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Abstract 

1. Estimating length of stay, the number of days a bird can be expected to stay at a 

site, at stopover sites is critical to understanding the migration ecology and 

estimating population sizes of birds as they move between breeding and non-

breeding sites.   

2. Estimating length of stay of migrating animals at stopover sites has an analogue in 

the hydrological concept of transit time, the amount of time that water spends in a 

reservoir, which can be calculated as a numerical integration of inflow and outflow 

rates with an underlying storage age selection function.   

3. We used this approach to estimate lengths of stay of migrating Western Sandpiper 

(Calidris mauri) and Dunlin (Calidris alpina) based on time series of daily counts at 

two sites in British Columbia, Canada. The approach yielded mean transit times for 

Western Sandpiper during southward migration at Sidney Island that ranged 

between 9.6 days to 3.8 days, and showed a significant decline over time, 1992-

2001, consistent with estimates from capture-mark-resight studies. Transit times 

during northward migration at Roberts Bank, Fraser River Delta, based on the best 

available information ranged from 1.8 and 3.2 days for Western Sandpiper, and had 

a median value of 2.0 days for Dunlin, consistent with estimates from radio-

telemetry studies.  

4. These results indicate that hydrological flow models may offer a means to estimate 

length of stay from daily counts of birds during migration. The models present an 

opportunity for testing alternate hypotheses regarding the roles of behavioral- 

versus habitat-related mechanisms driving shorebird population sizes.  

 

Key words: stopover duration, migration ecology, shorebirds, Storage Age Selection 

function, residence time, transit time distribution 
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Introduction  

Migrant birds typically stop at particular locations to rest and feed during their 

journeys between the breeding and non-breeding grounds.  Estimating length-of-stay 

(LOS), the duration of time that birds stay at a stopover site, is critical to understanding 

the ecology and management of migratory species. As a population-level measure, the 

mean LOSm is necessary information to estimate the number of birds using a particular 

stopover site, where the population size is typically calculated as the sum all the daily 

counts, or an estimate of the area under the population curve (the total number of 

‘‘bird days’’), divided by LOSm (Bishop et al. 2000, Frederiksen et al. 2001, Farmer and 

Durbain 2006).  LOSm will depend on the decisions made by individual birds, and can 

vary with time of year, distance to destination, predation risk, weather conditions, 

available resources, and possibly individual condition. Moreover, behavioural responses 

to changes in predation risk may have led to reductions in LOSm, and could account for 

observed census declines of some birds (Ydenberg et al. 2004). Therefore, 

understanding the links between LOS and counts of birds at stopover sites may inform 

conservation actions for shorebird populations, many of which are in decline (Andres et 

al. 2012). 

LOS for migratory birds is typically estimated from a sample of marked birds, using 

mark-recapture approaches, radio-telemetry or other tracking technology (Schaub et al. 

2001). If however estimates of LOS could be derived directly from time series of count 

data, it would allow a historical reconstruction of past conditions, as well as a new 

source of information from which to evaluate behavioral decisions made by migrating 

birds. Further, population sizes of migrating birds as derived from counts are often used 

to inform schemes that prioritize conservation efforts over entire flyways (Myers et al. 

1987), and therefore novel methods of estimating LOS will hold great value towards 

conservation of migratory bird species. 

Estimation of LOS has an analogue in the hydrological concept of residence or 

transit time, which is a measure for the amount of time that water spends in a storage 

reservoir (e.g., groundwater). Transit time distributions provide a quantitative 
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description of how systems store and release water over time, a key requirement for 

successful watershed management, and in particular for pollution control. In general, 

the concept depicts how water volumes entering the system through precipitation will 

be stored in the system and released as output (e.g., stream flow) after some system 

specific time lags. Therefore, the system output at a given moment may only contain 

minor proportions of the volume that entered the system at the same time step, while 

most of the output is typically old water that entered the system at an earlier time. A 

modelling approach to estimate the distributions of time lags between corresponding 

inputs and outputs, i.e., the transit time distributions, requires inflow and outflow rates, 

as well as a mechanism that allows a plausible composition of outflows from the varying 

water volumes of different age stored in the system at any time are required (see 

Methods section; e.g. Rinaldo et al., 2015).     

Extending this hydrological analogy to bird migration, a count of birds at a stopover 

site can be considered as the storage volume at that moment, which rises and falls in an 

observable way over the migration period (Figs. 1-3a). The numbers of birds arriving at 

or leaving that stopover site at a given time then correspond to inflow or outflow rates, 

although these rates are often problematic to observe and thus frequently unavailable. 

However, when counts are made at consecutive time steps (e.g., days), the difference 

between two successive counts is a measure of the net flow of birds over that period 

(Figs. 1-3b), which may serve to provide reasonable bounds for outflow and inflow rates.  

Using a minimum set of assumptions, along with simplified but plausible migration 

mechanisms, it may be possible to infer transit time distributions with an inverse 

modelling approach.    

In this paper, we used bird count data for two shorebird species stopping over in 

British Columbia, Canada, as the system state values from which we derived estimates 

for input and output to the system for each time step. We then used these data to 

construct a model that related the distributions of residence times and transit times of 

birds through the hydrological concept of a storage selection function. Adopting an 

inverse modelling strategy, we tested a high number of possible parameter 
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combinations for the storage selection function to analyse which combinations could 

result in realistic LOS values, based on existing studies based on individually-marked 

birds. Using this restricted set of models, we derived transit time distributions and mean 

transit times, and tested whether we could detect trends over time. The overall intent 

of the paper was to provide a proof of concept of the suggested approach, together 

with a review of the assumptions and limitations involved as well as an outline of its 

future potential. 

 

Materials and Methods 

Estimates of Length of Stay and Field Counts  

LOS estimates are typically based on a sample of marked birds, using mark-recapture 

approaches, radio-telemetry or other tracking technology, although such estimates can 

be biased (Schaub et al. 2001). Observations of marked birds allow the calculation of 

LOS as the duration of time that the sample of n=1,…,N individual birds spend at a stop-

over site, such that: 

(1) 

𝐿𝑂𝑆𝑛 = 𝑡𝑅 =  𝑡𝑜,𝑛 − 𝑡𝑖,𝑛 

where ti,n is the day the nth individual bird is first seen at the observation site and to,n is 

the day the same bird is last seen at the site. At any time t, these counts provide a 

distribution of LOS for the birds leaving the stopover site at that time: 

(2) 

𝑝𝐿𝑂𝑆(𝑡𝑅 , 𝑡) =
𝑛(𝑡𝑅 , 𝑡)

𝑛(𝑡)
 

where n(tR,t) is the number of birds with a length of stay tR that are leaving the site at a 

given time t, and  n(t) is the total number of birds present at that time t. Typically the 

mean LOSm over a specified period is used to characterize migration patterns (e.g., 

Ydenberg et al., 2004; Hope et al., 2011). It is inferred from the marginal distribution 

pLOS(tR) over that time period.  

In this study, we used daily counts of unmarked birds and estimates of LOS 

estimates from marked birds available from two stopover sites. The first site, Sidney 
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Island (48°37’39’N, 123°19’30”W), lies 4km off the coast of Vancouver Island in 

southwestern British Columbia. Western Sandpipers (Calidris mauri) stopover during 

southward migration within a 96-ha lagoon located in the Gulf Islands National Park 

Reserve. Adult birds migrate through in July, and juvenile birds following in August and 

September (Butler et al. 1987). Daily counts were conducted from 1992 to 2001, 

beginning in early July and ending in early September of each year. Counts were made 

with binoculars, or with a spotting scope, depending on the proximity of the birds. This 

site was the location of a capture-mark-resight (CMR) study using individually-marked 

Western Sandpipers from 1992 to 2001, from which we obtained 10 annual estimates of 

mean LOSm (Ydenberg et al. 2004).  

The second site, Roberts Bank (49° 3.5'N, 123° 9.8'W), is a large mudflat (8 km2) 

situated within the Fraser River Delta, British Columbia. Regular surveys of Western 

Sandpiper and Dunlin (Calidris alpina) have been conducted during northward migration 

at Roberts Bank between April and May since 1991 to 2015 (Drever et al. 2014). 

Estimates of LOSm on the Fraser River Delta were available from a few studies of radio-

marked birds conducted on the Pacific Flyway (Iverson et al. 1996, Warnock and Bishop 

1998, Warnock et al. 2004, Warnock et al. 2006), from which we derived 4 estimates of 

LOSm for Western Sandpipers and 1 estimate for Dunlin.   

 

Estimating residence and transit times 

Definitions and Concepts 

 Many natural systems allow for temporal storage of input fluxes before they are 

gradually released from the system as output. The way these systems store and release 

these inputs is a fundamental descriptor of their internal functioning (Rinaldo et al., 

2015). Integrated stochastic descriptors provide robust representations of system 

response dynamics, and have a long history of applications in hydrology, where 

frequently only observations at the catchment outlet are available (McGuire and 

McDonnell, 2006; Birkel and Soulsby, 2015; Hrachowitz et al., 2016).      
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 Conceptually, such systems can be represented by one or more storage 

components (e.g., groundwater in hydrology; stopover site in migration studies), and 

here we review the basic principles – symbols, descriptions and their dimensional units 

are presented in Table 1. Input fluxes J (i.e., precipitation per time step in hydrology; 

number of arriving birds per time step) enter the storage at different points in time ti. 

Considering the case of no output O from the system, the storage volume S(t) at any 

time t (e.g., water volume stored in groundwater storage; number of birds at stopover 

site) then consists of the individual volumes S(tR,t) of different age (or residence time) tR 

= t – ti (for t > ti) that entered the system as inputs J(ti) in the past. Normalizing the 

storage volumes of different age by the total storage volume then gives the distribution 

of different ages in storage at time t, namely the residence time distribution pR(tR,t) = 

S(tR,t)/S(t). If there are no further inputs to and outputs from the system, the stored 

volume, and thus pR, only experiences aging. In other words, the change of residence 

time tR of all stored particles equals the change in time t, which can be expressed as 

(Benettin et al., 2013): 

(3) 

𝜕

𝜕𝑡
[𝑆(𝑡)𝑝𝑅(𝑡𝑅, 𝑡)] +

𝜕

𝜕𝑡𝑟

[𝑆(𝑡)𝑝𝑅(𝑡𝑅, 𝑡)] = 0 

Where inputs J(t) to the system are equivalent to the proportion of the storage volume 

S(t) with age zero and define the boundary condition: 

(4) 

𝑝𝑅(0, 𝑡) = 𝐽(𝑡) 𝑆(𝑡)⁄  

Thus, with additional inputs J(ti) and outputs O(t) and considering that O(t) can only be 

composed of a sample from what is stored as S(t) (Fig.4), equation (3) can, under 

conservation of mass dS/dt=J(t)-O(t), be expanded and rearranged to provide the 

Master Equation of residence time distributions pR as formulated by Botter et al. (2011): 

(5) 

𝜕𝑝𝑅(𝑡𝑅, 𝑡)

𝜕𝑡
+

𝜕𝑝𝑅(𝑡𝑅 , 𝑡)

𝜕𝑡𝑅
= −𝑝𝑅(𝑡𝑅, 𝑡)

𝐽(𝑡) − 𝑂(𝑡)

𝑆(𝑡)
−

𝑂(𝑡)

𝑆(𝑡)
𝑝𝑇(𝑡𝑅 , 𝑡) 
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Where pT(tR,t) is the transit time distribution, i.e., the age distribution of the output O(t). 

As the output at any time t can only be a sample of the residence time distribution 

pR(tR,t), it can be readily expressed as a function thereof (Botter et al., 2011): 

(6) 

𝑝𝑇(𝑡𝑅 , 𝑡) = 𝑝𝑅(𝑡𝑅 , 𝑡)𝜔(𝑡𝑅 , 𝑡) 

Where ω is a function, typically referred to as Storage Age Selection (SAS) function 

(Rinaldo et al., 2015), determining how the contents with different residence times 

stored in the system are sampled to form the output O(t). The function’s shape depends 

on how the system samples from the resident storage. For example, a random sampling 

scheme, i.e. ω(tR,t)=1, samples the stored ages in the same proportion as they are 

stored in the system (Benettin et al., 2013), not giving any preference to younger or 

older ages (Fig.4a). Alternatively, SAS functions with low modes allow for preferably 

sampling from younger resident ages (Fig.4b), and functions with higher modes allow for 

preferable sampling of older ages (Fig.4c; Botter, 2012; Van der Velde et al., 2012). 

Equation (6) further illustrates that pR and pT are strictly only equivalent in the case of 

random sampling. Note that to conserve mass, ω always needs to satisfy (Harman, 

2015):  

(7) 

∫ 𝑝𝑇(𝑡𝑅 , 𝑡)𝑑𝑡𝑅

∞

0

= ∫ 𝑝𝑅(𝑡𝑅 , 𝑡)𝜔(𝑡𝑅 , 𝑡)𝑑𝑡𝑅 = 1
∞

0

 

Equation (5) implies that in non-stationary systems, characterized by variable flow, the 

residence time distribution pR is intrinsically variable in time as a result of the history of 

input and output fluxes in the past (Botter et al., 2011). From equation (7) thus follows 

that ω is dependent on pR. Therefore, closed form parameterizations of ω are only 

available for random sampling and similarly simple cases (Harman 2015). Transformed 

expressions of ω need to be used otherwise. A convenient approach is to use the 

cumulative residence time distribution PR(tR,t) as a transformed domain for ω, bounding 

it to the interval [0,1]: 

(8) 
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∫ 𝜔(𝑃𝑅 , 𝑡)𝑑𝑃𝑅 = 1
1

0

 

Such transformed SAS functions can then also be defined as temporally variable 

expressions (e.g. Hrachowitz et al., 2013) if required by a system that is evolving over 

time (e.g. Brooks et al., 2010) and warranted by the data available. 

The difference between pR and pT can be illustrated by their analogy to population 

models (Benettin et al., 2015a; Hrachowitz et al., 2016). The residence time distribution 

pR is analogous to the distribution of ages of all individuals of a population born in the 

past and still alive at a given moment. In contrast, the transit time distribution pT is 

equivalent to the age distribution of individuals born in the past and passing away at a 

given moment, i.e. the age distribution at death. From the above equations and 

definitions follows that LOS estimates in bird migration studies, computed by equations 

(1), as well as the associated distributions and moments as defined by equation (2), are 

the conceptual equivalent of transit times and their distributions pT(tR,t).  

For further details and examples of applications of the concept in hydrology the 

reader is referred to recent literature on the topic (e.g. Botter et al., 2010; Rinaldo et al., 

2011; Birkel et al., 2014; Benettin et al., 2015b; Harman, 2015; Hrachowitz et al., 2015; 

Soulsby et al., 2015). 

 

Model implementation 

Here only the state of the system, i.e. the storage (count of birds at the stopover sites) 

at any time t is known. From a time series of daily counts, the net flow, i.e. storage 

change, between two time steps t, given as:  

(9) 

𝑑𝑆

𝑑𝑡
= 𝑆(𝑡) − 𝑆(𝑡 + ∆𝑡) = 𝐽(𝑡) − 𝑂(𝑡) 

can be inferred under the assumptions of conservation of mass, i.e. 100% bird survival 

rate over the stopover period, and a negligible number of birds returning to the site 

once they leave the area. Note that equation (9) allows for input and output rates to 

vary with time, but holds no further information about the actual values of J(t) and O(t), 
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which are however required to obtain estimates of pR and pT, as illustrated by equation 

(5). 

This lack of information was here approached by Monte Carlo sampling with k=106 

model realizations. As a first step it had to be acknowledged that the bird counts may be 

subject to uncertainty. An error of 25% around the daily counts was assumed, based on 

several comparisons of field counts and more reliable counts (Rappoldt et al., 1985), 

including comparisons done at the Roberts Bank site (Drever et al., 2014). For each time 

step and each model realization, the bird count S(t) at the stopover site was therefore 

then randomly sampled from the observed value ±25% (Figs.1-3a). The resulting S(t) 

series over the observation period then served as a basis for estimates of J(t) and O(t) 

for each model realization. Under the assumption that birds arriving at each time step 

do not leave the stopover site during the same time step, the change of the number of 

individual birds present at the site dS/dt defines the upper and lower bounds of possible 

inflow J(t) and outflow O(t) rates for each time step in each model realization: 

(10) 

𝐽𝑚𝑖𝑛(𝑡) < 𝐽(𝑡) ≤ 𝐽𝑚𝑎𝑥(𝑡) 

(11) 

𝑂𝑚𝑖𝑛(𝑡) < 𝑂(𝑡) ≤ 𝑂𝑚𝑎𝑥(𝑡) 

 

Where 

(12) 

𝐽𝑚𝑖𝑛(𝑡) = {
𝑆(𝑡 + ∆𝑡) − 𝑆(𝑡),    𝑓𝑜𝑟 𝑆(𝑡) < 𝑆(𝑡 + ∆𝑡)

0,                                𝑓𝑜𝑟 𝑆(𝑡) ≥ 𝑆(𝑡 + ∆𝑡)
 

 

(13) 

𝐽𝑚𝑎𝑥(𝑡) = 𝑆(𝑡 + ∆𝑡) 

(14) 

𝑂𝑚𝑖𝑛(𝑡) = {
0,                               𝑓𝑜𝑟 𝑆(𝑡) < 𝑆(𝑡 + ∆𝑡)

𝑆(𝑡) − 𝑆(𝑡 + ∆𝑡),    𝑓𝑜𝑟 𝑆(𝑡) ≥ 𝑆(𝑡 + ∆𝑡)
 

(15) 
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𝑂𝑚𝑎𝑥(𝑡) = 𝑆(𝑡 + ∆𝑡) 

Following equations (10) and (11), J(t) and O(t) were randomly sampled between their 

respective upper and lower bounds at each time step for each model realization. The 

106 realizations of sampled time series of J(t) (Figs. 1-3b) and O(t) (Figs. 1-3c) were then 

used to estimate plausible ranges of transit time distributions pT for each observation 

year according to equation (7). 

The relationship between birds entering and leaving the site is controlled by the 

storage age function 𝜔 which defines how long individual birds remain at a stopover site 

and the pattern to which they leave again, both of which are a priori unknown. To 

account for this lack of knowledge, the beta distribution was selected as the SAS 

function for its flexibility in representing distinct shapes: 

(16) 

𝜔(𝑡𝑅) =
𝑡𝑅

∝−1(1 − 𝑡𝑅)𝛽−1

𝐵(𝛼, 𝛽)
 

where B is the beta function and α and β are shape parameters. For each of the 106 

model realizations α and β were sampled from uniform prior distributions with lower 

and upper bounds of 0.0001 and 10, respectively. The beta function allowed a wide 

spectrum of possible shapes for the SAS functions, including no storage age preference 

(α=1, β=1; Fig. 4a), preference for younger ages (α<1, β>1; Fig.4b), and preference for 

older ages (α>1, β<1; Fig.4c). 

Following the above resulted in a conditional distribution of ages of the birds 

leaving the stopover site, i.e., pT(tR,t), for each time step of each model realization. The 

mean transit times pT,m were then computed from the marginal distributions pT(tR) of 

each year, i.e. the flow-weighted mean of the conditional distributions pT(tR,t). We then 

compared the modelled pT,m to LOSm estimates from observations to identify feasible 

parameter ranges for α and β for each year with available observations. More 

specifically, for the λ=1,..,Λ years with available CMR or radio-telemetry based 

benchmark LOSm estimates the model realizations that resulted in pT,m within ±25% of 

LOSm were retained as feasible. An informal likelihood weight, was then used to 
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construct uncertainty intervals for α, β, ω and pT and to estimate a plausible range of 

pT,m given LOSm (e.g. Freer et al., 1996): 

(17) 

𝐿(∝𝑘,𝜆, 𝛽𝑘,𝜆|𝐿𝑂𝑆𝑚,𝜆) = (1 −
|𝐿𝑂𝑆𝑚,𝜆 − 𝑝𝑇,𝑚,𝑘|

𝐿𝑂𝑆𝑚,𝜆
)

𝑝

 

Where L(αk,λ,βk,λ|LOSm,λ) is the likelihood measure for α and β of the kth model 

realization in the λth year given the benchmark LOSm,λ and pT,m,k,λ is the mean transit 

time of the kth model realization in the λth year.  

To evaluate the models’ potential for predicting pT,m, a leave-one-out-cross-

validation analysis was performed (Shao, 1993). Briefly, the posterior parameter 

distributions of α and β obtained from equation (17) for each year λ were, in turn, used 

to predict pT,m for the remaining Λ-1 years by running 105 Monte Carlo realizations, 

sampling α and β from the posterior distribution associated with the λth year. The 

predictions were then assessed based on the absolute errors to LOSm. For Roberts Bank, 

counts of birds were available for a number of years when no LOSm estimates were 

available. For these years, pT,m was predicted by sampling from the combined posterior 

distributions of α and β obtained from the Λ years with available LOSm. The models in 

this study were implemented in MATLAB R2013b.   

 

Results  

 Sidney Island. The flow dynamics of Western Sandpipers during southern 

migration at Sidney Island were characterized by robust estimates for ω functions across 

the study period.  The β parameters for individual years had narrow feasible ranges, as 

illustrated by the 5/95th interquantile range (IQR5/95) of their posterior distributions 

(Fig.1d): the observed migration patterns can only be reproduced with β<<1. These 

parameter values indicate that, of the birds present at the stopover site at a given time, 

the ones most likely to leave are the ones that had arrived the longest time ago, while 

all others tend to remain at the site. The β values increased between 1992 and 2001, 

resulting in a gradual shift towards a less pronounced preference for old ages (Fig.1d). 
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This shift translates into changes in the transit time distributions pT over time 

(Figs.1e,5a). The results suggest that in 1992, some birds remained at the site for more 

than 20 days, and that by 2001, all birds have left the site after ~9 days.  

 The associated estimates of overall mean transit times pT,m derived from the 

likelihood weighted combination of all k model realizations for each year reflects a 

similar picture with a significant decrease over time (a=-0.56±0.13, b=1127±271, 

R2=0.74, p=0.007) from 9.6 days (IQR5/95=8.2-10.7 days) in 1992 to 3.8 days in 2001 

(IQR5/95=3.3-4.3 days; inset Fig.5a). Both the solution that provided the best match to 

the benchmark LOSm and the likelihood weighted overall pT,m of all feasible solutions 

very closely reproduced LOSm and its change over each year (Fig.5a). Cross validation 

analysis suggests that, due to the well-defined ω at this site, the method held good 

predictive power, as illustrated by the low overall median absolute cross validation error 

of about 1 day (Fig.6a). It can, however, also be seen that pT,m for the year 1992, which 

was characterized by a markedly different migration pattern than the other years, was 

less well predicted (median cross validation error -4.5 days) based on information 

available from the other years.   

Roberts Bank. The model results for Western Sandpipers at Roberts Bank, where 

only 4 years of LOSm estimates were available from existing studies, showed different 

features. No well-defined shape of ω emerged as the most suitable for describing 

migration pattern at this site (Fig.2d). The ω-function shapes giving preference to old 

ages (dark shaded areas in Fig.2d) provided pT,m estimates that best matched the 

benchmark LOSm, although other types of shapes also provided similarly feasible results. 

This uncertainty was also reflected in the largely uninformative posterior parameter 

distributions (α5/95=0.9-9.1, β5/95=0.001-8.3).  

The pT of the 4 years exhibit a high degree of similarity, with the exception of 1992 

(Fig.2e), and suggest that stopover durations were relatively short, with very few birds 

remaining at the site for longer than one week (Figs.2e,5b). The resulting median pT,m of 

all likelihood weighted feasible solutions ranged between 3.2 days (IQR5/95=2.7-3.6; inset 
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Fig.5b) in 1992 and 1.8 days (IQR5/95=1.5-1.8) in 2002, which are close to LOSm (Iverson 

et al. 1996; Warnock and Bishop 1998; Warnock et al. 2004; Warnock et al. 2006).  

The overall median pT,m cross validation error of about -0.6 days (Fig.6b) indicates 

that the model provided robust, yet negatively biased predictions, of pT,m. The pT (Fig.2e, 

5b) and the pT,m (inset Fig.5b) were predicted for the years without LOSm estimates 

based on relatively uninformative prior distributions of α and β (and thus ω), reflecting 

the combined posterior distributions of the benchmark years (Fig.2d). Given the limited 

knowledge on the shape of ω and the similar observed storage patterns in these years, 

the predicted pT,m estimates remain rather stable over the years with a median value of 

1.8 days and no significant temporal trend (a=0.007±0.004, b=-11.4±8.4, R2=0.12, 

p=0.14). The year 1998 was an exception, as the pattern of observed counts was 

markedly distinct to other years (Fig.2a), resulting in distinct pT (Fig.2e,5b) and a low pT,m 

of 1.2 days (IQR5/95=1.1-1.3 days).  

Similar results were obtained for the migration dynamics of Dunlin (Fig.3e). The 

modelled pT,m for the year 2001 showed a median value of 2.0 days (IQR5/95=1.7-2.2 

days; inset Fig.5c), reproducing closely the LOSm of 2.2 days for that year (Fig.5c). The 

model provided a robust result in spite of poorly identifiable parameters α and β 

(α5/95=0.7-9.2, β5/95=0.002-9.1; Fig.3d). Thus, similar to Western Sandpiper at the 

Roberts Bank, roughly equivalent estimates of pT,m could be obtained irrespective of the 

shape of ω used. The pT and pT,m predicted for the remaining years, on basis of the 

posterior distribution of α and β (and thus ω; Fig.3d) for 2001, showed little variability 

(Fig.3e,5c) and provided a median pT,m of 1.7 days. No temporal trend in pT,m could be 

detected (a=0.005±0.003, b=-7.4±6.3, R2=0.09, p=0.17). Only the year 1998 exhibited 

different migration dynamics (Fig.3a), resulting in a lower pT,m of 1.3 days (IQR5/95=1.1-

1.4 days).     

 

Discussion  

Treating migration as a flow process, and estimating mean transit times of 

shorebird populations at stopover sites based on the hydrological concept of SAS 



 15 

functions exhibits considerable potential to describe migration patterns. Estimates of 

pT,m obtained here were comparable to values of LOSm derived from field studies of 

marked or radio-tagged birds at two sites in British Columbia.  This congruence indicates 

that available daily counts of unmarked birds may hold sufficient information to 

estimate population-level LOSm. This approach adds to a developing body of theory 

describing avian migration as a physical process of flow (e.g., Iwamura et al. 2013, Taylor 

et al. 2016), and should be applicable to any situation where daily counts of migratory 

species are made at stopover sites. Importantly, the approach does assume that animals 

flow through only once, and thus will not be useful for sites where large proportions of 

the population can be expected to return to the site during the migration period.  

Similarly, this approach assumes 100% survival over the migration period at the site, as 

it not possible to distinguish between emigration and death from count data alone. The 

assumption may introduce a slight downward bias on mean transit estimates. However, 

given the absence of a significant number of dead bird bodies found at the stopover 

sites, mortality rates at the stopover sites can be considered very minor. Further, this 

approach assumes that birds do not enter and depart in the same time interval, i.e., in 

the same day. This is a limitation introduced by the survey design, where counts are 

done only once per day due to the need to standardize the tide height, but does not 

significantly influence the results here. In the extreme and theoretical case of birds 

leaving again right after arrival, the lower bounds of pT,m would decrease from 1 day to 0 

days (Fig.5). However, note that assumption can potentially introduce a stronger bias if 

observations were available only at coarser temporal resolutions (e.g. weekly).  

Estimates of mean transit time were improved when restricting the range of 

possible solutions by using existing information of LOS. In the absence of any 

information on LOS and when only bird counts are available, the method allows, at the 

very least, to quantify the lower and upper limits of physically possible pT,m. In that case, 

the lower physical limit of pT,m is 1 day. This limit follows from the hypothetical situation 

in which all the birds present at the site at t leave at t, i.e. O(t)=Omax(t) (equations 10-

15). The upper bounds on pT,m are controlled by the choice of ω. In the absence of more 



 16 

detailed information on the SAS function, a beta distribution with conservative, 

uninformative prior parameter distributions covers a wide range of functional shapes 

(see above). From the set of theoretically possible shapes, the one converging towards a 

maximum pT,m can be computationally estimated with simple Monte Carlo sampling. 

The upper bounds on pT,m also depend on the pattern of changes in S, or bird counts, 

during the migration period. A smooth time series of S (i.e., a high average lag-1 

autocorrelation coefficient) indicates higher upper bounds for pT,m, whereas a more 

spiky signal (i.e., low lag-1 autocorrelation) translates into shorter upper bounds. As a 

thought experiment, consider a number of n birds arriving at a site at the beginning of 

the migration period. If no further birds arrive, and if S=n is maintained until the end of 

the migration period T, all birds present at the site are required to stay until T and only 

then leave again. This pattern translates into the longest possible mean transit time 

pT,m=T. Conversely, if the series of S is a recurring sequence of n=S birds arriving at t and 

a subsequent reduction to S=0 at t+Δt, this pattern indicates that the maximum pT,m=1, 

in which case the upper and lower bounds collapse to the same value as O(t)=Omax(t).  

As illustrated in the insets of Fig.5a-c, even if only daily bird counts S and no further 

information on the population-level migration dynamics are available, the above 

considerations can be used to distinguish migration patterns of different populations. 

For the Western Sandpiper at Sidney Island, upper bounds of pT,m ranged between 5-12 

days and reflected the decrease of pT,m over the observation period (inset Fig.5a), 

attributed to increased predation risk at the site (Ydenberg et al. 2004). The populations 

at Roberts Bank, in contrast, showed upper bounds of pT,m approximately 4 to 6 days 

(insets Fig.5b and Fig.5c), reflecting lower LOSm at this site. The relatively wide interval 

between upper and lower bounds of pT,m at low absolute values does, however, conceal 

potential temporal trends in pT,m at Roberts Bank. 

If LOSm estimates are available for a few years, they have the potential to hold some 

informative value to allow predictions of pT,m (based on estimates of S) in years when no 

LOSm estimates are available, depending on how well ω and its temporal variation is 

identified in the individual years with available LOSm. With well-defined ω, robust 
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predictions may detect inter-annual variations in pT,m. For example, using the well-

defined ω (Fig.1d) at Sidney island, obtained from 7 years, the pT,m of the remaining 8th 

year could be predicted within approximately -1 day on average. In spite of the higher 

cross validation errors for the years with the longest pT,m (1992-1994), a certain, albeit 

attenuated, temporal trend in pT,m over the years could also be maintained (inset 

Fig.6a). 

At Roberts Bank, where ω for both species remained less well defined (Figs.2d,3d), 

the predictions nevertheless resulted in low cross validation errors approximately  -0.6 

days (Fig.6b). Therefore, limited additional information in the posterior parameter 

distributions has the potential to provide robust, albeit slightly negatively biased, 

predictions of pT,m within constrained bounds. Temporal variations, however, are very 

likely to remain undetected in this case (Figs. 5b,c) and more information would be 

necessary to obtain more accurate estimates of pT,m.  

Additional information to meaningfully constrain ω and thus pT,m includes anecdotal 

observations of inflow or outflow rates for one or more time steps during a migration 

period, e.g., with correlations with daily weather conditions. Likewise, qualitative 

understanding of the social and physiological components of migration could help to 

understand how and if early and late arriving birds mix to leave a stopover site again. 

This information could provide an efficient constraint on ω. For example, the well-

defined ω with strong preferences for old ages at Sidney Island implies that essentially 

all birds remain at the site for a minimum of time, and that the individuals in the groups 

of birds arriving together will also leave together without significant mixing of 

individuals between the groups arriving at different times. Furthermore, it is conceivable 

that ω may change over time due to a range of reasons such as predation risk, 

climate/weather conditions and food availability (Butler et al. 1997, Ydenberg et al. 

2004). Any understanding of the influences of such processes could in principle be 

readily included in the presented modelling approach and be expected to add 

constraining power to ω and thus to the estimates of pT,m.     
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In summary, we used time series of daily counts of shorebirds to estimate upper 

and lower bounds on daily net flow of birds into and out of two stopover sites, and 

integrated these flow estimates in a modelling approach based on the hydrological 

concept of SAS functions. This approach yielded robust descriptions of transit time 

distributions and the associated pT,m for shorebirds, consistent with previous studies of 

individually-marked birds.  The method bears considerable potential to predict at least 

the upper and lower bounds of pT,m based on daily counts, with more precise 

predictions if more information on migration patterns becomes available. The results 

further indicate that, in the absence of other information about LOS, SAS-based flow 

models may offer a means to estimate population sizes of shorebirds at stopover sites 

when daily counts are available. These models thus present an opportunity for testing 

alternate hypotheses regarding the roles of behavioral- versus habitat-related factors 

that influence shorebird populations over a flyway. 
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TABLES 

Table 1. List of symbols and parameters used to estimate residence and transit times in 
the hydrological model for calculating length of stay of migrating birds. 
 

Symbol Description SI 
dimension 
symbol 

k  number of Monte Carlo realization - 
n number of birds - 
n(t)  total number of birds present at time t - 
n(tR,t) number of birds with length of stay tR that leave at 

time t 
- 

pLOS (tR,t) distribution of length-of-stay for the birds leaving at 
time t 

- 

pR(tR,t) distribution of ages tR in storage (residence times) at 
time t 

- 

pT(tR,t) distribution of ages tR in outflux (transit times) at time 
t 

- 

pT,m mean transit time T 
pT,m,k,λ mean transit time of kth model realization in λth year T 
ti time of first observation T 
ti,n time the nth bird is first observed T 
to,n time the nth bird is last observed T 
tR residence time (length of stay) T 
B beta function - 
J(t) total influx at time t LT-1 
Jmin(t) lower bound of total influx at time t LT-1 
Jmax(t) upper bound of total influx at time t LT-1 
L(αk,λ,βk,λ|LOSm,λ) likelihood measure for α and β of the kth model 

realization in the λth year given LOSm,λ 
- 

LOS length-of-stay T 
LOSn length-of-stay for nth bird T 
LOSm mean length-of-stay T 
LOSm,λ mean length-of-stay in the λth year T 
O(t) total outflux at time t LT-1 
Omin(t) lower bound of total outflux at time t LT-1 
Omax(t) upper bound of total influx at time t LT-1 
PR(tR,t) cumulative distribution of ages tR in storage 

(residence times) at time t 
- 

S(t) total  storage volume at time t L 
S(tR,t) storage volumes of different residence times tR at 

time t 
L 

α shape parameter of beta distribution - 
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Symbol Description SI 
dimension 
symbol 

αk,λ shape parameter of beta distribution for the kth model 
realization in the λth year 

- 

β shape parameter of beta distribution - 
βk,λ shape parameter of beta distribution for the kth model 

realization in the λth year 
- 

λ number of year - 
ω Storage Age Selection (SAS) function - 

 
 
  



 27 

FIGURES 

 

Figure 1: 

Western Sandpiper migration dynamics at Sidney Island. Time series of (a) daily bird 

counts (or storage) S randomly sampled from the observed values of S ±25%, (b) daily 

bird arrival (or inflow) rates J, randomly sampled between Jmin and Jmax as obtained from 

equation (10), (c) daily bird departure (or outflow) rates O, randomly sampled between 

Omin and Omax as obtained from equation (11). The black lines in (a)-(c) indicate the time 

series associated with the pT,m that best describes the benchmark LOSm for the 

respective year. Panel (d) shows the SAS function for each year, with values of α and β 

provide the 5/95th interval of their posterior distribution for each year. (e) Marginal 

transit time distributions pT for each year (i.e. the outflow weighted averages of the 

individual daily transit time distributions). The black lines indicate the time series (a-c), 

the SAS function (d) and pT (e) associated with the pT,m that best describe the 

benchmark LOSm for the respective year. The grey shaded areas in (a)-(e) show the 

5/95th uncertainty intervals of the respective variable, constructed from the weighted 

likelihood measures of each model realization (equation 17). 

 

Figure 2: 

Western Sandpiper migration dynamics at Roberts Bank. Time series of (a) daily bird 

counts (or storage) S randomly sampled from the observed values of S ±25%, (b) daily 

bird arrival (or inflow) rates J, randomly sampled between Jmin and Jmax as obtained from 

equation (10), (c) daily bird departure (or outflow) rates O, randomly sampled between 

Omin and Omax as obtained from equation (11). The black lines in (a)-(c) indicate the time 

series associated with the pT,m that best describes the benchmark LOSm for the 

respective year. Panel (d) shows the SAS function for each year, with values of α and β 

provide the 5/95th interval of their posterior distribution for each year. (e) Marginal 

transit time distributions pT for each year (i.e. the outflow weighted averages of the 

individual daily transit time distributions). The black lines indicate the time series (a-c), 
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the SAS function (d) and pT (e) associated with the pT,m that best describe the 

benchmark LOSm for the respective year. The grey shaded areas in (a)-(e) show the 

5/95th uncertainty intervals of the respective variable, constructed from the weighted 

likelihood measures of each model realization (equation 17). The blue shaded areas in 

(a)-(e) indicate the 5/95th uncertainty intervals for years that were predicted. The 

different shades of grey and blue of the posterior distributions of the SAS functions (d) 

provide an anecdotal indication of which shapes of ω are more likely than others 

according to their relative cumulative weights in the posterior distribution. The blue 

shaded SAS function in (d) is the combined SAS function from the years 1992, 1994, 

2002 and 2004, which is used as prior distribution for sampling the parameters α and β 

for the prediction of the remaining years. 

 

Figure 3: 

Dunlin migration dynamics at Roberts Bank. Time series of (a) daily bird counts (or 

storage) S randomly sampled from the observed values of S ±25%, (b) daily bird arrival 

(or inflow) rates J, randomly sampled between Jmin and Jmax as obtained from equation 

(10), (c) daily bird departure (or outflow) rates O, randomly sampled between Omin and 

Omax as obtained from equation (11). The black lines in (a)-(c) indicate the time series 

associated with the pT,m that best describes the benchmark LOSm for the respective year. 

Panel (d) shows the SAS function for each year, with values of α and β provide the 5/95th 

interval of their posterior distribution for each year. (e) Marginal transit time 

distributions pT for each year (i.e. the outflow weighted averages of the individual daily 

transit time distributions). The black lines indicate the time series (a-c), the SAS function 

(d) and pT (e) associated with the pT,m that best describe the benchmark LOSm for the 

respective year. The grey shaded areas in (a)-(e) show the 5/95th uncertainty intervals of 

the respective variable, constructed from the weighted likelihood measures of each 

model realization (equation 17). The blue shaded areas in (a)-(e) indicate the 5/95th 

uncertainty intervals for years that were predicted. The different shades of blue of the 

posterior distribution of the SAS function (d) provides an anecdotal indication of which 
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shapes of ω are more likely than others according to their relative cumulative weights in 

the posterior distribution. The posterior distribution of SAS function from 2001 (d) is 

used as prior distribution for sampling the parameters α and β for the prediction of the 

remaining years. 

 

Figure 4: 

Illustrations of hypothetical different sampling (or mixing) processes (after Harman, 

2015). (a) a system characterized by a uniform SAS function, i.e. outflow is sampled from 

different ages in storage with equal probabilities (equivalent to the concept of a well- 

mixed reservoir and a beta distribution with α=β=1). (b) a system that releases 

preferably younger ages in storage (beta distribution with α<1, β>1). (c) a system that 

releases preferably older ages in storage (beta distribution with α>1, β<1). The symbol S 

indicates age-ranked storage, J represents the input into the storage (e.g. arriving birds), 

O represents a flux released from storage (e.g. departing birds). Green shades indicate 

storage (i.e. bird counts), blue shades indicate in- or outflow, released from storage. 

 

Figure 5: 

Transit time distributions pT and mean transit times pT,m for (a) Western Sandpiper at 

Sidney Island, (b) Western Sandpiper at Roberts Bank and (c) Dunlin at Roberts Bank. 

The red horizontal lines represent LOSm estimates from radio-telemetry and mark-

recapture approaches. Where available from literature (b,c), the standard deviations of 

LOS are shown as error bars to provide a sense of the distribution of LOS. The light grey 

triangle symbols represent the pT,m that comes closest to the benchmark LOSm and the 

light grey error bars error bars represent the 5/95th percentiles of the associated pT. The 

dark grey circle symbols indicate the pT,m estimate derived from the average pT of all 

feasible, likelihood weighted solutions. The dark grey error bars represent the 

associated averaged pT. The light blue circles and error bars show estimates of pT,m and 

pT, predicted for years without LOSm estimates on basis of the combined posterior 

distributions from years with available LOSm estimates. The insets show the distributions 
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of the actual mean transit times pT,m around their mean value (circle symbol; identical to 

circle symbols in large panels), derived from the individual likelihood weighted pTs of all 

feasible solutions. The diamond symbols in the insets represent estimates of upper 

bounds for pT,m. 

 

Figure 6: 

Results of the cross validation analysis for (a) Western Sandpiper at Sidney Island, and 

(b) Western Sandpiper at Roberts Bank. The boxplots (horizontal line: median, box: 

interquartile range, whiskers: 5/95th interquantile range) represent the overall absolute 

deviations from the benchmark LOSm estimates (dark gray boxplots) as well as 

deviations for the individual years (light grey), when in turn using the posterior 

distribution of the SAS function of each year as prior distribution to predict pT,m of the 

remaining years. The inset, in addition, provides the distributions of the actual pT,m 

(boxplot) predicted for each year compared to the benchmark LOSm (red symbols). 
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Fig. 2 4 
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Fig. 3 6 
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Fig.4 24 
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Fig.5 43 
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Fig.6 72 
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