
Learnable weight initialization for neural networks

Arkajit Bhattacharya
Delft University of Technology

Delft, Netherlands
arkajitb@gmail.com

Abstract

A new method of initializing the weights in deep neural

networks is proposed. The method follows two steps. First,

consider each layer as a model and perform a linear regres-

sion to keep the mean of the layer output to zero and vari-

ance after the data is passed through the activation function

to one. Once each layer converges to the target mean and

variance, initialize the weights of the original model with

the learned weights.

Performance is evaluated on LeNet and ResNet18 archi-

tectures on FashionMNIST and Imagenette datasets. The

activation functions used to analyze the performance are

sigmoid, tanh and ReLU.

Findings show that the learned weights can perform sim-

ilarly, and for certain scenarios, better than the different

types of weight initializers used frequently in the field of

deep learning. It is important to mention that this method

requires the weights to be learned independently of the

training of the model. Thus, there is a small time over-

head. Moreover, it is required to adjust the hyperparam-

eters(learning rate, epochs etc) to find the optimal weights.

The findings from this thesis can be used in the future to

better understand how the gradient flow could be controlled

through the network and finding a more generic approach

towards the vanishing and exploding gradient problem.

The method requires to learn the weights followed by

training the network. Learning the weights involves tweak-

ing the hyperparameters(learning rate, number of epochs,

etc). For future work, these aspects could be automated for

the optimal performance of the network.

1. Introduction
1.1. Research and Problem

In recent years, deep learning has shown pronounced re-
sults in the field of image recognition, computer vision, and
speech recognition tasks. These were achieved regardless of
the issues faced while training deep neural networks. One

of the most common issues faced while training a network
is regarding the initialization of weights prior to the train-
ing of the network. Proper weight initialization prevents the
layer outputs and the gradients from exploding or vanishing
during the learning process. There has been a lot of research
in recent years about the same. the authors of [4] introduced
a proper weight initialization technique for the first time
where they show that it is possible to prevent the activation
output from exploding/vanishing by initializing the weights
from a uniform distribution, followed by dividing(scaling)
it with the number of incoming nodes for a single node.
This method has proven to be very effective for certain cri-
teria and activation functions which are symmetric around
zero and outputs value within the range [-1, 1]. This ob-
servation was confirmed in [5], where the authors mention
Xavier weight initialization’s inefficiency when used with
ReLU activation function. ReLU outputs all negative val-
ues to zero which leads to the dying ReLU problem, where
nodes get neutralized, or to be precise, the weights asso-
ciated with the nodes become zero. This means that the
mentioned nodes cannot participate in the training process
from that point onwards. Thus, the authors introduce a new
weight initialization technique, popularly known as Kaim-
ing weight initialization which is advisable to be used with
ReLU activation function. That said, the issue of finding an
independent weight initialization technique still prevailed.

In [8], the authors conclude that initializing weights
with orthonormal values can be beneficial to the perfor-
mance of the network, thus, establishing the fact that
optimal weight initialization can be done regardless of
the activation function used. This was followed by an-
other technique, known as Layer Sequential Unit Variance
Initialization(LSUV)[10], which learns the optimal weights
by training each layer with the dataset provided to have ac-
tivation output of one with a tolerance value. It achieved
SOTA in few scenarios for image classification but failed to
even train the model for sigmoid activation function.

LSUV introduced the idea of using the dataset pro-
vided to learn the optimal weights for a network. The pro-
posed method uses a similar approach with a different algo-

1



rithm and criteria for the weights associated with the layers.
Moreover, the proposed method can be seen as a normaliza-
tion technique before training the network. Thus, it can be
used as a replacement of batch normalization in deep neural
networks.

1.2. Research Scope
The hypothesis related to the research is as follows:

1. Is it possible to initialize weights of a network with
optimal values independent of the activation func-
tion used?
Hypothesis: If each layer in the model is trained to
have a pre-defined mean of 0 for the layer output and
pre-defined variance of 1 for the activation output, the
trained weights will be able to perform equally when
compared with other weight initializers which are de-
pendent on the activation function used, thus, provid-
ing a generalized approach towards the problem of op-
timal weight initialization.

2. Is it possible to remove batchnorm from a deep neu-
ral network?
Hypothesis: The proposed method could be seen as a
batch normalization process for the activation output
before the training starts. Thus, it can remove batch-
normalization from a network.

1.3. Contribution
The main contribution of this research is a new weight

initialization technique that uses samples from the dataset
provided, the activation function to be used, and the network
to learn the optimal weights for initialization.

2. Related Work
To compare the performance of the new weight initial-

ization technique, it is compared with kaiming and xavier
weight initializers. The following sections describe the ini-
tializers in detail.

2.1. Xavier Weight Initializer
The goal of Xavier weight initialization[4] is to keep the

variance to one for each layer during the training process.
The weights are randomly initialized from a uniform dis-
tribution with mean zero and multiplied by 1/NAvg where
NAvg is the average of input and output neurons. This
initialization may result in dependence on the backpropa-
gated gradient variance on the layer, and it might decrease
throughout the training process. Thus, to add a normaliza-
tion factor, the final weight initialization formula is:

W = U [
p
6/
p
Nin +Nout + 1,�

p
6/
p

Nin +Nout + 1]

where Nin is the number of incoming nodes and Nout is
the number of outgoing nodes. This method is suitable for
activation functions which are symmetric around zero and
gives an output within the range of [�1, 1].

2.2. Kaiming Weight Initializer
Kaiming weight initialization was introduced[5] since

Xavier[4] couldn’t perform well with ReLU[1] activation
function. ReLU stands for Rectified Linear Unit. It fixed
the problem of gradient saturation which was faced by Sig-
moid and Tanh activation functions. For both tanh and sig-
moid, gradient saturation occurs because it is not sensitive
to data around the extremes. For instance, sigmoid scales
down large values to 1 and small values to 0, thus, losing
important information along the learning process. ReLU
converts all values below zero and any value above zero
as it is. This kills few neurons during the training pro-
cess, thus, introducing sparsity in the network. The prob-
lem with combining Xavier with ReLU is related to this
property. Since ReLU won’t allow any value to pass if it
is lower than zero, a weight initialization technique which
aims at keeping the mean around zero and variance around
one for a layer will lead to the elimination of most of the
neurons during the training process, leading to the dying
ReLU problem. Kaiming initialization is introduced keep-
ing the mentioned issue in mind.

The steps for kaiming initialization are as follows:

• Create a tensor with the same size as of the input and
initialize the values from a random uniform distribu-
tion.

• Scale all the values with
p
2/N where N is the number

of incoming nodes.

2.3. Layer Sequential Unit Variance Initialization
Layer Sequential Unit Variance

Initialization(LSUV)[10] was introduced to create a
weight initialization technique that doesn’t depend on
the activation function used for the network. For in-
stance, Kaiming weight initializer was introduced only for
ReLU activation function since it is not advisable to use
Xavier weight initializer with Sigmoid or Tanh activation
functions. It follows the algorithm stated below:

• Initialize the weights from a gaussian distribution with
a variance of 1.

• Decompose the weight matrix with QR matrix de-
composition method or Singular Value decomposi-
tion(SVD) method.

• Train the convolution and inner product layers to have
an output variance of one with a small batch of samples
from the dataset.

2



This research is inspired by LSUV as it first introduced
the concept of using the dataset to train the weights.

3. Datasets and Preparation
3.1. Datasets

The datasets used for this research are explained in the
following sections. The selection of the datasets were based
on the complexity of the data. FashionMNIST is selected
since it is easier to train and can be used for the sanity check.
Once the practicality of the concept is established, the pro-
posed method is used on imagenette which is a subset of
Imagenet dataset.

3.1.1 FashionMNIST

FashionMNIST is created by zalando[11]. It consists of
60,000 training images and 10,000 test images. Each sam-
ple in the dataset is a 28x28 grayscale image with a to-
tal of ten classes. It was created as an updated version of
MNIST[12]. Fig1 provides a visual representation of the
dataset.

Figure 1. Collection of samples from FashionMNIST dataset[11]

3.1.2 Imagenette

Imagenette[7] is a subset of Imagenet[2] with only ten
classes. It has three versions based on the size of im-
ages:Full size, 360 pixels and 120 pixels. Fig 2 provides
a visual representation of samples from the imagenet[2]
dataset.

3.2. Preparing data samples
To learn the weights, samples are collected randomly

from the dataset provided. The labels are removed from the
samples since the target of the model is to learn the optimal
weights and not the classification of the data. The samples
should be taken from the same dataset which is to be used
for training the model once the optimal weights are learned.

Figure 2. Collection of samples from Imagenet dataset[3]

4. Network Architectures
In this section, the deep learning models used for the re-

search are described.

4.1. LeNet
The LeNet architecture was first mentioned by LeCun et

al. in [9]. The mentioned architecture is selected because it
has very few convolution layers and was adequate for test-
ing with multiple activation functions and weight initializ-
ers. Fig 3 shows the architecture provided in the original
paper.

Figure 3. LeNet architecture provided in [9]. It consists of two
sets of convolution layers, activation layers and pooling layers,
followed by two fully connected layers and one decision layer

4.2. ResNet
ResNet architecture is introduced in [6]. It is arguably

one of the groundbreaking works in the field of deep learn-
ing in the last few years. It solved the problem of vanishing
gradient in deep networks with the introduction of identity
shortcut connections,i.e., dividing the architecture into mul-
tiple blocks and adding the input to each block at the end of
the block as well. ResNet is structured in layers, with each
layer containing multiple blocks. The number of layers for
different ResNets are the same. The number of blocks per
layer is different for different architectures. ResNet18 has
18 layers in total.

Fig 4[6] shows a residual block with a skip connection.
There are five versions of ResNet[6] based on the num-

ber of layers in each block, namely, resnet18, resnet34,
resnet50, resnet101, and resnet150. For this research, we
have used resnet18 to keep it simple and easier to under-
stand for the reader.

3



Figure 4. A residual block from ResNet architecue [6]

5. Hyperparameters
In this section, the hyperparameters selected for learning

the weights are described. Each selection is justified and
compared with all the possibilities.

5.1. Loss and Optimizer
Loss: The loss function selected for the proposed

method is mean squared error loss. Learning the optimal
weights involves keeping the mean to zero for the layer
output and variance to one for the activation outputs which
means that it is a regression problem.

Optimizer: Optimizers are functions that are used to
update the weights or learning rate of the neural network
with the aim of reducing the loss for each iteration. The
optimizer used for this research is Stochastic Gradient
Descent(SGD).

5.2. Learning rate
The learning rate is related to the task in hand and cannot

be generalized. For instance, for LeNet, the learning rate
used is 0.01. It might change for learning the weights for
another architecture.

5.3. Step Learning
Step Learning is the process of decaying the learning rate

based on the number of epochs provided. For this research,
a learning decay of 0.01 is applied after every fifth epoch.

5.4. Constant Parameter(Alpha)
A constant parameter(alpha) is introduced to reduce the

difference in magnitude, if any, between the mean loss and
the variance loss. For instance, if the mean loss has a magni-
tude in multiples of 1000 and the variance loss is lower than
one, the mean loss gets multiplied by alpha which scales
down the magnitude of it which could be compared to the
variance loss. The equation is provided for better under-
standing:

loss = (alpha ⇤meanloss) + varianceloss

Similarly, if the variance has a higher magnitude, it is scaled
down using alpha:

loss = meanloss+ (alpha ⇤ varianceloss)

The hyperparameters are adjusted according to the dataset
and model.

6. Approach
6.1. Standardization

The proposed approach is based on the concept of stan-
dardization of weights before the training starts for a net-
work. In standardization, the features of the dataset are
scaled to have a mean of 0 and a variance of 1. It results
in all the values centered around zero with a standard devia-
tion of one. It is an important feature when gradient descent
comes into the picture. If the scales of the data features dif-
fer a lot, few weights will get updated at a faster rate when
compared to the other neuron weights which is not advis-
able for the model to learn. Moreover, symmetric activation
functions, like tanh assume that the weights are distributed
around 0. Thus, keeping the mean of the layer output is
important for the network to learn. To avoid the explod-
ing/vanishing gradient problem, it is important to keep the
variance within abound for each activation output. Keeping
these points in mind, the approach can be described in two
steps:

1. Train the model to keep the activation output variance
to one. The equation for the step is

P0
n�1(w⇤i)/n = 0

where i is the incoming data, w is the weight associated
and n is the number of nodes present in the layer.

2. Train the model to keep the mean to zero for each layer
output. The equation for the step is V ar(X) = 1,
where X is the activation output.

The first step is self-explanatory. The layer is trained to
keep the variance of the activation output to one using sam-
ples from the same dataset which will be used for training.
This makes sure that the activation output never vanishes
or explodes during a forward propagation of data and simi-
larly, this ensures that the gradient also stays in check when
the loss is propagated backward and the weights are updated
accordingly. That said, if the layers are trained to have an
activation output of one, the layer weights will get updated
with each iteration. This means that which each iteration,
the mean of the layer outputs will also change which is not
the appropriate scenario since the updated weights are con-
sidered to be the optimal weights and it is advisable to initi-
ate the weights of a layer with a mean of zero to prevent the
layer outputs from vanishing or exploding throughout the
training process.

4



6.2. Initializing weights for each layer

The weights of each layer are initialized from a normal
distribution within an interval [0,0.1]. This decision could
be justified by the fact that the aim of the proposed method
is to learn the optimal weights, but it is important to initial-
ize the weights in such a way that it is easier for the network
to reach its target at the earliest. Thus, the weights are ini-
tialized randomly from the given interval such that all the
values are near to zero and the difference is small between
the values. Different intervals were tried and the mentioned
interval achieved the best results.

6.3. Training each learnable layer and activation
layer independently

All the layers with learnable weights and their corre-
sponding activation layers are converted to models to be
trained for the optimal weights.

Figure 5. Each layer is considered as an independent model ex-
cluding the final layer. In LeNet, four new models are created, i.e.,
two convolution layers and two linear layers. Maxpool layers are
not considered and added as separate entities but not involved in
the learning process

Fig 5 gives a visual representation of the segmentation of
all the layers. Each learnable layer and it’s corresponding
activation layer are considered as a model and trained
separately to have a mean of 0 for the layer output and a
variance of 1 for the activation output. The decision layer
is excluded from the training process since the aim of the
decision layer is to classify the data processed through the
network.

Similar to LeNet, all the layers in ResNet18 are con-
sidered as separate neural network models and trained
separately to learn the optimal weights. A visual repre-
sentation of a single block with identity downsampling is
provided to understand the structure of the learning process
in Fig 6

The learning process for a layer is identical for both
LeNet and ResNet. Thus, the visual representation of the
same is provided in Fig 7

Figure 6. Each layer and it’s corresponding ReLU activation layer
is considered as a trainable model. The identity is recorded and
transferred to the convolution layer used for downsampling and
adding identity to the output

Figure 7. Data is processed through each layer.Mean loss is calcu-
lated for the layer output and variance loss is calculated for the ac-
tivation output. The losses are added and back-propagated through
the network. The weights are updated at each iteration

6.4. Greedy Approach
Greedy approach can be described as the method of di-

viding the problem into multiple parts in sequential order
with a target of achieving the optimal result when the last
task has been executed, without considering the whole pic-
ture.

The proposed approach follows the greedy algorithm.
Each layer is converted to a model and the layers are trained
sequentially, i.e., not more than one layer gets prioritized at
a time. For instance, the second convolution layer in LeNet
will only be trained if the first layer mean and variance loss
converges.

The steps are described below in detail where two con-
secutive layers are considered for better understanding of
the reader:

• Use the mini-batch created for learning the weights to
train the first layer.

• Define the hyperparameters needed to train the layer.

• Make sure the loss converges for both mean and vari-
ance loss independently.

• Freeze the weights of the trained layer.

5



• Start training the second layer where the input to it is
the output of the first layer.

The steps mentioned above are applied to all the layers
in order. The proposed method makes sure that the previous
layer has already been updated with the optimal weights.

Figure 8. Each level describes the weight learning process of one
layer at a time. The Green layer depicts that the layer has already
been trained. The last level shows that all the layers are trained
to be initialized with the optimal weight. To describe the greedy
approach, LeNet5 architecture is selected

As shown in Fig 8, greedy algorithm is used to learn the
optimal weights at each instance. First, weights for Con-
volution 1 are learned, and the weights are frozen for that
particular layer. Then, the learning process starts again for
the second convolution layer, where the data is first passed
through the first convolution layer and that output is used as
an input for the second convolution layer. This process is
continued until the second last layer, i.e., excluding the de-
cision layer. For visualizing the greedy approach, LeNet5
architecture is selected since ResNet18 architecture is com-
plicated and difficult for the reader to understand from the
visualization.

7. Ablation study
To check whether the proposed method initializes the

weights with optimal values, it is important to check
whether targeting only mean and variance would not give
the same performance. The ablation study is divided into
two parts, based on the architecture and the purpose of
the research. The first set of ablation experiments is con-
ducted to find out the practicality of the proposed method,
i.e., training the layers to have a mean 0 for the layer out-
put and variance 1 is able to learn the optimal weights for
a given network and dataset. The second set of ablation
experiments are conducted to understand the impact of the
proposed method compared to the kaiming weight initial-
izer after removing batch normalization from the network.
The below-mentioned ablation experiments are followed to
understand the impact of the alternatives for LeNet:

1. LAE1:Learn weights for mean 0 and variance 1 for the
activation output, initialize the weights in the network
and train the model. Test the model accuracy on the
test dataset.

2. LAE2: Learn weights for only mean 0 for the activa-
tion output, initialize the weights in the network and
train the model. Test the model accuracy on the test
dataset.

3. LAE3:Learn the weights for only variance 1 for the
activation output, initialize the weights in the network
and train the model. Test the model accuracy on the
test dataset.

4. LAE4:Learn the weights for mean 0 and variance 1 for
the layer output, initialize the weights in the network
and train the model. Test the model accuracy on the
test dataset.

The below mentioned ablation experiments are followed to
understand the impact of the alternatives for ResNet18:

1. RAE1:Remove BN and add kaiming weight initializer
to all the layers. Train the model and check accuracy
on test data.

2. RAE2: Remove BN and randomly initialize the
weights for each layer. Train the model and check ac-
curacy on test data.

7.1. Experiments and Results
In this section, the experiments for the proposed method

with different combination of activation functions and
weight initializers are discussed.

7.2. Ablation Experiments
In this section, results related to the ablation experiments

are discussed. For LeNet, the activation function selected
for the ablation study is ReLU.

Ablation Experiment Activation Function Test Accuracy
LAE1 ReLU 93.36%
LAE2 ReLU 92.24%
LAE3 ReLU 10%
LAE4 ReLU 93.48%

Table 1. Test Accuracy for Ablation experiments on LeNet

As shown in table 1, the model doesn’t train for LAE3.
For the other scenarios, the accuracy is high since the
dataset selected for the same is FashionMNIST. That said,
the proposed method is expected to give a higher accuracy
than all the ablation experiments.

Ablation Experiment Weight initializer Test Accuracy
RAE1 Kaiming 10.46%
RAE2 Random 10.01%

Table 2. Test Accuracy for Ablation experiments on ResNet18

Table 2 shows the experiment results for the ablation
experiments related to ResNet18. As shown, the model

6



doesn’t train without batch-normalization. The activation
function used for both the ablation experiments is ReLU.
The proposed method is supposed to fix the issue of batch
normalization and the model should be able to learn without
the same.

8. Results and Experiments
8.1. LeNet

The purpose of using LeNet architecture is to verify the
hypothesis RQ1,i.e., removing the dependency of weight
initialization techniques on the activation function used.

8.1.1 Learning weights

There are two sets of convolution layers, activation layers
and average pooling, followed by two linear layers and one
decision layer in the lenet architecture. The convergence of
the loss for the mean to be zero for the layer weights and
variance to be one for the activation output starts with the
first convolution layer. The dataset used for the first ex-
periment is FashionMNIST. The activation function used is
ReLU. Fig 9 shows the learning process for the first con-
volution layer for mean. It shows that the loss converges
for mean for the first convolution layer. 10 shows the con-

Figure 9. Loss vs Epoch for mean loss for the first convolution
layer

vergence of loss for the variance of the activation outputs
for the first convolution layer. It is important to mention
that while training the network, both the losses are back-
propagated together and not one by one but the plots are
created separately for mean and variance since the target is
to reach convergence for both independently.

Once the weights are learned for the first layer, the same
procedure is followed for rest of the layers, excluding the
decision layer. The learning graphs for the remaining layers
are not provided since it is similar to the first layer.

Figure 10. Loss vs Epoch for variance loss for the first convolution
layer

8.1.2 FashionMNIST and analysis

FshionMNIST is used for sanity check of the proposed
method. To understand the effect and to compare it’s per-
formance to the existing methods, all possible combinations
of activation functions(Sigmoid,tanh,ReLU) and weight ini-
tializers(learned weights, Xavier, Kaiming) are used.

AF LW Kaiming Xavier
Sigmoid 99.56% 99.02% 99.70%

Tanh 95.56% 92.24% 94.68%
ReLU 95.24% 96.36% 95.85%

Table 3. Test Accuracy for different combinations of weight ini-
tializers and activation functions

Table 3 shows that Learned weights(LW) performs
slightly better than Kaiming and Xavier for Sigmoid and
Tanh activation functions. For ReLU, the performance can
be considered same as the difference in accuracy is low.
FashionMNIST is a simple dataset to be trained. Thus, the
test accuracy is high for all the combinations.

8.1.3 Imagenette and analysis

Imagenette is used to observe the performance of the
method for datasets with more complexity, which can show
the difference in training if the weight initializer used is not
appropriate for the activation function. For instance, table
4 shows the drop in accuracy when tanh activation function
is used. Theoretically, Xavier weight initializer should be
able to perform well with symmetric activation functions
like tanh, but for the given scenario, the proposed method
performs better than all the combinations used.

As shown in table 4, the proposed method(LW) performs
better than both kaiming and xavier for all the combinations
of Activation functions(AF), except ReLU, which can be
considered to have the same accuracy since the difference
is less than one percent.

7



AF LW Kaiming Xavier
Sigmoid 99.56% 65.43% 46.80%

Tanh 96.01% 46.02% 47.56%
ReLU 95.24% 92.40% 95.85%

Table 4. Test Accuracy for different combinations of weight ini-
tializers and activation functions

8.2. ResNet
The experiments done with ResNet18 are done with the

purpose of verifying the hypothesis presented in RQ2, i.e.,
the proposed method can remove batch normalization from
any network, regardless of it’s depth.

The weight learning process for a layer in ResNet is
similar to that of LeNet. Thus, a detailed description
is not provided for the weight learning process. This
section contains the experiment results and observations for
Imagenette datasets. Different combinations of activation
functions and weight initializers are not used since the aim
for this architecture is to remove batch normalization from
the network.

8.2.1 Imagenette and analysis

LW accuracy Kaiming + BN accuracy
68.82% 72.48%

Table 5. Test Accuracy for Learned weigths(LW) and the combi-
nation of Kaiming and Batch Normalization(BN)

The table 5 shows that the proposed method is able to
learn but the accuracy is lower by approximately four per-
cent when compared to the combination of batch normal-
ization(BN) and Kaiming weight initialization. The accu-
racy of the proposed method can be further improved by
changing the hyperparameters and training the model in it’s
optimal conditions, since training a model depends on other
factors and not only on the initialization of weights. That
said, LW is still able to learn without introducing batch nor-
malization in the network.

9. Conclusion
The research proposes a new technique to learn the op-

timal weights through training each layer of a network by
following the concept of standardization. The hypothe-
sis regarding the first research question(RQ1) is confirmed
by the experiments done on LeNet architecture. The pro-
posed method is combined with different activation func-
tions and weight initializers to verify whether it can be used
in any architecture regardless of the activation function. It
achieves a better results than the existing weight initializa-
tion techniques in most of the scenarios. For the second

hypothesis proposed in the second research question(RQ2),
i.e., the proposed method can replace batch normalization
in a network, experiments were conducted on ResNet18,
and accuracy was compared by removing batch normaliza-
tion and kaiming from the network and replacing it with
the proposed method. The ablation study performed on
ResNet18 shows that adding kaiming weight initializer or
random weight initialization to the network without batch
normalization cannot train the network. However, initializ-
ing the weights of the network with the method introduced
can make the network learn. Moreover, there is a difference
of only 5% between batchnorm and the proposed method
which can be further improved by tweaking the parameters.
The technique has a small time overhead since the weights
need to be learned and not defined at the beginning of the
training process. That said, the time overhead is small since
learning the weights to have a mean of 0 and the activation
output to have a variance of 1 is a linear regression problem.

10. Future Work
The method introduced can be further used to remove

different types of norms, for instance, layer norm or group
norm. A more generalized structure for learning the weights
can be implemented, where hyperparameter optimization is
already introduced for each layer for faster convergence.

References
[1] A. F. Agarap. Deep learning using rectified linear units.
[2] M. Frolovs. Imagenet.
[3] M. Frolovs. Imagenet dataset.
[4] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks, 2010.
[5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet
classification, December 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.
[7] J. Howard. Imagenette.
[8] W. Hu, L. Xiao, and J. Pennington. Provable benefit of or-

thogonal initialization in optimizing deep linear networks,
Jan 2020.

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.
[10] D. Mishkin and J. Matas. All you need is a good init, Feb

2016.
[11] zalando. Fashion-mnist.
[12] zalando. Mnist.

8



Learnable Weight Initialization for Deep
Neural Networks

Master’s Thesis

Arkajit Bhattacharya




