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MORE ON M. E. RUDIN'S DOWKER SPACE 

KLAAS PIETER HART 

ABSTRACT.It is shown that M. E. Rudin's Dowker space is finitely-fully normal and 
orthocompact, thus answering questions of Mansfield and Scott. 

0. Introduction. In [Ma] Mansfield defined the notions of K-full normality and 
finite-full normality. One of the questions he raised was, whether there exists a 
finitely-fully normal space which is not an a,-fully normal space. 

In [Sc] Scott asked whether M. E. Rudin's Dowker space [Ru] is orthocompact. 
We answer both questions simultaneously by showing that the above-mentioned 
space is both finitely-fully normal and orthocompact. Mansfield's question is hereby 
answered since in [Ma] he showed that almost a,-fully normal spaces are countably 
paracompact. Almost K-full normality will not be defined here; it suffices to know 
that it is weaker than K-full normality. 

1. Definitions and preliminaries. 
1.0 K-full normality and orthocompactness. Let Y be a topological space, "21 an open 

cover of Y and K 2 2 a cardinal. An open cover Yis said to be a K-star (finite-star) 
refinement of %if for all Y' c Ywith I ?(' I G K ( T '  finite) and flT' # 0 there is a 
U E G2L with U ?r' c U, and ?(is a Q-refinement of G2L if ?(refines % and f lY'is 
open for all ?p C Y. (Recent practice is to call Q-refinements interior-preserving 
open refinements.) 

Y is called K-fully (finitely-fully) normal [Ma] if every open cover of Y has a K-star 
(finite-star) refinement. Y is called orthocompact [Sc] if every open cover of Y has a 
Q-refinement. 

1.1 M. E. Rudin's Dowker space. Let F = llr=,(a, + 1) endowed with the box 
topology. Furthermore let X' = { f E F: Vn E N cf( f(n)) > a,) and X = { f E X': 
32' E N: Vn E N cf(f(n)) < a , ) .  Then Xis M. E. Rudin's Dowker space [Ru]. 

We give an alternative description of the canonical base for X' (and X). For f ,  
g E Fwesay 

f < gif f (n )  < g(n)  for all n, 

f G gif f (n )  G g(n)  for all n. 

Forf ,g  E Fwithf (gwele t  

q,,={h EX' :  f c h s g )  
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and 

Then 

is a base for the topology of X('). Notice that the basic open sets are convex in the 
partial order G on X, a fact we will use in the proof of Theorem 2.2. 

2. The main result. In this section we prove using the results from [Ru] and [Ha] 
that the Dowker space X is finitely-fully normal and orthocompact. First we 
formulate a lemma, the proof of which can be found (implicitly) in the proof in [Ru] 
that X is collectionwise normal. 

2.0 LEMMA.a. Every open cover of X' has a disjoint refinement consisting of basic 
open sets. 

b. IfA, B C X are closed and disjoint then 


CI,,A n C I ~ B= 0 .  C] 


The next result is from [Ha]. 

2.1 LEMMA.For all n E N: (X')" is homeomorphic to X', and the homeomorphism 
can be chosen to map Xn onto X. 

Now we are ready to prove the main result. 

2.2 THEOREM.The space X is both 2-fully normal and orthocompact. 

PROOF.Let"?LbeabasicopencoverofX.Put U =  U{O X 0 X 0: 0 E %); U i s a  
neighborhood of {(x, x, x) :  x E X) in x 3 .  Using 2.1 and 2.0b find a neighborhood 
U' of {(x, x, x) :  x E X') in (X')3 such that U' n X3 = U. 

For x E X' \ X, choose U, 3 x open such that U.  c U'. 
By 2.0a let 8' be a disjoint basic open refinement of the open cover 

~ ~ ' ~ ~ u ~{UXIX€X,fl.~ ~ ~ O ~Y ~ 

Let0 = {O'n x:0' E 0'). 
Let 0 E 0 and {x, y, z) C 0. 
Then {x, y, z) C some V E % or {x, y, z)  C some U,, but then (x, y, z )  E 

n x3C U, SO (x, y, z) E v3 for some V E % in any case. This implies that 
{x, y, z) C v. 

For each 0 E 0 define WO as follows: 0 = Up,, for some p ,  q E F, so put 
Wo = {U,,,: x E 0). Let W = U {Wo: 0 E 0) .  Then W is both a 2-star and a 
Q-refinement of %. 

First, assume Up,, n U,,, # 0 for some U,,, and U,,, in W.Then x and y are 
elements of the same 0 E 0 and hence p = q. Define p' by p'(n) = p(n)  + w ,  
(n E N); then p <p' < x, y and p' E X, sop' E 0. 

Pick u E "2t such that {p', x, y )  c U. Since U is basic (and hence < -convex) and 
Up,z= {t: p' < t G Z)  for z = X, y, it follows that U,,, U Up,, c U. So W is a 2-star 
refinement of %. Second, let W' C W with f l  W' # 0.  Then all W E W' are 

O € 
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contained in the same 0 E 8,so W' = {U,,,: x E A) for some subset A of 0, where 
0 = U,,,. Define f by f(n) = min{x(n): x E A). Then nW' = Up,fis open. So W 
is a (2-refinement of %. 

It now follows easily that Xis  finitely-fully normal: 

2.3 COROLLARY.X is finitely-fully normal. 

PROOF.Let % be an open cover of X. Let lr, be a 2-star refinement of %, and 
(inductively) let Vn+,be a 2-star refinement of ?I;, (n E N). Since X is a P-space 
(G,'s are open) we can take the common refinement of all ?rn; call it lr. Let Y' c ?r 
be finite with nT # 0. Pick n E N such that 2" 21T I . Since lrrefines 1T, and 
since ?', is a 2"-star refinement of %, it follows that U 'V' is contained in some 
U E % .  
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