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Abstract
A commonly used method for the determination of aerodynamic forces is through the
integration of the surface pressure distribution over an object. The accuracy of this
approach is limited by the ability of discrete measurements to approximate a continu-
ous surface pressure distribution and thus typically requires a large number of surface
pressure transducers to be used. This increases complexity, cost, weight, measure-
ment latency and requires physical access all over the object. Reducing the required
number of sensors might be desired in general however is especially useful for prac-
tical applications outside of the controlled environment of a wind tunnel.

When prior knowledge of a system is available in the form of ’training data’, a modal de-
composition method; Proper Orthogonal Decomposition (POD), can be used to iden-
tify patterns in the data that optimally characterize the behaviour of the system in a
low-dimensional representation. By placing sparse surface pressure sensors such
that only the most dominant features are sampled, full state surface pressure dis-
tributions can be reconstructed using an extension to the POD named Gappy POD
(GPOD). The aim of this thesis is to assess the viability of using Gappy POD for the
reconstruction of sparsely sampled experimental surface pressure distributions and
obtain drag estimates on a typical bluff body being a square cylinder at varying angle
of attack.

Training data has been obtained experimentally in the form of surface pressure mea-
surements around the square cylinder perimeter using 32 pressure taps. This number
of taps was found to be sufficient for accurate determination of the drag by comparison
with force balance measurements. POD analysis of the pressure distributions decom-
poses the data into orthogonal modes ordered in terms of their energetic ’relevance’
in representing the data at all angles of attack. The dominant modes are used in com-
bination with a QR factorization including column pivoting algorithm (QR-CP) for the
identification of optimal sparse sensor locations, suited for sparse surface pressure
reconstructions.

Sparse surface pressure measurements on the optimal sensor locations are used to
reconstruct pressure distributions outside of the training. Using GPOD, pressure dis-
tributions with up to 85% of their data missing (5 out of 32 taps remaining) are able to
be reconstructed with a Root Mean Squared Error in the order of 10−2 in the pressure
coefficient (Cp) and corresponding drag coefficients (CD) reach the same level of ac-
curacy. In an attempt to reduce the reliance on wind tunnel measurements, uRANS
simulations of the same square cylinder in settings similar to the wind tunnel cam-
paign are performed and used for the determination of optimal sensor placement and
training data. Experimental training data in combination with sensor locations deter-
mined through application of QR-CP on uRANS results shows the potential for sparse
reconstructions with the same level of accuracy as mentioned before and greatly out-
performs reconstructions based on ’non-tailored’ sensor layouts. Additionally using
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uRANS results as the basis for training eliminates the need for prior windtunnel cam-
paigns and allows for direct reconstructions based on sparse measurements only.
Unfortunately, uRANS simulations were not found to be accurate enough to provide
training data for reconstructions as simple linear interpolation based on the sparse
measurements was found to yield better results for a majority of the angle of attack
range.

Overall, GPOD based on sparse surface pressure measurements on a bluff body is
capable of producing accurate reconstructions and drag predictions with a reduced
number sensors. The greedy QR-CP algorithm consistently provides sensor locations
suited for reconstructions on a tailored basis while avoiding an unfeasible combinato-
rial sensor layout search. QR sensors based on CFD results are viable as an initial
guess for experimental sensor placement but could not be shown to consistently pro-
vide reconstructions better than experimentally determined sensor layouts. Avoiding
the need for experimental training through CFD simulations shows potential but was
limited by the inaccuracy of the RANS simulations in the sparse GPOD reconstruc-
tions.
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1
Introduction

Identification of aerodynamic parameters for an object of interest is important from a
structural, control and overall aerodynamic efficiency point of view. Extensive wind
tunnel testing campaigns are dedicated to providing insights into aerodynamic param-
eters such as the experienced loads under varying conditions. A commonly used
method for the determination of both steady and unsteady aerodynamic loads is to
measure the surface pressure distribution around an object, which additionally pro-
vides valuable insight into the behaviour of the flow (e.g. transition/separation). Mea-
suring surface pressure for aerodynamic load determination is viable by its very prin-
ciple but in practice limited in accuracy by the ability to approximate a continuous
pressure distribution through discrete measurements (He and Williams, 2022). Typi-
cally, installing a large number of pressure sensors/taps is required which increases
the experimental setup complexity, cost, measurement latency and weight (see Fig-
ure 1.1). This hinders the feasibility of the measurement technique for use outside of
a wind tunnel and especially for objects with limited physical access and strict size,
weight or cost requirements, such as small UAV’s.

Figure 1.1: Surface pressure measurements by means of pressure taps and tubing connected to
transducers/scanners on a building section (left) and cone shaped model (right). Instrumenting the
models requires meticulous model preparation and space for the tubing and equipment in or outside

of the model. Left figure courtesy of CPP (2022), right figure CSIR-NAL (2022).

Inspiration to overcome the requirement of collecting vast amounts of measurements
for determination of aerodynamic parameters often originates from observations in
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nature. Birds, fish and insects are able to harness complex fluid phenomena to opti-
mize their thrust, lift or drag accordingly despite their limited computational resources
and sparsely distributed noisy sensors (see Figure 1.2). According to Bright et al.
(2013) this implies the existence of low-dimensional but informative structures in flow
fields which can be sampled sparsely instead to determine the state of a system.
Mohren et al. (2018) build upon this idea with neural-inspired sensors for efficient
flow classification and Iacobello et al. (2022) use a data-driven approach for the de-
termination of unsteady loads using sparse surface pressure measurements. Data-
driven approaches rely on prior training datasets for the identification of underlying low-
dimensional structures to be encoded into a reduced order representation or model
(ROM).

Figure 1.2: Campaniform sensilla (effectively strain sensor) distributions on the wings of different
insect species, indicated by dots. Sensor distributions are mathematically sparse but provide

mechanosensory feedback for robust flight control through nonarbitrary placement. Adapted from
Aiello et al. (2021).

Fortunately, many seemingly complex signals or systems indeed show a data com-
pressible nature in some appropriate coordinate system or basis (Manohar et al.,
2018). When information about a system is known in the form of training data, the
problem of identifying a suited set of bases for a low-dimensional representation is
known as sparse sensing (Kutz et al., 2016). This often involves the use of modal
decomposition methods as described by Taira et al. (2017), amongst which is the
Proper Orthogonal Decomposition (POD). The POD was introduced to the field of
fluid dynamics by Lumley (1967). It is a popular data analysis and reduced order mod-
elling technique because of its ability to decompose an ensemble of data ’snapshots’
into modes which can be used for the identification of coherent structures. Also, the
orthogonality and energetic ranking of the modes allows for a truncated set of modes
to approximate data optimally in the L2-norm (Chatterjee, 2000).

The ability of POD to provide an efficient ’library’ of modes trained for a specific appli-
cation also finds use in reconstructing full state approximations from sparse measure-
ments instead. This procedure is known as Gappy POD (GPOD) and was introduced
by Everson and Sirovich (1995) for the reconstruction of marred or gappy human face
images. GPOD has successfully been used for reconstructing complete flowfields and
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surface pressure distributions with only sparse surface pressure measurements avail-
able as illustrated in Bui-Thanh et al. (2004) andWillcox (2006). In the work byWillcox,
unsteady airfoil pressure distributions are reconstructed meaning that the parameter
space consists of time. GPOD can however be applied in any other parameter space
as long as suitable training is provided. Mifsud et al. (2019) reconstruct complete
surface pressure distributions around a three-dimensional wing-body aircraft config-
uration at multiple angles of attack from sparse surface pressure measurements on
the wing alone. POD, in combination with its gappy extension, is therefore demon-
strated to be a viable method for the determination of full state pressure distributions
and aerodynamic forces based on sparse surface pressure measurements instead.
This has the potential to reduce the required number of physical sensors at the cost
of a one-time high resolution training dataset to be generated prior, either using CFD
or experiments. Many research papers making use of GPOD in this context however
tend to test the potential of GPOD on aerodynamic bodies within parameter spaces
characterized by predictable fluid behaviour, such as linear aerodynamics. Also, with
only sparse sensors being used to characterize a full state pressure distribution, op-
timal positioning of the sensors is critical. This was realized already by Cohen et al.
(2003) for the reconstruction of flowfields around a cylinder but is often not considered
in later experiments, such as by Mifsud et al., despite the possibility of providing more
robust reconstructions with fewer sensors (Manohar et al., 2018). Therefore, sensor
placement is considered in combination with GPOD on a bluff-body with the following
objective:

”To assess the viability of using Gappy Proper Orthogonal Decomposition as a
method to obtain surface pressure distributions and drag estimates based on

experimentally obtained sparse surface pressure measurements on a 2D
square cylinder”

The steps undertaken to reach the objective are described in this thesis report. The
structure of the report is as follows: In Chapter 2 related research topics will be briefly
discussed and a theoretical background will be provided. The core of the thesis fo-
cuses on the combination of POD, GPOD and a sensor placement algorithm for which
mathematical descriptions are provided and a basic sparse reconstruction example as
illustration. This chapter concludes with a description of typical square cylinder flow
characteristics and flow topology. Chapter 3 contains a description of the experimental
setup and procedures. The setup includes the square cylinder model, the measure-
ment equipment and external support structures. Data acquisition procedures include
a summary of the test matrix, parameters used for the force balance and surface pres-
sure measurement equipment and a short description of calibration and correction
procedures. A numerical counterpart to the experimental measurement campaign is
setup as well and its results are discussed in Chapter 4. The underlying goal of this
chapter is to eventually provide a source of training data without the requirement of a
wind tunnel. All results based on the experimental measurements from the wind tunnel
campaign are presented in Chapter 5. GPOD is applied on sparse experimental sur-
face pressure measurements with purely experimental training data and in two steps
CFD results are introduced into the procedure to decrease the reliance on wind tunnel
measurements. Finally in Chapter 6, the conclusions which can be drawn from the
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results obtained in Chapter 5 are stated and recommendations to improve or extend
upon the work are provided.



2
Literature and theoretical background

In the following chapter, several topics related to the mathematical and experimental
background of predicting drag and surface pressure using sparse measurements will
be discussed. Some attempts described in literature are described first which high-
lights the connection with reduced order modeling and sparse sampling of which some
applications and useful mathematical frameworks will therefore be discussed in more
detail as well. A practical yet simple object for a sparse drag determination procedure
to be demonstrated on experimentally is found in a square cylinder. Square cylinder
flow is described extensively throughout literature of which a summarized version is
provided at the end of this chapter

2.1. Sparse surface pressure and drag correlation
Relating the variation of aerodynamic loads to fluctuations in the measured surface
pressure seems like a logical approach, especially for pressure drag dominated ob-
jects known as bluff bodies. By its very principle, integration of the spatial pressure
distribution on a bluff body yields a close approximation of the net forces acting on
an object (He and Williams, 2022). The accuracy of this approach in practice is often
limited by the finite number of pressure sensors available; however even using sparse
surface pressure measurements a ’signature’ of the pressure distribution remains. An
attempt to exploit this signature with the goal of identifying its correlation with spatio-
temporal aerodynamic loads is described in the work by Burelle et al. (2020). In their
work, a non-slender delta wing equipped with sparsely distributed pressure sensors
is used for simultaneous measurements of the surface pressure and aerodynamic
forces under the effect of gusts. These measurements allow for the determination of
pressure port specific coefficients to be used in a linear combination of pressure mea-
surements which approximate the desired aerodynamic loads. A graphical summary
of the method is provided by Burelle et al. which is shown below in Figure 2.1.

5
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Figure 2.1: Linear regression approach towards the reconstruction of loads from sparse surface
pressure measurements Burelle et al. (2020)

In the model shown above, the temporal variation of the aerodynamic loads is ac-
counted for in the pressure measurements. The coefficients therefore represent the
spatial aspect of the chosen sensor distribution and can be used to identify critical re-
gions on the body through their relative magnitude. This relatively simple model was
used to provide sets of coefficients suited for drag determination at α = 10°, 20°, 30°
and across these angles of attack. At a low angle of attack (10° in this case), the delta
wing drag is expected to not be dominated by normal pressure components which
is confirmed by overall poor drag predictions which highlights an obvious limitation of
pressure based drag determination. At α = 20° and 30° especially, drag determination
accuracy increases with Root Mean Squared Errors (RMSE) in the order of 2% of the
actual drag coefficients and R2 values above 0.8 for the angle specific models. Aggre-
gate models usable across the angles of attack instead showed reduced accuracy as
would be expected however remained remarkably capable of determining qualitative
drag while serving as a more robust model.

With their work, Burelle et al. fundamentally test the possibility of measuring pressure
signatures tied to the experienced loads using sparse sensors. The linear regres-
sion approach is a relatively simple model and as no particular reasoning behind the
used sensor locations is provided, the model might not be optimal for the desired
purpose meaning similar drag prediction accuracy could be possible using fewer sen-
sors. Another paper by Liu et al. (2021), describing their findings when correlating
surface pressure and drag of an Ahmed body including active flow control, incorpo-
rates the expected importance of the pressure sensor locations for a more efficient
model. Despite the more specific application oriented research of Liu et al. compared
to Burelle et al., both use a linear regression approach to obtain drag in terms of a
linear combination of constant coefficients and varying pressure measurements. Liu
et al. sequentially add or remove a predictor variable (pressure sensor) based on its
statistical significance in predicting variations in the drag. Despite 19 pressure sen-
sors being available on the backside of the Ahmed body, this approach showed that
only two of those are sufficient to accurately predict variations in the drag. This shows
how a more efficient and less complex model can be obtained by considering sensor
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locations, something which will be discussed in more detail later.

2.2. Modal decomposition
The regression model approaches used in the above mentioned research are data-
driven in the sense that useful patterns are recognized in the drag variation from pro-
vided data only without additional input or user knowledge. As mentioned by Burelle
et al. however, generic sensor locations in combination with the model might lead to
undesired correlation between measurements. Especially with the aim of increasing
sparsity in the drag determination, this might yield a sub-optimal model not focused on
measuring the most relevant features of the pressure distribution. Instead, a model
based on a set of orthogonal bases might be better suited to capture dominant fea-
tures of a system and provide more informative sensor locations, possibly reducing
the number of required sensors. The benefits of using such orthogonal bases derived
from the data become clear and physically interpretable in a 2D case example which
will be provided following the explanation by Weiss (2019).

1 0 1
x1

1

0

1
x 2

v1
v2
Data

Figure 2.2: Data points and direction of
eigenvectors

Say a variable is measured through time at two
locations (e.g. velocities within a wake or pres-
sures on an airfoil surface similar to Burelle et al.).
The measurements at location 1 can be denoted
x1 and at location 2 x2. Assuming the temporal
mean is removed, the data can be visualized in
a 2D plot as shown in Figure 2.2 and stored in
X ∈ Rm×2,m being the number of times x1 and x2
are measured. Generally, the shape of an ellipse
emerges meaning that the measurements of x1
and x2 are correlated. This correlation can be pre-
sented in the form of covariance matrix C ∈ R2×2:

C =
1

m− 1
XTX (2.1)

C is symmetric with diagonal elements being the
variance of x1 and x2 and the off-diagonal elements being the covariance between x1
and x2. The variances in C are measured along the ’natural axes’ being the shown
horizontal and vertical axes for the variance of x1 and x2 respectively, these natural
axes thus serve as modes of variation. This choice of modes is arbitrary, however
maximum variance is obtained along the major axis of the ellipse and all remaining
variance can be accounted for along the minor axis of the ellipse. The eigenvector
corresponding to the largest eigenvalue of C can be shown to point in the direction of
maximum variance, therefore in the direction of the major axis. Since C is symmetric,
its eigenvectors are orthogonal, as are the principle axes of the ellipse. The second
eigenvector of C thus points in the direction of the minor axis. The eigenvectors v1

and v2 of C are included in Figure 2.2 and clearly point in the expected directions. C
can be diagonalized as follows:
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C = V ΛV −1 = V ΛV T =

[
v11 v12
v21 v22

] [
λ1 0
0 λ2

] [
v11 v21
v12 v22

]
(2.2)

with corresponding eigenvalues λ. The data inX can be projected onto the eigenvec-
tors as:

X ′ = XV (2.3)

It can be shown that the covariance matrix of X ′ will be Λ. This shows how for the
projected data, correlation between x1 and x2 is not given by their covariance as Λ is
diagonal but instead is implicit in the directions of the eigenvectors. Also, the eigen-
values can be seen to measure the variance along these eigenvector directions. Note
that Equation 2.2 corresponds to an eigendecomposition which provides the desired
set of orthogonal bases and the corresponding eigenvalues, often ranked in order of
magnitude.

The orthogonality and ranking of the modes allows for efficient data decomposition for
identification of dominant features. It is therefore not surprising that the eigendecom-
position is used extensively as the underlying framework for data analysis through-
out various modal decomposition methods such as the Singular Value Decomposition
(SVD) and related Proper Orthogonal Decomposition (POD), all discussed in Taira
et al. (2017) for fluid dynamics related use. The POD was first introduced into the field
of fluid dynamics by Lumley (1967) and is very similar to the eigendecomposition of the
covariance matrix as discussed. The original idea was to decompose fluid flows into
orthogonal modes and coefficients, each mode linked to a coherent structure which
can serve as a useful tool in the analysis of data. Berkooz et al. (1993) describes the
use of POD and its properties for turbulent flows in general. Mohammed-Taifour and
Weiss (2016) performed POD analysis on a more specific case; the identification of
dominant characteristics of unsteady turbulent separation bubbles (TSB), for which
PIV measurements were used. A schematic of their experimental setup together with
the first found POD mode of the horizontal velocity component is shown in Figure 2.3.
The high modal activity region in the first mode identifies the extent of the turbulent
separation bubble. POD modes visualize correlation within the flow, mode 1 therefore
illustrates the global fluctuation of the complete TSB.

Figure 2.3: Experimental setup used by Mohammed-Taifour and Weiss (2016) (left) and first mode of
the horizontal velocity component (right) identifying correlation in the flow. Figures adapted from

Weiss (2019)
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2.3. Snapshot POD
The snapshot POD is a variation on the direct POD introduced by Sirovich (1987)
which is especially suited for datasets that are much larger in the number of data-
points n compared to the number of instants these datapoints are measuredm. Such
datasets for which n≫ m are commonly encountered in the field of fluid dynamics in
the form of PIV measurements or CFD simulation results for example and often cap-
ture the state of a system at distinct time instants, as if snapshots were taken of the
flow. The theory required to understand and implement the snapshot POD method
will be explained below following the information provided by Weiss (2019) and Brun-
ton and Kutz (2019). Similar to the tutorial by Weiss, the theory will be explained by
assuming a dataset in the form of PIV measurements throughout time; however could
also be applied to datasets of different origin, even when not sampled throughout time
(Bui-Thanh et al., 2004) which will actually be the focus in the remainder of this report.

Let’s assume PIV measurements are taken on a two-dimensional domain with a reso-
lution of nx × ny. Each PIV ’snapshot’ therefore contains nx × ny = n measurements
of the velocity which can be ordered in a row vector u ∈ R1×n. In total m of such
snapshots are taken throughout time which can be stacked vertically to form matrix
U ∈ Rm×n. The temporal mean over all snapshots is assumed to be subtracted from
each individual snapshot in the construction of U , although this is not strictly required.
The goal of the snapshot POD is to represent every snapshot u stored inU as a linear
combination of temporal coefficients a(t) and spatial modes Φk(x) such that:

u(x, t) =
m∑
k=1

ak(t)(Φk(x))
T (2.4)

When such a decomposition is found for all m snapshots of u, the coefficients a(t)
can be stored in A ∈ Rm×m and the corresponding modes in Φ ∈ Rn×m such that
Equation 2.4 can be represented in matrix form:

U = AΦT (2.5)

With:

A =

 a1(t1) · · · am(t1)
... . . . ...

a1(tm) · · · am(tm)

 , Φ =
[
Φ1(x) · · · Φm(x)

]
=

 ϕ1(x1) · · · ϕm(x1)
... . . . ...

ϕ1(xn) · · · ϕm(xn)


(2.6)

Obtaining the above shown matrices for this decomposition starts by computing the
covariance matrix C as:

C =
1

m− 1
UUT (2.7)

SinceU has dimensionm×n, matrixC ∈ Rm×m. Note that the matrix multiplication of
U with its transpose results in C being symmetric. Eigenvalues λk of this symmetric
matrix C are real, distinct and can be ordered in descending order. Since the original



10 Chapter 2. Literature and theoretical background

data in matrixU was of unit m s−1 it follows that the eigenvalues of matrixC have units
m2 s−2. Ordering the found eigenvalues in descending order therefore maximizes the
kinetic energy content captured by the first K (1 ≤ K ≤ m) eigenvalues. The P in
POD thus refers to proper or optimal capture of the dataset’s energy content within
the first K eigenvalues and modes.

When ordered following their corresponding eigenvalues, the eigenvectors vk of C to-
gether are denoted by the aforementioned matrixA. Since all eigenvalues are distinct,
the eigenvectors or columns in A are orthogonal and even orthonormal. The spatial
modes in Φ, also referred to as the POD modes or POD bases can be obtained by
projecting the data in U onto the eigenvectors in A as shown below:

A =
[
v1 · · · vm

]
, Φ = UTA (2.8)

At this point, the POD modes in Φ are orthogonal and the desired decomposition of
the dataset in the form of Equation 2.5 has been realized:

Φ = UTA −→ UT = ΦA−1 = ΦAT −→ U = AΦT using A−1 = AT (2.9)

Different from the direct POD method however, A is orthonormal while Φ is only or-
thogonal in its columns. For both the temporal coefficients and orthogonal modes
obtained using the snapshot POD to match the direct POD (signs might be reversed),
the columns of Φ should be orthonormalized instead and A scaled accordingly:

Φ =
[

Φ1

||Φ1|| · · · Φm

||Φm||

]
−→ A = UΦ (2.10)

Throughout literature, the terms orthogonality and orthonormality are often used in-
distinguishably however the orthonormality (and hence also orthogonality) of the spa-
tial bases/columns in Φ is what is referred to by the O in POD. Through the scal-
ing of A, it loses its orthonormality however the columns keep orthogonality since
ATA = (m− 1)Λ with:

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λm

 (2.11)

On top of being able to recognize coherent structures in the spatial distribution of the
POD modes, the power of the proper orthogonal decomposition lies in the ability to
construct energy optimal lower rank approximations using the obtained coefficients
and bases. Instead of using all m coefficients and modes in reproducing u at a spe-
cific time instant as shown in Equation 2.4, selecting instead K < m to capture the
desired amount of energy can be used to approximate the snapshot u instead. Such
a lower rank approximation will be referred to as a POD projection at rank K and can
be denoted as follows for a single snapshot- and full dataset lower rank projection
respectively:
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u(x, t) ≈
K∑
k=1

ak(t)(Φk(x))
T , U ≈ A1:K(Φ1:K)

T with 1 ≤ K ≤ m (2.12)

The notationX1:K means that only a subset of the columns, being column 1 up to and
includingK, are used in the matrix multiplications. The steps in Equation 2.10 are not
strictly necessary as projections with or without these actions performed yield identical
results. Note that the optimality of the POD bases translates into a POD projection
providing the best approximation of u in a least squares sense for a given value of K.

A fluidmechanics applicationmaking use of the energy optimality of PODprojections is
described by Wang et al. (2015). In their work, Wang et al. propose a POD based out-
lier correction (POD-OC) but also detection method for PIV images. Their method was
implemented and evaluated by Higham et al. (2016) through application on channel
flow and isotropic flow cases from the John Hopkins Turbulence Database (JHTDB)
by including artificial outliers. Some of the results are shown in Figure 2.4.

Figure 2.4: POD based outlier detection for PIV (Wang et al., 2015) applied to channel flow (top) and
isotropic flow (bottom). From left to right: original longitudinal velocity field, velocity field including 5%

synthetic outliers and POD outlier corrected velocity field. Adapted from Higham et al. (2016)

The method relies on the assumption that outliers end up in the higher order modes of
a Proper Orthogonal Decomposition, something which appears reasonable to expect
as a result of the incoherent nature of outliers. The detection of outliers is then per-
formed by comparing flow snapshots to low-order projections and computing statistics
of the differences observed. Detected outliers can subsequently be replaced by such
lower rank projections to retrieve an approximation of the original flowfield. Using
POD thus enables information of the complete datasets to be used in the correction
of outliers unlike methods such as linear, bi-linear or spline interpolation that rely on
local information only.

http://turbulence.pha.jhu.edu/#:~:text=Johns%20Hopkins%20Turbulence%20Databases%20(JHTDB)&text=This%20website%20is%20a%20portal,stored%20in%20small%203D%20subcubes.
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2.4. POD for sparse sensing using tailored bases
The energy optimality of the POD modes allows POD projections as in Equation 2.12
to efficiently represent complex systems in reduced dimensions. This inherently as-
sumes the existence of such a lower dimensional representation and raises the ques-
tion if such ’compressible signals’ are actually common. For the research presented
by Burelle et al. and Liu et al., compressibility in the surface pressure distribution,
referred to as the ’pressure signature’, seems to have been found for their specific
applications in the context of drag determination. Observations in nature of animals
such as birds and insects harnessing complex unsteady fluid phenomena despite their
limited sensory capabilities and ’computational resources’ led to the conjecture of the
existence of low-dimensional structures capable of being sparsely measured by Bright
et al. (2013). Manohar et al. (2018) illustrates the highly compressible nature of many
audio signals and images using an image compression example as shown below in
Figure 2.5

Figure 2.5: Fourier image compression, adapted from Manohar et al. (2018)

The image compression example is performed using the 2D Fourier transform. As can
be seen, neglecting 95% of the smallest Fourier coefficients before inverse Fourier
transforming does not significantly affect image quality while reducing the required
memory. The Fourier modes are a universal basis in the sense that many natural
images have a sparse representation in them (this is the working principle for JPEG
compression). This is useful for the compression or reconstruction of datasets with un-
known contents. For more specific applications however where the dataset’s contents
is known (e.g. pressure distributions or PIV images of an airfoil) the POD provides a
’tailored’ set of basis instead, capturing the dominant features of the specific use case
(Manohar et al., 2018).

POD modes and coefficients can thus effectively be ’trained’ to contain information for
a specific use case. This is often used in combination with Garlerkin projection (Quar-
teroni and Rozza, 2014) for example where high-dimensional systems are projected
onto a low-dimensional subspace identified by POD. This high dimensional system
could be in the form of non-linear partial differential equations such as the Navier-
Stokes equations used for POD-Galerkin projection in Lorenzi et al. (2016). In this
paper, both laminar and turbulent cavity flow are simulated using an expensive Full
Order Model (FOM, pimpleFoam) and using a POD-Galerkin projection obtained Re-
duced Order Model (ROM). Lorenzi et al. compare instantaneous results of the ROM
to the FOM but also compare the steady state solution of the laminar ROM case to the
benchmark cavity flow results by Botella and Peyret (1998). The steady state vorticity
distributions for this comparison are shown in Figure 2.6 where it can clearly be seen
that the POD based ROM is in almost perfect agreement with results from literature.



2.4. POD for sparse sensing using tailored bases 13

Note that the online procedure of the ROM simulation (actual computation of the so-
lution) took only 5 s to simulate 100 s of cavity flow while the FOM would require 2590
cpu-hours for the same.

Figure 2.6: Steady state solution of laminar lid driven cavity flow obtained by Lorenzi et al. (2016)
using POD-Garlerkin ROM (left) and benchmark solution from Botella and Peyret (1998) (right)

Both the Fourier image example and POD-Galerkin projection use the bases to rep-
resent full-state information sparsely. This is however exactly the opposite of what
is aimed for when approximating for example the drag coefficient or pressure distri-
bution using only a small number of pressure sensors; instead of compressing data
into a sparse representation using generic or tailored bases, the goal is to sparsely
sample a signal and infer an approximation of the full-state. When it is known what
type of full-state is being approximated, this inversion of the compression paradigm
(Manohar et al., 2018) can leverage information obtained from training data stored in
a set of tailored bases, something the POD is able to provide given said training data
is appropriate.

This idea of using tailored POD bases, obtained through training, to reconstruct a data
set from only sparse measurements of the data set has been successfully tested first
by Everson and Sirovich (1995). In their paper named the ”Karhunen-Loève (KL) pro-
cedure for gappy data” (KL being another name under which POD is known), a set
of images containing human faces was used as training data. The orthogonal modes
produced by the POD procedure were called eigenfaces due to their link with eigen-
vectors/values and clear resemblance to human faces as can be seen in Figure 2.7.
The method used by Everson and Sirovich was later referred to as ’gappy POD’ and
is described in more detail in the following Section
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Figure 2.7: Example eigenfaces obtained from application of POD procedure to Yale database, figure
adapted from Brunton and Kutz (2019).

2.5. Gappy POD
Instead of obtaining reduced order representations of data using proper orthogonal
decomposition, Everson and Sirovich (1995) inverted the usual POD application and
described a procedure of using a tailored set of POD bases (eigenfaces) to restore
marred or ’gappy’ snapshots to their full state. The procedure relies on using a set of
bases being representative for a specific class from which the gappy snapshot to be
reconstructed originates. The properties of the POD make its bases a good choice to
represent such a ’library’ of information and can be obtained following the procedure
described in Section 2.3. For applications in the field of fluid dynamics, the tailored
POD bases could be obtained from e.g. PIV snapshots u of a particular flow case
and stored in Φ (using the same nomenclature as used in Section 2.3). The goal of
the gappy POD would then be to approximate a complete snapshot u of size n, as a
linear combination ofK coefficients b and modes stored inΦ while only having access
to ns < n sparse measurements from u:

u ≈ ũ =
K∑
k=1

bkΦ
T
k = b(Φ1:K)

T (2.13)

With b = [b1 b2 · · · bK ]. The sparse samples from u are denoted by w with dimension
ns. If ũ[ns] denotes those entries of ũ supported by the sparse ns measurements also
present in w, then it would make sense to minimize the difference between w and
ũ[ns] in a least squares sense, thus minimizing the error defined as:

ϵ = ||w − ũ[ns]||2 (2.14)
Since the support over the sparse measurements can only be accomplished through
the spatial POD bases inΦ1:K −→ ũ[ns] = b(Φ1:K)

T
[ns]

= bΘT . Note that thus far vectors
u and ũ[ns] have been assumed to be row vectors. If instead represented as column
vectors by means of taking the transpose, the error can be rewritten as:

ϵ = ||wT − ũT
[ns]

||2 = ||wT −ΘbT ||2 (2.15)

The solution for bT which minimizes this error is given by solving a linear system of
the form:

MbT = f −→ ΘTΘbT = ΘTwT (2.16)

http://vision.ucsd.edu/content/extended-yale-face-database-b-b
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Since Θ ∈ Rns×K matrix M ∈ RK×K . By comparing Equation 2.13 with Equation 2.4,
it is clear that the approximation sign present in Equation 2.13 is there because of
errors introduced in the reconstruction which originate from two aspects. First, similar
to obtaining a lower rank POD projection as described in Equation 2.12,K is generally
taken to be smaller than m as to use only the most energetic POD modes present. In
principle one could useK = m, however for the GPOD procedure described above to
function, ns ≥ K which means that increasing the number of POD bases involved in
the reconstruction increases the required samples from u, decreasing sparsity. Note
that ns = K yields ϵ = 0 resulting in the provided sparse measurements being interpo-
lated exactly. Secondly, the coefficients bk in the sparse case are only approximations
of the coefficients ak for the non-sparse snapshot POD described in Section 2.3. This
can be recognized by applying the GPOD procedure in an extreme case where ns = n.
For this case, w = u and Θ reverts back to being equal to Φ1:K which has K orthog-
onal columns. Equation 2.16 can thus be written as:

(Φ1:K)
TΦ1:Kb

T = (Φ1:K)
TuT −→ bT = (Φ1:K)

TuT −→ b = uΦ1:K with (Φ1:K)
TΦ1:K = I

(2.17)
Comparing this result to Equation 2.10 shows how for ns = n the coefficients obtained
through GPOD are equal to those from the snapshot POD method, b = a1:K or in
matrix format B = A1:K withB obtained through stacking all computed row vectors b
corresponding to different snapshot reconstructions. For any ns < n, the orthogonality
of the used POD bases in the GPOD reconstructions is generally destroyed, hence
ΘTΘ = M ̸= I which affects the solution for bT resulting in b ̸= a1:K and an additional
’error due to gappiness’.

Everson and Sirovich even extended the gappy POD algorithm for the case where the
training snapshots themselves are gappy. Instead of a single application of the snap-
shot POD algorithm, it is applied iteratively to converge towards a final set of POD
bases required for the gappy reconstruction procedure. For POD to work with an in-
complete snapshot set however, the locations of missing data in each snapshot should
be spread throughout the snapshot ensemble as to never contain a complete ’black
spot’. This renders the method impractical for most sparse sensing applications with
fixed sensor positions however has been used successfully in the reconstruction of
experimental measurements containing gaps in the data as demonstrated by Murray
and Ukeiley (2007) and Raben et al. (2012) on PIV measurements for example. A tur-
bulent channel flow PIV image reconstruction from Raben et al. is shown in Figure 2.8,
who state to have improved upon the ’standard’ iterative gappy POD by Everson and
Sirovich with their introduction of ’adaptive gappy POD’.
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Figure 2.8: Adaptive gappy POD for gappy PIV image reconstruction, applied to turbulent channel
flow velocity field. Raben et al. (2012)

Similar in essence to the standard iterative gappy POD, adaptive gappy POD itera-
tively reconstructs missing velocity vectors using a lower rank POD projection origi-
nating from the full snapshot ensemble. The optimal rank of this projection might vary
for each spatial location however and is therefore found for each reconstructed vec-
tor individually, again iteratively. This yields visually indistinguishable reconstructions
from the original in this particular case as can be seen however introduces significant
additional computational cost.

2.6. GPOD sensor placement
Two important aspects to take into consideration during the gappy POD procedure
are the locations at which the ns sparse measurements are taken (sensor locations)
and what snapshots to provide as training. The sensor locations determine what is
sampled in w and the POD modes and therefore what is incorporated into Θ while
the provided training snapshots directly affect the POD modes themselves hence Θ
as well. From Equation 2.16 it is clear that this will affect the solution for b which is
used for the reconstruction.

Unlike what has been used in the examples before, gappy POD can in principle have
its training data vary in any parameter (or even multiple) yielding POD coefficients
varying with the chosen parameter(s). When training data is provided in the form of
pressure distributions over an airfoil at different angles of attack for example, matrix
A from Section 2.3 will contain coefficients depending on the angle of attack instead.
Gappy POD effectively provides a data-driven interpolation tool and just like regular
interpolation, the interpolation points should sample the underlying function appropri-
ately. Sticking with the airfoil training data example; the angles of attack chosen to
provide a training snapshot on should thus capture the flow physics to be encountered
during sparse measurements for accurate pressure distribution reconstructions. For
gappy POD use in the field of fluid dynamics, training snapshots could be obtained
by means of non-sparsely measured windtunnel campaigns. In case the accuracy of
CFD simulations for the specific use case is expected to be sufficient however, nu-
merical simulations could be used instead, possibly eliminating the need for highly
resolved windtunnel tests to be performed.
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Mifsud et al. (2019) illustrate such a use case in their attempt to enhance the deter-
mination of aerodynamic coefficients w.r.t. CFD by using experimentally measured
surface pressures in combination with gappy POD and CFD training snapshots. In
their work, Mifsud et al. apply gappy POD on a 3D wing-body aircraft configuration.
At Re = 3.3 · 106 and M = 0.85, seven RANS simulations from α = 0° to 12° were
performed to act as training snapshots. Experimental balance and surface pressure
measurements at α = 7.1° and 7.9° were performed as well using 381 pressure sen-
sors. Using RANS as training and the experimental surface pressure measurements
as gappy snapshots, the GPOD procedure was able to reconstruct surface pressure
distributions over the model in its entirety. Figure 2.9 shows pressure distribution re-
sults at certain section cuts of the model’s wing (η being a non-dimensional distance
from the wing root).

Figure 2.9: Cp distribution at different section locations η along the wing span of a 3D wing-body
aircraft configuration at α = 7.1° andM = 0.85, adapted from Mifsud et al. (2019)

Even at sections along the wingspan where no experimental surface pressure mea-
surements were taken (middle Figure 2.9), gappy POD is able to predict a practically
continuous surface pressure distribution conform the RANS training while informed by
the experimental measurements in the proximity. The experimental measurements
performed at the sections indicated in the left of Figure 2.10 alone are therefore suffi-
cient for the entire surface pressure reconstruction as shown in the right of Figure 2.10.
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Figure 2.10: 3D aircraft wing-body model indicating sections along which experimental data is
available (left), resulting surface pressure distribution from GPOD; fused experimental and CFD data

(right) at α = 7.9° andM = 0.85, adapted from Mifsud et al. (2019)

Integration of the reconstructed surface pressure over the complete model surface
resulted in both lift and drag coefficients closer to balance measurements compared
to the CFD simulations alone. The research is thus able to achieve its goal of enhanc-
ing aerodynamic coefficients determination by fusion of numerical and experimental
results however does not seem to aim for sparsity in the process considering the rela-
tively large number of sensors. Leveraging the information in POD modes by means
of smart sensor placement could possibly have allowed for a reduction in the number
of sensors while still enhancing CFD results. This seems to have been overlooked as
no reasoning behind both the number of sensors and their locations is provided.

The influence of sensor locations and sensor budget for gappy POD reconstructions
is considered in the research by Xing et al. (2022). In their paper, reconstructions
of the surface pressure on a LNG (Liquefied Natural Gas) carrier are performed for
various angles of incidence. Training data is obtained from CFD simulations while
sparse surface pressure measurements are obtained experimentally with a varying
sensor budget. Using gappy POD, sparse surface pressure measurements are used
to successfully recover the complete pressure distribution in accordance with the CFD
simulations. By changing the number and layout of sparse measurements however,
it was noticed that reconstructions almost indistinguishable from the CFD results are
obtained at vastly different sensor numbers depending on the placement strategy. This
is illustrated in Figure 2.11 which shows the drag estimations of gappy POD at various
heading angles compared to CFD results. Both the drag curves on the left and right of
Figure 2.11 are obtained using 32 sensors scattered across the LNG carrier surface
however the sensor layout is changed from layout 1, shown on the top left, to layout 2
as shown on the top right. No physical reasoning behind the changed sensor locations
between layouts is provided however unlike layout 1, layout 2 does not contain any
sensors positioned on the carrier’s symmetry plane which seems to have affected the
gappy POD performance for the worse. Similar accuracy to layout 1 was found to be
achievable without placing sensors on the symmetry plane, however this required 46
sensors instead.
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Figure 2.11: Gappy POD LNG carrier drag estimation results using 32 sensors and different sensor
layouts: layout 1 left, layout 2 right. Adapted from Xing et al. (2022)

The findings by Xing et al. highlight the effect sensor locations have on reconstruction
accuracy but are unfortunately not a result of a systematic sensor placement approach
making use of the flow physics captured by the POD modes. This despite earlier find-
ings by for example Cohen et al. (2003) and Yildirim et al. (2009) that the extrema of
POD modes provide very good sensor positions for accurate reconstructions. A first
algorithm for finding gappy POD sensor locations was described by Willcox (2006).
Willcox reasoned that for accurate determination of the coefficients in b from Equa-
tion 2.16, matrix M = ΘTΘ should be well-conditioned. This can be measured in
terms of the condition number κ which indicates how sensitive a matrix inversion is to
errors (Manohar et al., 2018). The condition number ofM should be kept low, ideally
as close to one as possible, and therefore Willcox proposed an algorithm to evaluate
the condition number after placing a single sensor onto every possible location, picking
the one resulting in the smallest κ(M ) and repeating for the remainder of the sensor
budget. This is a greedy algorithm as it only considers the best sensor location in the
current iteration for a certain objective while ignoring the effect this choice might have
on future iterations of sensor placement. The condition number of a matrix X satisfy-
ingXTX = I equals one and therefore minimizing the condition number can be seen
as keeping the PODmodes inΘ as orthogonal as possible (orthogonality being lost in
the POD modes due to the sparse sampling). Brunton and Kutz (2019) illustrate the
performance of the ’minimum condition number’ (MCN) algorithm compared to plac-
ing sensors on modal optima in the figure provided below. Note the difference in the
notation of the POD bases; Ψ instead of Φ.
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Figure 2.12: Reconstruction performance of gappy POD on test case using MCN and mode extrema
sensor locations, adapted from Brunton and Kutz (2019)

Since the introduction of the systematic sensor placement procedure for GPOD recon-
structions in the form of theMCNalgorithm, several other sensor placement algorithms
have been suggested specifically for use with POD bases. In the same paper in which
theMCNapproach is introduced byWillcox, already amodified version combining both
MCN and POD optima in the sensor placement algorithm was found to perform better.
Four sensor placement algorithms are compared in terms of reconstruction accuracy
and have their working principles explained in the paper by Jayaraman et al. (2019).
It includes the MCN algorithm, random sensor placement, QR factorization with col-
umn pivoting (QR, QR-CP or QDEIM (Drmač andGugercin, 2016), will be explained in
Section 2.7) and a Discrete Empirical Interpolation Method (DEIM (Chaturantabut and
Sorensen, 2010)) for sensor placement. All algorithms are compared on a low rank
case: 2D cylinder flow and a high rank case: global Sea Surface Temperature maps
(SST). Low-rank referring to a fast decay of the problem specific eigenvalues making it
’easier’ to reconstruct using a smaller number of sensors. Random sensor placement
works very well for compressed sensing which includes reconstructions based on a
generic set of bases such as in the Fourier transform example. For a tailored set of
bases obtained through POD however, Jayaraman et al. found that random sensor
placement generally results in relatively poor reconstructions. Surprisingly, the MCN
approach was found not to perform better than random sampling for the cylinder flow
case and was not even included in the SST case due to its exceptionally high compu-
tational expense for high-dimensional systems. DEIM was found to perform best in
both cases followed closely by the QR algorithm. This conclusion is slightly different
from what was found by Brunton and Kutz and Drmač and Gugercin who concluded
that ’QDEIM may improve error performance over standard DEIM’. The performance
of the sensor placement algorithms vary for each application however the QR decom-
position with column pivoting is stated to provide a robust mathematical architecture
for sensor placement which is easy to implement and will therefore be explained in
more detail below.

2.7. Greedy QR-CP algorithm
Obtaining a full-state reconstruction from sparse measurements using gappy POD re-
quires solving the linear system as shown in Equation 2.16 for bT , which through Θ
and w depend on the chosen sensor locations. Equation 2.16 presents a generic for-
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mulation for the linear system encountered using gappy POD in the sense that matrix
Θ can both be square or non-square corresponding to using ns = K or ns > K respec-
tively. For ns = K, the number of sensors equals the number of modes used in the
reconstruction. In this case, solving the least squares solution as in Equation 2.16 is
redundant and ΘbT = wT could be solved instead. Using ns = K provides the most
sparse reconstruction solution for a given number of modes K.

Θ was defined in Section 2.5 to consist of the entries in the first K columns of Φ
supported by the ns sparse measurements: (Φ1:K)[ns]. This follows the definition used
by Everson and Sirovich; however it seems to obscure the importance of the sensor
placement. Instead, an alternative but equivalent definition of Θ is CΦ1:K , where
C ∈ RK×ns consists of K rows of the n× n identity matrix.

Figure 2.13: Definition of matrix Θ using ’sensor matrix’ C

From the schematic in Figure 2.13 it can be seen how matrix C samples the spatial
modes ofΦ1:K , effectively providing sensor locations in the form of the column indices
at whichC contains ones. For the specific case using ns = K, the condition number of
Θ should thus beminimized as it requires inversion. An indirect bound on the condition
number of Θ can be achieved by optimizing its spectral contents through maximizing
the product of its eigenvalues (Manohar et al., 2018). The reduced QR factorization,
decomposes any real matrix X into a unitary matrix Q and upper triangular matrix R
such that X = QR (Trefethen and Bau, 1997). Therefore

|det (X)| = |det (R)| = |
∏
i

rii| = |
∏
i

λi| (2.18)

where rii are the diagonal entries of R and λi eigenvalues. The diagonal entries of
R are stored in no particular order and thus generally the product of eigenvalues is
not maximized. If instead combined with column pivoting such that XD = QR, with
D a square column permutation matrix, the sequence of rii can be controlled to be
in decreasing order (Jayaraman et al., 2019). By realizing that det (Θ) = det(ΘT ) =
det ((Φ1:K)

TCT ), it can be seen how QR factorization with column pivoting of (Φ1:K)
T ,

yielding (Φ1:K)
TD = QR, thus maximizes the product of eigenvalues of Θ if CT is

chosen to be the first ns columns of D (Williams et al., 2022). Such a QR factor-
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ization with column pivoting for the identification of sensor locations is illustrated in
Figure 2.14.

Figure 2.14: Schematic illustration of QR factorization with column pivoting for the determination of
CT

Matrix D which reorders the columns of (Φ1:K)
T such that rii is decreasing is ob-

tained by sequentially selecting a new column of (Φ1:K)
T with maximal two-norm after

which the orthogonal projection of the remaining columns onto this pivot column is sub-
tracted from the remaining columns (Manohar et al., 2018). This is a greedy approach
which favors sensor locations that experience high modal activity across the available
modes. Controlling the order of the diagonal entries inR to be decreasing maximizes
the submatrix volume. Since matrix volume is equal to the absolute value of the deter-
minant, decreasing κ(Θ) through optimization of its spectral contents and maximizing
2.18 preserves mode orthogonality. This can be recognized through physical interpre-
tation of matrix volume depicted below in Figure 2.15 for a Θ ∈ R2×2 example.

Figure 2.15: Relation between matrix volume and determinant

The absolute value of the determinant ofΘ is equal to the volume of the parallelepiped
determined by either its columns or rows. In 2D, the columns of Θ form a parallelo-
gram with ’volume’ or area S equal to |Θ1||Θ2| sin γ. Maximization of 2.18 therefore
maximizes S which can be realized through keeping the magnitude of the columns
large or by preserving their orthogonality. Note that this assumes Θ to be square.
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The QR-CP algorithm thus provides nearly optimal sensor locations tailored to a spe-
cific basis while avoiding a combinatorial problem associated with direct maximization
of 2.12 through a greedy approach. It is computationally efficient and simple to imple-
ment as the procedure is included in most scientific programming libraries (Brunton
and Kutz, 2019). The above description focuses on the square Θ case with ns = K
however the QR factorization for sensor placement can also be used in the oversam-
pled case where ns > K. Instead of decreasing κ(Θ), it can be shown that this re-
quires the condition number ofM = ΘTΘ to be bounded through the QR factorization
with column pivoting of Φ1:K(Φ1:K)

T (Jayaraman et al., 2019), as the gappy POD re-
construction effectively reverts back to the least squares problem from Equation 2.16.

2.8. Reconstruction example
The snapshot POD, gappy POD and QR-CP algorithm have been discussed individ-
ually however it is the combination of these which would allow for accurate sparse
reconstructions on a tailored set of bases. To illustrate this, a reconstruction of circu-
lar cylinder flow at Re = 100 will be shown. The data consists of DNS flowfields of the
velocity and vorticity at m = 150 time instants (snapshots) separated by ∆t = 0.02 s.
Each flowfield is calculated on a grid of size nx × ny = 450 × 200 hence n = 90, 000.
At this Reynold’s number, circular cylinder flow is characterized by laminar periodic
vortex shedding. This dataset is obtained and made publicly available by Kutz et al.
(2016).

2.8.1. Eigenvalues and modes from POD
An example of an instantaneous horizontal velocity component flowfield is shown on
the top left of Figures. 2.18 and 2.19. After subtraction of the temporal mean, the en-
semble of all horizontal velocity component snapshots is stored in a matrix for POD
to applied on following the description provided in Section 2.3. This yields the matrix
containing temporal coefficients A ∈ Rm×m and the matrix containing the orthogonal
spatial modes Φ ∈ Rn×m, ordered corresponding to the magnitude of corresponding
eigenvalues. These eigenvalues provide insight into the relative turbulent kinetic en-
ergy capture between modes for this specific problem and are shown in Figure 2.16.
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Figure 2.16: Individual (a) and cumulative (b) energy capture of the eigenvalues corresponding to
U -velocity cylinder flow data

Figure 2.16a shows energy capture of individual eigenvalues and Figure 2.16b the
cumulative energy capture for a given number of eigenvalues. Both are scaled by the
total energy such that:

EK =
λK∑m
i=1 λi

, EK,cumulative =
K∑
k=1

λk∑m
i=1 λi

(2.19)

The magnitude of the first few eigenvalues can be seen to decrease rapidly which
is indicative of an inherently low rank system. Already at 5 out of the total of 150
eigenvalues, the cumulative energy capture exceeds 99%. The eigenvalues for this
particular case come in pairs which is especially clear from Figure 2.16a. These pairs
correspond to harmonics of the dominant vortex shedding frequency as will be clear
from the spatial modes.

Each of the eigenvalues has its corresponding spatial mode and set of temporal co-
efficients. The first few spatial modes are therefore of major importance since they
represent the underlying physics sampled throughout the training data to a large ex-
tent, which will be leveraged in gappy POD reconstructions. The two most dominant
spatial modes or eigenmodes for the horizontal velocity component data are shown
below together with their temporal coefficients in Figure 2.17.
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Figure 2.17: First and second spatial POD modes (left) and corresponding temporal coefficients
(right) for cylinder flow

The periodic vortex shedding, typical to cylinder flow, is recognizable in the patterns of
the first two spatial modes and the oscillations in the temporal modes. These modes
and coefficients are useful for recognizing coherent structures and also show how a
reduced order approximation of the data in the form of a POD projection begins to
approximate the original data quite well at a significantly lower number of modes than
available. A rank two POD projections would be obtained as a linear combination of
the above shown modes and coefficients: a1(t)Φ1(x, y) + a2(t)Φ2(x, y). Even though
the the spatial modes are similar in shape, the phase difference in the temporal coeffi-
cients together with the offset in modal extrema between the eigenmodes allow for the
rank two projection to capture the advection of vortical structures already. Increasing
the number of modes and corresponding coefficients involved in the POD projection
allows for additional phenomena to be represented which increase accuracy with re-
spect to the original snapshots.

2.8.2. Sparse reconstruction using GPOD
The obtained set of eigenmodes, stored as the columns of Φ can be used as a library
to infer full state reconstructions from sparse measurements using the gappy POD pro-
cedure discussed in Section 2.5. Given ns measurements andK eigenmodes, GPOD
will provide coefficients such that a linear combination of the eigenmodes will approx-
imate the measurements optimally in a least squares sense. Increasing the number
of modes generally increases reconstruction accuracy through increased energy cap-
ture in the additional modes however requires more sparse measurements to ensure
a unique solution for the coefficients (ns ≥ K). A reconstruction of an instantaneous
velocity field at t = 2 using five sensors and five POD modes is shown in Figure 2.18.
Note that this is a snapshot originally included in the training data however this is not
required.
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Figure 2.18: Instantaneous DNS solution of horizontal velocity field (top left), rank 5 POD projection
(top right), gappy POD reconstruction using first 5 POD bases + 5 random sensors (bottom left) and

schematic gappy POD matrix M with its condition number κ (bottom right).

The POD projection shown at the top right makes use of the same five POD modes
as the GPOD reconstruction and can be seen as the best attainable by any sparse
reconstruction. The projection is visually almost indistinguishable from the original as
a result of using bases with a cumulative energy contents of over 99%. The same can
not be said about the sparse reconstruction which shows significant discrepancies
with respect to the original when using the sensor locations indicated by the crosses.
These sensor locations are the result of a particularly bad random sensor placement
realization. Two out of the five sensors are positioned in a region of almost zero modal
activity across the modes near the left border of the domain. These essentially infor-
mative sensors result in an ill-conditioned reconstruction problem with a large condi-
tion number of matrixM , see bottom right of Figure 2.18. The condition number ofM
serves as a proxy measure for mode orthogonality and reconstruction accuracy, which
should be kept as close to one as possible through keepingM as close to identity as
possible. Note that as mentioned in Section 2.7, inversion of M is not necessary
for the specific case where ns = K for which only Θ can be inverted instead. Ma-
trix M = ΘTΘ however clearly illustrates how reducing the condition number keeps
modes in Θ orthogonal by approaching identity.

To avoid an ill-conditionedM or Θ, the QR factorization including column pivoting as
discussed in Section 2.7 can be used to provide nearly optimal sensor locations from
the set of tailored POD bases. The reconstruction performed using such ’QR sensors’
instead is shown below in Figure 2.19.
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Figure 2.19: Instantaneous DNS solution of horizontal velocity field (top left), rank 5 POD projection
(top right), gappy POD reconstruction using first 5 POD bases + 5 QR sensors (bottom left) and

schematic gappy POD matrix M with its condition number κ (bottom right).

All of the five sensors are now placed within the wake of the cylinder where modal
activity is generally high. The resulting reconstruction is almost identical to the projec-
tion which demonstrates the benefits of proper sensor positioning for reconstructions
on a tailored set of bases. Different from the previous example, matrixM is clearly di-
agonally dominant and thus the modes involved in the reconstruction have been kept
almost orthogonal over the sparse support of the sensors. This is further exemplified
by the condition number of 3.33 being orders of magnitude smaller than the practically
singular matrix shown previously. The realization of random sensor placement shown
was a particularly bad example of random sensor placement for reconstructions. The
average and 5th percentile (P5) root mean square error (RMSE) in the horizontal ve-
locity field for 100 realizations of random sensor placements is shown below in Fig-
ure 2.20 while varying sensor budget. It also includes the RMSE if instead the QR
algorithm is used for sensor positioning. Note that the freestream velocity is 1ms−1.
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Figure 2.20: Reconstruction root mean square error, random and QR sensor placement

For a relatively small sensor budget, say ns < 10, the 100 random realizations act
as a brute force optimal sensor positioning search which is unfeasible for practical
use. In this interval, the five best random realizations (5th percentile) are expected
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to have identified a nearly optimal sensor configuration and virtually overlaps the QR
GPOD curve. This shows how the QR factorization with column pivoting provides a
systematic approach for finding almost optimal sensor locations. For larger ns, 100
realizations is likely not enough for consistent brute force ’quasi optimal’ sensor po-
sitioning and the 5th percentile curve diverges from the projection. The QR curve
however stays close to the projection meaning that the accuracy loss in the sparse
reconstruction due to ’gappiness’ is kept low.

2.9. Square cylinder flow
Compared to the streamlined bodies as used in several of the referenced papers, bluff
body aerodynamics characterized by separation and relatively large, unsteady wakes
resulting in complex flow phenomena which are expected to increase the inherent
rank of such systems, forming a challenge for POD reconstructions. Regardless, with
pressure drag dominating the total experienced drag of bluff bodies, they lend them-
selves well for drag determination based on the pressure distributions. Sparse, sur-
face pressure based, drag determination on bluff bodies was attempted in the earlier
mentioned research by Liu et al. (2021) and Xing et al. (2022) however not while incor-
porating both the POD framework and the ideas for tailored sensor placement. Bluff
body flow is of significant engineering interest, from wind engineering to (motor)sports-
aerodynamics and thus a benchmark bluff body object in the form of a square cylinder
will be used for sparse surface pressure distribution reconstructions and drag deter-
mination in an experimental setting. Square cylinder flow involves large separated re-
gions, flow reattachment and vortex shedding depending on the angle of attack which
have been studied extensively over many papers dedicated to the subject. The dis-
tinct pressure distributions at different angles of attack provide an experimental test
case for sparse sensor placement and reconstructions on a more complex angle of
attack basis compared to earlier used streamlined objects.

2.9.1. Flow regime classification
The angle of attack and geometric definitions used for square cylinder flow are shown
in Figure 2.21.

V

A CL

B

D

Figure 2.21: Square cylinder angle of attack and face definitions

The four faces are denoted A, B, C and D. At an angle of attack of α = 0°, face A is
orthogonal to the freestream velocity vector. At α = 90°, face B is orthogonal to the
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freestream velocity vector instead. The length of each of the four faces is denoted as
L.

Within the angle of attack range 0° ≤ α ≤ 45°, the flow around a two-dimensional
square cylinder is characterized by different flow topologies. These have been clas-
sified by both Igarashi (1984) and Huang et al. (2010) based on the observed time-
averaged flow patterns. Igarashi recognized four flow patterns while Huang et al.
merged two out of those four to obtain the following three with corresponding illustra-
tions in Figure 2.22:

• Subcritical flow - 0°< α < αcrit

• Supercritical flow - αcrit < α < 45°
• Wedge flow - α = 45°

Figure 2.22: Subcritical- (left), superciritcal- (middle) and wedge- (right) flow patterns. For
information regarding indicated locations, see Huang et al. (2010)

The subcritical flow regime extends until the critical angle of attack: αcrit. At the criti-
cal angle of attack, the fluctuating components of the pressure coefficient reaches a
minimum at faces C and D while the average pressure reaches a maximum, typically
resulting in minimum drag. The critical angle of attack is somewhat sensitive to the
Reynolds number and freestream conditions ((Carassale et al., 2014),(Chen and Liu,
1999)) however generally lies within the range of 10° < α < 15° as apparent from an
extensive collection of experimental drag curves presented in Roosenboom (2005).
Huang et al. experienced a critical angle of attack of 15°. The subcritical regime is
characterized by a forward stagnation point on face A and separation at both upstream
corners of the cylinder. Faces B, C and D experience separated flow and the wake
consists of two counter rotating recirculation regions. This description agrees well
with flow visualizations obtained by van Oudheusden et al. (2008) for this flow regime
which are shown in Figure 2.23.
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Figure 2.23: Subcritircal flow patterns as obtained by van Oudheusden et al. (2008) at Re = 20, 000

Besides the large recirculation regions in the wake, two shallow ones are present on
the upper and lower face of the cylinder for α = 0° and 5°. Between α = 5° and 10°
the bubble on face D merges with the wake. Between α = 10° and 15°, the bubble
on face B gets pinched of by the reattaching shear layer near the bottom downstream
corner. This reattachment of the shear layer at the lower side of the cylinder coincides
with the aforementioned critical angle of attack.

Roosenboom (2005) performed PIV measurements in both the subcritical and super-
critical regime. The results of these experiments at α = 30° are shown on the left of
Figure 2.24 and illustrate the main characteristics of the supercritical flow regime well.

Figure 2.24: Flow pattern for α = 30° (left) and α = 45° (right, background colours follow from
vorticity) at Re = 20, 000, adapted from Roosenboom (2005)

In the supercritical angle of attack range, the forward stagnation point is still located at
face A and the flow separates from the two upstream corners. Often a small recircula-
tion bubble occurs at the downstream part of face D (Mueller, 2012), however this is
not clearly visible in the left of Figure 2.24. The start of this flow regime was marked
by the reattachment of the shear layer on the downstream corner of face B. From αcrit

towards α = 45°, the point of reattachment traverses face B in the upstream direction,
thus decreasing the size of the lower recirculation bubble. This is clearly visible in
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the position of the reattachment point indicated in red in Figure 2.24 being almost at
the center of face B. While for the subcritical regime, the Strouhal number increases
rapidly for increasing angle of attack until a maximum at α = αcrit (St ≈ 0.18), it re-
mains roughly constant throughout the supercritical regime (St ≈ 0.17, Chen and Liu
(1999)).

The right of Figure 2.24 shows the flow patterns at α = 45° obtained by Roosenboom.
Huang et al. classifies flow at exactly α = 45° as wedge type flow but others treat the
boundary between the supercritical and wedge type flow regime more like a transition
with Igarashi mentioning wedge-like flow from α = 35° onwards for example. Accord-
ing to Huang et al., the wedge flow type for square cylinders is characterized by bifur-
cation of the flow on the corner where faces A and B merge, resulting in a stagnation
point on the ’nose’ of the cylinder. The flow remains attached while traversing faces
A and B however detaches where these faces merge with face D and C respectively.
The two large recirculation regions are symmetric and engulf faces C and D such that
no shallow secondary recirculation regions are expected on any of the cylinder faces.

2.9.2. Surface pressure distributions
The publication by Igarashi (1984) presents the pressure distribution around the square
cylinder perimeter for the full angle of attack range from α = 0° to 45°. These distribu-
tions, which are shown in Figure 2.25, conform well with the flow visualizations shown
earlier but provide a different perspective on the aforementioned square cylinder flow
regimes.

Figure 2.25: Square cylinder surface pressure distributions at various angles of attack, adapted from
Igarashi (1984)

Except for α = 45°, the flow stagnates on face A of the cylinder resulting in the pres-
sure coefficient reaching a value of 1. In general for α < 45°, face A can be seen as
the pressure side with a relatively high surface pressure where the distribution skewes
towards the corner between faces A and B as the angle of attack increases and the
stagnation point travels in this direction.

Face B experiences fully separated, partially separated and fully attached flow de-
pending on the flow regime. In the subcritical flow regime, the shear layer, which
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detached from corner AB, does not reattach resulting in a shallow recirculation bub-
ble and lower than freesteam surface pressures. Increasing the angle of attack, brings
the shear layer closer to reattachment on corner BC leading to increased pressure on
the downstream part of face B. Above αcrit, the shear layer reattaches on face B and
the reattachment point traverses in upstream direction depending on the angle of at-
tack. This shift in the reattachment point is clearly recognizable through the position
of the strong pressure gradient on face B. At α = 45°, the reattachment point reaches
the upstream corner on face B leading to completely attached flow and a symmetric
pressure distribution to face A.

The flow over faces C and D is separated from the surface across all angles of attack
and therefore the pressure distribution shows relatively little variation. For α = 0°,
the symmetric recirculation regions result in backflow impinging on the face C surface
raising the pressure with respect to faces B and D. Above α = 5°, the shallow bubble
on face D merges with the recirculating region in the wake and the pressure across
faces C and D evens out. At the critical angle of attack, the pressure on faces C and
D reaches a maximum. Within the the supercritical regime, a shallow recirculation
bubble might appear near the corner between faces C and D, producing a local dip
in the surface pressure. At α = 45°, the pressure distribution on faces C and D is
symmetric as expected and reaches a minimum at the corner between the faces.

2.9.3. Drag coefficients
Below, experimentally obtained drag coefficients of a square cylinder at incidence are
reported in Figure 2.26. These results were obtained by Lee (1975), Tamura and
Miyagi (1999) and Carassale et al. (2014). The Reynolds numbers at which the ex-
periments have been performed are stated as well however the effect of the Reynolds
number on the results will not be considered in this report (Reynold’s number effects
are discussed by Carassale et al. (2014) and Chen and Liu (1999)). Note that the drag
coefficients in the figure below and throughout this report are defined with respect to
the cylinder side length L instead of the projected area normal to the freestream.
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Figure 2.26: Drag coefficient versus angle of attack for square cylinder flow

With the total drag of a square cylinder being dominated by pressure drag, the be-
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haviour of the drag curve at varying incidence angle correlates well with the pressure
distributions shown in Figure 2.25. Within the subcritical regime, square cylinder flow
is characterized by a negative slope in the drag. Lee postulated that this is caused
by the vortex formation region moving downstream which increases the pressure on
the downstream face. Without linking this directly to the drag, van Oudheusden et al.
discussed and visualized this phenomena as the wakes in Figure 2.23 can be seen
to elongate for increasing α within the subcritical range. The increasing pressure in
the back of the cylinder reduces the net force in freestream direction and therefore
decreases drag. Typically, at α = 0°, a drag coefficient slightly above 2 is measured
which drops roughly by 0.6 when reaching αcrit. At this critical angle of attack, the base
pressure is at its maximum as a result of the wake elongation resulting in minimum
drag. As mentioned before, αcrit typically occurs for 10° < α < 15°. Above the critical
angle of attack, increasing α instead shortens the wake, decreasing base pressure
and consequently increasing drag. A change in the sign of the drag curve slope is
therefore present at the critical angle of attack which the shown curves can be seen to
adhere to. The drag increases for increasing α until a maximum at α = 45°. At α = 45°,
the situation is very sensitive to slight asymmetries and different freestream conditions
(Mueller, 2012) as is evident from the variance in the reported drag coefficients close
to this angle of attack (see for a more extensive collection of experimentally obtained
drag curves also Roosenboom (2005)).





3
Experimental setup and procedures

In this chapter, the steps undertaken to be able to realize a wind tunnel setup capable
of providing surface pressure and force balance measurements on a square cylinder
model are described. Wind tunnel tests have been performed in the Open Jet Facility
at the TU Delft of which information and an illustration are provided in Section 3.1.
Dimensions and drawings of the used square cylinder model with variable pressure
tap layouts are discussed in Section 3.2. The model is equipped with taps connected
to pressure transducers/modules and is placed on a force balance. Specifications
of this equipment are given in Section 3.3. Besides the model and measurement
equipment, the experimental setup additionally consisted of a turntable and end plates
to emulate two-dimensional flow. A description and drawing of how these aspects
come together is provided in Section 3.4. Finally, in Section3.5 a summarized version
of the test matrix used to survey the parameter space is presented. It also includes
a description of the angle of attack calibration, flow and sampling parameters used
during the measurements and used corrections for the influence of model end plates
and an experienced blockage effect.

3.1. Wind tunnel
The experimental campaign consists of measurements on a square cylinder test ob-
ject which is placed in the the Open Jet Facility (OJF) of TU Delft. The OJF is shown
schematically in Figure 3.1a and is an open test-section, closed-loop type wind tunnel
with an octogonal outlet of size 2.85m × 2.85m. It is driven by a 500 kW fan capable
of providing flow at a maximum velocity of 35ms−1 in the test Section. A 350 kW ra-
diator at the end of the test section is able to compensate for added heat to the flow
which keeps the temperature constant during operation (Delft University of Technol-
ogy, 2022). The turbulence intensity measured at 1m from the outlet is reported to be
0.5% by Lignarolo (2016) and the shear layer at 10 cm from the outlet was measured
using a pitot tube to extend 2.7 cm (δ99) towards the inside of the outlet and expands
2 cm outwards, see Figure 3.1b.

35
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Figure 3.1: Schematic view of the Open Jet Facility at the Delft University of technology (Delft
University of Technology, 2022) (a) and velocity profile in the shear layer at 10 cmfromtheoutlet(b)

3.2. Square cylinder test object
With the goal of obtaining nominal two-dimensional surface pressure distributions de-
pending on the angle of attack similar to Figure 2.25, an experimental setup is con-
structed in the OJF test section consisting of a square cylinder test object and external
support structures. In this section, information on the test object itself is provided.

Figure 3.2: Side view drawing including main dimensions (in mm) of the square cylinder test object
(left) and removable pressure tap plate (right).

A schematic side view of the model is presented in Figure 3.2 including its main dimen-
sions and an enlarged view of the removable pressure pressure tap plates used. The
model heightH is 950mm and side length L is 200mm which results in an aspect ratio
of 4.75. Since surface pressure distributions are measured using transducers (spec-
ifications discussed in Section 3.3.1), small holes are present around the perimeter
of the object at its mid-height of 475mm. Each of the holes is fitted with a 0.5mm
inner diameter steel pressure tap with a length of 12mm. For the pressure tap pattern
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around the model perimeter to be changed easily, the cylinder faces containing the
taps are removable and referred to as pressure (tap) plates. An enlarged view of an
isolated pressure tap plate is shown on the right of Figure 3.2. The pressure plates
and square sectioned parts of the model are FDM 3D printed out of PLA plastic (Poly-
lactic Acid). The inside of the model is kept hollow except for a steel rod spanning
the entire 950mm height which provides structural integrity and a mounting point for
the pressure modules which house the pressure transducers. The aspect ratio of the
model is relatively low which can cause unwanted three-dimensional effects near the
top and bottom of the model to spoil nominal two-dimensional flow as achieved by
the experiments referenced in Section 2.9. To counter this, circular end plates with
600mm diameter are mounted on the top and bottom of the object which will work in
combination with the external end plates to be discussed in Section 3.4. Figure 3.2
also shows a global reference frame which is defined such that the freestream velocity
is aligned with the x-axis.

Four sets of pressure tap plates are used where each set consists of four plates. As
a benchmark, plates containing 8 evenly spaced pressure taps are used to obtain
pressure distributions with a spatial resolution of 32 in total. From the CFD results
discussed in Section 4.7.2, it is found that decreasing the spacing of pressure taps
towards the corners enhances the determination of pressure drag through surface
pressure when using 8 taps per face. Therefore, a second set of plates using a cosine
spacing on each cylinder face is manufactured and used as well. The coordinates of
the pressure taps mapped onto the extent of a cylinder face from −L

2
to L

2
using this

cosine spacing follows from:

cos (χ) · L
2
, χ = i ·∆χ, i = 1, 2 . . . nf, ∆χ =

180◦

nf + 1
(3.1)

With nf the number of taps to be placed on a face of the square cylinder. Equation 3.1
is illustrated visually for nf = 8 below.

0.5L 0 0.5L

Figure 3.3: Cosine sampling for tap locations skewed towards square cylinder edges

The CFD results to be discussed in Section 4 have been used in combination with the
QR-CP sensor placement algorithm to identify CFD based sensor locations for exper-
imental use. More information regarding the determination of these sensor locations
is provided in Section 4.7.2 however two sets of pressure tap plates referred to as Opt
V1 and Opt V2 are manufactured to accommodate them. Each of the aforementioned
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pressure tap distributions is shown schematically in Figure 3.4 as a section view at the
model mid-height. Pressure taps are indicated as dots with their position determined
either by local x′ and y′ coordinates or sensor angle ψ as shown. The face definitions
and angle of attack are the same as used in Section 2.9 but are included regardless
for completeness.
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Figure 3.4: Tap locations for different plate sets, including local coordinate system and angle/face
definitions.

3.3. Measurement equipment
With the test object itself designed around removable plates containing pressure taps,
the main part of the data acquisition is performed by measuring surface pressure
at the tap locations by means of pressure modules. Mainly serving as a validation
tool of the measured pressure distributions, the complete test object is mounted on
an external balance. The external balance is used to obtain force measurements
independent of the number and locations of the pressure taps. Specifications of the
pressure measurement system and external force balance are provided below.

3.3.1. Pressure modules
The pressure measurement system used is a Nub systems pressure scanning sys-
tem consisting of two components; an acquisition unit and one or more pressure mod-
ules. A single pressuremodule houses 16 pressure transducersmeasuring differential
pressure at the same operating range. The transducers in these modules are digital
Honeywell-HSC series. To simultaneously measure the 32 pressure taps, two mod-
ules are used with a range of 600Pa and 2500Pa respectively. At these operating
ranges, the transducers are stated to both have a total error band on the measure-
ments of ±1% of the full scale span (Honeywell, TruStability board mount pressure
sensors, HSC-series, 2022). The pressure modules inside the test object are con-
nected to the data acquisition unit outside of the model by a cable running trough the
bottom end plate. The data acquisition unit can support up to five pressure modules
at once and is capable of sampling all individual transducers at a frequency of 2 kHz.
The data acquisition unit connects to an external computer on which the modules can
be controlled using LabVIEW software and data can be stored.

3.3.2. Force balance
The balance used is theOJF external balance delivered by theDutch National Aerospace
Laboratory NLR. This force balance is capable of measuring both forces andmoments
in three directions at a frequency of 2 kHz. The load ranges for the six measurable
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components are tabulated in Table. 3.1.

Table 3.1: OJF external balance load- and moment- ranges

Simultaneous loading Single loading
Axial Force (Fx) ±250N ±250N
Side Force (Fy) ±500N ±600N
Vertical Force (Fz) ±500N ±3500N
Rolling Moment (Mx) ±500Nm ±550Nm
Pitching Moment (My) ±250Nm ±500Nm
Yawing Moment (Mz) ±50Nm ±125Nm

The balance is operated while simultaneously loaded, therefore the single loading
ranges are not of interest. The coordinate system for the balance is similar to the
global coordinate system shown in Figures. 3.2 and 3.5 however is offset with respect
to the x- and y-axes by 7.25°, indicated by dashed axes with subscript ’b’ in Figure 3.5,
and rotates together with the test object. The balance x- and y-axes therefore are
offset to the global x- and y-axes by β = 7.25◦ + α. The accuracy of the balance has
been determined by a first order dead-weight calibration which yielded the maximum
errors and standard deviations in percentage of the applied maximum load shown in
Table. 3.2.

Table 3.2: OJF external balance accuracy in percentage of applied maximum calibration load

∆Fx ∆Fy ∆Fz ∆Mx ∆My ∆Mz

Maximum error [%] 0.06 0.23 0.16 0.05 0.05 0.25
Standard deviation [%] 0.02 0.05 0.05 0.01 0.01 0.07

3.4. Experimental setup
The test object, measurement equipment and several external support objects to-
gether are used to realize an experimental setup at the OJF. A schematic view of
the setup is shown in Figure 3.5 of which the main components will be discussed.
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Figure 3.5: Schematic of the experimental setup including main components and dimensions (in mm)

Inside the test section of the OJF, a height-adjustable hydraulic table is used to as-
semble the complete experimental setup onto. The hydraulic table contains threaded
holes onto which a turntable is fastened. The turntable, sketched at the bottom of
Figure 3.5, is capable of rotating 360° while the OJF is being operated and effectively
enables the angle of attack of anything mounted onto it to be varied. The turntable
contains attachment points which are used to mount the OJF external balance. This
therefore rotates in combination with the turntable resulting in the aforementioned bal-
ance reference frame being offset with respect to the global reference frame which is
indicated by the dashed axes and angle β in Figure 3.5.

The bottom end plate of the test object is fastened to the balance using threaded holes
present on a balance adapter plate. The test object is assembled on the bottom end
plate part by part from the bottom up to keep access to the inside of the test object dur-
ing assembly. The steel rod in the center of the model is used as an attachment point
for the pressure modules and allows for the removal of the pressure plates without
the model collapsing. The cables attached to the two pressure modules run through a
hole in the bottom end plate inside the model and are attached to the data acquisition
unit positioned next to the balance. Two pressure modules are used which allow for
simultaneous surface pressure measurements across at most 32 taps (16 taps per
module). Connections between the modules and the taps are made using pieces of
urethane tubing with inner diameter 1mm, outer diameter 2mm and length 150mm.
The taps, tubing and pressure module ports are numbered from 1 to N based on their
sensor angle ψ with 1 being closest to ψ = 0°, N being closest to ψ = 360° and N
being the number of pressure taps on the four plates combined.
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With an aspect ratio of 4.75, the circular end plates are not expected to provide enough
of a boundary to achieve nominal two-dimensional flow (Zhao et al., 2021). Therefore
larger external end plates are used around the circular end plates as well. These ex-
ternal end plates are of size 2440mm × 1220mm and contain a circular cutout roughly
10mm larger in radius compared to the model end plates to account for oscillations
and bending of the test object. Using aluminum extrusions as support (not shown in
Figure 3.5 for clarity), these plates are positioned around the model end plates such
that the model can rotate freely without coming into contact with any external object.
The leading edges of the external end plates are chamfered at a 60° angle to reduce
their downstream impact on the model. The complete setup is positioned such that
the lower external end plate is located 20mm above the bottom of the OJF outlet and
the leading edge protrudes into the outlet by 100mm.

3.5. Data acquisition procedures
The wind tunnel measurements are performed following a test matrix made in advance.
In this section, a condensed version of this test matrix is briefly discussed. After this,
some practical aspects of the force balance and surface pressure measurements are
discussed including force/angle zeroing and a blockage correction.

3.5.1. Test matrix
Two ’categories’ of measurements are performed during the wind tunnel campaign:
First, balance measurements to be used in the determination of the circular end plates
drag; Second, simultaneous force balance and surface pressure measurements at
various angles of attack. These measurements form the main part of the wind tunnel
campaign which yield the data to be used in combination with the POD framework.
These wind tunnel measurements are summarized in a condensed version of the test
matrix in Table. 3.3.

Table 3.3: Condensed test matrix

V∞ [m/s] α [°] Tap locations
Wind off end plates 0 N/A N/AWind on end plates 10
Wind off runs 0

[0◦, 2.5◦ . . . 45◦]
Even, Cosine,
Opt V1, Opt V2Wind on runs 10

The ’wind off-’ and ’on end plates’ measurements are used to find an approximation
for the isolated drag of the circular end plates. Despite their purpose of counteracting
three-dimensional effects, the plates experience drag measured by the balance which
is not representative of a nominal two-dimensional flow. For comparable results be-
tween balance and pressure taps, the end plate drag is therefore removed from the
balance measurements. To isolate the force experienced by the end plates, sequen-
tial measurements of the bottom end plate, the bottom end plate + steel rod and the
bottom end plate + steel rod + top end plate are taken. These measurements are
performed once at a freestream velocity of 10ms−1 (wind on) and once at wind off
conditions to act as zeroing measurements.
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The ’wind off’ and ’wind on runs’ in Table. 3.3 include balance and surface pressure
measurements for angles of attack from α = 0° to 45° in 2.5° intervals. Such a se-
quence of measurements will be referred to as an α-sweep and are performed for
each of the four sets of pressure plates. This means four α-sweeps are measured at
wind off conditions and four at wind on conditions however all measurements within
this ’category’ are performed twice for redundancy meaning a total of 16 α-sweeps
are performed. Unlike what is shown in Table. 3.3, the angle of attack order for mea-
surements is randomized to decouple the effect of time dependent variables.

3.5.2. Angle of attack zeroing
The measured forces and surface pressure around a square cylinder are sensitive to
the true angle of attack experienced. Due to geometric constraints, the local coordi-
nate system of the square cylinder could not be kept aligned with the turntable through
which control over the angle of attack is possible. The resulting offset in the angle of at-
tack is known in theory from the CAD model of the experimental setup however differs
in practice as a result of many uncertainties ranging from manufacturing (in)accuracy
to hydraulic table alignment. For the offset between the controllable turntable angle
and the true square cylinder angle of attack to be known, the model was equipped with
the evenly spaced pressure taps which are symmetric w.r.t. the freestream velocity
at α = 0°. At a freestream velocity of 10ms−1, the turntable angle was varied until a
symmetric time averaged pressure distribution was measured around the model. This
identified the offset between the turntable and square cylinder angle of attack to be
7.25°, hence the earlier shown β = 7.25◦ + α with α the true angle of attack expe-
rienced by the square cylinder and β the angle of the turntable with respect to the
global coordinate system as shown in Figure 3.5. This offset was validated to result
in a symmetric pressure distribution at α = 45° as well.

3.5.3. Force balance and surface pressure measurements
In Table. 3.3 it is shown how every measurement point (combination of angle of at-
tack and used set of pressure plates) at wind on conditions is preceded by a wind of
measurement point. These wind off measurements are used for zeroing of balance
results only and therefore consist of time averaged balance measurements only over
a period of 10 s measured at 2 kHz. Any measurement point at wind on conditions will
have corresponding zeroing measurement subtracted such that aerodynamic forces
are isolated from possible offsets in the balance readings resulting from a shifting
model center of gravity with angle of attack for example.

Besides removing the zero measurements from balance measurements obtained at
wind on conditions, the drag coefficients of the isolated circular end plates is removed
as well as they are not representative of the drag experienced by a nominally two-
dimensional square cylinder. The dedicatedmeasurement points for the determination
of this end plate drag are briefly mentioned in Section 3.5.1 but require three wind on
measurements of the bottom end plate only, the bottom end plate with the vertical
rod and the bottom end plate, vertical rod and top end plate together. After removal
of corresponding zero measurements, the following drag coefficients are measured
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using the cylinder model area A = 0.2m × 0.95m as a reference.

Table 3.4: Measured drag coefficients used for determination of the end plates drag contribution

Bottom plate Bottom plate + rod Bottom plate + rod + top plate End plates
CD 0.063 0.160 0.210 0.113

Assuming no effect from the interaction between rod and plates, the drag of the rod
is obtained by subtracting the drag coefficient of the bottom plate from the drag coef-
ficient of the bottom plate + rod. The drag contributions of the isolated end plates is
then obtained by subtracting the drag coefficient of the rod from the drag of the bottom
plate + rod + top plate to obtain the CD stated in the rightmost column of Table. 3.4.
This drag coefficient will be subtracted from all wind on balance measurements.

While considering the aforementioned corrections, the actual wind on measurement
points are performed at a freestream velocity of 10ms−1. This results in a Reynolds
number based on the model side length L of approximately Re = 135, 000. Initially,
measurements were performed at 20ms−1 however due to excessive oscillations of
the model, the freestream velocity was reduced. For each combination of angle of
attack and pressure tap plates, simultaneous force balance and surface pressure
measurements are performed for a duration of 30 s. The force balance operates at
its maximum acquisition frequency of 2 kHz and the surface pressure is measured at
the same frequency for all individual pressure taps. Reported square cylinder Strouhal
numbers vary in the range of 0.11 to 0.18 depending on the angle of attack (Lee (1975),
Zhao et al. (2021), Chen and Liu (1999)). Given the current model’s sidelength of L =
0.2m and the used freestream velocity of V∞ = 10ms−1, this corresponds to a maxi-
mum vortex shedding frequency of fs = 9Hz. To capture the vortex shedding in the
pressure measurements while avoiding resonance in the tubing affecting measure-
ments by more than 5%, the tube length should comply with the following equation
from organ resonance theory (Irwin et al., 1979):

∣∣∣∣pmeasuredpactual

∣∣∣∣ =
∣∣∣∣∣
(
cos

(
2πfl

c

))−1
∣∣∣∣∣ < 1.05 with f = 2fs = 18Hz, c = 343ms−1

(3.2)
Where c is the speed of sound and f is the frequency of interest being taken twice the
vortex shedding frequency to comply with the Nyquist criterion. Following from 3.2, the
tube length l should not exceed 0.94m and thus the tube length of 150mm suffices for
the unsteady surface pressure measurements. Besides surface pressure and balance
measurements for each measurement point, ambient pressure, density, freestream
velocity and temperature are recorded as well to be used for surface pressure and
force nondimensionalization.

3.5.4. Blockage velocity correction
At an angle of attack of 0°, the frontal area of the square cylinder model equals 0.2m×
0.95m. With anOJF outlet of size 2.85m× 2.85m, thismodel area results in a blockage
ratio of approximately 2%. At this small blockage ratio, no significant effect of an
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increased effective velocity was expected however pressure coefficients obtained on
the model normalized with dynamic pressure using a freestream velocity of 10ms−1

resulted in values above one. At α = 0° when using plates with a pressure tap at
ψ = 45° (Opt V1 plates, see Figure 3.4), the tap effectively measures the stagnation
pressure and should therefore read a pressure coefficient of approximately one. The
excess in the pressure coefficient measured at this tap was converted into a velocity
correction and added to the measured freestream velocity. The value of this velocity
correction was found to be 0.86m/s which is 8.6% of the used freestream velocity.
This velocity correction, which is much larger than one might expect based on the
model blockage with respect to the OJF outlet, is likely a result of the external end
plates effectively decreasing the outlet area. Using the distance between the external
end plates as the outlet height instead, results in a blockage ratio of approximately 7%
which falls in line with the magnitude of the required correction.



4
Square cylinder CFD

Before the experimental measurement campaign, CFD simulations of flow around a
two-dimensional square cylinder were performed to test the GPOD implementation.
The numerical setup is discussed first in Section 4.1. Resulting flow fields at various
angles of attack are shown in Section 4.2 and discussed briefly. A more detailed
discussion on the numerical results follow from the time-averaged surface pressure
distributions in Section 4.3 were also comparisons to literature are made. Numeri-
cal pressure distributions could eventually be used as training snapshots for sparse
experimental measurements in combination with GPOD but first it is tested how well
purely numerical reconstructions based on dominant PODmodes and sparse sensors
perform. Section 4.4 illustrates the dominant POD modes while the assessment of
Gappy POD reconstruction performance is split up into a section for surface pressure
reconstruction accuracy and drag estimation accuracy in Section 4.4 and Section 4.5
respectively. The CFD results have also been used in an attempt to enhance the qual-
ity of the experimental measurements through a sensor placement strategies, these
are discussed in Section 4.7.

4.1. Numerical setup
A two-dimensional mesh around a square cylinder model is generated using the Ansys
ICEM CFD software. A schematic of the CFD setup is shown in Figure 4.1 together
with parameters used for the simulations in Table. 4.1. The cylinder has a length and
height of L×H = 0.2m × 0.2m and is centered in a domain of size 30L× 30L. Each
of the four sides of the cylinder is discretized using 136 cells resulting in 4× 136 = 544
points at which variables are computed on the cylinder surface. The total number
of cells in the mesh is 124,032. Simulations are performed at a freestream velocity
of 20ms−1 yielding a cylinder side length based Reynold’s number of roughly Re =
300, 000.

45
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Figure 4.1: Schematic CFD setup

Table 4.1: CFD setup parameters

Domain size 6m × 6m
Cylinder size 0.2m × 0.2m
No. cells 124,032

No. cells cylinder 4 × 136
y+ <1
Re 300,000
α 0° to 45°, ∆α = 2.5°

Type Transient, incompressible
Simulation time 6 s

∆t 1ms
Turb. model k − ω SST

The Ansys CFX solver is setup to run unsteady RANS simulations for a total time of
6 s using a timestep ∆t of at most 1ms (timesteps to initialize being smaller). Without
resorting to LES-type approaches, the k− ω SST turbulence model (Menter, 1994) is
expected to be best suited for this application. A total of 19 simulations are run using
an angle of attack from 0° up to and including 45° at an angle of attack ’resolution’
∆α of 2.5°. Surface pressures over the cylinder are saved for each time step in the
time interval from 1.5 s to 6 s to exclude the startup period of the vortex shedding. The
average over these saved time steps are used as time-averaged surface pressure
distributions for each angle of attack.

4.2. Example flowfields
Four flowfields as obtained from the CFD simulations are visualized in Figure 4.2. The
flowfields show streamlines around the cylinder to visualize the flow topology and are
displayed on a background of the time averaged velocity magnitudes.
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Figure 4.2: uRANS time averaged velocity fields including streamlines at angles of attack in both the
sub- and supercritical flow regime.

The flowfield at an angle of attack of 0° shows a flow topology consisting of four clearly
identifiable recirculation regions. Flow separates from the upstream corners and forms
a shallow recirculation region on both face B and face D. The wake consists of two
large recirculation regions which are relatively close to the the surface of the body. At
this angle of attack, the flowfield is symmetric as expected and agrees very well with
the earlier shown flow patterns measured experimentally by van Oudheusden et al.
(2008) in Figure 2.23. This is also the case for the uRANS flowfield visualization at α =
10°. The rotation of the cylinder has caused the recirculation region on face D to merge
with the wake and the detached flow from the bottom left corner gets closer to reat-
tachment as the shear layer approaches the bottom right corner. In accordance with
Figure 2.23, the length of the wake grows considerably. At α = 12.5°, the shear layer
has steadily reattached on face B and the recirculation region is therefore pinched
off. The recirculation regions in the wake seem to have broken up into a very asym-
metric state which deviates from the double recirculation flow topology still visible in
experimental results. Also at an angle of attack of α = 45° does the uRANS flowfield
deviate from experimental results such as shown in Figure 2.24. The behaviour of
the flow around the square cylinder surface is discussed in more detail in combination
with the time averaged surface pressure distributions. These results are shown in the
following section and will further point out the clear discrepancies between CFD and
experimental results which seem to have appeared from the shear layer reattachment
at the critical angle of attack onwards.

4.3. Surface pressure results
The obtained time averaged surface pressure distributions as a function of the angle
of attack are shown in Figure 4.3. For clarity these figures include only the pressure
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distributions at a 5° angle of attack interval. The pressure coefficients Cp are obtained
by normalizing the surface pressure by the dynamic pressure q = 1

2
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Figure 4.3: uRANS time averaged pressure distributions for α = 0° to 20° (a) and α = 25° to 45° (b)

The results indicate a stagnation point on face A of the cylinder for α < 45°. At α =
0°, the pressure distribution is symmetric and achieves Cp = 1 around ψ = 45°. For
increasing angle of attack, the stagnation point moves in the direction of the corner at
ψ = 90° and skews the distribution at face A until eventually at α = 45°, the distribution
on face A is symmetric with respect to face B. Following the flow regime classifications
described in Section 2.9.1, Figure 4.3a shows a transition from the subcritical to super-
critical regime between α = 10° and 15°. Where for α < 15° pressure on face B is low
over the majority of the face and rises towards face C, α = 15° shows a clear peak in
pressure on face B corresponding to a reattached shear layer near ψ = 180°. Despite
not being shown in the above figures, the reattachment of the shear layer indicated
by this peak in pressure is visible already at α = 12.5° meaning that 10°≤ αcrit ≤ 12.5°.
Below αcrit, the pressure on face C should increase for increasing angle of attack as
the vortex formation region in the wake moves downstream according to Lee (1975).
This does not seem to be the case for the CFD results at α = 0° and 5° however the
base pressure increases considerably from α = 5° towards a maximum at α = 10°.
Since the reattachment of the shear layer at αcrit coincides with a maximum in the
base pressure, the critical angle of attack using this CFD setup is thus likely closer to
α = 10°.

The CFD pressure distributions within the subcritical regime seem to follow the char-
acteristics described in Section 2.9. In the supercritical regime, CFD results on face
B show the growth of the reattached region for increasing angle of attack as expected.
Faces C and D however experience a rapid drop in pressure for increasing angle of at-
tack, especially near ψ = 270° which is not described in any of the experimental results
referenced in Section 2.9. The transition from sub- to supercritical regime therefore
seems to mark the boundary from which the RANS results start to deviate significantly
from literature. This is further illustrated by the comparisons between CFD and results
from literature shown in Figure 4.4.
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Figure 4.4: uRANS pressure distribution comparison to experimental results at α = 0° (a) and
uRANS drag curve comparison to experimental results (b)

Figure4.4a, compares the CFD pressure distribution results at α = 0° to experimental
results found by Chen and Liu (1999) and Lee (1975). Even though differences are
visible, the general shape of the time-averaged uRANS pressure distribution agrees
well with the experimental results which holds true for all angles of attack in the sub-
critical regime. A decreasing pressure on faces C and D for increasing angle of attack
above αcrit is reported throughout literature (see Lee (1975) for example) however the
effect seems to be greatly overpredicted in the CFD results judging from the overesti-
mation of the drag coefficients in Figure 4.4b from α = 12.5° onwards.

A similar overprediction of the drag by uRANS was experienced by Mueller (2012).
Mueller compared the pressure distributions obtained through uRANS simulations to
those from LES simulations and experiments. The experimental and time-averaged
uRANS pressure distributions at α = 45° are shown in Figure 4.5a together with the
uRANS results at the same angle of attack from Figure 4.3b.
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Figure 4.5: uRANS pressure distribution comparison at α = 45° to experimental and uRANS results
from Mueller (2012) (left) and flowfield visualization at α = 45° of the uRANS results from Mueller

(2012) (right)
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The numerical pressure distributions in Figure 4.5a show much similarity and under-
predict the experimental pressure distribution by more than 1 in terms of Cp on faces
C and D. The drag coefficient corresponding to the uRANS pressure distribution of
Mueller at this angle of attack is included in Figure 4.4b as well as those for α = 13°
and 0° which all match the current report’s numerical results. By comparing experimen-
tal flow visualizations to the numerical results, Mueller found that uRANS incorrectly
produces a set of secondary vortices near the corner at ψ = 270°, not present in ex-
periments, in addition to the large recirculation regions in the wake. These vortices
decrease pressure with an overprediction of the drag as a result. A visualization of
the flowfield at α = 45° as obtained by Mueller is shown in Figure 4.5b. The sec-
ondary vortices are clearly visible and the overall flowfield resembles that shown in
Figure 4.2 very well. This leads to the conclusion that the large differences between
literature and the current report’s numerical results are caused by poor performance
of the RANS approach in the supercritical regime and instead an LES-type approach
would be necessary to obtain accurate numerical results.

Despite these disappointing results from the numerical simulations in especially a
quantitative sense, the general expected trends in the behaviour of the pressure dis-
tributions can still be recognized. Since POD is a purely data-driven approach, there
is no inherent reliance on the quantitative accuracy of the simulations. The numerical
pressure distributions can therefore still serve as a more complex case for GPOD re-
constructions and provide sensor locations suited for experiments as well based on
the dominant POD modes identified.

4.4. Surface pressure POD analysis
Since the square cylinder is symmetric about the diagonal through ψ = 90°, the pres-
sure distributions from α = 0° to 42.5° can be mirrored to obtain 37 pressure distribu-
tions in total covering α = 0° to 90° at a 2.5° interval. The 19 pressure distributions
corresponding to integer multiples of α = 5° (including α = 0°) have their mean across
the angles of attack subtracted and are stored in a matrix for POD to be applied. This
matrix thus consists ofm = 19 rows and n = 544 columns and is used as training data
to characterize the square cylinder flow pressure distributions from the CFD results.
The remaining pressure distributions not included in this training data will be used for
GPOD reconstructions in Section 4.5.

4.4.1. Eigenvalue spectrum
The POD procedure applied to the training matrix yields the orthogonal eigenmodes
in columns of Φ ∈ Rn×m and corresponding coefficients in A ∈ Rm×m. Since the
parameter varied throughout the training data is the angle of attack, the coefficients
are a function of α and will therefore be referred to as α-coefficients. Eigenmodes
are ordered following the eigenvalue magnitudes which indicate the relative variance
captured per mode. The eigenvalue spectrum of the CFD pressure distributions is
shown in Figure 4.6.
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Figure 4.6: Individual (a) and cumulative (b) energy capture of the eigenvalues corresponding to
CFD pressure distributions

Figure 4.6a shows the individual normalized magnitudes of the eigenvalues and Fig-
ure 4.6b the cumulative normalized magnitude. The mathematical definitions of EK

and EK,cumulative are stated in Equation 2.19 and are often referred to in terms of en-
ergy capture. The individual energy capture of the first eigenvalue is 68% which is by
far the largest compared to an energy capture of 24% and 4% of the second and third
eigenvalue respectively. This dominance of the first few eigenvalues results in 5 out of
the 19 eigenvalues capturing already over 99% of the total energy. Such rapid decay
in the eigenvalues is desired from a reduced order model point of view but does not
necessarily result in accurate reconstructions. For this, the eigenmodes from training
should be representative for the pressure distributions to be reconstructed as well and
the loss due to sparse sampling should be kept to a minimum using tailored sensor
locations.

4.4.2. Dominant eigenmodes
With the first few eigenvalues dominating in terms of energy capture, the correspond-
ing eigenmodes capture prominant features present throughout the training data. In
Figure 4.7 the first two eigenmodes and corresponding α-coefficients are shown which
can be used to illustrate how many of the features visible in the pressure distributions
from Figure 4.3 are encoded in a low-rank representation.
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Figure 4.7: First and second spatial eigenmodes (left), first and second α-coefficients (right) for CFD
square cylinder case

The eigenmodes have the same dimension as the provided training pressure distri-
butions and can thus be visualized in the same format. The resulting figures con-
tain pressure distribution-like shapes but contain information regarding the spatial
(anti)correlation, hence: spatial eigenmodes. The first eigenmode resembles the pres-
sure distribution at α = 0° or 90° and shows how the pressure on face A tends to be
anti-correlated with that on face B. Together with the first set of α−coefficients as a1Φ

T
1 ,

this eigenmode describes the gradual shift in the high pressure region from face A at
α = 0° to face B at α = 90°. At α = 45°, the pressure distribution does not contain
features present in the first eigenmode and as a result, the α-coefficient is zero. The α-
coefficients thus activate certain modes more or less depending on the angle of attack.

The second eigenmode instead does resemble the pressure distribution around α =
45° and can be seen to be most active in this angle of attack range from the α-
coefficients. The two modes together as a rank two approximation therefore capture
the general trend throughout the angles of attack. Close to α = 0°, the first eigenmode
is most active but the second eigenmode does not have a zero contribution. For in-
creasing angle of attack, the presence of the first eigenmode drops as the pressure
distribution deviates from resembling that of α = 0° (or 90°). Around α = 45°, the
second eigenmode is most active in the rank two approximation. The pressure distri-
butions at the remaining angles of attack are characterized by the growing/shrinking
region of reattached flow on face B which both shown eigenmodes would not be able
to reproduce and for which additional modes would be necessary. A small number
of modes can thus be used to identify underlying trends in data however increasingly
fine details require higher order modes.

4.5. Numerical surface pressure reconstruction using
GPOD

The complete set of eigenmodes forms a library of square cylinder flow which can
be used to infer full state approximations of the pressure distributions from sparse
measurements using the GPOD approach described in Section 2.5. In this section,
examples of reconstructed pressure distributions will be shown and the accuracy of
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the reconstructions will be quantified in terms of the Root Mean Squared Error for
different sensor budgets.

4.5.1. Reconstruction examples
The eigenmodes were obtained from 19 training pressure distributions at angles of
attack being multiples of 5°. The reconstructions will be performed on pressure distri-
butions which have not been included in the training data as to see if the mode shapes
identified by the POD represent square cylinder flow in general. Pressure distributions
to be reconstructed are made artificially gappy by discarding all data except for a spe-
cific few points which therefore effectively serve as sensor locations. These sensor
locations are determined through application of the QR-CP algorithm as discussed in
Section 2.7. Reconstructions as a result of using 10 sensors and 10 eigenmodes at
α = 12.5° and 42.5° are shown below in Figures. 4.8 and 4.9. Note that the number
of sensors ns is kept equal to the number of modes K used throughout this report for
GPOD reconstructions.
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Figure 4.8: CFD GPOD reconstruction at α = 12.5°, ns = K = 10
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Figure 4.9: CFD GPOD reconstruction at α = 42.5°, ns = K = 10

At α = 12.5°, the shear layer has just reattached at face B and is thus close to the
critical angle of attack with relatively low drag. At α = 42.5°, drag is almost at its
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maximum instead and the two shown distributions thus provide insight in how the re-
constructions perform under different conditions. Using 10 sensors, the percentage of
missing pressure values from the total (gappiness) is 98.16%. The figures include the
non-sparse pressure distribution as a reference for the reconstruction to be compared
with. Clearly, the information contained in the 10 modes used for the reconstructions
extends outside of the training pressure distributions as the reconstructions follow their
respective reference closely. For both angles of attack, faces A and B seem to be re-
constructed more accurate compared to faces C and D. This is better noticeable at
α = 42.5° and is a result of the sensor placement. Since most variance in the pressure
distribution occurs at faces A and B, these faces generally show high modal activity in
the eigenmodes which is favored in the sensor placement through the QR algorithm.
This results in faces A and B containing each 4 out of 10 sensors and faces C and D
1 each. With less sensors acting as constraints, the reconstruction accuracy suffers
slightly at faces C and D. The uneven sensor distribution identified by the QR algo-
rithm makes physical sense however; the sensor locations are symmetric about the
cylinder diagonal and focus on capturing the reattachment of the shear layer through
the positioning over faces A and B. The more predictable behaviour of the pressure
on faces C and D would not require as much information for reconstructions but varies
most extremely near ψ = 270°, exactly where two sensors are placed. The difference
between the reconstruction and reference in terms of RMSE is 2.6 · 10−2 and 3.5 · 10−2

for α = 12.5° and 42.5° respectively.

4.5.2. Pressure reconstruction accuracy
The previous section showed the GPOD reconstruction at only two angles of attack
however reconstructions are generated on all angles of attack in the α = 0° to 90°
range and also for a sensor budget of 1 to 19. For each of these reconstructions
the accuracy is measured in terms of the RMSE with respect to the corresponding
reference pressure distribution. A colormap visualizing these RMSE values are shown
in Figure 4.10.
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Figure 4.10: CFD GPOD pressure distribution reconstruction (top) and projection (bottom) accuracy
for every combination of ns = K and α
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The colormap shown on top presents the RMSE in terms of Cp for the aforementioned
reconstructions. The bottom colormap shows the RMSE of the projection for any com-
bination of angle of attack and number of bases used. These projections are slightly
different from those mentioned in Section 2.3 as the coefficients in A, required for
such a projection, are only defined for the training data. Instead, these POD projec-
tions are achieved by performing GPOD reconstructions using ns = n (and ns ̸= K) as
also mentioned in Section 2.5. This provides a best attainable GPOD reconstruction
for the given number of modes also defined for reconstructions outside of the training
data. Angles of attack for which pressure distributions were included in the training
are indicated with labels on the x-axis but are not the focus of these figures. For those
angles of attack, the RMSE drops to zero (or machine precision) at K = m = 19
for both reconstruction and projection as this reproduces the original training data ex-
actly. Comparing the two colormaps; the projections always achieve lower RMSE’s
as expected however the reconstructions remain close in general. The reconstruction
colormap shows individual angles of attack for which the reconstructions perform rel-
atively poor. This is often the result of the sensor placement for a particular sensor
budget benefiting certain angles of attack more than others, something often occur-
ring with asymmetric sensor positioning for example.

The format of Figure 4.10 makes it difficult to asses how close projection and recon-
struction are in a quantitative sense and specifically for the non-training angle of attack
pressure distribution reconstructions. Therefore, the accuracy of reconstructions and
projections across these non-training angles only are quantified using a single RMSE.
This is again done for ns = K ranging from 1 to 19 which results in Figure 4.11. Note
that this is not equal to averaging the RMSE across columns corresponding to non-
training angles of attack due to the order of operations.
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Figure 4.11: CFD GPOD surface pressure reconstruction accuracy for increasing number of modes
and sensors

With each additional mode added to a projection being utilized to full extend as no ’gap-
piness’ is considered, the projection curve decreases monotonically. The projection
curve reaches RMSE values in the order of 10−2 already at 3 bases used and even-
tually drops below 1 · 10−2. These low RMSE values compared to the magnitudes
of the pressure coefficients of the numerical square cylinder simulations imply that
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the POD bases obtained through the training data are representative for the pressure
distributions used for the reconstructions. The differences between the projections
and reconstructions remain small over the ns = K range with an average distance
between the curves of 1.7 · 10−2 (generally decreasing for increasing ns = K). This
demonstrates how the QR sensors are successful in sampling high modal activity
across the used modes, corresponding to coherent patterns, and in the process allow
the reconstructions to overcome introduced sparseness to a large extent. Despite the
near-optimality of the QR algorithm for sensor placement (Brunton and Kutz, 2019),
the greedy approach might lead to the ’trajectory’ being followed during the sensor
locations assignment for a particular sensor budget to be sub-optimal. This mani-
fests itself in the somewhat more erratic and non-strictly decreasing behaviour of the
GPOD reconstruction curve compared to the projection and is mainly recognizable at
ns = K = 9 for this particular case. Based on Figure 4.11, a choice on the required
number of sensors for sparse sampling can be made with the aim of reaching a certain
level of average accuracy in predicting the surface pressure.

4.6. Numerical drag estimation using GPOD
An approximation of the drag using sparse surface pressure measurements can be
obtained by integrating the reconstructions discussed in the previous section. This al-
lows for pressure drag approximations only which for bluff bodies like a square cylinder
are expected to not differ much from the total aerodynamic drag (see Section 5.2.2 for
a comparison between experimental pressure drag and balance drag results). The re-
sults of approximating drag through reconstructing pressure distributions with GPOD
are discussed in the following sections. Note that all drag estimations are obtained by
integrating surface pressure around the cylinder perimeter using the trapezoidal rule.

4.6.1. Drag estimation examples
An example of the approximated drag coefficients over the complete angle of attack
range is provided below in Figure 4.12 for ns = K = 10. The reference drag curve
included is obtained by integrating the known full pressure distribution corresponding
to a sparse reconstruction.
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Figure 4.12: CFD GPOD drag curve reconstruction using ns = K = 10
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Angles of attack indicated with a ticklabel are again those originally included in the
training data and will therefore not be the focus of the discussion. Using ns = K = 10,
the RMSE in terms of the Cp was shown earlier to be small on average and yielded
reconstruction examples such as those shown in Figure 4.8 and 4.9 which clearly re-
semble the reference very well. It is therefore not surprising to see the approximated
drag coefficients generally lie in close proximity to the reference drag across the angle
of attack range. Despite visible discrepancies between reference and reconstruction
in Figure 4.8 and 4.9, the corresponding approximated drag coefficients almost per-
fectly match those of the reference which highlights an inherent aspect of computing
drag through surface pressure integration; where determination of the RMSE between
surface pressure distributions does not consider the sign of the errors made, integra-
tion of the reconstructed surface pressure does depend on the reference pressure
being under- or overpredicted. For α = 12.5° and 42.5°, the combination of cylinder
orientation and pressure reconstruction, especially on faces C and D, result in errors
cancelling in the computation of the drag coefficient. This does not happen for the re-
construction at α = 27.5° or 63.5° for example where errors in the drag estimation are
the result of accumulating pressure underprediction across cylinder face C or D. Such
relatively large drag estimation errors do not seem to happen as clearly for any of the
remaining angles of attack however illustrates how accurate surface pressure distri-
bution reconstructions do not necessarily yield drag predictions accurate to the same
extent. The reference drag curve is perfectly symmetric through α = 45° by construc-
tion however this does not hold in general for GPOD reconstructions. The GPOD
curve being visually symmetric still is a result of the even number of sensors being
positioned almost symmetrically about the cylinder diagonal by the QR algorithm.

4.6.2. Drag estimation accuracy
Drag curve reconstructions such as in Figure 4.12 are obtained for ns = K = 1 to
19. By only considering the drag coefficient approximations corresponding to ’non-
training’ angles of attack, the GPOD drag estimation accuracy is quantified in terms
of RMSE with respect to the reference drag. The resulting graphs are shown in Fig-
ure 4.13 which again includes a POD projection curve obtained by integrating the POD
projection surface pressure instead of the reconstructions.
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Figure 4.13: CFD GPOD drag curve reconstruction accuracy for increasing number of modes and
sensors

The behaviour of both the projection and reconstruction curves in Figure 4.13 is clearly
very different from that observed in Figure 4.11. The projection curve is not smoothly
decreasing but instead follows decreasing steps for increasing K. These sudden
drops in the projection correspond to the inclusion of eigenmodes that focus most
modal activity on faces C and D of the cylinder. Such modes offer a correction to
the pressure reconstructions on faces C and D which generally contain a large part
of the CD error in the form of accumulating constant under- or over prediction. The
projection loses its meaning as a best attainable GPOD reconstruction when quanti-
fying drag estimation accuracy. This is clearly visible at ns = K = 5 where the RMSE
of the reconstruction falls below the projection. Such phenomena can be caused
by sensor locations involved in pressure distribution reconstructions constraining the
eigenmodes such that ’coincidentally’ accurate drag coefficient approximations result
despite a larger RMSE in terms of Cp with respect to the projection. An example of
this is the pressure distribution and corresponding drag coefficient reconstruction at
α = 42.5° using ns = K = 10 shown in Figure 4.9 and discussed in Section 4.6.1.
With an increase in sensor budget and number of modes, one effectively increases
the information available to be sampled from the QR sensors. This generally results
in decreasing Cp RMSE, unless the greediness of the QR algorithm fails to exploit
this. The decrease in Cp RMSE however is often realized by a significantly changed
pressure distribution reconstruction around the added sensor which alters the drag
estimation accuracy for each increase in ns = K. This causes the erratic behaviour to
appear in Figure 4.13 for reconstructions where this is not the case to the same extent
for the projections. Despite accuracy gains for increasing sensor budget not being as
predictable in terms of CD RMSE compared to that of Cp, the general trend is clearly
decreasing. As can be seen from the drag coefficients in Figure 4.12, which achieved
an overall RMSE in terms of CD of 2.4 · 10−2, drag prediction close to the reference
is possible at a significantly decreased number of sensors while providing physically
valid pressure distributions as well.
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4.7. CFD based sensor placement
Despite large discrepancies between the CFD results and literature in especially quan-
titative sense, the characteristics and patterns observed in the numerical pressure dis-
tribution results have been used for the experimental test object by forming the basis
of additional pressure tap plates to be used. These were already shown in Section3.2
however the reasoning behind cosine, Opt V1 and Opt V2 pressure tap plates will be
discussed briefly.

4.7.1. Tap distribution for pressure drag determination
For various angles of attack, the flow separation from the cylinder corners induces
steep pressure gradients also visible in the CFD results. Such gradients might re-
quire increased spatial resolution to be resolved sufficiently and obtain representative
experimental pressure distributions. For the CFD simulations this is not of concern
however the spatial resolution achievable during experiments is considerably lower
with at most 32 taps available around the object perimeter. The CFD pressure distri-
bution results are sampled around the cylinder perimeter with generic even spacing
and cosine spacing which has decreased distance between taps towards the corners.
The resulting pressure distributions are integrated and the drag found compared to
the original high resolution CFD drag coefficients. This is done using 1 to 8 taps on
each cylinder face.
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Figure 4.14: RMSE in the CFD CD for even or cosine spaced pressure taps

Results are shown in Figure 4.14. Even using a small number of taps, clustering
towards the cylinder corners with cosine spacing seems to result in slightly more ac-
curate drag coefficients than evenly spaced taps. With at most 32 taps available for
the experiments, each face can have a maximum of 8 taps installed. At 8 taps per
side, the cosine tap spacing achieves a smaller RMSE CD compared to the even spac-
ing but the difference is small at 1 · 10−2 since increasing tap density near the edges
requires sacrificing it near the center of a cylinder face. Regardless, a set of pressure
tap plates containing 32 taps with each plate having 8 taps following a cosine spac-
ing is manufactured to be used during experiments as well. A schematic of the tap
locations was shown earlier in Figure 3.4.
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4.7.2. QR-CP sparse sensor locations
The QR-CP algorithm was found to produce sensor locations capable of keeping
GPOD reconstructions close to POD projections when used in combination with the
CFD results. The same sensor positioning approach would work with experimental
pressure distributions obtained through 32 pressure taps as well however no sensor
locations outside of the original 32 taps can be selected for sparse reconstructions. To
overcome this, the high spatial resolution of the CFD results can be used to determine
sensor locations for use during the experiments instead. Since QR sensor locations
are determined though the POD modes, this requires a certain level of resemblance
between the CFD eigenmodes and those obtained from the experimental campaign
to work effectively. CFD based QR sensor locations have been made into two sets of
pressure tap plates on top of the even and cosine spaced plates.

The sensor locations used in the GPOD reconstruction Figures. 4.8 and 4.9 were
obtained at ns = K = 10 with training data consisting of the pressure distributions
corresponding to angles of attack being multiples of 5°. These 10 sensor locations
correspond to positions on the cylinder perimeter indicated by tap 1 until 11 except for
tap 2 as shown in the Opt V2 row of Table. 4.2. Using ns = K = 5 instead yields QR
sensor locations corresponding to tap 2, 4, 7, 10 and 11 of the Opt V2 row in Table. 4.2
and are thus almost entirely nested in those of ns = K = 10. Both these sensor loca-
tion sequences identified for more or less sparse reconstructions are made into a set
of pressure tap plates referred to as Opt V2, containing taps at the 11 locations tabu-
lated. A visual representation of the Opt V2 tap locations was presented in Figure 3.4.
A final set of pressure tap plates was made by changing the training data. By instead
using the CFD pressure distributions corresponding to angles of attack 0° to 90° in 10°
intervals including α = 45° as training, the eigenmodes change and therefore the QR
sensor locations as well. With this training data, sensor locations for ns = K = 10 are
tap 1 until 10 of the Opt V1 row in Table. 4.2. Using ns = K = 5, tap 1, 4, 6, 7 and 9
are used which are thus completely nested into the taps for ns = K = 10. These tap
locations were also included in a schematic view in Figure 3.4.

Table 4.2: Opt V1 and Opt V2 sensor locations given by sensor angle ψ.

Tap 1 2 3 4 5 6 7 8 9 10 11
Opt V1 5° 45° 74° 88° 92° 110° 158° 232° 273° 299°
Opt V2 ψ

5° 29° 58° 76° 88° 92° 104° 122° 175° 267° 273°

Both these pressure tap plate sets have been used during experimental surface pres-
sure measurements as described in Section 3.5.1. The results will therefore be shown
and discussed in Section 5.1.2. Unfortunately however, asymmetry with respect to
the square cylinder diagonal for both tap configurations on the Opt V1 plates and the
ns = K = 5 tap configuration on the Opt V2 plates makes it difficult to use the cor-
responding pressure measurements for GPOD reconstructions as the results can not
be mirrored. The tap configuration for ns = K = 10 using Opt V2 plates is symmet-
ric and therefore its results can still be used for GPOD reconstructions which will be
discussed in Section 5.8.
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Results and discussion

In the following chapter all results based on the windtunnel campaign are presented an
discussed. First, in Section 5.1, the time averaged surface pressure distributions are
shown for a square cylinder at angles of attack from α = 0° to 45° and also for each of
the used pressure tap layouts. The surface pressure distributions are discussed and
compared to experimental results reported in literature. Force balance measurements
are also used in a comparison with literature and provide a method of independent vali-
dation for the experimental surface pressure distribution measurements as well in Sec-
tion 5.2. In Section 5.3, the square cylinder flow eigenvalue spectrum and dominant
eigenmodes are analysed using POD. These eigenmodes provide the basis for GPOD
reconstructions using only sparse surface pressure measurements of which the pres-
sure distribution reconstruction accuracy and drag estimation accuracy is quantified
in Section 5.4 and Section 5.5 respectively. Based on the insights into GPOD recon-
struction behaviour obtained, some typical sources of sparse reconstruction errors
are discussed in Section 5.6. Accuracy of both surface pressure reconstructions and
drag predictions by GPOD are compared to linear interpolation in Section 5.7. The
remaining Section 5.8 and Section 5.9 describe the attempts of fusing CFD into the
GPOD procedure to an increasingly large extent.

5.1. Surface pressure measurements
Each of the tap distributions shown in Section 3.2 have been used for surface pressure
distribution measurements twice following the information in Section 3.5.1. The aver-
age over the two α−sweeps per tap distribution are computed which will be shown
and discussed in the following sections.

5.1.1. Even and cosine spaced taps
For clarity of the figures, only pressure distributions corresponding to angles of attack
being multiples of 5° are shown in Figure 5.1. Markers on the pressure distributions
correspond to the actual locations of individual pressure taps on the cylinder perimeter.
The coordinate system used is the same as that shown in Figure 3.4.
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Figure 5.1: Experimental time averaged pressure distributions for α = 0° to 20° (a) and α = 25° to 45°
(b), evenly spaced taps. Convention for angles ψ and α shown in bottom left of (b)

Throughout the measured angle of attack range, side A tends to face the incoming
flow and experiences no flow separation. At α = 0°, a pressure coefficient of 1 is
reached around ψ = 45° indicating the stagnation point. As expected, this stagnation
point moves towards the corner at ψ = 90° for increasing angle of attack, skewing the
pressure distribution on face A in the process. Faces B, C and D experience more
complex flow phenomena at different angles of attack and follow the flow regime clas-
sifications by Huang et al. (2010) described in Section 2.9.1.

Below the critical angle of attack (typically between 10° and 15°), Figure 5.1a shows
the pressure on face C and D increasing for increasing angle of attack. This is caused
by elongation of the wake and consequent downstream shift of the vortex formation
region (van Oudheusden et al. (2008), Lee (1975)). At the critical angle of attack,
pressure on face C reaches a maximum (corresponding to minimum drag) and the
shear layer separated from ψ = 90° reattaches just upstream of ψ = 180° on face B.
At α = 15°, the pressure on face C seems to reach a maximum equal to that of α = 10°
while it shows signs of well established reattachment on face B already through the
peak in pressure. A more precise identification of the critical angle of attack therefore
requires the distribution at α = 12.5° as shown in Figure 5.2.
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Figure 5.2: Experimental surface pressure distributions around the critical angle of attack, evenly
spaced taps

The above figure clearly shows how amaximum base pressure is reached at α = 12.5°
instead. Also, pressure on face B close to ψ = 180° is increased with respect to α = 10°
but does not contain a ’reattachment peak’ as for α = 15° meaning that α = 12.5° can
be identified as the critical angle of attack from the measurements. This critical angle
of attack marks a transition in the behaviour of the pressure distributions, mainly on
faces B, C and D. Above the critical angle of attack, the wake instead shortens bring-
ing the vortex formation region closer to the cylinder, decreasing pressure on faces C
and D. This effect is clearly visible in Figure 5.2 where the base pressure at α = 15°
is practically equal to that at α = 10° and also decreases steadily for increasing angle
of attack as seen in Figure 5.1b. With face B becoming increasingly exposed to the
external flow above the critical angle of attack, the point of reattachment traverses up-
stream towards ψ = 90°. The exact location of reattachment is difficult to identify from
the surface pressure distributions; however the peak in pressure encompassing the
reattached region can clearly be seen to increase in size (spatial extent and pressure
at peak) in Figure 5.1b. Above α = 5°, the pressure distributions on faces C and D
become similar in magnitude as the recirculation region on face D is expected to have
merged with the recirculation region in the wake following the results and discussion
by van Oudheusden et al. (2008). A slight asymmetry remains however in the form of
a small pressure dip on face D near ψ = 270° which gradually decreases as the angle
of attack reaches α = 45° and the pressure distribution is roughly symmetric. This
small dip seems to indicate the presence of a small secondary recirculation region on
face D caused by the reversed flow not being able to follow the sharp cylinder corner
at ψ = 270° as it leaves face C. Note that this phenomena seems to be somewhat
visible in the earlier shown results of both van Oudheusden et al. (2008) and Roosen-
boom (2005) but is not mentioned explicitly. Since the pressure distribution over faces
C and D does not change significantly from α = 35° onwards, it is believed that the
aforementioned secondary circulation bubble has merged with the wake and the flow
topology in the wake has reached a similar state to the wedge flow reported by Huang
et al. (2010) to occur at α = 45°. This flow topology is characterized by two large re-
circulation regions in the wake which completely engulf faces C and D leading to little
variance in the pressure distribution on those faces as seen in Figure 5.1b. This con-
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firms how the formation and growth of a secondary set of recirculation regions near
ψ = 270° as visible in the CFD results is completely unphysical.

Pressure distributions obtained at the same angles of attack but instead using the
cosine spaced pressure taps are shown below in Figure 5.3. No changes in the overall
flow phenomena are expected nor observed and thus the discussion of the cosine
pressure distributions will mainly focus on differences in small details compared to the
even placed tap results.
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Figure 5.3: Experimental time averaged pressure distributions for α = 0° to 20° (a) and α = 25° to 45°
(b), cosine spaced taps

The general shapes of the pressure distributions and relative order between the curves
at different angles of attack match very well with the earlier shown results, indicating
repeatability of the measurements after replacement of the pressure tap plates. Differ-
ences between the even and cosine pressure distributions as a result of the different
tap spacing are mainly visible on face B and near ψ = 270° on faces C and D. Within
the subcritical regime, a slight dip in the pressure is visible on face B near ψ = 180°
which was not visible in the even distributions. This small drop is caused by a similar
phenomena responsible for the dip near ψ = 270° as the periodic shedding of vortices
in the wake produces a time averaged recirculation region with flow along face C that
is not able to follow the sharp corner at 180°, yielding a small recirculating region on
face B near this corner. This recirculation region has a smaller effect than that near
ψ = 270° because of the orientation of the cylinder at positive angle of attack and it
disappears due to the reattachment of the shear layer from the critical angle of attack
onwards. Reattachment of the shear layer produces steep pressure gradients. When
the angle of attack is such that the reattachment point is near ψ = 90° or 180°, the co-
sine spacing can resolve the gradients near these corners better however around ψ =
135° the even spacing has smaller spacing between taps. In the sub- and supercritical
regime, the cosine spacing is able to better capture the small region of recirculation
near ψ = 270° on face D with accompanying local decrease in pressure. Once the
flow topology in the wake has reached a wedge like state (roughly expected from α =
35° onwards), the two large recirculation regions produce flow with a downstream,
time averaged, stagnation point around corner ψ = 270°.This locally induces relatively
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large in velocity magnitude reversed flow over faces C and D leading to the decrease
in pressure which is clearly better captured by the cosine spaced taps.

5.1.2. Opt V1 and Opt V2 taps
The Opt V1 and Opt V2 plates pressure taps are distributed too sparse for sufficiently
resolved pressure distributions around the cylinder perimeter to be presented. Instead,
the variation in pressure of individual taps are shown in Figures. 5.4 and 5.5 over
the measured angles of attack. These figures provide a different perspective on the
pressure variation as a function of angle of attack over the cylinder sides. Taps on
both Opt V1 and V2 are numbered based on their sensor angle ψ.
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Figure 5.4: Experimental time averaged pressure tap measurements for α = 0° to α = 45°, Opt V1
taps
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Figure 5.5: Experimental time averaged pressure tap measurements for α = 0° to α = 45°, Opt V2
taps

The same square cylinder flow phenomena as discussed before are visible in these
figures as well. For small angles of attack, pressures of taps located on face A for
both Opt V1 and V2 are positive as they face the incoming flow. Tap 2 for Opt V1 is
located at ψ = 45° and therefore measures stagnation pressure at α = 0°. Increasing
the angle of attack decreases pressure measured by taps at ψ < 45° as the stagna-
tion point moves away, conversely the pressure increases for taps on face A at ψ >
45°. Within the subcritical regime, pressure on face B can be seen to increase (taps
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5,6,7 Opt V1, taps 6,7,8,9 Opt V2) with increasing angle of attack as the shear layer
intermittently reattaches. With steady reattachment of the shear layer on face B at
the critical angle of attack αcrit = 12.5°, pressure drops across face B except for the
region in proximity to the reattachment point such as tap 9 at the Opt V2 plates. While
the reattachment point traverses upstream for increasing angle of attack, the pressure
measured by taps on face B increases; steeper and sooner for taps positioned closer
to ψ = 180°.

Faces C and D contain a small number of taps for both Opt V1 and Opt V2 plates
and do not experience a transition from separated to attached flow, leading to rel-
atively small pressure changes for varying angle of attack. Clearly recognizable is
the increase in base pressure in the subcritical regime towards a maximum at αcrit

through tap 8 of Opt V1. Pressure measured by this tap decreases again after αcrit

and is proportional to the position of the vortex formation region with respect to the
cylinder; increasing base pressure in the subcritical regime as a result of an elongated
wake and downstream moving vortex formation region, decreasing pressure in the su-
percritical regime with the recirculation regions moving closer towards the body (see
Figure 2.23). Pressure measured by tap 10 on Opt V2 is equal to that of tap 11 at
α = 45° as a result of the symmetry about the cylinder diagonal. This can be seen to
hold true for all ’couples’ of taps on Opt V2 as the tap distribution is symmetric with
the exception of tap 2.

5.1.3. Comparison to literature
The measured surface pressure distributions adhere to the qualitative flow descrip-
tions of Igarashi (1984) and Huang et al. (2010). To see if the results agree with those
reported in literature in a quantitative sense as well, the pressure distributions at α =
0° and 12.5° are compared with earlier referenced papers. A comparison across all
measured angles of attack will be discussed in Section 5.2 in terms of the drag coeffi-
cients instead.
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Figure 5.6: Current experiment pressure distribution comparison to available experimental result at
α = 0° (a) and α = 12.5°

Most of the research on square cylinder flow focuses on the α = 0° case. In Fig-
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ure 5.6a, pressure distributions at this angle of attack from Chen and Liu (1999), Lee
(1975), Mueller (2012) and Igarashi (1984) are shown together with the current exper-
iment’s results. The low pressure sides, B, C, and D at this α, are of most interest as
they contain considerable variance in the by literature reported measurements. Pres-
sure coefficients reported by Igarashi are considerably lower with respect to the other
references which in turn are all offset below the current experiment’s results. Igarashi
himself attributes the deviation partly to wind tunnel blockage (up to 10%) however as-
pect ratio and wind tunnel test section type likely also play a role. All shown pressure
distributions at this angle of attack agree in shape however with pressure on face C
being increased with respect to faces B and D.

Pressure distributions reported close to the critical angle of attack are more scarce
and are relatively dependent on the Reynolds’s number. Lee however performed ex-
periments at a Reynold’s number close to the current experiment’s (Re = 1.76 · 105
compared to 1.35 · 105) and reported the critical angle of attack pressure distribution
which is shown in Figure 5.6b. Lee measured the exact same critical angle of attack
being 12.5° and the shape of the distribution matches the current experiment’s almost
perfectly. A similar offset of nearly 0.5 in terms of Cp as for α = 0° persists however.
This seems to indicate a systematic difference between the current experiments and
those of the reference papers. This will be discussed more in Section 5.2 where its
effect over all angles of attack is clearly recognizable in the CD versus α curve.

5.2. Drag measurements
Force balance measurements performed simultaneously with the surface pressure
measurements provide quantitative drag forces independent of the pressure tap lay-
out used. These balance drag measurements are compared to literature first in Sec-
tion 5.2.1. After this, differences between obtaining drag through a force balance
compared to surface pressure integration using different tap layouts will be discussed
in Section 5.2.2.

5.2.1. Force balance CD versus α and comparison to literature
With four sets of pressure tap plates, each used for two α-sweeps, a total of eight
α−sweeps are performed during which balance measurements have been acquired
as well. Unlike the surface pressure measurements using different tap layouts, all bal-
ance measurements performed at the same angle of attack are compatible, allowing
for a single force balance CD vs α curve to be obtained by averaging over the eight
times each angle of attack is used during measurements. This drag curve is shown
including the standard deviation at each angle of attack in Figure 5.7. Drag curves as
measured by selected literature are included as well for reference.
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Figure 5.7: Drag coefficient versus angle of attack as measured by force balance during
experimental campaign. Including reference results from literature

The phenomena causing the pressure measurements, especially on faces B, C and
D, to be more negative with respect to literature seem to have been picked up by the
force balance as well. This causes an almost constant offset in the drag coefficients
over the entire angle of attack range. Regardless, the shape of the current exper-
iment’s drag curve adheres to the square cylinder flow regime classifications and is
very similar to the provided references. A clear distinction between the sub- and super-
critical flow regime is marked by the change in slope corresponding to a critical angle
of attack of 12.5°. This agrees well with those from the references despite Carassale
et al. (2014) stating a strong sensitivity to test conditions. The variance in the drag co-
efficients of the subcritical regime are noticeably smaller than those towards α = 45°.
The magnitude of the variances seems proportional to visually observed oscillations
of the test object during the measurements. Variation in stiffness of the test object as
a function of angle of attack might therefore have played a role in the repeatability of
measurements at different angles of attack.

The remarkable offset of the measured drag curve compared to the provided refer-
ence drag curves is possibly caused by two reasons. First, all reference drag curves,
except for Mueller, have been obtained through measurements in closed test sec-
tion windtunnels different from the open test section used in the current experiment.
The presence of walls around the entire model eliminates the possibility of downwash
over the model interfering with the vortex formation behind the cylinder. Zhao et al.
(2021) investigated that for a true three-dimensional square cylinder flow, such down-
wash increases the downstream distance at which the vortex street forms, which in-
creases base pressure hence decreases drag. In other words, deviation from two-
dimensionality as a result of an open test section might have delayed the vortex for-
mation despite the attempt to counter this using large end plates. The relatively low
aspect ratio of the current experiment’s test object could have enhanced the influence
this has as well. Second, none of the included references corrects for blockage as the
blockage ratio is generally low. Regardless this might lead to a slight overprediction
in drag. Only the experiments performed by Mueller are performed in a somewhat
similar open test sectioned windtunnel while using end plates as well which could be
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the reason for those results being the closest to the current experiment’s.

5.2.2. Drag through force balance versus surface pressure integra-
tion

Force balance measurements were mainly taken for validation of the surface pres-
sure measurements as they are assumed to measure the true total drag experienced.
Since gappy POD will be used for drag estimation by means of reconstructing sparse
surface pressure distributions, the non-sparse surface pressure distributions them-
selves should yield an accurate drag estimate to the balance results. Drag from sur-
face pressure is obtained through integration over the cylinder perimeter for the even
and cosine spaced pressure tap plates. Resulting CD versus α curves are shown in
Figure 5.8 where they are compared to the balance results. Note that surface pressure
results were averaged over the two α-sweeps performed for each set of plates, drag
measurements shown are therefore averaged over the two sets of measurements
corresponding to the surface pressure measurements.
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Figure 5.8: Integrated pressure drag compared to balance drag for even (a) and cosine (b) spaced
taps. Root Mean Squared Difference (RMSD) between pressure tap and balance values reported in

the box at the top left.

Following the expectations based on Section 4.7.1, the drag coefficients obtained by
integrating the cosine spaced pressure distributions are slightly closer to the balance
measurements in terms of root mean squared deviation. Regardless, with a RMSD of
0.034 in terms of CD and a maximum difference of 3.5% with respect to the balance,
the even spaced taps results are also very representative of the experienced drag. In
both figures, the pressure tap drag curve lies slightly above the balance drag curves.
By obtaining drag through integrating surface pressure along a single section of the
cylinder while using the model side length as a reference, an indirect assumption is
made that the integrated pressure distribution spans the entire height of the model.
Near the top and bottom of the model however, a boundary layer originating from
the end plates will cause the pressure distribution to locally be decreased in magni-
tude by the decrease in flow velocity resulting in an overprediction in total drag when
unaccounted for. This seems to overpower the underprediction of total drag by the
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pressure taps as a result of neglecting friction, which is not surprising for bluff bodies.
Overall, drag obtained through pressure taps and balance agree well and since sec-
tional pressure distribution integration inherently assumes two-dimensional flow while
the force balance does not, it seems like a nominally two-dimensional flow has thus
been realized past the model.

5.3. Surface pressure POD analysis
The experimental even and cosine surface pressure measurements are in the same
format as the numerical results; application of the POD procedure is therefore identical
to that described in Section 4.4. Surface pressure distributions from α = 0° to 42.5° are
again mirrored to obtain 37 surface pressure distributions spanning the range of α = 0°
to 90° at a 2.5° interval. From these 37 pressure distributions, those 19 corresponding
to angles of attack being an integer multiple of 5° (including α = 0°) are used as
training data, the remaining distributions are to be focused on for reconstruction. Since
experimental pressure distributions using even and cosine tap layouts are obtained
using 32 taps, the training data stored in a matrix has shapem = 19 and n = 32. Note
that the average over the angles of attack has been subtracted.

5.3.1. Eigenvalue spectrum
POD applied to the aforementioned training data yields the eigenmodes in Φ ∈ Rn×m

and α-coefficients in A ∈ Rm×m. The eigenvalues used for ordering the eigenmodes
provide insight into the energy distribution or variance capture over the modes and
are shown in Figure 5.9. Note that POD is applied to data obtained using even and
cosine tap layouts separately.
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Figure 5.9: Individual (a) and cumulative (b) energy capture of the eigenvalues corresponding to
experimental pressure distributions

The definitions of EK and EK,cumulative are stated in Equation 2.19. The individual
eigenvalues of both the even and cosine data decay rapidly in roughly the same man-
ner. The first three eigenvalue energy levels for the even data are 82%, 13% and
4% respectively. The first three for cosine data are 78%, 15% and 4%. The magni-
tude of the first eigenvalue for both even and cosine data is thus significantly larger
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than that of the CFD results. This is caused by the much higher spatial resolution of
the CFD results being able to resolve finer details and the non-physical behaviour in
the numerical distributions which both dilute the energy contents of individual modes.
Out of the 19 eigenvalues, 4 are enough for the even data to reach the 99% mark
in Figure 5.9b while 4 cosine eigenvalues fall just short with 98.9%. The differences
between even and cosine tap spacing might seem small but the difference in energy
distribution over the eigenvalues and thus modes relates back to the differences in
tap layout and their effect in capturing aspects of the pressure distributions. This will
become clearer in Section 5.3.2 through the spatial modes. The rapid decay in eigen-
modes seems promising for accurate lower rank GPOD reconstructions, however the
reconstruction accuracy will also depend on the sensor locations when only sparse
measurements are available and the ability of the modes to represent pressure distri-
butions not included in the training data.

5.3.2. Dominant eigenmodes
In Figure 5.10, the first two POD modes and corresponding α-coefficients are shown
from the experimental surface pressure distributions. The eigenvalue decay was
shown previously to be very rapid, the two modes shown indeed make up over 90%
of the total energy and therefore present a low rank representation of the dominant
underlying features of square cylinder surface pressure distributions.
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Figure 5.10: First and second spatial POD mode (left), first and second α-coefficients (right) from
experimental results

Pressure distributions obtained using even or cosine spaced taps overall showed mi-
nor differences and hence especially the first few modes and coefficients are very sim-
ilar in shape. As was also the case for the CFD results, the first POD mode resembles
the experimental pressure distribution at α = 0° or 90°.The first set of α-coefficients is
almost completely linearly decreasing such that together with the first mode, the shift-
ing high pressure from face A towards face B is captured. Little modal activity is shown
on faces C and D besides the jump at ψ = 270° which will be scaled according to the
value of the α-coefficient. This illustrates how the pressure on faces C and D tends
to be separated by a steep pressure jump near α = 0° and 90° but not close to α = 45°.
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As was also the case for the CFD results, the second experimental mode for both
even and cosine tap layouts resembles the pressure distribution at α = 45° and is also
most active in that region as visible in the α-coefficients. Unlike the first POD mode
and set of coefficients, differences between even and cosine tap layouts are more
pronounced in the second mode and especially in the coefficients. This links back to
the differences in eigenvalues observed in the eigenspectra as shown in Figure 5.9.
The effect of increased tap density near the cylinder corners for the cosine tap layout
compared to the even layout is mainly visible for pressure distributions close to α =
45°. For those pressure distributions, a sharp drop in pressure is visible in the cosine
distributions near ψ = 270° while it is not for the even distributions. Also, the pressure
gradient near corner ψ = 90° is resolved better by the cosine layout. Both these
aspects are captured by the second mode which therefore is emphasized more for
the cosine data as visible in the α-coefficients near 45°. This causes the first cosine
eigenvalue to be slightly smaller than for even and the second one to be larger. The
rank two projection which can be formed using what is shown in Figure 5.10 describes
the underlying trend in the training pressure distributions. High activity of the first mode
near α = 0° and 90° as it resembles the pressure distributions near those angles of
attack but the second mode takes over near α = 45° as the pressure distributions
resemble the symmetric second mode. Relatively little pressure variation occurs on
faces C and D over the angle of attack range, ’low energy’ details on those faces are
therefore mostly accounted for by higher order modes instead.

5.4. Experimental surface pressure reconstruction us-
ing GPOD

Two separate sets of eigenmodes are available, either obtained using the even or
cosine tap layout. These have both been used for sparse reconstructions following
the gappy POD procedure discussed in Section 2.5 but only results obtained using
the even pressure distributions will be shown in this section. Reconstructions using
the cosine pressure distributions are generally similar and are included in Appendix A.
First, example reconstructions at certain angles of attack will be shown after which the
reconstruction accuracy over all angles of attack and levels of gappiness are quantified
in terms of RMSE.

5.4.1. Reconstruction examples
Sparse reconstructions will be performed on pressure distributions which have not
been included in the training data as this will illustrate how well the training data rep-
resents square cylinder flow in general. Like the CFD GPOD reconstructions, dis-
tributions to be reconstructed are made artificially gappy through assigning sensor
locations using the QR-CP algorithm of Section 2.7 and discarding the remaining sur-
face pressure distribution. Reconstructions provided as examples below are those
corresponding to α = 12.5° and 42.5°. Both show a reconstruction performed us-
ing 5 sensors/bases (GPOD 1, ns = K = 5) and using 10 sensors/bases (GPOD
2, ns = K = 10). The reference provided in the background is the pressure distri-
bution at the same angle of attack without any of the pressure measurements being
discarded. It is therefore the non-sparse pressure distribution that should be approxi-
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mated by GPOD.
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Figure 5.11: Experimental GPOD reconstruction at α = 12.5°. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10
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Figure 5.12: Experimental GPOD reconstruction at α = 42.5°. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10

α = 12.5° and 42.5° correspond to pressure distributions at minimum and maximum
drag respectively outside of the training data. The gappiness is roughly 84% and 69%
using 5 and 10 sensors respectively. The GPOD 1 reconstruction in Figure 5.11 shows
already great similarity with the reference. The effect of the pinched recirculation bub-
ble on face B is predicted well even though the pressure distribution at α = 12.5° is
quite unique. Faces A and B contain each two out of five sensors and the remaining
sensor is placed at face C closest to ψ = 270°. This is a result of the QR-CP algorithm
favoring the placement of sensors in high modal activity regions which especially for
the first fewmodes aremainly on faces A and B. The single sensor on face C is enough
to predict the surface pressure across the face however using 5 modes, apparently
no modes with sufficient (anti)correlation to face D are used as to simultaneously pre-
dict pressure on it accurately, resulting in constant under prediction. GPOD 2 using
ns = K = 10 uses the same sensor on face C however adds a sensor close to it on
face D. Together with the additional modes, this results in much closer reconstructions
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to the reference on faces C and D. 8 out of 10 sensors for GPOD 2 are placed on faces
A and B which also here yield an improvement upon GPOD 1. RMSE compared to the
reference are 6.0 ·10−2 for GPOD 1 and 1.8 ·10−2 for GPOD 2. Although the increase in
RMSE from ns = K = 5 to ns = K = 10 is quite significant, increasing ns = K beyond
10 increases the reconstruction accuracy at this specific angle of attack remarkably
little (RMSE at ns = K = 19 is 1.4 · 10−2, see also Figure 5.14 to be discussed later).
This indicates that modes above 10 are not informative towards reconstructions, pos-
sibly due to this angle of attack being underresolved by the training data.

The pressure distribution at α = 42.5° resembles the second PODmode in Figure 5.10
and is therefore already approximated well by the low order GPOD 1. The two sen-
sors close to ψ = 90° measure the slight asymmetry which is also incorporated into the
reconstruction. Unlike the previous reconstruction example, noticeable differences be-
tween reference and GPOD 1 are mainly present on faces A and B while the single
sensor close to ψ = 270° seems to provide enough information to accurately recon-
struct pressure over faces C and D. The reconstruction on faces A and B does not
seem unphysical however does not capture smaller changes in slope which are rep-
resented in higher order modes. The additional modes and sensors used for GPOD 2
mainly help in improving upon the mistakes on faces A and B while the added sensor
on face D does not seem to alter the reconstruction on C and D as it was already close
to the reference. The RMSE to the reference for GPOD 1 is 4.0 · 10−2 and for GPOD
again 1.4 · 10−2.

Especially for GPOD 1 using ns = K = 5, the examples shown above are amongst
the better reconstructions in terms of RMSE (see Figure 5.14, to be discussed later).
This seemingly obscures aspects of the pressure distributions at some angles of attack
with which GPOD struggles in reconstructing. One such pressure distribution at which
the low-rank GPOD 1 reconstruction clearly suffers from only five POD modes and
sensors being available is at α = 32.5° of which the reconstruction using both ns =
K = 5 and 10 is shown in Figure 5.13.
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Figure 5.13: Experimental GPOD reconstruction at α = 32.5°. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10

With an RMSE of 8.8 · 10−2, the GPOD 1 reconstruction shown above is the least ac-



5.4. Experimental surface pressure reconstruction using GPOD 75

curate out of all reconstructions on the the non-training angles of attack. Within the
supercritical angle of attack range, the pressure on faces C and D are consistently
similar in shape and magnitude hence the reconstruction is able to remain close to
the reference using only the single sensor near ψ = 270°. On face A, differences
between GPOD 1 and the reference are clearly visible but overall the reconstruction
follows the shape of the reference. On face B, the GPOD 1 reconstruction shows the
largest errors. In this angle of attack range, the flow reattachment produces a pres-
sure peak located in between the GPOD 1 sensor locations of ψ = 94° and 155°. For
the the pressure distribution at face B to be reconstructed accurately, POD modes
need to provide information regarding this reattachment spanning the gap between
the sensors. This information is not contained in the first five modes (see Appendix B
for spatial POD modes) however hence the peak is not reproduced. The additional
modes added for GPOD 2 using ns = K = 10 contain high modal activity in the form
of peaks over faces A and B which are used to reproduce the growing region of reat-
tached flow. GPOD 2 therefore receives additional sensors on these faces and is able
to predict the pressure distribution in the supercritical flow regime much more accu-
rate. The GPOD 2 reconstruction achieved an RMSE of 1.1 · 10−2 which is instead the
smallest out of all non-training angles of attack.

Interesting to see is how despite the large differences between the experimental and
numerical surface pressure distributions, the sensor locations using ns = K = 10
are similar. For both experimental and numerical results, 8 out of 10 sensors are
placed symmetrically on faces A and B and 2 sensors are placed close to ψ = 270°.
These locations make physical sense considering the transition between separated
and attached flow over faces A and B while faces C and D remain fully separated
throughout the angle of attack range. The sensor locations are determined purely from
the POD modes. The first two modes from both experimental and numerical surface
pressure distributions are similar in shape however especially the higher order modes
differ significantly. This does not seem to have affected the identification of the most
informative regions for sparse sensor placement.

5.4.2. Pressure reconstruction accuracy
Reconstructions like those shown in Section 5.4.1 are performed for all combinations
of angle of attack and number of sensors/modes. The RMSE to corresponding refer-
ence pressure distributions for all of these reconstructions are shown in Figure 5.14.
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Figure 5.14: Experimental GPOD pressure distribution reconstruction (top) and projection (bottom)
accuracy for every combination of ns = K and α

The upper colormap shows the reconstruction RMSE and the bottom one the projec-
tion RMSE. POD projections are again obtained as discussed in Section 4.5.2 and
provide a best attainable benchhmark for GPOD reconstructions. Angles of attack
included in training data are indicated with ticklabels on the x-axis but are of lesser in-
terest for the reconstruction performance as they are per definition better represented
by the eigenmodes. The reconstruction colormap shows how a certain number of
modes and sensors might be better suited for reconstructions on specific angles of
attack while performing worse on others. This variance in reconstruction accuracy
over the angles of attack is most pronounced for smaller values of ns = K where the
small number of sensors can not be used to account for all of the flow phenomena in
combination with the available modes. ns = K = 5 seems to significantly decrease
the RMSE across the angles of attack with respect to ns = K = 4 however an un-
expected step back in terms of RMSE occurs when using ns = K = 6 which will be
discussed further below Figure 5.15. For 12.5° ≤ α ≤ 27.5° and 62.5° ≤ α ≤ 77.5°,
reconstruction RMSE’s seem to decrease by only a small amount for ns = K > 10.
This was noticed already in Section 5.4.1 and could be the result of sensor placement
being unsuited for these angles of attack. If this were the case it would however only
affect reconstructions but the same trend is even more clearly visible in the projection
RMSE’s. Instead, the training data does not seem to provide eigenmodes capable of
decreasing the RMSE significantly for these angles of attack beyond a certain ns = K
which is a sign of more training data being necessary in the local angle of attack range.

Figure 5.15 provides a more quantitative way of interpreting the accuracy of GPOD
reconstructions for a certain number of sensors and bases used. It is obtained by
computing the RMSE to reference pressure distributions across all non-training angles
of attack at once for ns = K = 1 to 19. This is done for both the reconstructions and
PODprojections whichmakes this figure the experimental counterpart to the numerical
results in Figure 4.11.
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Figure 5.15: Experimental GPOD surface pressure reconstruction accuracy for increasing number of
modes and sensors

The projection curve decreases for each additional mode used, the rate of which de-
creases with each new mode introducing less new information. The experimental
projection curve achieves lower RMSE’s across the ns = K range compared to the
numerical results implying that the experimental modes form a better square cylinder
flow library compared to CFD. The difference between GPOD reconstructions and
POD projections is small and generally decreases for increasing ns = K. Since POD
projections are essentially GPOD reconstructions using ns = n ̸= K, this difference
in RMSE can be attributed to accuracy loss due to gappiness. The QR algorithm suc-
cessfully keeps this loss small by providing sensor locations which are informative
over all modes involved in a reconstruction but independent from one another as to
keepmodes orthogonal. The greediness of the QR algorithm results in a sensor layout
obviously far from optimal at ns = K = 6 where all reconstructed pressure distribu-
tions produce relatively large RMSE’s making this point clearly stick out in Figure 5.15.
The sensor locations for all ns = K are shown schematically in Figure 5.16 from which
it is apparent why the reconstructions at ns = K = 6 fail to stick to the RMSE trend.
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Figure 5.16: Sensor locations determined by QR algorithm for each value of ns = K
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The right part of the figure above shows what taps on the square cylinder surface are
determined by the QR algorithm to be suited sensor locations given a certain sensor
budget and number of POD modes. The left part provides a more easily interpretable
view of where the taps on the cylinder surface are positioned. Despite relatively little
variance in the pressure distribution on faces C and D, inclusion of the third mode at
ns = K = 3 already introduces a sensor on the downstream side of the cylinder near
the corner of faces C and D. This sensor ’guides’ the reconstructions over all angles
of attack on faces C and D for ns = K = 3, 4 and 5 even though it switches from
face D to C. At ns = K = 6, no sensor is placed on either face C or D from which
the reconstructed pressure distribution on these faces suffers and yields an increase
in RMSE. At ns = K = 7, again a sensor is placed on face D and the RMSE can be
seen to follow the general trend again. Manually repositioning a sensor at ns = K = 6
to tap 24 or 25 was found to result in a lower overall RMSE confirming the QR sensor
placement was not optimal for this situation.

5.5. Experimental drag estimation using GPOD
Approximations for the pressure drag are obtained by integrating the previously dis-
cussed surface pressure distribution reconstructions. These sparse drag approxima-
tions will be discussed in the following sections. First, two examples of reconstructed
drag curves using different numbers of sensors are shown. After this, the overall drag
estimation accuracy is quantified in terms of RMSE for different levels of sparseness
used during the surface pressure reconstructions.

5.5.1. Drag estimation examples
Figure 5.17 shows a reference drag curve and two GPOD approximations. The ref-
erence curve is obtained by integrating the complete experimental surface pressure
distributions obtained using the even tap layout. Drag curves for GPOD 1 and GPOD
2 are obtained by integration of the sparse reconstructions of the same experimental
data using ns = K = 5 and 10 respectively and should therefore approximate the
reference. Angles of attack marked with a ticklabel on the x-axis are those for which
the corresponding surface pressure distributions were included in the training data.
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Figure 5.17: Experimental GPOD drag curve reconstruction. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10
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Already using ns = K = 5 for GPOD 1, the reference drag curve is approximated quite
well. Features such as the angles at which minimum/maximum drag is achieved and
also the slopes of the drag curve are all reproduced as the reconstructions using 5
sensors were seen earlier to capture the essence of pressure distributions well. The
sensor layout for GPOD 1 is not symmetric about the cylinder diagonal as an uneven
number of sensors are used. This affects the reconstructions differently depending on
the angle of attack and therefore the GPOD 1 drag curve is not symmetric about α =
45°. For small angles of attack, most of the drag force is a result of differences in pres-
sure between faces A and C. For angles of attack closer to α = 90° it is instead mostly
the pressure differences between faces B and D. Since the only sensor above ψ =
180° is placed on face C while faces A and B both contain two sensors, the important
regions of the pressure distributions for drag determination are reconstructed better
for smaller angles of attack (close to α = 0°). Therefore the GPOD 1 drag coefficients
for smaller angles of attack are more accurate than for large angles of attack (close
to α = 90°). The growing region of increased pressure on face B resulting from flow
reattachment does not seem to be encoded well into the first five POD modes as it is
underpredicted for 25°≤ α ≤ 35° for which drag is also underpredicted as a result (see
also Figure ??. A similar partly reattached type flow but instead on face A occurs for
55°≤ α ≤ 65° which is also similarly underpredicted. This does not influence the drag
approximations however as it tends to cancel with the errors made on face D due to
the lack of a sensor. The overpredicted drag around α = 45° is mainly a result of the
reconstruction pressure being slightly too large on faces A and B and not so much
from errors on faces C and D.

Using ns = K = 10 for GPOD 2 improves upon the drag estimation at all angles of
attack compared to GPOD 1. The GPOD 2 drag curve is almost indistinguishable
from the reference and also symmetric about α = 45° due to the symmetric sensor
layout. No noticeable angle of attack ranges are present with abnormalities in the
drag estimation meaning that all dominant surface pressure features are incorporated
into the 10 usedmodes and are sampled effectively by the 10 sensors. The increase in
accuracy is for a large part the result of the inclusion of the 10th mode which has high
modal activity on faces C andD. Thismode can thus be used to correct reconstructions
on faces C andD onwhich reconstruction offsets to the reference are often responsible
for drag prediction errors, but it also results in a second sensor being placed above
ψ = 180° on face C (see Figure 5.16) to make it possible to constrain pressure on
faces C and D separately.

5.5.2. Drag estimation accuracy
The accuracy of the GPOD drag predictions is quantified by computing the RMSE
between the drag curve reconstructions and the reference over all the non-training
angles of attack only. This is done for ns = K = 1 to 19 and also for the drag curves
obtained using the POD projections. The results are shown in Figure 5.18.
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Figure 5.18: Experimental GPOD drag curve reconstruction accuracy for increasing number of
modes and sensors

Similar to the CFD results, the behaviour of both the projection and reconstruction
RMSE curves is much more irregular than for the surface pressure reconstructions.
This is again caused by the surface pressure integration required for the computation
of the drag coefficient making it possible for small errors in surface pressure recon-
structions to accumulate. Whereas for the surface pressure reconstructions increas-
ing ns = K generally decreases RMSE Cp, this does not necessarily translate into bet-
ter approximations of the drag coefficients. This also means that the POD projections
do not necessarily produce a lower RMSE in terms of CD. Unlike the surface pres-
sure reconstruction accuracy, the drag estimation depends greatly on where around
the cylinder errors in the reconstructions are made and therefore especially relies on
the sensor placement shown in Figure 5.16. The lack of sensors on faces C and D at
ns = K = 6 yields poor reconstructions on those faces of which the errors accumulate
and result in exceptionally bad drag prediction accuracy. Even using a sensor less
at ns = K = 5, the single sensor placed on face C is able to allow for better drag
estimates. At ns = K = 7, 8 and 9, no additional sensors are placed on faces C and
D. The RMSE in terms of Cp decreases but as most of the additional eigenmodes
included also focus mainly on faces A and B, no considerably decrease in CD RMSE
occurs. As mentioned earlier, the 10th POD mode has high modal activity on faces C
and D. This enables this mode to be used for better reconstructions on those faces but
also results in a new sensor layout such that both faces C and D contain a separate
sensor. This decreases the Cp RMSE conform the general trend of Figure 5.15 but
has a larger impact on the drag prediction accuracy as the CD RMSE drops by over
a factor of 3 from ns = K = 9 to 10. POD modes 11 to 14 again focus on faces A and
B and thus the QR algorithm places the additional sensors there as well. Still, these
modes seem to contain the information to enhance drag prediction accuracy as the
projection curve remains decreasing. This illustrates how the GPOD- in combination
with the QR algorithm focus on decreasing the Cp RMSE while better drag predictions
could possibly be achieved otherwise. This seems to have been realized by the earlier
referenced work by Mifsud et al. (2019) as an adapted least squares formulation in
the GPOD procedure was used to produce reconstructions in better accordance with
integrated aerodynamic coefficients. Purely to increase the accuracy with which drag
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is predicted, increasing the number of sensors above 10 results in diminishing returns.
Either using 5 or 10 sensors seems to be optimal for providing physically meaningful
surface pressure reconstructions which yield drag predictions in accordance with the
true measured pressure drag.

5.6. GPOD error sources
During the discussion of the results, several aspects which affect the accuracy of
GPOD reconstructions have been identified. In general, the effect of these aspects
on the GPOD accuracy are most easily identified through the surface pressure recon-
struction accuracy in terms of RMSE in the Cp as in the drag estimation accuracy they
are obscured by the accumulation of errors. Observed errors in the RMSE Cp plots
seem to originate from three ’sources of error’ which are schematically depicted in
Figure 5.19. Note that even though the sources of error are discussed separately, al-
most always a combination of all is responsible for the observed RMSE Cp in surface
pressure reconstructions.
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Figure 5.19: Schematic RMSE Cp plots representing sources of error: overall training inadequacy
(left), sensor placement (middle) and training data skewness (right)

The left figure depicts a schematic projection and reconstruction RMSE Cp curve sim-
ilar to those in Figures. 4.11 and 5.15 which represented the RMSE across all non-
training angles of attack for certain ns = K. This figure illustrates the presence of an
inherent offset in RMSE Cp from 0, denoted as ∆0. This offset is defined with respect
to the last point of the POD projection curve and illustrates to what extent the provided
training data is adequate for reconstructions performed. Hence, the error source ∆0

is referred to as the training inadequacy. At the last point of the projection curve, all
available modes are used (K = m) and as discussed in Section 4.5.2 the projections
are performed using the GPOD procedure without any missing elements in the modes
(ns = n). This yields optimal least squares approximations using a linear combination
of all modes. Since the modes were obtained from training data, rank m projections
on training data thus reproduces the data exactly. Rank m projections of data not
included in training instead results in non-zero RMSE’s as features not present in the
training data are bound to occur. Over all reconstructed non-training angles of attack,
this RMSE difference from 0 (∆0) thus quantifies how effective the training has been
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in encoding the features of a certain use case in the space spanned by the training
data. Since GPOD reconstructions approach the projections as ns approaches n, it
marks a region unattainable using sparse reconstructions given certain training data.
The rate at which∆0 is reached by the projections depends on the relative importance
of the eigenmodes and therefore on the ’low-rankness’ of the use case.

The middle figure exaggerates the difference between GPOD reconstructions and the
POD projections which is denoted by δ. Both projection and reconstruction use the
same K ≤ m POD modes but reconstructions need to overcome sparseness as well.
δ can thus be seen as an ’accuracy loss due to gappiness’ which the chosen sensor
placement algorithm should minimize given a value for ns = K. Overall, the size of δ is
mainly affected by the sensor placement algorithm. This is apparent from Figure 2.20
when comparing the random sensor placement performance with that of QR but also
in the results of Jayaraman et al. (2019) for example where multiple algorithms are
compared (although primarily in the oversampled case ns > K). δ is not constant for
each value of ns = K however as most sensor placement algorithms, like QR-CP, pro-
vide a greedy sensor layout solution to an otherwise intractable combinatorial search
over all sensor layout possibilities. An absolute optimal sensor configuration is there-
fore not guaranteed and sub-optimal configurations can lead to outliers in terms of
reconstruction accuracy as discussed in Section 5.4.2 regarding Figure 5.15. Still, op-
timal sensor placement alone would not be able to bring δ to zero as the least squares
fit of K modes through ns < n sensor measurements will always have larger residual
to the reference than a rank K projection using ns = n would have.

The right figure schematically illustrates the trend in RMSE Cp for increasing ns = K at
individual angles of attack only. This is different from the left figure which assumed a
single RMSE Cp value for reconstructions over all angles of attack at a certain ns = K.
Plots like the right of Figure 5.19 would be obtained when focusing on single columns
of Figure 5.14. Even though an ’overall reconstruction performance’ plot as shown
on the left is not the average over the reconstruction performance at individual angles
of attack (order in which mean and square are calculated in RMSE matters), the dis-
tance ∆, defined from ∆0 to the projection at ns = K = m, gives insight into how well
pressure distributions at single angles of attack are resolved by the training data and
therefore how ’skewed’ the training data might be. As illustrated, ∆ can stack with ∆0

to indicate that at the specific angle of attack; training data is not very representative
and additional eigenmodes from a certain point onwards do not enhance projection
nor reconstruction significantly. An example of this was discussed in Section 5.4.2
where such behaviour was noticed for specific angles of attack in the supercritical
flow regime. Conversely, for reconstructions at other angles of attack, ∆ might be
’negative’ in the sense that it decreases RMSE with respect to ∆0. The eigenmodes
from training data seem to be skewed towards pressure distributions at those angles
of attack instead. Examples of this would be the columns in Figure 5.14 corresponding
to angles of attack close to α = 45° which can be seen to remain steadily decreasing
in RMSE Cp for increasing ns = K. Large skewness of the training data can lead to in-
creased differences between reconstruction performance at different angles of attack.
To counter this, one could locally refine training data with additional training snapshots
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as to resolve the flow phenomena better. Additionally, one could redistribute the an-
gles of attack at which training snapshots are provided to focus on difficult to resolve
flow phenomena (e.g. expected onset of stall for an airfoil at angle of attack case).

5.7. GPOD versus linear interpolation
Accuracy of GPOD surface pressure distribution- or drag curve reconstructions have
been quantified in terms of RMSE with respect to a known reference distribution. This
gives insight into the absolute performance of the method but not how it compares
to alternatives. One such alternative is linear interpolation (LERP) which despite its
limited accuracy is very robust, computationally inexpensive and simple to implement
(Raben et al., 2012). Linear interpolation requires local spatial information only to fill
in missing measurements and is therefore non-data-driven. GPOD on the other hand
identifies spatial and ’temporal’ (depends on the changing variable(s) throughout train-
ing snapshots, angle of attack in this case) structures from training data and uses this
for what effectively is a data-driven interpolation technique. Linear interpolation has
been implemented for reconstructions of the same surface pressure distributions and
the achieved accuracy will be compared to the earlier shown GPOD results in the fol-
lowing sections.

5.7.1. Linear interpolation reconstruction examples
LERP reconstructions are performed using a number of sensors ns from 1 to 19 at all
available angles of attack. The sensor locations which are used as the interpolation
points are kept equal to those used for GPOD reconstructions which are shown in
Figure 5.16. To avoid completely unphysical LERP reconstructions, each face of the
cylinder is interpolated separately using the available sensors on that face. In case
no sensors on a face are available, the pressure measured by the closest sensor
on a different face is used. In the examples below, the GPOD reconstructions using
ns = K = 5 and ns = K = 10 are compared to LERP reconstructions using the same
number of sensors at α = 17.5°.
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Figure 5.20: Experimental GPOD and LERP reconstruction at α = 17.5°, ns = K = 5.
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Figure 5.21: Experimental GPOD and LERP reconstruction at α = 17.5°, ns = K = 10.

Figure 5.20 shows the LERP and GPOD reconstructions using ns = 5. The QR algo-
rithm places two sensors each on faces A and B which experience the most variation
in pressure at different angles of attack. This is clearly not sufficient for linear interpo-
lation to be able to follow the reference as significant under- and overprediction by the
LERP reconstruction is visible. On face A, the GPOD reconstruction instead is able to
follow the reference almost perfectly as the fully attached flow is easily characterized
in the first few POD modes. On face B, the GPOD reconstruction struggles with the
growing region of reattached flow and because of this, GPOD reconstructions at α =
17.5° tend to have relatively large RMSE Cp. Regardless, GPOD is able to predict the
surface pressure at each pressure tap on face B closer to the reference compared to
LERP as it captures some of the curvature of the pressure distribution. Also on faces
C and D the GPOD reconstruction is closer to the reference but the generally simple
behaviour of the pressure distribution here lends itself well for an approximation by
a constant pressure as obtained using the single sensor for LERP. The LERP recon-
struction using ns = 5 achieves a RMSE Cp to the reference of 1.6 · 10−1 while for
GPOD this is 7.4 · 10−2.

Using 10 sensors as shown in Figure 5.21, faces A and B both receive four sensors
each. The GPOD reconstruction on face A was already accurate using five sensors
total but becomes slightly better (in the non sensor locations) through the additional
modes and constraints of the sensors. The LERP reconstruction improves greatly but
is still unable to capture curvature of the concave pressure distribution yielding small
errors and is very far from the reference in the first tap as an artefact of the linear inter-
polation implementation. The reattachment on face B is able to be reproduced by both
GPOD and LERP as 4 out of the 8 sensors on the side are available. Faces C and
D were also reconstructed close to the reference by GPOD using 5 sensors total al-
ready and the improvement using 10 sensors instead is therefore almost unnoticeable
by eye. The effect on GPOD reconstructions of placing a sensor on face D is mainly
visible on angles of attack closer to α = 0° and 45°. The additional sensor on face D
actually hurts the LERP reconstruction accuracy as the face D sensor is placed in a
local dip in pressure which is assumed to be the pressure across the whole face. For
LERP reconstructions, the additional sensor on face D is mainly effective in the sub-
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critical regime where pressure between faces C and D differ but is counterproductive
for other angles of attack instead. The LERP reconstruction using ns = 10 achieves
a RMSE of 9.3 · 10−2 to the reference and for GPOD this is 1.7 · 10−2, demonstrating
how the additional sensors w.r.t. ns = 5 benefit GPOD more.

5.7.2. Comparison of surface pressure reconstruction accuracy
To gain insight into the overall performance of LERP versus GPOD, reconstructions
such as shown in the previous section are constructed for all angles of attack for which
the number of sensors is varied from ns = 1 to 19 each. For each value of ns, a single
overall RMSE to the reference for the LERP reconstructions is calculated. Only recon-
structed surface pressure values different from the supplied sensor measurements are
considered as well as only considering the angles of attack which were used to quan-
tify the GPOD reconstruction accuracy (non-training angles of attack, see Section 5.3).
The LERP results are shown together with the GPOD results in Figure 5.22 below.
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Figure 5.22: Experimental GPOD and linear interpolation reconstruction accuracy

For all values of ns, the LERP RMSE Cp values are larger than GPOD. Overall, the
LERP RMSE decreases for increasing ns but not as consistently as for the GPOD
results. For a small number of sensors, each additional sensor rapidly decreases the
LERP RMSE as expected until ns = 6. At ns = 6 a jump in the RMSE is visible as
was also the case for the GPOD results. In Section 5.4.2 this was explained to be
caused by the QR algorithm not assigning any sensors on both faces C and D even
though at ns = 5 a sensor was placed on face C. While this certainly negatively affects
the GPOD reconstructions, the PODmodes allow for correlation between pressure on
faces A, B and C, D to be utilized in predicting a relatively accurate surface pressure
regardless. Linear interpolation, relying on local surface pressure measurements only
instead, suffers greatly in terms of reconstruction accuracy compared to GPOD with
two out of the four faces providing no information through sensors at all. With a sensor
returning on face D at ns = 7, the LERP RMSE falls in line with the previous trend
again but remains stagnant onwards as additional sensors are placed on faces A and
B while the errors mainly originate from the single sensor on face C and D combined.
GPOD remains steadily decreasing for increasing the number of sensors beyond 7
and achieves RMSE values around ns = 10 which are almost a full order of magnitude



86 Chapter 5. Results and discussion

smaller than for LERP. For very sparse reconstructions (e.g. ns = 5), GPOD thus
greatly improves upon LERP in an absolute sense while the decreasing RMSE trend
for both is similar but since GPOD remains steadily decreasing in RMSE for increasing
ns while LERP does not, the relative accuracy gain using GPOD increases.

5.7.3. Comparison of drag estimation accuracy
Similar to GPOD, LERP reconstructions fill in the missing surface pressure measure-
ments such that a reconstruction defined at the n = 32 tap locations is produced which
can be integrated for a drag coefficient approximation. Such LERP drag approxima-
tions are performed for all angles of attack and at ns = 1 to 19. For each value of
ns, the drag estimation accuracy is quantified as the RMSE between the LERP and
reference CD vs α curve while only considering the non-training angles of attack as
was also done for the GPOD results. The LERP and GPOD drag estimation accuracy
is shown in Figure 5.23.
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Figure 5.23: Experimental GPOD and linear interpolation drag curve reconstruction accuracy

Unlike the RMSE in terms of Cp, the RMSE CD is also influenced by the location
around the cylinder at which errors in a surface pressure reconstruction are made.
Especially at small ns, each additional POD mode can significantly change the GPOD
reconstruction leading to reconstruction errors at different locations which either ac-
cumulate or cancel in the integration of the pressure distribution. This leads to the
erratic behaviour seen in the GPOD results below ns = K = 10 but the LERP re-
constructions, not relying on a set of modes, are less sensitive to this and instead
decrease in RMSE CD until ns = 9 (ignoring the outlier at ns = 6 which is caused
by reasons already discussed in the context of Figure 5.22). From ns = 9 to 10, the
addition of a second sensor on faces C and D combined actually results in a slightly
worse reconstruction on faces C and D for the majority of angles of attack using LERP,
see Figures. 5.20 and 5.21. This affects the drag estimation as well as the RMSE CD

can be seen to have increased. At ns = 11 and 12 the additional sensors being placed
at faces A and B do not solve this problem and the drag curve approximations remain
at a similar RMSE CD which are more than a factor 10 larger than for GPOD. From
ns = 13 onwards, a sensor is first placed on tap 1 which eliminates the linear inter-
polation artefact shown in Figure 5.21 and additional sensors are placed on faces C
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and D which decrease the RMSE. At this point however, the number of supplied sur-
face pressure measurements for both LERP and GPOD being sparse is questionable.

5.8. CFD based sensors GPOD reconstructions
In the previous sections, both the training for POD modes and the sparse sensor
placement are obtained from the experimental surface pressure distributions. In the
following section, POD modes will still be obtained from experimental surface pres-
sure distributions but the sensor placement will instead be based on the QR algorithm
applied to the CFD results discussed in Section 4.3. The sensor layouts obtained us-
ing the CFD results are referred to as Opt V1 and Opt V2 and were mentioned earlier
in Section 4.7.2 and shown in Figure 3.4. Experimental surface pressure measure-
ments using these tap layouts were shown in Figure 5.4 and 5.5. The small number
of taps on the Opt V1 and V2 pressure tap plates does not allow for accurate determi-
nation of the drag through spatial integration of the surface pressure measurements
(see LERP results Section 5.7.3). A GPOD reconstruction however can be used to fill
in the gaps in the pressure distribution and increase the spatial resolution if a suitable
set of POD bases is available. Unfortunately, due to an oversight also discussed in
Section 4.7.2, only the taps on the Opt V2 plates for the 10 sensors and bases layout
can be used for GPOD reconstructions.

A set of representative POD bases is readily available from either the even- or cosine
taps surface pressure distributions but both do not contain taps at the spatial locations
of taps present on the Opt V2 plates, hence the POD modes do not either. The POD
modes can be interpolated to support modal values at the positions of the Opt V2 taps
but this destroys orthogonality. Instead, the surface pressure distributions themselves
are interpolated to contain surface pressure values at the additional locations present
on the Opt V2 plates. These interpolated measurements serve as placeholders to
carry through to the PODmodes while keeping orthogonality but will be replaced by the
actual experimental measurements for the reconstructions. This approach introduces
unwanted effects however which will be discussed later.

5.8.1. Opt V2 reconstruction examples
Since the cosine spaced pressure plates contain taps closer to the cylinder edges than
any of the taps on the Opt V2 plates, it is used to interpolate the additional datapoints
in the pressure distributions and obtain the POD modes. These POD modes are not
used for the QR algorithm to determine sensor locations as the sensor locations will
be fixed on the Opt V2 tap locations where experimental measurements are available.
GPOD reconstructions can be performed as usual by using the Opt V2 experimental
measurements on the tap locations instead of the interpolated placeholders. Note that
with the merging of cosine and Opt V2 experimental measurements, the total number
of ’taps’ has become n = 42 instead of n = 32. Pressure distributions at the same
angles of attack as before, being integer multiples of 5°, are used as training data for
the modes. Since the training data and sparse measurements on the sensor locations
have been obtained independently in this case, differences between reconstructions



88 Chapter 5. Results and discussion

on training versus non-training angles of attack are smaller and thus no distinction is
made in showing the results.
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Figure 5.24: Opt V2 GPOD reconstruction at α = 25°, ns = K = 10
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Figure 5.25: Opt V2 GPOD reconstruction at α = 27.5°, ns = K = 10

Figures. 5.24 and 5.25 show the reconstructed pressure distributions at α = 25° and
27.5° respectively. The Opt V2 pressure taps provide experimental pressure measure-
ments only on the sensor locations. Therefore, the references are taken as the cosine
pressure distributions and do not necessarily coincide with the Cp values at the sen-
sor locations but still provide an idea of what the reconstruction should look like. The
difference between the two shown reconstructions is only 2.5° in angle of attack but
they are illustrative of the reconstruction behaviour using this GPOD implementation
with experimental training and sparsemeasurements but CFD based sensor locations.

Similar to earlier shown reconstructions using experimental data, the reconstruction on
the ’pressure face(s)’, in this case face A, is rather trivial and therefore unsurprisingly
is in good agreement with the reference for both reconstructions shown. For α = 25°,
the reconstruction on face B agrees well with the reference as it follows the increase
in pressure due to the reattached flow. On faces C and D, experimental measure-
ments using the Opt V2 taps near ψ = 270° are often offset to the reference (cosine)
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pressure distributions which is also visible in Figure 5.24. Since the training data in-
cluded the interpolated placeholder points at the locations where Opt V2 results are
different from the reference, these discrepancies are not incorporated into the POD
modes. The reconstructions however are constrained by the provided sensor data
and thus pass through the Opt V2 measurements yielding a reconstruction similar in
shape to the reference but positioned slightly below it. When assuming the lower pres-
sures measured using the Opt V2 taps are indicative of the true pressure distribution
(the distribution experienced during the Opt V2 measurements) being more negative
than the reference on faces C and D, then the reconstruction might have predicted
the pressure closer to the truly experienced distribution. Since the Opt V2 sensor lo-
cations determined using the CFD results are similar in layout to those identified from
experimental data only (see Fig. 5.12 for example), the reconstruction at α = 25° is
similar to ’regular’ surface pressure reconstructions as discussed in Section 5.4.1.

The reconstruction at α = 27.5° shown in Figure 5.25 is close to the reference at faces
A, C and D but less so at face B. This results in a larger RMSE Cp to the reference
as shown in Figure 5.26 which will be discussed in Section 5.8.2. This overpredic-
tion of the pressure at face B seems unexpected judging from the similarity in the
overall pressure distribution to Figure 5.24 and is possibly caused by one of or a com-
bination of three reasons. First, despite the sparse measurements for GPOD being
obtained separate from the cosine data used for building the POD basis, α = 27.5°
not being included in the training data while α = 25° was makes it such that the pres-
sure distribution at α = 25° is likely better represented through the POD modes. The
difference between reconstructing pressure distributions which were or were not in-
cluded in the training data however is still expected to be much smaller than it was
for reconstructions in Section 5.4.1, making this only part of the cause for differences
to the reference. Second, the GPOD reconstructions are forced to use the locations
from the QR-CP algorithm applied to the CFD results as sensor locations. Using the
sensor locations as shown in the Opt V2 reconstruction examples yields a condition
number of matrix M (see Section 2.5) of 11 instead of 10 which would be obtained
when using the QR-CP algorithm for sensor determination based on the experimental
POD modes (relation between condition number and GPOD accuracy mentioned in
Section 2.6). The difference is relatively small indicating that the CFD based sensor
locations on the Opt V2 plates should not be significantly ’less optimal’. Yet, allowing
the sensor layout to be determined by the QR algorithm applied on the cosine experi-
mental modes instead yields a reconstruction in line with the results shown earlier in
Section 5.4.2. Despite this seemingly confirming sub-optimality of the used sensor
layout, it actually demonstrates how a third problem is mainly responsible; the inter-
polation performed to create placeholder points in the modes. Where at α = 25° the
pressure measured by the Opt V2 sensors on face B are in line with what would be
obtained by linearly interpolating the reference, this is not the case for the the sensor
at ψ = 104° for α = 27.5°. Since the modes are ’trained’ to expect a linear relation
between the pressure at the sensors and nearby taps of the reference, a sensor not
obeying this linear expectation locally disrupts the reconstruction.
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5.8.2. Opt V2 pressure reconstruction accuracy
GPOD reconstructions as shown in Figure 5.24 and 5.25 do not have the true ex-
perienced pressure distribution available for comparison and hence the RMSE Cp is
defined with respect to the cosine reference distribution. The Opt V2 pressure taps
are suited for reconstructions at ns = K = 10 only and therefore the accuracy in terms
of the RMSE’s is shown for ns = K = 10 only in Figure 5.26.
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Figure 5.26: Opt V2 based reconstruction accuracy w.r.t. reference pressure distributions

The green bars illustrate the RMSE between the reconstruction and reference pres-
sure distribution as computed for each angle of attack separately. The RMSE value at
the dashed line is instead found by computing the RMSE between all reconstructions
and reference pressures at once and thus represents how far off from the reference
a single reconstructed pressure value is expected to be for any angle of attack within
0° ≤ α ≤ 90°. Note that on top of the error sources introduced in Section 5.6 and
Section 5.8.1, the RMSE’s in this plot additionally contain an error caused by the dif-
ference between the measurements obtained with the cosine plates and the Opt V2
plates. Considering this, the overall RMSE Cp of 4 · 10−2 does not seem like a sig-
nificant step back from the RMSE of roughly 2 · 10−2 at ns = K = 10 in Figure 5.15.
This implies that despite the major difference between CFD and experimental mea-
surements, the CFD based sensor locations are adequate for use with experimental
GPOD reconstructions. RMSE values for individual angles of attack are clearly larger
in the supercritical regime compared to the subcritical regime. The reason for this is
expected to be twofold. First, the training data is distributed evenly over the complete
angle of attack range while more focus on the supercritical regime might be necessary
to capture the growing reattached region. This problem was identified earlier while
discussing results in Section 5.4.2 and is one of the error sources discussed in Sec-
tion 5.6. Second, especially this growing reattached region leads to spatial variation in
pressure on a smaller scale than the distance between taps on the cosine plates. This
invalidates the ’linear behaviour’ expected by the POD modes at the locations of the
Opt V2 sensor locations with the reconstruction errors discussed in Section 5.8.1 re-
garding Figure 5.25 as a result. An obvious solution to this artificially produced source
of errors is to include the sensor locations identified by the QR algorithm applied to
CFD data as pressure taps onto the plates responsible for measuring training data as



5.8. CFD based sensors GPOD reconstructions 91

well (effectively combining Opt V2 and cosine plates that is).

Especially outside of the critical angle of attack range, where the aforementioned in-
terpolation error has a small effect on reconstructions, the CFD based sensor loca-
tions are viable for experimental surface pressure reconstructions using GPOD. Using
ns = K, sparse reconstructions are extremely sensitive to the sensor layout. A single
sensor being positioned in either an overall low-modal activity region or too close to
other sensors such that there is a strong correlation would yield large condition num-
bers and an effectively underdetermined system involving matrixM . Arbitrary sparse
sensor placement, such as evenly spacing 10 sensors around the cylinder perime-
ter, will therefore almost certainly result in inaccurate reconstructions at ns = K (see
example Figure 2.18). The CFD based sensor locations on the Opt V2 plates are
not able to be better than experimental QR sensor positioning in terms of κ(M ) and
also the Opt V2 reconstructions yielded generally larger RMSE values compared to
Section 5.4.2. Regardless, both these indicators of sensor placement and reconstruc-
tion performance are unfortunately mostly limited by the linear interpolation procedure
involved rather than GPOD or QR-CP in this case. This problem can be overcome
relatively easily with the suggestion made at the end of the previous paragraph. Also,
despite the large discrepancies between CFD and experimental results, the QR-CP
algorithm was still able to identify a suitable sensor layout for experimental reconstruc-
tions, indicated by the similarity between CFD and experimental sensor layouts. Using
CFD for prior determination of tap locations in an experimental setting is therefore ex-
pected to be viable when CFD results are expected to be trustworthy in at least a
qualitative sense. Even when CFD results are inaccurate, as is the current case, QR-
CP applied to the numerical POD modes yields a good initial guess for experimental
sensor placement and can aid in determining optimal experimental sensor locations
by indicating regions that might benefit from decreased tap spacing.

5.8.3. Opt V2 drag estimation accuracy
Drag coefficient estimations based on the sparse Opt V2 tap measurements are ob-
tained by integration of the reconstructed surface pressure distributions. Since bal-
ance measurements were taken simultaneous with the surface pressure measure-
ments, the drag coefficient as measured by the balance will be used as a reference in-
stead of integrating the earlier used cosine pressure distributions. Both reconstructed
and balance drag curves are included in Figure 5.27 below for comparison.
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Figure 5.27: Opt V2 GPOD drag curve reconstruction using ns = K = 10

The GPOD results consist of two drag curves; partial and full training. The ’partial train-
ing’ curve is obtained by using the pressure distributions at angles of attack which are
multiples of 5° as training data. Taking such a subset of the measured pressure dis-
tributions as training data has been the GPOD procedure throughout this report thus
far and produce the figures as shown in Section 5.8.1. The ’full training’ drag curve
uses all available pressure distributions at the 2.5° interval in angle of attack for train-
ing data instead. Since the sparse measurements are obtained independently from
the training measurements, this ’full training’ approach would be closer to a practical
application.

The overall RMSE of the partial training GPOD drag curve is 0.045 in the CD. This
is considerably worse compared to the results shown in Section 5.5.2 but relatively
small compared to the magnitudes of the drag coefficients. Especially when taking
into account the inherent difference between force balance and surface pressure inte-
grated drag coefficients which were found to differ within the same order of magnitude
in Section 5.2.2. In the region 25°≤ α ≤ 35°, the partial training GPOD curve seems
to correlate less with the force balance curve compared to outside of this angle of
attack range (focusing on α ≤ 45° as the curves are all symmetric). This is again
mainly caused by the sparse measurements on the Opt V2 plates not following the
linear behaviour with respect to nearby tap measurements while being forced to do so
in the reconstruction, leading to erroneous reconstructions especially on face B in the
supercritical regime. Surprisingly, the reconstruction at α = 25° significantly overpre-
dicts drag while not suffering from the aforementioned problem at all as visible from
Figure 5.24. Instead, the downward shift in the pressure reconstruction caused by
the Opt V2 measurements on faces C and D is the cause. Either the difference be-
tween balance and integrated pressure drag coefficients is larger than expected and
the reconstruction is accurate or the truly experienced dip in pressure near ψ = 270°
is steeper when using the Opt V2 plates compared to the cosine plates used for the
training data. Despite using roughly double the number of surface pressure distribu-
tions as training data, the full training GPOD curve achieves only a marginally lower
RMSE of 0.042. The reason for this disappointing increase in accuracy is the sensor
locations on the Opt V2 plates being based on the partial training pressure distribu-
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tions which are therefore not necessarily suited for reconstructions using a different
set of training snapshots. CFD based sensor locations on the Opt V2 plates should
have been determined using all available numerical pressure distributions instead, as
would be the case for a practical scenario.

5.9. CFD trained experimental surface pressure recon-
struction using GPOD

In Section 5.8, sensor locations based on CFD snapshots of square cylinder flow were
used in combination with experimentally obtained POD modes and sparse surface
pressure measurements to apply GPOD. In the following section this will be taken
a step further as the POD modes used will additionally be taken from the numerical
results such that no experimental training data is involved and reconstructions are
generated directly from sparse experimental measurements. The CFD results have
been discussed separately in Section 4.

5.9.1. Reconstruction examples
The tap locations on the Opt V2 plates were determined using the CFD results as
discussed in Section 4.4 and the experimental surface pressure measurements from
these taps will be used for the GPOD reconstructions. Unfortunately, the POD modes
used to obtain these tap locations were determined using numerical training snapshots
of a subset of the total angle of attack ensemble (partial training, see Section 5.8.3)
instead of surface pressure distributions at all available angles of attack. Reconstruc-
tions will therefore not benefit significantly from using numerical POD modes from
training at all angles of attack and the ’partial training’ numerical POD modes are
used instead. These numerical POD modes are thus the same as used in Section 4.4
of which the two dominant modes are shown in Figure 4.7. The ten surface pressure
measurements at each angle of attack obtained using the Opt V2 taps are used with
the first ten numerical POD modes to achieve ns = K = 10. The numerical POD
modes have the same spatial resolution as the mesh around the square cylinder with
n = 544. Reconstructions will therefore use the ten Opt V2 pressure measurements
to obtain a pressure distribution also at a spatial resolution of n = 544.
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Figure 5.28: CFD trained GPOD reconstruction using experimental Opt V2 sensor measurements
compared to cosine reference- and CFD pressure distribution at α = 0°, ns = K = 10.

Figure 5.28 above shows the GPOD reconstruction using the CFD POD modes and
the experimental surface pressure measurements indicated by a cross at α = 0°. The
complete experimental pressure distribution is unknown and therefore the cosine pres-
sure distribution at the same angle of attack is included as a reference. Also the CFD
pressure distribution which, depending on the angle of attack, has been included in
the training is shown. At this angle of attack, the CFD results agree well with the
reference in a qualitative sense but still the GPOD reconstruction improves upon the
CFD pressure distribution at almost every reference tap location (indicated with mark-
ers). The GPOD reconstruction shows asymmetry on faces B and C which is caused
by the POD modes being ’active’ at this angle of attack also representing features
of pressure distribution from different angles of attack. Even though the CFD results
overall resemble experimental results very poorly, the difference between CFD and
experimental results in both qualitative and quantitative sense is smallest in the subcrit-
ical regime. This yields reasonably accurate GPOD reconstructions in this regime, as
demonstrated in Figure 5.28, but even for reconstructions below αcrit, the PODmodes
are ’diluted’ by the inaccurate numerical pressure distributions at α > αcrit being used
as training. This is also part of the reason for the differences between reference and
GPOD in Figure 5.28. Starting close to the critical angle of attack, where CFD re-
sults start to become increasingly bad w.r.t. experimental, the GPOD reconstructions
become increasingly inaccurate as well. This is demonstrated in Figure 5.29 which
shows the reconstruction at α = 12.5°.
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Figure 5.29: CFD trained GPOD reconstruction using experimental Opt V2 sensor measurements
compared to cosine reference- and CFD pressure distribution at α = 12.5°, ns = K = 10.

The CFD results match the experimental results well on the ’pressure sides’ of the
square cylinder for every angle of attack and hence the GPOD reconstruction at those
faces is generally quite accurate, as is the case on face A at this angle of attack. The
CFD results predict well established reattachment of the shear layer on face B at α =
12.5° visible through a peak in pressure while experimental results as discussed in
Section 5.1 identify this angle of attack to be αcrit with no pressure peak. The GPOD
reconstruction seems to be able to correct for this misidentification of the critical angle
of attack by the CFD results as it matches the reference well on face B. α = 12.5°
marks the start of CFD results greatly overpredicting drag through the presence of
unphysical secondary recirculation regions in the wake, underpredicting pressure on
face C and D while changing the shape of the distribution. This is already visible in Fig-
ure 5.29 with the negative slope in the CFD pressure towards ψ = 270° which through
the training snapshots is encoded in the POD modes. This forces the the GPOD re-
construction on faces C and D to include this same curvature while complying with the
sparse experimental measurements, leading to inaccurate results that instead over-
predict pressure and behave unphysical. As the effect of the unphysical secondary
recirculation regions in the CFD results gets stronger for increasing angle of attack,
the reconstructions become worse as exemplified by the reconstruction at α = 45° in
Figure 5.30.
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Figure 5.30: CFD trained GPOD reconstruction using experimental Opt V2 sensor measurements
compared to cosine reference- and CFD pressure distribution at α = 45°, ns = K = 10.

At α = 45°, similar inaccurate curvature and overprediction on faces C and D are
present. Unlike non-data driven interpolation methods, such as linear interpolation,
that make use of local spatial information only, the POD bases involved in GPOD
reconstructions enable all sparse measurements to be used for reconstructions simul-
taneously based on their relative spatial correlation. This was seen in Section 5.7 to
yield a more accurate method of overcoming sparseness compared to linear interpo-
lation however also enables ’locally’ inaccurate results, as seen in the CFD results on
faces C and D, to be strongly correlated in the modes with other regions to be recon-
structed and therefore spoil the reconstruction overall. This is seen in the figure above
near the edges of faces A and B where the high ’activity’ of unphysical modes (such
as those resembling the CFD pressure distribution at α = 45°, see Figure 4.7) force
the reconstruction into unphysical behaviour to comply with all experimental measure-
ments on the sensor locations.

5.9.2. Pressure reconstruction accuracy
The accuracy of reconstructions such as those shown in Section 5.9 are quantified in
terms of RMSE Cp with respect to the cosine reference pressure distribution at all an-
gles of attack from 0° to 90°. This yields RMSE Cp values for individual reconstructions
but also a single RMSE Cp value across all reconstructed surface pressure distribu-
tions is computed such that results in the same format as used before in Section 5.4.2
and 5.7.2 are available.



5.9. CFD trained experimental surface pressure reconstruction using GPOD 97

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
 [ ]

10 2

10 1

100

RM
SE

 C
P [

-]

GPOD
CFD
LERP

Overall GPOD
Overall CFD
Overall LERP

Figure 5.31: RMSE Cp to cosine reference achieved by CFD trained GPOD reconstructions using
experimental Opt V2 sensor measurements. Also included: RMSE Cp of the CFD surface pressure
distributions to the same cosine reference as well as the RMSE Cp achieved by linear interpolation

(LERP) using the same Opt V2 sensors.

CFD results and GPOD reconstructions have a spatial resolution of n = 544 compared
to the n = 32 of the cosine reference. In the computation of the RMSE’s therefore only
those entries in the CFD andGPOD results at spatial locations at which cosine taps are
positioned as well are considered (corresponding to the markers in the examples of
Section 5.9). Unsurprisingly, the overall RMSE value for the CFD results is extremely
large at approximately 6 · 10−1. At α < 12.5° and α > 77.5°, individual RMSE values
are significantly smaller as the numerical results qualitatively match the experimental
results however remain large in an absolute sense. The overall GPOD reconstruction
results have an RMSE Cp of 1.5 ·10−1 and thus improve upon the CFD results by a fac-
tor 4 but still remains significantly larger than the results at ns = K = 10 of Figure 5.15.
RMSE values for individual angles of attack however show that there is much varia-
tion in the GPOD results. Below the critical angle of attack, GPOD RMSE values are
below 10−1 and show a decrease with respect to the CFD results in the RMSE of up
to a factor 8 at α = 7.5°. At α = 0° (and 90°), the GPOD reconstruction reaches a
minimum RMSE of 4.7 · 10−2 which for the same number of sensors is comparable
to the RMSE achieved using experimental training data, without actually requiring ex-
perimental training. The figure also includes the results one would obtain when using
linear interpolation as done in Section 5.7 on the experimental measurements other-
wise used for GPOD reconstructions. The overall RMSE Cp is considerably smaller
than the overall GPOD results at 1.1·10−1. This overall LERPRMSE value is also close
to the RMSE Cp value at the comparable ns = K = 10 in Figure 5.22 (note that the
LERP results in Section 5.7 were obtained using a different but similar sensor layout
and used the even pressure distributions as reference instead). Within the subcritical
regime, individual RMSE values for the LERP reconstructions lie above those for the
GPOD reconstructions however for all remaining angles of attack (roughly 80% out
of the total of 37 angles of attack) the GPOD reconstructions are very much unphysi-
cal/inaccurate and are not able to perform better than the simple to implement linear
interpolation which does not require training in any form.
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5.9.3. Drag estimation accuracy
The LERP and GPOD surface pressure distributions are integrated to obtain drag co-
efficients for all angles of attack. Together with the CFD drag coefficients, these are
shown in Figure 5.32 and compared to the force balance results also included. The
force balance results are obtained simultaneously with the surface pressure measure-
ments on the Opt V2 plates which were used for both GPOD and LERP reconstruc-
tions. Balance measurements were found earlier in Section 5.2.2 to compare well with
integrated surface pressure distributions which are not available for the sparse Opt V2
measurements.
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Figure 5.32: CD versus α curve obtained by CFD trained GPOD reconstructions using experimental
Opt V2 sensor measurements. Also included: CFD drag curve, drag curve obtained by linear

interpolation (LERP) using the same Opt V2 sensors and the reference drag curve obtained through
experimental balance measurements.

The extreme overprediction of the drag coefficients from the CFD results is not sur-
prising considering the underprediction of pressure on faces C and D and the earlier
shown results of Section 4.3. The GPOD results improve upon the CFD results by
again roughly a factor 4 and the trend in accuracy with respect to the balance mea-
surements follows the same pattern as in Figure 5.31. Within the supercritical regime,
pressure underprediction in the CFD results forces the GPOD reconstructions to over-
predict pressure on faces C and/or D with drag underprediction as a result. GPOD
results are significantly better in the subcritical regime where the CFD results were
seen to provide physically valid surface pressure distributions as training. The incor-
rect αcrit predicted around 10° by the CFD results has been corrected through the
GPOD procedure with he help of sparse experimental measurements. The LERP
results are surprisingly accurate to the force balance measurements with an overall
RMSE in the CD of 0.049. Even in the subcritical regime, where the RMSE Cp for
GPOD was previously found to be smaller compared to LERP, LERP outperforms
GPOD. Such a small RMSE CD does not fall in line with expectations based on LERP
RMSE CD results shown in Figure 5.23 and indeed the specific Opt V2 tap layout
seems to produce equal under- and overprediction of the surface pressure distribution
at locations which cancel in the integration for the drag coefficient. Mainly in the sub-
critical regime therefore; LERP reconstructions might perfom better in terms of RMSE
CD but produce surface pressure distributions not as physically valid as GPOD. This
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does not weigh up against the additional training steps involved required for GPOD
reconstructions and limited accuracy outside the subcritical regime. For both surface
pressure reconstruction and drag coefficient estimation using sparse measurements,
using GPOD in combination with RANS training snapshots does not seem viable for
this specific case and especially more qualitatively accurate numerical results would
be required. Providing numerical training results closer to experiments in the super-
critical regime is not expected to improve GPOD in the supercritical regime only but
would also benefit GPOD reconstructions in the subcritical regime as the activity of
POD modes involved in reconstructions often spans across a wide range of angles of
attack.





6
Conclusions and recommendations

In this chapter the conclusions which can be drawn from the results presented and dis-
cussed in Chapter 5 are stated. The conclusions are split up over the different topics
addressed but together provide the information to cover the research objective. The
conclusions are followed up by several recommendations. These recommendations
are aimed at improving the usability/accuracy of GPOD under different conditions (e.g.
in combination with CFD) and would be amongst the steps undertaken by the author
of the current report for follow-up research.

6.1. Conclusions
Aerodynamic drag determination through integration of the surface pressure distribu-
tion requires a large number of pressure taps/sensors to be installed on the object of
interest. This increases complexity and makes it difficult for use outside of the con-
trolled environment of a windtunnel while on-site measurements might be preferred
from a practical point of view. Regardless of the setting in which measurements are
to be performed, achieving a reduction in the number of required pressure taps/sen-
sors while maintaining the ability to obtain surface pressure distributions suited for the
determination of aerodynamic coefficients can be beneficial for optimization, control
or applications with limited physical space/access for example.

Using adequate prior training datasets with high spatial resolution, underlying patterns
in the pressure distribution in some parameter space of interest can be recognized
and encoded in a reduced order model using the Proper Orthogonal Decomposition.
Such a model can be used to infer full state approximations of the pressure distribu-
tion guided by only sparse measurements instead using the Gappy Proper Orthogonal
Decomposition extension, if locations for such measurements are optimal for the spe-
cific use case. Training data and optimal sensor locations can be determined through
windtunnel measurements or possibly CFD which would avoid the need for prior wind-
tunnel testing all together. The goal of this thesis was to evaluate the feasibility of the
outlined method for practical use, hence the following research objective:

”To assess the viability of using Gappy Proper Orthogonal Decomposition as a
method to obtain surface pressure distributions and drag estimates based on

experimentally obtained sparse surface pressure measurements on a 2D
square cylinder”

101
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The square cylinder model serves as a benchmark bluff body object and has been
incorporated into a windtunnel setup at the Open Jet Facility at the TU Delft. Using
removable plates on the square cylinder model faces, the pressure tap distribution
around the circumference could be varied but contain at most 32 taps. Pressure distri-
butions were measured at angles of attack from α = 0° to 45°, at 2.5° intervals, which
could be extended to 90° making use of the model symmetry. The parameter space is
therefore the pressure distribution at 0°≤ α ≤ 90°. Balancemeasurements were taken
simultaneous to pressure measurements mainly for independent validation. Surface
pressure distributions at the same angles of attack were also obtained using RANS
simulations.

Comparison of the experimental surface pressure distributions to results obtained in
literature revealed large quantitative differences however also showed that the exper-
imental setup has been successful in realizing a nominally two-dimensional square
cylinder flow which agrees well in a qualitative sense to literature as desired. Either
by using evenly spaced pressure taps around the model perimeter or cosine taps,
which are more densely spaced towards the edges, pressure drag coefficients ob-
tained by integrating the surface pressure around the perimeter were in very good
agreement with the balance measurements, using 8 taps per face. This further con-
firmed a successful nominally 2D square cylinder flow. With a Root Mean Squared
Difference (RMSD) of 0.019 between balance and cosine pressure tap drag curves,
using a tap layout dense towards the edges provides a slightly more accurate total
drag approximation as a RMSD of 0.034 was achieved using the even tap layout. The
CFD results were valid within the subcritical regime but very much unphysical and
inaccurate in the supercritical flow regime.

Regardless of the inaccuracy, the POD procedure was performed on a subset of the
CFD results (training). Sparse GPOD reconstructions outside the training data and
based on locations provided by the QR-CP algorithm showed that overall RMSE Cp

values in the order of 10−2 are achievable with roughly 99%of the original pressure dis-
tribution discarded (5 to 10 sensors remain). More importantly, the QR-CP algorithm
was confirmed to be a robust method of providing nearly optimal sensor locations for
sparse sampling as GPOD performance remained close to that of POD projections
while avoiding an expensive combinatorial search.

The identical procedure was applied to the experimentally obtained pressure distribu-
tions. The POD analysis for eigenmodes and corresponding QR-CP sensor locations
were based on experimental training pressure distributions at a subset of the angle of
attack ensemble. Both training and the determination of sensor locations therefore re-
lied on prior experimental measurements. The training pressure distributions formed
a representative basis for square cylinder flow at 0°≤ α ≤ 90° as sparse GPOD recon-
structions outside of the provided training were capable of achieving RMSE Cp values
again in the order of 10−2. The number of sensors required for physically valid but
relatively sparse reconstructions seemed to be between 5 and 10 which due to the
’high resolution’ reference data consisting of 32 measurements translates to a gappi-
ness percentage of 85% and 69% respectively. The QR-CP sensors were found to be
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suited sensor locations for reconstructions in this fully experimental setting however
the greedy nature of the algorithm became apparent through an instance of clearly sub-
optimal sensor placement leading to large errors. Drag approximations based on the
reconstructed pressure distributions were found to be capable of following the refer-
ence curve at the same number of sensors as mentioned before. The behaviour of the
drag prediction accuracy for increasing the number of sensors was however very un-
predictable compared to pressure distribution reconstruction accuracy. A comparison
of both pressure distribution reconstruction accuracy and drag approximation accu-
racy with respect to linear interpolation based on the same sensor locations showed
how GPOD perfroms better for both by almost an order of magnitude in RMSE de-
pending on sparseness.

The reliance of experimental GPOD reconstructions on sensor locations determined
through experimental training was tested by using the numerical pressure distribu-
tions as the basis for the QR-CP algorithm instead. Despite the large discrepancies
between experimental and CFD pressure distributions, this ’numerically determined’
sensor layout was very similar to that obtained experimentally. Only surface pressure
reconstructions using 10 sparse measurements from these sensor locations could be
performed at which the overall RMSE Cp of 4 · 10−2 was not significantly worse com-
pared to the 1.7 ·10−2 obtained using a sensor layout based on experimental data. Es-
pecially when considering that the expected sources of error for these reconstructions
were introduced unnecessarily through oversights in the design of the experimental
campaign which can bemitigated in future experiments. Because of these errors, drag
approximations based on the GPOD reconstructions suffered in accuracy as well.

Incorporation of CFD results into GPOD reconstructions using sparse experimental
measurements was taken a step further by additionally relying on the numerical pres-
sure distributions for training. Therefore both the eigenmodes and sensor locations
are determined from CFD and only the sparse measurements remain experimentally
obtained. Reconstructions using this approach were generally disappointing because
of the unphysical CFD results being encoded into the eigenmodes. Overall, the sparse
experimental measurements did provide a significant correction to the CFD results
using GPOD however even linear interpolation based on the same sparse measure-
ments provided smaller RMSE Cp values while not requiring training data in any form.
Exceptions on this were seen in the subcritical regime where CFD results remained
somewhat accurate to the experimental surface pressure distributions. Within the sub-
critical regime, GPOD reconstructions were more accurate in terms of RMSE Cp and
physically valid compared to linear interpolation which implies a potential for GPOD
to produce meaningful reconstructions using at least qualitatively accurate training
from CFD, avoiding extensive windtunnel testing to survey the parameter space. The
disappointing GPOD surface pressure reconstructions yielded disappointing drag pre-
dictions overall as well. Again, an improvement was achieved over the CFD results but
far better drag coefficient estimations were obtained using linear interpolation. Within
the subcritical regime GPOD drag predictions were naturally closer to the reference
but still surpassed in accuracy by linear interpolation. It should be noted however
that the surprisingly small errors in drag estimation through linear interpolation were
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mainly a result of ’coincidental’ surface pressure reconstruction errors cancelling dur-
ing integration providing no physical foundation for the surprising performance. On
the contrary, GPOD drag estimates within the subcritical regime were found to physi-
cally comply with the experimental references much better.

In summary, the GPOD framework was shown to provide a viable method of reduc-
ing the required number of surface pressure measurements for applications were
additional sensors might be expensive, difficult to install or add unacceptable laten-
cy/weight if there is a possibility for high resolution experimental training to be per-
formed. Combining experimental training with the QR-CP algorithm for the sensor
layout produced both accurate surface pressure reconstructions and drag predictions
hence ’fully experimental’ GPOD is colored green in the summarized conclusion shown
in Table 6.1. Using instead CFD for the determination of the sensor layout with the
QR-CP algorithm resulted in mixed outcomes. This approach showed the potential
for accurate reconstructions when the source of errors was not dominated by the pro-
cedure to ensure compatibility between different pressure tap plates. Hence the prob-
lematic implementation instead of the GPOD procedure was found to be the limiting
factor. Determining the sensor layout through CFD can still be used as a prior for
more effective/efficient sensor placement in an experimental setting as the QR-CP al-
gorithm succeeded in predicting GPOD suited sensor locations despite the inaccurate
numerical results. Overall, reconstructions using this approach were less accurate for
both surface pressure reconstructions and drag predictions than the fully experimental
GPOD but neither the sensor layout or training data are the cause of this, therefore
both are colored yellow in Table 6.1. Replacing the experimental results used for
training and sensor placement by numerical results has obvious practical advantages
but could not be used effectively in a consistent manner in this report and thus corre-
sponding reconstructions are colored red in Table 6.1. CFD results should agree with
the physical behaviour of the system to be sampled sparsely. If this holds however, it
was seen that sparse measurements can effectively be used to merge numerical- with
sparse experimental results and produce practically continuous pressure distributions
that are closer to ’the truth’ than either numerical or sparse experimental results on
their own. For the majority of the reconstructions using CFD for both sensor place-
ment and training, the limiting factor was clearly the inaccuracy of the CFD results
affecting the POD modes, hence colored red in Table 6.1.

Table 6.1: Summarized conclusion on the experimental GPOD reconstruction results depending on
the source of the sensor layout and POD modes. RMSE Cp and RMSE CD at ns = K = 10 (69%

gappiness) stated in last columns for reference.

Sensor layout Training/POD modes
Experimental GPOD
reconstructions

Cp RMSE ·10−2 CD RMSE ·10−2

Experimental Experimental 1.7 0.82
CFD Experimental → 4.0 4.5
CFD CFD 15 25
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6.2. Recommendations
In this thesis, GPOD has been applied on sparse experimental measurements in three
ways; fully experimental with both training and the determination of the sensor layout
relying on windtunnel measurements, partly CFD based where the sensor layout is
determined through an ensemble of numerical snapshots and fully CFD based with
both the training and determination of the sensor layout coming from numerical simula-
tions. Each of the implementations achieved a different level of success and viability
for practical use. Recommendations provided in this section are either aimed at in-
creasing the viability of GPOD in general or focus on a specific implementation as
used in the report.

6.2.1. Changes to the experimental pressure tap layouts
The windtunnel measurements for the generation of training data consisted of surface
pressure measurements using 32 taps in total. This spatial resolution was found to
be sufficient for the determination of drag but the discreteness of the measured pres-
sure distribution limits the ’optimality’ that can be achieved with the sparse sensor
placement as the underlying pressure distribution is continuous in nature. Discrete
pressure distributions translate into discrete POD modes which are used for the deter-
mination of the sensor positions. Since GPOD relies on effective sampling of regions
with high modal activity in the modes, increasing the resolution at which these modes
are captured, i.e. increasing the number of pressure taps, possibly allows for better
sensor positions to be identified and hence better surface pressure reconstructions
and drag approximations. An effective approach to efficiently increase the resolution
of the measured surface pressure distribution near regions of expected high modal
activity could be to use the CFD based sensor positions as an initial guess for regions
which might benefit from an increased tap density.

A second recommendation related to the locations at which pressure taps were placed
during the windtunnel campaign is aimed at resolving the problem encountered when
reconstructing pressure distributions using the Opt V2 pressure tap measurements
(see Section 5.8.1). To use GPOD, the eigenmodes involved in a reconstruction
should contain data at the locations which are used as sensor locations. This was
not the case for the Opt V2 reconstructions but was circumvented using linearly in-
terpolated placeholder points. The inherent assumption this introduces regarding the
shape of the pressure distribution at the Opt V2 tap locations leads to problems in the
reconstructions at certain angles of attack. This is avoidable in general however by
including the tap layout responsible for sparse sampling specifically (Opt V2) into the
tap layout used for obtaining training snapshots (even or cosine). This is expected to
significantly increase the accuracy of reconstructions with respect to the results shown
in this report and would better illustrate the viability of using CFD for the determination
of sensor locations as found RMSE values are currently spoiled by the implementation
rather than the limits of GPOD.
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6.2.2. Improvement of training data
Better GPOD reconstructions can obviously be achieved through training data which is
more representative of the data to be reconstructed. Training data not being suited for
GPOD reconstructions is the dominant factor in the disappointing reconstructions ob-
tained when using CFD for both the training and sensor placement. For the specific ap-
plication on a square cylinder, poor numerical results were caused by the inadequacy
of the RANS simulations for massively separated flows. In general, RANS simulations
are not expected to be viable for use on bluff bodies with large detached/reattaching
flow regions (Probst et al. (2010), Ke (2019)) but using RANS to replace windtunnel
testing for GPOD training was shown to be viable on aerodynamic bodies as shown in
Mifsud et al. (2019). For broader usability however, numerical training for applications
involving bluff body aerodynamics might require using an LES-type approach. Direct
Large Eddy Simulations to survey the parameter space for training are not viable at the
Reynolds numbers often encountered in practical applications. Hybrid RANS/LES ap-
proaches however try to combine the accuracy of LES and efficiency of RANS which
might therefore be an alternative to RANS in applications where numerical accuracy
is otherwise lacking and windtunnel measurements are not an option.

An aspect which affects GPOD reconstructions but has not been investigated in this
thesis is the methodology of sampling the parameter space for training snapshots.
With a few exceptions, training snapshots in this report have been provided at a con-
stant 5° angle of attack interval in the parameter space. Variations in reconstruction
accuracy over the angle of attack range suggest however that reconstructions at spe-
cific angles of attack might benefit from a locally decreased interval between training
snapshots or in other words: uneven sampling of the parameter space. For this par-
ticular application, more closely spaced training snapshots in the supercritical regime
are expected to increase reconstruction accuracy but other applications such as flow
around an airfoil for example might benefit from training snapshots around the onset
of stall or formation of a shockwave. Optimizing the distribution of training snapshots
around such non-linearity might require prior knowledge, additional CFD simulations
or a systematic approach such as described in Zhan et al. (2016). This might become
increasingly important when the parameter space is spanned by more than a single
variable, something not included in this report but which could have practical use as
it effectively allows measuring multiple variables using the same sensors.

6.2.3. Oversampling
A final recommendation is to investigate the effect of oversampling. Throughout this
report, the number of used PODmodes has been kept equal to the number of available
sensors. This effectively makes the least squares formulation in the GPOD algorithm
redundant as instead sensor measurements are interpolated exactly. Especially in
experimental settings, where sensor measurements might contain noise, this could
lead to undesired effects as reconstructions are forced to obey noisy measurements.
Oversampling relieves the constraint to follow measurements exactly as an overall
least squares reconstruction is generated instead. This additionally opens up the pos-
sibility for weighted and regularized least squares approaches which focus on gener-



6.2. Recommendations 107

ating reconstructions specifically to conform with integrated aerodynamic coefficients
such as in Mifsud et al. (2019) and Jayaraman et al. (2019).
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Figure A.1: Experimental GPOD reconstruction at α = 12.5°. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10, using cosine spacing pressure distributions.
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Figure A.2: Experimental GPOD reconstruction at α = 42.5°. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10, using cosine spacing pressure distributions.
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Figure A.3: Experimental GPOD pressure distribution reconstruction (top) and projection (bottom)
accuracy for every combination of ns = K and α, using cosine spacing pressure distributions.
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Figure A.4: Experimental GPOD surface pressure reconstruction accuracy for increasing sensor
budget, using cosine spacing pressure distributions.
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Figure A.5: Sensor locations determined by QR algorithm for each value of ns = K, using cosine
spacing pressure distributions.
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Figure A.6: Experimental GPOD drag curve reconstruction. GPOD 1: ns = K = 5, GPOD 2:
ns = K = 10, using cosine spacing pressure distributions.
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Figure A.7: Experimental GPOD drag curve reconstruction accuracy for increasing sensor budget,
using cosine spacing pressure distributions.
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Figure B.1: Spatial POD mode and α-coefficients 1 from pressure distributions using even tap
spacing
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Figure B.2: Spatial POD mode and α-coefficients 2 from pressure distributions using even tap
spacing
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Figure B.3: Spatial POD mode and α-coefficients 3 from pressure distributions using even tap
spacing
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Figure B.4: Spatial POD mode and α-coefficients 4 from pressure distributions using even tap
spacing
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Figure B.5: Spatial POD mode and α-coefficients 5 from pressure distributions using even tap
spacing
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Figure B.6: Spatial POD mode and α-coefficients 6 from pressure distributions using even tap
spacing
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Figure B.7: Spatial POD mode and α-coefficients 7 from pressure distributions using even tap
spacing
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Figure B.8: Spatial POD mode and α-coefficients 8 from pressure distributions using even tap
spacing
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Figure B.9: Spatial POD mode and α-coefficients 9 from pressure distributions using even tap
spacing
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Figure B.10: Spatial POD mode and α-coefficients 10 from pressure distributions using even tap
spacing
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Figure B.11: Spatial POD mode and α-coefficients 11 from pressure distributions using even tap
spacing
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Figure B.12: Spatial POD mode and α-coefficients 12 from pressure distributions using even tap
spacing
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Figure B.13: Spatial POD mode and α-coefficients 13 from pressure distributions using even tap
spacing
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Figure B.14: Spatial POD mode and α-coefficients 14 from pressure distributions using even tap
spacing
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Figure B.15: Spatial POD mode and α-coefficients 15 from pressure distributions using even tap
spacing
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Figure B.16: Spatial POD mode and α-coefficients 16 from pressure distributions using even tap
spacing
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Figure B.17: Spatial POD mode and α-coefficients 17 from pressure distributions using even tap
spacing
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Figure B.18: Spatial POD mode and α-coefficients 18 from pressure distributions using even tap
spacing
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Figure B.19: Spatial POD mode and α-coefficients 19 from pressure distributions using even tap
spacing
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GPOD source code

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 #Snapshot POD function , input data shape m by n, return coefficients ,
bases and eigenvalues

6 def Snapshot_POD(training_data):
7 m_t, n_t = np.shape(training_data)
8

9 training_data_T = np.transpose(training_data)
10 Cs = (1/(m_t - 1))*(training_data @ training_data_T) #Correlation

matrix
11 Eigvals, Eigvecs = np.linalg.eigh(Cs) #Eigenvalue and vectors
12 Eigvals = np.real(Eigvals)
13 Eigvecs = np.real(Eigvecs)
14

15 #Sort eigenvalues and vectors based on magnitude
16 idx = Eigvals.argsort()[::-1]
17 Eigvals = Eigvals[idx]
18 Eigvecs = Eigvecs[:,idx]
19

20 #Compute POD coefficients and modes
21 As = Eigvecs
22 Phis = training_data_T @ As
23

24 #Optional: normalize modes and switch temporal/spatial modes
25 Norms = np.linalg.norm(Phis,2,axis = 0)
26 Phis /= Norms
27 As = training_data @ Phis
28

29 return As, Phis, Eigvals
30

31 #GPOD reconstructions , input data to be used for training , reference data
from which data originates , number of sensors and rank of the
reconstructions

32 def GPOD(training_data , reconstruction_data , p, k):
33 m_r, n_r = np.shape(reconstruction_data)
34

35 As, Phis, Eigvals = Snapshot_POD(training_data) #Obtain POD basis from
POD function on training data

36

129
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37 #QR-CP algorithm for the determination of sensor locations
38 if p > k:
39 Q,R,P = linalg.qr(Phis[::,0:k] @ np.transpose(Phis[::,0:k]),

pivoting = True)
40 else:
41 Q,R,P = linalg.qr(np.transpose(Phis[::,0:k]), pivoting = True)
42

43 sensor_locs = P[0:p]
44 sensor_locs = sensor_locs[sensor_locs.argsort()]
45

46 reconstructed_data = np.zeros(np.shape(reconstruction_data))
47

48 nPhis = Phis[sensor_locs , 0:k]
49 nPhisT = np.transpose(nPhis)
50 M = nPhisT @ nPhis #GPOD matrix
51

52 #Reconstruct all data provided as original reference data using GPOD
53 for i in range(m_r):
54 g = reconstruction_data[i, sensor_locs][::,None] #Sparse pressure

distribution
55 f = nPhisT @ g #RHS linear system
56 b = np.linalg.solve(M, f) #GPOD coefficients from linear system Mb

= f
57 g_tilde = Phis[::,0:k] @ b #Approximation of original pressure

distribution
58

59 reconstructed_snapshot = g_tilde
60 reconstructed_snapshot = np.transpose(reconstructed_snapshot)
61 reconstructed_data[i,::] = reconstructed_snapshot
62

63 return reconstructed_data , sensor_locs , As, Phis, Eigvals, np.linalg.
cond(M)

64

65 #Pressure drag coefficient square cylinder function , input x, y
coordinates of pressure taps, surface pressure measurements and angle
of attack, output Cd and Cl

66 #Integrates pressure per cylinder face using trapezoidal rule, assuming
constant pressure from taps closest to the corners untill the corners

67 #Some additional modifications added to be able to function when sparse
pressure distributions are provided

68 def integ_V1(x, y, Cp, alpha):
69 angles = np.rad2deg(np.arctan2(y,x)) + 180 + 45
70 angles[np.where(angles >= 360)] -= 360
71

72 plate_1 = np.where(angles < 90)
73 plate_2 = np.where(np.logical_and(angles > 90, angles < 180))
74 plate_3 = np.where(np.logical_and(angles > 180, angles < 270))
75 plate_4 = np.where(angles > 270)
76

77 if len(plate_1[0]) == 0:
78 x_1 = np.zeros(len(x) + 2)
79 y_1 = np.zeros(len(x) + 2)
80 Cp_1 = np.zeros(len(x) + 2)
81 else:
82 x_1 = np.hstack((-(L/2), x[plate_1], -(L/2)))
83 y_1 = np.hstack(((L/2), y[plate_1], -(L/2)))
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84 Cp_1 = np.hstack((Cp[plate_1][0], Cp[plate_1], Cp[plate_1][-1]))
85

86 if len(plate_2[0]) == 0:
87 x_2 = np.zeros(len(x) + 2)
88 y_2 = np.zeros(len(x) + 2)
89 Cp_2 = np.zeros(len(x) + 2)
90 else:
91 x_2 = np.hstack((-(L/2), x[plate_2], (L/2)))
92 y_2 = np.hstack((-(L/2), y[plate_2], -(L/2)))
93 Cp_2 = np.hstack((Cp[plate_2][0], Cp[plate_2], Cp[plate_2][-1]))
94

95 if len(plate_3[0]) == 0:
96 x_3 = np.zeros(len(x) + 2)
97 y_3 = np.zeros(len(x) + 2)
98 Cp_3 = np.zeros(len(x) + 2)
99 else:
100 x_3 = np.hstack(((L/2), x[plate_3], (L/2)))
101 y_3 = np.hstack((-(L/2), y[plate_3], (L/2)))
102 Cp_3 = np.hstack((Cp[plate_3][0], Cp[plate_3], Cp[plate_3][-1]))
103

104 if len(plate_4[0]) == 0:
105 x_4 = np.zeros(len(x) + 2)
106 y_4 = np.zeros(len(x) + 2)
107 Cp_4 = np.zeros(len(x) + 2)
108 else:
109 x_4 = np.hstack(((L/2), x[plate_4], -(L/2)))
110 y_4 = np.hstack(((L/2), y[plate_4], (L/2)))
111 Cp_4 = np.hstack((Cp[plate_4][0], Cp[plate_4], Cp[plate_4][-1]))
112

113 X = np.hstack((x_1, x_2, x_3, x_4))
114 Y = np.hstack((y_1, y_2, y_3, y_4))
115 PSI = np.rad2deg(np.arctan2(Y,X)) + 180 + 45
116 PSI[np.where(PSI >= 360)] -= 360
117

118 force_1 = np.trapz(Cp_1, y_1)*-1
119 force_2 = np.trapz(Cp_2, x_2)
120 force_3 = np.trapz(Cp_3, y_3)
121 force_4 = np.trapz(Cp_4, x_4)*-1
122

123 force_x_prime = force_1 - force_3
124 force_y_prime = force_2 - force_4
125 force_x = force_x_prime*np.cos(np.deg2rad(alpha)) + force_y_prime*np.

cos(np.deg2rad(90 - alpha))
126 force_y = -1*force_x_prime*np.cos(np.deg2rad(90 - alpha)) +

force_y_prime*np.cos(np.deg2rad(alpha))
127 Cd = force_x/(L)
128 Cl = force_y/(L)
129

130 return Cd, Cl
131

132

133 filepath = 'C:\\Users\\LHendriksen\\Documents\\TUD\\Thesis\\Luuk_OJF_June'
#Specify filepath to foldercontaining data

134 data = np.load(filepath + '\\Even_averaged.npy') #Specify filename of
file containing data

135
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136 Exp_Cp = data[0:-2,::] #First untill third to last row contain pressure
distributions

137

138 # Last two rows contain x and y coordinates of pressure taps
139 x = data[-2,::]
140 y = data[-1,::]
141

142 L = 0.2 #Square cylinder sidelength
143

144 m,n = np.shape(Exp_Cp) #Data dimensions
145

146 #Computing tap locations in psi from x and y
147 psi = np.rad2deg(np.arctan2(y,x)) + 225
148 psi[np.where(psi >= 360)] -= 360
149

150 Cp_mean = np.mean(Exp_Cp, axis = 0)[None ,::] #Average pressure
distribution over angles of attack

151

152 #All angles of attack and those to be used for training
153 alphas = np.linspace(0,90,37)
154 alphas_training = np.linspace(0,90,19)
155

156 alphas_training_i = np.zeros(len(alphas_training)).astype(int)
157

158 num_sensors = 10 #Specify number of sensors to be used for reconstructions
(n_s)

159

160 for i in range(len(alphas_training)):
161 alphas_training_i[i] = np.where(abs(alphas - alphas_training[i]) <

0.0001)[0][0]
162

163 reconstruction_rank = num_sensors #Reconstruction rank K is equal to
number of sensors n_s

164

165 Exp_Cp_training = Exp_Cp[alphas_training_i ,::] - Cp_mean #Subtract mean
from training

166 Exp_Cp_reconstruct = Exp_Cp - Cp_mean #Subtract mean from all data
167

168 Exp_Cp_reconstructed , sensor_locs , As, Phis, Eigvals, kappa_M = GPOD(
Exp_Cp_training , Exp_Cp_reconstruct , num_sensors , reconstruction_rank)
#Perform GPOD reconstruction

169 Exp_Cp_projected = GPOD(Exp_Cp_training , Exp_Cp_reconstruct , n,
reconstruction_rank)[0] #Perform POD projection

170

171 #Add mean back
172 Exp_Cp_reconstructed += Cp_mean #Exp_Cp_reconstructed now contains the

GPOD approximation of all original data
173 Exp_Cp_reconstruct += Cp_mean
174 Exp_Cp_projected += Cp_mean
175

176 Cd_reconstructed = np.zeros(len(alphas))
177 Cd_exact = np.zeros(len(alphas))
178 Cd_projected = np.zeros(len(alphas))
179

180 #Compute pressure drag for exact, reconstructions and projections
181 for j in range(len(alphas)):



133

182 Cd_reconstructed[j] = integ_V1(x, y, Exp_Cp_reconstructed[j,::],
alphas[j])[0]

183 Cd_exact[j] = integ_V1(x, y, Exp_Cp[j,::], alphas[j])[0]
184 Cd_projected[j] = integ_V1(x, y, Exp_Cp_projected[j,::], alphas[j])[0]
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