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Abstract.  

A numerical calculation procedure based on the least-squares finite element method 
(LSFEM) is employed to study the fluid flow and heat transfer in a 3-D heat exchangers 
with in-lined and staggered multiple–row (4 rows) tubes. 

In this study, the fin pitch of the heat exchanger is 8 fins per inch and the fluid flow is 
assumed incompressible, and laminar with Reynolds number ranging from 200 to 600. 

In this paper the pressure drop, pressure coefficient, heat transfer coefficient, local 
Nusselt number and average Nusselt number for different geometric arrangements have been 
examined in detail.  

The numerical results demonstrate that the average heat transfer coefficient of staggered 
arrangement is 10%-30% higher than that of the in-line one; also, it is effected more at low 
Reynolds number than at the high Reynolds number. The distribution of pressure drop of 
staggered array is higher than that of in-lined array.  The variation of pressure coefficient at 
tube surface is dramatically for both the staggered and in-line arrangements for the angle 
less than 90 degree.  The local Nusselt number of staggered array is higher 30%-80% than 
that of in-lined array for the tube row 2 to 4. Overall, the numerical results are in good 
agreement with the experimental measurement.  

 
 

 
1 INTRODUCTION 

The application of plate-fin and tube heat exchangers in the gas heaters, air conditioning 
system, coolers and compressors is very important in mechanical or chemical engineering. 
Since the heat transfer inside the tube structure is a major concern in these kinds of design. 
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The process of a heat exchanger is to exchange the heat of fluids with different temperatures.  
Its major purpose is to heat up or cool down the temperature of fluid. In our daily life, due to 
the development of high technology, some electronic products become much smaller and 
much more efficient. The heat dissipation inside the electronic parts will cause a significant 
effect on the stability of their usable life period.  Therefore, how to increase the heat 
dissipation rate is getting more and more attention in the design of electronic products. Also, 
for different geometric arrangements of the tubes and fins the pressure drop, heat distribution 
and transfer coefficient will be totally different.   There have been many studies1 in related 
heat transfer in tube banks for the past three decades.   

For researches of 2-D problems,  Thom and Apelt2 used the conformal mapping technique 
to solve the flow field past a 2-D tube bundle.   Le Feuver3  applied the nonuniform grids to 
solve the heat flow field of a in-lined tube bank.  Wung and Chen.4-5  used a boundary-fitted 
coordinate system to study the flow field and heat transfer of in-lined and staggered tube 
system. A hybrid Cartesian-ploar coordinate system for both in-lined and staggered tube bank 
has been successfully applied to exam the flow field and heat transfer by Launder and 
Massey6 and Fujii et al.7   Kundu et al.8 conducted both numerical and experimental study on 
a 2-D heat flow confined by two-parallel plates.  A naphthalene mass transfer method was 
applied to measure the coefficients for different rows of plate-fin and tube heat exchangers by 
Saboya and Sparrow.9-11  The effects on pressure drop and heat transfer of heat exchangers for 
different number of staggered tube rows were studied through experiments by Rich12,13.  
McQuiston14, Gary and Webb15 established the relationships of Colburn and friction factors 
with Reynolds number for plain fins on staggered tubes.  

For 3-D flows, Yamashita16,17  studied the flow and heat fields of  a pairs of parallel plates 
with a square cylinder situated perpendicularly through the plates.  Bastani et al.18 simulated 
the heat and flow fields of in-line tube arrays by employing one circular tube as the 
computation domain.  Jang and Wu19 numerically and experimentally studied the fluid flow 
and heat transfer over a multi-row(1-6 rows) plate-fin and tube heat exchanger.  They used the 
finite difference method to solve the governing equations and discussed the simulated results 
of pressure drop, heat transfer coefficients and the Nusselt number in the computational 
domain with the experimental measurements.  The simulation results showed that the average 
heat transfer coefficient of staggered arrangement is 15-27% higher than that of in-lined one.  
The pressure drop of in-lined setup is 20-25% lower than that of staggered setup.  Zdravistch 
et al.20 simulated the heat flow field in laminar and turbulent conditions.  The computational 
process was done with the element-by-element method.      

In this study, a three-dimensional (3D) flow condition is considered to be laminar with 
Reynolds number less than 2000. The numerical calculation procedures based on the least-
squares finite element method (LSFEM)21 are employed to study the fluid flow and heat 
transfer in a 3-D heat exchangers with in-lined or staggered multiple–row (4 rows) tubes.   
In this paper the pressure drop, pressure coefficient, heat transfer coefficient, local Nusselt 
number and average Nusselt number for different geometric arrangements have been 
examined in detail.  
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2 MATHEMATICAL MODEL 

2.1 Governing equations 
In this study, the heat flow is considered to be Newtonian fluid, incompressible fluid, 3D 

laminar flow. The governing equations are continuity, momentum and energy equations, they 
represented in the form of u p qω− − −Θ−  as follows: 
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r
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where H is the distance between two parallel plates, win is the inlet velocity, Tin is the 
temperature at the inlet section, Tw is the wall temperature; ReH  is the Reynolds number, Pr  
is the Prandtl number and P e  is the Pelect number.  Equations (1)-(3) can be expressed in the 
following dimensionless forms by dropping the * sign for simplicity 
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2.2 Least-squares finite element method 
 
In oreder to obtain the first-order differential form for applying the LSFEM, we add the 

vorticity vector,ωv , and the temperature gradient, qv  into (5)and (6) 
Vω = ∇×
rv                        (7) 

0ω∇⋅ =v                        (8) 
q = ∇Θv                                   (9) 
 
The general form of the governing equations of (1)–(9) can be expanded as follows:  
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where Θ is the dimensionless temperature; u , v  and w  means the dimensionless velocity 
in x , y and z direction, respectively, and xω 、 yω 、 zω represent the vorticity components. 
There are eleven equations (10)-(21) for solving the eleven unknowns.  

 

2.3 Pressure and heat transfer coefficients and Nusselt number 
From the simulation, there are three parameters are examined in this study: pressure 

coefficient, local heat transfer coefficient and local Nusslet number.  The pressure coeffcient, 

pc , is defined as 
21

2

in
p

in
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wρ

−
= , where the inp  is the pressure at the inlet section. The local 
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heat transfer coeffcient, h , is defined as 
w b

qh
T T
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=

−
, where 
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∂

 , q′′ is 

the heat flux per unit area, k  is theheat conduction coefficient of fluid and n is the unit normal 

vector of the wall.   

The local Nusselt number ( Nu ) is the dimensionless heat transfer coefficient and is 

defined as b
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h HNu
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3. NUMERICAL METHOD 

3.1 Discretization 
 

The discretization of equations is discussed in this section. The time derivative is 
approximated by the finite difference forward scheme.  (10)-(21) can be expressed as follows:  
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In (22)-(33), “ 1n + ” means at the present time step and “ n ” means the previous time step, 
and θ  is the weighting parameter for representing different schemes such as the explicit 
( 0θ = ), implicit or ( 1θ = ) Crank-Nicloson ( 1/ 2θ = ). The nonlinear terms in the governing 
equations are linearized by the following way, assuming that the nonlinear form can be 
approximated by the known form to simplify the computation, ex: 
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3.2 Boundary conditions 

    The boundary  conditions are specified as follows:  

(1) Inlet section: 1u = ， 0v w= = ， 1Θ =  

(2) Outlet section: 0v w= = ， 0p = ， 0xq =  

(3) At the fin surface: 0u v w= = = ， 0Θ =  

(4) Center plane, symmetric plane in the y-direction, 0v = ， 0x zω ω= = ， 0yq =  

(5)  Symmetric plane in the z-direction, 0w = ， 0x yω ω= = ， 0zq =  

(6) Tube surface: 0u v w= = = ， 0Θ =  
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In Fig.1 and Fig. 2, the boundary conditions for the in-linedand and staggered heat 

exchangers are depicted.  In this study, the Reynolds number is set in the range between 200 

and 600; Prandtl numer is equal to 0.736.  The tolerance for the convergent requirement of 

the numerical simulation is 10-7.  The steady results are presented in the following section. 

4 RESULTS AND DISCUSSION 
The results simulated by the LESFM are discussed in this section, we only choose the 

results under the laminar condition at Reynolds number equal to 400 with inlet velocity equal 

to 2m/sec-1.    

In Fig. 3, the pressure distribution at the central plate (z=0.5H) of in-lined heat 

arrangement is shown.  The maximum pressure occurs at the stagnation point in front of the 

first tube.  The pressure decreases gradually from the stagnation point downward to the outlet 

section.  In Fig. 4, the pressure distribution in the middle plate (z=0.5H) of staggered 

arrangement is shown.  The pressure distribution in Fig. 4 is similar to that of in-line 

arrangement near the first tube, but quite different from the second to the fourth tubes. There 

are  much higher pressure in 2-3 rows than that of the in-lined tubes. 

For  the temperature distribution, the simulated results at z=0.5H are shown in Fig. 5 and 

6 for in-lined and staggered arrangements, respectively.  For the in-lined arrangement case, 

the temperature distribution like the pressure distribution declines gradually downward to the 

outlet section.  In the recirculation zone behind each row (2-4 rows), due to the small velocity 

distribution in the vortex, the temperature is much lower than the temperature at the main 

stream section.  For the staggered arrangement, the temperature distribution is similiar to the 

flow velocity distribution (not shown here).  The recirculation zones of the staggered 

arrangement are smaller than that of in-lined arrangement.  In the first row, the temperature 

distribution is similiar for both in-lined and staggered tubes, but after that, from the second 

row to the fourth row the temperature of staggered arrangemen is higher than the one in the 

in-lined one.  Overall, due to the geometric effect, the flow configuration is effected so much 

that the staggered arrangement has better ability to carry the heat to the downstream.  Also, 
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from the results presented, it can be concluded qualitatively that the staggered heat exchanger 

has stonger ability to transfer the heat from upstream to downstream in the domain. 

The calculated pressure coefficient of the tube surface of the in-lined and staggered 

arrangements are shown in Fig. 7 (a) and (b), respectively.  From these figures, both the in-

lined and staggered arrangements, the pressure coefficients have the similiar form of 

distributions.  In the first row, the value of pressure coefficient is maximum at the stagnation 

point, where the angle is zero shown in the figures for both cases.  The value of pressure 

coefficient decreases along the surface of the tube to the minimum value at about 80 degree, 

then the value increase a little from the angle between 80 to 180.  For in-lined arrangement, 

the  value of rows 2-4 has the same trend and almost the same magnitude.  From row 2 to row 

4, the value reduce  very small amout.  For the staggered case, the value of pressure 

coefficient all have the same trend of distribution for four rows.  The value of pressure 

coefficient decreases along the surface of the tube to the minimum value at about 80 degree, 

then the value increase a little from the angle between 80 to 180.   When the angle is less than 

80, the value reduce much more in the staggered arrangement than in the in-lined one. 

The local Nusselt number (Nu) distributionon on the surface of the four in-lined rows of 

tube is shown in Fig. 8(a),  and the result by Jung et al.19 is shown in Fig. 8(b).  The computed 

results demostrate that the local Nusselt number has the maximum value 32 occured at about 

30 degree in the first row of tube, then it reduce to near zero at about 120 degree and maintain 

the value to 180 degree.  For rows 2-4, the distribution of Nu values are almost the same for 

the three tubes.  The maximum value of the local Nu of rows 2-4 is about 12 occured at the 75 

degree..  The simulation results obtained by Jung et al.19 have the similiar trend for the local 

Nusselt number distribution even with lower maximum value for the first row but with the 

higher maximum values for the rest of rows. 

The local Nusselt number distributionon on the surface of the four staggered rows of 

tube is shown in Fig. 9(a),  and the results obtained by Jung et al.19 is shown in Fig. 9(b). For 

the first row of tube, the local nusselt number distribution obtained from the LSFEM and Jung 

et al.19 is very closed to each other.   By comparing the results from Fig. 9 (a) and (b),  it is 
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found that the local Nusselt number of staggered array is higher 30%-80% than that of in-

lined array for the tube row 2 to 4. 

        The averaged heat transfer coefficient distribution  of staggered arrangement is plotted in 

Fig. 10, in comparison with the numerical outcomes by Jung et al.19, we can see that the 

numerical results by the LSFEM are much closed to the experimental measurements. 

The distribution of averaged heat transfer coefficient of in-lined and staggered arrangements  

is depicted in Fig. 11.  At the Reynolds number ReH=200, win is 1 m/s, the averaged heat 

coefficient of staggered arrangement is about  10%-30% higher than that of in-lined 

arrangement.  The discrepancy of averaged heat transfer coefficient will be gradually reduced 

as the Reynolds number increases up to the value of 600 (win is 3 m/s).  It means that the 

influence of geometric arrangement of the tube exchangers on the averaged heat transfer 

coefficient  will be very small when the Reynolds number is greater than 600.  

5 CONCLUSIONS 

    From this simulation, there are some points can be depicted as follows: 

(1) The average heat transfer coefficient of staggered arrangement is 10%-30% higher 
than that of the in-line one at Reynolds number equal to 200.  

(2) The average heat transfer coefficient is effected more at low Reynolds number 
than at the high Reynolds number.  

(3) The distribution of pressure drop of staggered array is higher than that of in-lined 
array.  The variation of pressure coefficient at tube surface is dramatically for both 
the staggered and in-line arrangements for the angle less than 90 degree.   

(4) The local Nusselt number of staggered array is higher 30%-80% than that of in-
lined array for the tube row 2 to 4.  

Overall, the numerical results are in good agreement with the experimental measurement.  
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Fig. 1 The geometry and boundary setup of in-lined heat exchangers 
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Fig. 2 The geometry and boundary setup of staggered heat exchangers  
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Fig 3.  Pressure distribution at  z=0.5Hof in-lined arrangement ( Re 400H = ) 

 
 

 
Fig.4  Pressure distribution at  z=0.5Hof staggered arrangement  ( Re 400H = ) 

 
 
 

 
Fig.  5   Temperature distribution at  z=0.5Hof in-lined arrangement ( Re 400H = ) 

 

 

 
Fig. 6   Temperature distribution at  z=0.5Hof staggered arrangement ( Re 400H = ) 
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Fig.  7 Pressure coefficient distributions of tube surface  (a) in-lined arranement  
  (b) staggered arrangement 
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Fig.  8  Local Nusslet number distribution of staggered arrangement, (a) LSFEM 

                         (b) Result from Jang et al.19 
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Fig.  9  Local Nusslet number distribution of in-lined arrangement, (a) by LSFEM 
             (b) Result from Jang et al19 
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Fig. 10   Averaged heat transfer coefficient distribution of staggered arrangement exchanger, 
              results are compared with those of Jang et al19. 

 

 

 
  

Fig.  11   Comparison of   averaged heat transfer coefficient distribution of in-lined and  staggered 
arrangement exchanger. 

 


