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A B S T R A C T

The Internet of Things (IoT) can bring radical advancements in the domain of waste collection, as it enables the 
organization of demand-responsive schedules which leads to higher efficiency operations. One major challenge 
in the deployment of demand-responsive schedules, nevertheless, is the uncertainty they bring in the planning of 
resources as they follow the daily waste demand. This is undesirable in real-life operations as it makes it difficult 
to reserve resources and ensure the stability of operational processes. Therefore, waste collection scheduling 
approaches need to be devised that are not only demand-responsive but also supply-friendly. In this paper, we 
present a solution approach for the waste collection vehicle routing problem in an IoT context (IoT-WCVRP) that 
focuses on these requirements. We demonstrate its applicability through a case study of Rotterdam in The 
Netherlands, where real-life household waste data are used and the observed waste collection operations in the 
city are compared against the optimized outcomes of the model. The application results show that our IoT- 
WCVRP approach achieves the stated demand and supply trade-off, increases the vehicle utilization rates by 
5%, and reduces emissions and travelled kilometres by 6% and 8% respectively.

1. Introduction

The Internet of Things (IoT) is a cornerstone of digital trans-
formation, enabling the conversion of physical assets into digital re-
sources. In the waste collection domain, IoT facilitates the development 
of cyber-physical systems, equipping waste containers with wireless 
sensors that provide sensing and networking capabilities. These sensors 
connect containers to the Internet and each other, monitoring their fill 
levels at regular intervals and transmitting the data to the waste man-
agement operator’s cloud platform. Such a system holds the potential to 
reshape waste collection services towards more demand-responsive and 
efficient operations (Pardini et al., 2019).

The continuous data stream from the sensors supports the identifi-
cation of seasonal trends and demand patterns, enabling an adaptive 
approach to waste collection. Real-time information on container status 
allows for dynamic organization, ensuring containers are collected only 
when necessary. This approach improves container capacity utilization, 
reduces overfilled containers, and addresses two key inefficiencies in 

traditional waste management: excessive operational costs and envi-
ronmental strain. Collecting partially full containers results in higher 
costs, unnecessary pollution, and increased urban traffic. Conversely, 
overfilled containers deteriorate citizen satisfaction and pose an array of 
hazards to human health.

Experts highlight the financial and environmental benefits of 
demand-responsive waste collection systems (D. v/d Elzen, personal 
communication, Jan 2022). However, they also caution about the 
operational uncertainties these systems introduce, particularly in 
resource deployment. Unlike traditional static systems with fixed routes 
and stops, IoT-enabled services must accommodate more dynamic and 
variable routes, including changes in the number and location of stops, 
route duration, and the volume of containers serviced. Allocating drivers 
to specific areas becomes challenging, which can result in a loss of 
administrative control, making it difficult to efficiently manage opera-
tions and assign responsibilities to the vehicle crews. Additionally, as 
drivers are no longer assigned to specific areas, they lack familiarity 
with local traffic and parking patterns and may be unaware of site- 
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specific issues encountered by drivers on previous days, such as road-
works or blocked containers. Consequently, there is a need for improved 
internal communication between drivers and planners, as well as a 
scheduling approach that accounts for these uncertainties.

A variety of models have been proposed for the IoT-waste collection 
vehicle routing problem (IoT-WCVRP) which use the containers’ real- 
time fill levels as a means to reduce waste demand uncertainty, for 
example in the work of Ramos et al. (2018), Zsigraiova et al. (2013), 
Anagnostopoulos et al. (2015), Ferrer and Alba (2019). However, the 
literature still lacks studies that utilize real-life data for their applica-
tions as well as techniques specifically devoted to the previously 
explained IoT-derived planning issue. The present work introduces a 
smart solution approach for the IoT-WCVRP, which has as an over-
arching objective to maintain the highest possible degree of flexibility in 
vehicle dispatching, while also maintaining a certain level of route 
consistency when demand varies from day to day.

The proposed methodology first utilizes a two-step clustering 
approach to systematically allocate waste containers into clusters. In the 
first step of the approach, containers characterized by high and medium 
collection frequencies are identified and grouped into first-level clusters 
using the K-means clustering algorithm. This step segments containers 
into geographically fixed areas, establishing a stable foundation for 
consistent route planning. Following step is to identify which containers 
should be collected on a given day. This involves classifying all con-
tainers according to their collection priority, and subsequently selecting 
a scheduling strategy that utilizes the containers collection priorities to 
determine which specific ones to be collected. Three different sched-
uling strategies can be examined in the proposed approach, allowing to 
select the one that best aligns with the objectives set forward, such as 
prioritizing the collection of all high and medium-priority containers.

In the second step of the approach, the clustering process is finalized 
by employing the K-nearest neighbours (KNN) algorithm. Specifically, 
the KNN model is first trained on the containers within the first-level 
clusters that have been selected for collection. Subsequently, the 
trained model assigns the remaining selected containers to the cluster of 
their nearest neighbour within the trained dataset. The resulting second- 
level clusters only comprise the containers selected for collection, thus 
adapting to the daily waste demand, while their foundation in the first- 
level clusters ensures the advantages of route consistency are preserved.

The last step of the proposed methodology involves solving each 
second-level cluster as a multi-trip Vehicle Routing Problem with In-
termediate Facilities (VRP-IF) using the repeated nearest neighbour al-
gorithm. The resulting routes are then optimized through a modified 2- 
Opt local improvement algorithm.

For the application of the model, real-life data provided by the mu-
nicipality of Rotterdam in the Netherlands is used. This dataset includes 
information on the location and capacity of the waste containers within 
the network, as well as the type and capacity of the vehicles employed. 
Additionally, it contains waste demand data for a single day, such as the 
fill levels of the containers and the number of days since their last 
collection. A sample of seventeen routes completed by Rotterdam’s 
waste collection service on the same day is used as the observed case for 
comparison with the model’s outcomes.

The remainder of the paper is organized as follows. Section 2 pro-
vides a literature review of the various models focused on the IoT- 
WCVRP and discusses the most highlighted dynamic scheduling strate-
gies applied to waste collection. Section 3 formulates the WCVRP while 
Section 4 gives an outline of the proposed solution approach. Section 5
describes the case study of Rotterdam and Section 6 shows the results of 
the application of the model. Section 7 discusses and interprets the 
findings of the research and outlines the limitations of the model. Lastly, 
Section 8 concludes the paper and presents some suggestions for model 
improvement and further research.

2. Literature review

Constructing optimal waste collection routes that pass by a selected 
set of containers can be referred to as the waste collection vehicle 
routing problem (WCVRP). An extensive set of solution approaches have 
been developed and applied to solve various components of the WCVRP 
which indicates that no perfect method exists to tackle this problem in 
its holistic nature. The focus is instead placed on distinctive features of 
the problem. This is mainly because the WCVRP is an NP-hard combi-
natorial optimization problem which means that as its instances grow in 
size the time to solve the problem grows exponentially.

The solution approaches can be distinguished into two categories. 
The first employs mathematical programming techniques to solve small 
network instances to optimality but at the expense of exponentially 
increasing computation time (Omara et al., 2018). The second addresses 
heuristic and metaheuristic methodologies which do not guarantee 
optimality but yield satisfactory results in a shorter execution time. This 
category is widespread among researchers as heuristics and meta- 
heuristics are often simple to describe and implement, which leads to 
their easy adaptability.

Insertion heuristics are often preferred by researchers due to their 
simplistic nature. The most common criterion used to insert containers 
in a route is the shortest distance or time, meaning that the nearest 
neighbour containers are iteratively prolonging a constructed route 
(Faccio, 2011; Heijnen, 2019; Neffati, 2021; Vonolfen et al., 2011). Less 
used criteria in insertion algorithms include the farthest insertion 
(Abbatecola et al., 2016; Neffati, 2021), the quantity of waste the con-
tainers hold (Expósito-Márquez et al., 2019), and ratios of various 
quantities, for example between the “urgency of collection” and the cost 
of insertion (Teixeira et al., 2004). In the latest years, the focus is on 
metaheuristics which include ant colony optimization (Karadimas et al., 
2005), genetic algorithms (Amal et al., 2018; Strand et al., 2020), par-
ticle swarm optimization (Hannan et al., 2018; Wu et al., 2020), simu-
lated annealing (Babaee Tirkolaee et al., 2019; Buhrkal et al., 2012), 
tabu search (Arribas et al., 2010; McLeod et al., 2013; Zsigraiova et al., 
2013) and neighbourhood algorithms (Markov et al., 2016; Nuortio 
et al., 2006).

Irrespective of the choice of an exact or inexact solution approach, 
the WCVRP complexity can be reduced by reducing the problem size. 
This approach, usually referred to as a cluster-first route-second 
approach, partitions the ‘customers set’ into individual smaller in-
stances, based on an array of rules, which are solved separately into 
complete routes. The k-means algorithm is popular among researchers 
as it allows containers to be assigned to clusters using as an only crite-
rion the distance (Anagnostopoulos et al., 2015; Hua et al., 2016). Some 
authors use the real-time fill levels of the containers to allocate them to 
clusters which are formed before every collection using a predefined 
threshold level (Akhtar et al., 2017; Hannan et al., 2018; Ramos et al., 
2018). Some researchers aggregate containers into “super” containers 
under the condition that they belong in the same location and bear the 
same time windows (Buhrkal et al., 2012; Christodoulou et al., 2016). 
Other researchers aim at the construction of clusters that are subject to 
constraints such as vehicle capacity (Abbatecola et al., 2016), shift 
duration (Kim et al., 2006), traffic temporal conditions (Arribas et al., 
2010), or a balanced number of containers.

Many variations of the WCVRP exist, depending on the problem 
characteristics, the network size, and the often conflicting objectives and 
constraints (Dotoli and Epicoco, 2017). The minimization of distance 
and time are among the most popular objectives examined by re-
searchers (Abdallah et al., 2019; Amal et al., 2018; Hannan et al., 2018; 
Neffati, 2021). Cost minimization is another important objective that 
can be rather ambiguous, as researchers often consider different types of 
costs in their studies. The main advantage of minimizing costs, never-
theless, is that different types of goals can all be expressed in terms of the 
same monetary unit (Markov et al., 2016; Mes et al., 2014; Omara et al., 
2018; Ramos et al., 2018). The minimization of environmental effects is 

S. Giasoumi et al.                                                                                                                                                                                                                               Research in Transportation Business & Management 59 (2025) 101302 

2 



rarely studied, but certain related aspects that have been examined in 
the literature include the minimization of CO2 emissions (Strand et al., 
2020), the service of high-priority areas to reduce social and environ-
mental fire hazards (Anagnostopoulos et al., 2015) and the minimization 
of energy consumption (Expósito-Márquez et al., 2019).

Depending on the level of realism that is to be adopted, the number 
of imposed constraints grows linearly. At the outset, the vehicles are 
typically subject to constrained capacities, meaning that the accumu-
lated amount of waste of any route must not exceed the vehicle’s ca-
pacity. This capacity-constrained VRP is referred to as CVRP, which 
constitutes the most popular VRP variant among researchers studying 
the WCVRP (McLeod et al., 2013; Son, 2014; Anagnostopoulos et al., 
2015; Christodoulou et al., 2016; Akhtar et al., 2017; Hannan et al., 
2018; Omara et al., 2018; Ferrer and Alba, 2019). In the case that 
multiple trips are allowed to be performed in a route, the CVRP trans-
forms into a multi-trip VRP. This corresponds to more realistic opera-
tions as the vehicle can visit the disposal facility multiple times to unload 
its accumulated waste and regain its capacity, before returning to its 
route or the depot at the end of the day (Babaee Tirkolaee et al., 2019; 
Kim et al., 2006). Temporal constraints can also be imposed on the waste 
collection routes, representing either the shift’s legal duration 
(Abbatecola et al., 2016; Arribas et al., 2010; Faccio, 2011; Kim et al., 
2006; Zsigraiova et al., 2013), the drivers’ break (Buhrkal et al., 2012; 
Kim et al., 2006), or the time windows in which containers can be 
collected throughout the day (Kim et al., 2006; McLeod et al., 2013; 
Nuortio et al., 2006). In specific cases, the number of stops allowed in a 
route is bounded to a maximum threshold so that a workload balance 
can be achieved (Buhrkal et al., 2012; Kim et al., 2006). For the same 
reason, added constraints have been imposed on the number of times a 
waste collection vehicle is allowed to visit a disposal facility (Son, 2014; 
Abbatecola et al., 2016).

The models specifically devoted to the use of IoT technology cover 
various components of the traditional waste collection problem but also 
use dynamic scheduling strategies. With the adoption of dynamic 
scheduling strategies, the question as to which containers should be 
collected and at what moment in time (usually which day) becomes an 
option. The two main scheduling categories examined in the literature 
are completely reactive scheduling and predictive reactive scheduling. 
In the former, no firm scheduling is generated in advance, and decisions 
are made locally and in real-time. This is possible as real-time access to 
the actual amounts generated in the network is enabled, which reduces 
the related randomness and uncertainty of this otherwise stochastic 
variable. In the latter, schedules made for a rolling horizon are revised in 
response to real-time events (Ouelhadj and Petrovic, 2009).

With each approach, various trigger rules and ranking methods are 
examined to define the containers’ eligibility for (possible) collection. 
Some authors following the predictive-reactive scheduling approach 
developed scheduling strategies in which containers are daily scheduled 
for collection based on their “attractiveness” in the whole system. Ramos 
et al. (2018), for example, developed a scheduling strategy that aims at 
waste quantity maximization throughout a rolling horizon, while 
Abdallah et al. (2019), Heijnen (2019), and Vonolfen et al. (2011) base 
the container selection on future container overflow predictions. Com-
mon among researchers who follow the completely reactive scheduling 
approach is the use of a predefined minimum fill level to select the 
containers to be collected each day (Anagnostopoulos et al., 2015; Ferrer 
and Alba, 2019; Ramos et al., 2018; Zsigraiova et al., 2013). Some re-
searchers demonstrate, under a variety of scenarios, that the best 
collection results can be achieved with a static 70–75% minimum fill 
level (Akhtar et al., 2017; Faccio, 2011; Hannan et al., 2018). Other 
studies adopting the simplified approach, also select containers that 
have not yet reached the threshold fill level. These extra containers are 
considered as they are located close to the already generated routes, 
and/or are expected to be full in a short time (Christodoulou et al., 2016; 
Johansson, 2006; Mes et al., 2014; Omara et al., 2018).

To better define the containers’ eligibility for collection, researchers 

classify them based on a variety of ranking rules. Most common is the 
usage of different priority levels (e.g. “must-go”, a “may-go” or a “no- 
go”), by establishing certain threshold fill levels and special rules such as 
the day of the week, the type of location the container is located in, its 
interaction with the containers on the same collection site, etc. (Ferrer 
and Alba, 2019; Johansson, 2006; McLeod et al., 2013). Vonolfen et al. 
(2011), Anagnostopoulos et al. (2015) and Wu et al. (2020) classify the 
containers as high or low priority, primarily according to their location 
in the network, and secondarily by the amount of accumulated waste. 
Containers that are located close to hospitals, fuel stations, schools, are 
considered high priority, irrespective of their accumulated amount of 
waste. The work of Christodoulou et al. (2016) makes use of a hybrid 
classification method that regards not only the estimated container fill 
levels but also the waste accumulation period.

The review of the literature can be summarized as follows. Much of 
the effort in the literature on the IoT-WCVRP has been spent on exam-
ining various scheduling strategies and constructing the best routes 
throughout a given planning horizon with a given set of containers. 
Moreover, sophisticated algorithms have been developed that work to-
wards multiple objectives and constraints. However, less attention has 
been paid to the complete variability which is associated with dynamic 
waste collection operations, which as described in the previous section 
poses a significant issue for such services.

For a similar issue on local package delivery, but with a deeper focus 
on driver familiarity, Zhong et al. (2007) created a two-stage vehicle 
routing model based on a strategic core area design and operational cell 
routing. This work inspired the two-step clustering technique proposed 
in this paper that aims to balance the trade-off between dispatch con-
sistency and flexibility. Our contribution is the new formulation of the 
WCVRP-IoT that includes this trade-off.

3. Problem description

This section focuses on the formulation of the waste collection 
problem, where containers are selected for collection based on a pre-
defined scheduling strategy and are assigned to routes in such a way that 
the total travelled kilometres are minimized, and the vehicle capacity 
utilization is maximized. The problem can be defined as a multi-trip VRP 
with intermediate facilities, which are represented by waste disposal 
facilities, visited either once the effective weight payload of the vehicles 
is reached, or just before a vehicle shift is over. The vehicles are allowed 
to visit the facilities multiple times, hence multi-trip, to unload the 
accumulated waste and regain their capacity before returning to their 
route or the depot at the end of the shift.

The problem is defined on a directed real-network graph G = (V,A), 
where the set of nodes V = Vd ∪ Vf ∪ Vm consists of a depot Vd = {0}, a 
disposal facility Vf = {1}, m nodes Vm = { 2,…,2 + m}, and the set of 
arcs is A = {(i, j, r)| i, j ∈ V, i ∕= j, r ∈ R}, where r denotes the road type 
with R = {Urban,Highway}. Let tijr and dijr be the travel time and travel 
distance associated with arc (i, j, r), and K = {1,…, k} be the given set of 
homogeneous vehicles with maximum weight capacity VC and 
maximum shift duration T. Hi,k,n is a continuous variable indicating the 
driving duration of vehicle k when it passes from node i at moment n. Let 
xijr,k be equal to 1 if arc (i, j, r) is used by vehicle k and 0 otherwise, and 
ys,k be equal to 1 if collection site s is served by vehicle k and 0 otherwise. 
Moreover, let nijr,k be the number of times arc (i, j, r) is traversed by 
vehicle k, and ndfk be the number of times vehicle k visits the disposal 
facility for unloading.

Each collection site s ∈ S , where S ⊆ Vm, represents a set of c con-
tainers that are situated at the same spot, denoted by s = {1,…, c}. The 
service time sts of each collection site is calculated with Eq. (1) where lt 
is the vehicle levelling time, and mt is the vehicle hook moving time. 
Levelling comprises the time needed to stabilize the vehicle for loading, 
and the time needed to safely place the hook back in the vehicle. Moving 
time comprises the time needed to lift each container, unload its content, 
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and safely place it back in its initial position. The total weight of waste at 
each collection site is calculated with Eq. (2) where the associated fill 
level fs,c of each container c ∈ s is multiplied by its maximum volume 
capacity vcs,c and a volume to weight conversion rate denoted by β. 

sts = lt+ nc • mt (1) 

ws = β
∑

c∈s
fsc • vcs,c (2) 

The proposed two-step clustering technique provides a way to bal-
ance the trade-off between dispatch consistency and flexibility. The 
model’s objective is to assign waste containers to the two level clusters 
in such a way, that the total travelled kilometres of the routes con-
structed to serve the second-level clusters are minimized. Eq. (3) is used 
to calculate the total travelled kilometres, where nijr,k is the number of 
times arc (i,j,r) is traversed. 

min
∑

r∈R

∑

k∈K

∑

(i,j,r)∈A

dijr • xijr,k • nijr,k (3) 

In addition to the total kilometres travelled, the total CO2 emissions 
represent a critical key performance indicator considered in this study. 
The analysis accounts for multiple stages in the waste collection process 
where CO2 emissions are produced, including vehicle k driving, 
servicing a collection site s, and unloading waste at the disposal facility 
Vf . To calculate the total amount of CO2 emissions produced while 
driving Eq. (4) is used, which references back to the work of Bala et al. 
(2021). The amount of CO2 emissions produced on an arc (i, j, r) is the 
product of its length l, and an emission production factor EPr,k,n. This 
factor depends on the arc’s respective road type r, and the cumulative 
weight of waste Qij,k,n the vehicle k carries at the start of the arc at node i 
each time n it traverses it. The emission production factor is given per 
road type for an empty and a full vehicle, therefore to translate it ac-
cording to the cumulative weight of waste, Eq. (5) is applied. It is 
important to note that the additional weight of the heavy box and 
equipment used to collect and compact the waste that the vehicles 
continuously carry is not considered. 

ECO2driving =
∑

k∈K

∑nijr,k

n=0

∑

r∈R

∑

(i,j,r)∈A

dijr • xijr,k⋅EPr,k,n (4) 

EPr,k,n = EPr,empty +

(
EPr,full − EPr,empty

)
*Qij,k,n

VC
(5) 

The total CO2 emissions produced while vehicle k services a collec-
tion site s is expressed by Eq. (6), where Cidling is an emission production 
factor expressed in CO2 gr /min. 

ECO2loading = EPidling*

(
∑

k∈K

∑

s∈S
sts • ys,k

)

(6) 

The total CO2 emissions produced while vehicle k unloads its waste 
at the disposal Vf is expressed by Eq. (7), where ut is the fixed unloading 
time at a disposal facility. 

ECO2unloading = EPidling*

(
∑

k∈K
ut • ndfk

)

(7) 

The formulated problem is subject to: 
∑

k∈K

∑

j∈V
x0jr,k = 1∀r ∈ R (8) 

∑

k∈K

∑

i∈V
xi0r,k = 1∀r ∈ R (9) 

∑

s∈S
ys,k = 1∀k ∈ K (10) 

∑

i∈V
xijr,k =

∑

i∈V
xjir,k∀r ∈ R, j ∈ V, k ∈ K (11) 

∑nijr,k

n=0

∑

i∈Vd∪Vf

Qij,k,n = 0∀k ∈ K, j ∈ V (12) 

Qij,k,n +wj ≤ Qji,k,n +
(
1 − xjir,k

)
M∀j ∈ S, i ∈ V, r ∈ R, k ∈ K, n

=
{
0,…, nijr,k

}
(13) 

Qij,k,n ≤ VC∀i ∈ V, r ∈ R, k ∈ K, n =
{
0,…, nijr,k

}
(14) 

Hi,k,n ≤ T∀i ∈ V, k ∈ K, n =
{
0,…, nijr,k

}
(15) 

Hi,k,n + stj + tij ≤ Hj,k,n +
(
1 − xijr,k

)
M∀(i, j) ∈ V, r ∈ R, k ∈ K, n

=
{
0,…, nijr,k

}
(16) 

xijr,k ∈ {0,1}∀(i, j) ∈ V, k ∈ K, r ∈ R (17) 

ys,k ∈ {0,1}∀s ∈ Vc, k ∈ K (18) 

Qi,k,t ≥ 0∀i ∈ V, k ∈ K, t ∈ T (19) 

Hi,k,t ≥ 0∀i ∈ V, k ∈ K, t ∈ T (20) 

Constraints (8) and (9) impose that all k vehicles must start and finish 
their routes at the depot. Constraint (10) ensures that all collection sites 
are serviced exactly once, while constraint (11) ensures that the inflows 
and outflows of all nodes in the graph are equal. Constraint (12) states 
that all vehicles must be empty at the start and end of the routes before 
they return to the depot, therefore, the cumulative weight of waste at the 
depot and disposal facility nodes is set to be zero. Constraint (13) en-
sures that the cumulative waste carried by vehicle k is successively 
increasing in the logical order of the planned route for every node visited 
except the disposal facility. The effective weight payload of the vehicles 
indicates the moment of visit to the disposal facility for unloading and is 
set by constraint (14). The effective weight payload is used instead of the 
maximum as it is assumed that the vehicles reach their maximum vol-
ume capacity before their maximum weight capacity. Nevertheless, a 
buffer volume capacity is usually reserved by the drivers to accommo-
date unexpected waste laid next to the containers. The allowed shift 
duration is maintained by constraint (15) but only the effective time for 
collection is considered as preparation and break time are ignored. 
Constraint (16) ensures that the cumulative time spent driving to and 
servicing each collection site of a route follows a logical progression. 
Finally, constraints (17), (18), (19), and (20) impose the binary and non- 
negative variables.

4. Solution approach

The proposed solution approach follows a cluster-first route-second 
approach which divides the problem into a number of VRPs, each one 
corresponding to one of the constructed clusters. It could be argued that 
since the problem size is reduced to cluster level, mathematical pro-
gramming could be used to solve the problem to optimality. On the other 
hand, as the directed road network is considered, which is highly 
affected by the urban morphology, the problem’s complexities increase. 
Due to the stated reasons and backed by the fact that the WCVRP is 
harder to solve than a regular VRP due to the added constraints and 
characteristics, heuristics are employed to solve the IoT-WCVRP.

The flowchart presented in Fig. 1 depicts the sequential order of the 
steps of the proposed solution approach and the algorithms that are 
employed at each step. Fig. 2 demonstrates in a visual form every phase 
of the two-step clustering technique.

During the first-level clustering, all the containers are classified as 
per their historical monthly frequency of collection using the 
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classification scheme presented in Table 1. The containers’ monthly fill 
rate can be used instead of the monthly frequency of collection, and also 
be preferable, depending on data availability. Following the classifica-
tion, the capacitated K-means algorithm is used to assign only the con-
tainers with high and medium collection frequencies into geographically 
fixed areas (see Fig. 2a). The Elbow method is employed to identify the 
optimal number of clusters to be constructed, and the algorithm is fed an 
arbitrary seed to eliminate randomness. With these first-level clusters, 
the daily constructed routes can be focused on specific areas, which can 
reduce the route-associated variability and overlapping. This can help in 
maintaining dispatch consistency, which can lead to increased driver 
familiarity and better administration control, as the assignment of 
drivers to areas becomes possible.

Following step is to identify which containers require collection. This 
involves classifying all containers according to their collection priority, 
as detailed in Table 2. Subsequently, selecting a scheduling strategy 
from the three options presented in Table 3, that utilizes the containers 

collection priorities to determine which specific ones to be collected (see 
grey containers in Fig. 2b). This allows to select the scheduling strategy 
that best aligns with objectives set forward. The clustering process is 
finalized by employing the K-nearest neighbour (KNN) algorithm. To 
find the optimal number of neighbours for the KNN algorithm, the tool 
GridSearchCV is used which is available in scikit-learn, a machine 
learning library for Python, with a test size of 0.2. This indicates that 
80% of the input data is training data, while 20% is test data. To be able 
to reproduce the same data split, an arbitrary seed is set. The KNN model 
is trained and tested on the containers within the first-level clusters that 
have been selected for collection (see coloured containers in Fig. 2c). 
The trained model then assigns the remaining selected containers (see 
grey containers in Fig. 2d) to the cluster of their nearest neighbour 
within the trained dataset. The second-level clusters presented in Fig. 2e 
maintain flexible boundaries that adjust to include all containers 
selected for collection, adapting to daily waste demand. Their founda-
tion in the first-level clusters ensures the advantages of route consistency 
are also preserved.

Fig. 1. Flowchart of the proposed solution approach.

Fig. 2. (a) Containers with high and medium collection frequencies are allocated to first-level clusters with the capacitated K-means algorithm; (b) A dynamic 
scheduling strategy is applied to determine which containers need immediate collection. The selected containers are grey in colour; (c) Of the selected containers 
(from step B), the coloured containers are used as a training dataset for the KNN algorithm as they retain their first-level cluster assignments; (d) Containers that were 
not initially assigned to clusters (grey containers) are now allocated to the nearest cluster based on the trained KNN model. This expands the clusters to include 
additional containers; (e) The resulting second-level clusters include all containers selected for collection while maintaining flexible boundaries and their foundation 
in the first-level clusters.

Table 1 
Collection frequency classification scheme.

Classification Classification rule

High frequency Frequency ≥ 15 times per month
Medium frequency 4 times per month < Frequency < 15 times per month
Low frequency Frequency ≤ 4 times per month

Table 2 
Collection priority classification scheme.

Classification Classification rule

High priority Fill level ≥ 75% OR Accumulation period ≥ 15 days
Medium priority 50% < Fill level < 75%
Low priority Fill level < 50%
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To construct the waste collection routes for each second-level cluster, 
initial feasible routing solutions are generated with the repeated nearest 
neighbour algorithm and are later optimized with a modified 2-Opt al-
gorithm. A routing solution is considered feasible if it satisfies the time 
constraints related to shift duration and if the weight capacity of the 
vehicle is not violated at any point in the route. The repeated nearest 
neighbour algorithm constructs as many routes as the number of con-
tainers in a cluster is, as it uses each as a starting point (see Fig. 3). It 
then visits consecutively the closest unassigned point until all sites are 
visited or until all the constraints are met.

The classic 2-Opt algorithm is a simple local search method that 
evaluates all possible swapping combinations of a route, retaining only 
the most optimal for further improvement. While effective in optimizing 
an initial feasible solution, it does not account for intermediate facilities 
that need to be inserted at specific positions in the route. Since the 
vehicle must visit a disposal facility to regain capacity, the classic 2-Opt 
algorithm requires modification.

The modified algorithm begins with a routing solution that excludes 
disposal facility visits and iteratively searches for improvement oppor-
tunities in the solution’s neighbourhoods. For each neighbourhood, a 
swapping mechanism replaces two route edges with two others and 
calculates the new travel distance. If the swap results in a shorter dis-
tance, the algorithm proceeds by inserting disposal facility visits at the 
correct positions and recalculates the new travel distance. If the updated 
route is shorter than the initial solution with facility visits, it is updated. 
This process continues, with the algorithm refining the route by 
repeating the procedure until no further improvements can be found.

To determine the best-performing route, the following criteria are 
considered. First, preference is given to routes that visit all containers 
within the clusters, with the optimal route being the one that covers the 
least distance. For routes that leave containers unassigned, the prefer-
ence shifts to those that visit the disposal facility the fewest times, with 
the best route among them being the one that has the highest weight-to- 
distance ratio.

Further optimization of the best route is possible under certain 
conditions. If no containers remain to be assigned but the waste 
collected during the last leg of the route is less than or equal to 1000 kg, 
the vehicle’s capacity constraint is relaxed, and the second-to-last 
disposal facility visit is omitted. If there are still unassigned containers 
in a cluster while the last leg of a route is partially full (due to time 
constraints), and their combined weight is within the vehicle’s effective 

payload capacity, a single, fuller route is created to replace the two 
partially full routes. If containers remain unassigned within the cluster, 
the entire procedure is repeated.

5. Model application

The waste collection service of the Municipality of Rotterdam in the 
Netherlands is used as a case study to demonstrate the applicability of 
the proposed solution approach. The municipality of Rotterdam expands 
into an area of 325.8 km2, of which approximately 106.6 km2 consti-
tutes a body of water, and has a population of 651,631 citizens as of 
2021 (Rotterdam, 2022). The municipality covers the city of Rotterdam 
but also several small villages on the outskirts. Rotterdam is divided by 
the river Nieuw Maas into a northern and a southern part, each served by 
its dedicated waste collection system. Each waste collection system is 
comprised of one depot, one disposal facility, an allocated fleet, and a 
network of underground containers (see Fig. 4). Generally, Rotterdam 
distinguishes five different waste fractions collected by underground 
waste containers, but the focus of this research explicitly falls on solid 
household waste.

The depots serve as the starting and ending points for the operations, 
functioning as parking areas for the collection vehicles. The effective 
waste collection time is approximately 6.5 h, excluding time for prep-
aration and breaks. By the end of the shift, vehicles must return to the 
depot empty, requiring a visit to a disposal facility to unload before 
heading back. It is important to note that the disposal facilities are 
accessible not only to the municipal waste collection service but also to 
private waste collection companies. As a result, the arrival rates at these 
facilities are random and uncontrolled, making it difficult to plan 
disposal trips in a way that minimizes queuing times.

Both waste collection systems operate a homogeneous fleet of vehi-
cles with a maximum payload capacity of 10,500 kg, though the effec-
tive payload is typically around 9000 kg, as the vehicle tends to reach its 
volume capacity before its weight capacity. The northern system em-
ploys 13 vehicles and manages a network of 3168 solid waste containers. 
The southern system employs 10 vehicles and manages a network of 
1785 solid waste containers. All containers are equipped with wireless 
sensors that monitor and transmit their daily waste fill levels.

For simplification reasons, the northern side is chosen for analysis as 
its network of underground containers is larger and denser. To compute 
the distance and time matrices between all relevant locations, Dijkstra’s 
algorithm was employed, which uses the city’s road network with road- 
associated average speeds. For the observed case we consider a sample 
of 17 routes as realized in one day by the waste collection service of 
Rotterdam for the northern side.

To compute the collection frequency of the containers, a log of their 
service frequency for the month of April 2020 is used. To compute the 
containers’ priority of collection on the examined day, as well as the 
weight of the waste they carry, we used their dimensions, last-registered 
fill levels, and waste accumulation period until that day. To construct 
the paths and timelines of the sample routes important assumptions 
were made as only the visiting sequence of the waste containers was 
provided.

The vehicle levelling and hook moving time, the time spent at the 

Table 3 
Dynamic scheduling strategies.

Scheduling strategy Description

‘High_Medium’ 
strategy

Selects for collection all high- and medium-priority 
containers

‘Same_Site’ strategy Same as ‘High_Medium’ strategy and all containers that 
belong on the same site as those

‘Outskirts’ strategy Same as ‘High_Medium’ strategy and all the containers 
located on the outskirts of a city if at least one of them 
requires collection. The outskirts refer to the small villages 
around the city, and the containers located in the outskirts 
are pinpointed by the waste collection service

Fig. 3. Example of the repeated nearest neighbour algorithm where each container is used as a starting point.

S. Giasoumi et al.                                                                                                                                                                                                                               Research in Transportation Business & Management 59 (2025) 101302 

6 



disposal facility for unloading, and the moment the drivers visit the 
disposal facility had to be assumed based on empirical knowledge ob-
tained by the experts of the waste collection department of Rotterdam. 
These parameters’ values can be found in Table 4, along with the 
emission production factor and the volume-to-weight conversion rate β 
that are used to calculate the CO2 production. The emission production 
factors used for the idling state of the vehicle were retrieved by the study 
of Lim (2003). The factors used for the driving state were calculated 
using information retrieved by Volvo (Mårtensson & Trucks, 2022).

6. Results

This section evaluates the performance of the proposed solution 
approach by testing it on the observed case. The setup used to compare 
the model’s simulated outputs with the observed case is termed the 
reference case. Out of the total 3165 containers, 2389 were selected to 
construct the first-level clusters, the optimal number of which is 12 (see 
Fig. 5a). This was derived from the Elbow method when examining the 
range 13 ± 4. Thirteen constitutes the size of the fleet of the northern 
waste collection system while 4 is an arbitrary number to create some 
slack. To ensure a fair comparison between the reference case and the 
observed case, the same 1279 containers collected by the sample routes 
were selected to populate the second-level clusters (see Fig. 5b), 
meaning no specific scheduling strategy was applied. The GridSearchCV 
algorithm indicated that 23 neighbour containers should be used in the 

KNN algorithm.
From Fig. 5a, which presents the first-level level clusters, it can be 

observed that most of the containers are assigned to appropriate clus-
ters, but that is not the case for containers located farther away from 
dense agglomerations, for example at the boundaries of clusters 4, 7, and 
5. This can be attributed to the fact that the algorithm was fed an 
arbitrary seed to ensure that the results are reproducible and deter-
ministic. If a different seed was selected, the initial starting conditions 
would have been different, and the resulting clusters could potentially 
be different.

Looking at Fig. 5b, which presents the second-level level clusters, we 
can see that some containers are not assigned optimally, for example at 
the boundaries of clusters 4 and 8, and that can be attributed to two 
reasons. The first reason regards the first-level clusters formation, as it 
was already mentioned that the collection sites at the boundaries of 
clusters 4, 7, and 5 were not appropriately assigned. Because a site 
located near those boundaries was selected for collection on that specific 
day, meaning it was included in the training dataset of the KNN algo-
rithm, it conveyed the problem to the construction of the second-level 
clusters, as observed. The second reason can probably be attributed to 
the fact that a uniform distance weight was considered in the Grid-
SearchCV tool. If a weighted approach had been followed instead, 
meaning that the nearby neighbours of an unassigned container have 
more weight than the containers farther away, the containers’ assign-
ment could have possibly been better.

The performance of the routes constructed for the observed case and 
the reference case is compared in Table 5 under a variety of key per-
formance indicators (KPIs). First, it can be seen that the reference case 
achieves an almost 8% reduction in the total travelled kilometres when 
compared to the observed case, though it is important to remind here 
that the routes of the observed case had to be solved under the consid-
eration of the shortest path. Due to this reason, it can be said, without 
certainty, that the improvement threshold could have been larger. 
Moreover, Table 5 shows that even though two additional routes are 
constructed for the reference case, a shorter average route duration is 
achieved, in addition to a higher average vehicle capacity utilization and 
a lower CO2 production. More specifically, the reference case achieved a 
5% increase in the average vehicle capacity utilization and a 5.7% 
decrease in CO2 production, which proves that by reducing the con-
struction of partially full routes, higher efficiency levels can be achieved. 
Lastly, it can be observed that the weight over total kilometres ratio of 
the reference case is 8.8% higher than the observed case as the total 

Fig. 4. Waste collection system of Rotterdam (From Rotterdam Container Map).

Table 4 
The parameters’ values used in the proposed solution approach.

Symbol Unit Description Value

ut Minute Unloading time at the disposal facility 20
lt Minute Vehicle levelling time 1.5
mt Minute Vehicle hook moving time 0.75
β kg/m3 Volume to weight conversion rate 75

EPidling
CO2 gr/ 
min

CO2 emission production factor of idling 
vehicle

137

EPcity,empty
CO2 gr/ 
min

CO2 emission production factor: empty 
vehicle & city road 1387

EPcity,full
CO2 gr/ 
min

CO2 emission production factor: full vehicle 
& city road

2153

EPhighway,empty
CO2 gr/ 
min

CO2 emission production factor: empty 
vehicle & highway road

650

EPhighway,full
CO2 gr/ 
min

CO2 emission production factor: full vehicle 
& highway road

780

S. Giasoumi et al.                                                                                                                                                                                                                               Research in Transportation Business & Management 59 (2025) 101302 

7 



collected waste remains the same but the total kilometres are compar-
atively lesser. In conclusion, the approach provides promising im-
provements, considering that also the main objective of balancing the 
trade-off between dispatch consistency and flexibility is achieved.

6.1. Sensitivity analysis

To assess the robustness of the model’s solution, different scenarios 
involving the tunable parameters used in the first-level clustering are 

examined. Table 6 presents the parameters values considered in this 
analysis, including the range of cluster numbers assessed through the 
Elbow method to determine the optimal number of clusters, as well as 
various combinations of minimum and maximum capacity constraints. 
Additionally, Table 6 lists the KPIs used to assess the model’s perfor-
mance, along with the percentage differences of each scenario to the 
reference case (Scenario 1). The scenarios analysed are representative, 
though not exhaustive of all combinations that could be tested.

By comparing all the KPIs we can see that the best-performing 

Fig. 5. (a) Geographically fixed first-level clusters (b) Flexible boundaries second-level clusters.

Table 5 
Observed case vs Reference case under a variety of KPIs.

Scenarios Number of routes Average vehicle utilization Total kilometres Average route duration CO2 (kg) Weight/ Total kilometres

Observed Case 17 75% 826 5.5 1433 286
Reference Case 19 80% 761 4.7 1351 311

Table 6 
Tuneable parameters considered in the model sensitivity analysis and the relevant key performance indicators.

Scenarios Range Min Capacity Max Capacity Total kilometres Total CO2 (kg) Total fuel (ltr) Weight/ Total kilometres

1 13 ± 4 None None 0.0% 0.0% 0.0% 0.0%
2 13 ± 4 105 None − 3.1% − 1.5% − 1.6% 3.2%
3 13 ± 4 100 None − 0.2% 0.2% 0.2% 0.2%
4 13 ± 4 95 None 0.6% 1.0% 1.0% − 0.6%
5 13 ± 4 None 200 2.3% 2.0% 2.0% − 2.2%
6 13 ± 4 105 200 3.9% 2.7% 2.8% − 3.7%
7 13 ± 4 100 200 0.9% 1.0% 1.0% − 0.9%
8 13 ± 4 95 200 2.4% 2.6% 2.6% − 2.4%
9 13 ± 3 None None 0.0% 0.0% 0.0% 0.0%
10 13 ± 3 105 None − 3.1% − 1.5% − 1.6% 3.2%
11 13 ± 3 100 None − 0.2% 0.2% 0.2% 0.2%
12 13 ± 3 95 None 0.6% 1.0% 1.0% − 0.6%
13 13 ± 3 None 200 3.5% 2.9% 3.0% − 3.4%
14 13 ± 3 105 200 3.9% 2.7% 2.8% − 3.7%
15 13 ± 3 100 200 0.9% 1.0% 1.0% − 0.9%
16 13 ± 3 95 200 1.4% 1.1% 1.1% − 1.4%
17 13 ± 5 None None 0.0% 0.0% 0.0% 0.0%
18 13 ± 5 105 None − 3.1% − 1.5% − 1.6% 3.2%
19 13 ± 5 100 None − 0.2% 0.2% 0.2% 0.2%
20 13 ± 5 95 None 0.6% 1.0% 1.0% − 0.6%
21 13 ± 5 None 200 2.3% 2.0% 2.0% − 2.2%
22 13 ± 5 105 200 3.9% 2.7% 2.8% − 3.7%
23 13 ± 5 100 200 − 0.9% 0.1% 0.0% 0.9%
24 13 ± 5 95 200 2.4% 2.6% 2.6% − 2.4%
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scenarios are 2, 10, and 18 (which are solved under the same combi-
nation of capacity constraints), while the worst-performing configura-
tions are 6, 14, and 22. The range in which the percentage difference of 
all scenarios fluctuates, which is derived from the extreme values of the 
best and worst scenarios, is presented in Table 7. The fact that the 
fluctuation range for each of the examined KPIs is roughly ±4% of the 
reference case proves that the model results are robust and the examined 
parameters play a trivial role in the overall performance of the model.

6.2. Scheduling strategies evaluation

This section demonstrates how the developed model can be used to 
investigate and evaluate different scheduling strategies. More specif-
ically, the dynamic scheduling strategies introduced in Table 3 are 
investigated to understand how the different ways of selecting the 
containers can affect the efficiency of the operations. The reference case 
serves as a benchmark to compare the performance of each scheduling 
strategy. Therefore, the model is calibrated using the parameters from 
Scenario 1 (see Table 6). It is important to note that for the reference 
case, no scheduling strategy is applied. Instead, only the containers 
collected on the examined day are selected for collection in the model.

The performance of the evaluated strategies is presented in the 
following figures and tables. Fig. 6 depicts for each scheduling strategy 
and the reference case the total number of containers selected for 
collection, as well as their collection priority classification (refer to 
Table 2 for the rules). Table 8 presents the performance of each of the 
scheduling strategies and the reference case under a variety of in-
dicators.Table 9 shows the total CO2 emissions produced by each 
scheduling strategy while the vehicles are in both the driving and idling 
state.

Firstly, we can see that the ‘High_Medium’ strategy selects the least 
number of containers for collection among the other strategies, and in 
contrast, presents the highest average container capacity utilization at 
72%. As an expected result, it constructs the least number of routes 
among the other strategies and produces the least CO2 emissions both 
while driving and idling.

The ‘Reference_Case’ follows a similar container selection as the 
‘Same_Site’ strategy as all the containers located in a collection site that 
is selected for collection are selected. Nevertheless, not all containers 
with high and medium priorities were collected, as per their classifica-
tion on the studied day. Instead, 35% of all collected containers were of 
low priority, meaning they were carrying less than 50% of their ca-
pacity. For this reason, the average container utilization for the refer-
ence case stands only at 58% which is the lowest among the other 
strategies. Even though the ‘Same_Site’ strategy collects thirty-five 
containers less than the ‘Reference_Case’ it still collects 13 more tons 
of waste.

The ‘Outskirts’ and ‘Same_Site’ strategies select the same number of 
containers with high and medium priorities as the ‘High_Medium’ 
strategy, but also an additional 315 and 262 containers of low priority, 
respectively. The extra total weight of waste collected for both the 
‘Outskirts’ and ‘Same_Site’ strategies, in comparison to the ‘High_-
Medium,’ is around 20 tons which explains the creation of 3 additional 
routes. Nevertheless, for the same amount of waste, the ‘Same_Site’ 
strategy travels 46 additional km compared to the High_Medium strat-
egy, while the ‘Outskirts’ strategy travels 95 km more. That is expected 
as the ‘Outskirts’ strategy selects for collection all the containers that are 
located on the outskirts of the city, if at least one of them requires it, 

which forces the vehicles to travel exceedingly long distances irre-
spective of the accumulated amount of waste.

Total idling CO₂ emissions include those generated while unloading 
at the disposal facility and those produced while idling at collection 
sites. The time to service each collection site depends on the number of 
containers located there that need collection, and the time required to 
stabilize the vehicle. As the stabilizing part happens only once per 
collection site, savings can be realized at collection sites with multiple 
containers for collection. These savings are evident when comparing the 
‘Same_Site’ and ‘High_Medium’ strategies as the former collects 262 
additional containers but produces just 27 additional kg of CO2 while 
idling at the collection sites.

Overall, the ‘High_Medium’ seems to be the best-performing strategy 
with the lowest travel distance and CO2 emissions. This is particularly 
clear in driving emissions, as it involves the fewest containers and 
routes. Nevertheless, it is critical in such operations to collect as much 
waste as possible in a day, which is what the ‘Same_Site’ strategy smartly 
achieves with just f46 additional km compared to the ‘High_Medium’ 
strategy. Similarly, the ‘Same_Site’ strategy shows a better performance 
in the production of CO2 emissions while idling at the collection sites, as 
the vehicle levelling takes place only once per site. All these strategies 
highlight potential improvements over the observed waste collection 
approach in Rotterdam, as the ‘Reference_Case’ reveals that not all 
containers with high and medium priorities were collected.

7. Discussion

The results presented in the previous section showed that the 
developed model can achieve all the stated research objectives. How-
ever, it is important to recognize that the model’s outcomes are affected 
by its limitations and the necessary assumptions that had to be made for 
its implementation.

In the model, the moment the vehicle reaches its effective payload 
capacity it makes a trip to the disposal facility for unloading. In real-life 
operations, experienced drivers visit the disposal facility not only when 
the vehicle becomes full, but also when the disposal facilities are less 
busy, which is something that was not considered in the model. Further 
to that, a vehicle may become full earlier or later than planned, due to 
waste density being a stochastic variable, and overflowing waste put 
next to the containers which is hard to monitor or predict. In the model, 
waste density is a fixed parameter, and overflowing waste is not 
considered. With these simplifications, the model constructs routes with 
strict disposal facility visits that cannot easily respond to the re-
quirements of a real-life service.

Furthermore, to achieve a deterministic model behaviour and ensure 
the results’ reproducibility, the algorithms employed in the model are 
set to be deterministic. More specifically, a seed was fed to the K-means 
algorithm to keep the starting points constant with every model run, 
while an arbitrary seed with a specific split ratio (80% train data, 20% 
test data) was used to ensure the reproducibility of the train and test data 
used in the KNN algorithm. The GridSearchCV tool was used to find the 
optimal number of neighbours used in the KNN algorithm, but it was 
restricted to a non-weighted approach.

Evaluating the model showed that restricting the starting points of 
the K-means algorithm can lead to a suboptimal clusters’ formation, 
which can affect the final solution as the inefficiencies are conveyed by 
the model to the second-level clusters, and subsequently to the con-
structed routes. To ensure the stability of the formation of the first-level 
clusters, it is suggested that the K-means algorithm is run for several 
iterations to improve the resulting clusters’ inertia, and then select the 
solution with the least inertia for the subsequent model steps. Similarly, 
it is suggested that a weighted approach is followed in the GridSearchCV 
tool to understand if attaching a larger weight on close-by containers 
and a smaller weight on far-away containers leads to a better containers’ 
assignment and restricts the problem of the first-level clusters being 
conveyed further in the final solution.

Table 7 
Percentage difference ranges for each KPI.

Total 
kilometres

Total CO2 
(kg)

Total fuel 
(ltr)

Weight/ Total 
kilometres

Max 3.9% 2.9% 3.0% 3.2%
Min − 3.1% − 1.5% − 1.6% − 3.7%
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The inefficient assignment of closely located containers to different 
clusters can also be attributed to the fact that the Euclidean distance is 
used instead of the actual road network distance. Especially at locations 
where neighbour containers are bounded by physical boundaries such as 
highways, canals, and parks, it is recommended that they are assigned to 
clusters by using the road network distance instead of the Euclidean 
distance to construct more compact and efficient clusters.

Certain limitations of the two-step routing model also impact the 
performance of the final routes. A known constraint of the model is that 
it restricts the selection of the next container to be visited, after 
returning from the disposal facility, to the one closest to the most 
recently serviced collection site. This imposition reduces the probability 
of finding the optimal route therefore it is suggested that every unas-
signed collection site is considered as the route’s starting point when 
returning from the disposal facility, as is the case when a completely new 
route is constructed. For the optimization of the initial routes, the 2-Opt 
algorithm is employed which performs the intra-route improvements. 
While this algorithm performed very well, it would be worth examining 
other local search algorithms, including inter-route improvement algo-
rithms, to see if they can lead to even better-performing solutions.

To select the containers to populate the first-level clusters, a classi-
fication scheme with certain imposed rules was utilized which uses as a 
criterion their historical monthly frequency of collection. The containers 
classified with high and medium collection frequencies were selected for 
the first-level clustering to ensure that the high waste generation sources 
are the ones guiding the partition of the city into independent waste 
collection areas. It is acknowledged, nevertheless, that using the con-
tainer’s frequency of collection (due to data unavailability) as a selec-
tion criterion introduces circularity in the system and does not 
accurately represent the waste generation patterns of the containers. 
This is because the frequency of collection is not only affected by the fill 
levels of the containers but also by the way the waste collection service 
operates e.g. shift duration, operating or not during the weekends. If the 
waste fill rates of the containers were used, or different classification 
rules for that matter, is expected that the model outcomes would have 
been different and probably closer to the real optimum solution.

8. Conclusions and recommendations

Demand-responsive waste collection schedules bring uncertainty in 
the planning of resources as they follow the daily demand. The contri-
bution of this paper to the literature is the proposed solution approach 
for the IoT-WCVRP, which has as an overarching objective to maintain 
the highest possible degree of flexibility in vehicle dispatching, while 
also maintaining a certain level of route consistency when waste de-
mand varies from day to day.

Real-life waste data provided by the municipality of Rotterdam in the 
Netherlands was used for the application of the model, which not only 
showed that gains can be achieved but further demonstrated its feasi-
bility and applicability. The results showed that by constructing shorter 
but fuller cluster-focused routes, the model increases vehicle utilization 
rates by 5% and reduces emissions and travelled kilometres by 6% and 
8% respectively when compared to the observed case. A reminder that 
the observed case considered in this research was solved with Dijkstra’s 
algorithm under the consideration of the shortest path due to the un-
availability of the traversed paths and timelines.

With the proposed model three different scheduling strategies can be 
examined, depending on the collection objectives set forward. Applying 
the model showed that there is room for improvement in the observed 
way the selection of containers for collection is performed, as under 
different scheduling strategies additional gains can be achieved. Among 
others, the model can be further used to understand the transport 
mechanisms of waste and how the road network is utilized by waste 
collection vehicles, to evaluate the routes’ compactness which regards 
the overlapping of routes, and to calculate the CO2 emissions produced 
per waste collection area.

In general, the developed model can be used by any waste collection 
service that has the same characteristics and imposes the same con-
straints as the formulated IoT-WCVRP the model is intended to solve. 
The model is equipped with multiple tunable parameters and uses a 
variety of user-imposed rules to construct the final solution, which en-
ables its generalizability and transferability to new data and situations. 
It is important to recognize nevertheless its limitations, as it is focused 

Fig. 6. Scheduling strategies under a variety of KPIs.

Table 8 
Performance of the examined dynamic scheduling strategies.

Strategy Total kilometres Total weight (TN) Average vehicle utilization Average container utilization Number of routes Weight (kg)/ Total kilometres

Reference_Case 761 237 80% 58% 19 311
High_Medium 753 230 80% 72% 18 306
Outskirts 848 251 82% 59% 21 296
Same_Site 799 250 80% 62% 21 313

Table 9 
CO2 emissions produced and fuel consumed per dynamic scheduling strategy.

Indicator State Location Reference_Case High_Medium Outskirts Same_Site

CO2 (kg) Driving – 952 943 1055 994
CO2 (kg) Idling Disposal facility 93 90 96 99
CO2 (kg) Idling Collection sites 306 270 346 297
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on the attainment of specific requirements, and it does not aim to 
address everything that takes place during waste collection scheduling 
or routing.

Future research could focus on making the developed model more 
representative of real-life operations to further increase its applicability. 
The developed model uses the capacity constraint of the vehicles to 
insert the disposal facility trips in the routes. Other strategies that are 
followed in practice could be examined as well, for example visiting the 
disposal facility if the vehicle is close to it even if it is not fully loaded or 
considering the peak hours of the disposal facility to avoid visiting when 
it is too busy.

The model can be extended with the use of time windows assigned 
for example at containers located in the vicinity of public transport 
stations and education buildings, at locations with high traffic condi-
tions, and at locations with accessibility issues or restrictions. Further-
more, the use of electric vehicles could be investigated in the future to 
understand the effects on the performance of the service, which would of 
course require the imposition of additional constraints such as the bat-
tery duration, or the number of containers that can be lifted by the 
vehicle.

Lastly, the issue of overflown containers was ignored in this research, 
but in reality, it constitutes one of the biggest issues of IoT-based waste 
collection operations as there is no way to monitor or predict it. It is 
suggested that various strategies are explored to approach this issue, for 
example, with the use of a special vehicle focused on only collecting the 
overflown waste as identified by drivers passing by, or through orders 
received by citizens.

The findings offer valuable insights for both businesses and public 
authorities in waste management. The model enhances resource effi-
ciency by improving vehicle utilization by 5%, reducing emissions by 
6%, and cutting travel distances by 8%, benefiting both cost reduction 
and environmental sustainability efforts. Its flexibility in vehicle dis-
patching is particularly important for handling daily demand un-
certainties, allowing businesses to optimize resources and public 
authorities to adjust collection schedules based on changing priorities, 
such as cost, sustainability, or service improvement. Additionally, the 
model optimizes route compactness and road network utilization, 
helping to reduce traffic congestion and improve overall operational 
efficiency.

Furthermore, the model aligns with public policy goals for sustain-
ability, offering a practical approach to reducing waste collection’s 
carbon footprint. Its scalability allows it to be applied across different 
waste management systems, making it a versatile tool for municipalities 
and service providers. Future research directions, such as exploring 
electric vehicle integration or managing overflowing containers, could 
further enhance its impact. Overall, the model strikes a balance between 
efficiency, flexibility, and sustainability, providing both businesses and 
public authorities with a robust tool to improve waste collection oper-
ations while meeting evolving priorities.
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