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Abstract

Objective. Machine Learning methods can learn how to reconstruct magnetic resonance images (MRI)
and thereby accelerate acquisition, which is of paramount importance to the clinical workflow.
Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the
learning process. With increasing network complexity, robustness is not ensured when reconstructing
data unseen during training. We aim to embed data consistency (DC) in deep networks while
balancing the degree of network complexity. While doing so, we will assess whether either explicit or
implicit enforcement of DC in varying network architectures is preferred to optimize performance.
Approach. We propose a scheme called Cascades of Independently Recurrent Inference Machines
(CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient
descent and explicitly by a designed term. Extensive comparison of the CIRIM to compressed sensing
as well as other Machine Learning methods is performed: the End-to-End Variational Network
(E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated
on T;-weighted and FLAIR contrast brain data, and T,-weighted knee data. Both 1D and 2D
undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5 x prospectively
undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white matter lesions. Main
results. The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an
explicit DC formulation. Through its cascades, the CIRIM was able to score higher on structural
similarity and PSNR compared to other methods, in particular under heterogeneous imaging
conditions. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen
during model training, the CIRIM maintained lesion contrast while efficiently denoising the images.
Significance. The CIRIM showed highly promising generalization capabilities maintaining a very fair
trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the
clinical workflow.

1. Introduction

Magnetic resonance imaging (MRI) non-invasively images the anatomy of the human body. It is important to
note that data are acquired in the frequency domain, known as k-space. Conventionally, the measured signals
need to adhere to the Nyquist-criterion to allow for inverse Fourier transforming them to the image domain
without aliasing. Due to hardware limitations and physical constraints, however, sampling the full k-space leads
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https://doi.org/10.1088/1361-6560/ac6cc2
https://orcid.org/0000-0001-5983-0322
https://orcid.org/0000-0001-5983-0322
https://orcid.org/0000-0002-5162-8880
https://orcid.org/0000-0002-5162-8880
mailto:d.karkalousos@amsterdamumc.nl
https://doi.org/10.1088/1361-6560/ac6cc2
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac6cc2&domain=pdf&date_stamp=2022-06-08
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac6cc2&domain=pdf&date_stamp=2022-06-08
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Phys. Med. Biol. 67 (2022) 124001 D Karkalousos et al

to long scanning times. Almost 25 years ago, parallel-imaging (PI) (Sodickson and Manning 1997) was
introduced to reduce acquisition times, overcoming hardware and software limitations by applying multiple
receiver coil arrays. Each coil has a distinct sensitivity profile which can be exploited in reconstructing
undersampled data. With sensitivity encoding (SENSE) the multicoil data are transformed to the image domain
through the inverse Fourier Transform, after which a reconstruction algorithm dealiases the images based on the
coil sensitivity maps (Pruessmann ef al 1999). The combination of PI with compressed sensing (CS) (Lustig et al
2007, 2008) is now standardly applied in clinical settings, allowing for high acceleration factors by utilizing the
constrained reconstruction through a sparsifying transform.

Machine Learning (ML) methods can learn how to reconstruct images by training them on acquired data for
which areference reconstruction is available. As such the reconstruction times can be reduced, which is of
paramount importance to the clinical workflow. The UNet (Ronneberger et al 2015) may be the most popular
network in the field and the base for numerous other methods, as elaborated upon below. Its unique
architecture, with the down- and up-sampling operators and the large number of features on the output, has
made it a cornerstone approach in image reconstruction today. Although such a network architecture can
perform well, its performance is still limited due to operating only in image space without any MR physics
knowledge incorporated.

Physics-informed networks were therefore introduced, incorporating the forward model of accelerated MRI
reconstruction in the learning process. The variational network (VN) (Hammernik et al 2018) and the recurrent
inference machines (RIM) (Putzky and Welling 2017, Lonning et al 2019, Putzky et al 2019) proposed to solve
the inverse problem of accelerated MRI reconstruction through a Bayesian estimation. Alternatively, scan-
specific techniques were used to restore missing k-space from fully-sampled autocalibration data (Ak¢akaya et al
2019, Kim et al 2019, Arefeen et al 2022). Furthermore, dual-domain networks were proposed to leverage the
k-space information and perform corrections both in the frequency domain and the image domain. The
Learned Primal-Dual reconstruction technique (LPDNet) (Adler and Oktem 2018) replaced the proximal
operators in the Primal-Dual Hybrid Gradient algorithm (Chambolle and Pock 2011) with learned operators,
yielding a learning scheme combined with model-based reconstruction. The KIKI-net (Eo et al 2018) introduced
asequence of convolutional neural networks (CNN) performed in k-space (K) and image space (I). Later,
concatenations of UNets were applied to replace the sequence of CNNs in the KIKI-net (Souza et al 2020).
Finally, the Model-Based Deep Learning technique (Aggarwal et al 2019) proposed a learned model-based
reconstruction scheme involving a data consistency term.

With increasing network complexity, however, robustness is not ensured when reconstructing data unseen
during training. This especially concerns clinical data with pathology for which fully sampled reference data
cannot be obtained. This was understood in recent MRI reconstruction challenges (Beauferris et al 2020, Knoll
etal 2020, Muckley et al 2021), in which deep end-to-end schemes, such as the End-to-End Variational Network
(E2EVN) (Sriram et al 2020a), the XPDNet (Ramzi et al 2020a), and the Joint-ICNet (Jun et al 2021) allowed for
higher image quality at increased acceleration factors but not necessarily for generalization to out-of-
distribution data containing pathologies. Recurrent neural networks (RNNs), i.e. the RIM and the pyramid
convolutional RNN (Chen et al 2019), appeared to generalize well on out-of-distribution data due to their nature
of maintaining a notion of memory (Pascanu et al 2013). However, they scored lower on the trained data
compared to the previously mentioned networks, possibly due to alimited number of iterations required to
avoid gradient instabilities. Such methods would potentially benefit of increased network complexity as can be
achieved using a number of cascades of networks (Schlemper et al 2018, Qin et al 2019, Souza et al 2019). The
cascades can be considered as stacked networks targeting to resolve aliasing artifacts and to enhance denoising by
iteratively evaluating the reconstruction, but without sharing parameters through backpropagation.
Unfortunately, a solution may no longer be consistent with the acquired data with increasing network
complexity. This raises a need for embedding data consistency in deep networks while balancing the degree of
network complexity.

Data consistency (DC) can be embedded into the learning scheme in several ways, such as through gradient
descent (Hammernik et al 2018, Lenning et al 2019, Schlemper et al 2019, Sriram et al 2020a), an iterative energy
minimization process, namely variable-splitting (Duan et al 2019), generative adversarial networks (Yang et al
2018, Cole et al 2020, Dar et al 2020a, Sim et al 2020), adversarial transformers (Korkmaz et al), complex-valued
networks (Wang et al 2020, Cole et al 2021, Xiao et al 2022), transfer learning (Dar et al 2020b), manifold
approximation (Zhu et al 2018), or through sparsity (Yang etal 2017, Quan et al 2018, Sriram et al 2020b, Zhang
etal 2020, Pezzotti et al 2020). Recent work evaluated enforcing DC in three ways, by gradient descent, by
proximal mapping, and by variable-splitting (Hammernik et al 2021). It was shown that the training set could be
reduced in size by doing so. The best results were obtained when train and test domains were aligned. However,
it remains unknown whether either explicit or implicit enforcement of DC in varying network architectures is
the best approach to optimize performance.
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This work proposes a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM). The
CIRIM comprise RIM blocks sequentially connected through cascades and the efficient Independently
Recurrent Neural Network (IndRNN) (Li et al 2018) as recurrent unit. The cascades allow us to train a deep but
balanced RNN for improved de-aliasing and denoising, while maintaining stable gradient calculations. The
enforcement of DC in an implicit or explicit manner will be assessed by comparison to the E2EVN. The
networks are further compared to the CascadeNet (Schlemper ef al 2018), the KIKINet (Eo et al 2018), the
LPDNet (Adler and Oktem 2018), the RIM (Lgnning et al 2019), the RIM built with the IndRNN, the UNet
(Ronneberger etal 2015), and conventional Compressed Sensing reconstruction (Lustig et al 2008). The
performance is evaluated on multi-modal MRI datasets applying different undersampling strategies. As a clinical
application, we focused on reconstructing (out-of-training distribution) FLAIR data of multiple sclerosis
patients. Finally, reconstruction times are also assessed as a critical aspect of improving clinical workflow.

2. Methods

In this section, firstin 2.1, the MRI acquisition process is introduced. In 2.2, the background on solving the
inverse problem of accelerated MRI reconstruction through a Bayesian approach is set. In 2.2.1 and 2.2.2,
unrolled optimization by gradient descent is reviewed via the Recurrent Inference Machines (RIM) and the End-
to-End Variational Network (E2EVN). The Cascades of Independently Recurrent Inference Machines (CIRIM)
is then proposed in 2.2.3, to expand further de-aliasing capabilities of a deep trainable RNN. Furthermore,
assessment of data consistency (DC) is performed in 2.2.2 and 2.2.3 to evaluate to what extent the performance
of networks depends on the cascades or the DC formulation, or both. In 2.2.4, the loss function is explained with
respect to the network’s architecture. In 2.2.3, the experiments are described, i.e. the used datasets, the
computed evaluation metrics, and the hyperparameters to be optimized.

2.1. Accelerated MRI acquisition

The process of accelerating the MRI acquisition can be described through a forward model. Let the true image be
denotedby x € C",withn = n, x n,,andlet y € C", with m < n, be the set of the sparsely sampled data in
k-space. The forward model describes how the measured data are obtained from an underlying reference image.
For the ith coil of ¢ receiver coils, the forward model is formulated as:

=A@ + o, i =1, 1)

inwhich A: C" — C"*" denotes the linear forward operator modeling the sub-sampling process of multicoil
dataand o; € C" denotes the measured noise for the ith coil. A is given by

A = PoFoe. (2)

Here, P is a sub-sampling mask selecting a fraction of samples to reduce scan time. F denotes the Fourier
transform, projecting the image onto k-space. e: C" x C"*" — C"*" denotes the expand operator,
transforming x into x. multicoil images and is given by

E(X) = (SOOx)~~~)Sc Ox) = (x0>'~~>xc)) (3)

where §; are the coil sensitivity maps, a diagonal matrix representing the spatial sensitivities that scale every pixel
of the reference image by a complex number
The adjoint backward operator of A in (2), projecting y onto image space, is given by

A* = poF~loPT, (4)

where F ! denotes the inverse Fourier transform, and p: C"*" x C"*" +— C" denotes the reduce operator
that serves for combining the multicoil images x. into x. p is given by

p(X0..x) =y SfTox;, 5)

i=1

with H representing Hermitian complex conjugation.

2.2. The inverse problem of accelerated MRI reconstruction

The objective when solving the inverse problem of accelerated MRI reconstruction (figure 1) is to map the
sparsely sampled k-space measurements to an unaliased, highly accurate image. The inverse transformation of
restoring the true image from the set of the sparsely sampled measurements can be found through the Maximum
A Posteriori (MAP) estimator, given by

xmap = argmax, {log p (ylx) + log p (x)}, (6)
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Inverse Problem

Figure 1. The objective in accelerated MRI reconstruction is to solve the inverse problem of recovering an unaliased image (x) from a
set of sparsely sampled measurements (y). A forward model starts from the true image representation (x) (top-first), measured over

multiple receiver coils (S) (bottom-first image). It is Fourier transformed to k-space (top-second) and sub-sampled using a mask (P)
(top-third) to obtain sparsely sampled measurements (y) (top-fourth). Through the inverse Fourier transform (bottom-second) and
after combining with coil sensitivity maps (bottom-first), an aliased image is obtained (bottom-third).

which is the maximization of the sum of the log-likelihood and the log-prior distribution of y and x,
respectively. The log-likelihood expresses the log probability that k-space data y are obtained given an image x,
yielding a data fidelity term derived from the posterior p(y|x). The log-prior distribution regularizes the
solution by representing an MR-image’s most likely appearance.

Conventionally, equation (6) is reformulated as the following optimization problem

Xpap = argmity {Z d(y, Ax)) + )\R(x)}, 7)

i=1

where d ensures data consistency between the reconstruction and the measurements, reflecting the error
distribution given by the log-likelihood distribution in equation (6). R is a regularizer weighted by X\, which
constrains the solution space by incorporating prior knowledge over x.

Assuming Gaussian distributed data and ignoring the regularization term in equation (7), the negative log-
likelihood is:

log py) = 537 1469 — ®)
i=1

2.2.1. Recurrent inference machines (RIM)
The RIM (Lenning et al 2019) were originally proposed as a general inverse problem solver. The RIM targets
iterative optimization of a model with a complex-valued parametrization, requiring taking derivatives with
respect to a complex variable. This can be achieved using the Wirtinger- or CR-calculus (Amin et al 2011,
Sarroffetal 2015, Zhang and Mandic 2016). Gradient descent is performed by us using the Wirtinger derivative,
to yield areal-valued cost function of complex values. The unrolled scheme for generating updates is presented
in figure 2.

Non-convex optimization can be performed based on the approach by Andrychowicz et al (2016). The
update rules are learned by the optimizer h, which has its own set of parameters ¢p. Formulating equation (6)
accordingly, resulting updates are of the form

Xrp1 = X7 + hd)(vyle: X7)s )

atiteration 7 and for a (a priori set) total number of iterations T'.

4
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Figure 2. The recurrent inference machines unrolled over two iterations. The inputs to the model are the set of sparsely sampled
measurements (y) (top, second image), the coil sensitivities maps (S;) (top, first image), and the initial estimation (x) (top, third
image) for the estimation of the log-likelihood gradient (llg) (V};«,). Thellg is passed through a network to produce updates; the
network maintains hidden states initialized by sp = 0, s; = 0. Ateach iteration (7) the network updates itself and after total (")
iterations produces the final estimation (x7) (rightmost).

The gradient of the log-likelihood function is given by
1
Vi = A AR ) (10)

The advantage of the RIM is the explicit modeling of the update rule hy, using a recurrent neural network
(RNN). In addition to the gradient information, the model is aware of the position of the estimation in variable

space equation (9).
By inserting equation (10) into (9), the update equations are obtained, given by

so =0, xg = A*(y),

*
Sr+1 = h¢(Vy|xT) Xrs 57)5 Xr41= X7 + h(b(vﬂxp X715 5‘r+1)~ (11)

where hfg is the updated model for state variable s. Equation (11) reflects that not the prior is explicitly evaluated,
but instead its gradient when performing updates. The step size is learned implicitly in combination with the
prior. Therefore, hg, also acts as regularizer R in equation (7). Observe that the RIM contains latent (hidden)
states, representing the recurrent aspects of the network.

2.2.2. End-to-end variational network (E2EVN)
The variational network (VN) (Hammernik et al 2018) introduces a mapping to real-valued numbers, going
from mapping C" — C™ to mapping R*" — R?". x can be computed by least-squares minimization in
equation (8). As originally proposed in Chen et al (2015) and adapted by the VN, the idea is to perform gradient
descent through the iterative Landweber algorithm. By defining a regularizer R, equation (7) can be formulated
as a trainable gradient scheme with time-varying parameters.

The End-to-End Variational Network (E2EVN) (Sriram et al 2020a) uses a UNet as regularizer (Ryne;),
whose parameters are learned from the data. Unrolled optimization of the regularized problem in equation (7) is
performed through cascades, given by

k1 = ARuNer KA (7)), (12)

for cascade k, with 1 < k < K foratotal number of K cascades. Next, an explicitly formulated data consistency
step applies k-space corrections. This step is given by

Yir1 = Ve — A — ) — AQRkr0); (13)

where d(y, — y)isasoft DC term, with a weighting factor d. The optimization is initialized with the (sparsely
sampled) measurement data, y,_, = y. The eventual image is obtained via the adjoint operator xx = A( Yio)-

5
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Figure 3. Overview scheme for performing unrolled optimization through cascades. The first row represents the Cascades of
Independently Recurrent Inference Machines (CIRIM), in which a RIM is used as a regularizer (Rrpy). The prediction (Xy,) of the
first cascade (k;) is given as input to the subsequent cascade (k,), while an (optional) additional data consistency step can be performed
through an explicitly formulated term (d). After (K) cascades the network returns the final prediction (xk). The second row depicts
the End-to-end Variational Network (E2EVN), where a UNet is used as a regularizer (Ryngr). Similarly, as for the CIRIM, the updates
are passed through the cascades and the data consistency step. In the third row, first, the backward operator (A*)is shown,
transforming multicoil k-space measurements onto a coil-combined image; second, the forward operator (A) is depicted,
transforming a coil-combined image into multicoil k-space measurements; third, the log-likelihood gradient (V) reflects the

implicit gradient step of the RIM and fourth, the (optional) interleaved between the cascades DC term (d) is presented, enforcing an
explicit gradient step to the CIRIM and the E2EVN.

In this paper, we test omitting the DC step, in equation (13), and evaluate if the network’s performance is
more dependent on the cascades or the gradient step. In that case, updates are given by equation (12). Note that
the cascades effectively yield sequentially connected VN blocks, targeting de-aliasing (figure 3).

The complex-valued image to complex-valued image mapping is performed in image space by
concatenating the real and imaginary parts along the coil dimension. After the regularizer’s update in
equation (12), the image is reshaped to have the real and imaginary parts stacked to a complex (last) dimension.

2.2.3. Cascades of independently recurrent inference machines (CIRIM)

We now propose CIRIM, consisting of sequentially connected RIM blocks (figure 3). The cascades allow
building a deep RNN without vanishing or exploding gradients issues and further evaluate equation (9) through
K cascades. As such the RIM acts as regularizer (Rgjy), while the updates to the CIRIM are given by

Ri+1 = Xk + ARriv k(x1), (14)

for cascade k,with1 < k < K.

In previous work (Putzky and Welling 2017, Lenning et al 2019), the gated recurrent unit (GRU) (Cho et al
2014) was used as recurrent unit for the RIM. A key novelty of our approach is to include the Independently
Recurrent Neural Networks (IndRNN) (Li et al 2018) as a more efficient unit for balancing the network’s
complexity while increasing the number of trainable parameters through the cascades.

6
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Through the cascades the network’s size has increased, but it is unclear whether either implicitly evaluating
data consistency through the log-likelihood gradient in equation (10) is adequate, or an additional learned
gradient step is needed to constrain the solution space further. In a similar manner as in equation (13), we assess
enforcing DC explicitly and interleaved between the cascades. By doing so, we aim to understand to what extent
the network’s performance and de-aliasing capabilities depend on the cascades or the formulation of the DC.

Then, the updated prediction of the model is given by

R =AQ —dy =) — AR, 15)

with xx = A"(y). If this DC step is omitted, updates to the CIRIM are given by equation (14). Implementation
notation for the recurrent units can be found in the appendix.

2.2.4. Loss function

For calculating the loss, we compare magnitude images derived from the complex-valued estimations X against
the fully sampled reference x. As aloss function, we choose the #;-norm. The #,-norm represents the sum of
the absolute difference, given by

Lix) =% — x|. (16)

For the E2EVN and other trained models, the loss is given by equation (16). For the CIRIM, the loss is
weighted depending on the number of iterations and averaged over the K cascades, to emphasize the predictions
of the later iterations. The loss is then formulated as

c
Z (qLTZZ:ﬂ’VT | 557' - X I)

bepy — i=1
LX) e , a7

where ¢ is the total number of pixels of the image and w is a weighting vector of length T prioritizing the loss at
T—7

later time-steps. The weights are calculated by setting w, = 107 -1,

2.3. Experiments
For our experiments, we used multiple datasets as described in 2.3.1. Scanning parameters of these datasets are
givenin table 1.

Our experiments focused on assessment of the following aspects:

A. Training and validation in fully sampled and retrospectively undersampled data. The undersampling
strategy is described in 2.3.2.

B. Independent evaluation in prospectively undersampled data of Multiple Sclerosis patients containing white
matter lesions.

We trained and compared the CIRIM and the E2VN to the LPDNet, the KIKINet, and the CascadeNet
(Adler and Oktem 2018, Eo et al 2018, Schlemper et al 2018), the hyperparameters of which are described in
2.3.3. For comparing the performance of the methods regarding assessment (A) we chose the structural
similarity index measure (SSIM) (Wang et al 2004) and the peak signal-to-noise ratio (PSNR). For assessment
(B), we calculated the contrast resolution (CR), the noise in the white matter (WMN), the noise in the
background (BGN), and a resulted weighted average (WA). The metrics are described in 2.3.4.

2.3.1. Datasets
For assessment (A), three fully sampled raw complex-valued multi-coil datasets were obtained. The first dataset
was acquired in-house. To this end, eleven healthy subjects were included, from whom written informed
consent (under an institutionally approved protocol) was obtained beforehand. The ethics board of Amsterdam
UMC declared that this study was exempt from IRB approval. All eleven subjects were scanned by performing
3D Tj-weighted brain imaging on a 3.0 T Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands) in
Amsterdam UMC. The data were visually checked to ascertain that they were not affected by motion artifacts.
After scanning, raw data were exported and stored for offline reconstruction experiments. The training set was
composed of ten subjects (approximately 3000 slices) and the validation set of one subject (approximately 300
slices).

The second dataset consisted of 451 2D multislice FLAIR scans, publicly available through the fastMRI
brains dataset (Muckley et al 2020). The training set consisted of 344 scans (approximately 5000 slices) and the
validation set of 107 scans (approximately 500 slices). The number of coils varied from 2 to 24. The data were
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Table 1. Scan parameters of each dataset used for different experiments. Target anatomy, contrast, scan, and field strength are given, with resolution (res), field-of-view (FOV), time in minutes (with acceleration factor), number of coils

(ncoils) and other scan parameters.

Scan/sequence Field strength Res (mm) FOV (mm) Time (acc) Ncoils Parameters
Training, Validation
T;-Brain/T, 3D MPRAGE 3T 1.0 x 1.0 x 1.0 256 X 256 x 240 10.8 (1x) 32 FA 9°, TFE-factor 150, TI = 900 ms
T,-Knee/ T, TSE 3T 0.5 x 0.5 x 0.6 160 x 160 x 154 15.3 (1x) 8 FA 90°, TR = 1550 ms, TE = 25 ms
FLAIR-Brain/2D FLAIR 1.5T/3T 0.7 x 0.7 x 5 220 x 220 -(1x) 2-24 FA 150°, TR = 9000 ms, TE = 78-126 ms
Pathology study
MS FLAIR-Brain/3D FLAIR 3T 1.0 x 1.0 x 1.1 224 x 224 x 190 4.5 (7.5x) 32 TR = 4800 ms, TE = 350 ms, TT = 16500 ms

suiysiiand dol

100¥21 (2207) £9 101 ‘PN sAyd

v 32 sosnofexIey (I




10P Publishing

Phys. Med. Biol. 67 (2022) 124001 D Karkalousos et al

cropped in the image domain to 320 for the readout direction by the size of the phase encoding direction (varied
from 213 to 320). The cropped images were visually evaluated to not crop any tissue (only air).

The third dataset was composed of 3D knee scans of 20 subjects, available on a public repository (Epperson
etal2013). From these data, two subjects were discarded due to observed motion artifacts. The training set
consisted of 17 subjects (approximately 12 000 slices) and the validation set of one subject (approximately 700
slices).

For all datasets, coil sensitivities were estimated using an autocalibration procedure called ecalib from the
BART toolbox (Uecker et al 2015), which leverages the ESPIRIT algorithm (Uecker et al 2014). For training and
validation, slices were randomly selected by setting a random seed to enable deterministic behavior for all
methods and ensure reproducibility. Note that the validation set was only used to calculate the loss at the end of
each epoch and not included into the training set. Finally, all volumes were normalized to the maximum
magnitude.

For assessment (B), testing the methods’ ability to reconstruct unseen pathology, a dataset of 3D FLAIR data
of multiple sclerosis patients with known white matter lesions was obtained. Data were prospectively
undersampled with a factor of 7.5x based on a Variable-Density Poisson disk distribution. Originally these data
were acquired on a 3.0 T Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands) in Amsterdam
UMC, within the scope of alarger, ongoing study. The local ethics review board approved this study and patients
provided informed consent prior to imaging. A fully-sampled reference scan was also acquired and used to
estimate coil sensitivity maps using the caldir method of the BART toolbox (Uecker et al 2015). The data were
visually checked after which all subjects with motion artifacts were discarded, ending up including 18 patients
(approximately 4000 slices).

2.3.2. Undersampling

The masks for retrospective undersampling in assessment (A) were initially defined in 2D. As such the models
trained on all modalities could also be used later for reconstructing high-resolution isotropic FLAIR data for
assessment (B). The 3D datasets were first Fourier transformed along the frequency encoding axis and used as
separate slices along the two-phase encoding axes. The 2D multislice FLAIR dataset was initially Fourier
transformed along the frequency encoding axis and undersampled per slice in 2D, to train a model on an
identical contrast as in assessment (B), while also having pathology present in the data.

All data were retrospectively undersampled in 2D by sampling k-space points from a Gaussian distribution
with a full width at half maximum (FWHM) of 0.7, relative to the k-space dimensions. Hereby the sampling of
low frequencies is prioritized whereas incoherent noise is created due to the random sampling. Note thatin this
way, we abide by the compressed sensing (CS) requirement of processing incoherently sampled data (Lustig et al
2007). For autocalibration purposes, data points near the k-space center were fully sampled within an ellipse of
which the half-axes were set to 2% of the fully sampled region. Acceleration factors of 4 x, 6 x, 8 x, and 10 x were
used by randomly generating a sampling mask (P) with according sampling density (both during training and
validation).

To abide to the underlying sampling protocol, and to test the model’s ability to reconstruct undersampled
datain 1D, we performed an additional experiment with retrospective undersampling in just one dimension.
Equidistant k-space points were sampled in the phase encoding direction (Uecker et al 2014). The acceleration
factor was set to four, while the central region was densely sampled retaining eight percent of the fully-sampled
k-space.

2.3.3. Hyperparameters

For the CIRIM models, hyperparameters were selected as follows. The number of cascades K was set to 5, the
number of channels to 64 for the recurrent and convolutional layers, and the number of iterations .7 to 8. The
hyperparameter search for finding the optimal number of cascades is shown in the Supplementary Material
(available online at stacks.iop.org/PMB/67/124001 /mmedia). The kernel size of the first convolutional layer
was setto 5 X 5and to 3 x 3 for the second and third layers. The optimization of these hyperparameters is
described elsewhere (Lenning et al 2019). Next, we trained models on the Tj-Brain dataset, the T,-Knee dataset,
and the FLAIR -Brain dataset to realize the DC step from equation (15).

For the E2EVN models, we chose 8 cascades, 4 pooling layers, 18 channels for the convolutional layers, and
included the DC step from equation (13). The hyperparameter search for finding the optimal number of
cascades, pooling layers, and number of channels, is again shown in the supplementary material. Then, for
further optimization, we experimented with training models on the T-Brain dataset, the T,-Knee dataset, and
the FLAIR-Brain dataset while omitting the DC step. The inputs to the UNet regularizer were padded for
making the inputs square, setting the padding size to 11, and the outputs were unpadded for restoring the
original input size.
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For the baseline UNet, the number of input and output channels was set to 2. The number of channels for the
convolutional layers was set to 64, and we chose 2 pooling layers. Similar to the E2EVN, the padding size was set
to 11, while no dropout was applied. The selected hyperparameters for the UNet were motivated by the
configuration in Zbontar et al (2018).

For the LPDNet, the KIKINet, and the CascadeNet, the choice of the hyperparameters was motivated from
the baseline proposed models. For the LPDNet we used the same network architecture for both the primal and
the dual part, being a UNet with 16 channels, 2 pooling layers, and padding size of 11, while no dropout was
applied. The number of the primals, the duals, and the number of unrolled iterations was set to 5. Similarly, for
the KIKINet, we used the UNet architecture for the k-space and the image space networks. The number of
channels was set to 64, the number of pooling layers to 2, and the padding size to 11, without applying any
dropout. Finally, for the CascadeNet the number of cascades set to 10, using a sequence of CNNs with 64
channels and depth size of 5, without applying batch normalization.

For all models, we applied the ADAM optimizer (Kingma and Ba 2015), setting the learning rate to le-3,
except for the CascadeNet where the learning rate was set to le-5. The batch size was set to 1, allowing training
on various input sizes. The data type was set to complex64 for complex-valued data and to float16 for real-valued
data. For training models with 2D undersampling, the loss function for the CIRIM is given by equation (17) and
for all models by equation (16). For training models with 1D undersampling, we used the SSIM as loss function,
motivated by (Muckley et al 2021), as a better option for resolving artifacts introduced by equidistant
undersampling.

CS reconstructions were performed using the BART toolbox (Uecker et al 2015). Here we used parallel-
imaging compressed sensing (PICS) with a #;-wavelet sparsity transform. The regularization parameter was set
to = 0.005, which was heuristically determined as a trade-off between aliasing noise and blurring. The
maximum number of iterations was set to 60. We tested the reconstruction times of CS on the GPU (turning the
-gflagon).

All experiments were performed on an Nvidia Tesla V100 with 32GB of memory. The code was
implemented in PyTorch 1.9 (Paszke et al 2019) and PyTorch-Lighting 1.5.5 (Falcon and Team 2019), on top of
novel frameworks (Kuchaiev et al 2019, Yiasemis et al 2022), and can be found at https:/ /github.com /wdika/
mridc.

2.3.4. Evaluation metrics
For quantitative evaluation of the fully-sampled measurements, we compared normalized magnitude images
derived from the complex-valued estimations x, against the reference x and calculated SSIM and PSNR metrics.

For evaluating robustness on the 3D FLAIR MS data, we computed the contrast resolution (CR), the noise in
the white matter (WMN), the noise in the background (BGN), and a resulted weighted average (WA) of those
three metrics.

Since the data are not fully-sampled, the CR is an efficient metric to evaluate the signal level between the
white matter and the lesions. To compute CR, lesion segmentations were performed using a pretrained multi-
view convolutional neural network (MV-CNN). The MV-CNN was previously trained on combined Fast
Imaging Employing Steady-state Acquisition (FIESTA), T,-weighted and contrast-enhanced Tj-weighted data,
for eye and tumor segmentation of retinoblastoma patients (Strijbis et al 2021). For the segmentation of the
white matter, the statistical parametric mapping (SPM) toolbox was used (Penny et al 2007). The mean lesion
intensity was compared to that of presumed homogeneous surrounding white matter. To that end, the lesion
masks were dilated by four voxels and intersected with the whole brain white matter mask. The CR is then
defined as the difference between the lesion signal and the signal in the surrounding white matter, divided by the
summation of them, given by

Slesion — SWMSurroundingLesion

CR = (18)
Slesion 1 SWMSurroundingLesion
The WMN is defined as the mode of the gradient magnitude image x, given by
WMN = mode(V|x/Xwm ), (19)

where Xy is the mean WM intensity. The background noise (BGN) is computed as the 99-percentile value in
the background region, being the complement of a tissue mask.

A weighted average (WA) was eventually defined as the combination of the CR, the WMN, and the BGN after
scaling them to maximum value.
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Figure 4. Data consistency (DC) assessment for (a) Cascades of Independently Recurrent Inference Machines and (b) End-to-End
Variational Network. DC is enforced both explicitly (red) and implicitly (blue). The first row represents SSIM scores and the second
row PSNR scores. Performance is reported for models trained on the T;-Brain dataset (first column), the T-Knee dataset (second
column), and the FLAIR-Brain dataset (third column).

Finally, for every scan, the signal-to-noise ratio (SNR) was calculated as follows,

sNR = A1 (20)

~

Iyl

where t]x|is the mean value after thresholding the magnitude image x to discard the background, and |7| the

median magnitude value within a square region in the periphery of k-space, which was assumed to be dominated
by imaging noise. The threshold f was set using Otsu’s method (Otsu 1979).

3. Results

Figure 4 shows SSIM and PSNR scores upon assessing DC explicitly and implicitly for the CIRIM (figure 4(a))
and the E2EVN (figure 4(b)). The models were trained on the Tj-Brain dataset, the T,-Knee dataset, and the
FLAIR -Brain dataset.

A qualitative evaluation of the CIRIM’s and the E2EVN’s performance on the trained datasets, accelerated
with ten-times Gaussian 2D undersampling, is presented in figure 5. The CIRIM performed significantly better
than the E2EVN on the T, -Brain and the FLAIR-Brain dataset. On the FLAIR-Brain dataset, the E2EVN failed to
accurately reconstruct the center of brain, as well as to resolve noise in the White Matter lesion. On the T,-Knee
dataset, the two models performed comparably in terms of SSIM, while the CIRIM showed a slight
improvement in PSNR.

In figure 6, the CIRIM is compared to the RIM and the IRIM. SSIM and PSNR scores are reported for each
model trained on the T;-Brain dataset, the T,-Knee dataset, and the FLAIR-Brain dataset. The IRIM performed
slightly worse compared to the RIM, while the CIRIM performed best.
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Figure 5. Comparison of the CIRIM (third column) to the E2EVN (fourth column) for reconstructing ten-times accelerated slices
from the T{-Brain dataset (first row, first and second image), the T-Knee dataset (second row, first and second image), and the FLAIR-
Brain dataset (third row, first and second images). For the FLAIR-Brain dataset, the inset focuses on a reconstructed White Matter
lesion; obtained through the fastMRI + annotations (Zhao et al 2022). The arrow points out to a region of interested.
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Figure 6. Comparison of the Cascades of Independently Recurrent Inference Machines (CIRIM) (blue color), to the recurrent
inference machines (RIM) (red color), and the independently recurrent inference machines (IRIM) (green color). Performance is
reported for SSIM (first row) and PSNR (second row), on the T;-Brain dataset (first column), the T;-Knee dataset (second column),
and the FLAIR-Brain dataset (third column).

Table 2 collates overall performance of the methods on all training datasets (T, -Brain, T,-Knee, FLAIR-
Brain). The methods were evaluated with ten-times accelerated data using Gaussian 2D masking, and four times
accelerated equidistant 1D masking. For the FLAIR-Brain dataset we dropped the slices outside the head,
containing no signal. The CIRIM performed best in all settings in terms of SSIM and PSNR, while only the
E2EVN had comparable performance for the evaluation on the T,-Knee dataset. Representative reconstructions
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Table 2. SSIM and PSNR scores of all methods evaluated on the T;-Brain dataset (third and fourth column), the T5-Knee dataset (fifth and sixth column), and the FLAIR-Brain dataset (seventh to tenth column). For all datasets performance
is reported for ten times acceleration using Gaussian 2D undersampling. For the FLAIR-Brain dataset performance is also reported for four times acceleration using equidistant 1D undersampling (ninth and tenth column). The first
column reports the method’s name. The second column reports the total number of trainable parameters for each model. Best performing models are highlighted in bold. Methods are sorted in alphabetical order.

Ti-Brain Gaussian2D10x

T,-Knee Gaussian2D10x

FLAIR -Brain Gaussian2D10x

FLAIR -Brain Equidistant1 D4x

Method Params SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT

CascadeNet 1L.1M 0.922 + 0.042 302 £ 15 0.859 + 0.045 322 £26 0.872 £ 0.106 299 £5.0 0.913 £ 0.038 30.3 £ 4.6
CIRIM 264k 0.966 + 0.015 35.8 & 0.5 0.877 £ 0.039 33.7 £ 2.3 0.906 + 0.101 328 6.2 0.942 + 0.065 343 £+ 3.2
E2EVN 19.6 M 0.940 £ 0.023 318 £ 14 0.877 £ 0.039 335 £25 0.855 + 0.108 29.1 £ 4.8 0.930 £ 0.062 313 £5.1
IRIM 53k 0.963 £ 0.017 353 £ 0.6 0.870 £ 0.041 333 £23 0.892 + 0.107 32.0 £6.0 0.908 £ 0.093 320 £ 54
KIKINet 1.9M 0.925 £+ 0.040 31,1 £ 1.3 0.842 4 0.045 321 £2.0 0.829 + 0.113 28.4 + 4.8 0.919 % 0.065 30.5 &+ 4.6
LPDNet 118k 0.960 £ 0.016 35.0 £ 0.4 0.873 &+ 0.038 335 £2.0 0.858 + 0.011 29.7 £ 4.7 0.938 + 0.061 323 +£53
PICS 0.866 £ 0.032 309 £ 0.7 0.729 + 0.041 29.7 £ 43 0.816 £ 0.174 292 +£7.6 0.876 £ 0.068 30.0 £ 4.2
RIM 94k 0.963 £+ 0.017 353 +£ 0.4 0.872 £ 0.040 335 £ 23 0.898 £+ 0.103 323 £ 6.1 0.934 + 0.069 33.4 +£ 3.2
UNet 1.9M 0.874 £ 0.049 26.6 £ 3.1 0.846 + 0.048 314 £ 34 0.795 £ 0.116 269 £ 4.1 0.909 + 0.064 294 £ 43
Zero-Filled 0.766 %+ 0.084 17.3 £2.0 0.674 4 0.031 17.3 £ 1.1 0.703 £+ 0.120 16.8 + 4.2 0.806 + 0.062 21.5 + 3.8
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Table 3. Independent evaluation of model performance (first column) on the 3D FLAIR MS Brains dataset for

different training datasets (second column). The reported figures collate: contrast resolution (CR, higher is

better) of MS lesions, gradient magnitude white matter noise (WMN, lower is better), background noise (BGN,
lower is better) and weighted average (WA, with negative CR and relative to maximum scores such that lower is
better), respectively. For each model and dataset, the mean and standard deviation on each metric is given. The
best scores are underlined and other high scores highlighted in bold. Methods are sorted in alphabetical order.

FLAIR MS Brains—Variable Density Poisson 7.5x

Method Trained Dataset CR7T WMN | BGN | WA |
CascadeNet Ti-Brain 0.128 4+ 0.028 0.135 4+ 0.022 0.292 £+ 0.078 1.08
T,-Knee 0.087 + 0.040 0.290 + 0.059 0.302 £ 0.083 1.43
FLAIR-Brain 0.145 4+ 0.030 0.126 4+ 0.016 0.265 £+ 0.071 0.96
FLAIR-Brain 1D 0.139 4+ 0.025 0.121 4+ 0.016 0.309 £ 0.068 1.05
CIRIM Ty-Brain 0.179 + 0.025 0.145 + 0.030 0.172 £+ 0.092 0.69
T,-Knee 0.097 4+ 0.020 0.285 4+ 0.044 0.322 4+ 0.053 1.42
FLAIR-Brain 0183 +0.025 0131 £0029 0104 £0085 055
FLAIR-Brain 1D 0.173 + 0.030 0.110 + 0.017 0.137 £+ 0.074 0.62
E2EVN Ti-Brain 0.145 4+ 0.034 0.144 4+ 0.010 0.359 + 0.095 1.13
T,-Knee 0.109 £+ 0.028 0.301 £ 0.042 0.576 £+ 0.352 1.79
FLAIR-Brain 0.159 + 0.041 0.116 + 0.014 0.358 £ 0.064 1.03
FLAIR-Brain 1D 0.134 4+ 0.035 0.141 4+ 0.020 0.360 + 0.058 1.17
IRIM T;-Brain 0.159 4+ 0.025 0.128 4+ 0.027 0.200 £ 0.089 0.80
T,-Knee 0.078 + 0.021 0.260 + 0.122 0.348 £+ 0.061 1.51
FLAIR-Brain 0.169 4+ 0.027 0.145 4+ 0.020 0.181 4+ 0.126 0.74
FLAIR-Brain 1D 0.176 4+ 0.025 0.151 4+ 0.020 0.213 £+ 0.081 0.77
KIKINet Ty-Brain 0.117 + 0.032 0.184 + 0.042 0.432 4+ 0.075 1.40
T,-Knee 0.149 4+ 0.026 0.235 4+ 0.032 0.294 + 0.087 1.10
FLAIR-Brain 0.105 4+ 0.077 0.175 4 0.040 0.626 £+ 0.141 1.75
FLAIR-Brain 1D 0.103 + 0.026 0.144 + 0.035 0.352 4+ 0.060 1.29
LPDNet T-Brain 0240 £ 0.046 0.206 =+ 0.029 0.210 =+ 0.056 0.56
T,-Knee 0.030 £ 0.151 0.126 4+ 0.031 0.204 £ 0.065 1.34
FLAIR-Brain 0.117 + 0.024 0.099 + 0.012 0.332 4+ 0.083 1.15
FLAIR-Brain 1D 0.066 4+ 0.029 0.129 + 0.024 0.338 4+ 0.070 1.40
RIM T;-Brain 0.178 4+ 0.025 0.168 £+ 0.026 0.170 £ 0.093 0.71
T,-Knee 0.091 + 0.036 0.149 + 0.030 0.251 4+ 0.091 1.18
FLAIR-Brain 0.197 £ 0.029 0.175 + 0.025 0.134 + 0.078 0.58
FLAIR-Brain 1D 0.183 + 0.027 0.158 4+ 0.026 0.165 £+ 0.074 0.67
UNet Ti-Brain 0.182 + 0.034 0.174 + 0.022 0.276 + 0.069 0.87
T,-Knee 0.125 4+ 0.040 0.924 4+ 0.084 0.285 £ 0.089 1.93
FLAIR-Brain 0.087 + 0.027 0.079 % 0.010 0.625 + 0.137 1.72
FLAIR-Brain 1D 0.065 + 0.021 0.105 + 0.023 0.348 4+ 0.070 1.40
PICS 0.178 4+ 0.025 0.140 4+ 0.018 0.147 £+ 0.092 0.64
Zero-Filled 0.072 4+ 0.023 0.092 £+ 0.017 0.372 £ 0.064 1.39

can be found in the supplementary material, as well as further evaluation for four-, six-, and eight-times
acceleration for Gaussian 2D undersampling.
The trained models on each dataset and undersampling scheme were used to evaluate performance on out-
of-training distribution data, containing MS lesions. As summarized in table 3, the performance is evaluated
quantitatively by measuring the CR of the reconstructed lesions, the WMN, the background noise (BGN) and a
WA. A combination of high CR,low WMN and low BGN yields alow WA and reflects highly accurate
reconstruction (figures 6, S7, S8), such as in the CIRIM FLAIR-Brain model and PICS. The models trained on
the FLAIR-Brain, the FLAIR-Brain 1D, and the Tj-Brain datasets scored high on CR and low on WMN
compared to the T,-Knee trained models. The CIRIM and the RIM achieved the lowest BGN. The CascadeNet,
the E2EVN, the KIKINet, and the UNet models reported high BGN, in general corresponding to more aliased
reconstruction. The LPDNet achieved high CR and relatively low WMN and BGN, but the observed
reconstruction quality was poor. This also highlighted the need for combined metrics and qualitative evaluation

to evaluate performance.

Figure 7 shows reconstructions of a coronal slice from the MS FLAIR-Brain dataset. Visually, the CIRIM,
PICS, RIM, and IRIM reconstructions appear similar. The E2ZEVN and the CascadeNet showed inhomogeneous
intensities and high contrast deviations. The LPDNet showed more aliased reconstructions, with lower contrast
levels. The KIKINet and the UNet seemed in our experiments not able to resolve background noise and in

general resulted in more distorted images. Example reconstructions of two more subjects including axial and
sagittal plane reconstructions can be found in the supplementary material.
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Figure 7. Reconstructions of a representative coronal slice of a 7.5x accelerated 3D FLAIR scan of a MS patient. Segmented MS lesions
are depicted with red colored contours. Shown is the aliased linear reconstruction (first row-first image), PICS (first row-second
image), and models’ reconstructions on each trained scheme: the FLAIR-Brain dataset with Gaussian 2D undersampling (second-last
row, first column), the T;-Brain dataset with Gaussian 2D undersampling (second-last row, second column), the FLAIR-Brain dataset
with equidistant 1D undersampling (second-last row, third column), and the T;-Knee dataset with Gaussian 2D undersampling
(second-last row, fourth column). The inset on the right bottom of each reconstruction focuses on a lesion region with high spatial
detail.
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Figure 8. Inference times for reconstructing one volume from the FLAIR brains dataset using different methods. The x-axis represents
methods’ number of trainable parameters. The y-axis shows the run time in seconds.

Finally, in figure 8, the reconstruction times of all methods are reported. As input, one volume from the
trained fastMRI FLAIR brains dataset was taken, consisting of fifteen slices cropped to a matrix size of
320 x 320. The KIKINet, PICS, and the LPDNet were the slowest methods, requiring 247 ms, 245 ms, and
237 ms respectively to reconstruct the volume. The CIRIM needed 139 ms, the RIM 48 ms, the E2ZEVN 44 ms,
the CascadeNet 42 ms, the IRIM 28 ms, and the UNet 8 ms.

4. Discussion

In this paper, we proposed the CIRIM, for a balanced increase in model complexity while maintaining
generalization capabilities. We assessed DC both implicitly through unrolled optimization by gradient descent
and explicitly by a formulated term. Robustness was evaluated by reconstructing sparsely sampled MRI data
containing unseen pathology. The CIRIM was extensively compared to another unrolled network, the E2ZEVN,
and arange of other methods.

In experiments reconstructing brain and knee data containing different contrasts, the proposed CIRIM
performed best, with promising generalization capabilities. On the T,-knee dataset, the E2EVN performed
equivalently to the CIRIM, while on the Tj-brain and the FLAIR-brain datasets for eight- and ten-times
acceleration, the measured PSNR dropped by approximately 5% of what compared to what. Visually, this
reflected in missing anatomical details such as vessels. The LPDNet, the RIM, and the IRIM performed
comparable but slightly worse than the CIRIM. The CascadeNet and the KIKINet, dropped further in SSIM and
PSNR on all trained datasets, resulting in more noisy reconstructions. PICS and the UNet showed most of the
time overly smoothed results. Interestingly, for 1D undersampling the CascadeNet showed comparable
performance to the CIRIM, but it was more sensitive to banding artifacts.

The RIM-based models (RIM, IRIM, CIRIM), trained on FLAIR and T;-weighted brain data, and PICS,
could accurately reconstruct Multiple Sclerosis lesions unseen during training. Spatial detail when
reconstructing MS lesions was preserved with better denoised images, compared to, e.g. the CascadeNet. The
E2EVN and the LPDNet did not show any significant improvement in this respect. The reason for such behavior
might be that these scans, in contrast to the training data, came without a fully sampled center since a separate
reference scan was acquired. This deviation from the training data could explain the lower performance of some
of the models. Conditional deep priors tend to learn dealiasing of undersampled acquisitions on images that they
have trained on. In such a situation, learning k-space corrections might be disadvantageous. The KIKINet and
the UNet performed significantly worse than the other methods, thereby appearing to be sensitive to noisy
inputs. Furthermore, the models trained on knees were inadequate in reconstructing MS lesions, indicating
training anatomy preference rather than generalization. Remarkably, this was also realized by the performance
of the networks trained on the FLAIR-Brain datasets with equidistant 1D undersampling. All models generalized
well on reconstructing the MS data, despite the deviating undersampling scheme (variable density poisson
samplingin 2D).
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The SNR, the number of coils, and the size of the training dataset appeared to be important parameters that
influenced performance. This is to be seen in the reported SSIM and PSNR scores. Here, the E2EVN models
performed highest on the largest dataset, i.e. the T,-weighted knee dataset, which contained approximately
12 000 slices. However, all models experienced lower performance due to lower SNR (17.1 4 4.5) and number
of coils (8), compared to the Tj-weighted brain dataset (3000 slices, SNR 0of 25.7 4 5.4, and 32 coils). The FLAIR
brain dataset, despite its relatively high SNR (5000 slices and SNR of 23.6 £ 4.8), did not necessarily yield high
quality in reconstructed images. The deviating number of coils (from 2 to 24), field strength (1.5 Tan 3 T), and
matrix sizes, resulted in a challenging dataset to converge with when training a model. In this situation, the
advantage of implementing cascades was most apparent, making the CIRIM being robust with all tested
acceleration factors (4x, 6x, 8x—supplementary material and 10x—table 2). PICS and the UNet scored overall
lower, illustrating that learning a prior with an efficient model is advantageous.

Importantly, our results show that the RIM-based models can reconstruct image details unseen during
training. The RIM explicitly contains a formulation of the prior information of an MR image and acts as
optimizer itself. Unrolled optimization is performed by gradient descent (Putzky and Welling 2017), such that
DCis enforced implicitly. The CIRIM allows to further denoise the reconstructed images through the cascades
without sharing parameters, similar to previously proposed deep cascading networks (Schlemper et al 2018,
Huangetal 2019, Chen et al 2021). The cascades thereby allowed us to train an overall deep network of multiple
connected RNNs that captures long-range dependencies while avoiding vanishing or exploding gradients. The
E2EVN also performs unrolled optimization through cascades, but explicitly enforces DC with a
formulated term.

Recent work has pointed out the importance of benchmarking and quantifying the performance of deep
networks regarding the GPU memory required for training, the inference times, the applications, and the
optimization (Wang et al, Ramzi et al 2020b, Hammernik et al 2021). With regard to inference times, methods
such as the LPDNet and the KIKINet did not seem to improve in speed over the conventional CS algorithm,
implemented on the GPU. The reason for these methods being slower is that they consist of deep feed-forward
large convolutional layers. The RIM, the E2EVN, and the CascadeNet reduce reconstruction times by a factor of
six compared to CS. Here, inference is performed over an iterative scheme, in which sharing of parameters is
optimized either through time-steps or cascades. The IRIM and the UNet even further reduce the time by a
factor of two and six, respectively. The CIRIM serves as a balanced deep network, being two times faster than the
slowest methods and two times slower than the other cascading networks. The performance gain in further
denoising and generalization capabilities may counterbalance the need for longer inference times.

5. Conclusion

The CIRIM implicitly enforces DC when targeting unrolled optimization through gradient descent. The
comparable E2EVN performed best when DC was explicitly enforced, performing well on the training
distributions. However, it appeared to be inadequate on reconstructing out-of-training distribution data
without a fully sampled center. The CIRIM performed best on all training datasets, tested undersampling
schemes and acceleration factors. Also, it showed robust performance on reconstructing accelerated FLAIR data
containing MS lesions, achieving good lesion contrast and efficient denoising compared to PICS, the baseline
RIM and the IRIM. In contrast, methods such as the CascadeNet and the LPDNet were sensitive to highly noisy
untrained data, showing limited generalization capabilities. The KIKINet and the UNet tended to oversimplify
the reconstructed images, performing markedly worse than rest methods. To that extent, the impression is that
evaluating the forward process of accelerated MRI reconstruction, frequently through time, is of great
importance for generalization in other settings. The implemented cascades and the application of the RIM to a
deeper network allowed backpropagation on a smaller number of time-steps but on higher frequency for each
iteration. Thus, a key advantage of the CIRIM is that it maintains a very fair trade-off between reconstructed
image quality and fast reconstruction times, which is crucial in the clinical workflow.
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Appendix.

Gated recurrent unit (GRU)
The GRU has two gating units, the reset gate and the update gate. These gates control how the information flows
in the network. The update gate regulates the update to a new hidden state, whereas the reset gate controls the
information to forget. Both gates act in a probabilistic manner.

The activation of the reset gate r at iteration 7, for updating equation (9), is computed by

= U(W’[ST*I) x’T] + br)

o is thelogistic sigmoid function, x. and s, _ are the input and the previous hidden state, respectively. W, and
b, are the weights matrix and the learned bias vector.
Similarly, the update gate z is computed by

z: = c(W,[sr-1, x7] + b,).
The actual activation of the next hidden state s.; is then computed by
s;=(1—=2;) Os;1+2; O3,
where © represents the Hadamard product and $7 is given by

% = tanh (Wil © s,—1, X;] + by).

Independently Recurrent Neural Network (IndRNN)
The IndRNN addresses gradient decay over iterations, following an independent neuron connectivity within a
recurrent layer. The update on equation (9) and at iteration T is given by

St = (j'(‘/vx-r +u®s;1+ b)),

where W is the weight for the current input, u is the weight for the recurrent input, and b is the bias vector.
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