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ABSTRACT 

Modern cars are increasingly being equipped with automated driving functions. For governments it is 

important to gain insight in the mobility impacts of automated vehicles. This is important as the 

introduction of automated vehicles affects current investment decisions about infrastructure projects 

and other policy measures like road pricing. Quantitative literature with respect to the impact of 

automated vehicles focuses mostly on capacity implications. Literature about large scale mobility 

impacts is mainly qualitative. This paper introduces a System Dynamics model (SD-model) to 

quantitatively explore the impacts of early forms of automated vehicles (level 1, 2 and 3) on mobility. 

The model is explorative and can be used to evaluate different scenarios in a short time. This model is 

applied in a case study for the Netherlands to assess the impact of automated vehicles on mode choice, 

time of day choice and travel times on characteristic relations in the Netherlands. In contrast to other 

studies the SD-model is able to simulate the effects of AVs over time, can simulate mixed automated 

vehicle types and has a constant feedback between the assignment and the demand side of the model. 

A scenario for autonomous driving and a scenario for cooperative driving is considered. The 

simulations show that car traffic will increase and the level of congestion does not necessarily 

decrease and might even increase on some relations, especially in the autonomous scenario. 

Furthermore, in the cooperative scenario the increase in number of trips by car is larger, the average 

speeds are higher and there is less congestion compared to the autonomous scenario. 

 

Keywords: Automated Vehicles; Large Scale Effects; Mobility Effects; Self-driving Cars; System 

Dynamics 
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1 INTRODUCTION 

Modern cars are increasingly being equipped with automated driving functions. The SAE (SAE 

International, 2014) defined 6 levels of automation, in which level 0 is a vehicle without automation 

and level 5 a fully self-driving vehicle capable of automated driving under any condition. First 

versions of automated vehicles (AV) are already on the road: in new luxury models adaptive cruise 

control and lane keeping are widely available (level 1 / 2). A key distinction is between level 2, where 

the human driver performs part of the dynamic driving task, and level 3 (conditional automation), 

where the automated driving system performs the entire dynamic driving task. In level 3, the driver is 

expected to be available for occasional control of the vehicle, while in high and full automation (level 

4 and 5) he or she is not. 

The implementation path of automated driving is highly uncertain in the sense that it is unknown when 

different levels of AV will be introduced, what the penetration rate of the different levels will be in the 

coming decades and how that varies per region and country. Expected impacts of automated driving 

on car ownership, car usage, value of time, driving costs, road capacity etc. are also uncertain. By 

consequence, the expected impacts on demand, vehicle kilometers driven and congestion are uncertain 

as well. For governments it is important to have insights in these mobility impacts because they affect 

current investment decisions about infrastructure projects and other policy measures like road pricing. 

According to Milakis et al. (2015) and Fagnant & Kockelman (2015) the scarce quantitative literature 

with respect to the impact of AV that is available, focuses on local implications on traffic flows such 

as impact on capacity, capacity drop, stability and shockwaves. Literature about large scale mobility 

impacts is mainly qualitative (Litman, 2014; Raspe et al., 2015; KPMG; CAR Group, 2012). National 

and regional governments often use macroscopic traffic and transport models to assess the impact of 

different policy measures. These models have not been designed to model the impact of automated 

vehicles. They are often highly detailed in order to capture as many demand decisions as possible. 

Besides that, the level of service of the different modes is modelled as accurate as possible. The first 

AV-studies with these models (Snelder et al., 2015; Tetraplan, 2015), (Childress et al., 2014) or 

unpublished work (Gucwa, 2014) indicate that the high level of detail results in high computation 

times which makes them less suitable for explorations with many uncertainties. Furthermore, they do 

not distinguish different vehicles types for automated driving, but instead are based on and only allow 

for changing the attributes of the average vehicle. Snelder et al. (2015) for instance adapted the Dutch 

countrywide model LMS, by changing the road capacity and the general value of time parameters.  

This paper presents a macroscopic model to explore the impacts of early forms of automated vehicles 

(level 1, 2 and 3) on mobility. A System Dynamics model (SD-model) is introduced which is based on 

the structure of the ScenarioExplorer (Malone et al., 2001). It combines scenario and transportation 

modelling on an abstract network. The main contribution of this paper is that the existing method is 

extended in such a way that the impact of level 1, 2 and 3 automated vehicles can be modelled on a 

macroscopic level. In contrast to other macroscopic studies  to automated vehicle impacts (Snelder et 

al., 2015; Tetraplan, 2015; Childress et al., 2014; Gucwa, 2014) the SD- model is able to simulate 

different vehicle classes, has a feedback loop from the assignment to the demand and simulates the 

introduction of automated vehicles over time.  

The SD-model is strongly explorative and does not make use of an explicit road network. The goal of 

this model is to capture the most important effects of automated vehicles, but not to model all the 

details. As the structure is simple and the run time is short, the model can be used to assess different 

scenarios. Literature indicates two development paths: an autonomous and a cooperative path. 

Autonomous vehicles only monitor the driving environment, whereas cooperative vehicles also 

communicate with other vehicles or roadside systems. Both development paths are simulated in a case 

study for the Netherlands. The model is validated and can be used for explorative research. 

Section 2 describes the developed SD-model. The case study for the Netherlands is described in 

section 3, just as the results of the simulations. The conclusions are presented in section 4.  
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2 METHOD 

2.1 Scope/expected Impact 

Our model will focus on mixed traffic of level 0, 1, 2 and 3 (SAE International, 2014). Mikalis et al. 

(2015) have created a ripple model in which they link the different levels of SAE to expected impacts 

on both the supply and demand side of the transportation system. In this paper level 1 and 2 are seen 

as a single form of automated vehicles as their expected impacts are similar. Freight transport is 

modelled exogenously. Only the capacity impact of truck automation is taken into account. 

Research of Milakis et al. (2015), Litman (2014) and Snelder et al. (2015) name several effects that 

AVs have on mobility: capacity effects (maximum capacity, shockwaves, capacity drop, network 

effects), an effect on the value of time (for the driver), monetary costs (fuel economy, insurance costs), 

trip length, parking, modal split for freight trips, travel times, congestion, safety and travel time 

reliability. This paper focuses on the impact of changes in capacity, value of time and monetary costs 

on the modal split, time of day choice and travel times. These effects are chosen because they are most 

direct and literature is most explicit about these effects. 

The capacity effect is an outcome of four factors from literature (Snelder et al., 2015; Malone et al., 

2001): a higher capacity of a road stretch, a lower capacity drop, less shockwaves and a better 

distribution of vehicles over the network. The second effect is a lower value of time for AVs than for 

regular vehicles as the driver can do something else while driving. This plays a role in the utility 

functions used in time of day and mode choice. The third effect is that the monetary cost per driven 

kilometer of the vehicle decreases, as automation can lead to a higher energy efficient driving, less 

insurance costs or less maintenance (Snelder et al., 2015; Litman, 2014). 

 

2.2 System dynamic model (SD-model) 

For this explorative phase of forecasting many model runs with different settings are needed, therefore 

an explorative model is favored over a more detailed model. As explained in the introduction 

traditional macroscopic models are complex and detailed, which makes them less suitable to deal with 

uncertainties. In this paper System Dynamics is chosen as method because System Dynamics makes it 

possible to explore many different scenarios which makes this method suitable for dealing with the 

uncertainties automated vehicles bring with them (Pruyt, 2013; Sterman, 2000; Abbas, 1990). System 

Dynamics makes use of causal relationships between elements of a system. By quantifying these 

relations, the behavior of a system over time can be researched (Pruyt, 2013). System Dynamics can 

be applied in a variety of cases, from simple systems like one company to more complicated ones like 

the climate effects of a planet (Meadows et al., 1972; Sterman, 2000). The structure of our model (SD-

model) is based on the ScenarioExplorer (Malone et al., 2001). 

The method is extended in such a way that the impact of level 1, 2 and 3 automated vehicles can be 

modelled endogenously. The Vensim-software is used to implement the model. 

 

2.3 Structure of the SD-model 

The goal of the model is to evaluate the mobility effects of early forms of automated driving in the 

Netherlands from 2013 to 2050. From 2050 onward level 4 is expected to have an impact on most 

roads (Nieuwenhuijsen, 2015). Every time step (one week), the modal split, the number of people 

traveling by car in the peak hours and the travel times of cars on 42 relations are calculated.  

Figure 1 shows the four steps of the model. There are three main elements in the model: mode choice, 

time of day choice and travel time calculation (assignment). Section 2.3.1 to 2.3.3 describe these 

elements in more detail. 
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FIGURE 1  Four steps of the model.  

 

As System Dynamics works with aggregated relations, the model does not make use of an explicit 

network, but models characteristic relations between zones instead. For these relations the model takes 

the demand, supply and feedback between them into account. As feedback the mode choice and time 

of day choice models use the exponentially smoothed travel times of the past half year. This assumes 

that people have habits which gradually change over the past half year. The time step of the model is a 

week.  

The mobility impacts are analyzed in two simulation environments: a ‘Ceteris Paribus environment’ 

and a ‘Real World environment’. In the Ceteris Paribus environment all factors except the introduction 

of automated vehicles stay equal. In the ‘real world environment’ changes in population, car 

ownership, variable costs for the car and public transport, speeds of public transport, the number of 

trucks and the road infrastructure are considered as well. 

 

2.3.1 Mode Choice Model 

The base year of the mode choice model is 2013. Estimation of the choice model is based on data of 

the mobility survey OViN (CBS, 2014). The number of trips will stay constant till 2050 in the ‘Ceteris 

Paribus environment’, and will rise according to PBL forecasts (PBL, 2013) in the ‘real world 

environment’. Six types of areas are distinguished: 1) Large cities in the Randstad1, 2) Satellite towns 

of large cities in the Randstad, 3) Cities in the Randstad, 4) Rural areas of the Randstad, 5) Cities in 

the rest of the Netherlands and 6) Rural areas of the Netherlands. This results in 36 relations of which 

6 relations are split in local traffic (i.e. within cities) and traffic between cities, leading to a total of 42 

relations. The SD-model does not make use of user or age classes, only of car type class (level of 

automation). 

To calculate the number of people travelling with a certain mode a logit model is used (equation 1). 

The utility function is shown in equation 2. The utility functions are calibrated based on OViN data 

(mobility survey in the Netherlands) of 2010-2013. For cars of level 1, 2 and 3 the monetary costs per 

kilometer are expected to be lower than for normal cars (energy efficiency, insurance costs and 

maintenance). For level 3 also the value of time differs. 

 

 

𝑇𝑚,𝑟 = 𝑃𝑟

𝑒𝑉𝑚,𝑟
 

𝑒∑ 𝑉𝑚,𝑟
 ( 1 ) 

𝑉𝑚,𝑟 = −µ𝑚 (𝑇𝑇𝑚,𝑟 ∗ 𝑉𝑜𝑇𝑚 + 𝑉𝑎𝑟𝑚,𝑟 ∗ 𝑑𝑚,𝑟 + 𝐶𝑚,𝑟) ( 2 ) 

 

Where: 

V  = Utility [-] VoT  = Value of time [€/hour] 
µ = Scale factor [1/€] C  = Constant [€] 
TT = Travel time [hour] d  = Distance [km] 
Var = Variable costs [€/km] T  = Trips [#] 

                                                 
1 The Randstad is a Dutch term for the western part of the country. The Randstad has the 

highest population density, all 4 large cities are there and economic activities take place in 

the Randstad. 
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P  = Production [# trips] M  = INDEX MODES 
R  = INDEX RELATION   
 

In the mode choice model the trips are categorized into 4 groups: people who have no car available for 

their trip, people having a regular car available (level 0), people having a level 1 or 2 vehicle available 

and people having a level 3 vehicle available.  The first category (no car) can choose between 

traveling as car passenger, by train, by BTM or by active modes (cycling and walking). The other 

three categories can also choose to travel as a driver of the available vehicle. The distinction of no car 

available is made based upon OViN data, the number of people per SAE-level is based on research of 

Nieuwenhuijsen (2015). In the real world scenario, the percentage of people owning a vehicle differs 

per year. 

For trucks the mode choice and time of day choice are set constant. The number of trucks is 8% of the 

normal traffic in 2013, this assumption is made based on loop detector data on main roads in the 

Netherlands (NDW, 2016). 6% of these trucks drive in the peak hours (NDW, 2016). The number of 

trucks per level of automation is based on the same percentages as for passenger cars. 

 

2.3.2 Time of Day Choice Model 

For the trips made by car, a time of day choice is made with a logit model having two alternatives: 

driving during peak hours and driving outside peak (off-peak). The logit model uses the value of time, 

the travel time in and off-peak and a constant. The constants and travel times are estimated based on 

OViN data from 2010-2013. The value of time can be adapted per level of automation. The utility 

function is shown in equation 3. 

 

𝑉𝑝,𝑟 = −µ (𝑇𝑇𝑝,𝑟 ∗ 𝑉𝑜𝑇 + 𝐶𝑟) ( 3 ) 

 

Where: 

V  = Utility [-] VoT  = Value of time [€/hour] 
µ = Scale factor [1/€] C  = CONSTANT2 [€] 

TT  = TRAVEL TIME 

[HOUR] 
P  = Index period (peak or off-peak) 

r  = Index relation   
 

2.3.3 Assignment - Travel Time Calculation 

For the trips made in the peak hours the travel time is calculated. This is not done via a traditional 

assignment to a network, but by making use of a BPR-function (speed flow relation) as shown in 

equation 4 and 5. This level of detail is appropriate for system dynamics models and is also 

appropriate for long term forecasting with many uncertainties. The results of more detailed micro 

simulations of the impact of automated driving are included as an input to the SD-model on an 

aggregate level as is described below. 

 

𝑆𝑟 =
𝑆0𝑟

1 + 𝛽𝑟 ∗ (𝐼𝐶𝑟)4
 ( 4 ) 

𝐼𝐶𝑟 =  
∑ (𝐼𝑟𝑙 + 𝐻𝐺𝑉𝐼𝑟𝑙 ∗ 𝑃𝐶𝑈) ∗ 𝑃𝐶𝑈𝐴𝑙𝑙

𝐶𝑎𝑝𝑟
∗ 𝑂𝐹 

( 5 ) 

 

  

                                                 
2 For the off-peak trips the value of the constant is zero  
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Where: 

S  = Speed in period p [km/h] Pcu  = Passenger car unit for trucks 

S0 = Free-flow speed [km/h] Pcua  = Passenger car unit for 

automated passenger vehicles 
I  = Flow passenger cars 

[veh/hour] 
𝛽             = Urbanization factor 

Hgvi = Flow trucks [veh/hour] L = Index level of automation         

{l є 0, 1/2, 3} 
Cap = Capacity [veh/hour] Of           = Overlap factor 
P  = Index period (peak or off-

peak) 
R  = Index relation 

 

 

 

This BPR-function is derived from the ScenarioExplorer (Malone et al., 2001). The free flow speed S0 

is derived from nightly trips from OViN. β is taken from the ScenarioExplorer. Per level of automation 

a different PCU factor is used. If automation has a positive effect on capacity this factor has a value 

lower than 1, if it is expected that automation has a negative effect, this factor will be higher than 1. 

For trucks the same PCU values for automation are used. A regular PCU value of 1.8 is used to 

transfer the trucks to passenger cars, this is the same value as the LMS (Dutch national model system) 

uses. 

Literature indicates that (for the cooperative scenario) the PCUA per level is not constant over time, 

but depends on the penetration rate of cooperative vehicles. Figure 2 shows the assumed relation based 

on latter micro simulation (van Arem et al., 2006; Arnaout and Bowling, 2011; Ngoduy et al., 2009) 

studies between the penetration rate and PCUA for the autonomous and cooperative driving scenario. 

PCUA combines two effects: the effects of automated driving (arising from the first car on the road) 

and cooperative effects (arising from a certain threshold and increasing afterwards). This PCU graph 

differs for level 1 & 2 and 3 as for level 3 higher impacts are expected. 

 

 

FIGURE 2  PCUA value for different penetration rate for autonomous and cooperative driving (van 

Arem et al., 2006; Arnaout and Bowling, 2011; Ngoduy et al., 2009; Wilmink et al., 2014). 

The travel time calculated with the BPR-function is fed back to the mode choice and time of day 

choice.  

 

2.4 Validity of the Model 

The validity of the model is tested by performing several tests. Among others the internal validity, the 

structure, extreme values, boundaries and comparisons with ‘classical’ models are made for the real 

world scenario and an automated vehicle scenario. These tests are the most relevant ones from the 

book Business Dynamics of Sterman (Sterman, 2000). The main conclusion over all tests is that the 

model can be used to make explorative forecasts for early forms of AV. 
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3 CASE STUDY THE NETHERLANDS 

The SD-model is applied in a case study for the Netherlands to model the expected impact of 

automated vehicles from 2013 till 2050. Figure 3 shows the allocation of municipalities to the six area 

types. These six types are the same as the ScenarioExplorer uses.  

  

 

FIGURE 3  Map of the Netherlands with 6 area types. 

 

The focus of this paper is on 4 characteristic relations:   

1. Within the 4 large cities in the Randstad (In large cities). The Randstad is a megalopolis in the 

central-western Netherlands consisting primarily of the four largest Dutch cities (Amsterdam, 

Rotterdam, The Hague and Utrecht) and their surrounding areas. The results of this relation are 

easy to interpret as the results cover only 4 cities. 

2. Between a city in the Randstad and the rest of the Randstad (Regional). This relation focuses on 

regional roads. 

3. From the rest of the Netherlands to rest of the Netherlands (Rural). This relation is chosen because 

of its magnitude. At least 40% of all trips are made on this relation. 

4. Between the 4 large cities (Between large cities). This relation is very insightful as it consists of a 

limited amount of motorways, but still has quite some volume. This is also a relation where 

impacts of automated vehicles are expected. 

 

3.1 Penetration Rate Automated Vehicles 

The most important input for the model with respect to AV is the penetration rate of different levels of 

AVs. As explained before the penetration rate of different levels of AVs is highly uncertain. Figure 4 

shows the assumed mix of level 0, 1/2, 3 AV for the years 2013 to 2050 for both scenarios. These 

penetration rates are taken from Nieuwenhuijsen (2015). As far as known to the authors this is the only 

study in which a quantitative model is used to calculate the diffusion of automated vehicles for 

different SAE-levels. His model is underpinned with expert opinions and literature.  

The results of Nieuwenhuijsen (2015) are shifted 10 years in time to compensate for the fact that his 

model presents a too optimistic view for 2015, namely 30% level 2 vehicles, where this appeared to be 

less than 1%. There is enough evidence to trust the curves, but not to trust the starting point. Secondly, 

the model of Nieuwenhuijsen estimates the percentage of automated vehicles owned in the 
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Netherlands and not the percentage of trips made with automated vehicles. Litman (2014) describes 

that in the first 10 years of the lifespan of a vehicle more than double the number of kilometers is 

driven compared to the years thereafter. This effect can lead to a steeper introduction curve. However, 

this effect is not taken into account in our model as this would lead to much more complexity because 

vehicles should be divided in age classes. The forecasts of Nieuwenhuijsen are for passenger cars. We 

use the same introduction graphs for trucks, as there is currently no other literature available. 

 

 

 

FIGURE 4  Percentage of automated vehicles over time in the Netherlands from 2010 till 2050, derived 

from Nieuwenhuisen (2015).  

 

3.2 Assumptions on Capacity, Value of Time and Monetary Costs of Automated 

Vehicles 

Table 1 shows the other model inputs for the autonomous and cooperative scenario. For different 

variables an upper and lower bound is derived from literature. Not only the base case, but also these 

upper and lower bounds are simulated. To do so, 2000 simulation runs are carried out with a uniform 

distribution between the bounds. 

TABLE 1  Model Input for the Autonomous and Cooperative Scenario for the Value of Time, Capacity 

and Fuel economy effects 

Level Relation type Penetration rate Autonomous Cooperative 

   
Base Bandwidth Base Bandwidth 

Value of time 

0 All [0%-100%] 100% - 100% - 

1 and 2 All [0%-100%] 100% - 100% - 

3 In large cities [0%-100%] 100% - 100% - 

3 Rural/regional [0%-100%] 90% 80%-100% 90% 80%-100% 

3 Between large cities [0%-100%] 80% 70%-90% 80% 70%-90% 

       

PCU (Capacity) 

0 All [0%-100%] 1 - 1 - 

1 AND 2 IN LARGE CITIES [0%-100%] 1 1.1 - 0.9 1 1.1 - 0.9 

1 AND 2 RURAL [0%-100%] 1 1.05 - 0.95 1 1.05 - 0.95 

1 AND 2 REGIONAL [0%-100%] 1 1.05 - 0.95 1 1.05 - 0.95 

1 AND 2 Between large cities [0%-40%] 1 1.05 - 0.95 1 - 

1 and 2 Between large cities [40%-100%] 1 1.05 - 0.95 0.95 1.1 - 0.9 

3 In large cities [0%-100%] 0.95 1.1 - 0.9 0.95 1.0 - 0.9 
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3 Rural/regional [0%-40%] 1 1.05 - 0.95 1 - 

3 RURAL/REGIONAL [40%-100%] 1 1.05 - 0.95 0.95 1.0 - 0.9 

3 Between cities [0%-40%] 1 1.05 - 0.95 1 - 

3 Between cities [40%-100%] 1 1.05 - 0.95 0.9 1.0 - 0.7 

       

Fuel Economy 

0 All [0%-100%] 1 - 1 - 

1 AND 2 ALL [0%-40%] 0.95 - 0.95 - 

1 AND 2 ALL [40%-100%] 0.95 - 0.85 - 

3 In large cities [0%-100%] 0.95 - 0.95 - 

3 Rural/regional [0%-40%] 0.95 - 0.95 - 

3 Rural/regional [40%-100%] 0.95 - 0.85 - 

3 Between large cities [0%-40%] 0.95 - 0.95 - 

3 Between large cities [40%-100%] 0.95 - 0.85 - 
- = no bandwidth (i.e. not included in sensitivity analyses) 

Table 2 summarizes the changes in the ‘real world environment’. In the Ceteris Paribus environment 

these factors are not taken into account. 

 

TABLE 2  Model Input for the Real World Scenario 

Input Change per year Source 

   
Population growth Between 0.1% and 0.4% PBL (2013) 
More car ownership 0.2 %-point extra cars available LMS assumption (Ministerie van 

Infrastructuur en Milieu, 2015) Higher PT costs /km 0.5% extra €/km 
Decrease car costs / km 0.7% less €/km 
More trucks 1.4% extra trucks 
Faster trains 0.3 minutes 

(between 2017 and 2030) 
Program High Frequency Rail 

(Mansveld, 2014) 
Extra road capacity Between 0.8% and 1.3% extra Assumed based upon highway 

expansion between 2014-2017 

(Rijksoverheid, 2015) 
 

3.3 Results Ceteris Paribus Environment 

Figure 5 shows the expected impact of AV for the autonomous (A) and cooperative (C) scenario in the 

Ceteris Paribus. The blue line indicates the expected changes over time (base case). The uncertainty 

bandwidths are indicated in grey. Note that the Y-axis has different scales. As in large cities (relation 

1) no cooperative functions are simulated the autonomous and cooperative scenario are the same. 
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FIGURE 5  Simulations of the 4 relations in the Ceteris Paribus for the cooperative and autonomous 

scenario. A larger version of the figure is shown in the appendix. 

In general, it can be expected that the number of trips by car increases due to the reduction in value of 

time. As a result, the level of congestion increases, which has a small damping effect on the increase 

of car traffic. In most scenarios, a lower PCUA value (i.e. increase of capacity) is assumed which 

reduces the level of congestion which again attracts car traffic (changes in modes and departure time). 

The opposite effect happens when a PCUA value higher than 1 is chosen. This explains why the 

impact of AV on the number of car trips, the average speed for cars and the level of congestion can 

both be positive and negative. 

In large cities (relation 1), the number of car trips increases with 1% up to 2050 in both scenarios. The 

average car speed increases as well with 1% and the total delay decreases with 3% in the base case. 

However, the uncertainty bandwidth is quite large in large cities. There is a large probability that the 

average speeds decrease instead of increase. Similarly, the total delay may be 40% higher or 20% 

lower compared to the base case. 

On regional relations (relation 2), the number of car trips is expected to increase with respectively 1% 

and 2% up to 2050 in the autonomous and cooperative scenario. In the autonomous scenario, the level 

of congestions (total delay) is expected to increase with 2% with a reduction of 1% in average car 

speed as a result. In the cooperative scenario the level of congestion is expected to decrease with 2%, 

which results in a very small increase of average car speeds (stays nearly the same). In this case the 

uncertainty bandwidths are smaller and more or less equally positively and negatively spread. This is a 

consequence of the assumptions made. 

On rural relations (relation 3), the number of car trips is also expected to increase with respectively 1% 

and 2% up to 2050 in the autonomous and cooperative scenario. In the autonomous scenario, the level 

of congestions (total delay) is expected to increase with 1% whereas in the cooperative scenario the 

total delay is expected to decrease with 3%. The average speed stays more or less the same in both 

scenarios. This is explained by the fact that the level of congestion on rural roads is quite low. 

Therefore, small changes don’t have an impact on the average speed. In this case the uncertainty 

bandwidths indicate that the probability on lower speeds compared to the base case is larger than the 

probability of higher speeds.  
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Finally, between large cities (relation 4) respectively 6% and 9% extra car trips are expected in the 

autonomous and cooperative scenario. The level of congestion is expected to increase with 12% and 

4% respectively. In the autonomous case this can be explained by an increased number of cars on the 

road, but few capacity benefits. In the cooperative case, the capacity increases, but due the large 

increase in number of trips, there is more congestion expected. The average speeds are expected to 

reduce with 3% and 1%. In the autonomous scenario the uncertainty bandwidths are small and more or 

less equally positive and negative biased. In the cooperative scenario there is a large probability that 

the effect will be more positive.   
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3.4 Results Real World Environment 

Figure 6 shows the results of the simulations between large cities (relation 4). Only the base case 

simulations are shown (no uncertainty bandwidths). 

 

 

FIGURE 6  Results of simulations for the real world environment – a) average speed of a car trips in peak 

hours; b) total travel time delay cars (VoT corrected); c) relative growth in trips related to 2013. 

 

The same effects which can be seen from the Ceteris Paribus environment can be seen here. In the 

case of autonomous vehicles the car becomes more attractive (less costs and lower value of time) 

which results in an increase of car trips. As autonomous vehicles have few capacity benefits the 

average speed is lower than without the technology. The total delay also increases. In contrast with the 

Ceteris Paribus environment, in the cooperative scenario the extra car trips made do not lead to a 

longer delay because of the capacity benefits. In 2021 the 40% threshold is reached and it can be seen 

that the extra cooperative benefits start. From this point the cooperative and autonomous simulations 

show differences. 
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4 CONCLUSIONS AND RECOMMENDATIONS  

 

4.1 Expected Effects of Automated Vehicles 

Simulations with the SD-model show that the introduction of automated vehicles is expected to cause 

an increase in car trips in both the autonomous and cooperative development path. The level of 

congestion is expected to increase on some trip types. For the motorways this increase in congestion is 

the most severe although the uncertainty bandwidths indicate that there is a probability that the level of 

congestion on motorways might decrease instead of increase. In the cooperative scenario the increase 

in number of trips is larger than in the autonomous scenario. Furthermore, the average speeds are 

higher in the cooperative scenario and there is less congestion compared to the autonomous scenario. 

If distribution effects are considered as well, it can be expected that automated vehicles cause an 

increase in trip lengths and therewith an increase vehicle kilometers travelled, because travel time is 

valued less negative and the cost per kilometer are lower. This might result in an additional increase in 

the level of congestion. 

 

4.2 Policy Implications 

The simulations show that automated vehicles do not inherently lead to less congestion. In all 

scenarios the number of trips by car increases and in most autonomous scenarios and some in 

cooperative scenarios the congestion increases as well. From a societal point of view, the government 

should invest in the cooperative path, as this brings most societal benefits with it. 

The focus of this paper was on regular congestion. It should be noted that AVs are expected to reduce 

incident risks and therewith irregular congestion caused by incidents. This results in travel time and 

travel time reliability benefits. It is recommended to analyze the implications of AV on irregular 

congestion in more detail. 

 

4.3 The Method – Further Research 

The tests and simulations with the SD-model show that this model can be used for explorative 

research. The model can help researchers and policy makers to get a grip on the effects that automated 

vehicles have on different trip choices. The main advantages of the method compared to traditional 

models are that the method is quick, adaptable, explorative and automated vehicles are modelled 

endogenous. Next to this there is a constant feedback loop from the assignment to the demand and the 

total introduction path can be simulated over time. Where traditional models show a ‘picture’ of 

automated vehicles, the SD-model provides a forecast in the form of a ‘movie’.  

Still, the model needs improvements to be able to answer all policy questions. At this moment, not all 

effects of automated vehicle can be simulated with the model and the model is not detailed enough to 

draw conclusions upon all levels. An important improvement would be to consider distribution effects 

in the model; however, this is not straightforward in a system dynamic approach. Furthermore, it is 

recommended to extend the model with travel time reliability and robustness (irregular congestion and 

safety). In next versions ride sharing or road pricing can also be incorporated in the model.  
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