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Abstract

In this paper a two agent wealth distribution model for a closed economic system developed in [2]
is presented and extended. We first extend the model by randomly distributing the propensity
to save of the agents. We derive a closed form of the stationary relative wealth measure of an
agent. We also see that if we take both the propensity to save and the redistribution measure
to be uniformly distributed, then the stationary wealth distribution of agent 1 cannot be Beta
distributed. Furthermore we conjecture that given a uniform redistribution measure and Beta
distributed propensity to save, the resulting wealth distribution cannot be Beta distributed
either. The absence of Beta distributions in the wealth distribution shows that there cannot
be product stationary measures in these cases. We also extend the model by assuming zero
propensity and that the stationary product measure of one agent is conditionally Gamma(α, β)
distributed, where we condition on α be independently distributed as well. We find that the
class of distributions for α defined by ψ(α) = a−k, k ∈ N always leads to the wealth distribution
for agent 1 to be heavy-tailed. We also take steps in showing that there exists a distribution for
α that solves for the wealth distribution of agent 1 to be Pareto Lomax distributed.
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1. Introduction

The wealth distribution of a given population is a problem that has interested economists, gov-
ernments, and other parties alike for centuries. Given such a distribution, understanding the
mechanics behind the economy of a population would take great leaps forward. However this
remains to be quite a challenging task. In recent years, techniques and ideas from mathematical
statistical mechanics have entered this area of research in order to explain the wealth distri-
bution in an economy of interacting agents. The term econophysics was first used in 1995 to
describe this particular field of physics that had to do with the statistics of the economy and
finance. However using years of research in statistical mechanics as a mathematical foundation,
this section of wealth distribution analysis soon became quite prominent in its own right [9].

The wealth distribution models are inspired by a similar energy redistribution model from
physics literature. Heat (or energy) transfer can be modelled with a basis in the individual
particle heat transfer; assuming we have a closed system (i.e. the total energy within the system
is constant), the interaction of particles through collisions causes energy to be randomly redis-
tributed among these particles. The field of econophysics takes this energy model and applies
it to a system of wealth instead of energy. Now instead of particles we have economic agents;
these are entities in the system that can interact in the form of transfer of wealth as opposed to
transfer of energy in the original model. The distribution of wealth of the whole system is then
comparable to that of the energy distribution in the physical model. Due to its strong roots in
physics it becomes clear why analyzing these models using mathematical phenomena produces
relevant results [9].

In this paper we take the model introduced in [2] and investigate some realistic extensions
that pertain to an economic agent’s propensity to save. In [2] a two agent model is used to
represent the interactions of the system as a whole. The two economic agents interact through
wealth transactions, where the total wealth in the system stays constant. In each transaction,
a certain amount of wealth is saved for each agent and the rest is redistributed among them
according to some random mechanism. The saved wealth corresponds to the aforementioned
propensity. In [2] the focus lies on the different types of wealth redistribution measures that
can be used for this model to give realistic results. The purpose in [2] is to find the condi-
tions under which there are product stationary measures, and how the system evolves in time
(for example the expected wealth of an agent). For the latter duality techniques are used as well.

In this paper we first mathematically define the model from [2]. We then look at the influence
of randomly distributing the propensity to save of an agent in this model, and focus on the
stationary measures. We also look at the influence on the model when randomly distributing
the parameters and taking propensity to be equal to zero. We ask the following questions

• For the random propensities independently distributed, are there corresponding wealth
distribution models that have stationary product measures?
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• We conjecture that with the propensity and the redistribution of wealth per transaction
Beta distributed that there are no stationary product measures for the wealth distribution.

• What form does the general stationary wealth distribution have with random propensity
to save?

• When randomly distributing the parameters in the Gamma redistribution measure for the
zero propensity model, can the resulting wealth distribution be heavy tailed? Specifically
can it be (Lomax) Pareto distributed?
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2. Two agent model

In this section the two agent the model for wealth distribution from [2] is introduced. We first
introduce some definitions and concepts from probability theory that will be helpful later on.

2.1. Markov Processes

The two agent model assumes that the process of redistributing the total wealth in the sys-
tem is a Markov Process. The motivation behind this is as follows: Markov processes have the
appealing quality that their distribution of future states only depend on the current state; i.e.
conditional on the present, the past is independent of the future. Computationally (as well as
mathematically as we shall see) this is more efficient, and it does not produce extremely unre-
alistic results in the model; on the contrary, the Markov property is one that is often used in
other financial models, see [7]. Furthermore we choose a continuous state space Markov process
with discrete time.

Mathematically speaking, a discrete time Markov Process can be defined as follows. We have
a stochastic process {Xt, t ∈ N} defined on a given measurable space (Ω,F ). The Markov
property described in the previous paragraph is then defined as: for all tn ∈ N, n ∈ N, 0 < t1 <
t2 · · · < tn < t, and f : Ω→ R bounded and measurable, we have

E(f(Xt)|Xt1 , Xt2 , . . . , Xtn) = E(f(Xt)|Xtn) (2.1)

This essentially mathematically expresses that conditioned on Xt, Xt+1 and Xt−1 are indepen-
dent. We call 2.1 the Markov property. This can be easily extended to continuous time processes,
as shown in [6].

2.2. Transition operator

Having defined the Markov process for the redistribution of wealth between two economic agents,
we now continue to define its transition operator. Let {Xt, t ≥ 0} be a Markov process as
before defined on a given measurable space (Ω, F ). We define the operator St on all bounded,
measurable functions f : Ω→ R as

Stf(x) = Ex(f(Xt)) = E(f(Xt|X0 = x) (2.2)

We notice that this operator (known as the semi-group) also has the property [6]:

St+sf(x) = StSsf(x) (2.3)

Now we define the transition operator Sn as P t, where

Pf(x) = E(f(X)|X0)
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2.3. Model definition

We are now ready to mathematically define a general redistribution method of the total wealth
in a closed economic system with two economic agents. Recall that this model comes directly
from [2] and will therefore be defined in a similar manner.

We denote the wealth configuration as the pair (x, y) within the state space E = [0,∞)2.
Furthermore we have the propensity to save, λ, and redistribution value, ε, which take values
in [0, 1]. The propensity to save is the fraction of wealth that an agent decides to keep and not
redistribute. The remaining fraction of wealth is then redistributed according to ε. We then
define the following map as the redistribution of the wealth configuration after one transaction.
For T λε (x, y) : E → E we have

T λε (x, y) = (λx+ (1− λ)ε(x+ y), λy + (1− λ)(1− ε)(x+ y)) (2.4)

It should be noted that the redistribution map T λε (x, y) conserves the total wealth in a closed
economy; i.e. if (w, z) = T λε (x, y), then x+ y = w + z = s is a constant.

We first observe the transition operator with fixed λ ∈ [0, 1] and redistribution measure ν(ε):

P λf(x, y) =

∫ 1

0
(T λε (x, y))ν(ε)dε (2.5)

This is the model as described in [2]. We note that this can be written in recursive notation
as follows: if we have the current state of the wealth distribution as (Xn, Yn), then the wealth
distribution after one transaction (i.e. at time n+ 1) has the form

(Xn+1, Yn+1) = (Xn + (1− λ)εn+1(Xn + Yn), Yn + (1− λ)εn+1(Xn + Yn)) (2.6)

where the εn are i.i.d. according to ν(ε).

2.4. Stationary product measures

When inspecting wealth distribution we look at the stationary distributions that could be formed
from a given transition operator. The idea behind this is that under a Markov Process, a
distribution would be stationary if it does not change throughout time. This is usually seen as
taking the limit t→∞ over the process. The resulting process is of great interest, if it exists at
all. We want the change in time to be irrelevant, meaning that the change from one state to the
next after an exponential waiting time should not influence the wealth distribution; transactions
can keep occurring without the wealth being distributed any differently. In terms of our process,
this means that after a transaction there is no change. Thus for our transition operator this
means that for the wealth distribution µ(x, y):∫

P λf(x, y)µ(x, y)dxdy =

∫
f(x, y)µ(x, y)dxdy

for all bounded and continuous functions f . Perhaps a more intuitive form of stationary mea-
sures is obtained using the recursive notation of the process. For a stationary process, if we
have (X0, Y0) = µ, then for all i ∈ N, (Xi, Yi) = µ. This once again states that through time the
distribution of the process stays the same. Another name for stationary measures is invariant

10



measures.

A specific type of (stationary) measure that we are interested in is a product measure. These
are measures of the form µ(x, y) = µ(x)µ(y). These are the type of distributions we look
for in the wealth distribution model. The motivation behind this is as follows; while a two
agent model is relatively simple and thus easy to interpret, the real life applications are limited.
Expansions to a model with N agents is possible, however the distribution if such a model is not
necessarily comparable to that of two agents. However if we have product measures, we see that
as µ(x, y) = µ(x)µ(y), we can easily extend this to, for example, µ(x, y, z) = µ(x)µ(y)µ(z). Thus
for an N agent model, the distribution of a two agent model would be directly applicable. Because
of this we focus primarily on finding product stationary measures for the wealth distribution.

2.5. Relevant theorems

Now that we have fully laid a mathematical foundation regarding the wealth distribution of two
agents as done in [2] we can continue with some results from this paper. Naturally not all results
are mentioned here, but there are a few that pertain to our own goals of analyzing the more
complicated model of taking random propensity, as well as a class of functions derived in [2].
Showing these results here allows us to use them later on.

We define a new variable r = x
x+y = x

s and call it the relative wealth of agent 1. Note that as
we have used the same information as the pair (x, y) in this change of variables, (r, s) follows the
same process as the wealth configuration (x, y) as described in previous sections. Thus seeing
as we take s to be constant, (rn, sn) = (rn) then defines a Markov process. In terms of the
transition operator we then get for all bounded and continuous f :

Pf(r) =

∫
f(λr + (1− λ)ε)ν(ε)dε (2.7)

The recursive form is given by

rn+1 = λrn + (1− λ)εn

This recursion represents the transaction after an exponential waiting time; rn+1 is the relative
wealth of agent 1 after the transaction , rn is the relative wealth of agent 1 before the transaction,
and εn is the redistributed according to ν(ε). Solving for this recursion gives the following
stationary measure

ελ∞ =

∞∑
n=0

λn(1− λ)εn (2.8)

A result from [2] is then that a random variable of the form 2.8 has stationary measures of the
form (ελ∞S, (1 − ελ∞)S), for some non-negative random variable S. Furthermore, given λ > 0
there are no product stationary measures for this distribution.

It should be noted that in this paper we work with an agent independent propensity, mean-
ing that we take the propensity per transaction to be the same for both agents. Other more
realistic models could include that there are two propensities, λ1 and λ2, one for each agent per
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transaction. However this would complicate computations significantly and thus we will not be
pursuing such methods. For results concerning such models, refer to [2].

One particular class of stationary distributions that was deduced in [2] is where the propensity
is taken to be 0. If we take the redistribution measure ν(ε) to be Beta(α, β) distributed, i.e.

ν(ε) =
εα−1(1− ε)β−1

B(α, β)

then we necessarily have a product stationary wealth distribution µ(x, y) = µ(x) × µ(y) of
Gamma(ζ1, ω)× Gamma(ζ2, ω), i.e.

µ(x) =
ωζ

Γ(ζ)
xζ−1e−ωx

Furthermore, this is the only stationary product measure for an s-independent redistribution
measure: ν(ε, s) = ν(ε). When looking at heavy tailed distributions later on, this is the set of
wealth measures that will be analyzed. For more information regarding these particular types of
redistribution measures and their connection to the corresponding stationary product measures,
refer to [2].
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3. Random propensity

We now have a strong mathematical definition for the wealth distribution between two agents.
In the previous section we were restricted to a constant propensity to save of both agents. This
section focuses on the expansion of this model to the propensity to save to be random in each
transaction. This means that we let λ be distributed in a certain way, where each transaction
will have an i.i.d. instance of this distribution for λ.

3.1. New transition operator

Taking random λ does not have an extremely large influence on the model itself, however math-
ematically we do need to make some changes. Previously the redistribution process was defined
by the transition operator 2.5 and had the following expansion

P λf(x, y) =

∫ 1

0
f(T λε (x, y))ν(ε)dε

=

∫ 1

0
f((λx+ (1− λ)ε(x+ y), λy + (1− λ)(1− ε)(x+ y)))ν(ε)dε

In the expanded version above, we see that we integrate over ε which has a wealth redistribution
measure ν(ε). However when considering random λ, this alone does not suffice; λ now has a
distribution of its own which requires integration as well.

For the propensity to save λ we assume the distribution φ(λ) so as to keep things general.
Naturally since we cannot have a negative propensity we assume this distribution takes only
non-negative values. We can then define the new transition operator as follows

Kf(x, y) =

∫ 1

0

∫ 1

0
f(T λε (x, y))ν(s, ε)φ(λ)dεdλ (3.1)

Furthermore it can be noted the requirement for stationary measures does not change, however
the resulting equation would require integrating over 3 measures, which is a considerably more
difficult task.

We now have a two agent model for wealth distribution with the propensity to save of both
agents being randomly distributed according to φ(λ). We are interested in finding out whether
stationary measures for this redistribution process exist, and what these may entail. Due to
the complicated nature of using two arbitrary distributions (i.e. the distribution of ε and the
distribution of λ) we will focus on certain specific examples to draw results. In particular, us-
ing common distributions such as uniform or beta distributions leads to comparable results as
derived in [2].
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3.2. Stationary measure of the relative wealth distribution

We take the same approach as done in [2] with the relative wealth variables (r, s). Naturally
we assume that εn and λn are instances of their respective distributions, with both εn and λn
being i.i.d. for all n ∈ N. Furthermore we assume that each εn and λn is independent for all
n ∈ N. This gives a helpful result in terms of indexing a sequence of i.i.d. instances between
the distributions: if we have two initial sequences (λ1, λ2, . . . ) and (ε1, ε2, . . . ), then for indexing
sequences (σ(1), σ(2), . . . ) and (ρ(1), ρ(2), . . . ) we have the following equivalence

(λ1, λ2, . . . , ε1, ε2, . . . ) = (λσ(1), λσ(2), . . . , ε1, ε2, . . . ) (3.2)

= (λσ(1), λσ(2), . . . , ερ(1), ερ(2), . . . ) (3.3)

Given the transition operator defined in 3.1, we then have the following recursion for the
relative wealth of agent 1, r:

rn+1 = λn+1rn + (1− λn+1)εn+1 (3.4)

This recursion equation represents the same transaction qualities as that in described in the
previous section. We state the following theorem regarding this recursion:

Theorem 1. The stationary distribution generated by the recursion 3.4 is given by

r∞ =
∞∑
n=0

(1− λn)

( n−1∏
j=0

λj

)
εn (3.5)

Proof. Iterating backwards from 3.4 we get

rn+1 = λn+1rn + (1− λn+1)εn+1

= λn+1(λnrn−1 + (1− λn)εn) + (1− λn+1)εn+1

= λn+1(λn(λn−1rn−2 + (1− λn−1)εn−1) + (1− λn)εn) + (1− λn+1)εn+1

= (1− λn+1)εn+1 + λn+1(1− λn)εn + λn+1λn(1− λn−1)εn−1
+ λn+1λnλn−1(1− λn−2)εn−2 . . .+ (λn+1 . . . λ2)(1− λ1)ε1 + (λn+1 . . . λ1)r1

We apply the following indexing re-sequencing to λn and εn: (1, 2, . . . , n+1)→ (n, n−1, . . . , 0).
We then see from 3.2 and 3.3 that the following is well defined

rn+1 = (1− λ0)εn+1 + λ0(1− λ1)εnλ0λ1(1− λ2)εn−1
+ λ0λ1λ2(1− λ3)εn−2 . . .+ (λ0 . . . λn−1)(1− λn)ε1 + (λ0 . . . λn)r1

= (1− λ0)ε0 + λ0(1− λ1)ε1λ0λ1(1− λ2)ε2
+ λ0λ1λ2(1− λ3)ε3 . . .+ (λ0 . . . λn−1)(1− λn)εn + (λ0 . . . λn)r1

In this form we can take the limit limn→∞ rn+1. We notice that since λn ∈ (0, 1) for all n ∈ N, the
last term in sequence above tends to 0 as n→∞; we conveniently do not have to worry about the
r1 factor. Thus we can conclude that with λn, εn being i.i.d. with their respective distributions
φ(λ), ν(ε) and independent from each other for all n ∈ N, the stationary distribution of the
recursive formula in 3.4 is given by 3.5

The underlying wealth distribution of a model with redistribution measure ν(ε) and propensity
to save with a measure of φ(λ) converges to the stationary form of the one described in 3.5. Note
that at this point very little is known about these distributions; their underlying assumptions
mentioned above and that they take non-negative values. Furthermore we can see that if we
take λ to be constant in 3.5 it turns into 2.8, thereby further solidifying our argument.
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3.3. Uniform ε and λ

While the closed form of the stationary relative wealth distribution 3.5 is helpful, it does not
give a lot of information on the stationary distribution of the actual wealth distribution (x, y), or
in particular whether there are product stationary distributions. In this section we look at the
simplest case of our model: we take both the redistribution measure and the propensity measure
to be uniform. We manipulate these assumptions into ruling out certain common distributions
that 3.5 could not uphold.

We first have an important theorem regarding the stationary recursion from the previous
section

Theorem 2. The invariant distribution generated by 3.5, where the propensity to save λ has
distribution φ(λ), has for its moment generating function M∞(t) the following identity

M∞(t) =

∫ 1

0
M∞(tλ)φ(λ)

e(1−λ)t − 1

t(1− λ)
dλ (3.6)

Proof. We begin with taking only the redistribution measure to be uniform, i.e. ν(ε) = 1. For
now we assume that λ still has an arbitrary distribution φ(λ). Then for the moment generating
function we have

Mrn+1(t) = Mn+1(t) = E(etrn+1) (3.7)

This becomes

Mn+1(t) =

∫ 1

0

∫ 1

0
E(et(λrn+(1−λ)ε)ν(ε)φ(λ)dεdλ

=

∫ 1

0

∫ 1

0
E(et(λrn+(1−λ)ε)φ(λ)dεdλ

=

∫ 1

0

∫ 1

0
E(etλrn)et(1−λ)εφ(λ)dεdλ

The decomposition of the expected value over two different measures is justified as we have
taken them to be independent. We see that E(etλRn) = Mn(tλ) is contained within the integral,
meaning we can define a type of recursive equation

Mn+1(t) =

∫ 1

0

∫ 1

0
Mn(tλ)et(1−λ)εφ(λ)dεdλ (3.8)

Now we need to integrate over λ and ε; ε is only apparent in a minor part of the integrand so
we shall start there. We use ∫ 1

0
et(1−x)ydy =

e(1−x)t − 1

t(1− x)
(3.9)

As Mn(tλ)φ(λ) is not dependent on ε, we can apply 3.9 directly to 3.8 to obtain

Mn+1(t) =

∫ 1

0
Mn(tλ)φ(λ)

e(1−λ)t − 1

t(1− λ)
dλ (3.10)

In 3.10 we now have a recursive relation of the moment-generating function of rn+1. Seeing that
we know from 3.5 that r∞ exists and is defined under the current conditions, we are justified in
taking the limit as n→∞ in Mn+1(t). The required identity follows.
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Applying the assumption to 3.6 that λ is uniformly distributed as well, meaning that φ(λ) = 1,
produces the following identity

M∞(t) =

∫ 1

0
M∞(tλ)

e(1−λ)t − 1

t(1− λ)
dλ (3.11)

This is the relation that the moment generating function of the stationary distribution of the
relative wealth must satisfy in the case that ε and λ are uniformly distributed.

3.4. Numerical approximation

We now have the general framework for the type of stationary measures one would be looking
for in our model. In this subsection we show some numerical methods that lead to graphical
representation of these distributions. While exact results cannot be obtained this way, it does
give the general direction that these distributions would be taking. From here we know what
attributes these distributions might have and can thus start looking for analytic answers in
those areas. All the simulations run and approximations made in this section were made using
MATLAB. Further information as to how these were produced can be found in Appendix A.

3.4.1. Probability density functions

We are interested in the resulting wealth distribution after a large number of transactions. In
this simulation we let 10000 transactions take place according to transaction operator 3.1, where
ε and λ are distributed in several ways.

We first look at both measure being uniformly distributed. Using a kernel density estimator,
the following graph was produced.

Figure 3.1.: Kernel density estimator with ε and λ uniformly distributed

Based on the simulated transaction data we also let MATLAB attempt to fit a Beta distributed
density. This gives an idea as to whether uniform λ and ε are likely to lead to a wealth measure
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with a type of Beta distribution. The Beta distribution of best fit had parameters (2.44383,
2.48190), whose probability density function is graphed below

Figure 3.2.: Probability density function of a Beta(2.44383, 2.48190) distributed random variable

While the kernel density estimator and the Beta fitted probability density function look sig-
nificantly different, when taking a goodness of fit using the chi2gof function in MATLAB the
null hypothesis that the data fits this Beta(2.44383, 2.48190) distribution is not rejected at sig-
nificance level 0.01.

This numerical result shows that it seems unlikely that the wealth distribution would have
a Beta distribution given the fact that ε and λ were uniformly distributed. We try a different
numerical approach through the moment generating functions of the wealth distribution. For
more information regarding this numerical integration and the graphs produced, refer to the
Appendix.

3.4.2. Moment generating functions

In 3.11 we saw a requirement for the moment generating function of the stationary wealth
distribution. While this involves several complicated integrals, we can show that given the
moment generating functions of the Uniform and Beta distributions, numerically the left and
right hand side to not approach each other. We begin with assuming that wealth distribution
is uniformly distributed, meaning that

M∞(t) =
et − 1

t
(3.12)

Then from 3.11 we numerically approximate the following integral∫ 1

0
M∞(tλ)

e(1−λ)t − 1

t(1− λ)
dλ =

∫ 1

0

etλ − 1

tλ

e(1−λ)t − 1

t(1− λ)
dλ (3.13)

From here M∞(t) as in 3.12 was computed for various t. The error between these two is graphed
below, first for values for t ∈ [1, 10] and second for t ∈ [1, 100]
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Figure 3.3.: Error value of 3.11 for t ∈ [1, 10]

As can be seen the error seems to be minimal for the first few t values, however starts to climb
exponentially afterwards. This can be observed in the graph below

Figure 3.4.: Log error value of 3.11 for t ∈ [1, 100]
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A logarithmic scale was chosen in order to more accurately show the error. Therefore it seems
unlike the wealth distribution is uniformly distributed in this case.

We now look at the possibility that the wealth distribution is Beta(α, α) distributed given ε,
λ uniform. The method is as in the uniform case: were the wealth distribution Beta distributed,
its probability density functions would be of the form

fX(x) =
(x(1− x))α−1

B(α, α)
(3.14)

Here we have restricted ourselves to taking β = α. From the definition of the moment generating
function MX(t) = E(etX) we therefore see that we must numerically validate the following
equality

M∞(t) =

∫ 1

0
M∞(tλ)

e(1−λ)t − 1

t(1− λ)
dλ∫ 1

0
etλ

λα−1(1− λ)α−1

B(α, α)
dλ =

∫ 1

0

∫ 1

0
etλ

λα−1(1− λ)α−1

B(α, α)
dλ
e(1−λ)t − 1

t(1− λ)
dλ

We notice that on the right hand side we have a double integral in the same measure, meaning
that this becomes∫ 1

0
etλ

λα−1(1− λ)α−1

B(α, α)
dλ =

(∫ 1

0
etλ

λα−1(1− λ)α−1

B(α, α)
dλ

)(∫ 1

0

e(1−λ)t − 1

t(1− λ)
dλ

)
(3.15)

We numerically integrate the integrals in 3.15 for various values of t as well as α. We know
that the moment generating function should apply for all t ∈ R. Therefore we have taken the α
with the lowest error value for all respective t values, instead of making a 2D plot with all the
values. These error values were then graphed and provide a lower boundary on the error for the
numerical approximation, which is graphed below.
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Figure 3.5.: Error value of 3.15 for t ∈ [1, 10], α ∈ [1, 100]

We see that while the error boundary has gone down through the values for α, it appears to be
reaching some sort of limit that does not equal to 0. This again suggests that given a uniformly
distributed ε and λ, the stationary wealth distribution cannot be of the form Beta(α, α). For
more information regarding this numerical integration and the graphs produced, refer to the
Appendix.

3.5. Uniform and Beta(α, β) distributions

From the approximations in the previous section we suspect that given uniform redistribution
law ε and propensity to save λ, we cannot have the wealth distribution be either uniformly
distributed or Beta(α, β) distributed. We show in this section that this is indeed the case by
evaluating the requirement 3.11 for the moment generating function. Seeing that uniqueness
of distributions is preserved in these functions, showing that the right hand side of 3.11 is un-
equal to the known moment generating functions of these distributions shows that the stationary
wealth distribution is not of this form.

3.5.1. Uniform wealth distribution

In this subsection we state and prove the following theorem which confirms the conjecture formed
by the numerical analysis.

Theorem 3. Given that the redistribution measure ε and propensity to save λ are both uniformly
distributed, the stationary relative wealth distribution generated by 3.5 cannot be uniformly dis-
tributed.
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Proof. We begin with assuming that the wealth distribution is uniformly distributed. We then
find a contradiction in 3.11. Given a uniform wealth distribution the moment generating function
would be of the form 3.12. We see that if we take the infinite series representation, we get the
following for real c

ec − 1

c
=

∞∑
k=1

ck−1

k!
(3.16)

Then using 3.12 and 3.16 on the right hand side of 3.11, we obtain the following representation

M∞(t) =

∫ 1

0
M∞(tλ)

e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

etλ − 1

tλ

e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

∞∑
k=1

∞∑
n=1

(tλ)k−1

k!

(t(1− λ))n−1

n!
dλ

=

∞∑
k=1

∞∑
n=1

tk−1

k!

tn−1

n!

∫ 1

0
λk−1(1− λ)n−1dλ

The integral at the end of the summation above looks familiar, and for good reason seeing that
for a Beta(α, β) distributed random variable, we have have probability density function 3.14

where B(α, β) = (α−1)!(β−1)!
(α+β−1)! , the Beta function. We know that integrating this function over

(0, 1) gives 1, thus we simplify

M∞(t) =
∞∑
k=1

∞∑
n=1

tk−1

k!

tn−1

n!
B(k, n)

=
∞∑
k=1

∞∑
n=1

tk−1

k!

tn−1

n!

(k − 1)!(n− 1)!

(k + n− 1)!

=

∞∑
k=1

∞∑
n=1

tk+n−2

kn(k + n− 1)!

In order to rid ourselves of the double infinite summation we apply a change of variables described
below

k + n = v

k = v − n
n = v − k

We then get an equivalent representation using a single infinite sum of finite sums

M∞(t) =
∞∑
v=2

tv−2

(v − 1)!

v−1∑
k=1

1

k(v − k)
(3.17)

In 3.17 we now have a single infinite sum representation for the moment generating function
M∞(t). Recall that in 3.12 we have another infinite sum representation for this function, meaning
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that these sums should have equal terms.
1st term
We look at the first term of 3.12 and 3.17 and see that they are equal

t1−1

1!
= 1 =

t2−2

(2− 1)!

(
1

1(2− 1)

)
2nd term
At the second term we see that for 3.12 we have

t2−1

2!
=
t

2
,

and for 3.17 we have

t3−2

(3− 1)!

(
1

1(3− 1)
+

1

2(3− 2)

)
=
t

2

(
1

2
+

1

2

)
=
t

2

3rd term
Here we see a discrepancy. For 3.12 we have

t3−1

3!
=
t2

6
,

and for 3.17 we have

t4−2

(4− 1)!

(
1

1(4− 1)
+

1

2(4− 2)
+

1

3(4− 3)

)
=
t2

6

(
1

3
+

1

4
+

1

3

)
=

(
11

12

)
t2

6

Thus from the terms of the infinite series in 3.12 and 3.17 being unequal, we see that 3.11 does
not hold. Therefore because the moment generating function of the uniform distribution does
not follow the moment generating function of the wealth distribution, we can conclude that they
are distributed differently.

3.5.2. Beta(α, β) wealth distribution

We now look at the case where we assume the wealth distribution is Beta(α, β) distributed.
While the uniform distribution in the previous section is a special case of this (α = 1, β = 1),
there might still be other parameters α, β for which 3.11 is valid. The following theorem shows
that there are no such α, β.

Theorem 4. Given that the redistribution measure ε and propensity to save λ are both uniformly
distributed, the stationary relative wealth distribution generated by 3.5 cannot be Beta(α, β)
distributed for any α, β ∈ R.

Proof. We start by first assuming that for certain an ∈ R with n = 0, 1, 2 . . ., the moment
generating function has the form

M∞(t) =
∞∑
n=0

an
tn

n!
(3.18)
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We then apply 3.11 and 3.16 and produce the following equation

M∞(t) =

∫ 1

0
M∞(tλ)

e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

( ∞∑
k=0

ak
(tλ)k

k!

)
e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

( ∞∑
k=0

ak
(tλ)k

k!

)( ∞∑
n=1

(t(1− λ))n−1

n!

)
dλ

We can now apply a similar method to that used in the previous section with the uniform wealth
distribution. Rearranging gives

M∞(t) =

∫ 1

0

∞∑
k=0

∞∑
n=1

ak
(tλ)k

k!

(t(1− λ))n−1

n!
dλ

=

∞∑
k=0

∞∑
n=1

ak
tk+n−1

k!n!

∫ 1

0
λk(1− λ)n−1dλ

=

∞∑
k=0

∞∑
n=0

ak
tk+n

k!(n+ 1)!

∫ 1

0
λk(1− λ)ndλ

We once again use the fact that integrating 3.14 over [0,1] is equal to 1 and that for the Beta

function we have B(α, β) = (α−1)!(β−1)!
(α+β−1)! , giving

M∞(t) =

∞∑
k=0

∞∑
n=0

ak
tk+n

k!(n+ 1)!
β(k + 1, n+ 1)

=

∞∑
k=0

∞∑
n=0

ak
tk+n

k!(n+ 1)!

k!n!

(k + n+ 1)!

=
∞∑
k=0

∞∑
n=0

ak
tk+n

(k + n+ 1)!(n+ 1)

The same change in notation with the following substitution is applied in order to get rid of the
double infinite summation

k + n = v

k = v − n
n = v − k

This then gives following infinite sum for the moment generating function of the wealth equation

M∞(t) =
∞∑
v=0

tv

(v + 1)!

v∑
k=0

1

v − k + 1
ak (3.19)

Recall we assumed that the wealth distribution is Beta(α, β) distributed and thus has moment
generating function of the form

M∞(t) = 1 +

∞∑
k=0

( k−1∏
r=0

α+ r

α+ β + r

)
tk

k!
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We make a change in notation in order to work more comfortably in the field of infinite series.
The product operator

∏k
n=0 xn is usually only defined for all k ∈ Z+. We now add a definition

for the term at k = −1 as simply an empty product; i.e. it is equal to 1. Due to this change in
notation and the fact that t0

0! = 1 we rewrite

M∞(t) =
∞∑
k=0

( k−1∏
r=0

α+ r

α+ β + r

)
tk

k!
(3.20)

This means that the coefficients an need to be of the form

ak =

k−1∏
r=0

α+ r

α+ β + r

We now compare the first few terms of the infinite series representation of 3.19 and 3.20 to see
that there are no parameters α, β for which they are equal. This comes down to the following
equality’s in v

v−1∏
k=0

α+ k

α+ β + k
=

1

v + 1

v∑
k=0

1

v + 1− k

v−1∏
s=0

α+ s

α+ β + s

or equivalently

1

v + 1

v∑
k=0

1

v + 1− k

v−1∏
s=k

α+ β + s

α+ s
= 1

We compare these for the first 3 terms in v

v=0

1

1

1

1
(1) = 1

v=1

1

2

(
1

2

α+ β

α
+

1

1

)
= 1

This is only the case when α = β. We continue with this requirement to the third term.

v=2

1

3

(
1

3

α+ β

α

α+ β + 1

α+ 1
+

1

2

α+ β + 1

α+ 1
+

1

1

)
= 1

Taking the requirement from the previous term α = β, we get an answer for α = 3 where this
is equal.
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v=3

1

4

(
1

4

α+ β

α

α+ β + 1

α+ 1

α+ β + 2

α+ 2
+

1

3

α+ β + 1

α+ 1

α+ β + 2

α+ 2
+

1

2

α+ β + 2

α+ 2
+

1

1

)
=

31

30
6== 1

We see that for α = β = 3 the term does not satisfy the requirement. From the term by term
expansion of infinite series we can thus see that the moment generating function of the Beta
distribution does not satisfy 3.11. Finally we can conclude that given a uniformly distributed
propensity λ and redistribution ε, the wealth distribution cannot be Beta distributed.

Corollary 1. When the redistribution ε and propensity to save are both uniformly distributed
there cannot be stationary product measure for the two agent model

Proof. The result follows directly from the result of [2] as described in previous sections.

It should be noted that the term comparison done in this section is different from that in
the numerical approximations done in previous sections. Here we have looked at the infinite
expansion of the moment generating function and determined term by term that these cannot be
the same. However in our numerical approximation we numerically estimated what the difference
in 3.11 would be for various values of t ∈ R. There was no infinite series expansion and was
thus a completely different computation whose purpose was to examine how the difference in
3.11 would act.

3.6. Uniform ε and Beta λ

Having investigated the stationary wealth distribution with s-independence for ε and λ being
distributed uniformly, we now turn our attention to a different example; how would the wealth
distribution fare when we once again take a uniform redistribution measure ε, but now with a
Beta(z1, z2) distributed propensity to save λ.

We note that the deductions produced in the previous section are a specific case of the cur-
rent example (where we take (z1, z2) = (1, 1)), so we take a similar approach and develop a
requirement for which the s-independent wealth distribution is Beta(α, β) distributed. We start
by once again stating the requirement for the stationary wealth distribution shown in 3.6 with
an unknown λ distribution φ(λ):

M∞(t) =

∫ 1

0
M∞(tλ)φ(λ)

e(1−λ)t − 1

t(1− λ)
dλ

We have taken λ to be Beta(α, β) distributed, meaning that the measure for λ is of the form

φ(λ) =
λα−1(1− λ)β−1

B(α, β)

Thus the requirement for the moment generating function of the stationary wealth distribution
in this specific case becomes

M∞(t) =

∫ 1

0
M∞(tλ)

λα−1(1− λ)β−1

B(α, β)

e(1−λ)t − 1

t(1− λ)
dλ (3.21)
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We now apply the same infinite series expansion techniques shown in the previous section to
give a requirement for the the wealth distribution to be Beta(z1, z2) distributed. We know that
the moment generating function of such a distribution would have the form

M∞(t) =

∞∑
k=0

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
tk

k!

Here we have once again defined the empty product in k = −1 to be equal to 1. Thus 3.21 turns
into

M∞(t) =

∫ 1

0
M∞(tλ)

λα−1(1− λ)β−1

B(α, β)

e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

∞∑
k=0

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
(tλ)k

k!

λα−1(1− λ)β−1

B(α, β)

e(1−λ)t − 1

t(1− λ)
dλ

=

∫ 1

0

∞∑
k=0

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
(tλ)k

k!

λα−1(1− λ)β−1

B(α, β)

( ∞∑
n=1

(t(1− λ))n−1

n!

)
dλ

=
∞∑
k=0

∞∑
n=1

tk

k!

1

B(α, β)

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
tn−1

n!

∫ 1

0
λk+α−1(1− λ)n+β−2dλ

=
∞∑
k=0

∞∑
n=1

tk+n−1

n!k!

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
B(k + α, β + n− 1)

B(α, β)

To once again use work in the space of a single infinite series we apply the transformation

k + n = v

k = v − n
n = v − k

This gives the following identity for the wealth distribution

M∞(t) =

∞∑
v=1

tv−1
v∑
k=0

1

(v − k)!k!

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
B(k + α, β + v − k − 1)

B(α, β)
(3.22)

The question then becomes, can the coefficients of the moment generating function of the Beta
distribution solve for this identity, or are there z1, z2, α, and β such that for all k ∈ N

k−1∏
r=0

z1 + r

z1 + z2 + r

1

k!
=

v∑
k=0

1

(v − k)!k!

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
B(k + α, β + v − k − 1)

B(α, β)
(3.23)

This is a analytically complex identity to solve for parameters z1, z2, α, and β; however it seems
unlikely that parameters of this form exist that would satisfy 3.22. We end the section with the
following conjecture regarding this matter.

Conjecture 1. Given that the redistribution measure ε is uniformly distributed and propensity
to save λ is Beta(α, β) distributed, the stationary relative wealth distribution generated by 3.5
cannot be Beta(z1, z2) distributed for any α, β, z1, z2 ∈ R.
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4. Heavy-tailed distributions

In this section we take a step back from the propensity to save of the economic agents and
instead look at ways in which the classical energy redistribution model described in [2] can
be expanded. This can be done by letting the redistribution model have random (and thus
distributed) parameters. Given the right distribution this leads to heavy-tailed distributions,
the likes of which have been empirically observed in finance and economics; while the previous
norm was to take all distributions to be normal, recent analysis and advances in computing
power show that heavy tailed distributions are realistic. For example, [1] states that financial
asset returns are now considered to be heavy-tailed. With this assumption, risk in such financial
assets is increased as heavy-tailed distributions associated a much higher volatility than those
of the normal distribution. Even in an agent based model volatility phenomena associated with
heavy-tailed distribution can be observed, as shown in [3]. Therefore it is logical to attempt
to expand the agent based model for a closed economy to produce heavy-tailed distributions as
well; this is then exactly what will be discussed in this chapter. We look at the case where λ = 0
and attempt to find stationary product measures with heavy tails.

4.1. The zero-propensity model

In [2] forming a model for the distribution of wealth between two agents was done by observing
the existing model for the redistribution of energy on the particle scale in a closed physical
system. From this point one introduced the notion of economic agents and saw that these two
systems could be modelled in the same way. The adding of propensity was then an extension
only applicable to the wealth model. To add the extension of distributed parameters, we first
mathematically describe the model.

We now explain the energy distribution model at the hand of the existing wealth distribution
model, however one should note that originally this was derived in the opposite manner. The
irrelevance in direction shows that the this energy model is also a type of wealth distribution
model, given the right assumptions. We thus continue with the notation of economic agents
used in our previous model; we have agents with wealth (x, y) respectfully, where x + y = s
remains constant. We define the following map for use in the generator: for Tε(x, y) : E → E
we have

Tε(x, y) = (ε(x+ y), (1− ε)(x+ y)) (4.1)

Note that Tε(x, y) = T 0
ε (x, y) as defined in previous chapters. Now for a given distribution

measure v(ε) the transition operator for the zero-propensity distribution model becomes, for all
bounded continuous function f(x, y)

Pf(x, y) =

∫ 1

0
f(Tε(x, y))ν(s, ε)dε (4.2)
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4.2. Characteristics of agents

From [2] it is known that given the wealth distribution model with zero propensity to save
(λ = 0) and redistribution measure Beta(α1, α2), that the resulting stationary wealth measure
will be product. Furthermore this is the only case in which stationary product measures occur,
with the stationary distribution being Gamma distributed, i.e. µ(x, y) = Γ(α1, β)×Γ(α2, β) for
scale parameters β. Here a Γ(α1, β) distribution has the following probability density function:

µ(x) =
βαxα−1

Γ(α)
e−βx (4.3)

We therefore take interest in this α parameter that seems to be conserved in these product
stationary measures. We can see α as a ’characteristic’ of the economic agent. With this view it
is reasonable to assume that α1, α2 are independent for different agents; this inevitably leads to
the question of whether they can be seen as randomly distributed and of the form ψ(α1ψ(α2).
This is we investigate in this section; we ask whether this random distributing of the the agents
quality can lead to heavy tailed product measures for the stationary wealth distribution.

We now look at how the model evolves when one takes a randomly distributed shape parameter
α. For generality we say that α has distribution ψ(α) with support on [0,∞). We note that
because we have another random variable, the wealth distribution of agent 1 no longer looks
like 4.3, but now has the form

µ(x) =

∫ ∞
0

βαxα−1

Γ(α)
e−βxψ(α)dα (4.4)

Having the general wealth distribution for agent 1 given s-independence and no propensity to
save, we show some interesting properties given certain distributions for α.

What we are particularly interested in when it comes to wealth distributions of the kind de-
scribed in 4.4 is how their moments function. Particularly interesting is the class of distributions
that have infinite moments passed a certain point; these are called heavy-tailed distributions.
One such type of distribution is the Pareto distribution which has been found empirically in
the world of finance and economics [9]. Therefore we first take a look at what could possibly
produce such heavy tailed distributions.

The q’th moment of a continuous non-negative random variable X with distribution fX(x) is
defined as follows

E(Xq) =

∫ ∞
0

xqfX(x)dx

Seeing that the wealth distributions are based on continuous non-negative random variables this
is the definition we will use. We then define a heavy tailed distribution as a distribution who
for some qc ∈ R has the following quality∫ ∞

0
xqfX(x)dx =∞ q > qc

This means that after a certain point the moments of the distribution are infinite as mentioned
before.
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We apply this to the general wealth distribution for agent 1. For simplicity we take β = 1 for
the scale parameter. We then get the following expression for the q’th moment of agent 1, X1

E(Xq
1) =

∫ ∞
0

∫ ∞
0

xq
xα−1

Γ(α)
e−xψ(α)dαdx

=

∫ ∞
0

∫ ∞
0

xq+α−1

Γ(α)
e−xψ(α)dαdx

The following theorem then defines a class of distributions for α that lead to heavy tailed wealth
distributions.

Theorem 5. The class of distributions for shape parameter α given by

ψ(α) = α−k, k ∈ N (4.5)

lead to heavy tailed product invariant measures, given that they follow 4.4.

Proof. We use an alternative representation of the Gamma function: Γ(z) =
∫∞
0 xz−1e−xdx for

z ∈ R+. Thus integrating over only x the above double integral simplifies to

E(Xq
1) =

∫ ∞
0

Γ(q + α)

Γ(α)
ψ(α)dα

=

∫ ∞
0

(q + α− 1)(q + α− 2) . . . (α)ψ(α)dα

Here we have used the original definition of the Gamma function Γ(z) = (z − 1)!.

Looking at (q+α−1)(q+α−2) . . . (α), we see that this can be expanded to form a polynomial
of order q in α; i.e. it is of the form P (α) = c1α

q + c2α
q−1 . . .+ cq, where ci are constants in R

for all i = 1 . . . q. We are therefore inclined to look at the following for for the distribution of α:
ψ(α) = α−k for some k ∈ N. This can be seen by substituting this form into the expression for
the q’th moment:

E(Xq
1) =

∫ ∞
0

(c1α
q + c2α

q−1 . . .+ cq)ψ(α)dα

=

∫ ∞
0

c1α
q + c2α

q−1 . . .+ cq
αk

dα

=

∫ ∞
0

c1α
q−k + c2α

q−k−1 . . .+ α−kcqdα

We know that
∫∞
0 xkdx =∞ if k > 0 and

∫∞
0 xkdx 6=∞ if k ≤ 0. Thus we have found a class of

distributions for which have heavy tails; if the s-independent wealth of agent 1 is Gamma(α, 1)
distributed and α has distribution of the form ψ(α) = α−k, k ∈ N, then for moments q > k have
a value of infinite. Therefore this class of distributions is heavy tailed.

4.3. Random scale parameter

In the previous section we looked at the invariant product measure for the s-independent wealth
distribution of agent 1 where the shape parameters α was randomly distributed. The probability
distribution function then had the form 4.4. We now let the shape parameter α be constant
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in 4.3 and instead condition the distribution on the scale parameter β, which we give general
distribution γ(β). This produces the following pdf parallel to 4.4

µ(x) =

∫ ∞
0

βαxα−1

Γ(α)
e−βxγ(β)dβ (4.6)

As before we make things simpler by this time letting the shape parameter α = 1. Instead of
viewing the moment generating function of agent 1, we now continue to work with the probability
density function. We first off note that in letting α = 1 we have created a conditional exponential
distribution in the wealth distribution, i.e.

µ(x) =

∫ ∞
0

βe−βxγ(β)dβ

We now assume that β is Gamma distributed with shape and scale parameters θ, k respectively.
This means that γ(β) is of the form 4.3 with (α, β) = (θ, k). We then rewrite 4.6 as

µ(x) =

∫ ∞
0

βe−βx
kθβθ−1

Γ(θ)
e−kβdβ

=
kθ

Γ(θ)

∫ ∞
0

βθe−β(x+k)dβ

We know from the probability distribution of Gamma that the following equality holds∫ ∞
0

βθ

Γ(θ + 1)
(x+ k)θ+1βθe−β(x+k)dβ = 1

and so ∫ ∞
0

βθe−β(x+k)dβ =
Γ(θ + 1)

βθ(x+ k)θ+1

Thus the probability density becomes

µ(x) =
kθ

Γ(θ)

∫ ∞
0

βθe−β(x+k)dβ

=
kθ

Γ(θ)

Γ(θ + 1)

βθ(x+ k)θ+1

=
θkθ

(x+ k)θ+1

This final density is exactly that of the Lomax Pareto distribution with parameters (θ, k) [5].
This distribution is of Pareto Type II which also has heavy tails. Thus we can conclude that
given an conditionally exponential distribution s-independent wealth distribution for agent 1,
if one conditions the parameter to be Gamma(θ, k), the original distribution in question is dis-
tributed to a Lomax Pareto distribution with parameters (θ, k). One can even take this result
further if we take the shape parameter β to be Gamma distributed, which leads to a Generalized
Pareto distribution as shown in [4].

While these results appear to be positive, they are in fact not applicable to our original
model. Recall that we are manipulating the stationary wealth distribution of agent 1 relative
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to that of the whole economic system with 2 agents. From [2] we recall that this was justified
if the redistribution measure ν(ε) was Beta(α1, α2) distributed, as this would produce invariant
product measures of the form u(x, i) ∼ Γ(αi, β), i = 1, 2 with some shape parameter β. However
if we condition on the shape parameter instead of the scale parameter, these will no longer be
the same for both agents; this means that even if we take wealth distribution of agent 1 to
be Gamma distributed, the inconsistency in the shape parameter prevents the translation from
being justified. Conditioning over the scale parameters a1,2 still produces product measure,
so the results in the previous section are justified. While it is unfortunate that the result for
µ(x) = θkθ

(x+k)θ+1 is not applicable in the form that we have presented here, it does give reason

to further investigate this type of distribution.

4.4. The Pareto distribution

As previously mentioned, heavy-tailed distributions are common occurrences when viewing real
life data and attempting to find a distribution that fits such data. We see that in particular the
class of Pareto distribution is of interest, both from a real life perspective and from that of the
previous section. Fitting of empirical data to form a wealth distribution has been attempted
already, as shown in [9] and [8]. Getting an agent-based justification for the Pareto distribution
is thus a logical choice of wealth distribution. In this section we show the mathematical require-
ments of the chosen parameters in the model to produce such a wealth distribution.

As before we assume that the s-independent stationary wealth distribution of agent 1 is
Gamma distributed with parameters (α, β). As we have seen in the previous sections, the only
logical choice of conditioning when it comes to these parameters is the scale parameter α. This is
due to results found in [2] pertaining to product stationary solutions in the model. We therefore
set the shape parameter to 1 for simplicity. Now as we know, conditioning on the parameter α
gives the following probability density function for agent 1 as given in 4.4. We then see that the
foll lowing must be satisfied

µ(x) =

∫ ∞
0

xα−1

Γ(α)
e−xψ(α)dα =

θkθ

(x+ k)θ+1
(4.7)

This is the probability density function of the Pareto Lomax distribution as seen in the previous
section. Here we have chosen for this particular form of Pareto distribution instead of the Pareto
Type 1 to have full support on [0,∞). These two types of distributions are very similar, the
Lomax variant essentially being Pareto Type 1 with a shift to include the support on [0,1] that
lacks in the Pareto Type 1 distribution.

The identity in 4.7 is once again quite difficult to solve for general distribution ψ(α), so we
shall produce a secondary criteria in which both sides of the equation are more comparable. We
note the following in the Pareto Lomax probability density function

θkθ

(x+ k)θ+1
=

Γ(θ + 1)kθ

Γ(θ)(x+ k)θ+1
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Manipulating the integral form of the Gamma function we see that

Γ(θ + 1) =

∫ ∞
0

(β(x+ k))θ+1−1e−β(x+k)dβ

= (x+ k)θ
∫ ∞
0

βθe−β(x+k)dβ

Combining these two equations gives

θkθ

(x+ k)θ+1
=

kθ

Γ(θ)(x+ k)

∫ ∞
0

βθe−β(x+k)dβ

thus we can conclude that for the probability density function of the wealth distribution of agent
1 to be Pareto Lomax distributed, we must have equivalence in the distribution of α, ψ(α) in
the following identity for the probability density function µ(x):∫ ∞

0

xα−1

Γ(α)
e−xψ(α)dα =

kθ

Γ(θ)(x+ k)

∫ ∞
0

βθe−β(x+k)dβ (4.8)

If this applies, then the stationary wealth distribution of agent 1 will have a Pareto Lomax
distribution with parameters (θ, k). This does not seem like a unlikely scenario, so we end the
section with the following conjecture.

Conjecture 2. There exist a class of distributions ψ(α) for the shape parameter α such that 4.8
is satisfied and thus the stationary product wealth measure of agent 1 is Pareto Lomax distributed.
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5. Conclusion

In this paper we have studied a two agent model for the wealth distribution in a closed economic
system introduced in [2] and extended it in two significant ways concerning the parameters given
in the model. These expansions were then analyzed to see how the wealth in this closed economic
system would be distributed among the agents and given certain assumptions for the model,
what distributions we could exclude from consideration.

The first extension added to the model was to introduce a distributed propensity to save. In
the original model for wealth distribution, the transactions between the two agents were based
on a redistribution measure ε and a constant propensity to save λ. In each transaction, a fraction
of the total conserved wealth was redistributed among the two agents according to ε. When
we took the variable λ to be distributed as well, it meant that the amount of wealth that was
being redistributed between the agents was decided randomly for each transaction according to
the distribution of λ. We then looked at how the wealth of agent 1 would be distributed after
a large number of transactions and assuming that the redistribution measure was independent
of the total wealth in the system i.e. we looked for stationary distributions for the wealth of
agent 1 relative to the total independent wealth in the system. This newer model and its (po-
tential) stationary distributions were first mathematically defined and then analyzed accordingly.

In the model with random propensity λ, we derived a result concerning the relative wealth
distribution of agent 1; through recursion we saw that this had the form

r∞ =
∞∑
n=0

(1− λn)

( n−1∏
j=0

λj

)
εn

Here the λn and εn are independent instances of the randomly distributed propensity to save λ
and redistribution measure ε respectfully.

We also examined specific stationary distributions with the assumption that the redistribution
measure ε was uniformly distributed and the propensity measure λ had density φ(λ). By ex-
amining the moment generating function M∞(t), we defined a identity that a stationary wealth
distribution of this sort has to comply with:

M∞(t) =

∫ 1

0
M∞(tλ)φ(λ)

e(1−λ)t − 1

t(1− λ)
dλ (5.1)

After first investigating using numerical methods, we can conclude that given λ uniformly dis-
tributed, the stationary wealth distribution of agent 1 cannot be Beta(α, β) distributed for any
parameters α, β. As a consequence we saw that for the two agent model no invariant product
measure can exist. Furthermore if we take the the the propensity to save to be Beta(z1, z2) dis-
tributed, it was shown that the following identity must hold for the moment generating function
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of the wealth distribution

M∞(t) =

∞∑
v=1

tv−1
v∑
k=0

1

(v − k)!k!

( k−1∏
r=0

z1 + r

z1 + z2 + r

)
B(k + α, β + v − k − 1)

B(α, β)
(5.2)

The second expansion that we considered was where we take the propensity to save to be 0
and focus solely on the case where the redistribution measure ε is Beta distributed and once
again independent of the total wealth of the system. Based on results from [2], we then know
that the stationary wealth distribution of the whole system is comprised of product stationary
distributions in the two agents. These product measure are always Gamma(α, β) distributed
according to [2]. We then took the parameters (α, β) and distributed them individually and
in separate cases (meaning that if α was distributed then β was constant and the other way
around). These stationary product measure were mathematically defined and then manipulated
to form certain wealth distributions.

In randomly distributing the parameters of the stationary wealth distribution when this is
Gamma(α, β), we looked for distributions of these parameters that would lead to heavy-tailed
distributions. When taking the shape parameter α to be random, we found a class of distri-
butions that would lead to the wealth distribution of agent 1 to be heavy-tailed; this class was
defined as all the distributions of the form ψ(α) = α−k for k ∈ N. Furthermore it was shown
that while taking a random scale parameter β would lead to interesting results, ultimately the
restrictions on the model would not allow this for any distribution for β. This did however
lead to a requirement for wealth distributions to be Pareto Lomax distributed, given that α is
distributed according to ψ(α):∫ ∞

0

xα−1

Γ(α)
e−xψ(α)dα =

kθ

Γ(θ)(x+ k)

∫ ∞
0

βθe−β(x+k)dβ (5.3)

If this applies, then the stationary wealth distribution of agent 1 will have a Pareto Lomax
distribution with parameters (θ, k).

The two agent model suggested in [2] is a relatively simple representation of a closed economic
system and how the wealth in such a system is distributed. The extensions to this model created
in this paper add some variability to the possible parameters by distributing them and show
what the effect of this variability to the model as a whole. Furthermore multiple criteria have
been proposed such that if the distributed parameters fulfill these criteria, it is clear what type
of wealth distribution the model will be able to provide.
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6. Discussion

This paper has investigated several methods expanding the model generated in [2] and drawn
several conclusions from specific cases of the extended models. However due to time constraints,
not all potential results could be pursued in the investigation. This chapter highlights possible
extensions of the research and its results.

Based on the identity described in 5.2, we have a requirement for a possible Beta(z1, z2) dis-
tributed propensity to save λ. It cannot be ruled out that there are not parameters z1, z2, α,
and β such that the wealth of agent 1 given s-independence is Beta(α, β) distributed. However
it does seems unlikely, as posed in conjecture 1. Furthermore any number of moment generating
functions of common distributions could be attempted to conclude whether they abide by the
identity 5.1; with proper manipulation it may even be possible to construct a class of distribu-
tions which always solves this identity.

Using the criteria given in 5.3, one could investigate possible distributions for the shape pa-
rameter α in the wealth distribution for agent 1 assuming this is conditionally Gamma(α, β)
distributed. In the case that common probability density functions cannot apply, a class of
distributions with the appropriate characteristics to satisfy 5.3 could be created based off of the
identity alone. Furthermore certain transformations could be investigated in order to solve the
integrals given in the identity with success. We thus ask the question: Do distributions exist
that satisfy the equations 5.1 and 5.3, and what might these distributions look like?

In this paper we have restricted our queries to the case where we only have two agents in the
closed economic system. However in [2] an N-agent model was also introduced. This idea could
be extended in the models in this paper, possibly with results concerning duality functions or
expected values of the system. For more information regarding such models refer to [2]. Finally
many of the methods used in this paper were applied to very specific common distributions in
order to produce results. Naturally other common distributions could be used in order to find
comparable results; i.e. instead of uniform or Beta distributions as the respective redistribution
and propensity to save measures, any number of common distributions could be used. Whether
still will provide interesting results is left to the researcher.
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A. MATLAB

This appendix contains the MATLAB code used in generating the various graphs shown through-
out the report.

Wealth distribution with 2 agents

1 %Wealth d i s t r i b u t i o n model with 2 agents with lambda propens i ty
2 c l e a r ;
3 rng (304) ;
4 %Parameters
5 t = 10000 ; %Amount o f t r a n s a c t i o n s
6 i n wea l th 1 = 1000 ; %i n i t i a l wealth o f f i r s t agent
7 i n wea l th 2 = 1000 ; %i n i t i a l wealth o f second agent
8 Economy = in wea l th 1 + i n wea l th 2 ; %Total wealth in the economy
9

10 agent = ze ro s ( t , 2 ) ;
11 agent ( 1 , : ) = [ in wea l th 1 , i n wea l th 2 ] ;
12

13 f o r i = 1 : t
14 lambda = betarnd (1 , 1 ) ; %Amount o f propens i ty
15 r e d i s t = betarnd (1 , 1 ) ; %R e d i s t r i b u t i o n measure
16 agent ( i +1 , : ) = [ lambda∗ agent ( i , 1 ) +(1−lambda ) ∗ r e d i s t ∗sum( agent ( i

, : ) ) ,
17 lambda∗ agent ( i , 2 ) +(1−lambda )∗(1− r e d i s t ) ∗sum( agent ( i , : ) ) ] ;
18 end
19

20 %Estimated p r o b a b i l i t y dens i ty func t i on o f agent
21 f i g u r e (1 ) ;
22 ksdens i ty ( agent ( : , 1 ) /Economy) ;
23 t i t l e ( ’ Kernel dens i ty e s t imator o f r e l a t i v e wealth o f agent 1 ( r ) ’ ) ;
24 x l a b e l ( ’ x ’ ) ;
25 y l a b e l ( ’ Density ’ ) ;
26

27 %P r o b a b i l i t y dens i ty func t i on o f f i t t e d Beta d i s t r i b u t i o n
28 x = 0:1/ t : 1 ;
29 y = f i t d i s t ( agent ( : , 1 ) /Economy , ’ Beta ’ ) ;
30 f i g u r e (2 )
31 p lo t (x , pdf (y , x ) )
32 t i t l e ( ’ P ro b a b i l i t y dens i ty func t i on o f f i t t e d Beta d i s t r i b u t i o n ’ ) ;
33 x l a b e l ( ’ x ’ ) ;
34 y l a b e l ( ’ Density ’ ) ;
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36 %Goodness o f f i t at s i g n i f i c a n c e l e v e l 0 .01
37 [ h , p]= c h i 2 g o f ( agent ( : , 1 ) /Economy , ’CDF’ ,y , ’ Alpha ’ , 0 . 0 1 )

Numerical integration for Uniform moment generating function

1 %Numerical i n t e g r a t i o n o f M i n f i n i t y ( t ) with R i n f i n i t y uniform
2 %f o r lambda , e p s i l o n uniform
3 c l e a r ;
4 dt = 0 . 1 ; %t imestep
5 %L = 10 ; %Largest va lue o f t
6 L = 100 ; %Largest va lue o f t
7

8 M uniform = @( t ) ( exp ( t )−1) . / t ; %Moment gene ra t ing func t i on o f
unifrom d i s t r i b u t i o n from 0 to 1

9 M i n f i n i t y = @(x , t ) ( exp ( t .∗ x )−1) . / ( t .∗ x ) . ∗ ( exp ( t .∗(1−x ) )−1) . / ( t .∗(1−
x ) ) ; %Integrand

10 d i f f e r e n c e = ze ro s (L/dt , 1 ) ;
11 i n t = ze ro s (L/dt , 1 ) ;
12 t = ze ro s (L/dt , 1 ) ;
13 f o r i = 1 :L/dt
14 t ( i ) = i ∗dt ;
15 i n t ( i ) = i n t e g r a l (@( x ) M i n f i n i t y (x , t ( i ) ) , 0 , 1 ) ;
16 d i f f e r e n c e ( i ) = M uniform ( t ( i ) ) − i n t ( i ) ;
17 end
18

19 %plo t ( t , d i f f e r e n c e ) ;
20 semi logy ( t , d i f f e r e n c e ) ;
21 x l a b e l ( ’Time t ’ ) ;
22 y l a b e l ( ’ Error va lue ’ ) ;
23 %t i t l e ( ’ Error va lue in numerica l approximation f o r var i ous t values ’ )

;
24 t i t l e ( ’ Log e r r o r va lue in numerica l approximation f o r var i ous t

va lue s ’ ) ;

Numerical integration for Beta moment generating function

1 %Numerical i n t e g r a t i o n o f M i n f i n i t y ( t ) with R i n f i n i t y beta ( a , a )
a f t e r

2 %d i f f e r e n t i a t i n g to x
3 %f o r lambda , e p s i l o n uniform
4 c l e a r ;
5 dt = 0 . 1 ; %s t e p s i z e t
6 L = 10 ; %Largest va lue o f t
7

8 dh = 1 ; %s t e p s i z e a
9 H = 100 ; %Largest va lue o f a

10
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11 M beta = @(x , t , a ) 1 . / beta (a , a ) .∗ exp ( t .∗ x ) . ∗ ( x .∗(1−x ) ) . ˆ ( a−1) ; %
Integrand f o r beta ( a , a )

12 M in f i n i t y1 = @(x , t , a ) 1 . / beta (a , a ) .∗ exp ( t .∗ x . ˆ 2 ) . ∗ ( x .∗(1−x ) ) . ˆ ( a−1) ;
%Integrand 1 f o r R i n f i n i t y

13 M in f i n i t y2 = @(x , t ) ( exp ( t .∗(1−x ) )−1) . / ( t .∗(1−x ) ) ; %Integrand 2 f o r
R i n f i n i t y

14 d i f f e r e n c e = ze ro s (L/dh ,H/dh) ;
15 t = ze ro s (L/dh) ;
16 a = ze ro s (H/dh) ;
17 f o r i = 1 :L/dt
18 t ( i ) = i ∗dt ;
19 i n t 2 = i n t e g r a l (@( x ) M in f i n i t y2 (x , t ( i ) ) , 0 , 1 ) ;
20 f o r j = 1 :H/dh
21 a ( j ) = j ∗dh ;
22 i n t b e t a = i n t e g r a l (@( x ) M beta (x , t ( i ) , a ( j ) ) , 0 , 1 ) ;
23 i n t 1 = i n t e g r a l (@( x ) M in f i n i t y1 (x , t ( i ) , a ( j ) ) , 0 , 1 ) ;
24 d i f f e r e n c e ( i , j ) = i n t 1 ∗ i n t 2 ; − i n t b e t a ;
25 end
26 end
27 min = min ( d i f f e r e n c e ) ; %Shows the lowest d i f f e r e n c e f o r a l l a
28

29 p lo t ( min ) ;
30 x l a b e l ( ’ Alpha value ’ ) ;
31 y l a b e l ( ’ Error va lue ’ ) ;
32 t i t l e ( ’ Minimal e r r o r va lue in numerica l approximation f o r alpha

va lue s ’ ) ;
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