objective metrics (like RMSE and shape similarity), and human-in-the-loop
evaluations, the proposed solution is shown to be robust across both technical and per-
ceptual domains. The experimental results confirm the hypothesis that sensory conflict
minimisation, even at the expense of reductions in specific force magnitude, can lead
to a statistically significant improvement in user comfort without degrading immersion
and realism. The successful prediction of MISC levels using a population-based SVC and
sickness accumulation model further emphasizes the algorithm’s predictive validity and
practical utility.

5.8.1. ERROR TERM NORMALISATION FOR MULTI-OBJECTIVE TRADE-OFFS
Given the presence of multiple primary objectives in the algorithm, it is important to
control the relative contributions of the different cost terms. Normalisation facilitates
this by simplifying the assignment of weights, enabling them to be adjusted according to
the priority of each objective. In this work, normalisation is achieved through a prelim-
inary simulation used to estimate the maximum expected values of each variable. Each
error term in the cost function is then divided by its corresponding maximum value, en-
suring that all normalised errors lie within a comparable range. This normalisation pro-
cess also enabled us to explore the full spectrum or Pareto front between the objectives
of motion perception and motion sickness, represented respectively by specific force
tracking and RMS sensory conflict. While this method does not yield exact or universal
scaling, the estimated maxima, derived from a representative set of scenario and weight
configuration, it provides a practical and sufficiently robust basis for comparative anal-
ysis across different trade-offs. If future scenarios deviate significantly from those used
during normalisation, the bounds can be re-evaluated and updated accordingly.

5.8.2. WORKSPACE UTILISATION
By analysing the explored spectrum between sensory conflict and specific force tracking
as competing objectives—achieved by varying the ratio between their respective weights
from 0 to infinity (see Figure 5.2)—we observe that increasing the weight on the sensory
conflict term leads to a general reduction in the overall motion of the platform.

More interestingly, when evaluating translational and rotational workspace utilisa-
tion separately, distinct trends emerge. In the rotational workspace, both rotational ve-
locity and rotational angle utilisation consistently decrease as the weight on the sensory
conflict term increases.

However, the trend differs in the translational workspace. Initially, as the sensory
conflict weight increases, translational workspace utilisation slightly increases before
eventually showing reduced utilisation (see Figure 5.2). This suggests that when the spe-
cific force tracking objective still holds significant weight, and the motion sickness term
is only weakly weighted, the MPC attempts to balance both objectives. It does so by gen-
erating solutions that maintain fidelity in specific force tracking while modestly reducing
motion sickness.

Overall, as the weight on sensory conflict increases, translational motion initially
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rises before declining, while rotational motion consistently decreases. This suggests that
rotational movement contributes more significantly to motion sickness. To reduce con-
flict early on, the controller limits rotational motion while allowing slight increases in
translation. However, substantial mitigation of motion sickness ultimately requires re-
ducing both rotational and translational motion.

5.8.3. MISC PREDICTION

In a novel contribution to the field, this work presents the first-ever quantitative pre-
diction of absolute motion sickness levels using the SVC model in combination with
a sickness accumulation model in driving simulator motion cueing. Here we build on
our recent papers where we combine the SVC model with an accumulation model and
estimated individual parameters to capture experimental MISC values in vehicle and
driving simulator experiments [89], [96]. Prior research has predominantly focused on
relative trends or qualitative sickness development; in contrast, our approach enables
the prediction of absolute MISC scores. Although motion sickness is inherently subjec-
tive and often requires individual calibration parameters, we generalise our model using
population-representative parameters. As a result, we provide predicted average MISC
responses, accompanied by the standard deviation to capture inter-individual variabil-
ity. This methodology offers a new standard for objective, model-based evaluation of
motion sickness in simulator contexts.

As shown in Figure 5.6, the predictions (represented by dotted lines) follow a similar
trend to the experimental data (represented by solid lines). Additionally, the predicted
MISC levels remain close to the actual values recorded at the end of the experiment.

Interestingly, the adaptive washout and the configuration MPC wcon0 yield very sim-
ilar MISC predictions. However, this similarity is not reflected in the experimental data,
providing scope to enhance the SVC and accumulation models and their parameters.
Likewise the experimental MISC fluctuates more across time whereas the experimen-
tal MISC increased more gradually providing scope to enhance the accumulation model
and its parameters. Certain instances of false cues may have a higher/bigger impact on
motion sickness than others, which the model may not be able to discern/quantify (such
as prepositioning or coupled of the translational and rotational motion). Thus, the SVC
may have similar predictions for the AW and MOC wcon0, whereas in the experiment the
outcome was slightly different; however, even with these discrepancies, the trend of pre-
diction of motion sickness holds for the SVC model. This is evident by the outcomes of
the MCAs MPC wcon0, MPC wcon0.9 and N M where the experimental results follow the
trend predicted by the SVC model.

The discrepancies between the predicted and experimental results may be partially
attributed to the use of generalised rather than individual-specific parameters in the
MCA. Nevertheless, the use of generalised parameters still proves valuable for reduc-
ing motion sickness. This is because it is more important to lower the sickening stimuli
than to precisely predict their impact on MISC levels. For this reason, minimising in-
stantaneous sensory conflict is often sufficient, as it ultimately contributes to reducing
the accumulation of sensory conflict over time.

In the developed algorithm, sensory conflict is minimised instead of directly min-
imising the motion sickness rating. Within the optimisation process, it is the accumu-



5

102 MOTION CUEING FOR MITIGATED MOTION SICKNESS

lated error that is minimised rather than the instantaneous error at a single point in time.
Since the accumulation of sensory conflict increases over time, its contribution to the
cost function grows accordingly, starting with a minimal impact and becoming more
dominant as time progresses.

5.8.4. REALISM
This work evaluates realism through both subjective and objective measures. The objec-
tive metrics include specific force tracking and the shape similarity factor.

While RMSE is a useful metric for assessing how accurately a reference signal is tracked,
shape similarity is arguably more important in this context. This is because the vehicle
accelerations are scaled down before being used as reference inputs in MCAs. As a result,
the primary objective shifts from matching the exact magnitude to preserving the overall
shape of the motion profile. In this context, the aggressiveness of the ride is more closely
associated with acceleration magnitude, whereas perceived realism is more accurately
conveyed through similarity in the motion shape.

It is important to note that shape similarity is assessed based on the total specific
force vector, rather than its individual components.

Additional data is needed to determine whether realism remains consistent across
the entire weight spectrum, particularly in the range wcon = 0 to 0.9.

5.8.5. MOTION SICKNESS MANIPULATION
Although this work specifically targets the reduction of motion sickness, the same algo-
rithm can also be configured to recreate motion sickness if desired. To minimise motion
sickness, the sensory conflict is given a reference of zero. However, by feeding the ac-
tual sensory conflict—calculated from real vehicle data—into the MPC as the reference,
motion sickness can be intentionally reproduced. This feature could prove valuable for
assessing how sick an occupant might feel when exposed to specific automated driving
styles, and for conducting human-acceptance or behavioural studies within a simulated
environment, especially in cases where real vehicle and simulator responses are directly
compared.

A key finding is that the algorithm is capable of significantly reducing motion sick-
ness while preserving the perception of motion. Subjective results revealed that a con-
flict weight of wcon = 0.9 resulted in an average end MISC level of 2 across participants.
In contrast, both the adaptive washout and the MPC configuration with only specific
force tracking yielded an average MISC level of 3. This reflects a 33% reduction in motion
sickness without substantially compromising scenario realism. Additionally, the exper-
imental validation also showed that the no motion case resulted in the least amount of
sickness, which was also observed in the predictions obtained through the SVC model.
Indicating the SVC model’s capability in predicting motion sickening. The perceived fi-
delity for this case however, reduced significantly. This aligns with the finding in [33],
where the percieved fidelity improved with the addition of motion to the simulator plat-
form, accompanied by an increase in motion sickness. However, this does not align with
the findings of [32], where enhanced visual fidelity reduced motion sickness in for mov-
ing base but not for fixed base, indicating that increasing the visual fidelity may be re-
sponsible for additional sickness induction.
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It is worth noting that for the experiment, the frontal view was the main focus, thus,
the peripheral vision was blocked (see Figure 3.12). This blocking of peripheral vision
might have subdued the sickness levels in the occupants. A similar study should be con-
ducted to further explore the role of peripheral vision in motion sickness development
in simulators.

Finally, in this study, yaw motion was controlled via a traditional washout algorithm,
which does not consider motion sickness in its design. This decision was made to sim-
plify the MPC computation. Future work may explore integrating yaw dynamics into
the MPC framework to potentially improve sickness mitigation and deliver more precise
rotational cueing.

5.9. CONCLUSION
The developed motion cueing algorithm demonstrates a strong capability to reduce mo-
tion sickness while maintaining a realistic perception of vehicle motion. Experimental
results show that increasing the weight for sensory conflict within the model predictive
control framework leads to a noticeable reduction in motion sickness experienced by
participants. This confirms the effectiveness of penalising sensory conflict as a control
objective in motion cueing design.

Although the configuration with a high sensory conflict weight (compromise con-
figuration; MPC wcon0.9) produces specific force profiles with reduced magnitude, re-
sulting in a higher root mean square error (RMSE) in specific force tracking, the shape
similarity of these profiles to the reference signal remains high. Notably, this high shape
similarity is consistent across all considered configurations except for the no-motion
condition (see Table 5.3). This pattern corresponds well with the relatively uniform sub-
jective realism ratings observed across these configurations, where realism scores for all
configurations except the no-motion condition were similar. Consequently, shape sim-
ilarity may serve as a more meaningful performance metric than the RMSE of scaled
specific force, as it appears to better capture participants’ perceived realism and, by ex-
tension, the perceptual fidelity of the motion cues.

Subjective evaluations further reinforce the findings, with participants rating motion-
based configurations significantly higher in realism compared to the no-motion base-
line. Additionally, statistical analysis confirms that these improvements are not due to
order effects, and there are significant differences in motion sickness levels between key
configuration pairs.

Our findings align with those of [32] and [33], where even low-amplitude motion
was shown to significantly enhance perceived motion fidelity compared to no-motion
conditions. However, in contrast to [32], where the fixed-base simulator was associated
with slightly higher motion sickness, our study observed the lowest sickness levels in the
no-motion configuration. It is important to note, however, that the differences in sick-
ness levels reported by [32] were not statistically significant. This discrepancy may be
attributed to differences in visual fidelity, as highlighted in their study, suggesting that
visual rendering quality could play a critical role in motion sickness development.

In summary, this work marks a significant advancement in motion cueing design
by successfully integrating a perceptually-informed motion sickness model directly into
the control framework. The algorithm not only proves effective in reducing motion sick-
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ness through both simulation and human-subject validation, but also demonstrates that
motion fidelity can be preserved while optimising for comfort. This achievement paves
the way for more immersive and tolerable long-duration driving simulation experiences,
setting a new benchmark for future motion cueing algorithms.
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COMPUTATIONALLY-EFFICIENT

MOTION CUEING ALGORITHM VIA

MODEL PREDICTIVE CONTROL

The journey of a thousand miles begins with a single step.

Lao Tzu

Youth is wasted on the young,
don’t let the wisdom of age waste upon you.

Ted Lasso

This chapter is based on A. Chadha, V. Jain, A. M. R. Lazcano, and B. Shyrokau, "Computationally-efficient
motion cueing algorithm via model predictive control." in 2023 IEEE International Conference on Mechatronics
(ICM), 1-6. [34].
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ABSTRACT
Driving simulators have been used in the automotive industry for many years because of
their ability to perform tests in a safe, reproducible and controlled immersive virtual envi-
ronment. The improved performance of the simulator and its ability to recreate in-vehicle
experience for the user is established through motion cueing algorithms. Such algorithms
have constantly been developed with model predictive control acting as the main control
technique. Currently, available model predictive control-based methods either compute
the optimal controller online or derive an explicit control law offline. These approaches
limit the applicability of the cueing algorithms for real-time applications due to online
computational costs and/or offline memory storage issues. This research presents a solu-
tion to deal with issues of offline and online solving through a hybrid approach. For this,
an explicit model predictive controller is used to generate a look-up table to provide an ini-
tial guess as a warm-start for the implicit model predictive control-based algorithm. From
the simulations, it is observed that the presented hybrid approach is able to reduce online
computation load by shifting it offline using the explicit controller. Further, the algorithm
demonstrates a good tracking performance with a significant reduction of computation
time in a complex driving scenario using an emulator environment of a driving simula-
tor.
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6.1. INTRODUCTION

D RIVING simulators are frequently used for development and testing in the automo-
tive domain [16]. The virtual environment of the simulator helps to recreate the

in-vehicle experience without any damage dealt to the real vehicle. To achieve this, an
MCA is used acting as the control technique for the driving simulator’s movements. It
governs the process allowing the simulator to function properly so that a similar feeling
of motion is experienced by the user and to maximise the workspace utilization[101].

In motion cueing, driver input is sent to the vehicle model which generates the ref-
erence signal to be tracked. The MCA computes the desired platform motion to follow
these reference signals and commands it to the platform as specific forces and rotational
accelerations. The notion of specific force is exploited for the recreation of in-vehicle ex-
perience. The sensed specific force fspec,s comprises two components: platform trans-
lational acceleration, atr an,p and the gravitational acceleration, which allows us to study
the human body’s movement in space during the cueing process. This is compared with
the actual specific force value fspec,a obtained from the real vehicle. The computed error
is then fed back into the MCA to improve results for the next time step. Based on this,
several kinds of MCAs have been developed, which differ in terms of control techniques
used.

Conventional filter-based algorithms use the concept of high and low pass filters
to reproduce the on-road experience within the virtual environment [14]. They op-
erate using three main channels. The first is the translational channel which takes in
translational accelerations as input. It uses a high pass filter to filter out sustained low-
frequency accelerations, which can drive the simulator to its physical limits [14], [15],
[20], [102]. These filtered low-frequency accelerations are then recreated using
tilt-coordination in the tilt channel [103]. Lastly, a rotational channel is present, which
is similar to the translational channel.

Based on the same principle, other kinds of conventional algorithms have been de-
veloped such as the optimal and adaptive washout algorithms. The main drawback of
such algorithms is their inability to take explicit constraints into account, leading to poor
workspace utilization. Furthermore, some of these approaches like the classical washout
algorithm are feed-forward techniques which result in poor performance. To overcome
these problems, MPC-based MCAs are commonly used.

MPC has been used in MCAs for over a decade considering two different approaches.
The first approach is the implicit controller, which solves the optimization problem on-
line at each time step. Initially, linear MPC-based MCAs were developed [68], [103]. They
outperformed the conventional methods but provided sub-optimal results, as the non-
linear dynamics were not taken into account. Further, they employed constraints in the
driver reference frame, to keep the problem linear, resulting in difficulties in realizing the
available workspace. To solve these issues, nonlinear MCAs have been proposed [19],
constraining the actuator lengths and showing performance improvement compared
with the linear MPC-based MCA. A nonlinear MPC-based MCA with actuator constraints
was also developed in [20]. Perception thresholds were applied to reduce false cues, ad-
ditionally, adaptive weights were introduced for washout effect, which improved track-
ing performance. A similar algorithm has been developed involving perception thresh-
olds, which uses a separate optimal control problem to predict future driver behaviour
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[21]. Such MPC-based MCAs provide better performance compared to conventional and
linear MPC-based algorithms; however, they suffer from high online computation costs
resulting in these algorithms not being real-time implementable.

To reduce computational costs, an alternative approach of MPC-based cueing has
been proposed. Explicit MPC has been developed, which pre-computes the solution
and then uses it in the form of a look-up table online. This method significantly reduces
online computation time [23]. A 2 DoF MCA was developed which was later extended by
incorporating a vestibular model in [73]. Although this technique reduces online com-
putation time, it suffers from memory storage issues along with restrictions in using large
prediction horizons Np with fast sampling rates. This is due to the exponential increase
in control region computation time with an increase in the complexity and scope of the
problem.1

To overcome issues faced by implicit and explicit MPCs, a hybrid approach has been
developed by Zeilinger [104]. An explicit controller provides an initial guess for the on-
line optimization problem. The guess acts as a warm-start resulting in faster computa-
tion of the optimal control input. Since its inception, this technique has been used in
applications such as curve tilting [105] and lateral motion stabilisation [106].

The main contribution of the paper is a hybrid motion cueing approach using ex-
plicit and implicit MPCs. The proposed algorithm increases the computational effi-
ciency without degradation of the tracking performance. The algorithm outperforms
the state-of-the-art MPC-based MCA described in Subsection 6.3.1, in terms of compu-
tational performance.

The paper is structured as follows. In Section 6.2, the controller design is explained
including information about both MPCs in the hybrid scheme. The test setup and simu-
lations performed are presented in Section 6.3. Conclusions and recommendations are
listed in Section 6.4.

6.2. METHODOLOGY

6.2.1. HYBRID SCHEME

The design of the hybrid MPC-based MCA comprises two main components: initialisa-
tion using explicit MPC and online computation using the implicit controller. A general
scheme of the MCA is shown in Figure 6.1. As the first step, the initial states and reference
values are sent to the explicit MPC. This block searches for the corresponding control re-
gion related to the states and reference values, the associated control inputs are then
provided to the online nonlinear solver (implicit MPC), as the initial guess. With the in-
formation of the initial guess along with the current states and the reference signals, the
implicit controller computes the optimised control inputs. These inputs are fed to the
plant model and the states are updated for the next time step. Once the state update is
complete, the entire process is repeated.

1Deep learning has been applied to derive explicit MPC formulations [74]. A Gaussian radial basis func-
tion–based neural network (RBF-NN) was developed in [75]; however, the resulting explicit MPC formulation
exhibited degraded performance compared to conventional approaches.
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Figure 6.1: Hybrid MPC scheme for the proposed motion cueing algorithm

6.2.2. EXPLICIT MPC
The explicit MPC is used to compute a look-up table that provides the online solver’s
initial guess. This comprises states and reference values stored in the form of control
regions. Each control region corresponds to a particular control input value generated
as follows [107], [108]:

U (x) = Fi x +Gi if x ∈C Ri . (6.1)

where, C Ri are the control regions, to which the vectors Fi and Gi correspond.
To generate the look-up table, an MCA is designed considering 4 DoFs of the driv-

ing simulator using the Multi Parametric Toolbox (MPT). The algorithm is a simplified
version of the online implicit controller to provide an educated guess for the warm-start
strategy. Eight states are used in the model considering the platform displacement sp ,
platform velocity vp , tilt angle θp and tilt rateωp for pitch-surge and sway-roll DoFs. The
state space equations are shown in (6.2):

ẋ(k) =



ω̇p,long = ap,l ong ,r ot

θ̇p,long =ωp,long

v̇p,long = ap,long ,tr an

ṡp,long = vp,l ong

ω̇p,l at = ap,l at ,r ot

θ̇p,l at =ωp

v̇p,l at = ap,l at ,tr an

ṡp,l at = vp,l at

(6.2)

Here, the subscripts ′long ′ and ′l at ′ refer to the pitch-surge (longitudinal) and sway-
roll (lateral) DoFs respectively. Also, this problem contains four control inputs u(k),
comprising translational and rotational accelerations acting in both longitudinal and
lateral directions:

u(k) = [ap,l ong ,r ot , ap,l ong ,tr an , ap,l at ,r ot , ap,l at ,tr an] (6.3)
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Thus, the combined system can be represented as follows:

ẋ(k) = f (x(k),u(k)) (6.4)

Constraints are applied in the MCA to limit the movements of the motion platform,
according to the driving simulator’s capabilities. Firstly, the tilt rate is constrained ac-
cording to the perception thresholds of pitch and roll movements, to ensure that the
driver does not perceive the tilting action. Generally, a lower value in the range of 2-4
deg/s is used [20], [21], [79] and for the proposed MCA, 3 and 2.6 deg/s were chosen for
pitch and roll tilt rates respectively.

Secondly, constraints are applied to the platform displacement to limit the platform
within the workspace envelope. Since 4 DoFs are considered, the workspace envelope

can be represented by
√

s2
p,long + s2

p,l at ≤ s2
max . The explicit MPC is defined using the

MPT toolbox where non-linear constraints can not be added. Thus, the constraint de-
scribed above is only applied in implicit MPC. For the explicit MPC, the platform dis-

placement limits are imposed separately with a value of
√

s2
max /2 in both the longitu-

dinal and lateral directions. As the explicit controller only provides the initial guess for
the actual solution, using a marginally different constraint for the displacement does
not affect the final solution. The implicit controller produces the final solution. The
constraints used in the problem are summarised below:

−3deg /s ≤ωp,long ≤ 3deg /s

−2.6deg /s ≤ωp,l at ≤ 2.6deg /s

−30deg ≤ θp ≤ 30deg

−7.2m/s ≤ vp ≤ 7.2m/s

−0.35m ≤ sp ≤ 0.35m

−9.81m/s2 ≤ ap ≤ 9.81m/s2

(6.5)

Here, subscript ′p ′ alone (without ′long ′ or ′l at ′) represents that both longitudinal and
lateral counterparts have the same constraint limit. The goal of this MCA is to track
the reference specific force defined by the two vector components: translational and
gravitational tilt accelerations. Rotations with respect to the x and y axis are used in
deriving the gravitational tilt components which are as follows:

g t i l t =
{

gl ong = g sinθp,long

gl at =−g cosθp,l ong sinθp,l at
(6.6)

Taking the translational accelerations into account, the specific force is given by:

y(k) =
{

fspec,l ong = ap,long ,tr an + g sinθp,long

fspec,l at = ap,l at ,tr an − g cosθp,long sinθp,l at
(6.7)

Furthermore, the objective function consists of weighted states, specific forces and
control inputs. As the states are already constrained, a value of 0 is assigned to allow
freedom of movement in the available workspace. Further, the highest weights are given



6.2. METHODOLOGY

6

111

to the specific forces to achieve their tracking. Thus for the objective function, a weight of
1 is selected for specific force (output), and the inputs namely translational and angular
accelerations are penalised with a weight of 1e −3. The cost function can be defined as:

Jex =
Nc∑
i=0

[yk − yr e f ]T w f [yk − yr e f ]+xT
p wx xp +uT wu u (6.8)

where yr e f is the reference specific force, w f is the weight for specific force tracking, xp

are the states of the motion platform, wx are weights on the states to obtain washout
effect. Lastly, u are the control inputs and wu corresponds to the weights on the inputs
to restrict them.

6.2.3. IMPLICIT MPC

The second part of the hybrid approach is the online implicit MPC-based algorithm. This
algorithm is able to take nonlinear constraints into account and is designed using ACADO
optimisation toolbox in MATLAB. The formulation of the implicit MCA is as follows:

min
uNp

J (x0,u)

s.t., x(k +1) = f (x(k),u(k))

x ∈χi

x(N ) ∈X f

(6.9)

The cost function in Equation 6.9 is defined as:

Ji m =
Nc∑
i=0

[yk − yr e f ]T w f [yk − yr e f ]+xT
p wx xp +uT wu u (6.10)

The cost function of the implicit MPC is similar to explicit MPC, apart from the ad-
dition of a few extra states corresponding to commanded inputs. The states x(k) of the
cueing algorithm are also updated by adding the platform accelerations, previously used
as the control inputs. Commanded acceleration values that include a first-order time
delay are now employed as control inputs. The state space model is presented in Equa-
tion 6.11:



6

112 HYBRID MOTION CUEING ALGORITHM

ẋ(k) =



ω̇p,long = ap,l ong ,r ot

θ̇p,long =ωp,l ong

v̇p,long = ap,l ong ,tr an

ṡp,long = vp,l ong

ω̇p,l at = ap,l at ,r ot

θ̇p,l at =ωp

v̇p,l at = ap,l at ,tr an

ṡp,l at = vp,l at

ȧp,long ,tr an = acmd ,long ,tr an −ap,l ong ,tr an

Ts

ȧp,long ,r ot =
acmd ,l ong ,r ot −ap,long ,r ot

Ts

ȧp,l at ,tr an = acmd ,l at ,tr an −ap,l at ,tr an

Ts

ȧp,l at ,r ot =
acmd ,l at ,r ot −ap,l at ,r ot

Ts

(6.11)

The implicit controller allows us to consider the constraints of the working envelope
directly. Apart from this, additional braking constraints are incorporated [23]. As the
workspace limits approach, braking constraints help in slowing down the platform ve-
locity and tilt rate. Two sets of constraints are used: one for platform displacement and
the other for the tilt angle as follows:

sp,mi n ≤ sp + cv vp Tbr k,p +0.5cu ap,tr anT 2
br k,p ≤ sp,max (6.12)

θp,mi n ≤ θp + cwωp Tbr k,θ+0.5cu ap,r ot T 2
br k,θ ≤ θp,max (6.13)

where, cv = 1,cw = 1,cu = 0.45,Tbr k,θ = 0.5, Tbr k,p = 2.5 and sp ,θp thresholds are 0.5m
and 30 deg respectively.

The constraints used in the model are presented in Table 6.1

Table 6.1: Constraints applied to the implicit MPC

Quantity Limit

ωp,long ±3deg /s
ωp,l at ±2.6deg /s
θp,l ong ,l at ±30deg
vp,l ong ,l at ±7.2m/s
ap,l ong ,l at ,tr an ±9.81m/s2√

s2
br,long + s2

br,l at ±0.5m

θbr,l at ,long ±30deg
acmd ,long ,l at ,tr an ±5m/s2
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where

sbr,l ong = sp,long + cv vp,long Tbr k,p

+0.5cu ap,l ong ,tr anT 2
br k,p

sbr,l at = sp,l at + cv vp,l at Tbr k,p

+0.5cu ap,l at ,tr anT 2
br k,p

θbr,long = θp,l ong + cwωp,long Tbr k,θ

+0.5cu ap,long ,r ot T 2
br k,θ

θbr,l at = θp,l at + cwωp,l at Tbr k,θ

+0.5cu ap,l at ,r ot T 2
br k,θ

Finally, washout effect is introduced. The usage of constant weight penalisation requires
weight re-tuning for different scenarios to obtain desirable performance. On the other
hand, the application of adaptive weights allows a unique configuration for various driv-
ing scenarios. The formulation of the adaptive weight for these two states can be seen in
(6.14) and (6.15). Figure 6.2 shows how the weight changes based on the platform’s po-
sition. A high weight is applied when the platform is close to its limit, and a low weight
when it is near the neutral position, allowing a washout effect to take place.

Wsp =ws,1 +ws,2

(
abs(sp,i )

ws,5

)
+ws,3

(
abs(sp,i )
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(6.14)
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(
abs(ωp,i )

wω,5

)4
(6.15)

where, the parameters are ws,1 = 0.01, ws,2 = 20, ws,3 = 20, ws,4 = 20, ws,5 = 0.5, wω,1 =
0.0001, wω,2 = 0.7, wω,3 = 0.7, wω,4 = 0.7, and wω,5 = 3. The parameter selection is heuris-
tic and based on the analysis of various driving scenarios.
The weighting for the objective function remains consistent with the explicit MPC, apart
from the added adaptive washout weights. A more detailed description of the weight
selection is in [109].

6.3. SIMULATION RESULTS

6.3.1. SIMULATION SETUP
To analyse the effectiveness of the algorithm in reducing computational costs, a general
set of test conditions is taken into account. This includes specific force signals to be
tracked in the form of sine waves and step signals along with multiple event waves (step
signal + sine wave), for a range of amplitude (0.5−2 m/s2) and frequency (0.1−0.8 Hz)
values. Only the latter scenario is shown in Figure 6.3 and Figure 6.4).
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Figure 6.2: Adaptive weights for platform displacement rp

While computing the explicit solution, a Np of 2 is selected with a sampling time of
0.25 s to ensure the look-ahead time of 0.5 s. A higher Np with a faster sampling time can-
not be achieved due to the exponential increase in the computation time of the explicit
solution. The online version of the MCA (implicit MPC) is able to operate at a faster sam-
pling time and higher prediction horizon Np . Thus, Np of 50 with a Ts of 0.01 s is used
to maintain the same look-ahead time as used in the explicit controller. It is to be noted
that explicit MPC only gives the initial guess for the hybrid MPC setup. Thus, the numer-
ical stability of the method is ensured by selecting a time step of 0.01s for the implicit
MPC.

Different MCA algorithms were analysed to compare their performance and listed as
follows:

• Implicit MPC without any initial guess.

• Implicit MPC with the first control input. The first control input from the trajec-
tory prediction is applied for the entire horizon as the initial guess for the next
optimisation step.

• Hybrid MCA with the first explicit MPC control input. The first control input from
the explicit MPC is applied for the entire prediction horizon.

• Hybrid MCA with all explicit MPC control inputs. All control inputs obtained from
the explicit MPC controller are used for the entire horizon. Since the sampling
time is different in both controllers, the explicit MPC inputs are applied in equal
intervals throughout the larger prediction horizon of the implicit MPC. For e.g.
with a Np,eMPC of 5, the five control inputs are applied ten times each (1st from
1-10, 2nd from 11-20 and so on) for a Np,i MPC of 50.
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Simplified actuator dynamics of the motion platform were considered for the compari-
son of the algorithms shown in the next section. The extended description of the simu-
lation parameters can be found in [109].

6.3.2. MOTION CUEING PERFORMANCE
Using the defined reference signals, the comparison has been conducted focusing on
specific force tracking and online computation time. In Figure 6.3 and Figure 6.4 the
specific force tracking performance for a multiple event wave is shown. This comprises
an initial step signal followed by a sine wave, both of amplitude 0.5 m/s2. From the
results, it can be observed that the MCA is able to track the reference signal.

Figure 6.3: Specific force tracking for longitudinal motion for multiple event wave

Figure 6.4: Specific force tracking for lateral motion for multiple event wave
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Furthermore, the cueing algorithms were evaluated from the point of computational
costs across different reference signal scenarios mentioned earlier. All the hybrid mod-
els were compared with the implicit MPC-based cueing algorithm, which is the current
state-of-the-art MCA. The obtained results are presented in Figure 6.5. The average
tracking performance in both longitudinal and lateral directions for all scenarios is also
shown in Figure 6.5. It can be observed that the developed hybrid models need less time
to compute the optimized control input. The hybrid model with all explicit MPC con-
trol inputs performs best amongst all the models analysed. The highest improvement
in mean iterations from the implicit algorithm is by 30% while keeping similar tracking
performance in both longitudinal and lateral directions. Also, while performing the sim-
ulations the maximum iterations are set to 200. This ensures faster computation with
marginal sub-optimal results (< 0.3%).

Figure 6.5: Mean iterations along with respective standard deviation and tracking
performance for all scenarios

6.3.3. EMULATOR TRACK PERFORMANCE

To evaluate the performance and computational costs, the software emulator has been
used developed by the motion platform supplier E2M Technologies B.V. The multibody
modeling and the coordinate system are described in [110].

This emulator represents the actual dynamics of the Delft Advanced Vehicle Simu-
lator (DAVSi). The DAVSi is a 6 DoF driving simulator and using its emulator interface,
tests can be performed without imparting any damage to the real system.

Full-track simulation tests were performed using this virtual environment. First, IPG
CarMaker (a high-fidelity virtual vehicle simulation environment) was used to simulate a
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Figure 6.6: Specific force tracking for longitudinal motion results for Hockenheim track
simulation
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Figure 6.7: Specific force tracking for lateral motion results for Hockenheim track
simulation

vehicle driving around the Hockenheim race track, limited to a speed of 120 km/h. Then,
acceleration values were extracted and passed through the perception model [79] before
using them as reference signals. This was done to ensure that only the perceived ac-
celeration values are sent to the MCA for performing the simulations with the emulator
interface. Additionally, the perception model also scaled down the accelerations which
makes the signals fit to be recreated in the driving simulator. Figure 6.6 and Figure 6.7
show that the MCA is capable of tracking the reference signal in a desirable manner. An
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RMSE of 0.42, 0.21 is observed in both directions respectively. Further, a similar trend
in mean iterations is observed with the hybrid MCA improving online computation time
performance. An improvement of 9% can be observed with the hybrid model using all
control inputs, whereas the other hybrid and implicit models show an improvement of
5.9% and 5.1% respectively. Thus, the developed algorithm can be implemented and
used with real track data in motion-based driving simulators.

6.4. CONCLUSION
In this study, a hybrid MCA is proposed using a combination of explicit and implicit
MPC techniques. The explicit MPC provides an initial guess used by the implicit MPC to
warm-start the algorithm and computes the optimised control input. Amongst the con-
sidered state-of-the-art motion cueing algorithms, the best computation time perfor-
mance is observed from the proposed algorithm, taking all explicit MPC control inputs
as the initial guess. Moreover, to improve motion cueing, braking constraints are used
for workspace management of the simulator when it is about to reach its physical dis-
placement limits. Adaptive washout weights are also implemented to reduce false cues
by bringing the simulator to its neutral position. Overall, the proposed algorithm main-
tains similar tracking performance across the considered state-of-the-art motion cueing
algorithms, but it helps to reduce online computation time by 30%. The performance of
the proposed algorithm has been demonstrated in complex track driving. Future work
focuses on human-in-the-loop experiments for subjective assessment of the proposed
algorithm.

For better results/performance of the adaptive weights law, feasibility analysis of the
adaptive weight should be conducted. This is considered as the scope for future work in
this paper.
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Nothing, just an inchident,
on the race

Charles Leclerc
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This chapter synthesises the thesis findings, which focused on mitigating motion
sickness in the context of automated driving and driving simulator motion cueing. A
trajectory planning algorithm was developed for automated vehicles, using a model pre-
dictive control (MPC) framework to jointly minimise motion sickness dose value (MSDV)
and time efficiency. Given the safety and practicality constraints of real-world testing,
this algorithm was validated using a high-fidelity 6-DoF driving simulator. The remain-
der of the thesis concentrated on the development of motion cueing algorithms (MCAs)
tailored to improve perceptual fidelity and reduce simulator-induced motion sickness.
These MCAs were designed to operate within the physical constraints of the motion plat-
form while explicitly addressing key sources of false cues and sensory conflict. The fol-
lowing discussion critically examines the effectiveness and limitations of the developed
strategies, compares them to existing methods, and explores their implications for future
automated mobility and simulation technologies.

7.1. DISCUSSION
This dissertation presents a multi-faceted exploration of strategies to reduce motion
sickness in the context of automated vehicles (AVs) and driving simulators. The cen-
tral hypothesis across the chapters is that improving the perceptual realism of motion,
while accounting for physiological comfort, can enhance passenger comfort and the ef-
fectiveness of simulator-based development. By integrating principles from control sys-
tems, vehicle dynamics, and human perception, this work develops a suite of algorithms
for trajectory planning and motion cueing that target motion sickness reduction while
maintaining high simulation fidelity.

More precisely, the thesis revolved around the following research objectives:

• Developing trajectory planning algorithms for AVs that minimise motion sickness
by optimising velocity and curvature profiles.

• Designing motion cueing algorithms for simulators that balance motion fidelity,
workspace limitations, and computational efficiency.

• Integrating 6-DoF sensory conflict models into control frameworks to predict and
reduce motion sickness.

• Validating the effectiveness of these control strategies using both simulation tools
and human-in-the-loop experiments.

While doing so, we also developed algorithms tackling some of the issues faced in the
realm of driving simulation. More precisely, to bring the experience in a driving simula-
tor closer to reality and to reduce the computational efficiency of the MCAs.

It is important to note that, as the thesis focuses on automated driving, where the
driver becomes the passenger, the MCAs developed herein are tailored to passive driv-
ing conditions. Unlike active driving scenarios, in which the user directly controls the
virtual vehicle (and, by extension, the simulator platform), the algorithms in this work
are designed for cases where the motion is externally controlled and the occupant is a
passenger.
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INTERCONNECTED GOALS: MOTION COMFORT, REALISM, AND COMPUTATIONAL EFFI-
CIENCY

Across all chapters, the tension between realism, comfort, and real-time performance
surfaces repeatedly. While each chapter focuses on a different aspect, whether trajectory
optimisation, motion cueing fidelity, computational scalability, or sickness modelling,
these goals are fundamentally connected through their shared aim- to support the devel-
opment of AVs and reduce motion sickness. This is achieved either by designing motion
planning algorithms for automated vehicles or by developing motion cueing strategies
that enhance simulator realism without increasing discomfort or even decreasing it.

For instance, the trajectory planning algorithm presented in Chapter 2 enhances pas-
senger comfort by modifying vehicle motion to reduce sickness-inducing accelerations.
A similar principle guides the motion cueing approaches introduced in Chapter 3, Chap-
ter 4, Chapter 5 and Chapter 6, which strive to recreate realistic vehicle dynamics on lim-
ited simulator platforms. Chapter 5 uniquely combines optimization to recreate realistic
motion perception while also minimising perceptual conflicts leading to motion sick-
ness. Across these chapters, predictive optimization serves as a unifying tool, enabling
anticipatory control that balances realism, comfort, and computational efficiency.

7.1.1. TRAJECTORY PLANNING AND MOTION SICKNESS MITIGATION

This thesis began by addressing the frequently overlooked aspect of passenger comfort
in automated vehicle (AV) motion planning. While prior works have proposed comfort-
focused strategies—such as bounding vehicle acceleration and jerk [44], or generating
smooth paths using geometric curves like clothoids and Bezier curves [37]–[39], these
often apply to fixed paths or rely on overly simplified vehicle models. Velocity profile
optimization for motion sickness reduction, such as those using MSDV minimization
along predefined routes [52]–[54], provides a valuable foundation but similarly suffers
from limited model fidelity and constrained trajectory flexibility.

The foundation of the thesis is laid in Chapter 2, where an optimal control-based
trajectory planner is developed to minimise motion sickness, using the MSDV as the
primary cost metric. The study’s use of a 3-DoF non-linear bicycle model allows for more
nuanced control compared to traditional point-mass models. Furthermore, human-in-
the-loop experiments substantiate the algorithm’s benefits in reducing motion sickness.

Importantly, the proposed algorithm modifies not only the velocity profile but also
subtly alters the route to further reduce motion sickness—an approach that diverges
from the fixed-path optimisations in the aforementioned literature. By incorporating
a secondary cost on journey time, the planner introduces a tunable trade-off between
comfort and efficiency, which can be modulated through the weight ratio wm/wt . As
shown in Figure 2.4, reducing the emphasis on MSDV leads to higher sickness exposure
but shorter routes. In exploring the ratio between the penalisation weights for MSDV
and travel time, wm/wt (see Figure 2.4), it was observed that, for a fixed travel time, vari-
ations in this ratio affected both the route distance and the resulting MSDV. Specifically,
as the weight on MSDV was reduced (i.e., lowering wm/wt ), the MSDV increased.

For the selected scenario, a reduction in MSDV from 72m/s1.5 (corresponding to the
REF drive; benchmark) to 34m/s1.5 (MSM drive; optimal configuration), showing an ap-
proximate reduction of 62%. During the experimental validation in the driving simula-
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tor, this translated into an average 65% reduction in reported discomfort, highlighting
the effectiveness of the algorithm in mitigating motion sickness. However, this improve-
ment came at the cost of increased travel time—up to 50% longer for the same route.

Thus, while motion sickness was significantly reduced, this improvement came with
a clear trade-off in journey duration. Additionally, the algorithm demonstrated real-time
capability, achieving a real-time factor of 0.32, which indicates that the trajectory plan-
ner is suitable for real-time implementation in actual vehicles. However, practical de-
ployment would require addressing additional considerations, such as collision avoid-
ance and integration with other safety-critical systems.

7.1.2. MOTION CUEING IN DRIVING SIMULATORS
Chapter 2 applied the industry-standard adaptive washout (AW) algorithm, tuned to
elicit motion sickness via parameter adaptation (see Table 2.3). However, in Chapter 2,
no explicit evaluation of perceived realism or specific force reproduction was conducted.
The subsequent chapters address this by introducing an enhanced motion cueing ap-
proach based on MPC, with the aim of improving simulator fidelity and realism.

FREQUENCY-SPLITTING MCA: ENHANCING REALISM WHILE MANAGING PLATFORM CON-
STRAINTS

MPC-based MCAs are well-regarded for their superior motion fidelity compared to tra-
ditional filter-based methods [20], [25], [31], primarily due to their predictive capability
and optimisation over a defined horizon. This allows improved specific force tracking
and better compliance with platform constraints. However, a key limitation of MPC-
based approaches lies in their substantial computational demands, which often hinder
real-time implementation.

In Chapter 3, a state of the MPC-based MCA was implemented, demonstrating sat-
isfactory motion cueing performance but also revealing opportunities for further im-
provement. As expected, the computational load associated with this approach proved
to be a significant bottleneck, limiting its practicality for real-time use.

To overcome these challenges, the FS MCA was developed as a hybrid solution, inte-
grating elements from both filter-based and MPC-based strategies. The FS-MCA aims to
preserve the perceptual advantages of MPC-based cueing, such as high motion fidelity,
while reducing the computational overhead to a level suitable for real-time operation.

This is achieved by providing three separate reference inputs to the MPC:

• The high-frequency component of the vehicle acceleration, used to generate trans-
lational platform accelerations.

• The low-frequency component of the vehicle acceleration, used for tilt coordina-
tion.

• The complete vehicle acceleration, used to match the total specific force, with the
highest penalisation applied in the cost function.

This tri-channel architecture introduces two additional reference signals—namely,
the high- and low-frequency components of vehicle acceleration, which are not present
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in traditional MPC-based MCAs. While this increases the complexity of the algorithm, it
improves convergence by guiding the optimization more effectively. As a result, the RTF
improves, enabling more practical real-time implementation without sacrificing percep-
tual realism.

Objective comparison against two baseline cueing strategies, the AW MCA and the
benchmark MPC-based MCA from Chapter 3 showed that the FS-MCA achieves im-
proved specific force tracking compared to the AW approach, while matching the track-
ing performance of the MPC-based MCA.

In addition, the FS-MCA showed enhanced computational efficiency compared to
the benchmark MPC-based MCA, achieving a real-time factor of 0.85 and demonstrat-
ing real-time capability. In contrast, the benchmark MPC-based MCA did not meet the
requirements for real-time execution with a real-time factor of 1.12.

Subjective evaluations indicated that the FS-MCA provided a more realistic driv-
ing experience compared to the AW baseline. However, some participants reported in-
stances of pre-positioning, where platform motion occurred prior to the corresponding
visual cue. These instances involved a cancellation between tilt and translational com-
ponents, resulting in a net-zero specific force but with noticeable simulator movement.
This phenomenon, often referred to as velocity buffering in the literature [31], [84], has
typically been viewed positively in objective evaluations, as it enables higher specific
force magnitudes by anticipating future motion. In contrast, our experiments revealed
that such anticipatory behaviour, while characteristic of the predictive nature of MPC,
was occasionally perceived as a false cue, diminishing overall realism.

This finding highlighted a critical perceptual trade-off: although FS-MCA improved
realism over AW MCA, it introduced temporal inconsistencies that compromised motion
realism. These insights directly informed the design of the autoscaling MCA, described
in the next chapter.

AUTOSCALING MCA: BALANCING WORKSPACE USE AND CUE FIDELITY

The autoscaling MCA in Chapter 4 builds directly upon the limitations identified in the
FS-MCA, particularly the issue of platform pre-positioning, a phenomenon where the
simulator initiates motion before any corresponding visual cue. This anticipatory be-
haviour, although considered to be a positive phenomenon during objective evaluation
(described by ’velocity buffering’) [31], [84], arises from the mismatch between the pre-
dictive demands of the reference trajectory and the physical tilt-rate constraints of the
simulator. The autoscaling MCA proposes a novel solution to this problem by dynami-
cally scaling the tilt coordination signal through a time-varying gain.

The autoscaling MCA introduces a time-varying gain that dynamically attenuates the
tilt coordination reference signal, ensuring that the resulting tilt rate remains below the
perceptual threshold of 3°/s. This constraint is critical to prevent premature or unnat-
ural tilt motions that could disrupt the realism of the driving experience. Unlike fixed
scaling approaches, which often distort the signal shape and compromise perceptual
coherence, the autoscaling MCA preserves the shape similarity of the specific force sig-
nal, a key determinant of perceived vehicle dynamics. This adaptive approach maintains
the integrity of motion cues while satisfying sensory and platform constraints, making it
a perceptually and computationally efficient solution.
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Autoscaling MCA’s core innovation lies in its redefinition of cueing fidelity. While tra-
ditional MCAs focus on errors in specific force tracking, autoscaling MCA targets tem-
poral coherence: the alignment of translational and rotational motion onsets with visual
cues. By focusing on this temporal alignment of motion with visual cues, this approach
tackles a previously overlooked but perceptually important issue - false cues resulting
from visually incongruent platform behaviour.

Another major design shift in autoscaling MCA is its prioritisation of translational
motion for force reproduction. Tilt coordination plays only a supporting role in recreat-
ing low-frequency components of the desired force. This philosophy mirrors real-world
driving dynamics, where the majority of perceived forces stem from linear accelerations
rather than prolonged rotational movement.

The algorithm also preserves computational efficiency, achieving a real-time factor
of 0.71, making it suitable for online applications. Compared to the AW MCA, the au-
toscaling MCA demonstrated superior shape similarity.

By incorporating a dynamic scaling factor, the algorithm eliminates the need for
manual tuning of vehicle acceleration scaling across different driving scenarios, requir-
ing only minimal parameter adjustment. Unlike any other MPC-based algortihms that
uses a fixed scaling factor, this algorithm promotes shape similarity dynamically tweak-
ing the scaling factor (refer Table 7.1) maintaining motion realism and minimising un-
desirable pre-positioning.

Subjective evaluations confirmed the success of this approach: 87.5% of participants
preferred autoscaling MCA over FS-MCA, citing a more natural and immersive experi-
ence. While some increased abruptness in longitudinal transitions was reported, at-
tributed to the absence of frequency-splitting, this was considered a minor trade-off
given the substantial improvements in perceptual coherence.

Autoscaling MCA builds upon the structural logic of FS-MCA but diverges in its key
priorities. By focusing on dynamic tilt rate control and perceptual alignment rather than
rigid reference tracking, autoscaling MCA addresses the limitations of FS and offers a
practical, computationally efficient, and subjectively preferred cueing solution.

SENSORY CONFLICT MINIMISATION: PREDICTING AND PREVENTING MOTION SICKNESS

Most existing works on MPC-based MCAs, including those developed in Chapter 3 and
Chapter 4, focus primarily on enhancing motion fidelity in driving simulators [19]–[21],
[31], with no emphasis on mitigating motion sickness.

In contrast, Chapter 5 introduces a fundamentally different approach, embedding
a motion sickness model directly into the MCA’s cost function. This represents a de-
liberate shift away from traditional objectives such as motion fidelity or computational
efficiency, instead targeting the perceptual root cause of motion sickness: sensory con-
flict, defined as the mismatch between expected and actual sensory inputs. The resulting
Sensory-Conflict-based Motion Cueing Algorithm (SVC-MCA) prioritises the reduction
of motion sickness, optimising cueing not just for specific force accuracy.

This transforms the cueing problem into a multi-objective optimisation that bal-
ances specific force tracking against predicted sensory conflict. The SVC-MCA is con-
ceptually unique: its primary aim is not only to preserve realism but to reduce the oc-
currence of sickness.
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To explore the trade-off between fidelity and sickness mitigation, the SVC-MCA was
tested across a range of weighting ratios between conflict and specific force terms (wcon :
wspec ). The results demonstrated a tunable balance between competing objectives, akin
to a Pareto front, where improvements in one domain came at the cost of performance
in another

• High wcon values suppressed motion cues to reduce discomfort, at the cost of spe-
cific force accuracy.

• Balanced profiles, such as MPC wcon0.9 , successfully retained motion perception
while mitigating sickness.

• No-motion profiles yielded the least discomfort but were found to be non-immersive.

Importantly, shape similarity, the resemblance between the desired and rendered
motion cues, remained reasonably intact even when the algorithm prioritised conflict
reduction. This suggests that important aspects of ’how motion feels’ can still be pre-
served, even when the algorithm focuses on reducing motion sickness.

Subjective evaluations further validated the algorithm’s effectiveness:

• Profiles with high conflict weights achieved statistically significant reductions in
reported sickness.

• The no-motion condition resulted in the greatest overall mitigation of motion sick-
ness.

• Participants consistently preferred profiles optimised for motion perception or
those with balanced motion perception and motion sickness reduction over the
no-motion condition.

• The proposed method contributed to a more holistic sense of realism, wherein
reduced sickness enhanced perceived comfort, even in cases where objective cue
fidelity was moderately compromised.

These findings are consistent with [33], which reported increased perceived fidelity
with the addition of motion cues, despite a concurrent rise in motion sickness. However,
they contrast with a meta study [32], which concluded that enhanced visual fidelity re-
duced motion sickness for moving-base simulators but had no such effect in fixed-base
setups—suggesting that higher visual fidelity may, in some cases, exacerbate sickness in
motion-enabled systems.

However, this benefit came at a computational cost. The real-time factor of 2.1 makes
the current SVC-MCA implementation not feasible for online deployment. Future work
may address this through explicit MPC reformulation or offline trajectory generation for
hybrid applications.

In summary, SVC-MCA represents a paradigm shift: it moves motion cueing from
a strictly perceptual optimisation problem toward a perceptually grounded framework
considering motion sickness, with demonstrated benefits in subjective outcomes and
future potential for controlled induction of motion sickness in driving simulators.
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HYBRID MPC: TOWARDS REAL-TIME CAPABILITY

Chapter 6 further addresses computational inefficiency, a central challenge of MPC-
MCAs, which limits their real-time applicability. To address this, a hybrid MPC frame-
work was developed, combining the advantages of both explicit and implicit MPC for-
mulations. This two-stage architecture achieved a 30% reduction in computation time
without compromising the perceptual quality of the rendered motion cues, bringing
high fidelity MPC-based algorithms closer to real-time deployment.

The proposed hybrid approach operates in two phases:

• Explicit MPC (offline): This stage uses a precomputed solution space (look-up ta-
ble), allowing for instantaneous retrieval of suboptimal control actions with negli-
gible computational load.

• Implicit MPC (online): The result from the explicit MPC is passed as an initial guess
to the online solver. This warm start significantly accelerates the convergence of
the implicit MPC, leading to faster and more efficient optimisation.

This hybrid design not only improves computational efficiency but also enables prac-
tical deployment of predictive algorithms in human-in-the-loop applications, where re-
sponsiveness and timing are critical.

This work however, was done earlier in the timeline of the PhD. One key limitation
prevented us from implementing this structure in other chapters, specifically SVC-MCA.
The explicit MPC used in Chapter 6 supports only linear system models, limiting its com-
patibility with more complex, nonlinear formulations such as the SVC-MCA, which relies
on a nonlinear sensory conflict prediction model. As such, the current hybrid framework
could not be directly applied to the SVC-MCA.

Nonetheless, the demonstrated success of the hybrid MPC in accelerating linear-
MPC applications provides a promising foundation. With further extension to support
nonlinear explicit MPC, or linearisation of the SVC, this method could bridge the gap be-
tween perceptually optimised algorithms like SVC-MCA and the demands of real-time
deployment—a critical step for simulator realism and operational scalability.

7.1.3. COMPARISON OF THE DEVELOPED MCAS
The MCAs developed over the course of this thesis represent a continuous evolution of
motion cueing strategies, shaped by experimental insights and an increasing emphasis
on perceptual realism and user comfort. This section synthesises the key similarities and
differences between the algorithms presented in Chapter 3 through Chapter 6.

PERCEPTUAL REALISM VS SPECIFIC FORCE TRACKING

A common thread across all cueing algorithms developed is the pursuit of realism and
immersion, particularly through improved congruence between vestibular and visual
cues. While specific force tracking is traditionally regarded as a core performance metric,
this work demonstrates that accurate signal reproduction alone does not guarantee a
perceptually convincing experience.

• The FS MCA enhances specific force tracking performance; however, despite this
improvement, it introduces perceptually misleading cues during platform
pre-positioning, a phenomenon commonly observed in MPC-based MCAs.
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• The autoscaling MCA promoted shape similarity over strict magnitude matching.
This approach improved the perceptual quality of the cue without introducing
misleading cues or oscillations.

• The SVC-based MCA, on the other hand, shifts focus from signal fidelity to minimi-
sation of predicted sensory conflicts, directly targeting the root cause of simulator
sickness.

Thus, the progression from FS-MCA to SVC-MCA reflects a fundamental shift in mo-
tion cueing design—from prioritising accurate specific force tracking to emphasising
motion sickness reduction, even if it means deviating from exact specific force replica-
tion, as long as coherent motion perception is preserved. While specific force tracking
aims to match the net inertial and gravitational forces acting on the simulator occupant,
it may not always be a reliable metric for perceptual fidelity. This is because specific
force is a vector sum of inertial and gravitational components, which can cancel each
other out, leading to a net zero specific force despite the presence of perceivable motion.
Consequently, matching only the magnitude of specific force may fail to recreate a con-
vincing experience. Instead, preserving the shape and timing of specific force profiles,
in alignment with vehicle accelerations, can provide a more coherent and perceptually
accurate simulation, as demonstrated in Chapter 4. The transition from FS-MCA to au-
toscaling MCA, and ultimately to SVC-MCA, embodies this evolving philosophy: from
the common approach of specific force tracking, to promoting timely motion onsets,
and finally to minimising sensory conflict as the core design objective.

TILT COORDINATION AND ONSET TIMING

Tilt coordination emerges as a key differentiator in the algorithms. All proposed strate-
gies utilise tilt to generate low-frequency specific force cues, but their approaches to on-
set timing and gain control differ significantly:

• FS-MCA uses a frequency-splitting structure, where tilt is planned separately in
the low-frequency domain and often causes pre-positioning, leading to false cues.

• Autoscaling MCA introduces a time-varying gain to enforce tilt-rate limits, thus
preventing early tilt onsets. It prioritises translational motion while favouring tilt
in cases where visual congruence can be reasonably maintained.

• The SVC-MCA doesn’t explicitly redesign tilt coordination; rather, its emphasis lies
on overall motion planning through conflict minimisation.

COMPUTATIONAL FEASIBILITY AND REAL-TIME IMPLEMENTATION

Another major distinction lies in the computational efficiency of each algorithm. While
high-fidelity solutions often demand complex optimisation, real-time applications ne-
cessitate a balance between fidelity and feasibility:

• FS and autoscaling MCAs achieve real-time performance using deterministic, rule-
based strategies (e.g., frequency-splitting, dynamic gains) that are easily imple-
mentable and efficient.
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• The SVC-MCA demands substantial computational resources due to its high com-
plexity and the need for a large prediction horizon.

• The Hybrid MPC offers an elegant compromise, reducing computation time by
30% via an offline–online dual-stage approach. It provides a pathway for real-time
MPC implementation without compromising fidelity.

This comparison underscores a critical trade-off: while perceptually-driven optimi-
sation may enhance realism, it often increases computational complexity. The Hybrid
MPC stands out by demonstrating that intelligent pre-processing (via lookup tables and
warm-starts) can mitigate this issue.

Table 7.1: Comparison of Developed MCAs. Flexibility refers to adaptability across
vehicle types, scenarios, and simulator setups. For shape similarity, ’maintained’

indicates indirect shape similarity as a result of specific force tracking, while
’prioritised’ refers to cases where the algorithm incidentally preserved shape similarity
more strongly than specific force tracking, despite not explicitly targeting it in the cost

function.

Criteria AW-MCA FS-MCA Autoscaling-MCA SVC-MCA

Scaling factor (long.) 0.3 0.3 Automatic and dynamic 0.3
Scaling factor (lat.) 0.4 0.4 Automatic and dynamic 0.4
Real-time ✓ ✓ ✓ ✗
Real-Time Factor — 0.85 0.71 2.1
Subjective fidelity Moderate High (preferred over AW) High (preferred over FS) Tunable
Pre-positioning Absent Present Minimal Tunable
Sickness mitigation ✗ ✗ ✗ ✓
Tuning effort High Moderate Low Moderate
Shape similarity Maintained Maintained Prioritised Maintained

While the research in this thesis focused on developing real-time capable algorithms,
this work also demonstrates that automated driving simulations can be conducted even
when an algorithm is not real-time feasible. Offline-optimized strategies enable the in-
tegration of computationally intensive perceptual models, such as SVC, while still pro-
ducing valid and informative simulation outcomes.

7.1.4. APPLICATION SUITABILITY

Each algorithm exhibits strengths tailored to different use-cases:

• The trajectory planning algorithm is well-suited for automated vehicles aimed at
motion sickness reduction. It can serve as a high-level motion planner, defining
optimal paths while mitigating motion sickness. However, for practical deploy-
ment, it must integrate additional layers, including traffic and collision avoidance
and time interpolation for smooth real-time control. The algorithm provides a
foundation for motion planning, but underlying layers are essential to account for
real-world dynamic interactions and safe vehicle control.
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• FS-MCA and autoscaling MCA are most suitable for real-time driving simulations,
where the emphasis lies on motion plausibility and visual congruence. The au-
toscaling MCA, in particular, eliminates the need for scenario-dependent tuning
and offers the most consistently preferred experience across subjects.

• The SVC-MCA is optimal for applications requiring sickness mitigation, such as
long-duration automated driving simulation or VR-based studies. It is also suit-
able for research on human motion perception, where inducing or suppressing
conflict is a controlled variable.

• Hybrid MPC is ideal for simulators that demand high motion fidelity and respon-
siveness, especially when computational resources are constrained. This frame-
work amendment integrates with existing MPC-based MCAs to significantly speed
up computations without sacrificing fidelity. With further development, it can be
extended to non-linear models, enabling integration with perceptually-driven cost
functions like those in SVC-MCA, making it adaptable for high-fidelity simulation
applications where real-time performance is critical.

7.2. CONCLUSION
This thesis presents a cohesive framework for addressing motion sickness in AVs and
driving simulators through trajectory planning and motion cueing algorithms grounded
in control theory and human perception. It demonstrates how tailored control strate-
gies, ranging from path planning to optimisation-based motion cueing, can significantly
enhance comfort, realism, and efficiency.

Developing trajectory planning algorithms for AVs that minimize motion sickness by
optimizing velocity and curvature profiles (R1).
Chapter 2 introduced an optimal trajectory planner that outputs a comfortable reference
velocity profile and generates curvature-adaptive paths through corner cutting. By low-
ering lateral accelerations within the allowable road area, the algorithm reduces motion-
inducing stimuli. Human-in-the-loop experiments demonstrated a 65% reduction in
motion sickness compared to a benchmark controller, with fewer dropouts and consis-
tently higher comfort ratings. Although individual susceptibility to sickness varied, every
participant reported an improvement, highlighting the potential of trajectory planning
as a sickness-mitigation strategy while pointing to the future need for personalised com-
fort settings.

Designing motion cueing algorithms for driving simulators that balance motion fi-
delity, workspace limitations, and sickness mitigation (R2).
3, 4, and 6 advanced model predictive control (MPC)-based motion cueing algorithms.

• The frequency-splitting MCA improved specific force tracking under short predic-
tion horizons and reduced unnecessary platform motion. Human studies con-
firmed its ability to reproduce aggressive driving manoeuvres more realistically
than adaptive washout, though some false cues from pre-positioning were noted.
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• The autoscaling MCA addressed the pre-positioning problem by dynamically scal-
ing accelerations, ensuring feasible reference tracking without premature tilt. In
experiments, 87.5% of participants rated it as more realistic than the frequency-
splitting algorithm, underscoring that subjective realism may diverge from objec-
tive error metrics.

• The Hybrid MCA combined explicit and implicit MPC to reduce online computa-
tion time by 30% while maintaining comparable tracking performance to state-of-
the-art algorithms.

Integrating 6-DoF sensory conflict models into control frameworks to predict and re-
duce human discomfort (R3).
Chapter 5 introduced the SVC MCA, which embedded a Subjective Vertical Conflict model
directly into the MPC cost function. By penalising sensory conflict, the algorithm re-
duced motion sickness in both simulations and human-subject experiments, while main-
taining realism in perceived motion. Results further revealed that shape similarity of
specific force profiles aligned more closely with subjective realism than conventional
RMSE measures, suggesting that perceptual congruence can be more critical than strict
accuracy in motion cueing design.

Validating the effectiveness of control strategies using both simulation tools and human-
in-the-loop experiments (R4).
Across all studies, human-in-the-loop evaluations confirmed the alignment between al-
gorithm design goals and subjective experience. Participants consistently rated the de-
veloped algorithms as more realistic and less sickness-inducing compared to baseline
approaches, underlining the importance of perceptually driven evaluation in addition
to objective performance metrics.

Overall Contributions. While individual variability in motion sickness susceptibility re-
mains an open challenge, this thesis demonstrates that control-theoretic methods can
substantially mitigate discomfort while preserving realism. By systematically addressing
trajectory planning, motion cueing design, perceptual modelling, and human valida-
tion, the research establishes a shift from system-centric to human-centric control in
automated driving and simulation. The findings enrich theoretical understanding while
laying practical foundations for adaptive, personalised, and sickness-free mobility solu-
tions.

7.3. FUTURE RECOMMENDATIONS

TRAJECTORY PLANNING FOR MOTION COMFORT IN AUTOMATED VEHICLES
The proposed trajectory planner successfully reduced motion sickness stimuli in open-
loop simulations. However, practical deployment in automated vehicles (AVs) requires
integration of essential functionalities:

• Collision avoidance: Future iterations must embed obstacle proximity constraints
into the optimization layer.
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• Consensus-based multi-agent planning: With vehicle-to-vehicle communication,
motion comfort optimization can be coordinated across vehicles to ensure both
safety and cooperative mitigation of sickness.

• Temporal interpolation: Since the current planner operates in the spatial domain,
additional layers must handle timing and control execution to ensure feasible and
smooth vehicle actuation.

Additionally, extending the framework to support four-wheel steering may enhance
vehicle maneuverability and introduce new trade-offs between lateral acceleration and
yaw rate. While this has potential to improve motion comfort, its impact on motion
sickness should be systematically assessed.

Finally, the current framework, which relies on the MSDV metric, does not account
for rotational stimuli. To improve its effectiveness—especially in vehicles equipped with
active suspension systems where pitch and roll become significant—a more sophisti-
cated motion sickness model incorporating rotational dynamics such as the SVC model
is necessary.

AUTOSCALING VS SVC-BASED MCA: CHOOSING FOR THE APPLICATION
Both the Autoscaling and SVC-based Motion Cueing Algorithms (MCAs) shared one thing
in common: the algorithms promoted generation of scaled down specific force profiles
compared to the provided reference. However, a critical distinction lies in how each
method prioritises and distributes motion reduction. Autoscaling targets the tilt co-
ordination component specifically, scaling it down only when it risks causing preposi-
tioning errors. This ensures that the majority of specific force reproduction, particularly
high-frequency translational motion, remains intact. As a result, Autoscaling preserves
a sharper sense of acceleration while avoiding overt visual-motion mismatches.

In contrast, the SVC-based MCA reduces the magnitudes of both translational and
rotational cues in a globally optimized manner to minimize sensory conflict. This broader
attenuation allows the algorithm to more comprehensively suppress motion sickness
but often at the cost of reduced motion intensity.

Moreover, SVC-based framework offer tunable control through adjustable conflict
weights, enabling tailored motion intensity based on the application or user sensitivity.
Autoscaling MCA, by design, automatically adapts to scenario demands and lacks this
level of customization, which may limit its flexibility in specialized use cases.

In summary, Autoscaling MCA excels in scenarios where ease of tuning and percep-
tual coherence are key, while SVC-based MCAs are better suited for applications requir-
ing precise sickness control, such as VR exposure therapy, long-duration simulator train-
ing, or psychophysiological studies.

The following recommendations are proposed:

• Establish psychophysical baselines for both approaches under different simulator
contexts and user populations.

• Explore hybrid strategies, such as dynamically tuning SVC weights based on user
sensitivity or combining Autoscaling’s selective scaling with SVC’s conflict-aware
framework, to harness the strengths of both.
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ADVANCING MOTION SICKNESS MODELING: PRECISION VS PRACTICALITY
This thesis highlights the trade-off between computational simplicity and physiologi-
cal accuracy in motion sickness modeling. While the MSDV metric proved effective for
trajectory optimization and real-time applications, its omission of rotational stimuli re-
stricts its predictive fidelity. Sophisticated 6-DoF models such as the SVC model offer
more accurate sickness predictions by accounting for both translational and rotational
mismatches. However, their complexity currently limits real-time deployment.

Two promising directions for further research are identified to be:

• Model simplification: Derive computationally efficient approximations of 6-DoF
SVC models that retain sensitivity to key rotational components.

• Computational efficiency: Improve real-time feasibility of SVC-based frameworks
through algorithmic strategies such as those demonstrated in the Hybrid MPC,
including pre-processing, warm-starting, and model simplifications, potentially
reducing reliance on high-performance hardware.

Furthermore, a comparative study replicating the results of Chapter 2 using the SVC
model would clarify how much sickness reduction potential is lost when using simplified
models like MSDV.

Moreover, the SVC-MCA framework holds promise beyond mitigating sickness. With
minor modifications, the same system can be employed to recreate motion sickness in-
tentionally, for example, in motion sickness acceptance testing or evaluation studies
where eliciting perceptual conflict is desirable.

SEPARATING COMFORT AND REALISM IN SUBJECTIVE EVALUATION
During the experiment, some participants verbally described one of the algorithms as
being more “comfortable” than others, despite being instructed to rate only perceived
realism. This indicates a potential perceptual bias, where comfort may have been con-
flated with realism in the subjective responses.

To improve the interpretability and reliability of such ratings, future studies should
explicitly include comfort as a distinct evaluation metric alongside realism. This sepa-
ration would allow researchers to differentiate between the two perceptual dimensions
and determine whether comfort is inadvertently influencing judgments of realism. It
would also provide deeper insights into how different cueing strategies affect both ex-
periential comfort and perceived fidelity, two factors critical for simulator design and
evaluation.

USE OF THE ALGORITHMS FOR ACTIVE DRIVING SIMULATIONS
The developed algorithms could potentially be extended to active driving scenarios by
integrating driver prediction models, which estimate future accelerations and update
the reference trajectory over the prediction horizon, as demonstrated in [21], [111].

However, applying such motion cueing algorithms in active driving presents addi-
tional challenges. In passive driving conditions, the MPC-based algorithms in this the-
sis benefited from preview information of upcoming maneuvers, whereas the adaptive
washout algorithm lacks the ability to anticipate future motion. In active driving, such



7.3. FUTURE RECOMMENDATIONS

7

133

preview information must be generated online. A particular challenge is the prediction
of upcoming maneuvers within the prediction horizon, which can be based on driver
models or extrapolation approaches. This introduces uncertainties in the prediction
horizon, requiring robust control mechanisms to handle prediction errors and avoid
unrecoverable platform states, such as excessively large tilt angles. Furthermore, im-
plementing the SVC-MCA in active driving would require real-time capability or more
powerful computational hardware due to its higher complexity. A detailed robustness
analysis and real-time implementation strategy are beyond the scope of this work and
are identified as important directions for future research.
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[62] N. Dużmańska, P. Strojny, and A. Strojny, “Can simulator sickness be avoided? a
review on temporal aspects of simulator sickness,” Frontiers in Psychology, vol. 9,
p. 2132, 2018.

[63] K. N. de Winkel, T. Irmak, V. Kotian, D. M. Pool, and R. Happee, “Relating individ-
ual motion sickness levels to subjective discomfort ratings,” Experimental Brain
Research, vol. 240, no. 4, pp. 1231–1240, 2022.

[64] T. Irmak, V. Kotian, R. Happee, K. N. de Winkel, and D. M. Pool, “Amplitude and
temporal dynamics of motion sickness,” Frontiers in systems neuroscience, vol. 16,
p. 866 503, 2022.

[65] S. Nordhoff, J. de Winter, W. Payre, B. Van Arem, and R. Happee, “What impres-
sions do users have after a ride in an automated shuttle? an interview study,”
Transportation Research Part F: Traffic Psychology and Behaviour, vol. 63, pp. 252–
269, 2019.

[66] R. Krueger, T. H. Rashidi, and J. M. Rose, “Preferences for shared autonomous ve-
hicles,” Transportation Research Part C: Emerging Technologies, vol. 69, pp. 343–
355, 2016.

[67] V. Jain, A. Lazcano, R. Happee, and B. Shyrokau, “Motion cueing algorithm for ef-
fective motion perception: A frequency-splitting mpc approach,” in Proceedings
of the Driving Simulation Conference Europe, Antibes, France, 2023.



7

144 BIBLIOGRAPHY

[68] N. J. Garrett and M. C. Best, “Model predictive driving simulator motion cue-
ing algorithm with actuator-based constraints,” Vehicle System Dynamics, vol. 51,
no. 8, pp. 1151–1172, 2013.

[69] F. Ellensohn, F. Oberleitner, M. Schwienbacher, J. Venrooij, and D. Rixen, “Actuator-
based optimization motion cueing algorithm,” in 2018 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, 2018, pp. 1021–1026.

[70] H. Asadi, T. Bellmann, M. C. Qazani, S. Mohamed, C. P. Lim, and S. Nahavandi,
“A novel decoupled model predictive control-based motion cueing algorithm for
driving simulators,” IEEE Transactions on Vehicular Technology, vol. 72, no. 6,
pp. 7024–7034, 2023.

[71] A. Mohammadi, S. Mohamed, H. Asadi, and S. Nahavandi, “Stabilizing model
predictive control with optimized terminal sample weight for motion cueing al-
gorithm,” in 2019 IEEE International Conference on Industrial Technology (ICIT),
IEEE, 2019, pp. 1363–1368.

[72] A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi, “Mpc-based
motion cueing algorithm with short prediction horizon using exponential weight-
ing,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 000 521–000 526.

[73] S. Munir, M. Hovd, Z. Fang, S. Olaru, and A. Kemeny, “Complexity reduction in
motion cueing algorithm for the ultimate driving simulator,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 10 729–10 734, 2017.

[74] B. Karg and S. Lucia, “Efficient representation and approximation of model pre-
dictive control laws via deep learning,” IEEE transactions on cybernetics, vol. 50,
no. 9, pp. 3866–3878, 2020.
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[107] I. Maurović, M. Baotić, and I. Petrović, “Explicit model predictive control for tra-
jectory tracking with mobile robots,” in International Conference on Advanced
Intelligent Mechatronics, 2011, pp. 712–717.

[108] P. Bemporad, “Explicit model predictive control,” in Encyclopedia of Systems and
Control, J. Baillieul and T. Samad, Eds. London: Springer London, 2013, pp. 1–9.

[109] A. Chadha, “Hybrid mpc-based motion cueing algorithm for driving simulators,”
M.S. thesis, Delft University of Technology, 2022.

[110] Emovert controller manual, E2M Technologies B.V, 2019.

[111] M. Bruschetta, C. Cenedese, and A. Beghi, “A real-time, mpc-based motion cue-
ing algorithm with look-ahead and driver characterization,” Transportation re-
search part F: traffic psychology and behaviour, vol. 61, pp. 38–52, 2019.





A
APPENDICES CHAPTER 2

149



A

150 A. APPENDICES CHAPTER 2

A.1. ACCELERATED SICKENING PATH DESIGN
The objective of the road generation is to extract the maximum sickening stimuli out of
the road path.

The inputs that the optimisation chooses to maximise the MSDV are ax and β i.e.
the longitudinal acceleration and the side slip angle. The overall algorithm for the path
optimisation is:

max
u∈U

MSDV (A.1)

s.t . : Ax ′ = f (x,u, s) (A.2)

umi n ≤ u(k) ≤ umax (A.3)

xmi n ≤ x(k) ≤ xmax (A.4)

where, Equation A.3 and Equation A.4 define the constraints to the inputs and the states
of the model in the optimal control problem.

The equations of motion for the vehicle model used for the road generation in Equa-
tion A.2, are presented below:

v̇x = ax + ψ̇vy

v̇y = ψ̇vx

Ẋ = V cos(ψ+β)

Ẏ = V si n(ψ+β)

ṡ = V

ψ̇ = V

L
cos(β) t an(δ)

ax = a cos(ψ)

ay = a si n(ψ)

V =
√

vX
2 + vy

2

δ = t an−1

(
βL

lr

)
(A.5)

where, V is the vehicle velocity; X and Y are the longitudinal and lateral positions in the
global frame of reference; β is the side slip angle, and ψ is the heading angle; L is the
wheelbase.

The vehicle model is allowed to take any actions within the specified limits, that make
the movement feasible for a real vehicle according to the constraints in Table 2.2. A con-
straint is added on the local lateral displacements of the vehicle as well. This local lateral
displacement limit is added considering the full workspace limit of the driving simulator
(1 m). It shall be noted that the actual lateral displacement (see Figure 2.8) is larger due
to vehicle yaw rotation.
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The optimisation outputs a set of longitudinal acceleration and sideslip angle data to
achieve maximum MSDV. Through this data and the initial conditions, all the states can
be calculated. As the aim of this work is to obtain the accelerated sickening road path,
the longitudinal and lateral distances (X and Y as described in equations A.5 and A.5)
in global frame of reference are calculated and recorded. The sickening path is shown in
Figure 2.8.

A.2. INDIVIDUAL MISC RESPONSES
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Figure A.1: Individual MISC scores for all the participants
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A.3. NOMENCLATURE TABLE

Annotation Description Unit

AVs Automated vehicles -
ax Longitudinal vehicle acceleration in local frame of reference m/s2

ax,w (t ) Frequency-weighted longitudinal acceleration m/s2

ay Lateral vehicle acceleration in local frame of reference m/s2

ay,w (t ) Frequency-weighted lateral acceleration m/s2

Cα f Cornering stiffness of the front tyres N /r ad
Cαr Cornering stiffness of the rear tyres N /r ad
fv Function defining the nonlinear state space relation -
g Acceleration due to gravity m/s2

Iz Moment of inertia of the vehicle about vertical axis kg m2

Jc Cost function for the optimal control problem -
Jx Longitudinal jerk in vehicle’s local frame of reference m/s3

k Current simulation step -
L f Distance of front axle from the vehicle COG m
Lr Distance of rear axle from the vehicle COG m
m Mass of the vehicle kg
MISC MIsery SCale (Subjective motion sickness rating scale) -
MS Motion sickness -
MSAQ Motion sickness assessment questionnaire -
MSDV Motion sickness dose value m/s1.5

MSM-drive Motion sickness mitigation drive (proposed algorithm) -
Nc Length of the control horizon/ shifting horizon window -
OCP Optimal control problem -
p Generalised parameter -
p ′ Partial derivative of the generalised parameter w.r.t. space -
s Distance travelled by the vehicle m
r Vehicle yaw rate r ad/s
REF-drive Reference automation drive (benchmark driving style) -
s0 Start-point of the road m
s f End-point of the road m
sn Lateral deviation of the vehicle from the lane center-line m
T Travel time s
u Control inputs (Jx and dδ) -
ug uess Initial guess for the optimised inputs of the OCP -
uopt Optimal control input -
vx Longitudinal vehicle velocity in local frame of reference m/s
vy Lateral vehicle velocity in local frame of reference m/s
wm Weighting coefficient for MSDV in the cost function -
wt Weighting coefficient for travel time in the cost function -
xg uess Initial guess for the states of the OCP -
xv Vehicle states -
α Deviation of the vehicle heading angle from the road heading r ad
dδ Rate of change of steering wheel angle r ad/s
δ Steering angle r ad
κ Curvature of the road m−1

µ Friction coefficient of the road -
θ Road heading angle rad
ψ Vehicle heading angle rad
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A.4. SOLVER SETTINGS

Parameter Value

Algorithmic differentiation tool CasADi 3.5.1
Prediction horizon for the sliding window 100m
Step size 1m
Shifting step size (Sliding window) 1m
Integrator ERK4
Integrator nodes 5
Solver method PDIP NLP
Solver maximum iterations 2000
Tolerance 10−6
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B.1. QUESTIONNAIRE
Two questionnaires were administered to the participants. The post scenario question-
naire involved providing absolute grades for each algorithm after its simulation. The
post experiment administered upon completion of both scenarios, aimed to compare
the FS and AW algorithms.

Post scenario questionnaire

• How closely did the ride’s motion correspond to the video?

[0 = Not at all, 5 = Completely coherent]

• How close did the cornering feel compared to a real car?

[0 = Not at all, 5 = Exactly like a real car]

• How realistic did the deceleration feel compared to a real vehicle drive?

[0 = Not at all, 5 = Exactly like a real car]

• How aggressive were the different sections of the drive?

[0 = Not at all, 5 = Aggressive like a race car]

- Section 1 (Multi-turns)

- Section 2 (Slalom)

- Section 3 (Lane change)

• Was the ride disorienting or sickening?

[0 = Not at all, 5 = Extremely sickening]

• Were there any unnatural motions that did not match real driving?

[0 = Not at all, 5 = A lot of them]

Post experiment questionnaire

• Which algorithm provided a more realistic driving experience?

• Which algorithm provided a more aggressive drive?

• Which algorithm provided higher instances of abrupt/unnatural motion during
the simulation?
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B.2. ABBREVIATIONS AND NOTATIONS

Table B.1: Notations used and their description.

Notation Description

Ahex System (state) matrix describing the hexapod motion
Bhex Input matrix governing the hexapod motion
Uhex Control input(s) for the system (hexapod)
Xhex State vector for the platform
X̂hex Neutral position of the platform
Ŷhex References for the outputs of the state space
Y (xk ,uk ) Output vector depending on the states and inputs
fspec Specific force (total)
Gloc Tilt component or the gravitational force vector

in occupant’s frame of reference
WY Penalisation weight for the output terms
WX Penalisation weight for the state terms
wθ Penalisation weight on the tilt angle of the platform
ws Penalisation weight on the displacement of the platform
[k1, k2, k3] Constants defining the shape of the non-linear weights (ws ; wθ)
Wu Penalisation weight on the input
wG ,loc Penalisation weight for tilt-coordination reference tracking
w f ,tr ans Penalisation weight for translational reference tracking
w f ,spec Penalisation weight for the total specific force tracking
Jk Platform jerk values (translation and rotation)
WJ Weight penalisation on jerk
jtr ans Translational jerks
jang Angular/rotational jerks
w j ,tr ans Weight penalisation on translational jerks
w j ,ang Weight penalisation on rotational jerks
ωthd Threshold for the tilt rate based on perception threshold
wδ Weight penalisation on the slack variable
δ slack variable
sd yn Dynamic constraint relation for displacement
θd yn Dynamic constraint relation for tilt angle
[cv ,cw ,cu ,Td yn,s ,Td yn,θ] Constant gains used in the Dynamic constraint relation
∆ Small value to keep non-linear weights from reaching infinity
νF S Cut-off frequency for the high pass and low pass filters used in the MPC framework
νy aw Cut-off frequency used for the yaw washout filter
shex Platform displacement (all directions)
vhex Platform velocity (all directions)
ahex Platform acceleration (all directions)
θhex Platform angular orientation
ωhex Platform angular velocity
αhex Platform angular acceleration
Jhex Platform jerk (all directions)
jang Angular jerks for the platform
sl i m limit of displacement for the platform
θl i m limit of tilt angle for the platform
Jc The cost function for the MPC
g Acceleration due to gravity
R Transformation matrix that resolves gravitational force to its

components in global frame of reference
Rx Transformation matrix to resolve the coordinates of a vector

subjected to rotation along the x-axis
Ry Transformation matrix to resolve the coordinates of a vector

subjected to rotation along the y-axis
Rz Transformation matrix to resolve the coordinates of a vector

subjected to rotation along the z-axis
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Table B.2: Abbreviations used and their description

Abbreviation Description

MCA Motion cueing algorithm
MPC Model predictive control
FS MCA Frequency-splitting MCA
AW MCA Adaptive washout MCA
Dof/dof Degrees of freedom
DAVSi Delft Advanced Vehicle Simulator
HP High pass
LP Low pass
PDIP Primal dual interior point
DWM Direct workspace management
Acc/dec Acceleration/ deceleration
std. Standard deviation
IQR Interquartile range
comp. Component

B.3. VISUALISATION

IPG Carmaker is selected for visualisation purposes due to its exceptional capabilities in
accurately depicting and simulating the experimental data, ensuring a robust and com-
prehensive representation of the driving scenarios under investigation. The data col-
lected in the experiment is used to generate the visualisation for the driving simulator.
Specifically, the vehicle’s positional data is harnessed to construct a dynamic path. This
path is subsequently traced by the vehicle, with predefined velocity references derived
from the recorded experimental dataset.

B.4. BENCHMARK MPC-BASED MCA VS PROPOSED ALGORITHM

FOR REAL DRIVING DATA

An analysis of the simulations comparing the results obtained using MPC-based MCA
and proposed algorithm at different prediction horizon lengths is tabulated in Table B.3a.
The workspace utilisation for the same conditions are tabulated in Table B.3b. It can be
seen that the proposed algorithm is capable of rendering results faster than the MPC-
based MCA.

B.5. SPECIFIC FORCE COMPOSITION

The specific force tracking, along with its translational and tilt components, is presented
in Figure B.1 and Figure B.2. These plots illustrate how accurately the specific force is
tracked and how the individual components contribute to its reconstruction.
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Table B.3: Performance and workspace utilisation of MPC-based MCA and
frequency-splitting algorithms at different prediction horizons for the scenario with real

driving data for a 120-second simulation. The time step for this analysis is Ts = 0.05s.
Real-time factors ≤ 1 (in green) indicate real-time feasibility.

(a) Specific force tracking performance and real-time feasibility

Algorithm Prediction horizon (Steps) RMSE long. RMSE lat. RMSE total Real-time factor

MPC-based MCA 20 0.0884 0.7013 0.7068 0.3137
FS MCA 20 0.0772 0.6489 0.6535 0.2994

MPC-based MCA 40 0.0646 0.4429 0.4476 0.7133
FS MCA 40 0.0630 0.4141 0.4189 0.6010

MPC-based MCA 60 0.0662 0.2688 0.2768 1.1167
FS MCA 60 0.0675 0.2519 0.2608 0.8490

MPC-based MCA 80 0.0826 0.2390 0.2529 1.4982
FS MCA 80 0.0751 0.2359 0.2476 1.2607

MPC-based MCA 100 0.0709 0.2314 0.2420 1.7722
FS MCA 100 0.0724 0.2347 0.2457 1.5552

MPC-based MCA 120 0.0683 0.2172 0.2277 11.0467
FS MCA 120 0.0691 0.2217 0.2322 9.7388

AW MCA - 0.0846 0.3283 0.3390 -

(b) Workspace utilisation

Algorithm Prediction horizon (Steps) RMS displacement RMS velocity RMS angular disp. RMS angular vel.

MPC-based MCA 20 0.0929 0.1379 4.0859 3.1824
FS MCA 20 0.0808 0.0909 3.9762 2.2418

MPC-based MCA 40 0.0647 0.0685 3.0423 2.3083
FS MCA 40 0.0872 0.0741 3.0428 2.1532

MPC-based MCA 60 0.0487 0.0696 2.6847 2.0881
FS MCA 60 0.0577 0.0657 2.6428 1.9685

MPC-based MCA 80 0.0521 0.0690 2.6486 2.0091
FS MCA 80 0.0617 0.0651 2.6014 1.8820

MPC-based MCA 100 0.0498 0.0690 2.6606 2.0059
FS MCA 100 0.0600 0.0630 2.5900 1.8674

MPC-based MCA 120 0.0777 0.0918 2.7145 2.4701
FS MCA 120 0.0704 0.0649 2.5904 2.3803

AW MCA - 0.0536 0.0429 2.8041 1.7905

B.6. PRE-POSITIONING
Pre-positioning is a phenomenon observed in MPC-based MCAs. An MPC can antic-
ipate future maneuvers and prepare accordingly by moving the platform in advance.
The specific force remains (close to) zero before the maneuver starts. However, no-
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Figure B.1: Specific force tracking along with its linear and translational components
corresponding to Figure 3.10.

table platform translations and rotations occur. These result in specific force compo-
nents acting in opposite directions, whereby the translational component cancels out
the tilt component. The movement of the platform can still be perceived in such a case.
Pre-positioning primarily occurs when the tilt coordination cannot generate the desired
specific force component promptly, given the tilt-rate restriction due to the perception
threshold. Figure B.3 shows instances of pre-positioning. It can be seen that the first
corner does not exhibit any pre-positioning because the platform had enough time to
generate the desired specific force component through tilt coordination. This is evident
from the omega (angular velocity) in the same figure, where omega does not saturate
(reach the 3°/s limit) during the initial maneuver. Therefore, the platform could generate
the specific force within the required time, avoiding pre-positioning. However, around
time instances 50 and 80, the tilt-rate saturates indicating insufficient time for the plat-
form to generate the desired specific force component through tilt-coordination. Conse-
quently, the platform starts tilting in advance and the specific force components arising
from the tilt of the platform are cancelled by the translational component.

B.7. PENALIZATION VARIATION SPECIFIC FORCE, ACCELERATION,
TILT

Here we varied the elements of Wy (defined in Equation 3.6). Figure B.4. shows that
these changes have limited effects.
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Figure B.2: Specific force tracking along with its linear and translational components
corresponding to Figure 3.11.

Figure B.3: Lateral specific force tracking for the settings corresponding to the
experiment. The zoomed in regions highlight the pre-positioning problem that occurs

in MPC based MCAs.
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Figure B.4: Variations in Wy (penalization on the output terms [Total specific force;
Translational component; Tilt component]) The red line represents the penalization

used throughout the paper, the green line shows the solution with increased
penalisation on the tilt component, and the blue line corresponds to a solution with

higher penalisation on the translational component.
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C.1. SPECIFIC FORCE AND KINEMATIC TRACKING OF PLATFORM

MOTION
The platform translational and rotational velocity and displacement along with the spe-
cific force tracking is presented in Figure C.1 for lateral and Figure C.2 for the longitu-
dinal direction. It can be seen that both FS MCA and autoscaling MCAs create similar
magnitudes of specific force as well as the tilt angles. Confirming that the algorithm
matches the performance of other MPC-based MCAs while reducing preposition in tilt
coordination.
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Figure C.1: The specific force tracking along with linear and angular velocity and
displacement for lateral direction, corresponding to Figure 4.3
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Figure C.2: Specific force tracking along with linear and angular velocity and
displacement in the longitudinal direction, corresponding to Figure 4.2.

Additionally, the higher use of translational workspace can also be observed in the
Figure C.1 and Figure C.2 via higher use of translational velocity and displacement.
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D.1. ALGORITHM WEIGHT SETTINGS
For the simulations presented in this chapter, the optimisation is conducted using
ForcesPro [58], using Primal dual interior point (PDIP) algorithm. The maximum it-
erations are chosen to be 200, to ensure convergence and avoid sub-optimal solutions.
The optimisation has been performed on Intel(R) Xeon(R) W-2223 CPU @3.60GHz with
32GB RAM.

In this work, we consider two major contribution terms that define the primary ob-
jective of the algorithm, along with several minor terms that help guide the Model Pre-
dictive Control (MPC) problem toward the desired performance. The two primary ob-
jective terms should have the highest contribution in the cost function.

Since the cost terms have different units, their relative contributions cannot be di-
rectly determined by the weights alone. To address this, we normalise the cost terms in
the cost function. This is done by running a sample simulation and recording the max-
imum values attained by each error term. The cost terms are then scaled by dividing
them by their corresponding maximum error values.

D.2. WEIGHT SELECTION
For the initial analysis, a penalisation weight of unity is set for specific force tracking.
Additionally, the penalisation weights on the angular orientation and the platform dis-
placement is a dynamical non-linear weight which changes based on the platform state
(see Subsection 3.3.2 under workspace management) the penalisation weight chosen for
this quantity just scales the overall non-linear shape of the weight based on the platform
state.

PENALISATION WEIGHT FOR ANGULAR ORIENTATION

The weight on angular orientation was varied between 1e-4 and 1e-1. The weight of 1e-1
provides deteriorated specific force tracking performance, while the weights 1e-2, 1e-3
and 1e-4 provide almost identical responses. Hence, the weight of 1e-4 is chosen as it
provides desirable performance, while keeping a lower contribution in the cost term.

PENALISATION WEIGHT FOR ANGULAR VELOCITY

The weight on angular velocity was also varied between 1e-4 and 1e-1. While all the
weights provided a very similar response in the specific force generation, the weights had
very differnet responses for the angular velocities. The weight of 1e-1 provides almost no
excessive motion, whereas all other weights show excess oscillations in angular velocity.
Thus the authors choose the weight of 1e-1 for the penalisation on angular velocity.

PENALISATION WEIGHT FOR DISPLACEMENT

The weight on translational displacement was varied between 1e-4 and 1e-1 as well.
While a weight of 1e-4 tracks the specific force desirably for the majority of the sim-
ulation, at various instances, it performs a jerky motion when it reaches the limits of
the workspace. With the weight 1e-3 we obtain desirable specific force tracking perfor-
mance, however oscillations are observed in the sngulsr velocity eith this setting. The
weight 1e-1 and 1e-2 provide a very similar response with no excess oscillation in the
angular velocity. Thus due to its lower contribution towards the overall objective func-
tion, 1e-2 is chosen as the preffered weight for the simulations.
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PENALISATION WEIGHT FOR TRANSLATIONAL JERK

The weight on translational jerk was varied between 1e-4 and 1e-1 as well. All the ex-
plored weights provided near identical responses via the algorithm. Thus the weight of
1e-4 is used to have the lowest possible contribution to the objective function, while
providing a desirable performance.

PENALISATION WEIGHT FOR ANGULAR JERK

The weight on angular jerk was varied between 1e-5 and 1e-2 as well. Weight of 1e-2 ren-
ders a profile that does not follow the reference specific force properly. While the weight
of 1e-3 traces the specific force, it exhibits oscillations in the tilt rate. The weights 1e-5
and 1e-4 provide a desirable specific force tracking, with the weight of 1e-4 also attaining
slightly lower tilt rate values. Thus the weight of 1e-4 is selected for the simulations in
this work.

D.3. SPECIFIC FORCE AND KINEMATIC TRACKING OF PLATFORM

MOTION
The platform translational and rotational velocity and displacement along with the spe-
cific force tracking is presented in Figure D.1 for lateral and Figure D.2 for the longitudi-
nal direction. It can be seen that AW and MPCwcon0 produce similar levels of tilt angles,
however MPCwcon0.9 generates lower tilt angles in order to reduce motion sickness.

However the AW MCA uses a higher translational workspace in terms of displace-
ments. However the MPCwcon0 and MPCwcon0.9 majorly stays near the neutral position.

Figure D.1: Specific force tracking along with linear and angular velocity and
displacement for the lateral direction, corresponding to Figure 5.3.
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Figure D.2: Specific force tracking along with linear and angular velocity and
displacement for the longitudinal direction, corresponding to Figure 5.3.
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Propositions accompanying the dissertation
TOWARDS SICKNESS-FREE AUTOMATED DRIVING

CONTROL ALGORITHMS FOR MOTION SICKNESS MITIGATION IN AUTOMATED VEHICLES

AND ENHANCED IMMERSION IN DRIVING SIMULATORS

by

Vishrut JAIN

1. A motion planning algorithm that ignores motion sickness will be fit for cargo, but
not for humans. This proposition pertains to Chapter 2.

2. A well-designed motion cue is like a good melody—it resonates not by being loud,
but by being harmoniously timed. This proposition pertains to Chapters 3, 4 and 5.

3. High-fidelity models advance scientific understanding and enable real-world so-
lutions, while low-fidelity approximations support real-time applications. This
proposition pertains to Chapters 2, 5

4. Humans, even in controlled experiments, exhibit inherent variability, underscor-
ing the need for statistically significant human-in-the-loop validation. This propo-
sition pertains to Chapters 2, 3, 4 and 5

5. Curiosity is essential in research—until it becomes a detour from research objec-
tives.

6. The more a PhD suffers, the more insightful propositions they can write.

7. Discomfort is often the price of meaningful development.

8. As eager as the world is to move towards electric vehicles it is not prepared.

9. Widespread international condemnation in times of war often provokes irrational
responses.

10. It is often in our most vulnerable moments that we learn who we are, not from
within, but through the care and presence of others.

These propositions are regarded as opposable and defendable, and have been approved as such
by the promotors Prof. Dr. Ir. Riender Happee and Dr. Barys Shyrokau
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