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Abstract

Programmable networks enable us to define the behaviour of a
network through software. This added freedom comes with added
complexity because multiple switches need to coordinate and be
programmed correctly. To ease this task, we focus on intent-based
networking via program synthesis. In this paper, we explain how
to leverage linear temporal logic to describe the desired behaviour
of a program, how to verify a P4 program against that description,
and how to use the formula describing the program’s behaviour to
reduce the search space of the program synthesiser.
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« Networks — Network design and planning algorithms; -
Software and its engineering — Formal software verification.
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1 Introduction

Software-defined networks (SDNs), along with programmable data
planes, have enabled network administrators to program the net-
work control and data planes in a top-down manner, by using
programming languages such as P4 [4]. As such, they can adapt
their networks without being limited by device configuration op-
tions, or having to wait for new functionalities to be integrated into
the hardware.

However, this benefit of flexibility comes at the cost of complex-
ity; network administrators have to learn (yet) another program-
ming language (e.g., P4), which adds to their already growing list of
responsibilities. In addition, programming a network differs from a
typical programming task, where you write a program to be run on
a single machine, because it requires the programmer to deploy and
coordinate multiple programs over various switches in the network.

To mitigate this complexity, we turn to the field of program
synthesis to automatically synthesise programs for the network
switches. Program synthesis has already been utilised to synthesise
network configurations [2, 10], and to synthesise network code
in NDLog [6, 7]. Synthesising P4 programs for a network comes

This work is licensed under a Creative Commons Attribution 4.0 International License.
FMANO °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2103-8/2025/09

https://doi.org/10.1145/3750022.3750456

with many challenges, such as determining switch resource allo-
cations [14] and expressing network intent [18]. This paper starts
with the latter challenge: how to specify what the programs-to-be-
synthesised are supposed to do?

In program synthesis, a common way to specify the intent of a
desired program is through input-output examples, or, less com-
monly, but in a more precise manner, through formal specification.
Whilst input-output examples can be used to synthesise network
code, gathering these input-output examples can be challenging.
Without the assistance of a formal specification, input-output exam-
ples struggle to capture the complete desired behavior. Furthermore,
these examples become cumbersome when the intent is to capture
multiple different programs for a network of switches that need to
be coordinated with each other. This includes both the functionality
of the switches and the routing of the packets.

Our idea, in this paper, is based on the observation of the follow-
ing property of packets: When packets traverse a network, their
location in the network and the header data can change over time.
Such information of a packet’s location and data can be seen as a
state that changes over time. We view the possible states of a packet
as a model and will use linear temporal logic (LTL) to describe the
desired behaviour of this model.

In this paper, we show how to describe the desired behaviour of
a network consisting of P4-compatible devices as an LTL formula
and how to turn a (set of) synthesised P4 program(s) into a model.
We will then give the synthesised programs and LTL formulae to an
LTL model checker to verify that the synthesised programs provide
the desired behaviour. We further explore how behaviour formulae
can be leveraged to reduce the search space, guiding the synthesiser
to accelerate the synthesis process. Additionally, we demonstrate
how these benefits, driven by the expressiveness of LTL formulae,
contribute to performance gains.

2 Background

P4 [4] is a domain-specific language used for packet processing
on programmable network hardware, such as switches. Program
synthesis [13] is a branch in computer science focused on the au-
tomatic generation of provably correct programs with respect to
a given specification. Commonly, such a specification is given in
the form of input-output examples, and more rarely in the form of
a formal specification. In addition to a specification, a synthesiser
needs a definition of the program space, which is given in the form
of a grammar.

What we need for our program synthesis is the following: a
grammar to express our P4 program space in; a way to synthesise
candidate programs from the grammar; a way to specify what
the desired program should do; and a way to verify the candidate
programs.
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Whilst P4 has its own specification and grammarl, it involves
the complex task of learning that domain-specific language, and
the programs are typically composed for a singular switch. We will
create a simpler intermediate language for our synthesis. Programs
expressed in this higher-level language can easily be translated to
standard P4, yet are easier to work with during synthesis and veri-
fication, and allow us to talk about behaviour that is not confined
to a single switch. This intermediate language gives us the same
expressiveness compared to using P4 directly, and imposes no loss
of functionality.

A common method to describe the desired behaviour in pro-
gram synthesis is through input-output examples, however, this
comes with limitations. Whilst on a single switch it can be useful
to describe the behaviour through input-output examples, on a
network there are multiple ways to do it. To name a few, you can
take input-output examples at every switch, you can take traces
from the packets traversing the network, or you can take where
a packet starts and ends. Whilst these methods can describe the
behaviour of individual packets, more complex behaviour of the
network itself becomes hard to describe via input-output exam-
ples. Instead of input-output examples, in the following section, we
will use LTL for our program specification, which will allow us to
describe behaviour using logical formulae.

3 LTL Verification
3.1 Preliminaries

In this section, we explain different aspects of LTL and its use for
model checking [9]. We have a set of atomic propositions called IT
that comprise a finite set of variables, which can be true or false.
Each proposition represents a property of our packet, such as “the
packet needs to end up at switch 1” or “the packet is currently at
switch 2” We define an LTL formula as follows: ¢ =T | p| =¢ | 1V
¢2 | X | ¢1 U ¢2, where T is true in each state, p € I is an atomic
proposition, — and V are standard Boolean operators, and X and U
are temporal operators. X¢ is true if ¢ is true in the next state, and
&1 U @2 is true if @1 is true until ¢ is true. With these fundamental
operators we can construct additional operators, F and G. F is
finally or eventually: F¢ is true if ¢ will be true at some point from
now. G¢ is true if ¢ is always true from this point. We can combine
these to get FG¢, which means that at some point ¢ will always
be true, and GF¢ which means that at every state ¢ will always be
true in a future state.

We use nuXmv/nuSMV [3, 5] as our model checker. A model
describes a state of variables. An update or next functionality de-
scribes how a variable updates to the next state.

3.2 Simple Instructions

Let us consider a simplified packet that only holds 2 variables, Foo
and Bar, and consider the following simple program that executes
on it.

0 Foo Foo + Bar;
1 Bar = Bar + 1;

Listing 1: Simple program.

IThe specification and grammar can be found at https:/p4.org/wp-
content/uploads/2024/10/P4-16-spec-v1.2.5.html.
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To check if this program works, we need to compare the values of
Foo and Bar to their initial values, let us call those Initial Foo and Ini-
tial_Bar. We can then create the following LTL formula to describe
the desired behaviour: F( G( Foo = Initial_Foo + Initial_Bar A
Bar = Initial_Bar + 1)). This formula states that at some point in
time it will always be true that Foo = Initial_Foo + Initial_Bar and
that Bar = Initial_Bar + 1. We need to transform our code into a
model that can be checked. The simplest way to do this is to use a
program pointer to execute our program one line at a time. We can
now transform our code into the following model:

FROZENVAR
Initial _Foo unsigned word[32];
Initial_Bar unsigned word[32];
VAR
Foo : unsigned word[32];
Bar : unsigned word[32];
PPointer : 0..2;

ASSIGN

init (Foo) := Initial_Foo;

init(Bar) := Initial_Bar;

init (PPointer) := 0;

next (Foo) := case
PPointer = 0 Foo + Bar;
TRUE : Foo;

esac;

next(Bar) := case
PPointer = 1 Bar + 1;
TRUE : Bar;

esac;

next (PPointer) := case
PPointer < MAXLENGTH

PPointer + 1;

TRUE : PPointer;

esac;

Listing 2: Simple model.
If we update a variable more than once, for example:

Foo = Foo + Bar;
Foo = Foo + Bar;

Listing 3: Multiple updates code.

we get the following next function for Foo:
next (Foo) := case
PPointer = 0
PPointer = 1

TRUE : Foo;

esac;

Foo + Bar;
Foo + Bar;

Listing 4: Multiple updates model.
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and the following LTL formula:
F( G( Foo = Initial_Foo + 2 « Initial_Bar)).

3.3 Conditionals
Based on the previous section, we can now model any assignment

instruction, but we would like to also be able to model conditional
code, such as if; elseif, and else blocks. Consider the following code:

0 if (Foo > 10){
1 Foo = Foo + Bar;}

Listing 5: Conditional code.

This will give us the following LTL formula:

F(G( Foo> 10 = Foo = Initial_Foo + Initial_Bar)). To model
this, we create additional variables for every condition in the code,
and add an additional case to the lines of code that fall within the
code block of the condition. That will give us the following next
functions:

next(if1) := case
PPointer = 0 true ;
TRUE : if1;
esac;
next (Foo) := case
PPointer = 1 : case
if1 : Foo + Bar;
TRUE : Foo;
esac;
TRUE : Foo;
esac ;

Listing 6: Conditional model.

3.4 Forwarding

For packets to be forwarded from one switch to an adjacent switch
there is a table lookup. One of the variables of the packet is used as
the key, and 2 values are returned. To accommodate this, we create
2 additional variables in our model, and do the table lookup in 2
steps. We set these variables based on the value of the key, and
then simply execute the forwarding function as we do other lines
of code. A simplified model of the table lookup would look like the
following:

next(ForwardingVarl) := case
PPointer = 0 : case
key = 0 : 3;
key =1 : 0;
key = 2 : 2;
TRUE : ForwardingVarl;
esac;
TRUE : ForwardingVarl;
esac;
next (ForwardingVar2) := case
PPointer = 1 : case
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key = 0 15;
key =1 : 27;
key = 2 : 39;

TRUE : ForwardingVar2;
esac;
TRUE : ForwardingVar2;

esac;

Listing 7: Forwarding model.

3.5 Multiple switches

We can model multiple switches by putting all their code in one
model. We can then simply use a variable to keep track of the
switch we are currently in and update the program pointer to point
to the appropriate section of the model. We can use a variable
to indicate where the packet currently is. We can set this to the
starting switch and then use the specification to say where it should
end up. For example: F( G( Switch = Switch_3)). We can also say
that a packet must go through a certain switch by also adding the
following formula: F(Switch = Switch_2).

4 Search Space Reduction

4.1 Single Switch

4.1.1 Simple Reductions. We can use the LTL formulae that de-
scribe the desired program to inform our synthesis and reduce
the search space. Instead of starting with an empty program and
the entire search space, we can use the information in the LTL
formulae to get a better starting point and inform the synthe-
siser during the search. Let us take a look at the first formula:
F( G( Foo = Initial_Foo + Initial_Bar A Bar = Initial_Bar + 1)).
From this formula we can see that eventually Foo = Initial Foo +
Initial Bar and Bar = Initial Bar + 1. We could use this information
to immediately create the two lines of code in listing 1. In this
simple case, it is possible, since the formula only describes the end
conditions, which can easily be turned into assignment statements.
This does not generalise to more complex programs. For example,
a program that switches two variables can not be made using two
assignment statements. However, we can still use the information
in the formula to know that Foo and Bar must change their values
at least once. In the more general case, we can see in the formulae
which variables change their values and which keep their values.
This can be used to reduce the search space to programs that adhere
to these constraints. More formally, every variable v € YV in the
formula that does not equal their initial value must appear at least
once in the program in the form of v = x, where x can be any
instruction.

4.1.2  Operator Reductions. If the next operator (X) is used to de-
scribe the state for a variable, for example XBar = 1, then we can
say that an assignment must take place. Because only one variable
can be changed at a time, if something must be true in the next
state, then that must happen with the current line of code. If the
until operator (U) is used, that ¢; must be true until ¢; is true.
This means that as long as ¢, does not hold, we can not make
changes such that ¢; becomes false. This restricts the possible op-
tions, and reduces the search space. For example, if we have the
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formula Foo =1 U Bar = 0, we know we can not make changes
to Foo unless Bar = 0. The global operator G states that something
must always be true from this point forward. If used on a variable,
we know that that variable can never change again, so it should
not be changed in the code. If used on a formula, we know that
formula must always be true. If this is part of a subformula, and a
formula 6 under G is already true, we can use the other reduction
rules to ensure that 6 stays true whilst pruning the search space.
The combination of GF means that at every state the formula will
always be true in a future state, indicating cyclical behaviour. This
means that the formula under GF must be kept true, or if made
false, must be made true again. In the latter case, it means that the
code that makes it true must always be reachable, which limits the
search space.

4.1.3 Conditional Reductions. We can also recognise conditionals
and add constraints for them. If we have an implication in our for-
mula, then we have an if statement in the code. Whilst it is possible
to have an implication that would not result in an if statement
in the code, this would only be the case if the implication always
holds. For example, if we have the formula Foo > 10 = Foo =
Initial_Foo + Initial_Bar and Foo is always equal to Initial Foo +
Initial_Bar, then the formula will be true. Realistically, someone
who writes the specification will use an implication for case dis-
tinction and not for it to always hold. Meaning that if there is an
implication, we can add a constraint that there needs to be an if
statement in the code. If we have n number of implications in the
formula, that does not necessarily mean that we have n number of
if statements. Two implications could be an if and else statement,
or an if and elseif statement, instead of two if statements. What we
can say however, is that the sum of the number of if statements,
elseif statements, and else statements, must be more or equal to the
number of implications in the formula. 7 is the minimum number
of conditional statements, since the desired program can use condi-
tional statements to produce behaviour that is not specified with
implications in the formulae.

4.2 Multiple Switches

When we have multiple switches, we can still use the hints of single
switches, but we need to make an additional distinction. We can
now also use implications to check where we are in the network,
which would not indicate an if statement in the code. We now dis-
tinguish between functional and conditional parts of the formulae.
Functional formulae describe the behaviour of a single switch in
the network, whilst conditional formulae describe conditions over
the network or packet. We can also use these conditional formulae
to reduce the search space. For example, if a packet needs to visit a
certain switch, or needs to reach one switch before another, that
will reduce the number of routing options, and will thus reduce the
search space.

5 Results

5.1 Simple examples

We use Herb.jl [21], a library for defining and efficiently solving
program synthesis tasks in Julia, to synthesise our P4 programs. We
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create a simple (incomplete) grammar that can synthesise simple
P4 programs. A program is synthesised, turned into a model, and
then given to nuXmv/nuSMV with the LTL formula of the desired
program to verify if the synthesised program is correct. We can
solve the following 4 simple cases:

(1) Basic: route the packet according to its destination and de-
crease the time-to-live counter.

(2) Min: decrease the time-to-live counter and send the packet
to port 1.

(3) Reflector: swap the MAC addresses and send the packet back
to the port it came from.

(4) Repeater: repeat the packet on the ports it was not received
on.

Program | Verification Time
Basic 7.64s
Min 1.28s
Reflector | 8.21s
Repeater | 1.23s

Table 1: Given the desired program in the form of a model,
the times are how long it takes nuXmv/nuSMYV on average to
verify the program (when run on an i7-1365U cpu and 16GB
of memory).

5.2 Complicated examples

5.2.1 Single Switch. We will look at the more complicated example
of a port knocking firewall. For a packet to make it through the
switch, it needs to be received 3 times in a row on 3 different ports.
For this we need to keep track of 5 additional variables. The three
ports that the packet needs to be received on, some way to identify
the packet, and the stage of the knocking. This gives us the variables
Port_1, Port_2, Port_3, ID, and Stage. We have multiple stages, so
we can split this into 3 formulae:

01 = (Port = Port_0 A Stage =0 = ID = Source_Address A
Stage = 1)

02 = (ID = Source_Address A Port = Port_1 A Stage =1 =
ID = Source_Address A Stage = 1)
03 = (ID = Source_Address A Port = Port_2 A Stage =2 =

Forward).
This gives us the final formula of F(G( 0; A 62 A 03)).

5.2.2  Multiple Switches. We will now look at the more complicated
example of a simple firewall existing somewhere on the network,
where the firewall protects a certain part of the network, which we
will call the InNetwork.

First, our simple firewall will only allow traffic to a node in the
InNetwork from outside of it, if that node messages that switch
first. This will be kept track of using a register on every node for
each node in the network.

We have three cases, and therefore three formulae that all need
to hold. The first is if the input is from the InNetwork going to the
outside. We can formulate it as such:
¢1 = input € InNetwork A output ¢ InNetwork —
{3switch|switch[output] =1 A
F(CurrentSwitch = Switch)} A forward
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The other two cases are similar to each other. They are when
a packet is from the outside and they differ on having received a
packet from the InNetwork. This gives:
¢2 = input ¢ InNetwork A output € InNetwork A
{3 Switch|Switch[output] = 1 A F(CurrentSwitch = Switch)}
= F(G(CurrentSwitch = output))
¢3 = input ¢ InNetwork A output € InNetwork A
{3 Switch|Switch[output] = 0 A F(CurrentSwitch = Switch)}
= Drop

We can combine all of these in ¢ = @1 A P2 A p3. We used
notation that is not available in LTL, but it is syntactic sugar to
make it easier to read. All of this can be written in pure LTL. For
example, if we have a list b = [by, by, b3, by, ..., by ], we can say that
aceb==(a=b;Va=byV..Va=by)anda¢ b==(a#bjAa#
by A...Na#by).

6 Related Work

[8, 12, 17] utilise program synthesis in programmable switches.
However, these works focus on updating switches, monitoring
switches, and compiling P4 code, but not on generating P4 programs
directly.

Facon [6] and NetSpec [7] show program synthesis being applied
to produce network code. However, these programs are not P4 pro-
grams, but rather NDLog, a representative declarative networking
language based on DataLog. Moreover, these approaches focus on
input-output examples and turn those into a formal specification,
whilst we take a formal specification as a direct starting point.

Traditional compilers translate higher-level code to machine-
code using a rule-based approach. Chipmunk [11] uses the higher-
level code of a program as its specification and then uses program
synthesis to create a more optimised program.

NLP4 [1] takes natural language as an input for the specification
and then translates that to configuration files for P4 switches. Whilst
the use of natural language is an intuitive way for users to express
their intent, it is often ambiguous to interpret. Moreover, the current
use cases of this implementation are limited to traffic management.

[19, 20] implement a P4 verifier that verifies the behaviour taking
not only the control block into account, but also the parser, deparser,
and non-configurable parts of the switch. The behaviour is consid-
ered correct only if the configurable components are configured
such that the entire switch behaves according to the specification.

[15] turns a program into a logical formula and tests with an
SMT solver whether its properties hold.

Our use of logical formulae as the specification can be seen as
assertions that must hold for the program. [16, 22] use an assertion-
based approach to verify the behaviour of P4 code. These approaches
are given a set of assertions and, if these assertions hold, the pro-
gram is considered correct.

7 Conclusion and Future Work

In this paper, we have presented (1) a method to translate a P4
program into a model that can be used by an LTL model checker
and (2) a novel way to express the intended behaviour of a switch
or a network as an LTL formula. We have shown how insights
from such formulae can be used to guide the synthesis process by
decreasing the program space and hence speeding up the synthesis.
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In the future, we aim to create a tool that would make it easy
to go from intent to an LTL formula. The introduction of syntactic
sugar for more complicated ideas makes it easier to express your
intent, but leaves it still relatively complicated. We would like a tool
that automatically translates your intent to a correct LTL formula
that can then be used for the synthesis. Additionally, we think that
at different levels of abstraction, different insights can be made to
speed up the synthesis.
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