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Introduction

1. A new cardinal invariant

In chapter 1 a cardinal number tf(X') is associated with a topological
space X. The cardinal number tf(X) is defined as the minimal size of a
set F of continuous functions from X into itself with the property that
for every two points z,y € X, there exists a function f € F such that
f(z) = yor f(y) = z. Any set of functions with these properties is
called a transitive set of functions on the space X. In [15] Dow showed
that for the spaces SN and N* the minimal size of a transitive set of
functions is at least ¢*, the least cardinal larger than the cardinality
of the reals. For some Cook continuum X, tf(X) equals ¢, as by [12]
these (compact metric) the only continuous self maps are the identity
and the constant mappings.

Van Mill asked us what the cardinal ¢f(C') would be, where C is the
Cantor set. It is obvious that tf(C') is at most ¢ and Van Mill observed
that it also must be the case that tf(C) is at least N;.

In chapter 1 it is shown that the cardinal ¢ is at least equal to
tf(C) and at most equal to tf(C)*. It is also shown that the equality
tf(C) = ¢ is independent of ZFC.

2. Wallman spaces

A family F of subsets of a space X is called a lattice of sets if it
is closed under finite unions and finite intersections. A subfamily u of
nonempty members of the lattice F is called a F-filter if

(1) for all U and V in u we have that U NV is in «,
(2) foralU e uand all V,if U CV then V is in u.

The F-filter u is called an F-ultrafilter if it is not properly contained
in any other F-filter.

The filter concept was introduced in Topology in order to study
convergence. Suppose that the lattice F contains a neighborhood base
for every point of the space X. A filter u is said to converge to a point
z if it contains all neighborhoods of z, it is said to cluster to a point z
if every member of u meets every neighborhood of x, i.e. if x belongs
to ({clU : U € u}.

In addition to convergence, collections of F-ultrafilters have been
used to construct topological spaces. Let Ult(F) denote the set of all
F-ultrafilters over the space X. For U € F let U* be the set defined

1



2 Chapter . Introduction

by U* = {u € Ult(F) : U € u}. Taking {U* : U € F} as a base for the
closed sets gives us a topology on the set Ult(F).

Stone introduced this topology with F the family of all clopen sub-
sets of X. He showed that Ult(F) is compact and that if X has a base
for the open sets of clopen sets then X can be embedded in Ult(F).

In [55] Wallman introduced this topology where F is the family
of all closed subsets of some T)-space X. He showed that in that case
Ult(F) is compact and contains X as a dense subspace. He also showed
that if X is normal then Ult(F) would be Hausdorff, in this case U*
is the closure of U in the space Ult(F) and Ult(F) is the Cech-Stone
compactification SX of X. Wallman used this compactification to show
that one cannot distinguish between T3-spaces and compact spaces by
means of homology theory.

3. Elementary reflection of topological properties

Several mathematicians have been investigating ways to use model
theory in Topology.

The method of Bankston is taking Wallman representations of ul-
trapowers or ultraproducts of lattices (see for instance [4] and [5]).

Tall et al. take an arbitrary space X with topology 7, put this
in an elementary substructure 9 of some H(#) (@ large enough), and
investigate what kind of properties the topological space (X,7) and
X NIt with the topology induced by the base 7 N M have in common
(see for instance [32] and [54]).

Bandlow investigates compact spaces X by embedding them into a
Tychonoff cube I* for some &, taking some elementary substructure 9
of some H(#) (0 large enough) and see what properties the compacta
X and the projection monn.[X] (see for instance [2] and {3}).

In this thesis another model theoretic approach to investigate com-
pact (connected) Hausdorff spaces is considered. Given a compact
Hausdorff space, consider the lattice of all closed subsets 2%, the ul-
trafilter space Ult(2%) is homeomorphic to the space X, as all points
z € X are uniquely defined by the closed sets of X containing them and
every ultrafilter in Ult(F) is fixed. Taking an elementary sublattice L
of 2% gives us a lattice whose corresponding Wallman space, denoted
by wL is compact Hausdorff and has a base for its closed sets which
is isomorphic with the lattice L. Topological properties that must be
shared between the spaces X and wL are called elementarily reflected
properties. Lots of properties of compact spaces are elementarily re-
flected, these kinds of results are mentioned in 2.

Further investigations on connected compact Hausdorff spaces in-
clude the relation between span an chainability of (metric) continua in
chapter 3 and a theorem of Mac¢kowiak and Tymchatyn in chapter 4.
In chapter 5 we show how two other known results can be proved more
efficiently by model-theoretic means.
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4. Span versus chainability

Mappings f,g : X — Y are called disjoint if f(z) # g(z) for
all x € X. The mappings f and g can be seen as subsets of the
product space X x Y and then disjoint means that these sets have
empty intersection. Lelek considered mappings from X to Y as points
of the function space XY'; the presence of a metric structure on XY
gave rise to the question of how far apart the distance between two
disjoint mappings from X onto Y can be. Lelek introduced the notion
of span of a space. Roughly speaking, the span of a country Y is a
maximal number d such that two persons can pass over the same part
of Y, keeping the distance at least d from one another.

If X is a metric space and d is the metric on X, the span of X is
defined by

inf{e : there exists a subcontinuum Z of X x X such that
m|[Z] = ma[Z] and d(z1,z2) > € for each (z4,22) € Z},

where 7; and 7, are the standard projections onto the axes. The span
is a monotone function, if X C Y then the span of X is at most the
span of Y. If A is a connected space and f;, fo : A — X are continuous
maps such that fi{A] = f2[A] then the span of X is at least equal to

inf d(fi(a), fa(a)).

As the projection maps 7; and wy are continuous, we can say that the
span of the space X is equal to

sup inf d(f1(a), f2()),
Afi a€

where A ranges over all the connected spaces and f; (¢ = 1,2) over
all continuous mappings of A into X. Lelek also showed the following
theorem.

THEOREM 0.1 (Lelek [38]). If f : X — Y is a continuous map
between metric spaces and X is compact, then there are points x and
x' such that

dx(z,z') > the span of X and dy(f(z), f(z')) < the span of Y.

Thus, if the span of Y is zero, there is a point y € Y such that the span
of X is at most the diameter of f~1(y).

This theorem implies that the span of chainable continua is zero,
as on these spaces there exist real continuous functions with arbitrary
small point inverses.

In [39] Lelek posed the following question

QUESTION 0.2 (Lelek [39]). If a metric continuum has span zero,
is it also chainable?
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This problem has become a classic in the theory of continua. A
positive answer would complete the classification of homogeneous plane
continua (see [52] and also [13]) It is known that continua of span zero
are tree-like (see [50]).

Weaker notions of span have been introduced to find an answer to
question 0.2 like

(1) surjective span, where the subcontinuum Z in the definition of
span of the space X is projected onto X by both projections,

(2) surjective semi span, where Z projects onto X by at least one
of the projection maps,

(3) symmetric span, where Z is symmetric, this means that if
(x,y) € Z then also (y,z) € Z.

Another result on span states that the continua of surjective span zero
are also tree-like (see [33]).

There are more questions on the different kinds of span of a metric
continuum, but we will only be interested in question 0.2.

We broaden our horizon by considering arbitrary continua. Extend-
ing the notions of span and chainability to include non-metric continua,
we have that chainability still implies span zero for (arbitrary) con-
tinua. Without the metric we can only distinguish between span zero
and span nonzero.

In chapter 3 we translate the properties of chainability and having
span zero or nonzero for continua in the lattice language. We will
investigate if these are properties that are elementary reflected. If
they are, any non-chainable continuum of span zero would gives us, by
the use of Wallman’s representation theorem and taking a countable
elementary sublattice, a counterexample to Lelek’s question 0.2.

After extending the notions of span and chainability to arbitrary
compact spaces, we are interested in the span and chainability of the
continua H* and I,. As these spaces are connected with the unit in-
terval I (see [24] and [46]), which is a chainable metric compact space
hence of span zero, we wondered if this would give us continua which
would be non-chainable but of span nonzero. The results of this inves-
tigation are in chapter 3.

5. The Mackowiak-Tymchatyn theorem

A continuum is said to be decomposable if it has two proper sub-
continua that together cover the whole continuum, if there are not two
proper subcontinua with this property we say that the continuum is
indecomposable. A hereditarily indecomposable continuum is a contin-
uum for which every subcontinuum is indecomposable.

In (43] Mackowiak and Tymchatyn proved the follwoing theorem.

THEOREM 0.3 ([43]). Every metric continuum is a weakly confluent
image of some hereditarily indecomposable melric curve.
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The proof runs along the following lines. By a result from [23]
every metric continuum can be embedded in a compactification [0, co)
of the half line such that each continuous mapping from some metric
continuum onto 7[0,00) is weakly confluent. Fix some hereditarily
indecomposable metric continuum M, with dim(M) = 3 and some
weakly confluent onto mapping f : M — I3 (these exist by [11], [30]
and [47]). Next fix some curve K C I3 and a monotone mapping g
from K onto the Hilbert cube @, which, without loss of generality
contains 7[0,00). Now g7![y[0,00)] C K is a continuum and there
exists some subcontinuum N of M such that f[N] = g~ ![y[0, 00)]. Now
(h=go f) ] N is a weakly confluent map. With the result from [41]
stating that every hereditarily indecomposable metric continuum is an
image under an open monotone map of a hereditarily indecomposable
metric curve, Theorem 0.3 is proved.

In the same paper Mackowiak and Tymchatyn asked the question
whether their result was true for every Hausdorff continuum. In [25]
Hart, van Mill and Pol extended theorem 0.3.

THEOREM 0.4 ([25]). Every continuum is a weakly confluent image
of some 1-dimensional hereditarily indecomposable continuum of the
same weight.

The proof of this theorem used Wallman’s representation theorem
for lattices. Considering the lattice of all closed sets of some contin-
uum X, the authors translated the properties of being a 1-dimensional
hereditarily indecomposable continuum and the property of being the
pre-image of the continuum X by a weakly confluent map into the
lattice language. This gave the authors a theory, which, if consistent
would provide (by Wallman’s representation theorem) some continuum
with the desired properties. By the compactness and completeness the-
orems of model theory it was only necessary to show the consistency
of finite subsets of the theory. Roughly said, this was done using the-
orem 0.3, as any finite subset of the theory does mention only finitely
many closed sets and these finite number of closed sets form a finite
lattice which corresponds to some metric continuum.
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CHAPTER 1

A new cardinal invariant

1. Introduction

In [15] Dow gave a proof of the Rudin-Shelah theorem on the ex-
istence of 2° points in SN that are Rudin-Keisler incomparable. The
proof actually shows that whenever a family F of ¢ continuous self-
maps of AN (or N*) are given there is a set S of 2° many F-independent
points in ON (or N*). This suggests that we measure the complexity
of a space X by the cardinal number tf(X) defined as the minimum
cardinality of a set F of continuous self maps such that for all z,y € X
there is f € F such that f(z) =y or f(y) = x. Let us call such an F
transitive. Thus Dow’s proof shows tf(3N), tf(N*) > ¢*.

We investigate tf(C'), where C' denotes the Cantor set. Van Mill
observed that tf(C') > Wi; a slight extension of his argument shows
that MA(countable) implies tf(C) = ¢. Our main result states that
in the Sacks model the continuous functions on the Cantor set that
are coded in the ground model form a transitive set. Thus we get the
consistency of tf(C) = ®; < Ny =¢.

The gap between t§(C) and ¢ cannot be arbitrarily wide, because
Hajnal’s free set lemma implies that for any space X one has |X| <
tH(X)T.

In [45] Miller showed that it is consistent with ZFC that for every
set of reals of size continuum there is a continuous map from that
set onto the closed unit interval. In fact he showed that the iterated
perfect set model of Baumgartner and Laver (see [7]) is such a model,
and noted that the continuous map can even be coded in the ground
model.

Here we will show that in the iterated perfect set model, for every
two reals x and y there exists a continuous function with code in the
ground model] that maps z onto y or y onto x.

DEFINITION 1.1. Let X be a topological space. By a transitive set
of functions F on a space X we mean a set of continuous functions
from X to itself such that for every two points z and y of X there
exists an element f € F such that f(z) =y or f(y) = « holds.

Let us also define the cardinal number tf(X) by

tf(X) = min{|F| : F is a transitive set of functions of X}.
9



10 Chapter 1. A new cardinal invariant

The chapter is organized as follows: in section 2 we prove some
simple facts on tf, the minimal size of transitive sets of functions. We
also state and prove the main theorem of this chapter in section 2,
using theorems proved later on in section 3. As a corollary to the
main theorem we have the consistency of tf < ¢ with ZFC. Finally in
section 4 we will make a remark on the effect on tf when we add &
many Sacks reals side-by-side to a model of ZFC + CH.

2. Some equations concerning tf(C)

We will now prove some relations concerning the cardinals tf(C), ¢
and ®;. The first is Van Mill’s observation alluded to above.

THEOREM 1.2. tf(C) > ;.

PROOF. Suppose F is a countable set of functions. Let A; denote
the set {z : int(f~!(z)) # 0} for every f € F. Every Ay is at most
countable because 2 is separable. So choose an z in 2 \ ;e Ay,
then we know that for every f € F the set f~(z) is nowhere dense in
2¥. For such an z the set {f~!(z) : f € F} is countable. Because the
set {f(z) : f € F} is also countable the Baire category theorem tells
us that the set 2\ ;e ({f(2)} U f'(2)) is nonempty, thus showing
that F is not transitive. O

Recall that the cardinal number 9 is the dominating number, the
minimal cardinality of a subset D of “w such that any f € “w is
eventually dominated by some element d of D, this means that there
is an n < w such that f(m) < d(m) for all m > n. Geschke, Goldstern
and Kojman proved in [20] the following relation between the cardinal
numbers tf(C) and 0.

THEOREM 1.3 ([20]). (C) > 0.

This theorem will help in the determination of the cardinals tf(R),
tf(w”) and tf([0,1]) in section 4 (see theorem 1.23). The following
theorem shows that the cardinals tf(C) and ¢ cannot differ very much
from each other, in fact if they are different then ¢ is tf(C)’s successor.

THEOREM 1.4. tf(C) < ¢ < tf(C)*.

REMARK 1.5. The proof of theorem 1.2 shows that tf(C) is at least
equal to the minimum number of nowhere dense sets needed to cover C.
Theorem 1.4 and MA (countable) then imply the equality (C) = c.

REMARK 1.6. If one replaces ‘nowhere dense’ by ‘measure zero’ in
the proof of theorem 1.2 then one finds that tf(C) is also at least as
big as the minimum number of measure zero sets needed to cover the
Cantor set C.
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The second inequality in theorem 1.4 is a consequence of the fol-
lowing lemma. The proof of this lemma can be found in [56].

For this we need some more notation. Let S be an arbitrary set. By
a set mapping on S we mean a function f mapping S into the power
set of S. The set map is said to be of order X if A is the least cardinal
such that [f(x)| < A for each z in S. A subset S’ of S is said to be free
for f if for every x € S’ we have f(z) NS’ C {x}.

LEMMA 1.7 (Free set lemma). Let S be a set with |S| =k and f a
set map on S of order A where A < k. Then there is a free set of size

K for f.

ProOOF OF THEOREM 1.4. The proof of the first inequality is easy.
We simply have to observe that the set of all constant functions on the
reals is a transitive set of functions.

Now for the second inequality. Striving for a contradiction suppose
that ¢ > tf(C)**. Let F be a transitive set of functions such that
|F| = tf(C). We define a set map F on the reals by F(z) = {f(z) :
f € F} for every z € 2“. Because |F(z)| < tf(C), this set map F is
of order t(C)*, which is less than ¢. According to the free set lemma
there exists a set X C 2 such that |X| = ¢ and for every z € X we
have F(z) N X C {z}. This is a contradiction, because every two reals
in X provide a counterexample of F being a transitive set. O

This theorem also gives us the following corollary.

COROLLARY 1.8. If V is some model of ZFC such that ¢ is a limit
cardinal or equal to Xy, then V is a model of the equation tf(C) = c.

3. Consistency of tf(C) < ¢

In this section we will prove that Baumgartner and Laver’s model
V., is a model of ZFC where tf(C) is smaller than the cardinal ¢. We
will show this by proving that given any two reals in V,, the extension
of a model V of ZFC after adding iteratively a many Sacks reals, there
is a code in the ground model V' of a continuous map between two
closed nowhere dense disjoint subsets of the Cantor set such that in
the extension V,, this continuous map maps one of the reals onto the
other. Then, given that V is a model of CH and V,,, models that ¢
equals Ng, we see that V,,, is a model of tf(C) < ¢.

3.1. Preliminaries. For the rest of this paper let V be a model of
ZFC. We will use the same notations and definitions as Baumgartner
and Laver in [7], so for any ordinal a we let P, denote the poset that
iteratively adds o Sacks reals to the model V, using countable support.
Let P, = IP, where P denotes the 'normal’ Sacks poset for the addition
of one Sacks real.

Let G, be P,-generic over V', we define V,, by V,, = V[G,] for every
ordinal . Note that if 3 < o we have that G, [ § is a Pg-generic subset
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over V. If we denote the (a+ 1)-th added Sacks real by s, then we can
also write Vo, = V{(sg: < a)).

Assuming that V is a model of CH, the proof of the following facts
can be found in [7}:

(1) Forcing with P, does not collapse cardinals for a < ws.
(2) V., is a model of ZFC + 2% = R,.
(3) Let Pg denote the result of defining Ps in V,. Then for any
o, 8> 1, by “Pgosp is isomorphic to Pg”.
We note that Sacks reals are added at successor ordinal stages only.
Because we force with countable support there are reals added at count-
able limit stages, which are obviously not Sacks reals, and at uncount-
able limit stages no reals are added.
We make the following definition. For any o € <“2 we let I(0) € w
denote the length of 0. So for every o € <“2 we have o € 42,
To show how we construct our continuous maps we reprove the
familiar fact that Sacks reals are minimal, see [31].

LEMMA 1.9. Suppose = is a real in V|G] \ V, where G is a P-
generic filter over V, and that p € P is such that p I+ “¢ ¢ V”. Then
there erists a ¢ > p and a homeomorphism f defined in V such that
gk “f(8) = 2". Here s denotes the name of the added Sacks real.

ProoF. We will construct a fusion sequence {(p;,n;) : i € w} such
that each p;y; will know all the first ¢ splitting nodes of every branch
of the perfect tree p; and (piy1,niy1) > (i, n;) for every 1.

Because p forces that £ is a new real, there exists an element ug €
<w2 with maximal length mg, such that p - “Z [ mg = ug” and p does
not decide &(my). There exist p), Py > po such that puy I+ “c(mg) =
k” for k € {0,1}. Without loss of generality the stems of pi) and p()
are incompatible. Let no = min{n € w : pyg) [ n # pp) [ n} and let po
denote the element pygy U p(yy.

Now assume we have p; = |J{p, : 0 € **12}. Consider 7 € *+!2, we
have an element u, € <“2 of maximal length m, such that p, IF “& |
m, = u,”. There exist pr—~o, pr~1 > p- such that p—~ IF “Z(m,) = k"
for k € {0,1}. Again without loss of generality the stems of p,~¢
and p,~; are incompatible. Let n, denote the integer min{n € w :
Pr—~o0 [N # pr~o [0} and ny; = max{n, : o € 12}, We let p;;; denote
the element | J{p, : 0 € "*22}. Now the induction step is completed,
because p;+1 knows all the first ¢ + 1 splitting nodes of every branch in
pi and (pi+1,nit1) > (pi, ni) for every i € w.

We define the function f by

FH([u]) D [stem(p,)] for o € <“2.

As stem(p,) is a finite approximation of the added Sacks real 3, we
have by the construction of our p, for o € <¥2 and the function f
that p, IF “f(3) € [u,]” for every ¢ € <“2. And so the fusion ¢ of
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the sequence {(p;,n;) : i € w} forces that in the extension V[G] the
equality f(s) = z holds. This f, being a continuous bijection between
two Cantor sets, is (of course) a homeomorphism. O

REMARK 1.10. In the lemma we have also defined a map ¢ from the
finite sub trees of the fusion ¢ onto the finite sub trees of T' = |, ¢ cuy Uo
which induces our homeomorphism. We have ¢(q) = T and

#(lg 1 0]) = U{ur 0 C7andT € w2}

We note that [T7] is the set of all the possible interpretations of z in V[G]
and that T depends on ¢ and ¢ only. In theorem 1.16 we will use this
interpretation of the previous lemma.

We make the following definitions. For p € P and s € <“2 we let
ps denote the sub-tree {t € p: s Ctort C s} of p. Of course p; is a
perfect tree if and only if s € <“2Np. To generalize this to P,, suppose
p is an element of P,, F is a finite subset of dom(p) and n € w, we say
that a function 7 : F — ™2 is consistent with p if the following holds
for every 8 € F:

(pI7)1B1g “7(B) € p(B)".
So we have for every § € F that

(pI7)[BIFg “(p(B))rg) is a perfect tree”.

Furthermore let us suppose that F' and H are two sets such that F C H,
and n and m are two integers such that m < n, if 7 is a function
mapping F into ™2 then we say that a function ¢ : H — "2 extends
the function 7 if for every i € F' we have (i) [ m = 7(3).

For later use we will prove the following:

LEMMA 1.11. Let p € P,, F € [dom(p)]<¥ and n € w. Suppose
7 : F — ™2 is consistent with p then for every r > p | T there exists a

q > p such thatqIT =71 and qI B k5 “(p(B))s = (g(B))s for everys € "2
such that s # 7(83)” for every f € F.

ProOF. Define the element g € P, as follows for 8 < a:

i | () pek
a1 8 1s “alf) = { r(B) U{(p(8)s : s € "2np(B) \ {r(B)} B e F”

In this way we strengthen the tree p(3) above 7(3) keeping the rest of
the perfect tree intact (according to F' anyway). (]

3.2. Continuous functions with code in the ground model
and the main theorem. Closed subsets of the Cantor set can be
coded by sub trees of <“2, as follows. If A is a closed subset of C,
then let Ty = {z [n: = € A, n € w}; one can recover A from Ty by
observing that

A={z€“2: Vnew, z[neTa}
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When we say that a closed set A is coded in the ground model we
understand that T4 belongs to the ground model.

We shall always construct a continuous function f between closed
sets A and B by specifying an order-preserving map ¢ from T to T,
where T denotes the set of splitting nodes of T4. Once ¢ is found one
defines f by

f(z) = “the path through Tp determined by ¢ and {z [n: n € w}".

We say that f is coded in the ground model if ¢ belongs to V. In what
follows we shall denote the map ¢ by f as well.

The remaining part of this section will be devoted to the following
theorem.

THEOREM 1.12. The family of continuous functions on C with code
in the ground model is a transitive family in V, for every ordinal a.

This theorem and fact 2 on page 12 gives us the following corollary.
COROLLARY 1.13. V,,, is a model of ZFC + f(C) < «.

The proof theorem 1.12 will be as follows. We will show that for any
o and any two reals from some V,, there exist some code for a continuous
function between two closed subsets A and B of the Cantor set, that in
Vo maps one of the reals onto the other. Without loss of generality we
can assume that the two reals are different as the identity is obviously a
continuous map that is coded in the ground model. Because the reals
are different we can make sure that the closed sets A and B of the
Cantor set, each of them containing one of the reals in question are
disjoint. Furthermore we can make sure that the closed sets A and B
are nowhere dense. The following lemma show that this continuous
map can be extended to a continuous self map of the Cantor set.

Let A :“2 x “2 — w be the map given by

A(z,y) = min{n < w: z(n) # y(n)}.
Let < be the linear order on “2 defined by

zay © z(A(z,y) < y(A(2,9)).

The following lemma shows that continuous mappings between closed
nowhere dense disjoints subsets of the Cantor set C = “2 can be ex-
tended to the whole set C.

LEMMA 1.14. Let f : A — B be a continuous function, where A
and B are disjoint closed nowhere dense subsets of the Cantor set C,
then there is a continuous self map F of C that is an extension of f.

PROOF. Let x be some point in 2. If z is not an element of the
set A, then as < induces the topology on “2 there is a minimal n < w
such that [z [(n+1)]NA=0.
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Let g : C' — A be defined by ¢g(z) = z if z is an element of A, and
g(x) equals <-minimal element a of A such that A(zx,a) = n, for the
minimal n < w such that {z [ (n + 1))N A = 0. The map g is easily
seen to be a retraction of C. If we define the map F : C — C by
F = fog, then we have found our continuous self map of C, extending
the map f. O

If the continuous function between A and B was actually a home-
omorphism we can do better than just extend it to a continuous self
map of C, By the following theorem of Knaster and Reichbach we can
extend it to an autohomeomorphism of C.

THEOREM 1.15 ([35]). Given two closed nowhere dense subsets of
the Cantor set, any homeomorphism between these sets can be extended
to an autohomeomorphism of the Cantor set.

A proof of the following two theorems will be given in subsection 3.3
and subsection 3.4 respectively.

THEOREM 1.16. For all z in V1 there exists a continuous function
f on C with code in the ground model such that f(sq) = x holds in the
model Voy1. If © is an element of Vyiq \ V, then this map f can be
chosen to be a homeomorphism.

THEOREM 1.17. If o < wy is a limit ordinal of cofinality w, then
for all z in Vo \ U, Vs and all y in V, there is an f with code in
the ground model such that in V, it holds that f(z) = y. If, moreover
y s not an element of Vi for all B < o then f can be chosen to be a
homeomorphism.

Together with theorem 1.16 the previous theorem gives the follow-
ing corollary.

COROLLARY 1.18. For any a and every x,y € Vo \ Up, Vs there

s some autohomeomorphism of C with code in the ground model that
maps x onto y in V,.

The proof of theorem 1.12 now follows easily using transfinite in-
duction and theorems 1.16 and 1.17

3.3. Successor stages. This subsection is completely devoted to
the proof of theorem 1.16. The proof of theorem 1.16 will be given in
two lemmas, lemma 1.20 and 1.21.

We need the following lemma to make sure that the maps we will
construct in the lemmas 1.20 and 1.21 are well-defined and continuous.

LEMMA 1.19. Let p € Poyy1. Suppose F, H € [dom(p)|<“ are such
that F C H and m,n € w are such that m < n. IfT7: F — ™2 is
consistent with p, N is an integer and T is a finite tree such that

(pI7)lalk “pla)n N2 =17,
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then there exist a (q,7) > (p[7,n) and an M > N such that for every
o : H — "2 extending 7, if o is consistent with g, then there exists T,
such that q [ o IF “g(a) NSM2 =T,”. Also |(T,): N M2| > 2 for every
t € T and [T,] N [T;] = O whenever o and s are distinct and consistent
with q.

PROOF. Let X, denote the set of all 0 : H — "2 extending 7.
Because p(a) is a perfect tree there exists a Po-name M such that for
every t € T we have

(p17) Ttk “|(p(a)) N M2 > 2|, ).

According to lemma 2.3 of [7] there exists a (¢', ;1) >y (p I 7) | @, n)
such that if o € X, is consistent with g' we have an M, such that
¢t lolF“M=M,”. Put M = max{M, : 0 € &, consistent with ¢'}.
We have gt I+ “|(p(a)); N M2| > 2|Z,|” for every t € T.

Enumerate {o € &, : o consistent with ¢'} as {ox : kK < K}. Let
r > q' [ o¢ be such that r I+ “p(a) N M2 = S,,”, where S, is such
that |(Sy,): N M2| > 2|%,| for every t € T. Use lemma 1.11 to find a
go > q' such that gy [ 09 = 7.

We continue this procedure with all the o € X,. So if oy is consis-
tent with gx_; we find an r > gx_, [0 such that r IF “p(a)n<M2 = S,.”,
and also that |(S,,): N M2| > 2|Z,| for every t € T. And we use
lemma 1.11 to define ¢x > gx_; such that gy [ ox = r. If o) is not
consistent with ¢,_, we choose g = gx_1.

We now have for every o € %, consistent with gx_; a finite tree
S, C M2 extending the tree T such that every branch in T has (at
least) 2|%,| different extensions in S,N™2 and gx—; [0 I+ “p(a)N<M2 =
Ss”.

As gg_; forces that, for each y € T the size of the set p(a)); N2
is at least 2|X, | we can find for ¢ € £, consistent with gx_; a sub tree
T, of S, such that |(T,); N 2| > 2 and whenever ¢ and ¢ are distinct
and consistent with gx_; we have [T,] N[T] = 0.

Define g € P4, ; such that ¢ [ @ = gx_; and choose g(a) such that
for every consistent 0 € X, we have q [ o IF “g(a) = p(a) N [T,]”. If we
let 7 be equal to max{;j', M} the proof is complete. O

LEMMA 1.20. Given an ordinal a, a p € Poyy and a Poy1-name &
for a real such that p It “¢ & V,” then there exists a homeomorphism f
defined in V and a q > p such that q I “f(s,) = &”.

PROOF. By remark 1.10 we know that there is an r > p [ & and
there exist P,; names ¢ for a map on the finite sub trees of p(a) and
T for a perfect tree such that r I- “q‘ﬁ(p(a)) = T”. Without loss of
generality we assume that p [ a =r.

Let us construct a fusion sequence {(p;,n;, F;) : i € w}. Let pp =
p1=p, ng=mn; =0, F; = @ and choose F; € [dom(p)]<“ in such a way
that we are building a fusion sequence.
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Suppose we have constructed the sequence up to i, let us construct
the next element of the fusion sequence. We let {7 : £ < K} denote
all 71 F;_; — ™-12 consistent with p;. If we choose in lemma 1.19
T =", F' = F,_; and m = n;_; we get a (g0, mo) >r, (pi [ 7o, n;) such
that for every o : F; — <™2 extending 7, consistent with gy, we have
a finite sub tree T, C <M(W)2 (M (1) € w follows from lemma 1.19) of
pi(a) = p(a) such that

(1) T, is an extension of Tr,.

(2) For every branch t in T, there exist exactly two different
branches of length M(7y) in T, extending t.

(3) If o and ¢ are two distinct mappings from F; to ™2 extending
To that are consistent with go we have [T,] N [T¢] = 0.

We choose rg € Py with lemma 1.11 such that g > go and ro[79 = qo-

We iteratively consider all the 7 : F;_; — ™-'2. In the general case
if 74, is consistent with rx_; then lemma 1.19 gives us a g, and an my, € w
such that (g, mx) >F, (Tk-1 [ 7k, 1:). We choose 7 in the same way as
above, using lemma 1.11 such that rx > qr and 7 [ 7% = qx. If 7% is
inconsistent with r,_; then we choose 7, = r4_; and my = my_;. After
considering all the 7;,’s we define p;y, = rx_; and n;1; = max{my :
k < K}. This ends the construction of the next element of the fusion
sequence.

For every i < w if ¢ : F; — ™2 is consistent with p;;; and extends
T: F;_q — ™-12 then

pis1 ok “pla) N MO =T,

Considering our function ¢, let us denote the finite tree ¢'»(Ta) by S,.
We have

piv1 [ o I- “¢(T5) = S57.

We are ready to define the homeomorphism f in V' that maps s, onto
in the extension. Suppose 7 : F; — ™2 and o : F;;; — ™+12 such that
o extends 7. Every maximal branch in (7}), corresponds to exactly
one maximal branch in S,. Let f map the splitting point in S, above
any maximal branch in S, onto the splitting point in (73), above the
corresponding maximal branch in (7}),. The function f thus defined
will be a continuous and one-to-one mapping between two Cantor sets,
so0 a homeomorphism. Furthermore the fusion ¢ forces that f maps s,
onto x in the extension.

We could have made sure that p(a) is a nowhere dense subset of
the Cantor set, and also that the perfect tree we have constructed
by the fusion sequence that will determine & is nowhere dense in C.
The map function f, whose code we have seen is in the ground model,
maps homeomorphically one nowhere dense closed subset of C' onto
another closed nowhere dense subset of C, as the reals = and $, are
different and this is forced by p, these subsets of C are also disjoint. By
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theorem 1.15 the function f can be extended to an autohomeomorphism
of the Cantor set. O

LEMMA 1.21. Given an ordinal o, a p € Poyq and a Pyyi-name
& such that p I+ “z € V,,” then there exists a continuous f, with code
inV, and a ¢ > p such that qIF “f($q) = 2”.

PRrOOF. This proof is similar to the previous one. Apart from the
finite sub trees T, we are construction we also construct ¢, € <*2 that
determine the real £. We do this by adding the following item on the
list in the proof of lemma 1.20 determining the ¢,’s

4. 1, is an extension of ¢,, of length at least ¢ + 2, and we have
g ol “t, C 2",
We follow the proof of lemma 1.20. In the end we define a function f in
V by f(b) =t, for every maximal branch b of S, for every o : F; — ™2
consistent with p; for some ¢ < w. This function is continuous and
maps in V,, the Sacks real s, onto the real z. Now using lemma 1.14,
we can extend this continuous function on a subset of the Cantor set
to a continuous function on the whole of C when we make sure that
p(a) and Y{t, : 0 : F; > ™2 consistent with some p;,i < w} are to
disjoint nowhere dense subsets of the Cantor set, which we can. O

3.4. Limit stages of countable cofinality. This subsection is
completely devoted to the proof of theorem 1.17.

LEMMA 1.22. Suppose that a is a limit ordinal of cofinality Ry. Let
z be a real in V, such that x ¢ Uﬁ@ Vs, and let p € P, be a witness of
this. Also let F, H € [dom(p)]<¥ such that F C H and let n and m be
two integers such that m < n. If 7 : F — ™2 is consistent with p, and
u, € <¥2 is such that

pl7Ik“u, C1”,

then there ezists a (q,7) >u (p | 7,n) such that for every o : H — ™2
consistent with q, we have a u, € <“2 such that q [ o I+ “u, C 2”;
in addition we have l(u,) = l(u;) and u, # u. whenever o and ¢ are
distinct and consistent with q.

Before we prove the lemma we need some more notation. We let
IF* denote forcing in Vj over Pg,. Here we use again the same notation
as in (7] where for § < a Psq = {p € P, : dom(p) C {£: 5 < ¢ < a}},
and if p € P, then p® = p\ (p | §) € Pso. The mapping which carries p
into (p [ 6, p‘s) is an isomorphism of P, onto a dense subset of P; x P,
(see [7]).

PROOF OF LEMMA 1.22. Choose a ¢ such that max(H) < d < a.
Let 7 : F — ™2 be consistent with p and let X, denote all the 7
extending functions o : H — "2.

Because p forces that = ¢ Vj, there is an antichain below p? of size
|X7| such that all these elements force different interpretations of & in
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the extension. In other words there exist a sequence {f, : o € £,} of
Ps names for elements of Ps, and a sequence {i, : o € X,} of Ps names
for elements of <“2 such that for all o € ¥, we have

@ (p17) 101 “fy >p° and fo IF* “6, C 2",
and if o and ¢ are distinct then
(2) (P rT) [6 I+ “l(f[ta_) = l(ug) and Uy % ucn‘

Repeatedly using lemma 2.3 of [7] we see that there exist a (¢f,j) >n
((p17)14,n) and sequences {f, : 0 € £}, {u, : 0 € £,} C *2 for some
integer ¢ such that for every o € ¥, we have

(3) g ks “fy = fr and 1, = u,”.

Now let g denote the element of P, such that ¢ [ § = ¢, and
(qlo) 161 “g® = f,” for every 0 € ¥, consistent with ¢f. This
completes the proof. (I

We are now able to give the proof of theorem 1.17.

PROOF OF THEOREM 1.17. For the first part of the theorem sup-
pose that we have p € P, such that p IF “¢ & |Jz .,V and § €
UB <o V3" . We will construct a fusion sequence below p and define a
continuous function f in V such that the fusion of the sequence forces
that f(z) = y holds in V.

Let pg = p1 = p, no = n1 =0, Fy = 0, and choose F; € [dom(p)]<¥
in such a way that we are building a fusion sequence. Suppose we have
constructed the sequence up to i, we will construct the next element
of the fusion sequence. Let {7 : k£ < K} denote an enumeration of all
maps from F;_; into ™-12 consistent with p;.

According to lemma 1.22 there exists a (o, jo) > (p: [ 70,7;) such
that for every o : F; — ™2 consistent with gy we have distinct u,’s in
m(r0)2 (where m(7y) follows from lemma. 1.22), such that go [ o I+ “u, C
2”. Now use lemma 1.11 to construct ro € P, such that rq > qo and
7o [ To = Qo

We now iteratively consider all the 7. In the general case if 7 is
not consistent with r;_; then we make sure that r; = rx_; and j; =
Jk—1- If 71 is consistent with rx_; we find by lemma 1.22 a (gx, jx) >
(rk—1 [Tk, ™;) such that for every o : F; — ™2 consistent with g we have
distinct u,’s in ™(™)2 such that g [ o IF “uy C #”. Now use lemma 1.11
to construct r, € P, such that rp > r¢_; and rp [ 7 = . After
considering all 7 we define p;41 = r_; and n;y; = max{ji : k < K}.

If we take a closer look at lemma 1.22 we can also let the fusion
sequence that we just constructed determine y. Because if we have
pl 7 Ik “,, C ¢, following the proof of lemma 1.22 we can make
sure that (by some strengthening of ¢' or the f,’s, if necessary) there
exist t,’s in <“2, not necessarily distinct, extending ¢, such that for
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o : H — ™2 consistent with ¢ we also have ¢ [o I+ “t, C §”. So assume
we have done this. We have for every o : F; — ™2 consistent with p;,;

(4) piy1 [0k “u, C & and t, C 9.

Now we are ready to define our function f which will map z in
Ve continuously onto y. Let f([u,]) C [t;] for all o : F; — ™2 and
all i € w. Then p; [0 I+ “f(2) € [t,]” for o : F; — ™2 consistent
with p; and ¢ € w. It follows that the fusion ¢ forces that in V, we
have f(z) = y. Moreover f is a continuous function, this follows from
lemma 1.22.

For the second part of the theorem suppose that p I+ “z,y &
Up<a V5”- Just as in lemma 1.22 we can choose not only the u,’s
in equation 4 distinct but also the t,’s for ¢ € X, and 7 : F; — ™2
for some ¢ € w. With this; the constructed continuous function f is
actually a homeomorphism. O

4. Concluding remarks

4.1. The cardinal tf for other spaces. It is not the case that
the tf - number is the same for all compact metric spaces, e.g., every
Cook continuum X has tf(X) = ¢ (it only has the identity and constant
mappings as self-maps, see [12]).

Note also that if the cardinal number cov(nowhere dense) equals ¢
for the unit interval I, then remark 1.5 shows that tf(I) = ¢. Suppose
that cov(nowhere dense) = k < ¢, for I, then we can cover I by xk many
Cantor sets {C,}a<x in such a way that for every two reals z and y
there exists an « such that z,y € C,. For every a we have a transitive
family of continuous functions F,, on Cy such that |Fo| = tf{(C). We
can extend every f € F, to a continuous self map f of I. So F = { f:
f € Fa,a < K} is a transitive set of continuous functions on I, and
its cardinality is less than or equal to & x tf(C) = tf(C). So if we can
cover the unit interval with fewer than ¢ many nowhere dense sets we
have tf(I) < tf(C).

Theorem 1.3 from section 2 gives the following theorem which is
stated in [20].

THEOREM 1.23 ([20)). The cardinals tf(C), tf(R) and tf(w*) are
one and the same.

As the proof is not that long we give it here for completeness sake.
The proof uses the following lemma.

LEMMA 1.24 ([20]). Let K be a compact subset of w” and f : K —
w® be continuous. Then f can be continuously extended to the whole

of w”.

PROOF. Consider K as a subset of (w + 1)“. The latter space is
homeomorphic to 2. As f[K] is bounded and thus a subset of w*
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there is a copy of 2¥ including f[K]. The lemma now follows from the
well-known fact that every continuous mapping from a closed subset
of a Boolean space to 2 can be continuously extended to the whole
space (which follows from 2“ being the Stone space of a free Boolean
algebra). O

PROOF OF THEOREM 1.23. We first show tf(C) (= f(2¥)) is less
than or equal to tf(w*). Let f : w* — w* be continuous. Then f~1[2¢]
is closed and thus A = f~1[2“] N 2¥ is a closed subset of 2. We can
extend f | A to a continuous function f : 2¥ — 2“ as in the proof
of lemma 1.24. This shows that a transitive family of w“ gives rise
to a transitive family of 2¢ of no greater size. The same argument
goes through for R instead of w* using the Tietze-Urysohn extension
theorem.

Observe that w* can be covered by 0 copies of 2¥; since 0 is the
covering number of the ideal of bounded subsets of w*. Let D be a
collection of size 0 copies of 2“ covering w“.

To each pair (D, E) € D x D assign a family Fp g of size tf(2*) of
continuous functions on w* such that

DxEC U{ran(f) Udom(f): f € Fpr}

This is possible by lemma 1.24. Let F be the union of all Fp g where
D and FE range over D. Then F is a transitive family of w* and the
size of F is 0 + tf = tf, by theorem 1.3.

Again the same argument works for tf(R) as R is just w* (the irra-
tionals) together with countably many additional points (the rationals)
and can therefore also be covered by 9 many copies of the Cantor set 2.
We again use the Tietze-Urysohn extension theorem to extend contin-
uous functions defined on closed subspaces of R to the whole of R. [

REMARK 1.25. Knowing that tf(C) is equal to tf(R) also shows us
that tf(C) equals tf([0, 1]) by the same reasons.

4.2, The cardinal tf and side-by-side Sacks forcing. In the
previous sections we showed that after adding N, many Sacks reals
iteratively to a model of ZFC + CH we end up with a model of tf(C) <
¢. Now consider P(k), the poset for adding £ many Sacks reals side-by-
side (see [6]). We have that P(x) has the (2%)*-chain condition and
preserves R;. Suppose that k > R; and cf(k) > R;. If V is a model of
CH and G is P(k)-generic over V, we have in V[G] that 2% = « and all
cardinals are preserved. If k happens to be some limit cardinal, then
we must have that tf(C) equals ¢ by the restrictions we found on the
minimal size of a transitive family on the Cantor set.

A natural question would be if we get a model of tf < ¢ when we
add R, many Sacks reals side-by-side to a model of ZFC + CH. The
answer to this question is in the negative. We will prove that adding R
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many Sacks reals to a model of ZFC + CH we do not produce a model
of tf(C) < ¢.
Let IP denote the poset for adding side-by-side w; many Sacks reals.

THEOREM 1.26. Suppose V |= CH and G is a P-generic filter
over V then V[G] = t(C) = c.

PROOF. Suppose that tf(C) < ¢. Then for some P-name F = {f, :
a < w;} we have

(5) ., “F is transitive on the Cantor set and of size R;”.

As every one of the functions f, is supported on a set of size X;, there
is some A C wy of size R; such that for every a < w;, we have that f,
is a P | A-name for some function on the Cantor set.

Let G be P-generic over V. Pick some o € w; \ A and let s, denote
the a-th Sacks real added to the model V. For any f € F we have

f(sa) € VIGT AU {a}].

This would imply that there is no function f € F for which f(s,) = sp
or f(sg) = s, for any 3 € wy \ A which is not equal to a. This clearly
contradicts the assumption on the transitivity of F in V[G]. a

COROLLARY 1.27 (Corollary of Proof of Theorem 1.26). For any
cardinal number k > R, after adding k many Sacks reals side-by-side
to a model of CH we have a model of f(C) = c.

4.3. The cardinal hm. In [21] Geschke, Kojman, Kubrié and
Schipperus investigate the minimal number v(S) of convex subsets of
a closed subset S of the plane needed to cover S. They relate this
number (for specific closed subsets of the plane) to a cardinal number
hm that is defined as the minimal cardinality of subsets of 2 needed
to cover 2*, which are c-homogeneous, where ¢ : [2°]2 — {0,1} is a
certain continuous coloring of the unordered pairs of elements of the
Cantor set. They show that ®; < hm and also that hm and also that
hm < c and ¢ < hmt. Also, in Baumgartner and Laver’s model the
inequality hm < ¢ is valid, as is shown in [21]. All these properties are
shared with the cardinal tf(C) and the question arises if these cardinal
numbers are the same.

In [20] the authors show that the cardinal number hm is equal to
the minimal cardinality of a set F of Lipschitz functions f : 2¥ — 2v
such that for every z and y in 2* there is a f € F such that f(z) =y
or f(y) ==.

In this paper the authors also show that it is consistent that we
need strictly more Lipschitz than continuous functions on 2 to make
sure that for any pair of elements {z,y} of 2* there is some function f
that maps either x onto y or y onto z. To be more precise.

THEOREM 1.28 ([20]). tf(C) < hm s consistent with ZFC.
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The proof of the theorem uses a countable support forcing iteration
of length w, of forcing notions satisfying Axiom A of size R; over a
model of CH. So no cardinals are collapsed and in the extension the
continuum ¢ equals Rz. In this model we then have that hm is equal to
¢ which in turn is equal to the successor cardinal of tf(C).

In [20] it is also shown that the inequality d < tf(C) is consistent
with ZFC. In particular, after forcing with the measure algebra over
2% over a model of CH, one obtains a model (the Solovay model) in
which 9 = Ny, as the ground model elements of “w dominate the new
elements, and tf(C) = R,. This last equality follows from the fact
that if x and y are generic reals over some model V' of ZFC such that
z ¢ V]y] and y & Viz], then no continuous function f € V on 2¢ can
map & onto y. We used this line of thought to show in subsection 4.2
that tf(C) equals ¢ when we add Sacks reals side-by-side.
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CHAPTER 2

Model-theoretic continuum theory

1. Introduction

In [55] Wallman formulated a generalization of Stone’s representa-
tion theorem for Boolean algebras to distributive lattices with zero and
unit. This theorem shows that a compact Tj-space is determined by
any base for its closed sets that is closed under finite unions and finite
intersections. Note that such a base is a lattice.

Given a topological space X, any base for its closed subsets which
is closed under finite unions and finite intersections is a lattice, we will
call such a base a lattice base for X, or a lattice base for short, if no
confusion can arise about the topological space X.

A compact space will be considered a space for which every family
of closed sets with the finite intersection property has nonempty inter-
section and which is also a Hausdorff space (unless specifically stated
otherwise).

If X is a compact space, C a lattice base for its closed sets and L a
lattice that is elementarily equivalent to C then its Wallman represen-
tation wL is also compact and Hausdorff. We will see that wL shares
many geometrical properties with X.

Typical ways of getting elementarily equivalent structures of a given
structure are by elementary submodels e.g., via the Lowenheim-Skolem
theorem and by elementary extension e.g., by taking ultrapowers.

In [8] and [9] Bankston investigates geometrical properties of Wall-
man representations of ultrapowers of lattice bases. He introduces a
construction of a compact Hausdorff space given a set of compact Haus-
dorff spaces {X; : ¢ € I} and an ultrafilter u on I, called the wultraco-
product, ¥, X;. This ultracoproduct is defined as an inverse limit of
coproducts of compact Hausdorfl spaces and can be seen to be the
Wallman representation of the ultraproduct lattice I1, A;, where for all
t € I the lattice A; is a base for the closed sets of X;. He then shows
that certain properties of compact spaces are reflected to the ultraco-
product 3, X; if ultrafilter ¥ many of the compact spaces X; have the
property.

As usual if all the compact spaces X; are the same space X the
ultracoproduct is called the ultracopower of X. We will encounter an
ultracopower in chapter 3. In that chapter we will be investigating
the span and chainability of the continuum I, (the ultracoproduct of

27
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the unit interval I) and the related continuum H*, the Cech-Stone
remainder of the half line H = [0,00). In that chapter we will try to
shed some light on the conjecture of Lelek, which states that every
metric continuum which has zero span is chainable.

In the present chapter, however, we will restrict ourselves to ele-
mentary submodels. It appears that the Wallman representation of an
elementary sublattice L of the lattice of all closed sets (even a base
for the closed sets closed under finite union and finite intersection) of
some continuum X is itself a continuum (a connected compact space,
a space is said to be connected if it cannot be written as a union of two
closed disjoint, nonempty sets). And so continua are determined by
any of its lattice bases. We will show that many, but not all properties
of X are shared by the Wallman representation of L.

2. Preliminaries

2.1. Wallman’s representation theorem for lattices.
2.1.1. Lattices. A lattice is a structure in the language {U,1,0,1}
that models the universal closures of the following formulas.

) Z D 2 z g E Z (Commutativity)
arl(bﬂc):(ar]b)r]c o
(7) al(bUc) = (aUb)Uc (Associativity)
) Z E Z : Z (Idempotence)
MO0=0andall0=a .
(9) Zﬂ 1=a and ZI_I 1=1 (Zero and Unit)

We can introduce an order in a lattice L by defininga < bifalMb=a
or equivalently, if a Uib = b. With this order we see that the for any
lattice L, the (representation of the) constants 0 and 1 are the smallest
respectively the largest elements of L.

EXAMPLE 2.1. If X is any topological space, we let 2X denote the
set of all its closed subsets. This set 2%, with the operations U and N
and constants § and X is an example of a lattice. The order in this
lattice is then given by set inclusion.

This lattice, for certain topological spaces X, will be at the base of
our investigations in this chapter and the chapters following.
A lattice is called distributive if it also models the universal closure
of the following formulas.
afn(bUc)=(anb)U(aNc)
al(Nc)=(alb)N(alic)
A lattice is called disjunctive or separative if it models the sentence
Vabdcla € b—c#0Ac<aAcNb=0]
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A lattice is called normal if it models the sentence
Vab3edlaMb=0—-aNd=0AbNc=0AcUd=1]

Note that this definition of normality of a lattice is similar to the defi-
nition of normality in a topological space using closed sets only.

2.1.2. Wallman's representation theorem. The Stone representation
theorem tells us that every Boolean algebra is isomorphic to the Boolean
algebra of clopen sets of a compact totally disconnected space. Wall-
man extended this theorem to distributive lattices.

THEOREM 2.2 ([55)). If L is a distributive lattice then there is a
compact T1-space X with a base for its closed sets that is a homomor-
phic image of the lattice L. If L is also a disjunctive lattice then X
has a base for its closed sets that is an isomorphic image of the lattice
L. Furthermore, the space X is Hausdorff if and only if L is a normal
lattice.

REMARK 2.3. We will denote the compact 7j-space X from the
theorem by wL to emphasize the fact that it is related to the lattice L.

The compact Ti-space wL is the space of ultrafilters of L where
the topology of wL is generated by the subbase for the closed sets
{A* : A € L}, where A* is the set of ultrafilters on L that contain
the element A of L. It is then easily seen that wL being Hausdorff
and L being normal have the same truth value, and that L being a
disjunctive lattice gives us that the (onto) homomorphism between L
and {A* : A € L}, mapping A to A* is one-to-one, and hence an
isomorphism.

REMARK 2.4. If X is a compact Hausdorff space, then 2¥ is a
normal distributive and disjunctive lattice. Furthermore, the space
w(2%X) is homeomorphic to X. This easily follows from the fact that
every ultrafilter on 2%, for X compact Hausdorff, is fixed.

As mentioned in the introduction we will use Wallman’s representa-
tion theorem to investigate compact Hausdorff spaces (and in particular
continua). By taking an elementary sublattice L of 2% we have that
wkL is a compact Hausdorff space which has a base for its closed sets
which is isomorphic to the lattice L. That this holds follows from the
fact that the properties of being normal, disjunctive and distributive
are first order properties of lattice and hence reflected when we take
elementary sublattices.

REMARK 2.5. Almost all of the time we will be dealing with a nor-
mal disjunctive distributive lattice L, mostly it will be an elementary
sublattice of 2%, where X is some compactum. By Wallman’s repre-
sentation theorem we know that the lattice L is isomorphic to a lattice
base for the compactum wL. We will often abuse notation and say that
L actually is a base for the topology on wL.
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When we look at L as a lattice we will use the operations LJ, M and
the induced order <, when we see L as a base for the closed sets of wL
we will use the operations U, N and the order relation of set inclusion
C, so no confusion can arise.

We shall frequently take countable elementary sublattices of 2%;
the following result, which follows from Urysohn’s metrization theorem,
shows that this will give us metrizable compact spaces.

THEOREM 2.6. If L is a distributive normal and disjunctive lattice
and also countable then wL is a compact and metrizable space.

PRoOOF. This follows easily from the fact that wL is compact Haus-
dorff hence normal and the fact that L is (isomorphic to) a countable
base for the closed sets of wL. ]

2.2. Elementary reflection of properties of compacta. In the
previous section we saw that a compact Hausdorff space is homeomor-
phic to the Wallman representation of the lattice 2%, consisting of all
closed subsets of X. Now consider an elementary sublattice L of 2%;
the Wallman representation wL of the lattice L is a compact space
and will, in general, be a less complicated space then X. For instance,
with the aid of theorem 2.6 we see that if L is countable then wL is
metrizable.

We will be interested in what kind of properties the compact spaces
X and wL must have in common. Consider the following definition.

DEFINITION 2.7. We will say that a property P of a compact space
is elementarily reflected if whenever some compact space X has the
property P then the Wallman representation wL of any elementary
sublattice L of 2% also has property P.

We can extend this definition to countably elementary reflection if
we consider countable elementary sublattices. We can also take an
elementary sublattice in a special way, when we take a 0 large enough
and consider the model H(#) of ZFC~; when we take an elementary
submodel Mt of H(#) containing the lattice 2% as an element then
2X NI is an elementary sublattice of the lattice 2X. In this way the
Wallman representation of the elementary sublattice 2% N9t will have
more properties in common with the compact space X, as it is a subset
of a submodel of ZFC~, and therefore has more structure which can be
seen from outside of the lattice (inside the elementary submodel 90t).

DEFINITION 2.8. We will say that a property P of continua is el-
ementarily reflected by submodels if the property P is elementarily re-
flected when we restrict the elementary sublattices L of 2% to the lat-
tices of the form 2X N9, where 9N is an elementary submodel of some
H(#) (0 large enough) which contains 2% as one of its elements.
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The goal of this chapter is to show that certain properties are ele-
mentarily reflected in some way.

2.2.1. Atoms form a dense subset. Suppose that X is a compact
space and L an elementary sublattice of 2%. Let atom(L) denote the
elements a of L for which we have

LEVit<a—2z=0Vz=a
By elementarity every a in atom(L) is a point of the space X.

LEMMA 2.9. If A is an element of L then atom(L) N A is a dense
set of A in the subspace topology.

PROOF. Note that the lattice 2*, and by elementarity also L mod-
els the following sentence

Vab3z[bMa # a — atom(z) Az < aAzMb=0]

As a is an element of L, this shows that for every open set U of wL
which has nonempty intersection with a, we have atom(L)N(aNU) # 0.
This follows from the fact that if U Na # () then there is a basic closed
set bwith X \U Cband a\b#0. O

COROLLARY 2.10. As X is certainly an element of the lattice L we
have that the set atom(L) is a dense subset of wL.

REMARK 2.11. If X is a topological space and L is an elementary
sublattice of 2% then

atom(L) = L N atom(2%).

2.2.2. Components. A set C is said to be a component of some
topological space X if it is connected and if the inclusion C c C*
implies C' = C* for all connected subsets C* of X. It is easily seen that
the components of a topological space are closed and pairwise disjoint
sets, and that every connected set is contained in one and only one
component of the space.

For any lattice L and any x € L Let conn(z) be shorthand for the
following formula

VablaMb=0Aalb=2z—>aNz=0VbNz =0]

So, for a compact space X the statement 2% }= conn(1) actually says
that X is connected, hence a continuum.

Suppose that X is a continuum and L an elementary sublattice
of 2X. Let z and y be elements of L such that L | z < y and
L = conn(z). By elementarity this implies that z also is a connected
subset of y in X. The component of x in y according to X is a closed
subset C of y. The set C is uniquely defined by the equation

(10) z<C <yAconn(C)AVD|C <D < yAconn(D) — C = D]

As for every such z and y there is some C' as above in 2% | by elementar-
ity there is some element C in L such that L is a model of equation 10
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when C is replaced by C. By elementarity again C also satisfies equa-
tion 10 in 2%, so C = C. In general, elements of 2X that are defined
uniquely from elements of L must belong to L as well, hence C' € L.
So L contains the component in y of any connected subset z, when z
and y are elements of the lattice L.

3. A continuous image

The following theorem from [17] shows under what conditions be-
tween (certain) lattice bases for compact spaces X and Y, there exist
a continuous map between X and Y. We give the proof of the theorem
here as well, as it is one of the central theorems of this chapter and the
ones following.

THEOREM 2.12 ([17]). Let X and Y be compact Hausdorff spaces
and let C be a lattice base for X. Then X is a continuous image of Y
if and only if there is a map ¢ : C — 2¥ such that

(1) (@) =0, and if F # 0 then ¢(F) # 0,
(2) f FUG = X then ¢(F) U ¢(G) = X, and
(3) f oN...NF, =0 then ¢(Fp) N---N@(F,) = 0.

PROOF. Necessity is easy: given a continuous ontomap f: Y — X,
let ¢(F) = f~[F]. Then ¢ is even a lattice embedding.

To prove sufficiency, let ¢ : C — 2¥ be given and consider for every
y € Y the family F, = {F € C : y € ¢(F)}. The intersection (| F,
consists of exactly one point. Indeed, by condition 3 the family ¥, has
the finite intersection property, so the intersection is non-empty. Take
) # o in X; there exist, as X is normal, F' and G in C such that
21 € F, 29 ¢ Gand FUG = X. Then by condition 2 we have that
either y € ¢(F) so F € F, and thus z; ¢ (F, ory € ¢(G), G € F,
and thus 2z, & [ Fy.

We define f(y) to be the unique point in () F,.

To show that f is continuous and onto we will show that for every
closed subset F' of X we have

(11) fF1=[{{¢(G): GeCand F CintG}.

We will first show that the set on the right-hand side has the finite
intersection property. Even though F and the complement K of [, G;
need not belong to C we can still find G and H in C such that GNK =
HNF =0 and GU H = X. Indeed, apply compactness and the fact
that C is closed under finite intersections and finite unions to find a C
in C such that F C C C ();int G and then D € C with K C D and
CnND = 0. Apply normality of C to C and D to find the G and H
in C we need. Once we have these G and H we see that for each i we
also have H U G; = X, and so ¢(H) U ¢(G;) = Y. Combined with

B(G) N$(H) = B we get ¢(F) C ), ¢(G:).
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To verify equation 11, first let y € Y\ f~![F]. As above we find G
and H in C such that f(y) € G, GUH = X, and HNF = (). The first
property gives us that x ¢ ¢(G), the other two imply that F' C int G;.

Second, if F' C int G}, then we can find H € C such that GUH =Y
and FN H = (. It follows that if z € ¢(G) then x € ¢(G). Hence
f(z) € H and so f(z) ¢ F. O

COROLLARY 2.13. If X is a compact space, and L an elementary
sublattice of 2% then the map sending x € X to the ultrafilter {A € L:
x € A} of L is a continuous onto map from X onto wL. Because X 1is
compact and wL Hausdorff this map is closed.

By the last corollary, a lot of properties of compact spaces are
elementarily reflected.

THEOREM 2.14. Being connected is a property of compact spaces
that is elementarily reflected.

So this theorem gives us a way to investigate a continuum by one
of its lattice bases, as the Wallman representation of any lattice base
of a continuum is homeomorphic to this continuum.

THEOREM 2.15. Being locally connected is a property of compact
spaces that is elementarily reflected.

~ Being metrizable is a property of compact spaces that is also ele-
mentarily reflected, as the following theorem shows.

THEOREM 2.16. If X is a metrizable compact space and L an ele-
mentary sublattice of 2%, then wL is also metrizable.

PROOF. By theorem 2.12 and its corollary there exist a closed onto
map f: X — wL. By compactness of wL it suffices to show that wL
is second countable.

As the space X is compact and metrizable, its weight is countable.
As closed maps preserve weight and wL is a continuous image of X
under a closed map, it also has countable weight. d

Under some restrictions on X, we have that the map from theo-
rem 2.12 has a certain nice form.

THEOREM 2.17. If L is a elementary sublattice of 2%, where X is
some locally connected continuum, then the map from theorem 2.12 is
monotone.

PROOF. We know that wL is a locally connected continuum. We
want to show that for every z in wL the fiber f~!(z) is connected.

As wL is compact Hausdorff every one of its points is equal to
the intersection of the closures of its neighborhoods. Because L is
(isomorphic to) a lattice base of wL we have for every F' € L such that
z ¢ F an element G of L such that F C G and wL \ G is a connected
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subset of wL. By elementarity this gives us that X \ G is a connected
open subset of X, and so, in wL is x the intersection of the subcontinua
of wL containing it. We see that f~!(z) also is an intersection of a filter
of continua, and hence a nonempty continuum itself, as f maps onto
wL. |

The last theorem will provide us with a number of properties that
are elementarily reflected.

4. Base-free properties

Following Bankston (see for instance [4], [5]) we call a {N,,0,1}-
sentence ¢ base-free if, for any compactum X and any lattice base C
of X we have

C | ¢ if and only if 2% k= ¢.
These base-free properties are properties that are elementarily reflected,
because by elementarity if 2X models such a base-free property ¢, a sen-
tence in the first-order language over {I,U, 0,1} then any elementary
sublattice L of 2% models such a sentence, hence the compact space
wL shares this base-free property with X.

4.1. Being connected. By theorem 2.14 we know that connect-
edness is a property of compact spaces that is elementarily reflected.
We will give here another proof using elementarity of L, the proof will
be illustrative for the way we prove theorems in the rest of this chapter.

LEMMA 2.18. IfC is a lattice base for X, a compact space, then C
contains all the clopen subsets of X.

PROOF. Let A be a clopen subset of X then A, being closed can be
seen as an intersection of elements from the base C. As A also is open,

by compactness of X there exist a finite number of elements Ay, ..., A,
of C such that A C ), A; C A. AsC is closed under finite intersections
we have that A = (), A; € C. O

Now suppose that X is a continuum, L an elementary sublattice of
2% and wL is not connected. By the previous lemma there are closed
disjoint nonempty elements A and B of L such that wL = AU B. So
the lattice L models the following sentence

JablaUb=1Aalb=0Aa#0Ab#0

As L is an elementary sublattice of 2%, it then also holds that 2%
models this same sentence. But this implies that X is not connected
in contradiction with the assumptions we made on X. This ends the
alternative proof of theorem 2.14.

What we in fact proved here is the following theorem.

THEOREM 2.19. The lattice sentence conn(1), which expresses con-
nectedness, is base-free.
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4.2. Indecomposability. A continuum X is indecomposable if it
cannot be written as the union of two proper subcontinua. In [5] the
following lattice sentence is shown to be a base-free lattice sentence
indicating exactly when a compact space is indecomposable.

Vabdry [aUb=1Aa#1Ab#1—
rNy=0AzUy=bAz LaNny Lal.

So the following theorem follows instantly.

THEOREM 2.20. Indecomposability is a property of compact spaces
that is elementarily reflected.

4.3. Hereditary indecomposability. A hereditarily indecompos-
able continuum is a continuum for which each of its subcontinua is
indecomposable. This is equivalent to saying that for every two sub-
continua of X that meet, one is contained in the other.

This property also makes sense for arbitrary compact Hausdorff
spaces, so we can extend the notion of hereditary indecomposability to
compact Hausdorff spaces by saying that a compact Hausdorff space X
is hereditary indecomposable if and only if for every two subcontinua
of X that meet one must be contained in the other.

We shall use a characterization of hereditary indecomposability that
can be gleaned from [36]. For this we will introduce some terminology.

Let X be a compact Hausdorff space and let A and B be disjoint
closed subsets of X; we say that (X, A, B) is crooked between the neigh-
borhoods U of A and V of B if we can write X = Xy U X; U X5, where
each X; is closed, and, moreover, A C Xy, XoNX; CV, XoNXe =0,
XiNXy C U and B C X;. We say that X is crooked between A and B
if (X, A, B) is crooked between any pair of neighborhoods of A and B;
no generality is lost if we consider pairs of disjoint neighborhoods only,
as crookedness between small neighborhoods implies crookedness be-
tween large neighborhoods.

The characterization of hereditary indecomposability we will use is
the following.

THEOREM 2.21 (Krasinkiewicz and Minc [36]). A compact space
1s hereditarily indecomposable if and only if it is crooked between every
pair of disjoint closed (nonempty) subsets.

We can translate this characterization of hereditary indecompos-
ability in terms of closed sets only. We get the following formulation.

THEOREM 2.22. A compact Hausdorff space X is hereditarily in-
decomposable if and only if whenever four closed sets C, D, F and G
in X are given such that CND =CNF = DNG = 0 one can write
X as the union of three closed sets Xy, X, and X,y such that C C X,
DcCcX;,GNXyNX, =®, X00X2=®, (lnanXlﬂX2=0.
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In [17] it is shown that this characterization of hereditarily discon-
nectedness of a compact Hausdorff space depends only on a base for
the closed sets of X closed under finite intersections.

So if a normal distributive and disjunctive lattice L models the
sentence

VabedIzyz[aMb=0AaMNc=0AbMd=0—
(12) aN(yUz)=0AbN(zUy)=0AzMz=0A
zMNyNd=0AyMNzNc=0AzUyUz=1].
then its Wallman representation wL is hereditarily indecomposable

compact space. So hereditary indecomposability is a base-free prop-
erty, which gives us immediately the following reflection theorem.

THEOREM 2.23. Hereditary indecomposability is a property of com-
pact spaces that is elementarily reflected.

4.4. Covering dimension. The following theorem is well known,
a proof of it can be found for instance in [19].

THEOREM 2.24. A normal space X has covering dimension dim X <
n if and only for if every (n + 2)-element family of { By }™t% of closed
subsets of the space X satisfying ﬂ"+21 B, = 0 there exists a closed

m=
cover {F,}*t2 of the space X such that ﬂ:;":zl F, =0 and B, C F,
for every m.

If X is compact and C is a base for the closed sets of X closed under
finite intersections then we can sharpen the theorem by stating that all
the closed sets mentioned in the theorem come from the base C.

Recall that a swelling of a family {A,}scs of subsets of a space X
is a family {B,}scs of subsets of X such that A, C B; for every s and
for every finite set {sy,...,s,} C S we have

Ay N---NA,, =0 if and only if B,, N ---N By, = 0.

A well known fact is that every finite family { F;}%_, of closed subsets
of some compact space X has a swelling {U;}%_, consisting of closed
sets. If also a base for the closed sets of X is given, these U; can be
chosen in such a way that they are intersections of a finite number
of base elements. If, moreover, a family {V;}*_; of open subsets of X
satisfying F; C V; for all i is given then the swelling {U;}¥_, can be
chosen such that U; C V; for all ¢ (for a proof see for instance [19]).

This brings us to the following theorem on the covering dimension
of the Wallman representation certain lattices.

THEOREM 2.25. If L is a normal distributive and disjunctive lattice
with zero and a unit that models the sentence ¢<n, which is given by
YTy Tp2 Y1 Yna2[T1 N M Tpyp = 0 —
. n+2
(13) 1M+ Mynyz =0Ay U Uynia =1A A (@ < )],

i=1
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then its Wallman representation wL is a compact Hausdorff space with
covering dimension < n.

The lattice sentence ¢<, is base-free, so having covering dimen-
sion < n is elementarily reflected for compact spaces. This also holds
for the other direction; if X is a compact space and L is some elemen-
tary sublattice of 2X such that dimwL > n then L | —¢<, and, by
elementarity so does 2X. We have the following theorem.

THEOREM 2.26. The lattice sentence ¢p<n A ~p<n_1 is base free.

COROLLARY 2.27. Having covering dimension equal ton (n < o0)
is a property of compact spaces that is elementarily reflected.

REMARK 2.28. Using the reflection result from the previous section,
corollary 2.27, we can easily show that the value of the large inductive
dimension is, in general, not elementarily reflected. There exist com-
pact spaces for which its covering dimension is strictly smaller than its
large inductive dimension (see, for instance [42]). Let X be such a com-
pact space and L a (any) countable elementary sublattice of 2X. By
theorem 2.6 the Wallman representation wL of L is a compact metriz-
able space. The large inductive dimension and the covering dimension
of such spaces are equal to each other. As dim X = dim wL this shows
that Ind X # IndwL.

4.5. Strong infinite (covering) dimension. As we have already
seen, the covering dimension of a continuum is elementarily reflected.
So, if a continuum X is infinite - dimensional and L an elementary
sublattice of 2%, then the (covering) dimension of wL also is infinite.
But there are different kinds of infinite - dimensionality. We will look
at one of its strongest forms.

We call a family {(A;,B;) : ¢ € I} (I can be finite or infinite) of
pairs of closed disjoint subsets essential if, whenever we take for all ¢
L;’s that separate the sets A; and B;, the intersection (] L; is nonempty.

If X is a normal space then dim X > n if and only if there exists
an essential family of size n. We write dim X = oo if dim X > n for
all n. So if dim X = oo then X has arbitrarily large finite essential
families. If X has an infinite essential family we say that X is strongly
infinite - dimensional.

EXAMPLE 2.29. Consider a Tychonoff cube I*. For every a < & let
Ay ={z € I*: z(a) = 0} and B, = {z € I* : z(a) = 1}. Then the
family {(Aq, B,) : @ < Kk} is an essential family of I*.

For finite « this follows from the Brouwer fixed point theorem (for
a proof see {19}, 7.3.19). If « is infinite we put, for every finite subset a
of &, Fo = 7. [Naca TalLal], Wwhere m, denotes the projection onto the
sub cube I*. By the finite case, each Fj is nonempty and a C b implies
F, D> F,s0(,F. #0. Also N, F, =, L« as the sets A,, By and
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L, can be separated by canonical closed sets, which depend only on a
finite number of coordinates.

This gives us that the Hilbert cube @ = I* is strongly infinite -
dimensional.

Following the example above we call a continuous map f: X — I*
essential if the family {(f[Aql], 7} [Ba]) : @ < K} is essential. Using
Urysohn’s lemma it is easy to see that X has an essential family of size
« if and only if X admits an essential map onto I*.

The question arises if the property of being a strongly infinite - di-
mensional compactum is elementarily reflected. We have the following
partial result.

THEOREM 2.30. If L is an elementary sublattice of 29, the lattice
of all closed subsets of the Hilbert cube, then wL is strongly infinite -
dimensional.

Let us translate some properties related to strong infinite - dimen-
sionality into the lattice language.
Let v, be the lattice sentence which is the universal closure of the
conjunction of the following two formulas
(1) AicnaiMb; =0.
(2) /\Kn(a,ﬂc,- = 0/\b,'|_|d,' = OACiUd,' = 1) g cll‘ldll'l- . -Flc,,l'ld,, #
?

whose free variables are exactly the ones from {a1,...,@an,b1,...,bs}.
If X is a compact space and C a lattice base for X, if

C |:aal"'anbl"'bnwn(al’---)an,bl:“‘7bn)a

then X has an essential family of size n.
Let ¢, denote the universal closure of the following lattice formula

(14) 3:l":.‘/’d)n(a'la « oo Qny bl) o ,bn) - w‘n+l(a'17 vy, X3 bla R ,b'm y)a
Now, if the lattice base C of X above also models the sentences {¢, :
n < w} then we can say that wC is strong infinite - dimensional as
this space has some essential family of size nonzero and every essential
family can be extended to a (larger) essential family. We will show that
this is the case for elementary sublattices of a lattice base of the Q.

LEMMA 2.31. Every finite essential family of the Hilbert cube can
be extended to a larger essential family.

PROOF. Suppose that {(A4;, B;) : ¢ < n} is an essential family of
the Hilbert cube . Consider the base B of all closed sets of () that has
as subbase the family P consisting of closed sets of the form 7 !{[p, q]],
where n ranges over w and p < q are rational numbers from the interval
I. We can find elements C; and D; of B that contain the sets A;
and B; respectively, such that the family {(C;, D;) : ¢ < n} also is an
essential family. The sets C; and D; depend only on a finite number
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of coordinates, so we can find a coordinate m < w such that all m-th
coordinate of the closed sets C; and D; (so also A; and B;) equal L,,,.
This implies that we can extend the essential family to an essential
family of size n + 1 when we add the pair ({z € Q : z(m) =0}, {z €
Q:xz(m)=1}). O

We are now able to give the proof of theorem 2.30.

PROOF. (theorem 2.30) Let L be an elementary sublattice of 2%,
the lattice of all closed subsets of the Hilbert cube . And suppose that
{(A;, B;);4 < n} is an essential family in wL. We can find elements a;
and b; of L such that A; C a; and B; C b; for all 7 and {(a;,b;) : ¢ < n}
is an essential family in wL. So we have

L EYular, ... an; by, .. byl

As C models the universal closure of formula 14, and L is an elementary
sublattice of C, there exists members z and y of L such that

L E Y, ... anz;b1,. .., by, ]

Which means that any finite essential family in wL can be extended to
a larger essential family in wL, so wL is strongly infinite - dimensional.
]

The following questions remain.

QUESTION 2.32. Is having strong infinite (covering) dimension ele-
mentarily reflected, and is having not strong infinite (covering) dimen-
sion elementarily reflected.

5. Other elementarily reflected properties

5.1. Connectedness im Kleinen. A continuum X is said to be
connected im Kleinen at z (cik at z) if for every open neighborhood U
of x there exists a subcontinnum K of X and an open subset V' of X
such that

reVcKcU.

A continuum is called connected im Kleinen (cik) if it is cik at z for all
e X.

THEOREM 2.33. A continuum X is cik if and only if X is locally
connected.

For a proof see for instance [48].
As being locally connected is elementarily reflected for continua, we
also have that being cik is elementarily reflected for continua.

THEOREM 2.34. If X is cik at z and L is an elementary sublattice
of 2% containing {z}, then wL is cik at z.
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PROOF. The lattice 2X models the following lattice sentence with
respect to the point z

VF3KG [zMNF=0—
conn(K)AKUG=1AzNG=0AKNF=0].

Let U C wL be an open neighborhood of z. There exists an F' € L such
that ¢ ¢ F and FUU = X. By elementarity there exist K, G € L such
that K C wL is a subcontinuum containing z, ¢ ¢ G and KUG = wL.
This shows that wL is cik at z. |

5.2. Aposyndesis. A space X is said to be aposyndetic at p with
respect to q, provided that there is a subcontinuum A of X \ {g} such
that p is an interior point of A (in X).

2¥ = 3AF[conn(A) AANg=0ApNF=0AAUF = 1]

A continuum X is said to be aposyndetic at p provided it is aposyndetic
at p with respect to each point ¢ € X \ {p}.

2X = VgIAF [atom(q) Ag#p —
conn(A)AANMg=0ApNF=0ANAUF =1].

A continuum X is said to be aposyndetic provided it is aposyndetic at
each of its points.

2X k= VpgIAF [atom(p) A atom(g) Ap # g —
conn(A) AAMg=0ApNF=0ANAUF =1].

It is obvious that the following theorem holds.

THEOREM 2.35. Let X be a continuum which is aposyndetic at p
with respect to q then for any elementary sublattice L of 2% containing
p and q its Wallman extension wL is aposyndetic at p with respect to q.

On the other hand, it is not straightforward that if X is an aposyn-
detic continuum and L < 2% that wL is also an aposyndetic continuum.
To see if wL is aposyndetic at p with respect to g we then only have
to consider the cases where at least one of the points p and ¢ is not an
atom of L.

Consider the case we want to show that wL is aposyndetic at p
with respect to ¢, where p € atom(L) and ¢ € wL \ atom(L). For this
to be true we need 2% to contain for every closed set F' not containing
p some subcontinuum A that contains p in its interior and misses F,
which would mean that X is connected im Kleinen at p.

THEOREM 2.36. If X is cik at p and L is an elementary sublattice
of 2% such that p € atom(L) then wL is aposyndetic at p.

In (48] the following theorem is mentioned as an exercise.

THEOREM 2.37. A continuum is aposyndetic if and only if it is
semi - locally connected.
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We say that a continuum X is semi - locally connected at p if for
every open neighborhood U of p contains a neighborhood V of p such
that X \ V has finitely many components.

This definition of semi-locally connectedness is not first - order, but
it does show the following reflection result.

THEOREM 2.38. Aposyndesis is a property of compacta that is ele-
mentary reflected by submodels.

The following question remains.

QUESTION 2.39. Is aposyndesis a property of compact spaces that
is elementarily reflected?

5.3. Unicoherence. We say that a nonempty space X is unico-
herent if it is connected and if for each pair {4, B} of closed connected
subsets of X, we have that AUB = X implies that AN B is connected.

Translating the property unicoherence into lattice formulas, a topo-
logical space X is unicoherent if and only if 2% models the lattice sen-
tence

(15) VAB|conn(A) A conn(B) A AU B =1 — conn(A N B)]
THEOREM 2.40. Unicoherence is elementarily reflected.

PRrROOF. Suppose this is not the case and there is some unicoherent
continuum X and an elementary sublattice L of 2% such that wL is not
unicoherent. Suppose that A and B are closed connected subsets of wL
that have a disconnected intersection. Without loss of generality we
can assume that there are closed disjoint nonempty subsets C' and D
of wL such that AN B = CUD. As L is a lattice base for wL there
are r and y in L such that C Cz, D Cy,zNy =0, and A\ (zUy)
and B\ (z Uy) are both nonempty.

CLAM 2.41. (atom(L) N B) \ (z Uy) is nonempty.

PROOF. Note that, without loss of generality, by compactness of
wL we can assume that C' C int(z) and D C int(y).

By compactness of wL and the fact that L is a lattice base for wL,
there some a in L such that A C a C AU (int(z)Uint(y)). This implies
that aN B CxUy. As B\ (z Uy) # 0 we have that B\ (aUz Uy) is
an open nonempty subset of wL and therefore contains elements of L
that are atoms. a

Let 2, € A be an atom of L that is not contained in B, and z, € B
and atom of L not contained in A.

There exist Z, and Z, in L such that A C Z,UzUy, B C Z,UzUy
and Z,NZ, C zUy. Let C, denote the component of z, in Z,UrUy and
Cy be the component of z, in Z, Uz Uy. By elementarity C,,Cy € L,
see section 2.2. As A and B are connected we have that A C C, and
B c Cy. As we also have that Z,N Z, C xUy we have C,NC, C zUy,
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but this is in contradiction with equation 15 and the fact that L is an
elementary sublattice of 2%. a

5.4. Discoherence. A space X is called discoherent if it holds
that for every closed subsets A and B of X such that AU B = X and
A # X # B we also have that AN B is not connected. In lattice terms
we have

(16) 2* =Vabla#0Ab#0Aallb=1— —conn(ab)]

EXAMPLE 2.42. The circle S is a locally connected discoherent con-
tinuum.

THEOREM 2.43 ([34]). The properties of being unicoherent and dis-
coherent are invariant under continuous monotone mappings.

PROOF. Let f : X — Y be continuous monotone and onto. Let
A and B be two closed connected sets such that AUB = f(X) =Y.
Hence f~'(A)Uf~!(B) = X and the sets f~'(A) and f~(B) are closed
and connected. Therefore, if the space X is unicoherent the set

FHANB) = fH(A) N f(B)
is connected and so is the set
ANB = f[f"Y(AnB)].

hence the space f(X) =Y is unicoherent.

If X is discoherent, the set f~'(A N B) is not connected. If AN B
were connected, by monotonicity we would have that f~'(AN B) is
connected, so we can conclude that the set A N B is not connected.
Hence the space f(X) =Y is discoherent. O

Together with theorem 2.17, this implies the following reflection
theorem for compact spaces.

THEOREM 2.44. Being locally connected and discoherent is a prop-
erty of compact spaces that is elementarily reflected.

QUESTION 2.45. Is being not discoherent a property of compact
spaces that is elementarily reflected?

5.5. Hereditary unicoherence. A continuum is said to be hered-
itary unicoherent if every subcontinuum is unicoherent. Equivalently,
if every two subcontinua have connected intersection.

A continuum X is hereditary unicoherent if the lattice 2% models
the following lattice sentence.

(17) Vab[conn(a) A conn(b) — conn(a M b)].

THEOREM 2.46. Being a hereditarily unicoherent continuum is a
property of continua that is elementary reflected.



5. Other elementarily reflected properties 43

PROOF. Suppose that X is a hereditarily unicoherent continuum.
Let L be some elementary sublattice of 2% and suppose that wL is not
hereditary unicoherent. Let A and B be closed connected subsets of
wkL such that AN B is not connected.

There exist nonempty disjoint C' and D in L such that AN B C
int(CU D) and CN (AN B) and D N (AN B) are both nonempty.

There exist F' and G in L such that A C F and FNB\int(CUD) = 0
and also B C G and GN A\ int(C U D) = 0.

If A* and Bt denote the components of A in F respectively of B
in G, then we have that the lattice 2% models the lattice formula which
states that there exist elements z and y of the lattice, components of
F and G respectively, such that z My < CUD, xMNyNC # 0 and
zMyMND # 0. This is in contradiction with the assumption of hereditary
unicoherence of X. g

REMARK 2.47. Note also that hereditary unicoherence is invariant
under monotone mappings. Suppose X is hereditary unicoherent and
f X — Y is a monotone onto map. Let A and B be two nonempty
subcontinua of Y. As f~1[A4] and f~1[B] are both subcontinua of X and
X is hereditary unicoherent, we have that f~1[A]Nf~1[B] = f~[ANB]
is also a subcontinuum of X. This implies that ff1[ANB]=ANB
is a subcontinuum of Y.

5.6. Triodicity. A continuum is called triodic if it contains three
proper subcontinua whose common intersection is nonempty and for
which every union of two of these subcontinua is a proper subset of the
whole continuum.

Translated into a lattice formula we have that a continuum X is
triodic if the lattice 2% is a model for

dzyz [zt #yAz#2Ay# zAconn(z) A conn(y)A
(18) conn(z) AzUyUy=1AzMNyMNz7#0A
zUy#1AzUz#1AyUz#1].

It is easily seen that an elementary sublattice L of 2X contains three
elements that are witnesses of the fact that L models the sentence in
equation 18. This triple shows then that the Wallman representation
of L is triodic.

5.7. Decomposability. A continuum is decomposable if it con-
tains two proper subcontinua such that the union covers the whole
space.

Translated into a lattice formula we have that a continuum X is
decomposable if the lattice 2% is a model for

(19) Jzylconn(z) Aconn(y) Az #1Ay#1AzUy=1].

As triodicity, it is easy to see that being a decomposable continuum is
elementarily reflected.
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5.8. Irreducible. A continuum is said to be irreducible between p
and q if the only subcontinuum of X containing both points p and ¢ is
X itself. A continuum is called irreducible if there exist points p and ¢
such that the continuum is irreducible between p and gq.

Let X be an irreducible continuum and let L be some elementary
sublattice of 2X. As X is irreducible, the lattice 2% models the following
lattice sentence.

JzyVAlatom(z) A atom(y) Az #yAconn(A) Azliy< A— A=1].

As L is an elementary sublattice of 2%, it also models this sentence.
Let p, g € L be two different atoms that fulfill sentence above for L.

CLAIM 2.48. wL is irreducible between p and q.

PROOF. Suppose not, then for some proper subcontinuum A C wL
we have p, q € A. By elementarity A cannot be an element of L, but it
is an intersection of elements of L. Let A be a finite subset of L such
that its intersection contains A and is not equal to wL. As (A € L,
let A* € L be the component of (.4 containing the point p (hence the
point ¢). This implies that L models the following sentence

plg< A" A A" #1Aconn(A”),
which contradicts the fact that L is an elementary sublattice of 2X. O

THEOREM 2.49. Being irreducible is a property of continua that is
elementarily reflected.

5.9. (Locally) arc/path-wise connectedness. A space X is
pathwise connected if for every pair z, y of points of X there exists
a continuous mapping f : I — X of the closed unit interval I to the
space X satisfying f(0) = z and f(1) = y. The space X is called arc-
wise connected if the map f above may be chosen to be one-to-one. It
is easily seen that pathwise connectedness is an invariant of continuous
mappings.

THEOREM 2.50 ([19]). A Hausdorff space is pathwise connected if
and only if it is arcwise connected.

This theorem and theorem 2.12 give us the following elementary
reflection result for compact spaces.

THEOREM 2.51. The property of being path/arc-wise connected is
elementarily reflected for compact spaces.

Something similar can be said for locally pathwise connectedness
and locally arcwise connectedness. A space X is locally pathwise (arc-
wise) connected if for every z € X and every open neighborhood U of
z there exists an open neighborhood V of z such that for every y € V
there exists a continuous (one-to-one) mapping f : I — U satisfying

f(0) =z and f(1) =y.
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THEOREM 2.52 ([19]). Local pathwise connectedness is an invariant
of quotient mappings.

As Hausdorff spaces are locally arcwise connected if and only if
they are locally pathwise connected, and the continuous map from
theorem 2.12 is closed and hence quotient we get the following reflection
theorem.

THEOREM 2.53. Local pathwise connectedness (hence arcwise con-

nectedness) is a property of compact spaces that is elementarily re-
flected.

5.10. Peano continua. Locally connected metric continua are
also known as Peano continua. Theorem 2.12 and theorem 2.16 give us
immediately the following elementary reflection result on Peano con-
tinua.

THEOREM 2.54. Being a Peano continuum is a property that is
elementarily reflected.

We see that the Wallman representation of a countable elementary
sublattice of 2%, for some locally connected continuum X, is actually
a Peano continuum.

6. The spaces I, 12, S and S2

6.1. The unit interval I. A continuum is said to be an arc if it is
homeomorphic to the unit interval I. The unit interval contains exactly
two points that do not separate it, and so does every arc. These two
points are called the endpoints of the arc.

THEOREM 2.55 ([53]). If a metric continuum contains two points
a and b such that to every point x correspond two closed sets A and B
satisfying the conditions

X=AUB,a€ A, be B and ANB = {z},
then X is an arc.

THEOREM 2.56. Being an arc is a property of compact Hausdorff
spaces that is elementarily reflected.

PROOF. Let X be an arc and L an elementary sublattice of 2X.
The lattice 2% models the following sentence

Jabla # b A atom(a) A atom(b) A conn*(a U b) A
Vx(atom(z) Az # a Az # b — —conn*(z))].
Where conn*(z) is shorthand for the following lattice formula
Vablamb<zAalUbUz=1—-a<zVaUz=1],

which expresses that the complement of the set x is connected.
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The lattice L, being an elementary submodel of 2% also models the
sentence 20 and contains the endpoints of X; these are the only atoms
of L that do not separate the continuum wL. But not all points of wL
are atoms of L. We want to show that wL has the properties stated in
theorem 2.55.

By theorem 2.16 wL is a metrizable continuum. Let y be any point
in wL \ {a,b}. We want to find closed subsets A and B of wL such
that wL = AU B and AN B = {y} and A contains the endpoint a and
B contains the endpoint b of X.

For any atom p of L there exist two connected closed sets A, and B,
in X such that a € A,, b € B, and A, N B, = {p}. Being uniquely
defined in 2%, L also contains these connected closed sets for every
p € atom(L). If y is any element in wL then we can form sets A, and
B, by

Ay = n{A,, :p € atom(L) and y € Ap}
B, = ﬂ{BP :p € atom(L) and y € B,}.

As for any p,q € atom(L) we either have A, C A, or A; C Ap, and
likewise for the connected sets {B,, : p € atom(L)}, we have that A, and
B, are connected closed sets, being intersections of a directed family
of connected closed sets, containing a and b respectively. We also have
that A, N By = {y}, as the atoms of L form a dense subset of wL. O

6.2. The simple closed curve S. A space homeomorphic to the
circle S = {(z,y) € R? : 22 + y? = 1} is said to be a simple closed
curve.

THEOREM 2.57 (R. L. Moore). If every pair of points separates the
metric continuum X, then X is a simple closed curve.

The following theorem is an immediate consequence of the previous
theorem.

THEOREM 2.58. If to every pair of points a and b of a metric con-
tinuum X correspond two closed sets A and B such that

X=AUB, ANB={a,b} andA# X #B
then X is a simple closed curve.
For a proof see, for instance [37].

THEOREM 2.59. Being the simple closed curve S is a property of
compact spaces that is elementarily reflected.

PROOF. Let L be an elementary sublattice of 25.

CLAIM 2.60. For every point z of wL and every F € L such that
z & F we can find a G in L that is an arc in wL, contains x and
misses F'.
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PRrOOF. If z is an atom of L this is obvious, so suppose that z ¢
atom(L). Let a and b be two distinct atoms of L. By theorem 2.58
and elementarity there exist A, B € L such that

LE=ANB=aUbAAUB=1AA#1AB#1.

Without loss of generality we can assume that z € A. The set A4 is an
arc by theorem 2.56 and elementarity, so for some element G € L we
have « € G, G is connected, G < A and misses F'. O

So every point in wL is the intersection of elements of L that are
arcs. Note that for every F,G € L such that

L = conn(F)Aconn(G)AFNG =0,

by elementarity there exist elements C, D of L such that the lattice L
models the sentence

conn(C) Aconn(D)AcUD=1ACND=FUGQG,

Consider for every two points a,b € wL the family F, consisting of
pairs of elements (C, D) of L such that C and D are connected subsets
of wL, CUD =wL and a,b € CN D. Partially order this family by

(C,D) < (C',D") ifand only if C ¢ C' and D C D'.

With the claim made above, the intersection of any maximal chain in
Fap will give us a pair of closed connected subsets (A4, B) of wL such
that AU B = wL and AN B = {a,b}. As this holds for all points
a and b of wL, by theorem 2.58 we have that wL is a simple closed
curve. O

6.3. The sphere S%. A constituent of a point p in a space X is
the union of all subcontinua of X containing the point p. A subset C
of X is said to be a cut between the points a and b of X if a and b have
different constituents in X \ C.

A subset C' C X is a cut of the space X if X\ C has two points such
that any subcontinuum of X containing these points must intersect
with C.

DEFINITION 2.61. A space X is called a Janiszewski space if it is
a locally connected metric continuum with the property that for any
continua C' and D whose intersection C' N D is not connected, their
union C'U D is a cut of the space X.

THEOREM 2.62. The sphere S? is a Janiszewski space.

Janiszewski proved that among all locally connected metric con-
tinua without cut points, the property mentioned in definition 2.61
characterizes the 2-sphere.

THEOREM 2.63 ([34]). The concept of a Janiszewski space is in-
variant under monotone continuous transformations.
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This gives us the following reflection theorem.

THEOREM 2.64. Being a Janiszewski space is a property of compact
spaces that is elementarily reflected.

Consider the following theorem of Moore.

THEOREM 2.65 (R. L. Moore [45]). If f is a continuous mapping
of S? such that, for eachy, f~'(y) is a continuum which does not cut
the space, then f[S?| and S? are homeomorphic.

We will use this theorem to prove the following theorem.

THEOREM 2.66. Being the 2-sphere, S%, is a property of compact
spaces that is elementarily reflected.

Suppose that L is an elementary sublattice of 25 By theorem 2.12
there exists a continuous map f : S — wL and as S? is locally con-
nected, so is wL. By theorem 2.17 the continuous map f is actually
monotone. The theorem is proved once we have proved the following
lemma.

LEMMA 2.67. No inverse image f~1(z) of some point x € wL cuts
the sphere S2.

PROOF. Suppose that the fiber f~1(z) cuts the sphere S? for some
z € wL. Let y and 2z be two atoms of L that correspond to two points
in different components of wL\ {z}. So f~(z) cuts the sphere between
y and 2.

In 25° we can find F, and G, such that both sets are connected
subsets of S2, y is contained in the interior of F,,, f~!(z) in the interior
of G,, F, UG, = S? and F, N G, is a simple closed curve. Similar
sets F, and G, can be found for the point 2. By elementarity we can
assume that these sets are elements of L. There is an element C of L,
that contains f~!(z) and is contained in Gy N G..

In S? the intersection G, N G, is a cylinder and cutting S? in half,
by some simple closed curve containing the points y and z, we see that
there is a closed cover {E, F'} of S? consisting of connected sets that do
not cut the sphere and moreover EN (G, NG,;) and FN(GyNG,) also
do not cut the sphere. By elementarity we can assume that E and F'
are elements of L.

We have reached our contradiction, as z is an ultrafilter of L con-
taining G, N G,, and as it either contains E or F', we have that f )
cannot be a cut of 5% between y and 2. O

6.4. The unit square 2. Using the fact that the property of
being the 2-sphere is elementarily reflected (theorem 2.66), we prove
the following reflection theorem.

THEOREM 2.68. Being the unit square 12 is a property of compact
spaces that is elementarily reflected.
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We know that the unit square is homeomorphic to the closure of
any disc A of the sphere S2, such that A # S2. Pick such a disc A4,
and let ¢ : 2" — 257 I A be an isomorphism between lattices.

Let L be an elementary sublattice of 2", Define the subset K of
25% by

K={Be2¥ :Bn4decyL]}

CLAIM 2.69. K is a distributive lattice.

PROOF. This is easily seen, as ¢[L] is an elementary sublattice of
the distributive lattice 25° | A4, and for a,b € K we have

(aUb)NA=(anA)U(BNA) and (aNb)NA=(and)N(bNA).
O
CrLAamM 2.70. K is a normal lattice.

PROOF. Let a,b € K such that anbd = 0.

In the case that b A = () then a U A and b are two closed sets of
S? that are disjoint, hence there exist closed sets C' and D of S? such
that CN(aUA) =0, DNb=0and CUD = S2. As A is a subset
of D we know that C and D are elements of K.

Now, for the case that aN'A # @ and bN A # (. As the lattice L is
normal, we can find elements C* and D* in ¢[L] such that (aNA)ND* =
@, (bNA)NC* =P and C* U D* = A. The space 52\ A being normal,
we can find closed sets C** and D** such that ((eUC*)\ A)ND** =0,
(bUD*)\ A)NC** = 0 and C* U D** = S?\ A. The closed sets
C=C*uC* and D = D*U D** are elements of K that show that K
is normal between the sets a and b. (|

CLAIM 2.71. The lattice K is disjunctive.

PROOF. Given a,b € K such that K |= a £ b, we have that aNA ¢
bNAora\A ¢ b\ A. In the first case, the fact that L is an elementary
sublattice of 2 and ¢~![a N 4] and ¢~1[b N A] are elements of L give
us a ¢ € K (actually in ¢[L]) such that c C aNA and cN (aNA) = 0.
In the second case, by normality of S?, we can find a ¢ € K such that
cCaandcN(AUb) =0. O

CLAIM 2.72. The compact space wK is an image of the 2-sphere
S? by a monotone map.

PROOF. It is easy to see that the map ¢ : K — 257 which maps
every a € K onto itself, fulfills all requirements of theorem 2.12, so wK
is a continuous image of S%, hence locally connected. We have that the
map f : S? —» wkK is actually monotone. d

Let z € wK. the fiber f~'(z) of z does not cut the sphere S? by
the fact that K is an elementary sublattice of 25° and lemma 2.67.
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By the previous theorem and the claims of this section we see that
the compact space wK is homeomorphic to the sphere S?. The set
A\ A is an element of K. In S? this is a simple closed curve, hence by
theorem 2.66 also in wK. Shrinking the set wK \ A to a point we end
up with a homeomorphic copy of the 2-sphere, so A is homeomorphic to
a disc of S2. So by the following theorem we have proved the reflection
theorem, theorem 2.68.

THEOREM 2.73. If D is a disc, then its closure is homeomorphic
to I2.

For a proof of this last theorem, see [37].

6.5. I" and elementary reflection w.r.t. submodels. This
section will be devoted to the proof of the following theorem.

THEOREM 2.74. Being the unit n-cube I"™ is a property that is ele-
mentarily reflected by submodels.

Let B be an open subbase for the space X. The closed subbase B is
called a binary (closed) subbase if every subfamily of B with an empty
intersection contains two disjoint base elements. The closed subbase B
is called comparable if whenever By N B, = @ and By N By = @ then
either B; C By or By C B;.

In [22] De Groot gave the following characterization of the n-
dimensional cubes I" and the Hilbert cube I*.

THEOREM 2.75. A topological space X is homeomorphic to I™ if
and only if X has the following properties:
(1) X is Ty,
(2) X is connected,
(3) X has dimension n,
(4) X has a countable comparable binary subbase.

A characterization of the Hilbert cube is obtained if condition 3 is re-
placed by

3*. X is infinite dimensional.
ExXAMPLE 2.76. The (countable) base
B={[0,q]:¢€[0,1)NQ}U{[g,1] : g € (0,1] N Q}

of I is easily seen to have the properties of being binary and comparable.
This subbase can be used to get a countable binary and comparable
subbase for the space I". Simply consider the subbase {7 '[4] : 4 €
B and i < n}. For the Hilbert cube consider the subbase consisting of
closed subsets of Q of the form 7 '[A], where i < w, m; the projection
of () onto its i-th coordinate and A an element of B.
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PRrROOF OF THEOREM 2.74. We will use De Groot’s characteriza-
tion to prove the theorem. We will do this by showing that, if 97
is an elementary submodel of some H(#) and 2" is an element of 9M
then there exists a countable subset B of 2" N 90 that is a binary and
comparable subbase of the space w(2"" N 9). We show this of course
by induction. By theorem 2.56 we know this is true for n = 1. Now
suppose that we have proven the theorem for all m < n, and consider
some elementary submodel 9 of H(#), which contains 2!" as one of its
elements.

The model 91 contains the elements I™ and 2" form = 0,1,..., 00,
as they have a first order definition. So, as 2! is an element of 9, we
also have that 90t contains an element B that is a countable subbase of
I which is binary and comparable.

If B € B then we have that Bx I, Ix BxI"2 .., ["!x B
are all elements of Mt N 2. It is also not hard to show that all these
closed sets combined form a subbase B* for the closed sets of I". As
B is countable, binary and comparable, so is B*. We see that w(2"" N
) is an n-dimensional connected space which has a countable binary
and comparable subbase for its closed sets and thus by de Groot’s
characterization of I" homeomorphic to the space I". This ends the
proof of theorem 2.74. O

REMARK 2.77. Another approach to finding out if the property of
being I" for compact spaces is elementarily reflected is by defining a
new predicate B for the binary comparable subbase. Comparability
would then be given by the universal closure of the formula

B(z)AB(y)AB(z)AzUy=1Azlz=1—-y<2zVz<y
And binarity for instance with the countable many sentences
Ve, 2,3yz [\, B(zi) Az M- Nz, =0 —
By)AB(z)AyNz=0AV,zi=yAV,;zi= 2]
But now we run into trouble, as being a subbase is second-order. So
this approach will not help us very much.

So the following questions remains open.

QUESTION 2.78. Is being the unit n-cube or the n-sphere a property
of compact spaces that is elementarily reflected?

7. Concluding remarks

We have seen that there are a lot of properties of compact spaces
that are elementarily reflected. In chapter 3 we will see if this can shed
some light on a conjecture of Lelek in metric continuum theory. There
we will investigate if the properties mentioned in the conjecture are
elementarily reflected. This is of importance, as if this is the case we
can extend our horizon when trying to look for a counterexample to
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the conjecture, i.e. we are then no longer restricted to metric coun-
terexamples.

In chapter 5 we will give an alternative proof of some theorems
in continuum theory. These proofs will be model theoretic and rely
heavily on Wallman'’s representation theorem on lattices. These proofs
show that sometimes we can extend theorems on metric continua to ar-
bitrary continua. In the case of the model theoretic proof of a theorem
of Maékowiak and Tymchatyn we actually found another topological
proof of the theorem, which easily extends to a proof in the arbitrary
continuum setting (this extension was already shown to hold by Hart,
Van Mill and Pol in [25]).



CHAPTER 3

Span and chainability

1. Introduction

The notion span of a metric continuum was introduced by Lelek
in [38] to capture the spirit that an arc-like continuum must be long and
thin. He also proved that every chainable metric continuum has span
zero. As chain covers of certain continua can be rather complicated,
it can be difficult to show that a metric continuum is chainable. For
example it is known that there exists embeddings of arc-like continua
in the plane such that the continuum can not be covered by a chain of
connected sets of arbitrary small diameter (see [10]).

The notion of span and the fact that chainability of a metric contin-
uum implies that it has span zero has been useful to prove that certain
metric continua are not chainable. The converse of this theorem is one
of the main open problems in continuum theory today.

CONJECTURE 3.1 (Lelek). If X is a metric continuum with span
zero, then X is chainable.

The notion of span is easily transferred to non-metric spaces, be
it that we can only distinguish the cases of span zero and nonzero
span. Likewise we can set the notion of chainability in a more general
setting including the non-metric continua. We will show that chainable
continua have span zero.

In section 3 we will investigate if the notions of span zero and chain-
ability can be translated into lattice properties as we have done in chap-
ter 2. We want to reflect the notions of span zero and non-chainability,
as then we will not be restricted to metric continua when looking for
a counterexample to Lelek’s conjecture. Any counterexample X to the
conjecture will then give us a metric counterexample when we take
an elementary sublattice of the lattice of all closed subsets 2% of the
continuum X. Unfortunately, we will see that these notions are not
captured in this way, as stronger forms of logic are needed to write
down the sentences that describe these notions.

In subsection 4 we will investigate the span and chainability of the
continua H*, the remainder of the Cech-Stone extension of the half
line H = [0,00) and its standard subcontinua, in the form of I,, for
some u € w*. We will show that these continua have span nonzero,
surjective (semi) span nonzero and symmetric span nonzero and are
also non-chainable.

53
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In section 7 we will use a different approach using elementary sub-
models, to take elementary sublattices of 2% of some continuum. These
elementary sublattices are more powerful than in section 3 and we can
show that in this case chainability is reflected. Unfortunately we do
not know if span zero is reflected for arbitrary continua in this way.

2. Preliminaries

In this section we will extend the definitions for span and chain-
ability to non-metric continua, and try to find sentences in the lattice
language that capture the notion span respectively chainability.

2.1. Span. In [38], Lelek defined the span of a metric compact
space (X, d) as the supremum of all real numbers € > 0 such that there
exists a connected subset Z of the square X x X which has the following
two properties:

(1) Z projects onto the same sets on both axes.
(2) For all (z,y) € Z we have d(z,y) > «.

Note that, if we discard of the metric d in the definition above we can
distinguish only the cases span zero and span nonzero.
We make the following definition.

DEFINITION 3.2. A continuum X has span zero if every subcontin-
uum Z of its square X x X, which projects onto the same set on both
axes, has nonempty intersection with the diagonal Ax = {(z,z): z €
X} of X; otherwise it is said to have span nonzero.

After Lelek introduced the notion of span and posed his conjecture,
quite a number of articles by various authors have been produced on the
subject (see for instance [40], [49], [50], [51] and [34]). In [40], Lelek
introduced weaker forms of span, by changing some of the properties
of the subcontinuum Z of X x X in the definition of span. He called
these notions surjective span and surjective semi span.

DEFINITION 3.3. A continuum X has surjective (semi) span zero
if every subcontinuum Z of X x X which projects onto X in both
coordinates (in at least one coordinate) has nonempty intersection with
the diagonal Ax.

In [40], Lelek showed that the span and the semi span of metric
spaces need not be equal. That these forms of span are equal for
compact metric spaces was proved by Davis in {13]. For his proof he
introduces another version of span, the symmetric span.

DEFINITION 3.4. A continuum X has symmetric span zero if every
subcontinuum Z of X x X for which Z = Z7!, where Z7! = {(y,z) :
(z,y) € Z}, has nonempty intersection with the diagonal Ay.

The following relations between the different kinds of span of some
continuum X follow directly from the definition.
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(1) If the surjective span of A is zero for all connected nonempty
A C X then X has span zero,

(2) If X has span zero then X has surjective and symmetric span
zero.

(3) If X has surjective semi span zero then X has surjective span
zZ€ero.

(4) If X has surjective span zero then X has symmetric span zero.

2.2. Chainability. A cover C = {C1,...,C,,} of aspace s a chain
cover if C; N Cj is nonempty if and only if |¢ — j| < 1. The elements
C; of C are called the links of the chain C. A continuum is chainable if
every open cover has a refinement which is a chain cover.

This definition is in accordance with the definition of chainable in
the metric case which states that a metric continuum is chainable if
for every € > 0 there exists a chain cover for which the diameter of the
links are less than €. In [38] Lelek showed that every chainable metric
continuum has span zero. The same statement is true for non-metric
chainable continua. ‘

THEOREM 3.5. Every chainable continuum has span zero.

PROOF. Let X be a chainable continuum and suppose that X has
surjective span nonzero. Let Z C X x X be a subcontinuum which
has empty intersection with the diagonal Ay, and which maps onto X
by both projections m; and m3. For every z in X let U, be an open
neighborhood of z such that U, x U, has empty intersection with the
subcontinuum Z. As {U, : z € X} is a open cover of X it has a chain
cover refinement {V4,...,V,}. Let the open sets O; and O of X x X
be defined by

01 =| J{Vi x V; 1i < 5}
0 = J{Vi x V; 1 > j}.

We have Z C O,UQ0,. Also ZNO;NO, is empty; if not, Z would inter-
sect some V; x V;, which would contradict the fact that V; is contained
in some U,. So we can write Z as the disjoint union of the open sets
ZN0O; and ZN0O2. As Z is connected, one of these must be empty,
say Z N Oy. Now we have a contradiction, as m3[Z N O1] C U;cpmen Vin
and V] \ V; is nonempty. O

Note that chainability of a space X is a property of X we can read
of from any of its bases.

THEOREM 3.6. A continuum X is chainable if and only if every
cover of base elements of some base (closed under finite unions and
intersections) of X has a chain cover refinement consisting entirely of
base elements.
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To prove this we need the well - known theorem on swellings men-
tioned in section 4.4.

PROOF OF THEOREM 3.6. Let X be a continuum and B a base
closed under finite unions and finite intersections.

Suppose X is chainable and Y C B is a cover of X. There is a
chain cover refinement C = {Cy,...,Cp} of U. Consider the family
{X \ C;}~, of closed subsets of X. As {X \ B : B € B} is a base for
the closed sets of X closed under finite unions and finite intersections.
We can find a swelling {F;}™; of the family {X \ C;}/., consisting of
elements from {X \ B : B € B}. The family {X \ F;}{., is a chain
cover and a refinement of C consisting entirely of elements of the base
B. ]

3. Chainability and span in the lattice language

3.1. Chainability. We can formulate chainability in the lattice
language if we are allowed to take a conjunction over the natural num-
bers; this leads to the logic L,

Let ¥m(u1, . . ., um) be the following formula in the lattice language
(in the logic L,,)-

(20) uoﬂ---l'lum=0—>\/3v1---v,,0(u1,...,u,,.;'ul,...,vn).

Here 6(uy, ..., Un;v1,...,U,) is the conjunction of the formulas

Q) vN---Nv,=0

2 N Vj Vi 2 U

(3) AL (it Uv; # LA Uvigr # 1) AN Ny vilyy = 1,
In equation 20 the symbol |/, denotes the conjunction over all n € w.
The first formula in the list shows that the family of complements of the
closed sets v; in wL will be an open cover of wL. The second formula
of the list then shows that the complement of any v; is contained in
a complement of some u;. So if {wL \ u;}; and {wL \ v;}; are both
(open) covers of wL then {wL \ v;}; refines {wL \ u;};. And the last
formula shows that {wL \ v;}; will be a chain cover.

This gives us the following lemma.

LEMMA 3.7. If L is any normal distributive disjunctive lattice then
its Wallman representation wL is chainable if and only if

L |EVYuy - up¥m(uy, - . ., Um) for allm < w.

3.2. Span. We know that if a continuum X has span zero then
every subcontinuum Z of the square X x X, for which m[Z] = my[Z)]
has nonempty intersection with the diagonal Ax. We want to capture
the notion of span in a lattice formula. Below we will give a formula in
the lattice language such that all the continua whose lattice of closed
sets fulfill this property must have span zero. But we also show that
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this property is much too restrictive as the unit interval I is a continuum
which does not satisfy this property. _

Let G = (V, E) be a connected graph and V = {1,2,...,n}. Let
¢Ee,n denote the following formula in the lattice language

/\ (u,-ﬂuj#OAvil’lvj#0)A|_|?Li:|__|1;i—>\/uiﬂvi7é0

{i.j}leE i

If X is a continuum such that for every connected graph G =
({1,... n}, E) we have 2X |= ¢g, then it must hold that X has span
zero. Because if X has span nonzero we would have a subcontinuum
Z of X x X for which m[Z] = m3[Z] and ZN Ax = (). For every point
(z,y) in Z there are open sets F, C m[Z] and G, C m[Z](= m[Z])
such that

(z,y) e b x Gy C F, x G, C X\ Ay.
As Z is a continuum there are a finite number of points {(z;, ¥:)}%,
such that Z C |J{F,, x Gy, : 1 <i < n}. Let Y denote the closed set
\U; Fz, NU; Gz, and define the graph ({1,...,n}, E) by

{i,j}€e E- F,NF,NY #0and G, NG, NY #0.

This graph is connected, because Z is and so, as 2X | ¢, g we must
have some ¢ such that the closed set Fy, x G, intersects the diagonal
Ax; in contradiction with the construction of these sets.

Unfortunately this sentence ¢, does not capture the notion span
zero as it is too strong a requirement as the following example will
show.

EXAMPLE 3.8. Consider the unit interval I. Let the open subsets
W, Vo, V5 and Vj, and U,, U,, Us and Uy of T be given by

1 5 4 8
%—U;;—(E,ﬁ),vz—%:(ﬁ,ﬁ),

7 11 10 2
V3—U1=(ﬁ,1—2'),V4=U2-—(E,1]U[0>ﬁ)-

The intersection U; x V;NU; x V; is nonempty if and only if |i—j| < 1
orifi =1 and j = 4. The sets {Uy,Us, Us, Uy} and {V;, Vo, Vi, V4 } are
both open covers of the interval I. The intersection graph G = (V, E) is
givenby V = {1,2,3,4} and E = {{1,j} : |i—j| < 1}U{{1,4}} so this
is a connected graph. However none of the U; x V; has an nonempty
intersection with the diagonal A[.

So 2! £ ¢, g and as I is obviously chainable we also have that I has
span zero.

Note that the covers {U;}{_; and {V;}2; do not consist entirely of
connected sets. So maybe if we add the requirement that the u; and v;
are connected to the sentence ¢g , we get a weaker notion that might
say more than the strong notion ¢g .
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Let us define the formula ¢% ,, by

A conn(u;) A A, conn(vi) A Ay, e p(ui Mu; # 0 Av; No; # 0)A
|__|iui = l_livi - Viu,-f"l'ui ;é 0.
We now look at the smaller class of connected spaces, namely the
class of locally connected spaces.
Suppose we have a locally connected continuum X such that there is
a connected graph ({1,...,n}, E) and there are closed sets U1l,...,U,

and Vi,...,V, such that
(21) 2X bk —gp UL, UV, .., Vol

This means that the U;’s and V;’s are subcontinua of X and the inter-
section graph of the subcontinua U; x V; of X x X is given by the graph
({1,...,n}, E), so as this graph is connected we have that | J; U; x V;
is a subcontinuum of X x X. The projections on the axes are equal
as the U;’s and the V;’s are witnesses of | |, u; = | ];v;. Also it has
empty intersection with the diagonal by equation 21. So the space X
must have span non-zero by the existence of such a subcontinuum of
its square.

Suppose now that the locally connected continuum X has non-
zero span. So there exists a subcontinuum Z of X x X such that its
projections on the axes are equal and it does not intersect the diagonal
Ax. For every (z,y) € Z we can find open connected subsets A
and B, of z and y respectively in the space X such that A, x B,
misses the diagonal Ax. By compactness of Z there exist (z1,%1), - - .,
(Zn,Yn) In Z such that Z C |J; As, X By,. Let Y denote the closed set
U; Az N, By, of X. It must be that Z CY x Y. Let ({1,...,n}, E)
denote the intersection graph of the closed sets (A;, NY) x (B, NY)
for i = 1...n. This graph is connected as Z is connected. And we also
have

1

1

U@z ny) =y nl{J4, =y n{JB, =By nY),

so we found closed sets {A;, N Y}, and {B,, NY}%, of X and a
connected graph ({1,...,n}, E) such that

2X |~y A NY, ..., A, NY;B, NY,...,B, NY].
This gives us the following lemma.

LEMMA 3.9. If L is any normal distributive disjunctive lattice such
that its Wallman representation wL is locally connected then wL has
span zero if and only if

L = ¢%, for alln < w and all connected graphs E on n.
REMARK 3.10. Note however that we do not have a first-order for-

mula that describes span zero, as the property of being locally con-
nected is not first order (or base free).
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So the following questions still remain open.

QUESTION 3.11. Is the property of having span zero a first-order
property?

QUESTION 3.12. [Is the property of having span zero a base-free
property?

QUESTION 3.13. Is chainability a property of compact spaces that
is elementary reflected?

4. The spaces 1, and H*

In this section we will state some preliminary results on the spaces
I, and H* that we will need in our investigation of the span of the spaces
I, and H*. The survey [24] will provide the proofs for the statements
only mentioned here about these spaces.

The space H* is the Cech-Stone remainder of the half line H =
[0,00). As H is connected so is SH. It is not hard to see that the
remainder H* is connected as well, as H is locally connected, H* is also
closed, so H* is a continuum.

Following the survey article of Hart [24] and Mioduszewski’s pa-
per [45] we will investigate the space H* by studying the space M =
w x I, where I denotes the unit interval [0, 1]. We shall write I, for the
space {n} x L.

The map 7 : M — w given by w(n,z) = n is perfect and monotone,
and so the Cech-Stone extension 7 : M — fw is also monotone (for
a proof see [24]). We denote the inverse image of the ultrafilter u of
w* by I,. In the hyperspace of SH this is the u-limit of the sequence
{I, }n<w, where I,, denotes the subspace {n} x I of M. We can write L,

as
L= ) clam |J In.

Ueu nel

REMARK 3.14. The space I, is, in the notation of Bankston (see
for instance [4] or [9]), the ultra co-power of the continuum I with
respect to the ultrafilter u. In this section we will use Mioduszewski’s
approach to the space I, from the paper [45], instead of the ultra co-
power approach of Bankston as it is much easier to understand.

Let {zs }n<w be a sequence in the unit interval I. Given any u € w*,
the point z, € I, is the unique point z in I, such that for every M-
neighborhood O of z, the set {n : (n,z,) € O} is an element of the
ultrafilter u. We will denote this by z, = v — lim{z,}. The point
u — lim{0} will be denoted by 0, and the point v — lim{1} by 1,.

Let P, denote all the points of I, that we can get in this way, so

P, = {zy : {Tn}ncw C I and 2, = v — lim{z, }}.

Here are a couple of properties of the set P,.
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PROPOSITION 3.15 ([24]). The set P, \ {0y, 14} ts a dense set of cut
points of I, and its subspace topology is the same as the order topology
induced by <,.

For a, <, b, points of P, we let the interval from a, to b, denoted
by [ay, by], be the set of points of I, that are in the closure of | J,, ., {n} x
[@n, bn].

If z is any point of the space I, then we define the layer L, of z in
I, as the intersection of all subintervals of I, that contain .

The following proposition shows the existence of non-trivial layers
of I,.

PROPOSITION 3.16 ([24]). Suppose that (a,), is a strictly increas-
ing sequence in P,, let B={b€ P, : a, <, b for alln <w} then

L= n{[a,,,b] 'n<wbe B},
is a non-trivial layer of I,.

PRrROOF. As P, is dense in I, we know that L is a layer of I,,. As the
set A= {an 11 < w} is relatively discrete its closure is homeomorphic
to fw, but A\ AC L. O

Such a non-trivial layer will be used to show that the span and the
surjective (semi)span of I,, are nonzero.
We state some properties of layers and intervals

PROPOSITION 3.17 ([24]). Let a, and b, be points of P, with a, <,
b, and let z be a point of 1.

(1) The interval [ay,b,] is homeomorphic with I,,.

(2) The interval [a,,by] is irreducible between a, and b,.

(3) [au, bu] = [0, bu]N[au, 1], so L., the layer of x is the intersec-
tion of intervals of all intervals of the form [0y, b,] and [ay, 1,]
that contain it.

(4) The layers of the points in P, are one-point sets.

We can extend the order <, to the whole set of layers in the fol-
lowing way: L, <, L, if and only if there is some a € P, such that
z € [0, a] and y € [a,1]. This extension of the order gives the following
continuity property in L,.

PROPOSITION 3.18 ([24]). For z € L, \ {04, 1.}, the closure of
the half open intervals [0y, L) and (L, 1,}, equal [0y, L;] and [Ly, 1,]
respectively.

The shift ¢ on w* is the Cech-Stone extension of the shift ¢ on w
defined by o(n) = n + 1 for all n. For a point u € w* its image under
o is the ultrafilter {{n+1:n € U} : U € u}. We call a subset F of w*
o-invariant if it holds that o[F]U e ![F] C F.




4. The spaces I, and H* 61

We are interested in the continua I, as they provide us with a lot
of subcontinua of the continuum H*.

Let ¢ : M — H be such that ¢((n,z)) = n + z, then ¢ is a perfect
map and its Cech-Stone extension ¢ : GM — BH maps M* onto H*.

If {[an,bn] : n < w} is a sequence of closed subsets of (0,1) then
q maps |J,{n} x [a,,b,] homeomorphically onto the subset |J,[n +
an,n + b,] of H. Furthermore, the map ¢ is exactly two-to-one on the
set w x {0,1} with the exception of the point (0,0). This implies that
the map ¢ is one-to-one on every [, and the only identifications that
are made by q on M* are those of 1, and 0y, for every u € w*.

Using any sequence a = {a, : n < w} in H increasing to infinity,
we can define a perfect map ¢, : M — H like ¢ by putting ga(n,z) =
an + z(any1 — an) for every (n,z) € M. The map ¢, will be called a
parameterization of H* determined by a. The map g, is, like the map g,
one-to-one on every I, and identifies the points 1, and 0,y for every
u € w*. The map ¢ from the previous paragraph will be called the
standard parameterization.

If g, is a parameterization of H* then as it is one-to-one on the
continua I, ¢a[l,] and I, are homeomorphic. The subcontinua of H* of
the form ga[L,] are called standard subcontinua of H*. These standard
continua are of a lot of interest to us as the following theorems show.

THEOREM 3.19 ([24]). Fvery proper subcontinuum of H* is the in-
tersection of all standard continua containing it.

So the standard subcontinua determine virtually the whole struc-
ture of the subcontinua of H*.

LEMMA 3.20 ([24]). Every subcontinuum of H* contains a stan-
dard subcontinuum and hence no subcontinuum of H* is hereditarily
indecomposable.

LEMMA 3.21 ([24]). A subcontinuum of H* is decomposable if and
only if it is a nondegenerate interval of some standard continuum.

PROPOSITION 3.22 ([24]). All layers of I, are indecomposable.

THEOREM 3.23 ([24]). If K and L are subcontinua of H* that in-
tersect and one of K and L is indecomposable then K C L or L C K.

Let L be a layer of I,. If Ay denotes the set of all (ap)n<, C I such
that a, <, L, and By, the set of all {(b,)n<, C I such that L <,, b, then
we have

L = [{{[au, bu] : (@n)n<w € A and (b)ncw € Br}.

It follows that if L is non-trivial then (Ar, By) determines a gap in P,,,
and conversely. We say that (Ar, Br) determines a gap in P, when
there is no (¢p)n<w in I such that a, <, ¢, <y by for all (ap)n<y in Ay,
and <bn>n<w in BL.
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The continuum hypothesis (CH) implies there is a non - trivial
layer L of I, such that Ay has cofinality w, and By, has coinitiality w;
in the order <,. This layer will be used in subsection 6.4 to find a
subcontinuum of the square I, x I, that shows that the symmetric
span of the continuum I, is nonzero.

In [16] Dow and Hart gave a representation of indecomposable sub-
continua of H*. They showed that the closed and o-invariant subsets
parameterize the indecomposable subcontinua of H* by the following
theorem.

THEOREM 3.24 ([16]). If L is a nontrivial indecomposable subcon-
tinuum of H* then there are a o-invariant subset F' of w* and a param-
eterization ga of H* such that L = ga|J,cr Lu)-

5. Chainability of H* and I,

If X is a completely regular space and V is an open subset of X,
then ExV is the commonly used notation for the largest open subset
of X, the Cech-Stone compactification of X, that, intersected with X
is equal to V:

ExV =X \ clgx(X \ V).

A chain cover is called minimal if without one of its links it is no

longer a (chain) cover.

LEMMA 3.25. Suppose that O = {O; : i < n} is a minimal finite
chain cover of some space X and x and y are two points of X such that
none of the links of O contains both the elements  and y, then there
erists a unique minimal sub chain O* of O such that z,y € | JO*.

PROOF. Let 7; be the minimal number 7 < n such that

O;N{z,y} # 0 and O;41 N {z,y} # O; N {z,y}.
Let i3 be the minimal 7 < n such that
{ey3}c | On
i1 <m<i

By assumption we have i; < i3. The sub chain O* = {0; : i; < i <1y}
is as required, as it is obviously a minimal sub chain of O containing
the points z and y in its union and all other sub chains containing z
and y in its union must contain it. O

Consider the open subsets W; of H for ¢ < 4 given by
Wi=JBn+2,8n+2i+3) (i<4).

n<w
As these sets cover the whole of H save the compact subset {0}, the
open cover U = {U;}i<3 given by

U; =ExW;nH* for all : < 3,
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is an open cover of the space H*. We will see that there exists no
finite chain cover of H* that refines the cover U, showing that H* is
non-chainable.

Striving for a contradiction, suppose that V = {V; : ¢ < n} is a
chain cover of H* that refines the cover Y.

We may assume that V is minimal and that each V; is of the form
Ex(O;) N H*, where

0, = U (al,bt) for every i < n,
nlw
for two sequences {a} }ncw and {b%},.<, of reals increasing to infinity,
such that a;, < b}, < a}_, for every i <n and n < w.
As V is a cover of H*, for some m < w we know that [m,o00) C
Ui<n Oi'

By construction of the cover U we have

u\Ju; #0
J#i
for all ¢ < 4. Let n; < n be such that the following holds for all ¢ < 4.

Va, U\ JU; # 0.
J#i
By (possibly) permuting the indexes of the open sets of the cover U we
may assume that ng < n; < ny < ny. This implies that the sub chain
V* = {Vao, Vg1, -+, Vnp } of V connects points from Up \ U;4, U; and
Uz \ U, Uj, and also the other way around. Hence the minimal sub
chain of V with this property is a sub chain of V*. The order of H then
gives us that V* covers all of H*, which can obviously not be true as it
misses the set Us \ U#3 U; completely; a contradiction.
We have proven the following theorem.

THEOREM 3.26. H* is non-chainable.

The proof above can be slightly altered to give a proof of the fol-
lowing theorem.

THEOREM 3.27. 1, is non-chainable.

SKETCH OF PROOF. Note that it suffices to show that [0,, L] is
non-chainable for some layer L of L, \ {0,}.

Let {z,;n < w} be any increasing sequence in I and consider the
open subsets {V; : ¢ < 4} of M given by

Vi= U {m} x (@sm12i, Tem+2it3) for i < 4.
m<w

Let L be the limit of the sequence {z,, : n < w} in L, then L <, z,,
and L is a non-trivial layer of I,,.
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Let S = {Si}i<4 be the open cover of I, defined by Sy = {0,} U
ExVpNI, and S; =ExV; NI, for 1 <i < 4.
Assuming that this open cover S has a finite chain refinement, ends

in a contradiction similar to the one in the proof above, this time using
the order of L. O

As I is chainable we have the following corollary.

COROLLARY 3.28. Chainability is not a first-order property in the
language of lattices.

6. Different kinds of span of [, and H*

In this section we investigate the different kinds of span of the
continua I,, and H*.

6.1. The span and the surjective (semi)span of H*.
LEMMA 3.29. There ezists a fized point free onto self map of H*.

PROOF. Let f : H — H be the map which assigns to every point z
in H the point z + 2 then 8f maps H* onto H*. We will show that 3f
is a fixed point free self map of H*.

Let z be a point in H*. Consider the closed sets F; (i =0,...,3) of
H defined by

Fi=|Jl4n+idn+i+1].
n<w
The closures of these closed sets form a closed cover of SH. There is
an F; which contains the point z in its closure. As f maps F; onto
Fli+2)moas and F; and Fi19)moas are disjoint, 8f(z) # . a

The graph of the continuous map of the previous lemma gives us
the following corollary.

COROLLARY 3.30. The surjective (semi)span of H* is nonzero.

6.2. The span of I,. The proof of the following theorem will be
given in the rest of this subsection in a number of claims.

THEOREM 3.31. The continuum L, has span nonzero for any ultra-
filter u € wW*.

Let {Zn}n<w be some increasing sequence in I which converges to
1. Without loss of generality assume that o = 0. Let z,, denote the
point of I, that corresponds to the point {(m,z,) : m < w} of M. As
{Zr }n<w is strictly increasing in I we have that {Zny}n<w is a strictly
increasing sequence in I, let L denote the limit of this sequence. By
proposition 3.16 L is a non-trivial layer of I,. And as z,, = u—lim,{z,}
is a point of P, for which we have that z,, <, z, we also have that
L <, x,.
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The proof of the theorem will now be as follows. We will define a
continuous map f on I, that maps L onto itself without a fixed point.
The graph of the map f [ L will then be a subcontinuum of I, x I,
that projects onto L in both axes and which has an empty intersection
with the diagonal. This implies that the span of the continuum I, is
non-zero.

We define the map f : I, — L, by defining it on M, taking its
Cech-Stone extension and restricting it to the space I,,.

(1) Let f [ Iy be equal to the identity.
(2) For all n > 1 let f | I, be given by the following restrictions
(a) f L, maps the point (n,xzx) onto the point (n,zx) for
all k£ < n and the point (n,1) onto the point (n, 1).
(b) f 1L, is linear on all the intervals {n} x [zk, Zx41] for all
k < n and on the interval {n} x [z,,1].

CLAIM 3.32. The Cech-Stone extension of the map f maps [0y, L]
continuously onto [21,, L].

PROOF. It is not hard to see that Sf maps the interval [zk ., Zk+1,)
of I onto [Tk+1 4, Zk+2,4) (in a one-to-one way) for all k < w. So Bf maps
[0, L) continuously onto |21, L). Furthermore, 8f [ L, : I, — I, is a
closed map. As by proposition 3.18 the closure of [0,, L) in I, is [0, L]
we have

Bf[0y, L] = Bf(ch,([0s, L)) = cl, (Bf([0u, L)))
= Clﬂu([xl,u, L)) = [xl,ua L]

CLAIM 3.33. The restriction (Bf) | L maps L onto L.

PROOF. The construction of f gives us that 3f[0y, L) = [21,4,L),
and as we have seen above this gives us L C Bf[L].

Again by construction of f we have for every n < w that Gf maps
[®nu, L) onto [Tn414, L) in one-to-one way. So we have, as Sf[L] C
BfZnu, L] = [Zn+1,, L] for all n < w that Bf[L] C N, [@nw, L] = L. O

Now we have defined the self map 8f [ L of L onto L, we only need to
show that it is fixed point free, to prove theorem 3.31.

CLAM 3.34. For all x in L we have Bf(xz) # x, in other words
Bf I L is a fixred point free self map of L onto L.

PROOF. Consider a point z in the layer L. For every n let a, be
the middle point of the interval (z,, Tpny1)-
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Note that the map f maps (n, ax) onto the point (n, ax1) for every
k < n. Define the following closed subsets F; for ¢ =0,...,3:

Fo=Uttn} x Ulsmadl, £ = Utk x U fowess ol

k<n k<n—1
3| =U{{n} X U[akaxk+1] and F3 = U{{n} X U [@k+1, Thra)-
n k<n n k<n—1

Note that the closure in SM of the union of the F}’s contains the interval
[0y, L] of I,. Also note that the closed set F; is mapped onto the the
closed set Fi;12)mod4, 50 f[Fi]NF; = 0. As z is contained in one of the
sets clgm F;, 1 = 0,...,3, we see that 8f(z) # =. O

As [ is a continuum which has span zero and [, is a continuum with
span nonzero we have the following corollary.

COROLLARY 3.35. Having span zero is not preserved by ultracopow-
ers.

6.3. The surjective (semi) span of L,. In section 6 we showed
that the surjective (semi) span of H* is non-zero, by constructing a
fixed point free self map of H* onto H*. In this section we will see
that the continuum I, has (at least under CH) also non-zero surjective
(semi) span. We show this by constructing a continuous self map f of
I, whose graph has empty intersection with the diagonal Ay, .

As the graph of every continuous self map of I, which does not hit
the diagonal contains points of the form (z,y) with 2 <, y and points
(s,t) of the form t <, s somewhere we have to “cross” the diagonal.
As this is obviously impossible in a cut-point of L, it must happen in
some non-trivial layer L.

Consider an increasing sequence {z, : n < w} in I, and the non-
trivial layer L, the limit of the sequence {z,, : n <w} in L,.

In section 6 we constructed a mapping f : M — M such that the
restriction of its Cech-Stone extension Bf to [0,,L] is a continuous
mapping of [0y, L] onto [z,, L] which does not have a fixed point.
This map Sf and the retraction we get from the following theorem will
show that the surjective (semi) span of I, is non-zero.

6.3.1. Preliminaries. Let {an}n<w and {bq }a<w, be sequences in P,
that form an (w,w;)-gap in P, (exists under CH) and let L be the
corresponding layer of I,,.

L= n{[a,,,ba] :n <wand a <w}

Let {an(k)}r<w and {bs(k)}r<o be sequences in I such that a, = u —
limg{a,(k)} for every n < w and b, = u—limy{ba(k)} for every a < w;.

THEOREM 3.36. L is a retract of [L,1,].

To prove the theorem we will construct a map ¢ between lattice
bases B and C of L and [L, 1,] respectively having certain properties,
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such that the continuous map we get from theorem 2.12 will be a re-
traction.

Let R be the family of finite unions of closed subsets of I with
rational endpoints. For every f € “R let us define the closed subset

Ay of M by
A= U{n} x f(n).
n<w

These sets form a lattice base for M, and by normality of M, the
closures of these sets in SM will be a lattice base for M. The lattice
base B of L consists of intersections of the form Af N L and the lattice
base C of [L, 1,] consists of intersections of the form A; N [L,1,].

For f.g € “R let f ~ g denote the existence of an n < w and an
« < wy such that

{k <w: Ay N {k} x [an(k),bo(k)] = Ag N {k} X [an(k), ba(k)]} € u.
It is easily seen that this relation ~ on “R is an equivalence relation.

LEMMA 3.37. For all f,g € “R, f ~ g if and only if for some
n < w and some o < w; we have A O [an,ba] = Ay N [an, ba).

PROOF. One implication follows directly from the definition of the
equivalence relation. For the reverse implication, note that for every
h € “R the restriction of A, to I is equal to {k} x h(k). a

LEMMA 3.38. Forall f,g € “R, f ~ g if and only if A;NL = A,NL.

PROOF. Again, one implication follows directly from the definition
of the equivalence relation.

For the other implication suppose that f % g. Without loss of
generality we can assume that (Af\ A;) N [as, bs] # @ for all n < w and
a < wi. Let F' be the closed subset of A; consisting of all center points
of the intervals in {k} x (f(k) \ g(k)) for every k < w. The closure
of this set F' in M contains elements of L, is contained in 1_47 and is
disjoint with A, implying that A; N L # A, N L. O

LEMMA 3.39. For any h € “R if L C Ay, then there are n < w and
a < wy such that [an, by] C Ap,.

PROOF. Let D be a closed discrete subset of M we get. by picking
one point in every complementary interval of {k} x h(k) for every k < w.

Suppose now that for every n < w and any a < w; we have [an, by] ¢
Ap.

Let n < w and « < w; the set

V ={k <w: {k} x [an(k), ba(k)] N D # 0}

is an element of the ultrafilter u, for if not, w\ V would be an element
of u which would imply that

[anba} € |J {k} % [an(k), ba(k)] C A,

kew\V
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in contradiction with the assumptions made on Aj.

This implies that [a,,bs] N D # , for all n < w and a < w;, hence
LN D # 0. This is in contradiction with the fact that D and Ay are
closed and disjoint subsets of M and the assumption that L is contained
in Ah. (]

LEMMA 3.40. For any h € “R if LN Ay, = 0 then there are n < w
and o < w; such that [an,bs) N A = 0.

PROOF. As the layer L is the intersection of the closed intervals
[@n,ba]. As Ap NI, is a closed set which misses L, by compactness of

I, there exist ng,...,np_1 <w and ay,...,x,-1 < w; such that
A_h N ﬂ [an.-a bai] = m
i<m
For n = max{n; : t < m} and a = max{¢; : i < m} we have [a,,ba] N
A, =0. O

6.3.2. Constructing the retraction. For the construction of the re-
traction we will make use of theorem 2.12. We will construct a map
¢ : B — C such that

(1) ¢(0) = 0 and for all nonempty B € B the set ¢(B) is nonempty;
(2) f FUG = L for F,G € B then ¢(F) U ¢(G) = [L,1,};
(3) if F is a finite subset of B such that [JF = 0 then we have

nFef¢(F) =0;
(4) #(F)NL=F forall F € B.

Together with theorem 2.12 this implies that L is a retract of [L, 1,].
Let {A, : @ < w;} be an enumeration of B (note that we assumed
CH). By an w;-recursion we will define ¢(A,) in C. Consider first the
following situation.

Suppose { fn}n<w is a subset of “R such that

A NL#A; NLforallm<n<w.
Let us define the following sets B,, C, and D, for n < w
B,={m<n:A; UA;, DL}
Co={FCn:|F|<wand 4;, N () 4, =0}
meF
D,={GcCn:|G<wand (|4 CA.}
meG
Suppose we also have a subset {g, }n<. of “R such that for every n < w
we have an o, < w; such that
Ap N [L,ba,} = Ag, N [L, ba,],
and the following properties are also satisfied
(1) if m € B, then (4, UA;,)N[L,ba,] = [L,bs,] and for ultra-
filter many k < w we have [b,, (k),1] C gn(k) U gm(k),



6. Different kinds of span of I, and H* 69

(2) if F € Cy, then Ay, NN,.cp Agm N[L, ba,,) = 0 and for ultrafilter
many k < w we have g,(k) N (,cp Im(k) =0

(3) if G € D, then N,,cp Ag, N [L, ba,] C Ay, and for ultrafilter
many k < w we have (),,cp gm(k) C gn(k),

CLAIM 3.41. Thereis a g, € “R that has all these properties related
to the map f.,, the sets B,,, C,, and D, and some o, < w;.

PROOF. As there are only countably many restrictions on g, by

the lemmas 3.39 and 3.40 there exists an & < w; such that on the
interval [L, b,] the set Kf: already fulfills all requirements on g,,, so we
only need to define g, (k) on the interval [by(k), 1], for ultrafilter many
k<w.
We will do this in an w-recursion, constructing at step n < w a
€ “R and a U,, € u such that {U, }n<. is strictly descending and g
has all properties that g, must have that follow from B, Nn, C,NP(n)
and D, NP(n).

The map g, defined by

gu(k) = gl (k) for all k € Uy, \ Uny1,

will satisfy all the requirements that follow from B,,, C, and D,,.
Suppose we already have constructed U,, € u and g} € “R for
m < n. To find suitable U, and g" consider m € B,Nn, F € C,NP(n)
and G € D, N P(n).
By construction, for ultrafilter many k& < w we have

ﬂ gi(k) C int(gm(k))

icF
(n g (k ﬂ (ﬂ gt =0.
jeaG i€F

As B,Nn, C,NP(n) and D,NP(n) are all finite, we can find a h € “w
such that, for ultrafilter many k < w and all m € B,Nn, F € C,NP(n)
and G € D, NP(n)

B (ggi(k)) n (ng(k)) =
B (k)  onll)
When we define the map g € “R by
9u(k) N [0,ba(k)] = fu(k)N[0,ba(k)] for all k < w,
9o(k) N [ba(k), 1] = [ba, 1]\ U Bﬁ(n gi(k)) for all k < w,

FeC,NP(n) ieF

95

we have made sure that all properties following from B, Nn, C,NP(n)
and D, N P(n) are satisfied on ultrafilter many coordinates. Choose
U, € u such that U, C U,_; and minU,_; < minU,. O
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Without loss of generality we can assume in the enumeration {4, :
o < w } of B that Ag = @ and A; = L. We can pick representing maps
from the equivalence classes of f, € “R/.. such that

A, =A—faﬂL for every a < w;.

Let the maps go, g1 and g; in “R be maps defined by go(k) = @,
gi(k) = [0,1] and go(k) = fa(k) for all K < w. When we need to
define ¢(A,), note that a is countable and we can use the claim in the
previous section to find a g, € “R such that ¢(A,) = Ag, N[L,1,] is
as required.

Note that if a is finite then the construction in the previous section
will still give us a suitable g,.

We can now prove the following theorem.

THEOREM 3.42 (CH). The surjective (semi)span of L, is nonzero.

PROOF. Let 3f denote the Cech-Stone extension of the map f from
section 6 that maps [0,, L] onto [z ,, L] without fixed points, and g the
retraction of [L, 1,] onto L. Let h : I, — I, be the combination h; 57 ko
of the compatible maps hy : [0y, L] — L, and hy : [L,1,] — L, defined
by

hy = (B) [ 04, L]
he = ((Bf)g) IL,1d].

Then h is a continuous self map of I, without fixed points. The graph
of h is a subcontinuum of the square I, x I,, which maps onto I, x {0,} in
one way, so this gives us that the surjective semi span of I, is non-zero.

If we join the graph of h with {0,} X [z1 4, 1,] and {1,} % [0y, L] we
have a subcontinuum of the square of I, which does not intersect the
diagonal A, ; as both of its projections map onto I, we see that the
surjective span of I, must also be non-zero. O

COROLLARY 3.43. Having surjective span zero or surjective semi
span zero is a property that is not preserved by ultracopowers.

The continuous self map h : I, — I, without fixed points gives us
the following interesting corollary.

COROLLARY 3.44. The fized-point property is not preserved by ul-
tracopowers.

6.4. The symmetric span of I, and H*. In this section we will
show that under CH the symmetric span of the continuum I, is non-
zero. We will accomplish this by finding a non-trivial layer L of I, and
show that

(1) There exists a continuous mapping f from L onto L without
a fixed point.
(2) There exists a retraction g of [0, 1,] onto L.
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Fix a non-trivial layer L of I, which determines an (wy,w)-gap
in P,. Choose sequences {fa}ta<w; and {ga}a<w, in “I such that if
we let f,, and g,, denote the points u — lim{f,(n) : n < w} and
u—lim{g,(n) : n < w} respectively for all  less than w; then we have

foau <u fou <u L <u 984 <u Gou, for all a < 8 < w.

As L is a (wy,w; )-gap in I/, we get the retraction g above by applying
theorem 3.36 twice. Once to get a retraction from [L, 1,] onto L and
once for the other part of the interval, to get a retraction form [0,, L]
onto L.

To construct a continuous onto self map of L we will use the fol-
lowing theorem from [16], theorem 3.24, which describes the structure
of the layer L completely.

Fix {{n;} x [a;, b;] : i < w}, a sequence of intervals in M such that

(1) lim;n; = 00 and n; < ngpy < m;+ 1 for all i < w,
(2) if n; = ny4; then a;4y = b;, and
(3) if ny4; = n; + 1 then b; = 1 and a; = 0;

let v € w* such that [a,,b,] C L.
For any o < w; and any U € u we have that

{i <w: {nz} X [a'iybi] - U [fa(n)’ ga(n)]}a

nel

is an element of the ultrafilter v. Without loss of generality we may
assume that b; # 1 for every ¢ and n, as we would only ignore in every
I, at most one interval {n;} x [a;, b;].

Let us define the continuous map h : M — M by defining its restric-
tions to the subsets I, of M. The map A [ L, is equal to the identity if
there is no ¢ for which n; = n. If there is some i < w such that n; = n,
then the map A [ I, is defined by

(1) k[ In.(n,0) is equal to (n;,a;) with the smallest index ¢ for
which {n;} x [a;, b] C I,
(2) h I I,(n;,a;) is equal to (n;,b;) for every i such that {n;} x
lai, b;] C L,
(3) h1ln(ni, b;) is equal to (niy1, aiyq) for every ¢ for which {n;} x
[@i, b)) U {nis1} X [@iv1, biy1) is a subset of I,
(4) the restriction kI, is equal to (n, 1) on the interval {n;} x [b;, 1]
where i is the largest index for which {n;} X [a;, ;] C L, and
(5) the map h [ I, is linear between these points just mentioned.
This map h is a continuous map on the space M whose fixed points are
points of the form (n, 1) for some n.

Take some element V' € v, then with @ < w and U € u consider the
sequence {m, : n € U}, defined by

m, = |{Z evV: {ni} X [aia bi] - [fa(n)rga(n)]}l'
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As L is a non-trivial layer we have that the sequence {m,, : n € U} must
be unbounded. We see that the sequence {|{i € V : h[{n;} x [ai, b]] C
[fa(n),ga(n)]}| : n € U} is also unbounded as each entry differs at
most one from the corresponding number m,,.

For every o < w; and every U € u we have that the intersection of
[fou; ga,u] With the set

el | J{{n} x [ai, 0] : {ni} x [ai, b] C [fa(R), ga(n)],n € U},

is non-empty. So the intersection of all these sets for o < w gives us a
closed non-empty set in L, namely the interval [a,, b,].

Likewise we find that for every a < w, the intersection of [fuu; Gaul
with the set

clam | J{R[{n:} x [ai, 5] : {ra} x [as, )] C [fu(n), ga(n)],n € U},

is non-empty. This gives us also a closed subset of I,. As h((n;,a;)) =
(ns, b;) for ultrafilter v many #’s we have that Sh(a,) = b, and so the
standard subcontinua [a,, b,] and Bh{[ay, by]] = [by, Gs(v))] intersect. So
the layer L and hl[ay, b,]] intersect, as this last set cannot contain the
layer L it must be a subset of L by theorem 3.23.

CLAIM 3.45. The restriction of the Cech-Stone extension (h of the
map h to the layer L is a fized-point free self map.

PROOF. By theorem 3.24 we know that if we let F' C w* be the set
of all ultrafilters w on w such that [ay, b,] C L then L can be written
as L = erltw, bu)-

We have just seen that every [a,, b,] is mapped onto the subinterval
[bv, @o(w)] Of L for every v € F.

Every z € L is contained in some standard subcontinuum [a,, b,] of
L for some v € F, so the restriction of 8h to L is fixed point free. O

Let C be the subcontinuum of the square I, x [, that is the graph of
the map hog. By construction, the intersection of C with the diagonal
A\, is empty. Define the closed subset D C I, x L, by

D = {(.’L’,y) € ]I'u X IIu : (y,.’L‘) € C}

CLAIM 3.46. The intersection of C' and D is empty.

PROOF. Suppose that (z,y) € CN D, then Sh(z) =y and Bh(y) =
z. As z € L there exists a v € F such that z € [a,, b,], we then also
know that y = h(z) € [by, @y()] and & = Bh(y) € [ao(v), bo(w)]- But this
would give that [ay,, by] N [@s(v), bo(w)] # O, a contradiction. a

If we let X be the union
|G, D, {0u} x [L, 1], {1a} X [0u, L], [L, L] x {0u}, 04, L] x {L.}},

then X is a symmetric subset of the square I, x I, which has empty
intersection with the diagonal. As X is also a subcontinuum of the
square, we have the following theorem.
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THEOREM 3.47 (CH). The symmetric span of the continuum I, is
nonzero.

COROLLARY 3.48 (CH). Having symmetric span zero is not pre-
served by ultracopowers.

7. Another model theoretic approach

The lattice sentence which expresses that the Wallman representa-
tion of a distributive lattice that models this sentence is chainable is,
as we have seen in section 3, not a first - order sentence. In this section
we will take an elementary sublattice of some lattice 2% in another
way, such that we have a lot more structure to work with. To be more
precise we will be taking elementary substructures of our lattices with
respect to submodels (see chapter 2).

Let for the remainder of this section 6 be a large enough cardinal
such that H(f) reflects all the theorems of ZFC we will need in our
reasonings below.

7.1. Preliminaries. Let X be a continuum, and 9 be an elemen-
tary substructure of H(6) such that 2% € 9.

The following objects are uniquely defined in terms of elements of
M and are therefore elements of IN.

(1) X, the union of 2¥ and X x X, the product of this union.
(2) The diagonal Ay, defined as the set of all ordered pairs of ele-
ments from X whose coordinates are equal and which contains,

for every element z of X the ordered pair (z, z).
(3) The lattice 2X*X of all closed sets of X x X.

Let L be the elementary sublattice 2% N9t of 2%, and K the elementary
sublattice 2X*X N Mt of 2X*X,

LEMMA 3.49. wL x wL = wK.

PROOF. As L and K are elementary sublattices of 2X and 2X*X
respectively, by theorem 2.12 there are continuous mappings f : X —
wL and g : X x X — wK. Consider the mapping h : wK — wL x wL
defined by

h(p) = ({m[P]: P € p}, {me[P] : P € p}).
CLAM 3.50. For p € wK is h(p) an element of wL x wL.

PROOF. Note that by elementarity of 9t we have {Ax B: A,B €
L} c K. Also by elementarity, for every P € K we have that its
projections m;(P) and m(P) on the axes of X x X are elements of L.

Suppose that there is some D in L such that DN A # 0 for all
Ae{A:Ax X €p} ={m|[C]: C € p}. Then we would have that
DxXNP #0forall Pe pand so, as p is an ultrafilter, we have
Dx X epand D € {m[P]: P € p}. a
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CLAIM 3.51. h: wK — wL x wlL is continuous and one to one.

PROOF. As inverse images under h of the closed base element A x B
for any A, B € L of wL x wL is equal to the intersection of the closed
sets A x X and X x B in wK, the map h is continuous.

Suppose that p # ¢ are elements of wK, then there are P € p and
Q € q such that PN Q = @. By elementarity we have open disjoint
subsets U and V, with disjoint closures of P and @Q in 9. For each
point in the closed set P we can find an open set that is a product of
open sets of X, such that the closure of this product is contained in the
closure of U. The set C being compact there are finitely many of these
products of open subsets of X needed to cover it. By elementarity
there are a finite number of pairs of elements of L whose product cover
P and and a finite number of pairs of elements of L whose product
cover @, such that there unions are disjoint. p and ¢ being ultrafilters,
and K containing all products of elements of L, p and ¢ contain a

product of elements of L that have empty intersection. This implies
that h(p) # h(q). O

CrLamM 3.52. h[wK] = wL x wL.

PRroOOF. For this we will show that for every a,b € wL we have po
go(fx f)~Y(a,b) = ((a,b)). For this we bring the proof of theorem 2.12
again to mind.

Let (z,y) be an element of X x X. Suppose that f(z) =a, f(y) =b
and g((z,y)) = p. We have the following equationsa = ({{A€ L:z €
AL,b=(\{Be€L:yeB}andp={P€ K :(z,y) € P}.

Obviously,ifr € A€ Land y € B € L then (z,y) € AxB € K by
elementarity. Aiming for a contradiction, suppose that h(p) = (e, f) #
(a,b). Without loss of generality we may assume that e # a. So there
are elements A and E of L such that A € a, E € e and ANE = (. Now
h(p) = (e, f) gives us that (z,y) € E x X, which means that z € E,
and thus a € E which is impossible. O

By the previous three claims we have that h is a one-to-one contin-
uous map of wK onto wL x wL so, as these spaces are compact the
map h is in fact a homeomorphism. O

7.2. Reflecting chainability. Suppose that X is a chainable con-
tinuum, and 9 is an elementary submodel of H (6) containing 2% as one
of its elements. Let L and K denote the lattices 2X N9 and 2X*X NN
respectively. We will show that the continuum wL is chainable as well.

Let U = {U,...,Uy,} be a finite open cover of the continuum wL.

THEOREM 3.53 ([19]). Every finite open cover {U;}%_, of a normal
space X has shrinkings {F;}E, and {W:}L,, functionally closed and
functionally open respectively, such that F; C W; C W; C U; for i =
1,....k
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As L is isomorphic to a lattice base for wL, and Y is finite, we can
find an open cover V = {Vi,...,V,} of wL such that V; C U; for all 4
and every V; is the complement of some base element A from L.

By elementarity we then find a chain cover refinement of V, which
obviously is a chain cover refinement of I.

7.3. Reflecting non-chainability. Let X be some non-chainable
continuum and suppose that 90t is an elementary submodel of H(#)
(where 6 large enough) such that 2% € 9. Let L denote the elementary
sublattice of 2% given by L = 2X n 9.

The continuum X being non-chainable, there exists a (finite) open
cover of X, every finite refinement of which is not a chain cover of X.
By elementarity there exist elements zy, ..., z,_; € M, for some n < w
such that

9ﬁ|={x,-:i<n}C2X/\nw,~=(b.
i<n
Corresponding to {z; : ¢ < n} is an open cover of which every re-
finement is not a chain cover. Translated into closed set terminology,
for every m < w and every yq,...,Ym—1 € 2X NI, if M models the

sentence
ﬂyi=(b/\ /\ Vl‘jCyi

i<m i<mj<n
then 9% also models the sentence

V{wuy # X li—jl > 2} v \{m: Ui = X i <m}.

Suppose now that wL is chainable, then there exists a finite set of
closed sets {y; : ¢ < m} for some m < w such that its complements
form a chain cover of wL that refine the cover {wL\z; : i < n}. We will
show that this cannot happen by finding, in 9 a subset of elements of
2% that correspond to a chain refinement of {X \ z;;4 < n}. This will
be a contradiction with the fact that 9 is an elementary submodel of
H(#), hence a proof that wL is non-chainable.

Without loss of generality we can assume that m > 2.

Asy; Uy #wL and y; C wL \ ﬂj 4 Y; and by the compactness
of wL we can pick for any i < m a nonempty F; in L such that

u CFcwL\ (JFuJw)
Jj<i i<j
Consider the family F = {F; : ¢ < m} of elements of L. The F’s
are chosen in such a way that their intersection is empty, hence they
correspond to a finite open cover of wL. Also for every i < m we have
yi C F;, so F corresponds to a refinement of {wL\y; : i < m} and this
also implies that

F; U F; = wL whenever |i — j| > 2.
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Finally, because wL is a continuum and we have chosen the F;’s in such
a way that F; N F;;; = () we also have that

F,UF,; # wL for every i < m.

This shows that 9% will model that F corresponds to a finite chain
refinement of {X \ z; : ¢ < n}.

7.4. Reflecting span nonzero. Suppose that X is a continuum
which has span nonzero. This means that there is some subcontinuum
of the square X x X that projects onto the same subset on both co-
ordinates and whose intersection with the diagonal Ay is empty. Let
I be an elementary submodel of H(6) that contains 2% as one of its
elements.

LEMMA 3.54. The continuum w(2X N9N) has span nonzero.

PRrROOF. There exists an element Z in the lattice of closed sets of
X x X such that it is connected and it projects onto both coordinates
onto the same set, this implies that for all closed subsets F' of X we
have
ZCXxFifandonlyif ZC F x X.

By compactness there exist for some n < w closed sets Fi, ..., F, of X
such that
Zc(\(F;xXUX x F;) and [|F;=0.
i=1 i=1
By elementarity we can find n of such elements of 2X N9, which shows
that w(2X N M) has span nonzero. O

8. Final remarks

The big question is, if span zero is a property that reflects like
the properties (non-)chainable and span nonzero. If this is the case
then we are not restricted to metric spaces when we want to find a
counter example to Lelek’s conjecture on the equivalence of span zero
and chainability for metric continua. Given a non-metric counterexam-
ple to Lelek’s conjecture, with the method described above just take
a countable elementary submodel 9t of some H(6) such that 2X € 9
and the continuum w(2X N 9M) is a metric counter example to Lelek’s
conjecture.

QUESTION 3.55. Are span zero, surjective (semi) span zero and
symmetric span zero properties that reflect using the method described
in the previous section?

In section 3 we found a countably many sentences that together
describe span of lattices L that model the sentence ¢, the lattices
whose Wallman representation is a locally connected continuum. We
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have thus a partial answer to question 3.55, a positive answer for locally
connected continua.

Given a positive answer to one of these questions, we are, as mention
earlier no longer restricted to the metric continua if we want to find a
counterexample to Lelek’s conjecture. We saw that the spaces I, and
H* are continua that are non-chainable and have (different kinds of)
span nonzero. The following question arises.

QUESTION 3.56. Is there a continuum that is non-chainable and
has span zero or surjective (semi) span zero or symmetric span zero?

Or, since we know that the answer to question 3.55 is positive for
locally connected continua, a positive answer on the following question
would give us immediately a counter example to Lelek’s conjecture.

QUESTION 3.57. Does there exist a locally connected non-chainable
continuum which has span zero?







CHAPTER 4

On a theorem of Mac¢kowiak and Tymchatyn

1. Introduction and Preliminaries

We call a continuous mapping between two continua weakly conflu-
ent if every subcontinuum in the range is the image of a subcontinuum
in the domain. The following theorem of Mackowiak and Tymchatyn
is the topic of this section

THEOREM 4.1 ([43]). Every metric continuum is a weakly conflu-
ent image of some one-dimensional hereditarily indecomposable metric
continuum.

In [25] this result was extended to general continua.

THEOREM 4.2 ([25]). Every continuum is a weakly confluent image
of some one-dimensional hereditarily indecomposable continuum of the
same weight.

The authors of [25] gave two proofs for this theorem, one topological
and one model-theoretic. Both proofs made essential use of the metric
result.

Our initial interest was to construct a model-theoretic proof of the-
orem 4.1. After we found this proof we realized that it could be com-
bined with any standard proof of the completeness theorem of first-
order logic to produce an inverse-limit proof of the general form of the
Mackowiak-Tymchatyn result. We present both proofs. The model-
theoretic argument occupies section 4, and the inverse-limit approach
appears in section 3.

We want to take this opportunity to point out some connections
with work of Bankston ([4], [5]) who dualized the model-theoretic no-
tions of existentially closed structures and existential maps to that of
co-existentially closed compacta and co-existential maps. He proves
that co-existentially closed continua are one-dimensional and heredi-
tarily indecomposable, that co-existential maps are weakly confluent
and that every continuum is the continuous image of a co-existentially
closed one. The map can in general not be chosen co-existential, be-
cause co-existential maps preserve indecomposability and do not raise
dimension.

Remember that we can extend the notion of hereditary indecompos-
ability to arbitrary compact spaces (see section 4.3 for details). Then a
compact Hausdorff space is hereditarily indecomposable if for every two
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subcontinua that meet, one is contained in the other. In this section
we will use the characterization of Krasinkiewicz and Minc mentioned
in section 4.3 to show that a compact space is hereditary indecom-
posable when a base for its closed subsets fulfills all requirements of
theorem 2.22.

In this section we will also make use of the characterization of the
covering dimension dim for normal spaces mentioned in section 4.4
theorem 2.24. If a base for the closed sets of some compact space fulfills
all requirements of this theorem, we know that the covering dimension
of this space is less than or equal to n.

This section is put together in such a way that readers who are only
interested in the topological (model-theoretic) proof can simply ignore
section 4 (section 3, respectively) without loss of continuity.

2. Two main lemmas

The two lemmas in this section stand at the basis of the topological
as well as the model-theoretic proof in section 3 and section 4 respec-
tively.

LEMMA 4.3. If X is a continuum and a, b and ¢ are nonempty closed
subsets of X with empty intersection then there exist a continuum Y
and a monotone closed onto map ¢ : Y — X such that w(X) = w(Y)
and Y has a closed cover {A, B,C} with the property that ¢~'[a] C A,
¢~'b)c B, ¢7l[cJc C and ANBNC =0.

PROOF. We apply normality to find a partition of unity {«a, Kb, &c}
subordinate to {X \ a,X \ b, X \ ¢}, i.e. the support of , is a sub-
set of X \ a, etc. Define the function f : X — R3 by f(z) =
(ka(), 55(2), kc(z)). The function f maps the space X into the tri-
angle T = {(t1,tz,t3) € R3 : #1,85,¢3 > 0 and ¢; +t +t3 = 1}. The
resulting embedding of X into X x T defined by z — (z, f(x)), will be
denoted by g.

Now consider the space 8T x [0, 1], where 8T = T'\ int(T) in R3.
Let h be the map from 0T x [0,1] onto T defined by

11 1)
3'3'3"
The map h restricted to 8T x [0,1) is a homeomorphism between 0T x

[0,1) and T\ {(3, 3, 3)}-

We define Y ¢ X x (8T x [0,1]) by Y = (id xh)}{[g[X]]. And let
¢ :Y — X be the (onto) map g~! o (id xh). As the inverse images of
points (z, (t1, 2, t3)) under the map id xh are points for (z, (t1,t2,3))

in X x T with (t1,%2,83) # (3,3,3) and equal to {z} x 6T x {1} for
those (z, (t1,t3,t3)) in X x T with (¢1,t,t3) = (3,3, 3), we find that
the map id xh : X x (8T x [0,1]) — X x T is monotone. Furthermore

it 1s also closed.

h((z,t)) =z(1 —t) +¢(
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Let p be the line segment between (0,1,0) and (0,0,1), g the line
segment between (1,0,0) and (0,0, 1) and r the line segment between
(1,0,0) and (0,1,0). Thesets A=Y N(X x (px[0,1])), B=YN(X x
(gx[0,1])) and C = Y N(X x (r x [0,1])) form a closed closed cover of
Y such that ¢~1a] C A, ¢7'[b] C B, ¢~ '[c] C C,and ANBNC = 0.
As it is easily seen that Y and X have the same weight, we have proven
the lemma. O

LEMMA 4.4. If X is a continuum and a, b, ¢ and d are nonempty
closed subsets of X such that aNnb =aNd =bNc = 0 then there
exist a continuum Y and a weakly confluent onto map ¢ : Y — X
such that w(X) = w(Y) and Y has a closed cover {U,V,W} with the
property that v (a) C U, v~1b) C W and UNV Ny~ ) = UNW =
VNWny(d) =0.

PROOF. We are going to use an idea from [25]. Let a, b, c and d be
nonempty closed subsets of X with the property stated in the lemma.
With the aid of Urysohn’s lemma we can find a continuous function
f X — [0,1] such that fla] c {0}, f[b] C {1}, flc] C [0,1] and
fld] < [3,1]-

Let P denote the (closed and connected) subset of [0, 1] x [0, 1] given
by

1 2, 11 2 1 12 13 1 3 1
= {2}x[0, SJUl5, 2] x {2 U{=} %[5, S|U[5, SIx {=Yu{SY x5, 1]
Let Z C [0,1] x X denote the pre-image of the set P under the function
id x f:
Z={(t,z) €[0,1] x X : (¢, f(z)) € P}.
As P is closed and id x f is continuous the set Z is compact. Define
the (continuous) map 7 : Z — X by n((¢,z)) = z for every (¢,z) € Z.

Let F be the set of all clopen subsets of Z that are mapped onto

X by 7.

CLAIM 4.5. The set F is a nonempty ultrafilter in the family of
clopen subsets of Z.

PROOF. Suppose we have closed sets F' and G such that Z = F+G.
Define closed subsets A;, B; of X, where i € {0, 1,2}, by

Ay = {xEX:(%,z)EF}, BO={z€X:(i,:c)EG}
A = {xEX:(—lz-,x)eF}, BI:{xEX:(%,x)GG}

Ay = {xeX:(Z,x)EF}, Bzz{xEX:(z,w)eG}

It is clear that A; N B; = 0 for every ¢ € {0,1,2}.
If z € (Ao N By) U (By N A;) then f(z) < 2 as f(z) = 2 is clearly
impossible. Similarly we see that f[(A; N Bz) U (B1 N A,)] C (3, 1].
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Let A* and B* be closed sets of X, such that A* is equal to the
following union of closed sets

1 2
U{f_l[O, 5] N Ay, f—llgy 1]N Ag, Ag N A1 N Az, AgN B1 N By,
BoN By N Az, By N A, N By},

and we get a description of the closed set B* by interchanging A’s and
B’s in the above equation. The sets A* and B* are disjoint closed
subsets of X and their union is the whole of X. As X is connected
one of these sets must be empty. So without loss of generality we can
assume that B* = (. We see that 7[F] = X and furthermore, that 7
maps G, the complement of F into the set f~ [3, 3] a proper subset
of X.
This argument shows that if Fy, F; € F then 7[X \ (F1 N )] C
f7113, 2], whence F is seen to be a filter; it also shows that F is an
ultrafilter. |

Let Y C Z begiven by Y = [|F and let ¢ : ¥ — X be the
restriction of 7w to the continuum Y, ¢y =7 [Y.

CLAM 4.6. 9 : Y — X is weakly confluent.

PROOF. Suppose we have A C X connected. If we look at the
image of A under the function f there are a number of possibilities:

(1) flA] C [0,3] and fIA]N[0,3) #0. As mZ\Y]C f° '3, 3] we
know that { } x A must intersect Y. As {1} x A is connected
we even have that {i} x A is a subset of Y.

(2) flA] C [3,2]. The component Y of Z must intersect at least
one of the connected subsets {3} x A4, {3} x A or {2} x A of
Z, because Y is mapped onto X. And so Y must contain at
least one of these connected sets.

(3) fIAIN[0,3) # 0 # fl[A] N (3,1]. As above, assuming that
At (= n"1A]) = F + G, we can construct closed and disjoint
subsets A* and B* of A which cover it. Again the image under
1 is either all of A or a proper subset of A. The (unique)
component of A* that maps onto the whole of A must intersect
the set Y, and so is contained in it.

This ends the proof of the claim. O

If we let U be the set {(t,z) € Y : t € [0,3]}, V = {(t,2) €
Y:te [%’%]} and W = {(t,z) € Y : t € [},1]}, then {U,V,W}
is a closed cover of the space Y such that ¢~[a] C U, ¥~'[b] C W,
UnvVnyld=0,VnWnyd =0 and UNW = @. This ends
the proof of the lemma as it is easily seen that X and Y are both of
the same weight. O
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3. A topological proof of the theorem

Before we start with the proof of the theorem we restate the follow-
ing well - known lemma on a base for the closed sets of some (transfi-
nite) inverse sequence.

Let {X,; fa, €} be an (transfinite) inverse sequence with X, as its
inverse limit space. Let for every a < k the continuous function 7, be
defined by 7, = proj, [X« : Xx — Xa, where proj,, : Hacx Xo — X4 is
the projection. The following lemma is well known.

LEMMA 4.7. The family of all sets of the form n ![F], where F is
a closed subset of the space X, and o Tuns over a subset C cofinal in
K, 1s a base for the closed sets of X,.. Moreover, if for every a < Kk a
base B, for the closed sets of space X, is fized, then the subfamily of
those m [F| for which F € B,, also is a base for the closed sets of X,.

Let X be a metric continuum. We are going to define a inverse

sequence { X, fn,w},

X=X, x, o by Lo
in such a way that the inverse limit space X, is a hereditarily inde-
composable one-dimensional continuum of countable weight such that
7o : X, — X is a weakly confluent map onto X.

For every n we will define a metric continuum X,,, an onto map
fn: Xn — X,_1 and a countable base B, for the closed sets of X, that
is closed under finite unions and intersections . Lemma, 4.7 tells us that
B = U, 7" [Bn] will be a countable base for the closed sets of X,
If we choose the bases B, in such a way that f, [B,_1] C By, then we
even have that B is closed under finite unions and intersections.

By theorem 2.22 and corollary 2.27 we know that X, is a hereditar-
ily indecomposable continuum, that is one-dimensional and of count-
able weight if we can make sure that the base B has the following two
properties

(1) Forevery a,b, c € B with empty intersection there are A, B,C €
B such that a € A, bC BecC C, ANBNC = § and
AUBUC = X,,.

(2) For every a,b,c,d € B such that aNnb=aNd=bNc =1
there are U,V,W € Bsuch thatac U, bC W, UNVNc =0,
VAwnd=0,UNnW=0and X, =UUVUW.

To consider all the triples and quadruples of B it is more than enough,
by the definition of the bases B, to consider all the triples and quadru-
ples of every B,. As there are countably many of those we can find
an enumeration ¢ of these triples and quadruples of length w in such a
way that the n-th element o(n) of this enumeration will be some triple
or quadruple of some base B,, with m < n.
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Furthermore, if all the bonding maps f, are weakly confluent then
the map my will be weakly confluent. This is easily seen: given some
subcontinuum A of X we can define an inverse sequence {A,, gn,w},
where Ag = A and, for all n, A,4; is some subcontinuum of X,, such
that g,[An+1] = An. Where g, is the restriction of f,, to the set An41.
The inverse limit of this sequence is a subcontinuum of X, which is
mapped onto A by the map .

We will use lemma 4.3 and lemma 4.4 in the construction of the
inverse sequence {X,, f,,w}. Suppose we have defined all X,,, fy, and
B,, for m < n. If o(n) is some triple of B,, then we look at {a,b,c},
their pre-image under the map f7 in X,. We use lemma 4.3 to find
Xny1 and f11, and we choose a countable base B, for the closed sets
of X,, such that it contains {4, B,C} and £}, [B,)], where {4, B,C} is
the closed cover of X, we get from lemma 4.3. When o(n+1) was a
quadruple of B,, then we do something similar as above but this time
we use lemma 4.4.

In a similar way we can construct for any continuum X, using
lemmas 4.3 and 4.4 some (transfinite) inverse sequence {Xg, fa, w(X)}
such that Xy, = X and the inverse limit of this sequence will be a one-
dimensional hereditarily indecomposable continuum of weight w(X)
that is mapped onto X by the weakly confluent map my. This provides
an independent proof of a theorem in [25] which states just this. The
proof in that paper made essential use of the metric case.

4. A model-theoretic proof of the theorem

For the remainder of this section we fix some metric continuum X.
In this section we will prove the Madkowiak-Tymchatyn theorem for
this X in two steps. First we show that X is a continuous image of
some metric one-dimensional hereditarily indecomposable continuum,
and then we show that the map can even be weakly confluent.

We will construct a lattice L such that some lattice base of X
is embedded into L, the Wallman representation wL of L is a one-
dimensional hereditarily indecomposable continuum and that for every
subcontinuum in X there exists a subcontinuum of wL that is mapped
onto it.

For this we need to translate things like being hereditarily inde-
composable, being of dimension less than or equal to one and being
connected in terms of closed sets only.

Using the characterization of hereditary indecomposability as stated
in 2.22, we see that a compact Hausdorff space Y is hereditarily inde-
composable if the lattice 2¥ models the sentence

VabedIzyz[aMb=0AaNd=0AbMNc=0—

(22) aN(yuUz)=0AbN(zUyY)=0AzMNz=0A
zMyfMe=0AyNzNd=0AzUyUz=1].
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Using corollary 2.27, we see that a space Y is of dimension less than
or equal to one if the lattice 2¥ models the sentence

VabcdzyzlaMbMNe=0 —
(23) aNz=aAbNy=bAcNz=cA
zMNyMNz=0AzUyUz=1].

A space Y is connected if the lattice 2¥ models the sentence conn(1),
where conn(a) is shorthand for the formula V2 y[((zMy = 0)A(zUy =
a)) = (z=a)V (z =0))].

4.1. The space X is a continuous image of some one-dimensional
hereditarily indecomposable metric continuum. Using the the-
orems 2.2 and 2.12, we see that in order to get a hereditarily indecom-
posable continuum of dimension one and countable weight that maps
onto X we must find a countable distributive, disjunctive normal lat-
tice L such that it is a model of the sentences 22, 23 and conn(1), and
furthermore that some lattice base of X is embedded into this lattice L.

Fix a lattice base B for X.

For some countable set of constants K we will construct a set of
sentences ¥ in the language {M,U,0,1}U K. We will make sure that ¥
is a consistent set of sentences such that, if we have a model 2 = (A,7)
for ¥ then

LR)=TI|K
is the universe of some lattice model in the language {M,L,0,1} which
is normal, distributive and disjunctive and models the sentences 22, 23
and conn(1). To make sure that B is embedded into L(2l) we simply
add the diagram of the lattice B to the set ¥ and make sure that there
are constants in K representing the elements of B. The interpretations
of M, U, 0 and 1 are given by there interpretations under Z in the model
A
Let K be the following countable set of constants

K= |J Ki= | {kam:m<w}

—1<n<w —1<n<w

We define sets ¥,, of sentences by an w-recursion and set ¥ =, <w S

To begin we define K_; = B and Xy = Ap, the diagram of B.
The sets X,, will have the following properties:

(1) The Xs5,41’s will be sets of sentences that will make sure that
the L(?) is a distributive lattice and that the Wallman space
wL(2A) of the lattice L(A) is connected.

(2) The Es5,42’s will be sets of sentences that will make sure that
the lattice L(2) is normal.

(3) The Xs5n43’s will be sets of sentences that will make sure that
L(%) is a disjunctive lattice.

(4) The X5, 4’s will be sets of sentences that will make sure that
the lattice L(2A) will be a model of the sentence 23.
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(6) And the X5(,41)’s will be sets of sentences that will make sure
that the lattice L(2A) will be a model of the sentence 22.

4.1.1. Construction of ¥ in {N,U,0,1} U K. We now show how to
define the sets of sentences of {r,U,0,1} U{J K, as described
in 1 through 5.

We have a natural order < on the set K = |J,, K,,, defined by

m<5n-+4

knm ks o [(n<r)V((n=1)A(m <t)).
Let {p;}i<. be an enumeration of

pell Knl:p\ | Ku#0).

m<5n m<5(n—1)
For every | < w write p; = {p(0), m(1)}.

Egn+1 ={p(0) T pt(1) = ksny1,21 : | < w}
E%n—H ={p(0) Up(1) = ksny12141 1 1 < w}.

Furthermore we let £2,.; be a set of sentences in {M,U,0,1} U

Um<sn Km (without quantifiers) consisting of
(1) sentences stating that we are dealing with a distributive lattice
with a 0 and a 1 according to the constants from |J,,<5, Km,

(2) sentences that make sure that no pair of constants from will
refute conn(1).

Define ¥s,41 by
Ssni1 = Lgnpr U T UZE .

This set of sentences will make sure that any model of ¥ in the language
{N,4,0,1}U K will be a distributive lattice with a 0 and a 1, and also
a model of the sentence conn(1). Let us denote the following set of
sentences by X, .

{[((0) M (1) = 0) — ((pu(1) M Ksps221 = O)A
(p1(0) M ksni2,2141 = 0) A (ksnr2,2 U ksnao2i01 = 1)) 1 1 < w}

This set of sentences will make sure that any (lattice) model of ¥ in
the language {1,U,0,1} U K will be normal.

The following set of sentences makes sure that any model of ¥ in
the language {M,U,0,1} U K which is also a lattice is a disjunctive
lattice.

%8s = {[m(0) N (1) # pr(0) — Ksns2i41 N P(0) = ksnyszi41A
ksnyz o Mpi(1) =0)] : I < w}
Eén+3 = {[p(1) Np(0) # p(1) — ksnysu M pi(1) = kspiauA
k‘5n+3,21 ﬂpl(()) e 0)] < W}
And define Y5, , 3 by

50 1
Z5n+3 - 2511,+3 U 2511-1—3'
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Let ¢ denote the following lattice formula

C(a,bc;2,y,2) =[aNbNe=0—aNz=aAbNy=bAclz=cA
zNyNz=0AzUyUz=1].

Let {¢:}i<. be an enumeration of the set

{ge U Kmlg 1q\ U Kn # 0}

m<5n m<5(n—1)

For every | < w write ¢ = {g,(0), ¢:(1), a(2)}.
Now define s, .4 by

Ysnta = {C (QI(O)a (Iz(l).a %(2); ksnta,31, Ksntd,3041, k5n+4,3t+2) < w}.

This will make sure that the Wallman space of any lattice model of X
will be at most one-dimensional.

To make sure that the Wallman space of any model of ¥ will be
hereditarily indecomposable we introduce the following formulas in the
language {M,U,0,1}:

#(a,b,c,d) = [aMb=0AaNd=0AbMNc=0]
Y(a,bc,d;z,y,2) = [rUyYUz=1AzMNz=0A
al(yUz)=0AbN(zUy)=0A
zMNyNc=0AyMNzNd=0]
(24) 0(a,b,c,d;z,y,2) = ¢la,bc,d) = ¥(a,b,c d;z,y,2)

Let {r}i<., be an enumeration of the set

{1"64[U K] : ran(r) \ U K,, # 0}.

m<on m<5(n—1)

Let X5(n41) be the following set of sentences :

{0(ri(0), (1), 11(2), 71(3); ksnr1),305 Ks(na1), 3141, Ksnin),aiez) 1 L < w}.

Here the formula 6 is as in equation 24.

4.1.2. Consistency of ¥ in {I,U,0,1}UK. In this section we show
that Y is a consistent set of sentences by finding, for every finite subset
I' of ¥ a metric space Y and an interpretation function Z : Kk — 2Y
such that (2¥,7) is a model for the theory I'U Ag. The interpretations
of M, U, 0 and 1 will always be N, U (the normal set intersection and
union), @ and Y respectively.

For ' = § we let Y = X and we interpret every constant from
K _; as its corresponding base element in B. Extend the interpretation
function by assigning the empty set to all constants of K \ K_;. It is
obvious that (2¥,Z) is a model of Ag.

REMARK 4.8. As the interpretation of M and U in the metric con-
tinuum Y will always be the normal set intersection and set union, all
the sentences in ¥2, ; for some n < w are true in the model (2¥,Z).
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So we can ignore these sentences and for the remainder of this section
concentrate on the remaining sentences of X.

We can define a well order C on the set £\ {£2.,, : n < w} by
stating that ¢ C v if and only if there are n < m < w such that ¢ € &,
and ¢ € £,, or there are k < ! < w and n < w such that ¢,% € X,
and ¢ is a sentence that mentions py (gx or ry respectively) and ¢ is a
sentence that mentions p; (g or r; respectively).

Suppose I is a finite subset of ¥ such that each of its proper subsets
has a model as stated as above. Let 6§ be the C-largest sentence in
I'\{Z2,,,:n <w} and let Y be a metric continuum and T : K — 2¥
be an interpretation function such that (2¥,Z) is a model of the theory
'\ {0} U L.

We will show that there exists a metric space Z and an interpreta-
tion function J : K — 27 such that (2%,J) is a model of the theory
T'UAg. We consider three cases: 6 € Xgpi1UXsn12UZ5043 5 0 € Xsnys
and 0 € Ls(n41) for some n < w.

(1) If 6 € Tsn41 U Lsny2 U Lsnys, we can simply let Z =Y and
either interpret the new constant under J as the intersection
or union of two closed sets in Y if 8 is in some Y,y or, if
0 is an element of some g2 O Lsyp,t3, using the fact that
the space Y is normal find J-interpretations for the newest
constants, in an obvious way.

(2) If @ € Lsn14, then 0 is a sentence of the following form

f=[@nNbdbNc=0—allz=aAbNy=>bA
cMNz=cAzNyMNz=0AzUyUz=1].

Suppose the preamble of @ is true in the model (2Y,7). If a
has a zero interpretation then we can choose ¢ =0, y = 1 and
z = 1, and this interpretation of z, y and z makes sure that 6 .
holds in the model (2¥,Z). So we may assume that a, b and ¢
have non zero interpretations.

By lemma 4.3 there exist a metric continuum Z, a closed,
monotone and onto map f : Z — Y and a closed cover
{A, B,C} of the space Z, with empty intersection such that
fZ(@)] C A, fHI(b)] € B and f7[I(c)] € C.

Define an interpretation function J : K — 27 by

T(k) = FHZ(R)] for all k € K\ {,v, 2,
J(x)=A, J(y)= B and J(z) =C.
With this interpretation function (24, .7) is a model for I'.
(3) If @ € Es(nt1) then it is of the form 6(a,b,c,;7,y,2) as in

equation 24. Suppose the preamble of 6 is true in the model
(2¥,1).
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If the interpretation of a is zero we can simply take r = y =
0 and z = 1 to make (2¥,7) a model of §. So we may again
assume that the interpretations of a, b, ¢ and d are nonzero.

By lemma 4.4 there exists a metric continuum Z, a weakly
confluent onto map f : Z — Y and a closed cover {U,V, W} of
Z such that f~1[Z(a)] C V, f7HZ(b)] Cc W, UNVNfZ(c)] =
0, UNW =0,and VNWnN fZ(d)] = 0.

Define an interpretation function J : K — 2 by

J(k) = fZ(k)] for all k € K\ {z,y, 2}
J(x)=U, J(y) =V and J(z) = W.
The structure (2%, 7) is a model for T

So the theory X is a consistent theory in the language {M,U,0,1} UK.

4.2. The Mackowiak-Tymchatyn theorem. Apart from the
weakly confluent property of the continuous onto map we have proven
the Macékowiak-Tymchatyn theorem, theorem 4.1.

In this section we will extend the language of the previous sec-
tion and construct a consistent theory in this extended language that
shows that there exists a one-dimensional hereditarily indecomposable
continuum Y (of the form wL(A)) that maps onto the continuum X be
a weakly confluent map. By this approach the weight of the continuum
Y will be greater than the weight of the our space X. We can amend
this by taking a countable elementary sublattice of L(2).

To make sure that the continuous map following from the previous
section is weakly confluent, we must consider all the subcontinua of the
space X.

We let K be the following set

K= U K, = U {kna : a < |2%|}.

—2<n<w —2<n<w

We will construct some theory 3 = U 1<n<w 3, in the language

{n,u,0,1} U K similar as in the previous section such that given any
model A = (A,Z) of £, the set L(2A) = Z | K will be the universe of
some normal distributive and disjunctive lattice such that it is a model
of the sentences 22, 23 and conn(1), we can embed the lattice 2% into
L(2A), so there exists a continuous map f from wL(2A) onto X and, for
every subcontinuum of X there exists a subcontinuum of wL(2A) that
is mapped onto it by f.

4.2.1. Construction of . in {1, sup, 0,1}UK. Welet K_; = {k_1 <
|2%|} correspond to the set 2% = {z, : @ < [2¥|} in such a way that the
set of all the subcontinua of X corresponds to the set {2, : @ < §}
for some ordinal number 8 < |2%|. Let the set of sentences 3o in
{n,u,0,1} U K_, correspond to Agx, the diagram of the lattice 2%.




90 Chapter 4. On a theorem of Maékowiak and Tymchatyn

We want to define a set of sentences fl_l in {M,4,0,1} U f(_g U
K_, that will make sure that if 2 is a model of ¥ in the language
{n,u,0,1} U K then we have for every subcontinuum in X a subcon-
tinuum of wL(2A) that will be mapped onto it by the continuous onto
map we get by the fact that 2% is embedded in the lattice L(2).

$9, = {conn(k_a) Ak oMk 10 ="k q:a<p}
Y1, ={conn(k_so) Nk—2oMk_1y=k_2a —

k—l,a Mn k_l,.y = k——l,a o< ﬁ, v < |2X|}
22, ={kg,=0:0<y<|2¥|}

And define the set of sentences $_; as $_; = $°, U U2,

Suppose 2 is a model of ¥. The set 2‘11 will make sure that for
every subcontinuum C of X there is some subcontinuum C' of wL(2)
that is mapped into C' by the continuous onto map f we get from
theorem 2.12 and the fact that 2% is embedded into wL(2). The set
21_1 will then make sure that C’ is in fact mapped onto C' by the map
f '

Let us further construct the sets f]n for 0 < n < w in the same
manner as we have constructed the set X, in the previous section. So
that if we have a model % of £, the lattice L(2) will be a normal
distributive and disjunctive lattice that models the sentences 22, 23
and conn(1).

4.2.2. Consistency of $ in {N,U,0,1} U K. Suppose we go about
as in section 4.1.2 and try to prove by that given a model (2Y,T) for
the theory I and 7 a sentence of & constructed after the sentences from
I, that there exist a model (2Z,7) for the theory I' U {7}, either by
using lemma 4.3 or 4.4 or the fact that Y and Z are metric continua.
A problem may arise if we use lemma 4.4 to find the space Z, as in this
case f : Z — Y is only weakly confluent so we cannot just take the
f-inverse image of the Z-interpretation of constants from K_, as their
J-interpretations, as these might not be connected. We can however
always find a connected subset that maps onto the Z-interpretation
under the map f. These J-interpretations of the ¢;’s (might) affect
all other J-interpretations, and it could happen that some sentence
in T true in the model (2¥,Z), because its premise was false, has now
a true premise in (2%, 7) and we have to find J-interpretations for
the constants introduced by this sentence to make it a true sentence
in (24,J). This again could affect the interpretations and the truth
value of other sentences in I', and so on.

To bypass this problem we will consider every finite set I" of )3
separately, and find a model for it.

We fix such a finite set I' from now on.

Note that there can only be mention of finitely many constants
{c1,...,cx} from the set K_;. We start by construction a model
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(2% *,I*) from X which is not only a model of Ayx and all the sen-
tences from I' N £_; but also models ¢; M c; = 0 for all ¢ # j. Denote
F\E by {m,... ,’ym} in such a way that the 5 in I'\ £_; which are in

3. have lower index than those in 3n, when m < n. We will construct
models (2¥i, T;) such that

@) ECNE ) Ul U{eNe=0:i#}U{v,...,u}
All these metric continua are related in the following way
‘ Xt&y & ys by,
where the g;’s are either the identity map or come from lemma 4.3
or 4.4.
4.2.3. Construction of (2X*,I%). Note that the constants from K_,U

K -1 correspond with closed sets from the metric continuum X. So ¢;
corresponds with some subcontinuum C; of X, and a € K_; corre-
sponds to some closed set A of X.

Let X* be the space X x [0,1] and define the interpretation map
It: K — 2X" by

I*(a) = 7x'[A] for all a € K_4,
THe:) = C; x {%} for all i and
It(a)=0forallae K\ (K_;U{ci,...,c}).
By construction, we have
XN I E NS Ulyx U{gNe =011 # j}.

Suppose now that we have already taken care of the sentences
{1,--.,%-1} of . We will show how to find a model (2%,Z;) for
some v;. Let Y =Y;_; and T = Z;_;. We have

2", D) (CNE0) Ul U{eNe =0:i#5 Uy j<i}

4.2.4. The sentence vy; is in Z}gm.,.] for some ] =1,2,3,4. If »; is
some sentence in one of the sets 25n+1, Z5n+2 or 25n+3 for some n then
we let Z =Y, let the J-interpretation of all constants of K_; and those
that are mentioned in some -y; with j < ¢ equal their Z-interpretation.
We use normal set intersection or union to find interpretations for the
constants introduced by -; if it is an element of some 25n+1 if necessary,
and normality of the space Y to find interpretations for the constants
introduced by -y; if it is a sentence in f]g,n+2 or 25n+3 for some n.

If 4; is a sentence in one of the sets 5,14 and its premise is true in
the model (2¥,7) and there is no triple in 2¥ that can make the sentence
a true sentence in 2¥, then we use lemma 4.3 to find a continuum Z
and a closed monotone map f : Z — Y such that if we let the J-
interpretation of a € K , @ not equal to one of the constants introduced
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by ; be defined by
J(a) = fZ(a)},

then with the interpretation of the constants introduced by 7; by the
closed sets of Z we get from the lemma, we made, with this interpre-
tation J the sentence +y; a true sentence in (2Z ,J). None of the other
sentences if affected by this construction as we take pre-images of their
T-interpretations as their J-interpretations, and by the fact that f is
closed and monotone. A

4.2.5. The sentence vy; is in Ygmy1). Without loss of generality we
can assume that the premise of v; = v;(a,b, ¢; 2,y, z), but not its con-
clusion is true in the model (2Y,7). With the aid of lemma 4.4 we find
a metric continuum Z and closed sets U, V and W of Z such that

%I, SO FTEEL U VW)

is a true statement. We will show how to find an interpretation map
J : K — 27 such that (2%, .7) models the sentences from {v; : j < i},
Agx and {¢;Me; =0:14 # j}.
(1) Choose J(c;) C f~Y[Z(c;)] such that it is a continuum that is
mapped onto Z(c;) by the map f.
(2) Let the J-interpretation of all the constants from K_4 be equal
to the f-inverse of their Z-interpretation.

With the interpretation map J we have so far we already have that
(22, J) is a model of the theory (TNS_))UAyx U{c;Me; = 0:4 # 5}

Now we will consider the sentences from I'\ £_; = {y; : j < i}
one at a time in the order given by their index. These «;’s will be
restrictions on the J-interpretation of constants for which we have
so far no J-interpretation in 22. We will find J-interpretation for a
constant a introduced by one of the 7;’s inside the f-pre-image of the
Z-interpretation of a. So for all constants mentioned in some 7; with
j < i we have

J(a) C f7HZ(a)].

Note that so far we have that f[J(a)] = Z(a) for all constants a
which J-interpretation we have determined. We will make sure that
when we consider the next 7; in the list and find a J-interpretation of
the introduced constant a it has the following two properties

(1) If z € Z(a) N I(c;) and y € J(c;) is such that f(y) = z, we
have y € J(a).
(2) If for all i we have z ¢ Z(c¢;) and = € Z(a) then we have
[~ (=) C J(a).
This will make sure that the premise of the next -y; to consider (if
it has any) has the same truth value in the model (2¥,Z) as it has in
the model (2%, J) we have constructed so far, as for any finite number
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of constants a,,...,a, for which we have defined its J-interpretation
we have

flT (@) N---NJ(an)] =Z(a1) N+ NI(ay).

(1) Suppose v; is of the form a = bMcora = blic. The J-
interpretation of a is fully prescribed by J(b) and J(c), and
it easily seen that J(a) has the properties 1 and 2 above if
J(b) and J(c) have it.

(2) Suppose v, is of the form b £ ¢ - a < bAalc = 0. If the
premise is false then Z(a) = 0 and thus J(a) = § will suffice.

If the premise is true Z(a) is a nonempty closed set that
witnesses that Z(b) is not a subset of Z(c). We choose the
J-interpretation of a by

J(a) = fHZ(a)]) N T (b).

As J(b) maps onto Z(b) under the map f and as Z(a) is a
nonempty subset of Z(b) we see that with this J-interpretation
of a, we have a witness for b £ cin (2%, 7). It is also easily seen
that J(a) has properties 1 and 2 if J(b) has these properties.

(3) Suppose a is one of the constants introduced by 7; from some
f)gmﬂ- where ¢ = 2,4,5. The J-interpretation of these con-
stants will be given by

J(a) = f7Z(a)].

This will make the sentence we are considering a true sentence
in (22, 7). Again J(a) will have properties 1 and 2.

The closed subsets U, V and W of Z we got from lemma 4.4
will make the sentence ; a true sentence in the model (2Z »J)
as the premise of this sentence has the same truth value as in
the model (2¥,7Z) and the J-interpretation of the constants
mentioned in the premise are subsets of the f-inverse of their
Z-interpretation.

All the constants for which we have not yet given a J-interpretation

will have as their J-interpretation the f-inverse image of their Z-
interpretation, which of course is the empty set.

REMARK 4.9. This consistency proof also shows that there will be
a set of disjoint continua in the Wallman representation of the lattice
L(2), where 21 is a model of ¥ that will map onto all the continua in
X by the map given by theorem 2.12.

4.2.6. The Mackowiak-Tymchatyn theorem. As % is a consistent
theory in the language {M,,0,1} U K there is some model 2 for it.
This model gives us a normal distributive and disjunctive lattice L(21)
which models the sentences 22, 23 and conn(1). There also exists, using
the interpretations of the constants in K_;, an embedding of 2% into
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the L(2A). So the Wallman space wL (%), is a one-dimensional heredi-
tarily indecomposable continuum which admits a weakly confluent map
onto the metric continuum X.

Now we only have to make sure that there exists such a space that is
of countable weight to complete the proof of the Mackowiak-Tymchatyn
theorem.

THEOREM 4.10. [25] Let f : Y — X be a continuous surjection
between compact Hausdorff spaces. Then f can be factored as ho g,

where Y % Z 2 X and Z has the same weight as X and shares many
properties with Y (for instance, if Y is one-dimensional so is X or if
Y is hereditarily indecomposable, so is X ).

PROOF. Let B a minimal sized lattice-base for the closed sets of
X, and identify it with its copy {f~}[B] : B € B} in 2¥. By the
Lowenheim-Skolem theorem there is an elementary sublattice of 2%, of
the same cardinality as B such that B C D < 2Y. The space wD is as
required. a

Applying this theorem to the space wL(2) and the weakly confluent
map f : wL(A) — X we get a one-dimensional hereditarily indecom-
posable continuum wD which admits a weakly confluent map onto the
space X and moreover the weight of the space wD equals the weight
of the space X. This is exactly what we were looking for.



CHAPTER 5

More old theorems and new proofs

1. On a theorem of Gordh

Bellamy showed in [8] that every metric continuum is homeomor-
phic to a retract of some metric indecomposable continuum. In [9]
Bellamy showed that every irreducible metric continuum is a retract
of some indecomposable continuum. Gordh noted in [22] that by con-
struction the indecomposable continuum was also irreducible, and that
the metric restriction can be dropped; in the same paper he extended
Bellamy’s result to the following theorem

THEOREM 5.1. Every continuum is a retract of some irreducible
indecomposable continuum.

Fix a continuum X for the remainder of this section. We will,
using model theory and Bellamy’s result for the metric case, construct
a continuum Y that is irreducible and indecomposable and that has a
retraction homeomorphic to X. This will be a proof of Gordh’s result
for non-metric continua using the fact that the theorem holds for metric
continua.

The continuum Y we want to find will be of the form wL for some
lattice L. The properties that we want Y to have can be translated
into properties that the lattice L must have.

We will give a set of sentences T in some language £* such that
every model L of this set will be a distributive lattice such that its
Wallman interpretation wL has the properties we want. After we find
this set ¥, we show that it is consistent, so that there really is a lattice
with the wanted properties.

1.1. The set of sentences X. Let £ be the lattice language
{0,1,u,M}. Let LAT be a set of sentences in the language £ such
that every model of LAT is a normal distributive and disjunctive lat-
tice (see section 2.1.1).

Let us define the following sentence in the language £

Oindec =Vzy[conn(z) Aconn(y) AzUy=1—-z=1Vy=1],
b;rr = JzyValz # y A atom(z) A atom(y) A conn(a)A
zUy<a—a=1]
The Wallman representation of any normal distributive lattice model
in the language £ which models the sentence ;,4.. A conn(1) is an inde-
composable Hausdorff continuum and if the lattice models the sentence

95
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0;rr A conn(1) its Wallman representation is an irreducible Hausdorff
continuum.

Now let £+ denote the extended language £ U {X,¢,%} U {c; :
z € 2%}, where X and the ¢,’s denote constants, and ¢ and 3 denote
one-place functions.

The constants {c, : z € 2X} will correspond to the lattice 2%.
We let ¥ contain A,x the diagram of 2%, where any constant from
{cz : T € 2%} will be corresponding to the closed subset of X that is
its index. Note that by theorem 2.12, the Wallman representation of
any model L of LAT U Ayx will map continuously onto the continuum
X. This is only part of what we want, because we want X to be
homeomorphic to some retract of wL.

We added the constant X and the functions ¢ and ¥ to the language
L just for this. We will make sure that X will be some retract of the
Wallman representation of any model of £ by giving restrictions on 1,
and giving restrictions on ¢ we make sure that X and X (seen as a
closed subspace of that Wallman representation) are homeomorphic.

1.1.1. The continuum X and the subspace X of wL are homeomor-
phic. We want the interpretation of the function variable ¢ to be a
mapping between the lattices 2%, in the form of the interpretations of
the constants ¢, and the lattice that is given by the interpretation of
the constant X, {z:2< X }, to be of the form as given in theorem 2.12.
So we want ¢ to have the following properties.

(1) ¢(ca) = 0, Plcx) = X and for all z € 2X \ {0} we have

0<¢(z) < X.

(2) For all « and y in 2% such that z Uy = X we have ¢(c;) U
¢(cy) = X.

(3) For every subset {zi,...,Z,} of 2X such that (),z; = 0 we
have

d(czy) M- Npleg,) =0.

These properties make sure that the Wallman interpretation of the
lattice {c, : x € 2%} which is homeomorphic to the continuum X, is a
continuous image of the Wallman representation of the lattice {z : z <
X}, the closed subspace X of wL.

But what we really want is that the spaces X and X are homeo-
morphic. For this it suffices to show that the continuous mapping is
one-to-one, as X and X are compact Hausdorff spaces. If we take a
look at the proof of theorem 2.12 then we know that the continuous
image between X and X maps every point z from X (seen as a closed
subspace of wL) to the point (({¢, : z € ¢(cy)}. To make sure that
this map is one-to-one we want ¢ also to have the following property

4. For all x and v, ile_lygff,xl‘lyannd:c;éOthenthere
is a closed set z of X such that z < ¢(c,) and yM¢(c,) = 0.



1. On a theorem of Gordh 97

All these restrictions on ¢ we denote by O,.

1.1.2. X as a retract of wL. We want to define a set of sentences
Oy such that if some (any) lattice L is a model of the sentences from
LAT U ©, then the subspace of wL given by the interpretation of X
in L is a retract of wL.

(1) ¥(0) =0 and if £ < X and z # O then ¥(z) # 0.

(2) If 2 and y are elements of L such that z Uy = X then Y(z) U
P(y) = 1. )

(3) If z1,...,x, are elements of L such that z;U---Uz, < X and
zy NNz, =0 then we have that ¥(z) N ---Ny(zx,) = 0.

(4) For all z in L if z < X then o(z) Nz = x.

All these sentences together form the set ©,. Suppose L is some (any)
model of LAT U ©y. Consider its Wallman interpretation wL. The
closed subspace of wL that corresponds to the constant X we also
denote by X. As the lattice base L N 2% is embedded in the lattice L
we know that X is a continuous image of the space wL. As, by item 4
in the list above this continuous map restricted to the closed set X is
the identity, we know that X is a retract of wL.

1.1.3. The set of sentences . Let ¥ be the set of sentences in the
language L1 defined by

Y =LATU {gifrr, 6,;ndec, conn(l)} U A2x U 6¢ U 6,/,.

Any model L of 2 will be a normal distributive and disjunctive lattice
such that its Wallman representation wL will be an irreducible inde-
composable continuum such that X is an continuous image of wL, X
is homeomorphic to the closed subspace X of wL and X is a retract of
the continuum wlL.

1.2. The consistency of ¥ in the language L£*. By the com-
pactness theorem it suffices to show that any finite subset ¥’ of ¥ has
a model.

Let ¥’ be some finite subset of ¥, without loss of generality we can
assume that the sentences 6y, Gingec and conn(1) are contained in ¥’

As there is only mention of a finite number of constants ¢, of {c, :
z € 2%} there is a countable sublattice C of 2X containing the finitely
many constants mentioned in X',

Extend the set ¥’ to a set £* C ¥ such that ¥* contains the sen-
tences of ¥ that mention only the constants from C U {X,0,1}. The
set 2* is countable.

Let wC be the Wallman representation of the (countable) sublattice
C of 2X. This wC is a metric continuum and the theorem of Bellamy
says that there exist some space Y that is a irreducible continuum that
has a retract R that is homeomorphic to the continuum wC. Using the
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remark made by Gordh, we may also assume that this continuum is
indecomposable.

So, there exist a homeomorphism f : wC — R a retractionr:Y —
R. With these functions and spaces we are able to give interpretations
of the constants and functions of £t \ £ and thus get a model for the
set £* of sentences in L.

The model will be the lattice 2¥, the interpretation of the constants
{0,1, X} and {c, € C} will be given by §, Y and R, and the interpre-
tations of ¢; in wC respectively. The functions ¢ and v are given by
@(cy) = flez) for all ¢, in C (the interpretation of ¢, in wC is denoted
by ¢, as well), and ¥(z) = r~![z] for all z € 2% (the interpretation of
the z in Y is denoted by z).

So the set ¥ has a model, and as we mentioned earlier the Wallman
representation of this model (it is of course a distributive lattice with
zero and unit) is an irreducible indecomposable continuum which has
a retract that is homeomorphic to the continuum X.

2. On a theorem of Van Hartskamp and Vermeer

2.1. Preliminaries. A fixed-point free map f: X — X is said to
be colorable with k colors if there exists a closed cover C of X of size
k (or less) such that C' N f[C] = 0 for all C € C. The elements C of C
will be called colors, and we will say that C is a coloring of the map f.

A theorem of Katétov gives us that every fixed-point free self-
map can be colored with three colors. The theorem of Lusternik and
Schnirelmann (see, for instance [18]) states that every coloring of the
antipodal map ¢ : S™ — S™ on the n-dimensional sphere S™ needs at
least n + 2 colors. Variations of this theorem are given by Aarts et al.
in [1].

In this section we will give a shortened proof of the following theo-
rem.

THEOREM 5.2 ([28],(44]). Let X be a paracompact Hausdorff space
of dimension dim X < n. Then any fized-point free autohomeomor-
phism of X can be colored with n + 3 colors.

The proof of Van Hartskamp and Vermeer in [28] goes along the
following lines. The first result used is due to Van Douwen [14], who
showed that every fixed-point free autohomeomorphism on a finite-
dimensional paracompact space can be colored with finitely many col-
ors. Then Aarts et al. [1], using this theorem of Van Douwen, proved
the following theorem.

THEOREM 5.3 ([1]). Let X be a compact metrizable space with
dim X < n. Every fized-point free continuous map of X to itself can
be colored with n + 3 colors.
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Then Van Hartskamp and Vermeer [28], again using the theorem
of Van Douwen, proved that a fixed-point free autohomeomorphism on
an n-dimensional paracompact Hausdorff space is semi-conjugated to a
fixed-point free autohomeomorphism on some < n-dimensional metriz-
able space. Applying the result on metrizable spaces, and pulling back
the obtained coloring, one obtains a coloring of the original homeomor-
phism.

In [44] Van Mill gives another proof of theorem 5.2, using standard
facts from dimension theory only.

2.2. Proof of theorem 5.2. Suppose that X is a paracompact
space such that dim X < n and that f : X — X is a fixed-point free
autohomeomorphism. Using the following theorem we may assume
without loss of generality that X is compact.

THEOREM 5.4 ([(14]). Every fized-point free homeomorphism f :
X — X of a finite-dimensional paracompact Hausdorff space onto itself
has a fixed-point free Cech-Stone extension Sf : X — pX.

Also, as f is fixed-point free, and by assumption X is compact,
there exists a finite closed cover F of X such that F N f[F] = () for all
FeF.

Extend the lattice language {U,M,0,1} by adding two functions
0 and 6* to form {U,M,0,1}* = {U,N,0,1} U {0,6*}. Let us define
F F*:2X 52X by

F(a) = fla] for all a € 2%;
F*(a) = f'[a] forall ac€2X,
then (2%; F, F*) is a model for the language {U,M,0,1}* (we abuse
notation somewhat as 2% is of course shorthand for (2%;U,N, 0, X), a
model of {LI,N,0,1}).

Let (L; G, G*) be some countable elementary submodel of (2X; F, F*)
such that F C L. From the lattice function G on L we can construct
amap g: wL — wL by

g(a) = ﬂ{G(b) :b€ L and b € a} for all a € wL.

This map is continuous, as g~'[b] € L for all b € L (in fact it is not
hard to see that g is actually a homeomorphism). It also is fixed-point
free by the fact that F is a closed cover of wL such that g[F]NF =@
forall F € F.

Note that wL is a metric compactum of (covering) dimension < n,
so by theorem 5.3 there is a coloring of g of size n + 3. We have

(L;G,G*) k= 3, --v$n+3[(/\0(xi) Mz; = 0) A Ux =1J.

So (2X; F, F*) also models this sentence, which states that f can be
colored with n + 3 colors.







APPENDIX A

Model Theory

Model theory is the branch of mathematical logic that studies struc-
tures from a logical point of view. These structures can be all sorts
of mathematical objects like linear orders, groups, fields, Boolean alge-
bras, lattices, etc..

In this appendix I will review some notions and theorems of model
theory that are used in the thesis. The goal of this appendix is neither
to be complete nor exact, it is just to give the reader, who is not familiar
with model theory some idea of what it is about, and how it is used in
this thesis.

1. Logic

We shall concentrate on the model theory of first-order predicate
logic.
The key notions in model theory are language and theory.

1.1. Language. Languages consist of two parts. The first is the
same for all languages. It is the logical part consisting of the symbols
3, V, A, V, 0, =, &, = together with an (countably) infinite number
of variables (and the symbols (, ), [, ] and , used for separation in
formulas).

The second part of the language is a set of symbols, specific for the
kind of structure we are considering.

ExXAMPLE A.l. If we are investigating linearly ordered structures
we need a symbol to indicate that, say a comes before b in the linear
order. Let < be this symbol, then we can write a < b for the above.

EXAMPLE A.2. Similarly, to study groups we use the (additional)
symbols o, for group multiplication and e to denote the identity element
of the group.

The symbol < above is called a (2-placed) relation symbol, o is
called a (2-placed) function symbol and e is a constant symbol. In
general a language for mathematical structures consist of the logical
symbols and a (possibly infinite) number of relation, function and con-
stant symbols.

ExXAMPLE A.3. To study fields we use the language {+, x,0,1}.
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EXAMPLE A 4. To study lattices with zero and unit we use the
language {N,U,0,1}.

1.2. Terms and formulas. With these symbols we can make
strings. Some of these will be meaningless, others not. Terms are
strings of symbols that label elements of the structure, and formulas
are strings of symbols that say something about terms or the structure
itself. Formulas without free variables are called sentences. Some of
these sentences are used to lay the foundation of the structure in so
called theories.

REMARK A.5. We assume that the reader is familiar with first-
order mathematical logic. To make formulas more readable, we, as is
common in mathematical logic shall assume that — is more binding
than A and V, which are itself more binding than — and <. This
allows us to omit some of the parenthesis, which makes the formulas
more readable.

1.3. Theories. A theory is simply a set of formulas. Interesting
theories should be about something non-trivial and should be consis-
tent, which means that you cannot derive a false statement from it.

Normally one specifies a theory by listing a number of formulas
(sentences) as its starting point (its axioms), and we tacitly assume
that the consequences of these axioms make up the whole theory.

EXAMPLE A.6. The theory of linearly ordered sets has the follow-
ing list of axioms (remember that the non-logical part of its language
consists of a 2-placed relation symbol <).

(1) Vz-[z < 7],
(2) Vzylz <yVy<zVz=y,
(3) Vzyzlz < yAy<z—z < 2.
When we add the sentence
4. Vxydzlz<y—oz<zAz<y,

to the theory for linear orders we have the theory of dense linear orders.
When we add the sentence

5. Vzyzly < z Az < 2],
to the theory of dense linear orders we have the theory of dense linear
orders without endpoints.
EXAMPLE A.7. The theory of groups has the following list of ax-

ioms.

(1) Vzyz[[zoyloz=1z0[yo 2],
(2) Valzoe - ],
(3) VzIy[z oy = €].



3. Substructures and extensions 103

1.4. Models. A model for a theory is a structure for the corre-
sponding language where all the formulas of the theory are valid. So a
linearly ordered set is a model for the theory of linearly ordered sets and
a group is a model for the theory of groups. We already encountered
the theory of distributive lattices with zero and unit in chapter 2, and
for any topological space X, (2%,N,U, 0, X) is a model for this theory.

EXAMPLE A.8. The models A = (N, <), B = (Q N[0, 00|, <) and
¢ = (R, <) are models for the theory of linearly ordered sets from
example A.6, where < is the usual order on the reals R. The models B
and € are also models for the theory of dense linear orders. The model
¢ is the only model of the three that also models the theory for dense
linear orders without endpoints.

In the example A.8 above, N is said to be the universe of the model
A.

EXAMPLE A.9. (Z,+,0) and (R, +,0) are models for the theory of
groups from example A.7.

Let ¢(zo,...,z,) be some formula in some language L with all its
free variables among {zy,...,Z,}. Suppose that 2 is some model for
the language L and ay, ..., a, are elements of its universe A. We let

A }= ¢[a0,.. .,an]
denote that in the model 2, if we substitute all occurrences in ¢ of the
free variables z; with the corresponding a; we get a true statement.

ExAMPLE A.10. Consider (Z; +,0), a model for the theory of groups
(in the language {o,e}). Let ¢(z,y) denote the formula z o y = z and
¥ be the lattice sentence Vz[z o e = z] then

(Z;+,0) = ¢(3,0] and also (Z; +,0) E 9.
2. Compactness and completeness

The Compactness theorem and the Extended Completeness Theo-
rem are two of the theorems that play a dominant role in model theory.

THEOREM A.11 (Compactness Theorem). A set of sentences has a
model is and only if every finite subset has a model.

THEOREM A.12 (Extended Completeness Theorem). A set of sen-
tences is consistent if and only if it has a model.

3. Substructures and extensions

If ® and & are models for some language L, then we say that D
is a submodel of €, or € is an extensions of © (notation: © C €) if
the universe D of D is a subset of the universe E of €, Fp = Fe | D™,
Rp = ReN D™ and cp = ce for every n-placed function symbol, every
m-placed relation symbol and every constant symbol ¢ of L.
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EXAMPLE A.13. For the models ¥, B and € of the theory of linear
orders the following holds

AcBcCC

3.1. Elementary submodels. To define the notion of elementary
submodel we will use the characterization of Tarski and Vaught, which
states that given two models 2 and B for the first-order language L
such that %A C B, 2 is an elementary submodel of B if for every L-
formula ¢(zo,...,z,,y) and all ag,...,a, in A, the universe of ¥, if

B | Jyglao, - -, an, Y]

then there is some a € A such that

B | dlag, - .-, an,a]-

The notation we use for 2 is an elementary submodel of B is A < B,
we also say that B is an elementary extension of 2.

EXAMPLE A.14. Consider the models § = (Q N (0,00),<), & =
(Q, <) and $ = (R, <) for the theory of dense linear ordered sets with-
out endpoints. It may come as no surprise that we have the following

F<B <9

Consider also the following models for the theory of dense linear order
J=(RNJ[0,),<) and J = (RN [-1,00), <).

We have J C §, but if we consider the sentence ¢ = JxVy—[y < z],
expressing the existence of a minimal element, then J is a model of ¢
and $ clearly models its negation —¢, hence J is not an elementary
submodel of £).

Although we have J C J, the model J is not an elementary sub-
model of J. Consider the formula ¢(z,y) = 3z[z < y|, expressing that
the free variable y is not the least element of the order. The model
J models ¢(x,0), as there are lots of points below 0 in this model, as
there are none in the model J this shows that J cannot be an elementary
submodel of J.

EXAMPLE A.15. If we consider the models & = (Q, +, x,0,1) and
£ = (R, +, x,0,1) of the theory of fields, although R is a submodel of £,
it is not an elementary submodel; just consider the formula Jz(x x z =
2), it states that 2 (an element of both models) is a square. This
formula holds in £ but not in K.

EXAMPLE A.16. A nontrivial result on elementary substructures of
fields is the fact that the field of algebraic numbers is an elementary
submodel of the field of complex numbers (for a proof see [29]).
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4. Set Theory

Set theory, loosely stated, says that every mathematical statement
can be translated into a statement about sets. In other words, sets
are at the basis of mathematics. Over the years a number of theories
have been defined for set theory. The one that is commonly used as
the basis for set theory is ZFC, Zermelo-Fraenkel set theory and the
axiom of Choice.

4.1. The theory ZFC. The language of set theory is, apart from
the logical symbols only the symbol €, which stands for membership.
The only objects are sets and the axioms give us tools to construct new
sets from old ones. the theory ZFC is an infinite list of sentences in the
language {€}.

Consider again the theory of groups from example A.7. If we add
the axiom

4. Vxy[zoy =yo g,
then we have the theory of Abelian groups. A model for this sort of
group is for instance the additive group of natural numbers (Z, +,0).
As there are also non-Abelian groups, there is no formal proof from the
theory of groups for the following sentence, nor its negation

(25) Vzylzoy =yox].

A model for the non-Abelian groups is for instance the the invertible
2-by-2 matrices, with the group operation of matrix multiplication and
with unit the identity matrix.

The sentence from equation 25 is said to be independent of the
theory of groups. We say that the theory of groups is not a complete
theory, as it does not decide for every sentence if it follows from the
theory of groups or not.

Something similar is the case for set theory. A famous statement
that cannot be decided in ZFC is the Continuum Hypothesis (CH), the
statement that every subset of the reals is either countable (finite or
as large as the set of natural numbers) or as large as the set of reals.
Godel showed that there is a model of ZFC where CH holds. By a
method known as forcing, Cohen showed that there are also models of
ZFC that model —~CH. This implies that CH is independent of ZFC.

In chapter 1 we used the forcing method to show that the statement
tf(C) < ¢ is consistent with ZFC. In the same chapter we also showed
that —[tf(C') < ] holds in some model of ZFC (for instance when
we have CH) we have thus shown that the statement tf{(C) < ¢ is
independent of ZFC.







APPENDIX B
List of problems from the thesis

PROBLEM B.1 (Question 2.32 of this thesis.). Is having strong in-
finite (covering) dimension elementarily reflected, and is having not
strong infinite (covering) dimension elementarily reflected.

PROBLEM B.2 (Question 2.39 of this thesis.). Is aposyndesis a prop-
erty of compact spaces that is elementarily reflected?

PROBLEM B.3 (Question 2.45 of this thesis.). Is being not disco-
herent a property of compact spaces that is elementarily reflected?

PROBLEM B.4 (Question 2.78 of this thesis.). Is being the unit n-
cube or the n-sphere a property of compact spaces that is elementarily
reflected?

PROBLEM B.5 (Question 3.11 of this thesis.). Is the property of
having span zero a first-order property?

PROBLEM B.6 (Question 3.12 of this thesis.). Is the property of
having span zero a base-free property?

QUESTION B.7 (Question 3.13 of this thesis.). Is chainability a
property of compact spaces that is elementary reflected?

PROBLEM B.8 (Question 3.55 of this thesis.). Are span zero, sur-
jective (semi) span zero and symmetric span zero properties that reflect
using the method described in the previous section?

PROBLEM B.9 (Question 3.56 of this thesis.). Does there exists a
continuum that is non-chainable and has span zero, surjective (semi)
span zero or symmetric span zero?

PROBLEM B.10 (Question 3.57 of this thesis.). Does there exist a
locally connected non-chainable continuum which has span zero?
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Summary

This thesis deals with two unrelated topics. Chapter 1 gives a con-
sistency proof on the minimal cardinality of certain sets of continuous
self maps of the Cantor set, the remaining chapters investigate how
certain properties of continua (connected compact Hausdorff spaces)
relate to their lattices of closed subsets.

In the first chapter we consider, given a topological space X what
the minimal cardinality is of a set of continuous self maps that is re-
quired to ‘connect’ any two points of X. More explicit, we look for
subsets F of the self maps of X, such that for every z,y € X there
exists an f € F such that f(x) = y or f(y) = x; we are interested
in the minimal cardinality of such a subset F, we denote this minimal
cardinal number for X by tf(X).

We mainly investigate the cardinal number tf(C), where C denotes
the Cantor set. Three restrictions on tf(C') are easily found:

(1) t(C) is at least ;.

(2) tf(C) is less than or equal to ¢, the cardinality of the set of all
reals.

(3) tf(C)*, the successor cardinal of tf(C), is at least c.

Under these restrictions it is not hard to see that when CH holds or
when ¢ is a limit cardinal, then tf(C) and ¢ have to be equal to one
another. Is this always the case? No; we show that in the Baumgartner-
Laver model (a model of ZFC obtained by iteratively adding X, many
Sacks reals to a model of ZFC + CH) the cardinal number tf(C) is
strictly less than ¢. With this we have shown that the statement
tf(C') = ¢ is independent of ZFC.

In the second part, which covers the chapters 2, 3, 4 and 5, we use
Wallman’s representation theorem on lattices to investigate, by model-
theoretic means, how certain properties of compact Hausdorff spaces
relate to the lattice of their closed sets. We are particularly interested
in the class of continua (connected, compact Hausdorff spaces).

The method in chapter 2 is as follows, starting with the lattice of
all closed subsets of some continuum we take an elementary sublattice,
by Wallman’s representation theorem we know that this lattice again
corresponds with some continuum. Some topological properties must
be shared by both continua, others may not be; examples of both are
mentioned in this chapter.
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In chapter 3 we try, using the method described above to find some
new insights on an old problem in continuum theory, whether span
zero implies chainability for metric continua. One of the results is that,
with an extra assumption of local connectivity any counterexample can
be transformed into a metric counterexample. Further results in this
chapter concern the (extended notions of) span and chainability of the
continua H* and I,. It appears that both are non chainable and of
span nonzero.

In chapter 4 we give a model theoretic proof of the theorem of
Maéowiack and Tymchatyn which shows that every metric continuum
is a weakly confluent image of some 1 - dimensional metric continuum.
In this chapter there is also a new topological proof of the extended
theorem of Maédowiack and Tymchatyn for arbitrary continua.

In Chapter 5 we show how two other known results can be proved
efficiently by model-theoretic means.




Samenvatting

Dit proefschrift behandelt twee onderwerpen die los staan van elkaar.
Het eerste hoofdstuk geeft een consistentie bewijs over de minimale car-
dinaliteit van een verzameling continue zelf afbeeldingen, in de resterende
hoofdstukken wordt onderzocht hoe somige eigenschappen van een con-
tinuum (een samenhangende compacte Hausdorff ruimte) zich verhouden
tot het tralie van al zijn gesloten deelverzamelingen.

In het eerste hoofdstuk onderzoeken we, gegeven een topologische
ruimte X, hoeveel continue zelfafbeeldingen er nodig zijn om elk tweetal
punten van X met elkaar te ‘verbinden’. Iets explicieter, we zoeken een
deelverzameling F van de continue zelfafbeeldingen van X, zodanig dat
voor alle z,y € X er een f € F bestaat met f(z) =y of f(y) = z; we
zijn geinteresseerd in de minimale cardinaliteit van zo’n verzameling F,
dit cardinaalgetal duiden we aan met tf(X).

In hoofdstuk 1 bekijken we het cardinaalgetal tf(C'), waar C de Can-
tor verzameling voorstelt. Drie restricties voor tf(C') zijn snel gevonden:

(1) t§(C) is teninste R;.

(2) t(C) is kleiner of gelijk aan ¢, de cardinaliteit van de verza-
meling der reele getallen.

(3) (C)*, het kleinste cardinaalgetal groter dan t(C), is een
bovengrens voor c.

Onder deze restricties is het niet moeilijk in te zien dat onder CH
of wanneer ¢ een limiet cardinaalgetal is, tf(C) en ¢ aan elkaar gelijk
moeten zijn. Maar is dit altijd het geval? Nee; we laten zien dat in het
Baumgartner-Laver model (een model van ZFC verkregen door aan
een model van ZFC + CH iteratief R, Sacks-reals toe te voegen) het
cardinaalgetal tf(C') strikt kleiner is dan ¢. Hiermee hebben we laten
zien dat de uitspraak tf(C) = ¢ onathankelijk is van ZFC.

In het tweede deel, dat de hoofdstukken 2, 3, 4 en 5 beslaat, ge-
bruiken we Wallman’s representatie stelling voor tralién om via de mo-
deltheoretische weg te onderzoeken hoe sommige eigenschappen van
compacte Hausdorff ruimten zich verhouden tot het tralie van alle ge-
sloten verzamelingen van deze compacta. We zijn in het bizonder gein-
teresseerd in de deelklasse van de samenhangende compcate Hausdorff
ruimten, de zogenaamde continua.
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De aanpak in hoofdstuk 2 is als volgt, startend met het tralie van
gesloten verzamelingen van een continuum nemen we hiervan een ele-
mentaire deelstructuur, dankzij de representatiestelling van Wallman
weten we dat er bij dit tralie weer een continuum hoort. Er zijn to-
pologische eigenschappen die beide continua moeten delen, en eigen-
schappen die niet noodzakelijkerwijs gedeeld hoeven te worden; beide
komen in dit hoofdstuk aan de orde.

In hoofdstuk 3 proberen we via de werkwijze zoals hierboven is
beschreven nieuw inzicht te krijgen in een oud probleem in de conti-
nuumleer, namelijk of span nul ketenbaarheid impliceert voor metrische
continua. Een van de resultaten is dat, onder de extra voorwaarde van
lokale samenhang een willekeurig tegenvoorbeeld een metrisch tegen-
voorbeeld oplevert. Verder wordt in dit hoofdstuk bekeken wat de
(uitgebreide vorm van) span en ketenbaarheid is van de continua H*
en [,. Het blijkt dat beide niet ketenbaar zijn en een span ongelijk aan
nul hebben.

In hoofdtuk 4 wordt er een modeltheoretisch bewijs gegeven van
de stelling van Madowiack en Tymchatyn die zegt dat elk metrisch
continuum een zwak confluent beeld is van een 1-dimensionaal metrisch
continuum. Tevens wordt in dit hoofdstuk een nieuw topologisch bewijs
gegeven voor de uitbreiding van deze stelling Maéowiack en Tymchatyn
naar willekeurige continua.

Hoofdstuk 5 geeft van twee bekende stellingen een modeltheoretisch
bewijs.
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