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1.       Introduction

Almost any solid material can be foamed—from dough to ceramics. The result of the

foaming of the first one is not very often used as a construction material but as a food and

is called “bread”. Nevertheless, its specific mechanical properties are often very appreci-

ated. Typical extremes are cake and rusk. Irrespective of the kind of the unfoamed solid

material, the mechanical properties of the resulting foam are dependent on the mechanical

properties of the original unfoamed material and of the geometry of the foam cells. In such

a way, the mechanical properties of bread will be dependent on a kind of dough it is baked

of. Moreover, the quantity of yeast in the dough will determine how friable the baked

bread is. In terms of engineering foams, “yeast” would sound as “blowing agent”.

Foams are a medium composed of the two phases: solid and gas. Various solids are

applied. Polymer foams are most widespread, but glass and metal foams are also pro-

duced. All three materials are subject of this thesis; most attention is given to polymer

foams. Polymer foams are created by means of physical and chemical processes during

their production, where gas bubbles nucleate and grow in liquid material like PUR (poly-

urethane), XPS (extruded polystyrene), PVC (polyvinylchloride), etc. After production, a

cellular solid results containing a very wide range of cell sizes and shapes. The three

dimensional (3D) cells fill the space and can consist of membranes, struts and concentra-

tions of material in the vertices where struts meet. The membranes between the cells may

be removed by reticulation or by chemical treatment. The result of membranes removal is

an open-cell foam consisting of struts and vertices only. Depending on the amount of open

cells, foams can be classified as either open-cell or closed-cell.

Foams find numerous applications because of their high mechanical properties rela-

tive to their low density. Open-cell foams are frequently used for sound absorption or are

applied as filters, mattresses, etc. If a foam has a relatively high density, the mass of the

material is mainly concentrated in the vertices. In a foam with a relatively low density, the

mass is roughly distributed uniformly over relatively slender elongated struts.

Closed-cell foams show a higher stiffness and find applications as construction mate-

rial, e.g., as core of sandwich panels. Closed-cell foams are also applied for thermal insu-

lation purposes [see, for instance, the theses of Boetes (1986), du Cauze de Nazelle (1995)

and Brodt (1995) at the Delft University of Technology]. The isolation and mechanical

properties combined with the low density makes closed-cell polymer foams extremely

useful for the panels in the refrigeration trucks. A recent example is the “Cold Feather”
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developed at the Delft University of Technology in the group of Beukers et al. (1997).

Liquid base material with a gaseous blowing agent can be extruded with simultaneous

foaming, as mentioned above. In these cases, differences in growth rates in the three prin-

cipal directions occur, and the final foam can be characterized as geometrically aniso-

tropic. The cells are elongated in the direction with the highest cell growth rate. Because

of the geometrical anisotropy, the mechanical properties of the final foam are also aniso-

tropic.

1.1  Production

A very wide range of materials, like metals, polymers, glass and ceramics, may be

foamed. As a result, a “bi-material” system with gas as a continuous or disperse phase and

a solid as a continuous phase occurs. Depending on the volumetric fraction of the solid

phase, foams are classified at low- or high-density. According to Cunningham and Hilyard

(1994), foams with a volumetric fraction of solid less than 0.1 are called low-density. The

scope of this thesis is restricted to low-density foams.

It will be shown further in this thesis that foam geometry plays a vital role in the

mechanical properties of foams. To understand the existing geometry of foams, the princi-

ples of the foaming process should be considered.

Foams may be produced in various ways. One of the most wide-spread of them is a

method with a physical blowing agent. According to this method, a gas (the blowing

agent) is initially dissolved in a homogeneous dispersing medium which may be a poly-

mer, a metal melt or another material. As a result, a quasi-homogeneous medium appears

and it must become a two-phase “gas-liquid” system. To achieve this, a number of condi-

tions must be realised. First of all, the potential of evolving gas in the initial phase must

exceed that of the new phase. And, secondly, surface forces should be overcome. This is

the reason that nucleation of bubbles in a liquid with supersaturated gas can take place due

to a fluctuation clustering of molecules of a new phase. If this condition is satisfied, bub-

bles start to grow. The growing process takes place until the supersaturation disappears.

The degree of the gas saturation determines a final foam density  (if the foaming takes

place freely).

The above mentioned fluctuations in the compound may be initialized artificially. The

use of nucleating agents may lead to the nucleation process and so, to a more homogene-

ρf
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ous foam structure and to control of the cell size. For example, the addition of finely dis-

persed metal or mineral particles to the composition of a polymer melt with a

supersaturated gas and subsequent foaming of this composition leads to the creation of a

uniform fine-cell foam structure.

1.2  Blowing agents

The most general classification of the blowing agent is based on the mechanism of the

gas liberation. According to this classification, blowing agents may be chemical or physi-

cal. The first ones are individual compounds or mixtures of compounds which liberate gas

as a result of chemical processes like thermal decomposition or as a result of their interac-

tions with the other components of the composition.

Physical blowing agents are compounds that liberate gases as a result of evaporation

or desorption when the pressure is reduced or at increasing temperatures. As opposed to

the chemical blowing agents, physical blowing agents do not change the chemical consti-

tution of the compound. This difference will be of a great importance for the determina-

tion of the mechanical properties of the solid phase of the foam.

The present thesis is devoted to the prediction of the mechanical properties of foams,

based on solid properties and foam geometry only. Knowledge of solid properties is then

essential of course. Chemical reaction may change the properties of the solid. Conse-

quently, it is desired in this thesis for validation theory to use foams that are produced by

use of a physical blowing agent. The properties of the solid in foam may be assumed to be

very close to the properties of the solid before foaming. It should additionally be noted

that even in the case of physical blowing agents, the properties of solid material in foam

may differ to some extent from those of the original unfoamed solid. This can be caused

by the influence of various additives, i.e., stabilisers, remaining of the blowing agent, etc.

and even by geometry, like in PUR, where the solid temperature due to the exothermal

reaction of the curing resin is influenced by the foam geometry (e.g., cooling). The tem-

perature during curing may then influence the subsequent chemical reactions and conse-

quently the solid properties.
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1.3  Mechanical properties of foams

In general, the mechanical properties of foams are dependent on three main compo-

nents, schematically illustrated in Fig. 1.1. As far as open-cell foams do not contain gas

enclosed in the foam cells, the gas pressure does not influence the mechanical properties

of open-cell foams. In contrast, the two first features, the kind of solid from which the

foam is made and the cell geometry, are of great importance for the properties of any

foam.

1.3.1  Foam geometry

As mentioned above, foam geometry plays an important role in the behaviour of

foams. From the geometrical point of view, a foam comprises a network of space-filling

polyhedra. A cellular structure can be described as a number of cells, surrounded by walls

(faces). Each face has struts as borders where the faces intersect. Furthermore, the struts

intersect and form vertices (or knots). It has been shown by Euler (1746), that the number

of struts , vertices  and faces  of  cells in 3D are related as:

. (1.1)

Closed-cell foam

solid cell geometry enclosed gas pressure

Open-cell foam

Fig. 1.1. Components affecting the mechanical properties of foams.

E V F C

C– F E– V+ + 1=
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This is Euler’s law and it is valid for any foam structure. In this way, a foam structure con-

sists of walls, struts and vertices.

To detect the relation between the morphology and properties of the cellular solids, it

is important to consider the geometrical features of the foam structure which could be

accepted as the most important. According to Berlin and Shutov (1980), these parameters

are:

• relative number of open cells

• relative foam density

• cell size

• cell shape, or geometrical anisotropy

• cell walls thickness and distribution of solid between struts and faces

• geometry of a foam cell and its constituents

The consideration of all these parameters is presented below.

Relative number of open cells

According to their morphology, foams are subdivided in open- and closed-cell foams.

The main difference between these two foam classes is absence of the membranes in the

open-cell foam. But in most cases foam contains closed as well as open cells. This causes

a necessity to introduce the degree to which cells are closed or open, because it influences

the properties of cellular materials significantly. A study of closed-cell foams performed

by Berlin and Shutov (1980) suggests, that the fraction of open cells, , is a function of

the foams relative density. In the region of the low-density foams ( , where

 is the density of the solid material), the factor  is approximately equal to 0.3 and

decreases for foams of higher densities. They explain this effect by the fact, that in the

low-density foams the membranes become very thin and can easily rupture during or after

processing. However, the rheological behaviour of the foaming liquid will be important

and possibly even dominate .

It is expected that the relative content of open cells in closed-cell foam will play a

considerable role in the physical properties of cellular materials.

For example, Hagiwara and Green (1987) observed that the Young’s modulus of

closed-cell foam increased with the cell size. They explained this by the increasing frac-

ture of the closed cells in the smaller cell size materials. The key is, that the smaller is the

cell size of the foam with a constant density, the lower is the walls thickness and, hence,

ϑ
ρf ρs⁄ 0.06<

ρs ϑ

ϑ
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the greater is the probability that the walls rupture during the production process or after.

A recent study of the morphological features of closed-cell PUR foam by Yasunaga et

al. (1996) showed the importance of the amount of cell opening for the properties of

closed-cell foam. The cell walls have been classified as:

- closed

- pin holes

- partially open (less than 50% area open)

- open

All these features are shown at the example of closed-cell glass foam in Fig. 1.2. The

effective fraction of open cells is estimated then by the equation

, (1.2)

where  correspond to the number of walls of various classes.

In practice, it is difficult to make foam with only closed or only open cells. Open-cell

foams contain mostly open cells (more than 90%), while the major number of cells in

closed-cell foams is closed.

Fig. 1.2. Scanning electron microscope views of the closed-cell glass foam with
various types of the cell opening.

open partially openpin holes closed

ϑ
Nopen 1 2⁄( ) Npart+

Nopen Npart Npin Nclosed+ + +
-------------------------------------------------------------------------=

N
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Relative foam density

The relative foam density  is a crucial parameter for the physical properties of

foam. It shows the part of space which is occupied by the solid phase and, therefore, is

very important for mechanical, thermal, electrical and many other characteristics of

foams.

The foam density  can be calculated just by dividing the mass of the foam sample

by its volume. But the obtained value is averaged over the volume of the sample, because

the structure is not homogeneous and the foam density of the surface layers may be 3 to 10

times greater than the averaged value. This can be caused, for example, by temperature

differences during the foam production process and the resulting different foaming rates.

Moreover, gravity may cause the foam density to increase from top to bottom. This effect

is dependent on the technological details of the foaming process, when the thickness of

cell faces and struts decreases due to drainage of the liquid foam.

Nevertheless, the absolute majority of the models use a simplified averaged foam den-

sity  and do not take the density distribution into account.

Many empirical equations describing the mechanical properties of foams are con-

nected to the relative foam density by the general formula

, (1.3)

where  and  are mechanical properties of foam and solid phase correspondingly,

and  are the coefficients obtained from the experiments.

Cell size

The mean cell diameter  is one of the important geometrical characteristics of foam.

As it has been shown above, the cell size can indirectly influence the mechanical proper-

ties of foams. Different investigators have very various and contradictory conclusions

about this issue. For instance, Morgan et al. (1981) found out experimentally that the

Young’s modulus is independent of the cell size in a closed-cell glass foam, while Hagi-

wara and Green (1987) stated that increasing cell size makes closed-cell foams stiffer.

Open-cell glassy carbon foam was studied by Brezny and Green (1990). The elastic mod-

ulus and fracture toughness have been found to be independent of the cell size, while a

square root dependence on the toughness has been predicted. The compressive strength

ρf ρs⁄

ρf

ρf

Φf

Φs
------ C

ρf

ρs
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞ p

=

Φf Φs C

p

D
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decreased with increasing cell size.

The problem may be caused by the attempt to explain some phenomena by plotting

mechanical characteristics of foams against the cell size, without sufficient considering the

basics of the phenomena. It will be shown in this thesis that the distribution of cell sizes

can have important influence on the mechanical properties of foams. Moreover, it will be

shown that not only the cell size, but also the cell size distribution can be vital for the

behaviour of foams.

Cell shape, or geometrical anisotropy

Due to the production, when foams are extruded and they rise during foaming, the

final foam structure is often anisotropic. Based on this production process, mostly three

main directions can be determined in foam with different cell dimensions in these direc-

tions. Consequently, many foam properties are dependent on the direction. Moreover,

mechanical characteristics of foam are better in the directions where foam cells have

greater dimensions.

Cell walls thickness and distribution of solid between struts and walls

The solid material in foams can be considered to be distributed between 3 geometrical

groups: walls, struts and vertices. As far as only low-density foams are considered in this

thesis, the material in vertices is neglected. The solid phase is assumed to concentrate in

walls and struts for the closed-cell foams, and in struts for the open-cell foams.

Berlin and Shutov (1980) noted that a critical cell wall thickness, , exists for their

specific base material, which is the minimum thickness for that material to allow closed-

cell foam formation. The critical cell wall thickness  is a lower boundary for the cell

wall thickness in the closed-cell foam. The upper border is theoretically limited by the

foam density  only. The solid material is distributed then between walls only.

The distribution of the material between walls and struts in the closed-cell foam will

influence the mechanical properties of the foam considerably.

Form of a foam cell and its constituents

To achieve realistic results in the prediction of the mechanical properties of foam, the

structural elements of a foam should be studied thoroughly. This, as well as the properties

of the solid material in a foam, is the crucial point in the modelling.

δcr

δcr

ρf
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An ideal geometry of a foam that has reached a thermodynamical equilibrium should

comply with the following terms:

• A strut is an intersection of 3 walls [Plateau’s law (1873)].

• A knot-point is an intersection of 4 struts and an intersection of 6 walls [Plateau’s law

(1873)].

• Struts are straight in the undeformed state.

• Several struts, belonging to the same cell wall and connected to each other, lay in one

plane.

• As a result of the previous points, walls are flat in the undeformed state.

• During the production process of foam (growing), a dihedral angle (angle between

faces) is equal to 120 .

• Struts intersect in a vertex under the bond angle equal to 109 28’16”.

These laws are based at the principles of the minimizing surface energy during the foam

growth.

Struts of the foamlike structures are known to have a cross-section in a shape of Pla-

teau-Gibbs borders, well-known from the literature [see, for instance, Kann (1989) or

Pertsov et al. (1992)]. An example of the strut cross-section in closed-cell polymeth-

acrylimide (PMI) foam is given in Fig. 1.3.

°

°

Fig. 1.3. Strut cross-section in the form of Plateau-Gibbs border in PMI foam.
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There are some more geometrical details of foam that should be named here. First of

all, the cell walls thickness is not constant within a wall but decreases from the wall border

to the centre [see Yasunaga et al. (1996)]. The same effect is observed with the struts

which are thicker near vertices and thinner in the middle part. Moreover, cell walls thick-

nesses and struts cross-sections are not constant for all struts and walls in a foam. They

can vary and the distribution of the walls thicknesses and strut cross-sections may be

large. The use of the mean values in the modelling can lead to the introduction of the

errors. That is why, it is important to measure a considerable amount of struts and walls

and to pay attention onto distributions. For many foam materials discussed in this thesis,

these distributions are narrow. Nevertheless, application of variable strut cross-sections

and walls thicknesses in the model can be useful.

1.3.2  Properties of the solid material

As mentioned above, only two features influence the behaviour of a foam: kind of

material inside the foam and geometry of the foam (for the closed-cell foams gas pressure

may be important too). All accents of the present thesis are concentrated on the last

issue—foam geometry. Only this Chapter deals with solid materials.

One of the main aims of the modelling presented in this thesis is creation of a general-

purpose model that would be valid for all low-density foams, any solid material and kind

of geometry. This means that special attention should be given to the solid properties of

the material inside the structural elements of foams.

Unfortunately, it is very often extremely difficult or even not possible to determine the

mechanical properties of the base material inside the foam. The main problem is that the

material before foaming almost always differs from that after the foaming process and

solidification. A lot of factors influence the properties of the solid material and can even

change its chemical composition. Polymers are especially sensitive to the foaming proc-

ess. Macromolecules of a polymer might get orientation in a foamed medium and improve

the mechanical properties of solid in the directions of the orientation. Furthermore, there

are many other aspects that can influence the solid material, like stabilisers, nucleators,

etc.

To conclude: the knowledge of the properties of the original unfoamed material does

not mean the knowledge of the properties of the material inside the foam. This yields the

necessity to determine the properties of the material inside the foam. This problem is very
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often insuperable because of the scale of the foam structural elements. The strut length is

often approximately 50  and a uniaxial test becomes challenging. Nevertheless, exper-

iments are known [see, for instance, Warburton et al. (1990)], where a three-point bending

test with a 1.3  span is accomplished on a wall of a foam cell. Unfortunately, such

tests are exceptions.

What will be important to know about the solid material inside foam? It is dependent

on the kind of mechanical properties of the foam that are of the interest. For instance, if it

concerns the linear elastic properties of the foam only, the Young’s modulus of the solid

material will be sufficient. For a more advanced model, which includes nonlinearities,

much more information about the solid material will be necessary. It should be noted here,

that some materials exhibit time dependent behaviour (e.g., polymers) and that should also

be incorporated in the model. Fracture of foams is controlled by the fracture of solid. That

is why, if fracture of foam is being modelled, this aspect should be taken into account too.

The model to be presented in this thesis can in principle include all features mentioned

above. However, some of them are not incorporated yet. For instance, the polymer behav-

iour is often very sensitive to the strain rate. Since this behaviour is not present in the

model yet, all tests described below are accomplished at low speeds whereas the time

scale of solid and foam behaviour is chosen to be similar. Consequently, time dependent

behaviour is almost ruled out as a variable. A fracture model has not been created yet.

Therefore, fracture of the solid will not be discussed here.

1.4  Existing Foam Models

Primary existing foam models found in the literature are shown in Fig. 1.4. The main

drawback of the existing models is their unrealistic geometry, which is often regular in

comparison with the irregular real foam structure. A vivid example of it is a tetrakaideca-

hedron used by Ko (1965), Dementjev and Tarakanov (1970a) and Zhu et al. (1997). This

approach is doomed to yield inaccurate results due to the application of the regular geom-

etry to model irregular structures. Another type of models are based on small volume ele-

ments which mechanical properties are averaged through all possible orientations in

space. A wide-spread example of such a model, a tetrahedral element of Warren and

Kraynik (1987), (1988) and (1994), is very limited in use because of its limited size and

still the same regular geometry.

Some attempts to create a random model [see, for instance, the randomized tetrakaide-

µm

mm
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cahedron of Valuyskikh (1990) or randomly connected rods of Lederman (1971)] are also

not very successful. The randomized tetrakaidecahedron is obtained from the regular

structure in an unnatural way and may be used for open-cell foams only (for details see

Section 2.3.1). Several geometrical laws formulated in Section 1.3.1 are violated. The

model of Lederman (1971) is created in a way never occurring in nature and, therefore,

has an unnatural geometry. As a result, the model could not be applied to the closed-cell

foam modelling. Moreover, bending of the rods has not being incorporated in the model,

which occurred therefore to be extremely stiff.

The models will be discussed in more detail later in this thesis. The main conclusion

made after analysis of the existing foam models was the necessity to create a foam model

that could resemble the geometry of a real foam (including anisotropic foams) and that

could be general-purpose, i.e., could potentially be used for any low-density foam type.

1.5  Scope of the thesis

The purpose of this work was to create a comprehensive model for all low-density

foam types: open- and closed-cell, isotropic and anisotropic. Moreover, almost the entire

deformation region in compression (but excluding the densification under contact phe-

nomena) and in tension (excluding fracture) will be incorporated in the model. The com-

plete structure of this thesis is schematically shown in Table 1.1.

Table 1.1. Contents of the thesis

Open-cell model: Chapter 2

Isotropic: Sections 2.3.1-2.3.3 Anisotropic: Sections 2.3.4-2.3.5

Linear
elastic

Large
deformations

Nonlinear
material

Linear
elastic

Large
deformations

Nonlinear
material

Section 2.3.2 Section 2.3.3 Sections
2.3.4-2.3.5

Closed-cell model: Chapter 3

Isotropic: Sections 3.3.2-3.4.1 Anisotropic: Section 3.4.2

Linear
elastic

Large
deformations

Nonlinear
material

Linear
elastic

Large
deformations

Nonlinear
material

Section 3.4.1 Section 3.3.2 Section 3.4.2
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Chapter 2 of the thesis will deal with open-cell foams. First, the random isotropic

model will be constructed (Section 2.3.1). Consequently, linear elastic (Section 2.3.2) and

nonlinear (Section 2.3.3) models will be created. Moreover, Section 2.3.2 will also incor-

porate regular foam models and will show the influence of the irregularities on the linear

elastic properties of the foam models. A new approach for the introduction of the anisot-

ropy in foam will be presented in Section 2.3.4. With the help of this approach, a regular

anisotropic tetrakaidecahedron will be created. The random anisotropic foam model will

be developed in Section 2.3.5 using the same principles as for the regular model in the

foregoing Section. Nonlinear problems for the anisotropic foam model will not be taken in

the scope of the thesis and comprise a possible future development of the model.

In Chapter 3, the closed-cell foam model will be created. Section 3.4.1 will present

the linear elastic modelling with some applications of the model to glass and polymer

foams. Further development of the model in Section 3.4.2 will result in a comprehensive

anisotropic closed-cell foam model including material and geometrical nonlinearities. The

model will be verified on glass and polymer foams.

The present thesis is partly based on the following papers:

Sections 2.3.1-2.3.2

Burg, M.W.D. van der, V. Shulmeister, E. van der Giessen and R. Marissen (1997). On the

Linear Elastic Properties of the Regular and Random Open-Cell Foam Models. J. of Cell.

Plast., 33, 31-54.

Section 2.3.3

Shulmeister, V., M.W.D. van der Burg, E. van der Giessen and R. Marissen. Numerical

Analysis of Large Deformations of Low-Density Elastomeric Open-Cell Foams. Submitted

for publication in J. of Mech. of Mater.

Section 2.3.5

Shulmeister, V., A.H.J. Nijhof and R. Marissen (1997). Three Dimensional Modelling of

Random Anisotropic Open-Cell Foams. Proc. of the 4th Cell. Polym. Int. Conf., Shrews-

bury, Great Britain, 14/1-6.

Section 3.4.1

Shulmeister, V., A.H.J. Nijhof, N.J.H.G.M. Lousberg and R. Marissen (1995). On the Mi-

cromechanics of Polymer Foam Used as Thermal Insulator. Book of Abstracts of the 19th
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Int. Congr. of Refrig., The Hague, The Netherlands, 136.

Shulmeister, V., A.H.J. Nijhof and R. Marissen (1997). Linear Elastic Closed-Cell Foam

Modelling. Proc. of the 5th Europ. Conf. on Adv. Mater. and Proc. and Appl., Maastricht,

The Netherlands, 2/13-18.
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2. Open-cell foams

2.1  Introduction

Open-cell foams contain hardly any walls. Cell walls are removed by physical or

chemical treatments, which will not be described here. However, “open-cell” does not

mean that all walls are removed from the structure. There is often a very small percentage

of walls that still remains in the foam, as can be seen from the view of the open-cell PUR

foam in Fig. 2.1. This phenomenon indicates that open-cell foams originate from closed-

cell foams. Hence both open- and closed-cell foams have similar geometrical features.

However, the presence of a very few number of walls in the open-cell foam does not influ-

ence mechanical properties of the foam and can be neglected.

An open-cell foam structure can be considered as an array of cells composed of struts.

A great number of foam structures is geometrically anisotropic and the dimensions of cells

that comprise the structure are dependent on the direction. This leads to differences in the

mechanical properties of the macrostructure in various directions, so-called mechanical

anisotropy. This effect occurs due to a rise process during the production of foam. This

fact should be incorporated in the model when anisotropic foam is modelled.

Fig. 2.1. View of open-cell PUR foam with a visible cell wall.
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2.2  Survey of the existing models

2.2.1  Regular foam models

Several attempts have been made in the past to predict the bulk mechanical properties

of open-cell polymer foams by relatively simple models using structural beams to repre-

sent the foam struts. These models have mostly been based on regular 2D or 3D packings.

2D models will not be considered here, because they are unsuitable for reproducing

the deformation mechanisms of real 3D foams. The first group of the regular models in 3D

comprises models which are based on regular, symmetrical packings of struts. The size of

the unit cells of such models is approximately the same as the strut length.

Cubic model

Rectangular prism models shown in Fig. 2.2a represent one type. The most compre-

hensive description of this type of model was given by Gibson and Ashby (1988). The ini-

tial response of their unit cell on the uniaxial compression–tension deformation is

governed by the bending of struts. The cross-section of the struts has been simplified to be

square. An obvious advantage is the simplicity of these models, where the regular unit

cells fill the space completely through repetition. On the other hand, these models are

quite far removed from real foam geometry, which is never rectangular and is more or less

irregular. Moreover, as can be seen in Fig. 2.2a, the model is only quasi–3D. The struts in

the -direction are not effective. Furthermore, the cubic structure does not satisfy Pla-

teau’s laws (1873).

(a) (b) (c) (d)

Fig. 2.2. Regular models, based on the regular cells packings. (a) Cubic model.
(b) Tetrakaidecahedron. (c) Rhombic dodecahedron. (d) Rhombic-
trapezoidal dodecahedron.

x3
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Isotropic linear elastic model

Based on the model shown in Fig. 2.2a, Gibson and Ashby (1988) recognized the

bending of struts to be the main deformation mechanism at small strains. To determine the

Young’s modulus  of an open-cell foam, they related the mass densities of foam  and

solid material in struts  to the geometrical features of struts, the strut length  and the

strut cross-section side , as . Further, the strut moment of inertia  is pro-

portional to . The global stress  is proportional to , where  is the global uniax-

ial force; the strut deflection due to bending  is proportional to , where

 is the Young’s modulus of the solid material in struts. The foam Young’s modulus

is then given by:

, or

. (2.1)

Finally, the relative Young’s modulus of the open-cell foam is represented by

, (2.2)

where  is a coefficient, incorporating the geometric constants of proportionality. Numer-

ous experimental data for open-cell foams have been fitted by applying . This led

to the following elastic constants of the open-cell foam, given by Gibson and Ashby (1988)

and based on the cubic model:

, , , (2.3)

where  is the shear modulus and  is the Poisson’s ratio of the foam.

Earlier, Rusch (1969) gave an empirical relation between the foam relative density

and elastic modulus in compression as

. (2.4)
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Anisotropic linear elastic model

The cubic model of Gibson and Ashby (1988) has been modified to give the correla-

tion between the geometrical anisotropy and the mechanical characteristics of anisotropic

foams like Young’s modulus. A typical example of an anisotropic foam cell is given in

Fig. 2.3a. The corresponding anisotropic cubic model is shown in Fig. 2.3b. The geometri-

cal anisotropy of foam is given in terms of a cell dimensions ratio, , where i

and ,  and dimensions .

The Young’s moduli ratio of an anisotropic axisymmetric foam with  com-

prises

. (2.5)

This anisotropic cubic model has been extended to orthotropic foams with  by

Huber and Gibson (1988) and resulted in the Young’s moduli ratios:

, , . (2.6)

The described above fitting of the experimental data leads to doubts about use of such

a “model” for the prediction of the mechanical properties of foams in general. The models

depicted in Figs. 2.2a and 2.3b are used only to illustrate that the main deformation mech-

anism in foam is bending and will never give a detailed feedback between geometry and

mechanical properties of foam. However, the model has extensively been fitted to experi-

ments and may be used as “experimental result” for the verification of other models.

c) tetrakaidecahedronb) cubic model
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Fig. 2.3. Anisotropic (a) real foam cell and (b)–(c) models.
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Isotropic nonlinear model

The cubic model has also been used to predict large-deformation behaviour of open-

cell foams. When the tensile strains of the foam become sufficiently large (when the ten-

sile strain  exceeds a value of about 0.3), the struts become oriented in the loading direc-

tion. Consequently, the axial deformation of the struts increasingly dominates the foam

response. The foam elastic response in this regime, in terms of the foam tangent modulus

, depends on the density according to

, (2.7)

where  is a constant. Subscript  refers to the initial situation at zero strain. Gibson and

Ashby (1988) accepted  as a fair approximation. Equation (2.7) reflects a direct re-

lation of the macroscopic foam deformation and the local tensile deformation of struts.

In case of compressive deformations of the foam, some struts will buckle, and hence-

forth initiate the collapse of the foam. Gibson and Ashby (1988) expected the elastic col-

lapse stress  to be

, (2.8)

where  and  are coefficients. It was found from experiments that  and .

Tetrakaidecahedron

Another wide-spread model, based on the tetrakaidecahedron, has been considered by

Dementjev and Tarakanov (1970a), Renz and Ehrenstein (1982), Lakes et al. (1993) and

Zhu et al. (1997). The model is shown in Fig. 2.2c. It consists of six quadrilateral and

eight hexagonal faces. According to the crystallography, it corresponds to the body-cen-

tred cubic (bcc) packing of spheres. The geometry of this regular foam model corresponds

much better to the real foam geometry than the cubic model. The model has three orthog-

onal main directions and none of the struts is initially oriented in a main direction. This is

more realistic than the cubic model which has a strong orthogonal character. The Young’s

modulus of the tetrakaidecahedron with struts having a square cross-section is found by

Dementjev and Tarakanov (1970a) to be
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, (2.9)

where  is a side of the square cross-section and  is the length of a strut.

For an isotropic tetrakaidecahedron a correlation between the  ratio and the rela-

tive foam density  was given by Gibson and Ashby (1988) as

, (2.10)

which can be substituted in Eq. (2.9).

The most recent studies of the linear elastic properties of this model by Zhu et al.

(1997) gave the following formula for the relative Young’s modulus of the tetrakaidecahe-

dron with struts having triangular cross-section

, (2.11)

which is much more convenient than the corresponding expression by Dementjev and Tar-

akanov [see Eq. (2.9)] because it does not contain geometrical features of the foam micro-

structure. The same model with the struts having Plateau-Gibbs border cross-section

resulted in the stiffer model with the relative Young’s modulus

. (2.12)

This model has been applied to anisotropic modelling by Dementjev and Tarakanov

(1970b). For this, the isotropic tetrakaidecahedron was extended in the rise direction, as

shown in Fig. 2.3c. An analytical relationship is given for the Young’s moduli ratio of a
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, (2.13)

where  and  are geometrical factors.

The rewriting of Eq. (2.13) yields to

.

Dodecahedra

Other approaches for perfectly ordered 3D models are a rhombic dodecahedron and a

rhombic-trapezoidal dodecahedron, depicted in Fig. 2.2c and Fig. 2.2d respectively. These

two cells can be derived from two closest packing geometries of spheres: hexagonal (hex)

and face-centred cubic (fcc) packing. The rhombic dodecahedron has a cubic symmetry

(orthogonal), as a tetrakaidecahedron, so the mechanical properties of the unit cell struc-

tures are equal in the three principal directions. This is in contrast to the rhombic-trapezoi-

dal dodecahedron which is relatively stiff in one direction due to the alignment of struts in

that direction ( -direction in Fig. 2.2d). The elastic properties of these two unit cells

have been studied by Ko (1965). The equivalent Young’s modulus of the rhombic-trape-

zoidal dodecahedron is given by

, (2.14)

where  is a strut cross-sectional area,  is a strut length and  is Poisson’s ratio of the

solid material in struts.

The effective Poisson’s ratio of the model is

. (2.15)
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(2.16)

and

, (2.17)

where

. (2.18)

2.2.2  Irregular foam model

A completely different approach has been used by Lederman (1971) to compose an

open-cell foam model. Irregularities are incorporated in the model using randomly distrib-

uted fibres. The slender fibres have an average length , a cross-sectional

area  and are connected in 3D to rigid spheres of diameter  (  fibres are connected to

each sphere). A graphical representation of the model is illustrated in Fig. 2.4a. The main

drawbacks of this model are that (i) it does not incorporate the bending of the struts, and

(ii) the topological requirements of geometrical connectivity among the edges and vertices
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of cells are not satisfied, so that the random orientation of the fibres in the model has no

physical foundation (violation of Plateau’s laws). The concept of cells vanishes and such a

structure violates Euler’s formula [Eq. (1.1)]. The relative Young’s modulus based on

Lederman’s model is

 with , (2.19)

where  is Poisson’s ratio of the foam.

2.2.3  Structural volume elements

Aggregate model

A model developed by Cunningham (1981 and 1984) comprises a structural unit con-

sisting of strut “A” surrounded by a low modulus matrix “B”, as illustrated in Fig. 2.4b.

The effective constants are averaged over all possible orientations  of the structural vol-

ume element in 3D. For the isotropic structure, the Young’s modulus is

. (2.20)

This result was explained by the fact that only approximately  part of the volume ele-

ments are oriented close to the loading direction and are, therefore, effective loaded “struc-

tural elements”. This clearly points out that this model is based on the axial deformation of

struts as the dominant deformation mechanism. Consequently, it is not realistic, because

bending is very important.

Tetrahedral element

Another model for predicting the mechanical properties of an open-cell foam is the

tetrahedral element of Warren and Kraynik (1988), shown in Fig. 2.4c. It is a logical

extension of the 2D structural element, described by Gioumousis (1963), Warren and

Kraynik (1987) and later on used by Hall (1993), Papka and Kyriakides (1994). As

opposed to the 2D case where the structural element may by assembled into a hexagonal

honeycomb, the tetrahedral element cannot be assembled into an ordered network, as

proved by Matzke (1946). Because of the limitations of size, only averaged properties can
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be considered. The relative Young’s modulus for low-density foams based on this model is

given by Warren and Kraynik (1994) as

, (2.21)

where  is the radius of gyration of the cross-sectional area . The factor  represents

the specific shape of the strut cross-section. In the case of a circular cross-section,

. Substituting this into Eq. (2.21) the relative Young’s modulus becomes

, (2.22)

which is close to the Gibson and Ashby results given in Eq. (2.3).

A specific strut cross-section parameter  and the corresponding relative Young’s

moduli have also been determined for the triangular and Plateau-Gibbs cross-sections (for

details see Fig. 2.11), as follows:

triangular:  and

; (2.23)

Plateau-Gibbs:  and

. (2.24)

This model, as well as each of the regular unit cells from Fig. 2.2, contains a high

degree of periodicity, because the size of these unit cells is of the order of the average strut

length. However, it can be expected and will be demonstrated in other parts of this thesis

that randomness in the microstructure of a foam exerts a significant influence on the

mechanical properties.
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2.3  Present modelling

2.3.1  Introduction of irregularities in the model

To approach a real foam, a model should satisfy Plateau’s laws (see Section 1), yield-

ing from the thermodynamical equilibrium of the growing foam structure.

A tetrakaidecahedron has been assumed to be the most suitable of the space-filling

polyhedra for these conditions. Only the last criterion is somewhat violated: the mean

angle between edges is equal to  with two peaks at  and . This geometrical

violation may have an effect on the mechanical properties of the model.

The existing regular models can be improved by increasing the number of the

enclosed cells, i.e., model dimensions, and by developing of a non-regular model. An

effort has been done by Valuyskikh (1990) to randomize a regular model through the sto-

chastic deviation of nodes of the tetrakaidecahedra. Because of the unnatural way of intro-

ducing randomness (a random structure is built on the initially regular structure), the

resulting structure misses very important geometrical features of the real foam, e.g., the

faces of cells become nonplanar and the closed-cell model is not valid anymore. It must be

concluded that the model is hardly representative for real random foams.

Voronoi tessellation

To improve the prediction of the relative Young’s modulus, a unit cell will be intro-

duced with dimensions being about one order of magnitude larger then the average strut

length, so that the geometrical disorder can be incorporated. As an improvement of the

model of Gent and Thomas (1963) and of Valuyskikh (1990), the modelled foam structure

corresponds better to the real foam microstructure. This is accomplished by taking the 3D

foam microstructures in the unit cell from Voronoi tessellation of space described by Voro-

noi (1908). Weaire and Fortes (1994) pointed out that the structural randomness is impor-

tant for the mechanical properties of the model. They also noted, that, as opposed to the

2D case, the 3D Voronoi model has not been explored yet. In the Voronoi tessellation, the

final geometry is based on the distribution of nuclei (centres of the foam cells). This pro-

cedure resembles the physical process of nucleation and growth of gas bubbles in a liquid

during cell formation. A created Voronoi geometry is topologically very similar to the

geometrical structures resulting from the growth process according to the following

assumptions, given by Boots (1982):

• all nuclei appear simultaneously,

110° 120° 90°
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• all nuclei remain fixed in location throughout the growth process,

• at each nucleus, the growth of the foam cell proceeds at the same rate in all directions

(i.e., isotropic growth),

• the growth rate is the same for each cell associated with a nucleus, and

• growth of a cell ceases whenever and wherever the cell comes into contact with a

neighbouring cell.

The Voronoi tessellation, constructed in this way out of a distribution of nuclei ran-

domly oriented in 3D, divides the space into an array of cells (or polygons) having planar

faces. Furthermore, three cells meet at each edge and one vertex belongs to four cells

(connects four edges). The geometry of a Voronoi cell agrees quite good to measured val-

ues, as shown in Table 2.1. Not only connectivity, but also angle requirements are

approached. It was shown by Kumar and Kurtz (1994) that the mean dihedral angle and

the mean bond angle of a Voronoi cell are  and  respectively.

The initial spatial distribution of nuclei completely determines the final geometrical

structure of the Voronoi tessellation. This method is applied to construct the microstruc-

ture of the foam model, where the nuclei resemble the starting points of growing bubbles,

and the subsequent Voronoi tessellation is considered to represent the foam geometry.

Because only open-cell foams are analysed here, cell faces are neglected, and the cell

edges are considered to be slender struts.

These struts fill a cubic unit cell with edges of length . The foam is constructed

with this unit cell, in such a way that each face of the unit cell is a plane of local symmetry

in the foam. Due to the symmetry, the unit cell faces may be considered to remain shear

stress free and stay flat during deformation in the , , -directions. Thus, the global

principal stresses , ,  in the , , -directions are imposed by prescribing uni-

form displacements on the faces of the unit cell (see Fig. 2.5).

Table 2.1. Geometrical features of various cells [from Kumar and Kurtz (1994)]

Structure
Mean number of

struts in a face

Mean number of

faces in a cell

Mean number of

vertices in a cell

Tetrakaidecahedron 5.143 14 24

Rhombic dodecahedron 4 12 14

Cubic prism 4 6 8

Voronoi cell 5.228 15.536 27.086

Foamlike structures ~ 5.1 ~ 14 ~ 23

N F V

120° 111.11°

Luc

x1 x2 x3

Σ1 Σ2 Σ3 x1 x2 x3
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To construct some regular Voronoi geometries, regular packings of nuclei and corre-

sponding small unit cells are often used [see, for example, Fedorov (1971) or Vainshtein et

al. (1995)]. The three most appropriate regular nuclei distributions are (i) the bcc distribu-

tion, (ii) the fcc distribution, and (iii) the hex distribution. Figures 2.6a-c show the initial

positioning  of  the  nuclei  before  the application  of  the  Voronoi  tessellation,  and

Figs. 2.6d-f demonstrate the growth of the foam cells at a certain moment. Single cells of

the resulting Voronoi tessellations are depicted in Figs. 2.2b-d respectively. Note that only

the edges are depicted as the representation of the struts in open-cell foams. The bcc distri-

bution of nuclei yields tetrakaidecahedron cells (truncated octahedra) as shown in Fig.

2.6g, the fcc distribution agrees with a 3D closest packing of spheres, the centres of which

are the nuclei, and forms rhombic dodecahedron cells (see Fig. 2.6h), and the hexagonal

variant of a closest spheres packing yields rhombic–trapezoidal dodecahedra as shown in

Fig. 2.6i.

As it was noted above, the bcc and fcc nuclei distributions have a cubic symmetry.

Consequently, the mechanical properties of the subsequent cell structures, the tetrakaide-

cahedron and rhombic dodecahedron, are equal in the three principal directions. This is in

contrast to the structure obtained from the hex nuclei distribution, where the subsequent

structure will be very stiff in one direction due to the alignment of struts in that direction.

Real geometrically isotropic foams exhibit isotropic mechanical properties. The strong

anisotropy of the foam model derived from the hexagonal closest packing is the reason

that this model will not be considered further.

Σ3

Σ2

Σ1

x1
Luc

x2

x3

Fig. 2.5. The cubic unit cell, with the edge length , subjected to global principal
stress .
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Unit cell construction

To construct the irregular foam geometry of a large unit cell, the following steps are

taken. First, a virtual cube having an edge length  or , with nuclei according to the fcc

or bcc distribution respectively, is placed periodically inside a large cubic box with edge

Nuclei of the first layer
Nuclei of the second layer
Nuclei of the third layer

body-centred face-centred hexagonal
closest packing closest packingcubic packing

(fcc) (hex)

(d) (e) (f)

(g) (h) (i)

Fig. 2.6. Some nuclei distributions and their subsequent Voronoi cells; (a, d, g)
body-centred cubic nuclei distribution leads to formation of a regular
tetrakaidecahedron cell; (b, e, h) cubic closest (or faced-centred cubic)
packing results in a rhombic dodecahedron cell; (c, f, i) hexagonal closest
packing after application of the Voronoi tessellation yields a rhombic-
trapezoidal dodecahedron cell. The first two cells, (g) and (h), have
orthogonal symmetries.

(bcc)

(a) (b) (c)

bf bb
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length , ( ), as displayed in Fig. 2.7. In this way, a large cubic box is obtained,

containing a lattice of nuclei, arranged according to a bcc or an fcc distribution. The cho-

sen virtual cube edge length (  or ) is different for the fcc and bcc packings, in order to

keep the volumetric density of the nuclei equal for these two packings. Therefore, the

cubic, bcc and fcc virtual cube edges lengths relate to each other as

. To introduce irregularity in the geometry of the final foam,

the positions of nuclei are varied at random by giving a random orientation of the vector

 (see Fig. 2.8a) of nucleus  and a certain deviation of the vector length. Thus, the

nucleus is moved from its position in point  over a distance  to a new position , as

shown in Fig. 2.8a. The deviation  is taken from a uniform statistical distribution

. In this way nucleus  has its new position  inside a sphere with a diameter of

. An example of the deviations distribution is given in Fig. 2.8b. The deviation  is

related to the virtual cube edge length  between nuclei in a packing. The value of  is

dependent on the kind of packing and is equal to ,  and  for the cubic, fcc and bcc

lattices correspondingly. The normalized maximum deviation  is a convenient

measure of the geometric disorder.

Lc Lc Luc>

bf bb

cubic set of nuclei

bc

cubic packing

faced-centred cubic packing body-centred cubic packing
 (fcc) (bcc)

(a) (b)

(c) (d)

bb
bf

Lc

Fig. 2.7. Constructing of lattice of nuclei (a) by stacking cubic packings (b). The
cubic packings consists of regular fcc (c) or bcc (d) packings.
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Based on this random nuclei distribution, the foam microstructure is obtained using

the Voronoi procedure. The Voronoi-software of Van de Weygaert (1991) has been

adopted to generate the foam structure. In the final Voronoi tessellation, the foam cells at

the boundaries may have shapes that are not suitable for the unit cell microstructure, as

can be seen in the 2D analogue in Fig. 2.9. To avoid these boundary irregularities, the

cubic unit cell with length  is cut out of the cube with edge length . In

case of the bcc distributed nuclei, the cube edge length is  and the unit cell edge

length is , whereas for the fcc distributed nuclei,  and . Due

to the difference in  and , the resulting unit cells contain approximately equal num-

bers of foam cells.

O

i'
2δmax

x2

x3

x1

δi
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0.00
0.0 0.2 0.4 0.6 0.8

δi
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∆N
Ntot

----------
(b)

(a)

Fig. 2.8. (a) Disorder is created in the Voronoi geometry by imposing an arbitrary
deviation of the nuclei positions. As an example, the regular nucleus
position, point i, gets a deviation  to its new random position, point i’.
(b) Example of a histogram of the nuclei deviation  of the bcc-based
structure with the normalized maximum deviation . The
step width of the  ratio is 0.05.

δi

δi
b⁄

δmax b⁄ 0.75=

δi
b⁄

ii 1–( )

Luc Lc Luc Lc<( )
Lc 8b=

Luc 6b= Lc 7b= Luc 5b=

bf bb



Modelling of the mechanical properties of low-density foams  33

In addition to the above nuclei distribution considerations, some microstructures are

also based on completely random distributions of nuclei. These random nuclei distribu-

tions result in an irregular geometry of the foam model. The random nuclei are placed in a

box with edge length  under the condition that the neighbouring nuclei are not closer

than a distance . The usage of  is necessary to obtain rather uniformly distributed cells.

A random point process attempts to generate 10,000 times nuclei positions in the cube,

with each coordinate taken from a uniform distribution . If the generated nucleus is

too close to its neighbours, the new nucleus is not placed. Choosing , the final

number of nuclei turns out to be always close to 800. With this random nuclei distribution,

an additional Voronoi tessellation was created, and the cubic unit cell was cut out with

edge length .

The presumed symmetry of the unit cell requires that the struts crossing the unit cell

face must be perpendicular to this face. Therefore all struts that cross the unit cell bounda-

ries while cutting out of the unit cell cube, are rearranged to satisfy the symmetry condi-

tions. This procedure is schematically depicted in Fig. 2.10a. The final structure comprises

a framework of struts, as shown in Fig. 2.10b.

2.3.2  Linear elastic behaviour

All struts in the open-cell foam model are represented mechanically by beams that are

rigidly connected in vertices. In real foams, struts have cross-sections in the form of Pla-

teau-Gibbs borders, as shown in Fig. 2.11a, and have a variable cross-sectional area along

their length. This occurs as a result of the growing process of bubbles, which is ruled by

Fig. 2.9. 2D Voronoi representation. Voronoi boundaries are unwanted in the foam
model, and will therefore be cut off.

Lc

d d
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the effect of the surface area minimization. Hence edges appear with a cross-section in the

shape of the Plateau-Gibbs borders, described, e.g., by Chan and Nakamura (1969) and

Kann (1989). A typical strut cross-section, shown in Fig. 2.11a, changes its value along

the strut from the thick vertices to the thin middle of the strut, while the shape remains

quite similar. Figure 2.11b specifies the geometrical features of the strut. For the simplifi-

cation of the model the following assumption is made: . This leads to

X

Y

Z

1

X

Y

Z

1

(b)

Fig. 2.10. (a) Rearrangement of struts passing the unit cell boundaries. (b) Example
of a final microstructure inside the unit cell (projection of the 3D structure
on a plane).

(a)

a2

a1

a

Fig. 2.11. Strut cross-section. (a) Open-cell PUR foam micrograph (only the
completely black area is the strut cross-section). (b) Possible strut cross-
section simplifications.
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straight struts with the constant triangle cross-section, , which is smaller than the origi-

nal one. In a 2D simulation, Gioumousis (1963) demonstrated that struts in open-cell

foams with densities below a critical relative foam density  get a middle part with a

constant thickness. A further decrease of relative density causes an enlargement of such a

region. The critical relative density was found to be equal to 0.0931. It was concluded that

the critical density for the 3D case must be greater than that value. In this thesis only low-

density open-cell foams with a relative density  less then 0.075 are considered. Con-

sequently, the assumption that struts have a constant cross-sectional area along their length

is allowable. The additional simplification of the cross-section to the circle, , introduces

greater error. Warren and Kraynik (1997) evaluated the ratio between the second moments

of inertia of the circular, , square, , equilateral triangular, , and Plateau-Gibbs

border, , having equal cross-sectional areas as

. (2.25)

All struts in the thesis are assumed to have the same and constant circular cross-sec-

tion with area . Since the geometry of the foam model is determined in the above

described procedure, the cross-section area  determines the relative density of the foam

:

, (2.26)

where  is the number of struts in the unit cell.

By taking the circular cross-section, the moment of inertia of the strut is underesti-

mated as compared to a real foam (for the same relative foam density ). This leads

also to a certain systematic error in the mechanical properties of the model [see Eq. (2.22),

Eq. (2.23) and Eq. (2.24)].

Each unit cell is uniquely determined by its initial nuclei distribution and relative

foam density . Then the initial linear elastic properties, like the relative Young’s

moduli, , and the Poisson’s ratios, , are defined. These properties of the unit

cells are analysed by FE element techniques. Each strut is modelled as a beam element

with a constant circular cross-section area  and of length .

Geometries of the model microstructure can be divided into three types: (i) com-

pletely regular geometries based on the regular fcc and bcc nuclei distributions, (ii) com-

pletely random geometries based on random nuclei distributions and (iii) geometries,
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where nuclei of the regular distributions have a random offset . By increasing the range

of the possible random offset , a transition can be made from the completely regular

geometries to the completely random geometries. The directionality of the deviation was

random while the deviation  of the nuclei with respect to the regular fcc or bcc positions

was taken from a uniform distribution , where the following disorder factors have

been taken: , , ,  and . Figure 2.12a shows an exam-

ple of a microstructure based on the bcc distribution with a disorder factor

. The typical features of the tetrakaidecahedra can still be recognized in

the geometry. If the disorder factor  exceeds  for bcc and for fcc,

the spheres with possible new positions of a nucleus (see Fig. 2.8a) start to overlap, with

the result that the original bcc or fcc distribution cannot be distinguished any more. When

 the nuclei distribution is assumed to be completely random due to the

overlapping of the relatively large spheres for the new nucleus position, resulting in a

completely random unit cell geometry, which can be seen in Fig. 2.12b. A photograph of a

real foam is displayed in Fig. 2.12c.

To compare the geometries of different unit cells, histograms of strut lengths and ori-

entations of the strut with respect to a unit cell boundary normal are drawn. In the case of

completely regular bcc and fcc nuclei distributions, both histograms of strut lengths of the

final geometries have the same trivial shapes, namely one peak at the initial mean strut

length . The histogram of the strut orientation for the fcc-based geometry has one peak

at , and for the bcc-based geometry two peaks at  and

(see Figs. 2.6h and g respectively).

If the disorder factor  is relatively small, e.g., 15%, the strut lengths histogram

shows one narrow peak for the bcc-based structure in Fig. 2.13a, and two peaks in the his-
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Fig. 2.12. Geometry of the foam models, based on the bcc nuclei distribution with
(a) 15% and (b) 75% disorder. (c) A view of a real foam.
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togram for the fcc-based foam model, as can be seen in Fig. 2.13b demonstrating an arbi-

trary implementation. The extra peak of very short struts in the fcc-based foam geometry

stems from the drastic changes in the strut connectivity, e.g., the number of struts meeting

at a vertex. It was equal to eight for the ideal regular structure (no disorder), but which

becomes four when disorder is introduced. The same phenomenon can be observed in the

struts orientation histogram, which identically to the regular model has two peaks in the

bcc-based structure, as it is shown in Fig. 2.14a. Figure 2.14b demonstrates an occurrence

of two additional peaks at  and  in the fcc-based unit cell. Note that this abrupt

change in connectivity does not occur in the bcc-based structure, as strut connectivity is
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Fig. 2.13. Histogram of the strut lengths of bcc- and fcc-based models with low and
high disorder and of the random model. The step width of the relative
length is 0.2.
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already four in that regular model.

As mentioned above, the nuclei distribution can be assumed to be completely random,

when the disorder factor is increased above 75%. Indeed, histograms of strut lengths and

orientations from Figs. 2.13c-d and Figs. 2.14c-d are close to the distribution of the com-

pletely random geometry from Fig. 2.13e and Fig. 2.14e. The relatively high number of

struts with the angle orientation close to  is explained by the high sensitivity of the his-
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Fig. 2.14. Histogram of angles between struts and x1-direction, in degrees. The step
width of the angle orientation is 6 . The number of struts  is
normalized by a surface factor to obtain a uniform distribution of
orientation vectors on the unit sphere. The normalized number of struts
is defined as . This implies a normalizing factor  as a
function of the polar angle α under the assumption of rotational
symmetry with respect to -direction.
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togram to that region in connection with the normalisation by .

To determine the overall Young’s modulus and Poisson’s ratio, a uniaxial stress with

magnitude  is applied. Since all disordered microstructures are geometrically isotropic,

the three principal unit cell directions are assumed to be interchangeable concerning the

elastic properties. Therefore, the elasticity parameters have been analysed in all three

directions. The value  has been taken as the relative foam density.

To reduce the computation time, all short struts occurred in the model are to be elimi-

nated. This procedure is called the “sweep mechanism”. First, the influence of the sweep

mechanism on the mechanical properties of the unit cell has to be studied. The parameter

that governs the sweep process, i.e., the smallest allowable strut length relative to the ini-

tial average strut length, , has to be determined for further calculations. The influ-

ence of the sweep ratio on the mechanical properties has been analysed for the fcc

structure with a disorder factor  and for a completely random geometry.

The sweep parameter  has been varied from 1% to 45% and the results are shown

in Fig. 2.15. The accuracy is expressed in the ratio , where  and  are

Young’s moduli of the unit cells after sweeping with sweep ratio sw% and 1%, respec-

tively. As expected, a slight sweep of the fcc-based structure with a small disorder factor

leads to the elimination of the short struts without significantly affecting the mechanical

properties of the whole structure. For a sweep ratio of 15%, the error in Young’s modulus

was about 1%, while the computing time was reduced by 50% for the fcc-based geometry.
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Fig. 2.15. Young’s modulus of geometry with a sweep factor of 1% compared to

Young’s moduli using larger sweep ratios.



Chapter 2. Open-cell foams  40

For the random geometry, the sweep introduced a somewhat larger error while the compu-

tational profit was somewhat less. Based on Fig. 2.15, a sweep ratio of 15% was chosen.

Applying this sweep factor for all other unit cell geometries, the elastic properties

could be determined numerically. The moduli have been determined for five geometries

according to each disorder factor (for the bcc and fcc-based structures) as well as for the

random model. This was done in all three directions per unit cell geometry. Consequently,

15 values were obtained for each situation. The average (of 15) results of the analyses, i.e.,

relative Young’s modulus  versus disorder factor, are plotted in Fig. 2.16.

The computation of linear elastic responses has been started from the regular struc-

tures based on tetrakaidecahedron and rhombic dodecahedron (bcc and fcc nuclei pack-

ings). Also the predictions of the small unit cells of Gibson and Ashby (1988) and of

Warren and Kraynik (1994), calculated from Eq. (2.3) and Eq. (2.22), have been drawn in

Fig. 2.16. The rhombic-trapezoidal dodecahedron yields  [from Eq.

(2.14)] and the relative Young’s modulus for the model of Lederman (1971) is

 [from Eq. (2.19)], which are very high and far outside the range in Fig.

2.16. It is remarkable that the two predicted Young’s moduli based on a regular small unit

cell are relatively close to each other. This can be explained by the fact that in both models

bending as well as axial deformations of the struts are considered. In the model of Leder-

man, bending of struts was excluded, thus making the foam model unrealistically stiff.
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Fig. 2.16.  The influence of disorder, expressed in , on Young’s modulus of
the unit cell. The band width of the unit cell results is four times the
standard deviation.
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Struts, oriented in the direction of the global stress and penetrating the entire unit cell,

increase the stiffness of the rhombic-trapezoidal dodecahedron. In the model based on the

regular fcc distribution, all struts are oriented at an angle  of 45  to the principal global

stress, so deformation takes place predominantly by bending, making the model too flexi-

ble.

The influence of disorder on the initial linear elastic mechanical behaviour can be seen

in Fig. 2.16. An increase in the disorder of the geometry causes a rapid rise of the mechan-

ical elastic constants. At a disorder factor of approximately 30%, the elastic coefficients of

the fcc- and bcc-based geometries start to coincide. At 50% they are about equal to the

moduli of the random model. Further randomization of the framework has almost no influ-

ence on the linear elastic properties of models; the geometry becomes sufficiently stochas-

tic to erase the difference between the various models.

To trace the reasons for the increased stiffness of the random unit cells in comparison

with the regular structures, the normal stresses  and the maximum bending stress  in

each strut during the application of a uniaxial global stress  have been determined. Fig-

ures 2.17a and b demonstrate the histograms of maximum bending and normal stresses.

Bending stresses in the bcc-based structure with a small disorder factor have two peaks, as

illustrated in Fig. 2.17a. This can be explained by the fact that one group of struts is almost

perpendicular to the global stress, while the other struts are at an approximately 45  angle

to global stress direction (see Figs. 2.6g). In the case of the fcc-based structure with the

same disorder factor, the bending stress distribution has only one peak, since nearly all

struts  are  oriented  at  an angle of approximately 54  to each principal direction (see

Figs. 2.6h). The average bending stress is seen to decrease for an increasingly random

structure. At the same time, the normal stress distribution becomes wider (see Fig. 2.17b).

Normal stresses then play a more considerable role in the stiffness of the foam model.

Note that a global uniaxial tension results in compressive stresses in some struts, as can be

seen in the left-hand part of the Fig. 2.17b. Figure 2.17c shows the maximum shear stress,

, due to torsion of the struts, and it is seen that the stresses by torsion are negligible com-

pared to normal or bending stresses in Figs. 2.17a and b. This indicates that torsion is of

minor importance.

To understand the reasons for stiffness rising as disorder is increased, the distribution

of the most highly loaded struts has been examined by visualizing the stress distribution

over the geometry. It was found that in frameworks based on bcc and fcc nuclei distribu-

tions with small disorder, both the normal and the bending stresses are relatively uni-

formly distributed over the volume of the unit cell. Bending is the determining factor for

the stiffness of the unit cell. The ratio of the maximum bending stress to the maximum
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Fig. 2.17. Histogram of the (a) bending stresses, (b) normal stresses and (c) shear
stresses due to torsion in struts of the unit cell. The interval of the relative
bending stress is , of the relative normal stress is
and of the relative shear stress is .
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normal stress, , is around 6.5 for the bcc- and 5.7 for the fcc-based struc-

tures with 15% disorder factor. This ratio becomes 3.5 in the random model. This indi-

cates that normal stresses are becoming more dominant for the linear elastic properties of

the random model.

Figure 2.18a demonstrates the distribution of struts with normal stresses

for the random foam geometry. The global uniaxial stress  appears to be transmitted

from one cell face to the other by percolating chains of struts with high normal stresses.

This implies that the presence of such chains oriented in the direction of the maximum

global principal stress reinforces the foam. On the other hand, as a result of the global ten-

sile stress, in combination with random geometry, some struts are under compression, as

shown in Fig. 2.18b. The orientation of these struts is commonly in a plane about perpen-

dicular to the direction of the global maximum principal stress. Again, chains of struts

loaded in compression are observed. These chains percolate almost the whole unit cell.

The presence of compressed struts points to the possibility of local buckling of struts, but

this is not investigated further here.
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Fig. 2.18. (a) Distribution in the random unit cell of struts with a relatively high
normal tensile stress. (b) Distribution of struts under compression.
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Influence of the variable strut cross-section on the random model stiffness

One of the most important simplifications, admitted in the random model described

above, is the constant cross-section of struts throughout the model. The stochastic distri-

bution of the strut cross-section might have a substantial influence on the mechanical

properties of the open-cell foam model. To check this, the random model has been refined

through the introduction of the struts having a varying diameter. For this purpose, a real

open-cell foam has been analysed to establish the strut cross-section distribution. The

result of this analysis is shown in Fig. 2.19. The measured coefficient of variation (stand-

ard deviation divided by mean value) is 0.2. The same form of the strut cross-section dis-

tribution has been applied to the random open-cell foam model six times in such a way,

that the relative density  remained unchanged and equal to 0.025. The 95% confi-

dence interval of the relative Young’s modulus  was found to be

, which coincides with the result obtained from a geometrically identical

model with the constant strut cross-section, . Obviously, a

varying strut cross-section does not affect the open-cell foam stiffness. Therefore, a con-

stant cross-section area  is adopted for further modelling.
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Fig. 2.19. Histogram of the measured strut cross-sectional areas  in the open-cell
foam. The step width of the relative cross-sectional area is 0.12.
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The effect of the relative foam density on the mechanical properties

To investigate the dependence of mechanical properties on density, one unit cell with

random geometry has been analysed with density ratios  varied from 0.0167 to

0.0542 (this corresponds to the range of the low-density foam classification, given, for

example, by Cunningham and Hilyard (1994) as ). The numerical results are

displayed in Fig. 2.20. In other models, e.g., those of Warren and Kraynik and of Gibson

and Ashby, the linear elastic response of open-cell foams is described by a linear function

of the square relative density, as in Eq. (2.22) and Eq. (2.3).

The square dependence on the relative density points to bending as the dominant

deformation of the struts. When density is low, the FE results of the large random unit cell

model showed quite good agreement with the estimates of Warren and Kraynik (1994) and

Gibson and Ashby (1988). However, with increasing density, the elastic modulus of the

present model deviates from the linear function of the squared relative density, as can be

seen in Fig. 2.20. In the more general formula

, (2.27)
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the exponent  can range from  in case of bending behaviour only to  in case

of axial deformation only. The progressive deviation with increasing density of the FE re-

sults in Fig. 2.20 from the straight lines of Warren and Kraynik [Eq. (2.22)] and Gibson and

Ashby [Eq. (2.3)] where  indicates the progressive importance of axial deformations

in the foam. This can be understood from the fact that the bending moment of inertia in-

creases quadratically with respect to the strut area for increasing density. Thus, with in-

creasing density, the normal stiffness of the struts becomes weaker relative to the bending

stiffness, and therefore becomes more important in controlling the relative Young’s modu-

lus of the foam. For example, Hagiwara and Green (1987) studied open-cell alumina with

relative densities varying from 0.08 to 0.25 and fitted the experimental data with Eq. (2.27),

resulting in  and .

Figure 2.21 demonstrates the influence of the relative foam density on the bending

stress, normal stress and the shear stress due to torsion. It shows that the average maxi-

mum bending stress and the average shear stress due to torsion decrease much faster than

the average normal stress. Also this difference in dependency can be partially explained

by the fact that the moment of inertia increases faster with respect to the strut area during

density increase.

p p 2= p 1=

p 2=

p 1.93= C1 0.303=

ρf ρs⁄⎝ ⎠
⎛ ⎞ 2

0.00

0.25

0.50

0.75

1.00

0.0 1.0 2.0 3.0

σb σb,ρN
⁄

σn σn,ρN
⁄

τ τρN
⁄

and

Fig. 2.21. The absolute bending stress, normal stress and maximum shear stress due
to torsion, normalized at , where , as function of
the relative density. At  the average absolute bending stress
is , the average absolute normal stress is ,
and the average absolute maximum shear stress is .
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Numerical experiment

To verify the linear random model, Young’s moduli of various open-cell foam models

have been determined. The density of the foam is kg/m3 and of the solid mate-

rial kg/m3. The relative foam density is then .  Table 2.2

demonstrates the elastic moduli of the empirical (two first), regular (3 through 6), stochas-

tic (7 through 11) and random models.

It was discussed before and illustrated in Fig. 2.16 that the empirical model of Ashby

and Gibson which is implicitly based on a regular foam structure turns out to give a good

approximation of the relationship between  and  for an irregular foam. This

seems to validate this model. However, the model was fitted to real foams, that means to

irregular foams. In this way, the random model is found to be in a good agreement with the

data represented by the model of Gibson and Ashby, which should be considered as exper-

imental, because of the extensive fitting to real foams.

2.3.3  Nonlinear model

The low-density open-cell foam is constructed from a unit cell, assuming that each

unit cell boundary is a plane of reflective symmetry. Loading is applied through uniform

normal displacements in the three directions (see Fig. 2.5); the average corresponding

tractions on the cell faces define the macroscopic principal stresses , ,  acting on

the foam.

The unit cell containing a strut framework used to model the foam is generated on the

basis of the same Voronoi tessellation of space technique as used for the linear elastic

Table 2.2. Example of relative Young’s moduli of various open-cell foam models
at ,

Gibson–
Ashby cubic

model
Eq. (2.3)

Rusch
Eq. (2.4)

Tetrakaideca-
hedron
(square)
Eq. (2.9)

Tetrakaideca-
hedron

(triangular)
Eq. (2.11)

Tetrakaidecahed-
ron

(Plateau-Gibbs
border)

Eq. (2.12)

Rhombic dodeca-
hedron

Eq. (2.16)

0.535 4.17 2.76 0.44 0.61 3.59

Stochastic
model of
Lederman
Eq. (2.19)

Aggregate
model of

Cunningham
Eq. (2.20)

Warren–
Kraynik
(round)

Eq. (2.22)

Warren–
Kraynik

(triangular)
Eq. (2.23)

Warren–Kraynik
(Plateau-Gibbs

border)
Eq. (2.24)

Present random
model

13.3 3.86 0.487 0.588 0.818

ρf ρs⁄ 0.0231= Ef Es⁄ 3–×10

0.53 0.03±

ρf 28.1=

ρs 1215= ρf ρs⁄ 0.0231=

Ef Es⁄ ρf ρs⁄
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model in Section 2.3.2.

The FE analyses are performed using the standard program MARC. Geometrical non-

linearity occurs at large foam deformations. To obtain a good description of, for example,

the buckling of the struts, all struts are meshed in relation to their length. This allows to

achieve a rather uniform distribution of the element length throughout the unit cell. In this

way, shorter struts, which need quite high compressive load before they buckle, contain

less elements than the longer struts which will buckle first and, hence, are subdivided into

more beam elements. A view of a cubic unit cell in 3D with the finite elements distribution

is given in Fig. 2.22.

In addition to the foam geometry, the behaviour of the solid material in the struts is of

the great importance for the macroscopic behaviour of the foam. In the analyses, the solid

material can have various types of constitutive behaviour. Three types of idealized behav-

iour are used in the present analyses. Linear elastic (A) and two nonlinear elastic types of

behaviour (B, C) are displayed in Fig. 2.23. Material A from Fig. 2.23 is used in the geo-

metrically nonlinear analysis. In the nonlinear analysis, the behaviour of the solid material

of the struts is described either by the bilinear curve (material B) or the nonlinear constitu-

tive relations (material C). Both descriptions involve a limit stress , which is here

taken to have the value 0.28 . The material C is characterized by the uniaxial stress–

strain law

Fig. 2.22. Finite element mesh of a unit cell.

σys

Es
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(2.28)

with . These two strut material behaviours are idealized representations of a real

rubber-like strut material of open-cell foams. Additionally, the material behaviour is as-

sumed to be the same in tension and compression.

During large deformations, especially in compression, contact between struts may

arise. This contact problem has not been incorporated in the numerical analysis and, there-

fore, the densification region of the foam observed during compression cannot be investi-

gated.

Sensitivity to unit cell size

First, a number of unit cell analyses are performed in order to determine the minimum

size of the unit cell that supplies an accurate solution. The unit cells are created by the

Voronoi tessellation technique for randomly distributed nuclei sets. The dimensions of the

unit cell for the detailed analyses are chosen on the basis of preliminary computations of

unit cells with various sizes. The number of foam cells per unit cell is controlled by the

size parameter  (  is a minimum distance between nuclei in a unit cell), which is

here chosen to be 2, 4 or 6. To demonstrate the reproducibility of the random model, the

Voronoi tessellation is applied for at least five different random nuclei distributions per

 and the corresponding unit cells are generated for each size parameter. The corre-

sponding unit cells contain on the average 63, 383 and 616 struts for =2, 4 and 6,
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Fig. 2.23. Three different solid material behaviours of the struts: A –linear elastic;
B –bilinear; C –nonlinear.
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respectively. The solid material is assumed to behave linear elastically (material A) for the

moment, and the relative foam density  is taken equal to 0.025. This corresponds to

the range of low-density foams. To achieve a good convergence during buckling of the

struts, a minimum number of 4 and a maximum number of 8 elements per strut are chosen.

Uniaxial tensile or compressive loading is applied in an incremental manner through dis-

placement control.

Figures 2.24a–c show stress–strain curves under tension or compression of unit cells

with the size parameters  being 2, 4, or 6. The smallest unit cell with nearly 10

nucleation centres ( ) shows a rather wide variation in the predicted stress–

strain curves (see Fig. 2.24a). This scatter can be explained by the small sizes of the unit

cell. Some unit cells exhibit stiff behaviour due to the influence of the rearranged bounda-

ries which may reinforce the model. An increase of the unit cell size to  with

nearly 50 nucleation points per unit cell leads to a considerable reduction of the scatter and

a clear plateau in the stress–strain compression diagram. A further increase of the parame-

ter  to 6 (128 cells) shows a raise of the computation times with a factor 10 in com-

parison with the unit cell with , while the results for tension and compression

ρf ρs⁄

Fig. 2.24. Stress–strain diagrams and mean value (thick line) with 95% confidence
interval for tension and compression for different random realizations
per size parameter. (a) ; (b) ; (c) .Luc d⁄ 2= Luc d⁄ 4= Luc d⁄ 6=
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remain almost the same (compare Figs. 2.24b and c). Obviously, the unit cell should be

sufficiently large compared to . Based on the shown results, the unit cell with

 can be recommended to be used in the random foam modelling as the smallest

unit cell that combines small scatter with low computing times.

Geometrically nonlinear model

Tension

The above study on the effect of the unit cell size presents a reference for the foam

response based on linear elastic strut material. In the FE analysis, the tensile stress–strain

response of the foam is determined for the linear elastic strut material (line A in Fig. 2.23).

Three random models with  equal to 2, 4 and 6 having behaviour closest to the

averaged behaviour from Fig. 2.24 are chosen as representative models.

Additionally, two regular foam models, fcc- and bcc-based, with the same relative

foam density are analyzed. As shown in Fig. 2.25a, both regular structures (bcc and fcc)

show an initial stiffness that is lower than the stiffness of the random structures. Moreover,

the stiffness of the fcc-based microstructure at large strains is much larger then the bcc-

based. This can also be seen in Fig. 2.25b where the tangent modulus  of the foam is

plotted as a function of the logarithmic strain of foam,  (  is a dis-

placement of one of the unit cell boundaries). For both regular microstructures, three dis-

tinct deformation regions can be seen in Fig. 2.25b. In the first region, the stiffness

changes hardly and bending of struts is mainly responsible for the deformation. This is the

d
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so-called ‘strut bending region’. Subsequently, the axial deformation of struts start to play

an increasing role in the global deformation of the foam. The increasing stiffness can be

explained by the gradual re-orientation of struts towards the direction of the global stress

. This stage corresponds to the second, transitional region with a highly variable tangent

modulus due to the mixture of bending and axial deformation in the struts. At a strain of

 for the bcc-based model and  for the fcc-based structure, the third region

starts. In this region, the foams deformation is almost completely determined by axial

deformation of the struts that are aligned with the macroscopic stress.

Comparing with the regular models, the first deformation region is not present for all

the random unit cells. This indicates that even in the initial deformation of the random

model, axial deformation influences the overall foam behaviour. The large initial stiffness

of the random model is explained by percolation of oriented chains of struts loaded mainly

in tension. This effect has been discussed in Section 2.3.2. These percolations are absent

in regular structures. However, due to the strain-induced strut re-orientation, the same

effect occurs in regular models at large deformations. The bcc-based structure shows this

effect earlier than the fcc-based model. Regular foams exhibit the alignment of many

struts at the same time, thus explaining the reversed trend at large deformations. Regular

foams are stiffer than random foams at large strains because of simultaneous strut align-

ment. Further considerations of the large strain stiffness will be presented in a forthcoming

section.

To investigate the influence of the initial relative foam density  on the mechani-

cal properties of the random model, the random unit cell with  is loaded uniax-

ially in tension. The various relative foam densities are taken to be 0.0125, 0.0250, 0.0375

and 0.0500, and obtained by changing the diameter  of the struts. Figure 2.26a shows the

stress–strain response for the various densities. In Fig. 2.26b, the tangent moduli

are displayed as function of the foam strain. Again, the second and the third regions can be

distinguished clearly. A first conclusion from this figure is that the stress–strain curves

become linear at a certain strain. Moreover, this strain becomes larger with increasing den-

sity. This is due to the fact that with increasing strut diameter, the bending stiffness of

struts increases as  while its axial stiffness increases as .

The results for  of the random model in the small deformation region (to be

precise, at ) from Fig. 2.26b are given as a function of  in Fig. 2.27a.

The results of the cubic model of Gibson and Ashby [see Eq. (2.7)] for the initial strain are

plotted also, as well as  of the random model in the undeformed state ( ),

which are taken from Section 2.3.2. If bending is the main deformation mechanism, the

FE results would be on the Gibson–Ashby model line. Indeed, at 0% strain, the FE analy-
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ses show that bending is the main deformation mechanism. However, at higher densities,

axial deformation becomes more important. At a relatively small strain of 5%, the impor-

tance of the axial deformation in struts in the random model has increased substantially in

comparison with that at . Due to the rapidly increasing importance of the axial

deformation, the cubic model of Gibson and Ashby loses accuracy with increasing strain.

At large strains of the foam ( ), the random model exhibits an asymptotic stiff-

ness due to the alignment of several strut chains in the direction of maximum principal

stress. The values of  for the random unit cell and for the fcc-based regular model

at large strains are plotted against the initial relative foam density  in Fig. 2.27b.

The random model is less stiff in this region than the fcc-based unit cell and both models

do not reach the stiffness given by the cubic model of Gibson and Ashby by Eq. (2.7). If

deformation is purely by uniaxial tension of the struts,  should be linear with

. Any deviation is due to bending. The lower lines indicate that bending is still of

importance or that not all struts deform axially. In the fcc-based microstructure, severe

bending of the struts takes place at the ends of the struts, close to the vertices. Finally, the

relative tangent modulus of a foam model under a large tensile strain is linear with respect

to . It is clear from Fig. 2.27b that neither the fcc-based nor the random model

reaches such a high modulus; therefore,  in Eq. (2.7).
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Compression

Similarly, the fcc-based model and the random unit cell built up of linear elastic struts

are loaded in compression. The initial density of the foam is again . The

two foam models predict a very different behaviour, as can be seen in Fig. 2.28. The ran-

dom model is initially much stiffer than the regular one and exhibits a “maximum”, which
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Fig. 2.27. Tangent modulus of the fcc-based and random models with linear elastic
material (a) at small strain and (b) at large strain as a function of the
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is termed the elastic collapse stress . Figure 2.29a depicts the random unit cell in the

post-collapse regime when a considerable number of struts is buckled. In contrast, the

local buckling of struts does not occur in the fcc-based model what is also seen in Fig.

2.29b, showing bending of the struts only. This explains the absence of a collapse stress.

To determine the coefficients  and  appearing in Eq. (2.8), numerical experiments

with unit cells of various relative densities are performed here. The coefficient  appears

to depend on the ratio between the two deformation mechanisms in the struts, namely

axial deformation ( ) and bending ( ). In a foam under global compressive

stress, the buckling of struts is responsible for the maximum stress. For this reason,  is

expected to be close to but lower than 2. Figure 2.30 shows how the elastic collapse stress

of the foam model under compression depends on the relative foam density. Based on

these FE results, the coefficient  in Eq. (2.8) is found to be equal to 0.057 if .

Similar experimental results have been obtained by Gibson and Ashby (1988) in Eq. (2.8).

The minor discrepancy with the numerical results can be explained from the fact that the

material in the struts of the random model behave linear elastically. The model of Gibson

and Ashby is implicitly linear elastic and nonlinear behaviour of solid has been obscured.

Real material behaviour in the random model would cause a lower elastic collapse stress

of the model in Fig. 2.30. If the strut diameter increases with the relative foam density, it

becomes more likely that the material in struts will behave in a nonlinear elastic fashion

during buckling (it corresponds to the region of the solid material behaviour when

 in Fig. 2.23). In the region of relatively high foam densities, for example, the

numerical simulation point in Fig. 2.30 with , the relative error

becomes too high and the nonlinear behaviour of the solid material in the struts may not be

neglected anymore.

Σel

C3 p

1

(a) (b)

Fig. 2.29. (a) The random and (b) the fcc-based foam models at a compressive
strain of  (see Fig. 2.28).εf 0.25–=

p

p 1= p 2=
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C3 p 2=
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Nonlinear elastic material in struts

In order to study foams with nonlinear strut material (lines B and C in Fig. 2.23),

three-dimensional finite strain beam analyses should be possible with such constitutive

behaviour. Unfortunately, most FE codes do not have this capability. To make numerical

analysis with nonlinear material behaviour possible, the cross-section of the strut with

radius  is discretized in radial and tangential directions, as described in the Appendix.

Application of the nonlinear constitutive behaviour to the solid material in the standard FE

program used caused a number of numerical problems, especially when strut buckling

would occur. Therefore, to investigate the influence of the constitutive behaviour of the

solid material in the struts, only tensile deformation of the representative random foam

model with  has been analyzed.

The results of the simulations for the bilinear elastic material (curve B in Fig. 2.23)

and nonlinear function (curve C in Fig. 2.23) are displayed in Fig. 2.31. Both these curves

will ultimately approach the same maximum value of the stress. The effect of nonlinear

solid behaviour is reflected in the foam properties in a similar way as may be expected.

Contrarily to the linear elastic solid behaviour (curve A), where the foam stiffness

increases monotonically with strain (Fig. 2.25), the presence of a limit stress  in the

solid response induces a maximum of the stiffness after some strain level. The global ten-

sile stress asymptotically approaches some maximum value

.

9

6

3

0

Σel

Es
-------

15

12

0 1 2 3

Gibson–Ashby cubic model
FEM data

Fig. 2.30. Elastic collapse stress as a function of the relative foam density.
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Fig. 2.31. Stress–strain diagram of the random model with various constitutive
behaviours.
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Fig. 2.32. Stress–strain diagrams for the nonlinear analysis.
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The stress–strain curves for several densities of the random model with nonlinear strut

material behaviour (curve C in Fig. 2.23) are shown in Fig. 2.32. Not unexpectedly, the

one with the higher density has also the highest ultimate strength. Moreover, there is a

linear correspondence between relative foam density  and maximum global tensile

stress.

Effective unit cell cross-section

Nonlinear elasticity of foam

It was shown in the previous section that alignment of struts with the tensile direction

occurs with increasing strain. Figure 2.33 actually demonstrates this in terms of the

deformed strut network. It suggests that the percentage of struts, aligned in the direction of

the maximum principal stress due to the large strain, determines the final tensile stiffness.

These struts deform at large strains primarily by axial stretching.

ρf ρs⁄

19

21

22

26

22

number of
struts N

Fig. 2.33. Random model under a tensile strain of , including the number
of struts at various cross-sections of the model. The small squares are the
nodal points in the FE mesh.
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First, the difference in stiffness of the two regular foam models—the rhombic dodeca-

hedron (fcc) and the tetrakaidecahedron (bcc)—at large tensile strains will be explained.

The first shows a much higher stiffness at large strains than the bcc-based microstructure.

Then, an arbitrary cross-section through the unit cell is made, normal to the global maxi-

mum principal stress direction. For this cross-section, the area of the solid phase in the

unit cell cross-section is the total projected area of the  struts which pass through this

unit cell cross-section and which are oriented at angles  to the global stress direc-

tion. This area of the cross-section is termed the effective cross-sectional area .

In the undeformed rhombic dodecahedra unit cell, all struts are oriented under the same

angle to the global direction, which is . As far as the regular structure deforms

uniformly, the fcc-based strut structure at large strains has a constant effective unit cell

cross-section with area

. (2.29)

Alternatively, the undeformed tetrakaidecahedron contains two groups of struts oriented

under  and , correspondingly (see Fig. 2.6g), so that the bcc-based unit cell includes

two groups of cross-sections of the unit cell. The smallest of them is expected to determine

the large deformation of foam in tension, caused by the axial deformation of the struts com-

pletely oriented in the direction of the global stress . This means, that the regular tetra-

kaidecahedron model in tension is less stiff under the large global strains than the regular

rhombic dodecahedron. The corresponding tail ends of the curves in Fig. 2.25b for the bcc-

and fcc-based models support this argument.

From the above discussion it is clear that a foam model with a constant effective unit

cell cross-section will be the stiffest under large strains. As opposed to a regular model,

the random model never possesses a constant  along the unit cell length. It is strongly

dependent on the position of the cross-section in the unit cell. It means that in any iso-

tropic open-cell foam model, the stiffness at large strains will not exceed that of the fcc-

based regular model. The effect will be more pronounced for small unit cells. An example

in Fig. 2.33 demonstrates various number of struts in various unit cell cross-sections taken

perpendicular to the global tensile stress direction. In this case, the model stiffness is

determined by the cross-section with the lowest effective area, i.e., with the minimum

number of struts in the cross-section. This is why the random model is less stiff in the

large strain region than the fcc-based regular model.

The stiffness of a random model at large strains will always be lower than of the regu-

lar fcc-based model, because the random model will always contain struts that are oriented

N
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in the direction perpendicular to the principal stress. These struts do not contribute to the

effective cross-section and decrease the stiffness at large strains. For the ideal elastic

model with all struts completely oriented in the principal stress under the large tensile

strain, one would find

. (2.30)

This is similar to Eq. (2.7) with  for a foam having a uniform cell-size distri-

bution and no struts perpendicular to the principal stress direction. A great variation in the

cell diameter can lead to a decrease of the minimum effective cross-sectional area

and therefore, to smaller values of the coefficient . The influence of the relative foam

density on the tangent modulus at large strains of the fcc-based and random unit cells is

shown in Fig. 2.27b. Struts of the fcc-based structure are connected with each other in ver-

tices as shown in Fig. 2.29b and even under large tensile strains they are bent and are not

completely rotated towards the global stress direction. This leads to a lower tangent mod-

ulus of the fcc-based structure in comparison with the ideal Gibson–Ashby model with the

coefficient  shown as the solid line in Fig. 2.27b. The dashed lines in Fig. 2.27b

characterize an imperfection of the model in comparison with the ideal model. In other

words, the coefficient  in Eq. (2.7) can be estimated through the ratio of the minimum

effective unit cell cross-section to that of the ideal model,

, or . (2.31)

Yielding collapse of foam

For bilinear or nonlinear elastic solid material in the struts, the insight that the struts

align during deformation can be exploited to estimate the global yield stress (see Fig.

2.27). If the yield stress of the solid  is reached in all struts of the certain unit cell

cross-section, the macroscopic yield stress of the foam unit cell, , follows directly from

equilibrium

, or , (2.32)

where  is the number of struts in the unit cell cross-section. It means that global yield of

foam in tension occurs in the unit cell cross-section with the minimum effective area, i.e.,

in the cross-section with . Eq. (2.32) can then be rewritten as
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. (2.33)

The normalized yield collapse stress  for the unit cell with  is shown in

Fig. 2.31 and equals nearly 0.008. Determined by Eq. (2.33), the foam global yield stress

 in Fig. 2.31 is an asymptote for the bilinear and nonlinear elastic behaviour, according

to the curves B and C in Fig. 2.23 respectively.

A random unit cell with a wide variation of  may have poor mechanical properties

at large strains, when it has a wide cell-size distribution. This effect has been observed by

Gent and Thomas (1959), who characterized the non-uniformity of foam by the ratio of

the largest observed cell diameter to the average diameter, . Samples with the

highest  ratio exhibited the lowest tensile strength and strain at failure. This

effect can be explained by a local drop of the minimum effective cross-sectional area .

For foams with identical unit cell geometries but with different relative densities

, only the strut cross-sectional area  changes. Since  is a linear function of the

relative foam density, the dependence of the yield collapse stress in foam caused by strut

yielding and the foam density  is given as

. (2.34)

It must be noted that these considerations apply only to an isotropic foam model. In the case

of an anisotropic foam, the effective foam cross-section  is dependent on the direction.

2.3.4  Anisotropic regular model

Natural origins of the geometrical anisotropy

Polymers are foamed by nucleation of gas bubbles in a liquid hot polymer with subse-

quent growth of the bubbles and stabilizing of the foam. In most cases the growth of foam

occurs in one direction, that is called rise direction, . When the liquid substance satu-

rated with the blowing agent is extruded, the resulting foam is also extended in the direc-

tion of extrusion, . This leads to differences in the mechanical properties of the

macrostructure in different directions, so-called mechanical anisotropy. A capability of

foam to exhibit anisotropic properties is important for various applications, for instance, in

vacuum panels filled with open-cell foams described, for example, by Vos et al. (1994). In

these constructions, the foam is desired to have high mechanical properties in the load
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direction, while other directions are of less importance.

Processes of nucleation, bubble growth and extrusion take place simultaneously and

have an essential influence on the microstructure of the foam. Assumptions that were

made for the Voronoi tessellation about the growth of foam do not take all these phenom-

ena into account. To incorporate the effects of non-simultaneous nucleation and bubble

growth and displacement of nuclei in the process of growing, two kinds of geometrical

anisotropy will be considered. The first is associated with the primary anisotropy of the

nuclei before their growth. For the 3D Voronoi tessellation it means that the nuclei are dis-

tributed in an anisotropic way. The other one is related to the extension of the foaming

structure due to the effects of extrusion and growth in rise direction. In the case of the 3D

Voronoi tessellation it implies the extension of the isotropic structure in the directions of

anisotropy.

Model

Seven sorts of open-cell PUR foam (one of them, S08, is shown in Fig. 2.34a) of Rec-

ticel N. V. (Belgium) with various cell sizes are studied. If the largest principal dimension

of a cell, also called the rise direction, is , the second largest dimension (the extrusion

direction) is , and the smallest dimension (the transverse direction) is , then geomet-

rical anisotropy factors are

 and . (2.35)

Fig. 2.34. (a) PUR S08 foam and (b) the same foam embedded in a polyester resin
with low profile additives.
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Figures 2.3b-c illustrate the geometrical anisotropy factors. The dimensions of cells

for each foam type have been measured. For this purpose, foam was embedded in a poly-

ester resin with low profile additives (low profile additives reduce resin curing shrinkage),

as it is shown in Fig. 2.34b, and cut in planes normal to three foam main directions. Exam-

ples of the resulting 2D views are shown in Fig. 2.35. They are studied with an image

processing technique, as described by Waterman and Phillips (1974). Their average values

varied between  mm3 for S08 foam and  mm3 for S90

foam ( , and  correspondingly).

To define the influence of the anisotropic effects, both the primary anisotropy of the

nuclei before their growth and the extension of the foaming structure due to effects of

extrusion and growth, onto the geometry of the final structure (cells), two anisotropy fac-

tors,  and , are introduced. Here i and j correspond to the principal directions of

foam. The first (primary) anisotropy factor  refers to an anisotropic nuclei distribution.

The second anisotropy factor  refers to the anisotropy of cells due to the stretching of

already existing cells in the rise and extrusion directions.

The total anisotropy factor Aij can be expressed in terms of the primary  and the

secondary  anisotropy factors by

. (2.36)

Figure 2.36 explains the influence of primary and secondary anisotropy on cell geom-

etry.

To characterise the proportion between primary and secondary anisotropy factors, the

degree of the initial anisotropy, n, has been adopted. It is assumed that  is the same for all

principal directions. The anisotropy factors consequently are:

Fig. 2.35. Cross-sections of S08 foam embedded in a resin (dark areas are struts and
light areas is resin).

x3

x2

x1

x3

x1

x2

normal to rise direction normal to extrusion direction normal to transverse direction

5 mm

6.57 4.21 3.7×× 0.57 0.44 0.4××
A1 A2 A3

A'ij A''ij
A'ij

A''ij

A'ij
A''ij

Aij A'ijA''ij=

n



Chapter 2. Open-cell foams  64

(2.37)

and

. (2.38)

The degree of initial anisotropy, , varies from 0 to 1.

The shape of a cell changed in accordance with , from an elongated tetrakaidecahe-

dron ( =0 according to the model of Dementjev and Tarakanov) to an elongated rhombic

dodecahedron ( =1) (see cells 1 and 5 in Fig. 2.36 respectively).

It is evident from Fig. 2.36 that by decreasing factor , while keeping the total anisot-

ropy Aij the same, struts can be oriented in the rise direction of the foam. This may

strongly increase the foam stiffness in this direction, because bending of struts being the

determining factor in the elastic properties of foam is reduced.

Because foam density is a function of foam geometry and of the density of solid plas-

tic, , it can be calculated by Eq. (2.26). The densities of seven sorts of open-cell foams

S08...S90 (PUR of Recticel N.V.) with various cell sizes and shapes have been measured

and compared to those, calculated with Eq. (2.26) as shown in Table 2.3. The cross-sec-

tional area of struts, , has been measured using an image processing technique and

assumed to be the same per foam type for all struts. To complete the measurements, a strut

cross-section was rotated to get cross-section normal to the strut axis. The same technique

was used to measure the strut length l.

Calculated with Eq. (2.26), the density of foam S08 varied from 29.9 kg/m3 for the

elongated tetrakaidecahedron (cell 1 in Fig. 2.36) to 28.1 kg/m3 for the elongated rhombic

1 2 3 4 5

n = 0 n = 0.25 n = 0.5 n = 0.75 n = 1

Fig. 2.36. Influence of the correlation between primary and secondary anisotropy
on the final cell geometry when Aij=const.
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dodecahedron (cell 5 in Fig. 2.36). This difference in densities can be neglected and the

calculated values in Table 2.3 are averaged over 5 models (Fig. 2.36).

Correlation between geometrical and mechanical anisotropy factors

To determine the extent to which the mechanical properties of foam are affected by

the kind of microstructural anisotropy, the FEM has been used. Seven sorts of open-cell

PUR foam have been modelled in the standard MARC FEM program. Edges were repre-

sented as elastic beam elements, that had constant and same round cross-section  (Fig.

2.37a). For every kind of foam, 5 cells shown in Fig. 2.36 with different degrees of initial

geometrical anisotropy  were loaded with a compression force in three main directions

and linear elastic analysis was performed. An example of undeformed and deformed struc-

tures is shown in Fig. 2.37. For each case, the elastic moduli of the foam model in three

Table 2.3. Measured and calculated densities of foams

Foam type S08 S20 S30 S45 S60 S75 S90

Measured density
ρf [kg/m3] 28.1 29.4 28.6 31.5 28.9 29.3 32.7

Calculated density

 [kg/m3] 29.0 36.6 36.0 28.3 17.2 20.1 24.9

Errors [%] +3 +24.5 +25.9 -10.2 -40.5 -31.4 -23.9

ρf

X

Y

Z

1

X

Y

Z

1

δy

(a) (b)

Fig. 2.37.  (a) Undeformed and (b) deformed open-cell foam model.
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main directions Ei (i=1...3) and the mechanical anisotropy factors

 and (2.39)

were determined. The correlation between the kind of geometrical (through factor ) and

mechanical anisotropy factors of foam E13 and E23 is presented in Fig. 2.38.

For all foam types (S08...S90) the mechanical anisotropy has been measured by per-

forming the compression test in three directions with the cubic foam samples of a side

length 40 mm. The deformation rate was kept low (0.25 min-1). The corresponding factors

 per foam type and direction has been found (solid straight lines in Fig. 2.38). The aver-

aging of  over all tested foam types in each direction gave a mean value of .

Assuming the value of =0.15 to be applicable for the cell shapes of all seven foams,

the corresponding value of mechanical anisotropy was found (broken lines in Fig. 2.38).

Table 2.4 demonstrates the values of the geometrical and mechanical anisotropy factors.

The relative error of mechanical anisotropy suggested by this model is at most 23% and

9% on the average, while that calculated with the model of Dementjev and Tarakanov

(1970) comprised 79% and 33.6% correspondingly.

This obvious advantage of the described regular anisotropic model as compared to the

elongated tetrakaidecahedron of Dementjev and Tarakanov is related to the more realistic

Table 2.4. Geometrical and mechanical anisotropy factors of open-cell foams

Foam
type

Geometrical
anisotropy

factors

Mechanical anisotropy
factors

Mechanical
anisotropy factors Errors

[%]

measured
calculated

with
=0.15

measured
calculated

with
=0.15

∆E13 ∆E23

S08 1.78 1.14 3.80 4.19 1.31 1.18 10.2 9.9

S20 1.54 1.01 2.70 2.77 1.07 1.01 2.6 5.6

S30 1.44 1.15 2.11 2.17 1.19 1.26 2.8 5.9

S45 1.39 1.24 2.20 1.98 1.33 1.45 9.8 9.1

S60 1.21 1.13 1.80 1.50 1.14 1.24 16.4 8.4

S75 1.31 1.14 2.17 1.77 1.25 1.27 18.6 1.4

S90 1.43 1.10 1.82 2.24 1.21 1.18 22.9 2.7

E13

E1

E3
------= E23

E2

E3
------=

n

n

n n 0.15=

n
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Fig. 2.38. Correlation between geometrical and mechanical anisotropy factors.
Solid straight line corresponds to the measured  and broken line is
associated with the accepted .
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Fig. 2.38. (continuation) Correlation between geometrical and mechanical
anisotropy factors. Solid straight line corresponds to the measured  and
broken line is associated with the accepted .
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(but still regular) foam geometrical features, namely, struts orientations. Nevertheless, the

regular nature of this modelling makes it impossible to approach a real foam geometry

closely. This causes the necessity to incorporate anisotropy in the random model.

2.3.5  Anisotropic random model

An idea to apply the previously described method of the anisotropic arrangement in a

regular foam model to the random model from Section 2.3.1 is evident.

First, the randomly distributed nuclei are generated in a box, as shown in a 2D ana-

logue in Fig. 2.39a (a presentation of the actual 3D structure would be hardly interpretable

from a figure). Then, the nuclei set is extended in the rise and extrusion directions with the

primary anisotropy ratios  and . The resulting set of random anisotropic nuclei is

displayed in Fig. 2.39b as dots. Subsequently, Voronoi tessellation is applied to this

(“stretched”) nuclei set. The resulting Voronoi structure is shown in Fig. 2.39b as lines.

The final structure is obtained by the extension of this structure in the rise and extrusion

directions by secondary anisotropy ratios  and  and is demonstrated in Fig.

2.39c. Finally, a random unit cell is created, as described in Section 2.3.1. The main prob-

lem in this modelling is to determine the degree of the initial anisotropy  of the real foam

to be modelled.

It must be noted that the anisotropic foam structure resulting from this modelling does

Fig. 2.39.  Creation of an anisotropic unit cell (2D analogue). (a) Random nuclei set.
(b) Extended random nuclei set with anisotropy factor  and Voronoi
tessellation based on it. (c) Extended Voronoi structure with anisotropy
factor .
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not possess a typical property common to the isotropic model, namely, lines connecting

neighbouring nuclei are not perpendicular to the cell walls (see Fig. 2.39c). This results

from the sequential application of the primary and secondary anisotropy, while in practice,

nucleation and growth take place simultaneously.

Determination of the initial anisotropy degree

As it has been shown above, it is possible to create cells with the same geometrical

anisotropy , but with various shapes. The struts orientation related to the main direc-

tions is of great importance. It is the dominant parameter that changes in the modelled

cells in Fig. 2.36. This causes the necessity to study the real foam microstructure in detail.

The orientation of struts in the S08 foam has been studied. No operational experimental

method was found so far to determine the 3D distribution of strut angles of real foams suf-

ficiently accurate. Therefore, another method is used. Namely, the 2D projections of the

real foam, as shown in Fig. 2.34a, are analysed by the image processing technique. The

orientation angles of more than 2000 struts per plane are measured in the planes ,

 and . The corresponding histograms are shown in Fig. 2.40. Since the differ-

ence between the geometry in the transverse and extrusion direction is not pronounced, as

can be seen from the first view in Fig. 2.35, the corresponding histogram for the strut

angles distribution in the plane  in Fig. 2.40 has fluctuations that are caused by too

large scatter and, therefore, this plane is neglected and two other planes,  and ,

are considered. The histograms in these two directions are fitted by straight lines. This lin-

Aij

x1x2

x2x3 x1x3

Fig. 2.40. Histograms of measured angles between strut projections and the three
directions, in degrees. Step width of the strut angles orientation is 10o.
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earization leads to 2 slopes of  and  correspondingly. These slopes of the

fitting lines characterize the strut angles distributions in the real foam.

Further, a series of models with various initial anisotropy degrees is created.  varies

from 0 to 1, with the step of 0.1. In this way, eleven models of the S08 foam are simulated,

all with the same total geometric anisotropy ratio obtained from real foam measurements,

but with different strut angles distributions due to the variable . The number of struts

varies between 6500 and 3700 per model. The aim of the analysis is the determination of a

model with strut angles distributions, similar to the real foam. For this purpose, histo-

grams of strut angles distributions in planes  and  of all models are generated in

a way similar to the real foam. The fitting of the corresponding histograms by straight

lines allows the determination of the slopes of strut angles distributions per model. A plot

of these slopes against the initial anisotropy degree  is given in Fig. 2.41. By applying

the measured strut angles distributions in two planes of the real S08 foam to this plot, i.e.,

by adopting the empirical slopes of the real foam as values on the vertical axis, the corre-

sponding degrees of initial anisotropy are found. The values of  are characteristic for the

specific structure and may be applied in the modelling. Two different values of  are

obtained, namely, 0.35 and 0.41. The average  equal to 0.38 can be applied in the present

random anisotropic foam model.
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Fig. 2.41. Determination of the initial anisotropy degree . Slopes here correspond
to the linear fitting of angles distributions as shown in Fig. 2.40.
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Determination of the degree of initial anisotropy from the measured distribution of
strut angles

The method used above is based on the comparison of strut angles distributions of the

real foam and of models to choose the correct model. In this analysis, histograms of the

strut angles projections on planes are fitted by straight lines to determine the slope of these

lines, which is used as a decisive factor in the choice of a model. But the correctness of

such a fitting may be subjected to question because struts distributed in an anisotropic way

may have a non-linear probability density function. To find this function, which is also a

fit-function, first, a uniform isotropic distribution of struts in 3D is assumed. The projec-

tion of the arbitrary strut  on the plane  has an angle  with the -axis, as shown

in Fig. 2.42 by thick lines. The probability of angle  lying between angles  and  is

equal to the ratio of the length of the arc  to the length of the half-circle with the radius

. It turns out that the density of probability distribution is uniform and equal to

. (2.40)

After the expansion of the structure in the  direction with the geometrical expansion ratio

, what corresponds to the secondary geometrical anisotropy factor  by

ri x1x3 αi x1
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Fig. 2.42. Projection of a strut before ( ) and after ( ) the anisotropic extension
.
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, (2.41)

the projection of the arbitrary strut  gets a new position  with a new orientation angle

 to the -axis. The correlation between the original orientation  and the new orien-

tation  is

 or . (2.42)

The probability distribution function is then:

 and . (2.43)

From Eq. (2.42) it follows that

. (2.44)

Substituting the solution of Eq. (2.44) in Eq. (2.43) leads to the following probability dis-

tribution function for the case of the anisotropic structure

. (2.45)

At small , the probability distribution  as a function of  may be approximated by a

straight line. In general, this function is not a linear one and should be used to fit measured

strut angles distributions from Fig. 2.40. The fitting with the smallest squares method

shown in Fig. 2.43 yields the values of the expansion ratio  from Eq. (2.45). This expan-

sion ratio is determined per projection plane and is given in Table 2.5. The corresponding

values of the initial anisotropy degree  can be derived from Eq. (2.38) and Eq. (2.41),

Table 2.5. Values of the expansion ratio  with standard deviation and
corresponding initial anisotropy degree
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leading to:

. (2.46)

The initial anisotropy degree  is also given in Table 2.5. The obtained results demonstrate

that the measurements of the strut orientations in 2D are quite accurate for planes  and

 (see the values of  for these two planes in Table 2.5), but exhibit considerable devi-

ation in case of the plane . The latter results are, therefore, inaccurate and are not used

in this analysis.

From the two values of  for the planes  and  the averaged  would be

nearly equal to 0.36. This result is not far from that obtained earlier by another method,

when the measured strut angles distributions were compared to those of the models (see

Fig. 2.41). The initial anisotropy degree accepted then was equal to 0.38.

The primary geometrical anisotropy  has almost no influence onto the changes of

the strut orientation distributions. It is clearly seen from Fig. 2.41, where random models
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Fig. 2.43. Histograms of the measured strut angles distributions from Fig. 2.40 and
their fitting by Eq. (2.45).
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with the initial anisotropy degree , i.e., , have practically uniform strut

angles distributions. The primary anisotropy affects lengths of struts making struts ori-

ented in the rise and extrusion directions more elongated.

Young’s moduli of the anisotropic model

To study mechanical properties of the anisotropic foam S08, a set of five random ani-

sotropic unit cells with approximately 250 foam cells per unit cell has been created. This

procedure follows that described in Section 2.3.1, but with several exceptions. Firstly, the

3D Voronoi tessellation is based on the anisotropic nuclei set which is obtained from the

isotropic one by the extension of the nuclei in the rise and extrusion directions with the

primary anisotropy ratios . Secondly, the unit cell created in this way is sub-

jected to geometrical extension in the same directions with the secondary anisotropy ratios

.

The resulting unit cell is assumed to have the same strut angles distribution as a real

foam. The macroscopic foam properties are subsequently analysed by application of the

standard MARC FE program to the generated unit cells. Struts are represented as elastic

beam elements that have a constant and same circular cross-section. All 5 unit cells are

loaded uniaxially in three main directions and an elastic analysis is performed.

For each case, elastic moduli of the foam model in three main directions are deter-

mined with Eq. (2.39). The computational results are summarized in Table 2.6 which also

reveals the experimental results.

The other two anisotropic models (cubic and tetrakaidecahedron illustrated in Figs.

2.3b and c respectively) are also used to predict the mechanical anisotropy factors  and

. The results of the cubic model obtained from Eq. (2.6) are given in Table 2.6. The

mechanical anisotropy factors of the tetrakaidecahedron are computed using a unit cell

based on the bcc-distributed nuclei set.

It is clear from the comparison of these three models that the random model gives

results which are in a good agreement with the measured values. The cubic model and the

tetrakaidecahedron lead to models that are far too stiff and, therefore, are obviously not

suitable.

The present analysis, based on the application of two types of anisotropy described by

 obtained from the real foam measurements, leads to a correct model. For the S08, the

initial anisotropy degree  is nearly equal to 0.38. It is assumed that this degree of initial

anisotropy as related to for the physical processes during foam production and will be

n 1= A''ij 0=

A'ij Aij
0.38

=

A''ij Aij
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=

E13
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n

n



Chapter 2. Open-cell foams  76

approximately the same for the other 6 available foam kinds S20...S90, also present in

Table 2.6. To check this assumption, these foams have also been modelled by an aniso-

tropic random model with . Each foam kind is modelled five-fold and mechani-

cal anisotropy factors  and  are determined and shown in Table 2.6. These values

are presented with italic characters, because they are all based on  as obtained

from the S08 foam.

Modelling of aluminium foam

To evaluate the model, open-cell aluminium foam is studied. This foam has been cho-

sen because of the known mechanical properties of the solid aluminium inside the foam.

First, the density of the foam  was measured (see Table 2.7). Then, the microstructure of

the foam has been studied with a SEM. Figure 2.44 demonstrates a view of the foam,

which clearly shows that the structure is geometrically anisotropic. The geometrical ani-

sotropy ratios  have been determined through the measurements of the cell dimensions

in three orthogonal directions. Further, it should be noted that the vertices contain a con-

siderable part of the solid material. This detail is important for the modelling, because the

solid concentrations in vertices are hardly deformed during the global deformation and

will be neglected in the modelling. This yields a foam model with lower density.

Table 2.6. Mechanical anisotropy of open-cell PUR foams

Foam
 type

Measured
mechanical
anisotropy
[Eq. (2.39)]

Mechanical anisotropy of
random model

Mechanical
anisotropy
of cubic
model

[Eq. (2.6)]

Mechanical
anisotropy of
tetrakaidecahe

dron model

S08 3.80 1.31 6.22 1.80 6.65 1.48

S20 2.70 1.07 2.43 0.13 1.05 0.03 3.76 1.04 4.15 1.02

S30 2.11 1.19 2.18 0.03 1.35 0.06 3.46 1.78 3.25 1.54

S45 2.20 1.33 1.97 0.16 1.63 0.16 3.28 2.35 2.86 1.94

S60 1.80 1.14 1.41 0.07 1.18 0.10 1.97 1.59 1.90 1.48

S75 2.17 1.25 1.69 0.06 1.27 0.06 2.57 1.68 2.42 1.50

S90 1.82 1.21 1.98 0.11 1.19 0.05 3.28 1.49 3.28 1.36

Note: results presented with italic characters are based on  obtained from the measurements of the S08 foam

E13 E23 E13 E23 E13 E23 E13 E23
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± ±

± ±
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Table 2.7. Geometrical features and Young’s modulus of the aluminium foam

Foam feature Values

Density of solid,  [kg/m3] 2700

Measured foam density,  [kg/m3] 217

Measured struts cross-section,  [mm2] 0.0258

Measured average cell diameter in the transverse direction,  [mm] 2.0

Model average cell diameter in the transverse direction,  [m] 0.15

Scale factor, 0.0133

Model cell struts cross-section,  [mm2] 145

Total struts length in the random model,  [m] 200.1

Calculated foam density of the random model,  [kg/m3] 56

Young’s modulus of solid,  [MPa] 70000

Measured foam Young’s modulus in the rise direction,  [MPa] 85

Measured foam Young’s modulus in the extrusion and transverse directions,
 [MPa] 30

Foam Young’s modulus of the random model with the circular struts in the
rise direction,  [MPa] 65

Foam Young’s modulus of the random model with the circular struts in the
extrusion and transverse directions,  [MPa] 20

Foam Young’s modulus of the random model with the struts having Plateau-
Gibbs cross-section in the rise direction,  [MPa] 92

Foam Young’s modulus of the random model with the struts having Plateau-
Gibbs cross-section in the extrusion and transverse directions,

[MPa]
29

Measured Young’s moduli ratio, 2.83

Young’s moduli ratio of the model, 3.25

ρs

ρf
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The anisotropic foam model is created based on the measured cell geometry and on

the assumption that the initial anisotropy degree  is equal to 0.38, as determined for the

PUR foam. The cell diameters  in the three directions are measured with the image

processing technique. The foam cells in the extrusion direction have almost the same

dimensions as in the transverse direction, i.e., , and this foam is assumed to be

transversely isotropic. The results of the measurements are given in Table 2.7 together

with the mean cell diameter of the model in the transverse direction . The scale factor

between the model and real foam comprises then . This scale factor is used to

translate the strut cross-sectional area  of the real foam measured with the image

processing technique to the circular cross-section of the struts in the model . Further, the

total strut length  in the model is computed and, therefore, the density of the foam

model  is determined by Eq. (2.26). The discrepancy in the measured  and modelled

foam densities  in Table 2.7 can be explained by the concentration of the very large part

of the solid material in the vertices which is not considered in the model.

The Young’s moduli of foam are measured in the compression experiments completed

at cubic samples in the three directions at a deformation rate of 0.015 min-1. The resulting

moduli in the rise and extrusion–transverse directions are, on the average, 85 MPa and 30

MPa respectively.

n

D

Fig. 2.44. View of open-cell aluminium foam.
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The anisotropic random FE model is created as described above. The Young’s modu-

lus of the unit cell is determined in the linear elastic analysis in FEM through the applica-

tion of a uniaxial global compressive stress to the unit cell boundaries in the three

orthogonal directions. The resulting Young’s moduli  of the random foam model with

density kg/m3 was found to coincide quite good with the measured values (see

Table 2.7). The further improvement of the model may be achieved by the introduction of

the struts having Plateau-Gibbs cross-section with the second moment of inertia taken

from Eq. (2.25) as given by Warren and Kraynik (1997). The resulting Young’s moduli of

the foam were predicted with a good accuracy.

2.4  Discussion and Conclusions

Low-density open-cell foam is modelled using the geometry of Voronoi tessellation.

Nuclei in the Voronoi technique resemble the location of the gas bubbles. In this sense, the

final foam geometry in the model is reasonably physically based. Starting from regular

bcc and fcc lattice nuclei distributions, and subsequently giving the nuclei positions an

increasing random offset, a smooth continuous transition has been made from regular

foam geometries to completely random geometries.

To analyse the mechanical properties of the foam, a unit cell was cut out of the strut

network. The open-cell foam unit cell constitutes a framework of struts in 3D. To incorpo-

rate the randomness adequately in the unit cell, the cell length scale is much larger than the

average strut length. Assuming the struts to deform like beams and using FE techniques,

the elastic foam model properties were determined for an overall uniaxial tensile stress.

The linear elastic properties of these unit cells have been compared with other models

from literature, often based on a much smaller unit cell size. Thus, it is shown that disor-

der significantly determines the mechanical properties of the foam. Starting from regular

geometries, Young’s modulus and Poisson’s ratio increased strongly with increasing disor-

der. This effect is explained by the appearance of chains of struts under high normal

stresses, which percolate the foam and thus are mainly responsible for the load transmis-

sion through the foam.

A number of assumptions has been applied to the random model, namely:

• all solid material is distributed in struts and not in vertices;

• all struts are of the same and constant cross-section (leads to a stiffening of the model);

• the solid material in all struts has constant properties;

• the strut cross-section is simplified by a circle instead of the Plateau-Gibbs border

(introduces a decrease of the struts bending stiffness).

Ei f,
ρf' 56=



Chapter 2. Open-cell foams  80

Moreover, the struts positioned at the boundaries of the random model cause an addi-

tional stiffness of the model. Nevertheless, the random model showed a good agreement

with the regular cubic model of Gibson and Ashby, which, as opposed to the random

model, presents fitting of the experimental data and, therefore, is not useful for studying

the effect of parameters like anisotropy and degree of randomness.

Investigating the dependence of Young’s modulus on the foam density, indications are

found that the normal deformation is of increasing importance relative to bending defor-

mations for higher densities. The overall Young’s modulus of random foams has been

found to obey the Gibson and Ashby (1988) estimate to a very good accuracy for foam

densities  smaller than 0.03.

When the foam relative density  exceeds , the random model

described above becomes invalid. This is explained by the fact that, within the range of the

model’s validity, open-cell foam contains slender struts that are consequently imple-

mented in the FE program as beam elements. Outside of this range, concentrations of the

solid material in vertices (see Fig. 2.44) cannot be neglected anymore and the assumption

of slender struts that have a constant cross-sectional area becomes invalid.

The random model has been extended to perform nonlinear analyses. The foams are

subjected to uniaxial stress, either tensile or compressive, and the nonlinear analyses are

accomplished by modelling the struts as beams and using standard FE techniques. The

nonlinear elastic analyses are applied to random and regular microstructures, where the

Voronoi tessellation is based on randomly distributed nuclei and nuclei stacked according

to the bcc and fcc distributions, respectively.

The stiffness of the regular foams is virtually constant when the strains remain suffi-

ciently small. In this region, the struts deform primarily by bending. With increasing

strain, the region is entered where the stiffness increases linearly. The stiffness of the

foams is determined here by the continuously changing combination of bending and axial

deformation of struts. It is illustrated that the reason for this lies in the gradual re-orienta-

tion of the struts in the global stress direction. The influence of the axial strut deformation

increases with increasing strain, and at a certain strain level, the global stiffness becomes

constant. In this region, the majority of struts is aligned in the global stress direction and

they deform axially only.

The axial deformations of struts in the random foam model are important even at very

small strains. This is explained by the existence of chains of struts that are percolating the

unit cell and which are loaded axially already in the initial deformation stage. At large ten-

sile strains, the limiting stiffness is approached, which is found to be lower than that of the

ρf ρs⁄

ρf ρs⁄ 0.3…0.5( )
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regular models. The effective unit cell cross-section  is an important factor for the

foam stiffness under large tensile strains. The model with the highest minimum , or

with the strongest “weak” place, will possess the highest stiffness in the large global

deformations region. In this way, it can be understood why the regular rhombic dodecahe-

dron model having a constant  is the stiffest at large strains. The same high  can-

not be reached by a random foam model with the same foam density.

The above results are obtained for a linear elastic response of the struts. In the case of

a nonlinear material behaviour, the deformation of the struts will remain roughly the same,

so that the ultimate axial stiffness of struts determines the final foam stiffness.

During the compressive deformation of foam, the elastic collapse stress of the random

foam model is found to obey the estimate Eq. (2.7) of Gibson and Ashby (1988) which

was based on experimental observations. The accuracy of the model can be improved by

incorporating the nonlinear material behaviour in compressed struts instead of the more

simple linear elastic material used here. The importance of this effect grows with an

increasing relative foam density.

Application of a simple bilinear constitutive model for the solid material in struts

gives a more realistic elastomeric foam behaviour than linear elastic. This increases the

accuracy and applicability of the model.

Due to the Voronoi technique, a new kind of geometrical anisotropy—primary anisot-

ropy of the nucleation points—is described. This allows for variation of the regular cell

shape without changing the average cell dimensions. The primary geometrical anisotropy

is related to the anisotropic distribution of the nuclei before their growth and the nuclea-

tion process during the growth. The secondary geometrical anisotropy is associated with

the extension of the foam structure due to the effects of extrusion and growth. The combi-

nation of the primary and secondary anisotropy factors makes it possible to choose the cell

in such a way that the geometrical and mechanical anisotropy factors of cells of the model

have a direct correspondence with that of a real foam macrostructure. The degree of initial

anisotropy, , is implemented to evaluate the ratio between the primary and the secondary

geometrical anisotropy factors.

A series of regular bcc-based models with constant geometrical anisotropy ratios and

various  is created. To determine a regular model that correlates best with the measured

values, seven anisotropic open-cell foam types with various anisotropy ratios  are

tested and their mechanical anisotropy ratios  are compared with those of the regular

models. The value of  is chosen to be 0.15. The relative error comprises 23% at most in

comparison with the measured values. This shows a good agreement of the model with the

Aeff
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Aeff Aeff
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experimental results.

A similar method is applied to the random foam model to introduce anisotropy effects.

It was found that the initial anisotropy degree  influences the strut orientations distribu-

tion in the model. To choose the adequate model, the strut angles distributions in the open-

cell S08 foam have been measured and the model with the corresponding strut angles dis-

tributions has been found. The respective  was equal to 0.38. The results of the model-

ling of the measured foam are satisfactorily good. They predict the mechanical anisotropy

of the real foam structure better than the cubic model of Huber and Gibson and better than

the anisotropic tetrakaidecahedron model.

The assumption has been made that the value of  is approximately the same for the

whole set of the available foam structures. Based on this assumption, the same value of the

initial anisotropy degree has been applied to the models of the other six foam structures

and mechanical anisotropy has been determined. The obtained values of  were in

almost all cases the same as or better than the ones predicted by the cubic model of Gibson

and Ashby.

To evaluate the anisotropic linear elastic open-cell foam model, an aluminium foam

has been measured and tested. The mechanical properties of the solid aluminium in the

foam were known and, for this reason, the aluminium foam was ideal for the verification

of the adequacy of the model geometry. The estimation has been made that the initial ani-

sotropy degree  was equal to 0.38, as measured for the PUR foam. The struts were mod-

elled by the circular beams in the FE model. The density of the model was corrected by

taking into account the concentrations of the solid material in the vertices. The resulting

Young’s moduli of the model occurred to be somewhat lower than the measured values.

After application of the struts having the Plateau-Gibbs cross-section, the Young’s moduli

of the foam were predicted very accurately.

The further development of the random anisotropic model may be conducted by:

• Measuring the strut angles orientations in 3D instead of 2D strut projections.

• Measuring a greater number of struts, instead of approximately 2000 per direction as

done here.

However, these improvements would be extremely elaborate, offering only limited addi-

tional accuracy and limited additional insight into the mechanical behaviour of foam.

n
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3. Closed-cell foams

3.1  Introduction

Closed-cell foams as opposed to the open-cell foams contain cells with membranes.

Due to this difference, closed-cell foams possess quite different properties and, therefore,

find different applications. For example, closed cells contain gas which increases the ther-

mal isolation properties of foam. As a result, closed-cell foams found numerous applica-

tions as an isolation material. Moreover, the presence of the cell membranes increases the

mechanical properties of foam considerably and this leads to the use of such foams as a

structural material, e.g., as a core in sandwich panels. For instance, the side walls of trucks

for transportation of frozen food are sandwich structures.

As it has been shown in Chapter 2, there are only two features that determine the

mechanical properties of the open-cell foams—the properties of the solid material in struts

and geometry. As far as closed-cell foams contain gas inside the cells, the gas also might

affect the mechanical properties of closed-cell foam. Figure 1.1 demonstrates the main

influencing factors comprising the mechanical properties of this class of foams.

Typical examples of closed-cell foams are shown in Fig. 3.1. All three components

from Fig. 1.1 are different for these two foams, which will be discussed first. The solid

material is polymethacrylimide (PMI) in Fig. 3.1a and extruded polystyrene (XPS) in Fig.

3.1b. The difference in the mechanical properties of these two solids also affects the dif-

ference in the mechanical properties of corresponding foams. The other aspect—cell

geometry—has also decisive influence onto the foam properties. A number of geometrical

features of foams and their effects have already been mentioned in Chapter 1. Geometrical

anisotropy of cells clearly seen in Fig. 3.1b is one of them. Irregularity of the structure is

50 µm

Fig. 3.1. Views of (a) PMI and (b) XPS foams.

(b)(a)
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also visible. Geometrically, the foam structure may be described as a cell network consist-

ing of the cell faces, edges and vertices. For the low-density foams, faces and edges may

be simplified by walls of a constant thickness and struts of a constant cross-sectional area.

In addition, vertices are assumed to be knots, not containing any material concentrations

and negligibly small.

To make an adequate model of the closed-cell foam, all these components should be

accounted for.

3.2  Survey of the existing models

To predict mechanical properties of foams, several types of models have been used. In

general, the situation with the closed-cell foams modelling is much less satisfactory than

with the open-cell foams. The most well-known models may be subdivided in two groups:

• models based on space symmetrical packing (rectangular prisms, rhombic dodecahe-

dra, tetrakaidecahedra)

• an aggregate model that uses the averaging of a small structural volume element over

all possible orientations in 3D.

Cubic model

An isotropic closed-cell foam is modelled by Ashby and Gibson (1988) who give an

approximate foam Young’s modulus related to the solid Young’s modulus as a function of

the fraction of the solid material in struts  by

, (3.1)

where  is the gas pressure inside cells,  and  are constants of proportionality, given

as . The three terms here correspond to the bending of the solid material in

struts, axial deformation of the solid material in walls and the gas pressure inside cells. In

many cases of the synthetic foams, the gas pressure inside cells is very close to the atmo-

spheric pressure  MPa and the last term in Eq. (3.1) can be neglected.

Plastic collapse stress  of foam under compression related to the yielding stress

 of the solid material is obtained by

, (3.2)
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where  and  are constants, determined by fitting of the experimental data and corre-

spondingly equal to 0.3 and 1.

In tension, the cell walls are assumed to become aligned when the global tensile strain

 exceeds  and to deform consequently axially. Therefore, the collapse stress of

foam  in tension is defined as

. (3.3)

Tetrakaidecahedron

Another  group  of  models  is  related  to  the  space-filling  polyhedra  shown  in

Figs. 2.2b-d. The most popular of them is the tetrakaidecahedron from Fig. 3.2a, for which

the mechanical properties have been studied with the help of FEM by, e.g., Renz and

Ehrenstein (1982). This regular cell is the closest from the space-filling regular cells to

real foam cells, as has been shown in Table 2.1. Figure 3.2b demonstrates a  part of

the tetrakaidecahedron used in the analysis. As a result, initial Young’s moduli of low-den-

sity PVC and PUR foams have been computed. The cell walls thickness  and strut length

 have been measured from the real foams. Various material distributions between cell

walls and struts have been used for these two foam models. The deviation between com-

puted and measured Young’s moduli comprised 50% at most for PVC foam where only

walls are assumed, i.e., the fraction of the solid material in struts . In the case of

PUR foam,  in the model varied between 1 and 0.8. The measured fraction of solid in

struts  was between 0.95 and 0.9. Measured Young’s modulus of PUR foam occurred to
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coincide with the model containing a fraction 0.8 of the material in struts. The correspond-

ing deviation between the measured modulus of the low-density PUR and the model was

found to be nearly 100%. This result was called a “good agreement” [Renz and Ehrenstein

(1982)].

The situation with the anisotropic closed-cell foam modelling is even less satisfactory

than with the anisotropic open-cell foams, described in Section 2.2.1. An anisotropic tetra-

kaidecahedron with  has been used by Van Vuure (1997) to predict the Young’s

moduli of the anisotropic foams. The resulted Young’s moduli in the rise and the third

directions yielded

(3.4)

and

, (3.5)

where coefficients  and  are taken to be 9 and 3 correspondingly.

3.3  Regular closed-cell foam modelling

Further development of the regular isotropic closed-cell tetrakaidecahedron has been

performed. The low-density closed-cell XPS foam with density = 31 kg/m3 depicted in

Fig. 3.1b is a subject of study and experiments. First, a number of experiments and meas-

urements are performed to determine the geometrical features of the foam and the

mechanical properties of the foam.

3.3.1  Experiments

Compression test

The compression tests for anisotropic XPS foam, illustrated in Fig. 3.3a, are done with

a specimen geometry and dimensions according to the ASTM D1621 testing procedure for

rigid foams. The cross-section has a square shape with an area of 1600 mm2. The height is

40 mm. The specimens are stored more then 40 hours before the test in a standard atmos-

phere of 23  and a relative humidity of 50% %.

Because the foam is anisotropic and has three main directions, the experiments are
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performed in all three directions. 5 samples are tested in each direction and the specimens

are deformed to 90% of their original size. The chosen deformation ratio is 0.25 min-1.

The results of the experiments are presented in Fig. 3.4 in the form of the mean values

without standard deviation which was negligibly small.

Tension test

The tension tests for XPS foam are done with so-called dogbone-shaped specimens.

The dimensions are smaller than the normalised specimens because of the limited dimen-

(a) (b)

Fig. 3.3. (a) Compression and (b) tensile tests of the XPS foam.
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Fig. 3.4. Results of the compression experiments (averaged over 5 samples) on
XPS foam in three directions.
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sion of the available foam in rise direction (40 mm). The tested cross-section area (6 mm2)

however consists of more than 2000 cells (cell diameter ), consequently con-

tinuum behaviour is approximated. Because the influence of the boundaries is relatively

high, in total 16 samples are tested. The specimen shape is displayed in Fig. 3.3b. The

specimens are stored more then 40 hours in standard atmosphere in which testing takes

place before the actual test. The specimens are prepared by using an aluminium form with

dogbone shape and cut with a 0.1 mm thick hot wire.

To prevent breaking of the specimen at the clamping edges, the clamping force is reg-

ulated in such a way that breaking at the clamps and slipping of the specimen in the clamp

is prevented. Sandpaper between the clamps and the specimen was used additionally in

order to enhance friction. The results of the tensile experiments in three directions with

confidence interval are shown in Fig. 3.5.
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Fig. 3.5. Results of the tension experiments (average over 5 samples with
confidence interval) on XPS foam in three orthogonal directions.
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3.3.2  Model

Geometry and density of foam

For the regular tetrakaidecahedron structure the density of foam can be determined as

a function of the geometry and density of the basic material, .

A tetrakaidecahedron in Fig. 3.2b contains 36 struts of the length  and cross-section

. The volume of the  part of the tetrakaidecahedron is

. (3.6)

If the weight of the cell is concentrated in struts and walls (the mass of the gas inside

of the cell is neglected), and taking into account that walls and struts at the border of the

unit cell are shared by two neighbouring elements, the mass of one element is

. (3.7)

The density of foam is

 or . (3.8)

 and  are measured from the SEM micrographs taken at 9 different places of a foam plate

with the dimensions cm3.

The surface of the microscopic slide is observed in order to find intersected struts.

Once an intersection is found, the slide is turned in such a way that the strut length is in the

plane of the picture. Now the strut length can be measured from the picture or the screen,

taking into account the realised magnification. This procedure is repeated 2 times for each

of the 9 mentioned parts of the plate.

The detection of the cross-sectional area  of a strut is analogous to the above men-

tioned procedure.

Tension-compression deformation

A one-eighth part of the tetrakaidecahedron is a representative part of the structure

due to the geometrical and load symmetry. A constraint is implemented in the model that

allows the opposite pairs of surfaces to remain parallel during the deformation. The dis-

tance between opposite surfaces is allowed to change from one increment to another.
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Walls are assumed to have constant thickness . Struts of the foamlike structures are

known to have a shape of Plateau-Gibbs borders as in Fig. 2.11a. For the simplification of

the model, struts are assumed to be straight and to have a constant circular cross-section

.

Using data for the density of the solid XPS given by Van Krevelen (1976), , and Eq.

(3.8), the wall thickness  has been determined. It is given in Table 3.1. Mechanical prop-

erties of polymers are time dependent. However, published data are in general obtained

with deformation rates similar to those chosen here (0.25 min-1). Consequently, the time

scales and mechanical properties are similar and specific attention to time dependent poly-

mer behaviour is not necessary.

Preliminary FEM analyses indicated that strut local strains, associated with the struts

bending, are relatively small as compared to wall strains, related to the walls stretching.

Consequently, a simplification can be made for the later computations: the basic polymer

in struts is assumed to deform elastically. At the same time, the material in walls is consid-

ered to have a yielding point at the yielding stress, , and the corresponding elastic col-

lapse strain, , and after that it has a constant positive work hardening slope until the

point of the ultimate stress, , and the plastic strain, , is reached [data from Van Krev-

elen (1976) is given in Table 3.1]. After that, the material has perfectly plastic behaviour.

Von Mises yield condition has been adopted, i.e., the yielding occurred, when the equiva-

lent stress was equal to the yield stress  from the uniaxial test. The equivalent stress is

calculated by

, (3.9)

where  ( ,2,3) are the principal stresses.

Polymers are known to be pressure dependent. The compression yield stress is higher

than the tensile yield stress. So far this effect is also neglected.

Table 3.1. Properties of solid polymer and geometrical features of the XPS
foam
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The finite element computations have been done by the standard MARC FEM pro-

gram. In the first case, the model is assumed to be isotropic, i.e., the dimensions of a cell in

Fig. 3.2b, will stay the same in the 3 main directions. In the other case, the anisotropic

effects of the real cell shape is taken into account and 1/8 part of the tetrakaidecahedron is

extended in the rise direction with the anisotropy factor  and in the extrusion direction

with the factor . This way of the anisotropy introduction corresponds only to the sec-

ondary anisotropy ratio described in Section 2.3.4. Both  values are estimated from

SEM micrographs and are given in Table 3.1.

Subsequently, the FEM simulation of the uniaxial compression and tension tests of

foam in the rise direction is performed. The updated Lagrangian method has been used,

i.e., the geometry is updated after every load increment. This increases the accuracy in the

large displacement analysis. The results of the computations and experiments in the form

of a stress–strain diagram for the XPS foam, that contained  of the polymer in

struts, are represented in Fig. 3.6. The Young’s modulus of the isotropic model,

MPa, occurred to be approximately equal to that, obtained from the experi-

ments for the rise direction, MPa. The results obtained from the ani-

sotropic foam model occurred to overestimate the stiffness and strength of the foam

considerably. The explanation of this can be found in the wrong way of the introduction of

anisotropy (secondary anisotropy only). This problem is similar to that discussed in Sec-
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tion 2.3.4.

However, the model is very much consistent with the experiment in the yielding pla-

teau in tension. But the isotropic model was too weak in comparison with the real foam

regarding plastic yielding plateau in compression. The difference might be explained by

the use of the isotropic foam model for the prediction of the behaviour of the anisotropic

real foam.

Influence of the material distribution between walls and struts on the mechanical
properties of the foam

The model is also applied to evaluate the influence of the distribution of the material

between walls and struts, , on the mechanical properties. The density of the foam  is

kept constant while the thickness of the walls  and the cross sectional area of the struts

are changed accordingly. In this way the relative quantity of material in struts in compari-

son with that in walls varied from 0% to 100%. The results for the tensile behaviour of the

XPS foam model in Fig. 3.7 show an almost linear dependence between the thickness of

walls (as a linear function of the percentage of the polymer in walls) and the stress (at the

same strain).
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3.4  Random unit cell

3.4.1  Linear elastic behaviour

All regular foam models mentioned above are simple and easy to handle. But in com-

parison with the real irregular foam, their geometry is too regular. The effect of the irregu-

larity has already been demonstrated for the open-cell foam models in Section 2.3.2 and

has been observed to be considerable. This effect has not been investigated yet for the

closed-cell foams. This phenomenon will be an issue of the interest here.

As it has been shown in Chapter 2 for the open-cell foams, the Voronoi tessellation

can successfully be used to simulate the foam growing process. In this technique, the final

geometry of the model is completely determined by the nuclei set. The same method is

used here to model the closed-cell foam. The modelling is started from the regular nuclei

sets based on the body-centred cubic (bcc) and face-centred cubic (fcc) packings illus-

trated in Figs. 2.6a and b. Resulting structures form rhombic dodecahedra and tetrakaidec-

ahedra foam models correspondingly, which have cubic symmetry as well as fcc and bcc

nuclei sets. Due to this symmetry, these regular structures may directly be used to fill a

cubic unit cell. An attempt to randomize the foam model geometry raises immediately the

question concerning the symmetry conditions to be kept at the boundaries of the cubic unit

cell. In the open-cell foam modelling, struts crossing the boundary surfaces have been

rotated to become perpendicular to these surfaces. This technique is schematically shown

in Fig. 2.10. This method cannot be used for the closed-cell modelling, because then Pla-

teau’s laws are violated at the unit cell boundaries, where the originally planar cell walls

would become distorted.

To avoid this, another approach is applied to arrange symmetrical boundaries of the

unit cell. Symmetry conditions are being provided at the stage of the nuclei positioning by

placing the nuclei lattice, represented in Fig. 3.8a as points, at the boundaries of the unit

cell with edges of the length  in the bcc- or fcc- order at the depth . At the same time,

the core of the unit cell may be any, as it is shown in Fig. 3.8a, where the model has bcc-

based boundaries and a random core. The random core is obtained by a random placing of

nuclei in space.

This technique has an important advantage which supplies the cubic unit cell with

symmetrical boundaries. On the other hand, regular boundaries will affect the properties

of the whole unit cell to some extent. To evaluate the influence of the regular boundaries

on the mechanical properties of the foam model, the relative volume of the random core

will be increased by increasing the cubic unit cell edge length . Because the regular
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layer stays constant with the depth equal to , the relative volume of the random part, or

relative random volume,  increases. It will be adopted as the relative ran-

dom volume of the model unit cell. The maximum value of the relative random volume is

limited by the computer capacities. Note that large unit cells contain more than 17400

beam and shell elements. Figures 3.8b-c demonstrate two examples of the models with a

different .

The foam model geometrical parameters, e.g., a wall thickness, , and the area of the

strut cross-section, , are obtained from the measurements of the real closed-cell foam.

The volumetric fraction of the solid in the struts, , yields directly from these geometrical

parameters.  was shown (Section 3.3.2) to be an important parameter that influences the

choice of the kind of unit cell.

Simulations with Systematic Geometry Variations

Two kinds of the boundaries, fcc- and bcc-based, are chosen for the closed-cell foam

model. The core stays always random. The relative random volume varies from 0%, or

regular model, to 57.87% for both models and a linear elastic analysis is performed in the

standard FE program MARC. A relative volume larger than 58% would result in excessive

computation time. Two kinds of elements are used. The first one is the straight two-nodes

elastic beam element, also used in the open-cell foam modelling in Chapter 2. Each foam

strut is represented with one finite beam element. The second kind of elements used is a
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Fig. 3.8. Unit cell construction. (a) Providing unit cell symmetry conditions by
placing a bcc-based lattice at the boundaries. (b) 2D projection of the foam
structure with bcc-based boundaries resulting from the Voronoi
tessellation with =0.125 and (c) 0.296.1 2d Luc⁄–( ) 3
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six-nodes triangular thin shell element. Each cell wall is meshed in the way demonstrated

in Fig. 3.9. A node is added at geometric centre of a cell wall.As a result, each cell wall is

meshed with a number of triangular elements corresponding to the number of wall sides.

The shown element meshing is rather coarse and might give inaccurate solutions. To

investigate the influence of the meshing on the results of the FE computations, the regular

model in Fig. 3.2b has been simulated twice with two meshings. First, 1/8 tetrakaidecahe-

dron is modelled by 24 triangular elements, as shown in Fig. 3.10a. The same FE model is

simulated with a fine mesh using 563 quadrilateral thin shell elements. Figure 3.10b

demonstrates this model. Both these models are loaded in tension in OY direction and the

linear elastic analysis is performed. The resulting stress distributions can be seen in Fig.

3.10. The Young’s modulus of the coarsely meshed model is approximately 8% higher

than that of the finely meshed. The kind of mesh used in the FE analysis will influence the

computation time considerably. As far as quite large structures with many elements are

expected to be modelled, the coarse meshing is to be used here. The gain in the computa-

tion time then is reached at the sacrifice of about 8% of the model accuracy. However, it

must be noticed that the accuracy of the nonlinear analysis may decrease significantly,

because the buckling effects of the cell walls, also shown in the view of the closed-cell

PUR foam in Fig. 3.11, cannot be modelled with such a coarse meshing.

Another parameter that varies in the unit cell is the distribution of the solid material

between walls and struts. To study this parameter, all unit cells are modelled with the vol-

umetric fraction of the material in struts  equal to 1 (open-cell foam), 0.9, 0.5, 0.1 and 0

(all material is concentrated in walls).

Fig. 3.9. Meshing of the cell walls.
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Fig. 3.10. (a) Coarse and (b) fine mesh of 1/8 part of the tetrakaidecahedron. Both
models are loaded in tension and Von Mises stresses distribution is shown.
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Each unit cell type with its distinct set of  and  is created in the FEM

program based on three various nuclei distributions and each unit cell is uniaxially loaded

in three orthogonal directions. As a result, nine values of the foam Young’s modulus yield

an averaged value for the bcc- and fcc-based structures for each situation. The resulting

map shown in Fig. 3.12a illustrates the dependence of the initial Young’s modulus of mod-

els with the fcc- and bcc-based boundaries and having the relative foam density

, on the material distribution and on the relative random volume. The rela-

tive Young’s modulus  in Fig. 3.12b represents the ratio between Young’s modu-

lus of a regular model and that of the completely randomized model, which is extrapolated

from the available data, as indicated in Fig. 3.12b.

The closed-cell foam models with material completely concentrated in cell walls

( ) converge quite quickly to the Young’s modulus of the model with 100% random

volume. Moreover, the effect of the random foam geometry is small. A random foam

shows about 10% lower stiffness as compared to a regular fcc-based model. Already at a

randomization degree  equal to 0.422, the fcc- and bcc-based models give

accurate predictions of the extrapolated Young’s modulus of the random model. An

increase of material content  in struts leads to a decreasing convergence of the bcc-based

model to the random model. The same effect occurs in the fcc-based model if  becomes

higher than 0.5. For the open-cell foam models ( ) the convergence is poor and the

Fig. 3.11. View of the closed-cell PUR foam of Recticel N.V. showing buckling.
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use of the regular boundaries arrangement is not recommended. In this case the method

should be used as described in Section 2.3.1. However, the extrapolated value for the

Young’s modulus of the open-cell foam in Fig. 3.12 agrees with that determined in Section

2.3.2.

Foam models with high values of  have a low stiffness, but they appear to become

stiffer if randomized. As mentioned before, the opposite applies to a fcc model with

; however, to a small extent only. Models with intermediate  values appear to pro-

vide intermediate behaviour.

Simulation of Glass Foam

To verify the model, a glass foam (Pittsburgh Corning Nederland b. v.) has been mod-

elled. The important difference with the plastic foams modelled above is that the proper-

ties of the solid material (glass) inside the walls and struts of the glass foam are known.

Views in Fig. 3.13 highlight some important specifications of this foam. One of them is

the presence of the gaseous phase inside the struts and walls. Glass is foamed at two lev-

els: mesolevel shown in Fig. 3.13a and microlevel, or the level of walls and struts, shown

in Figs. 3.13b-d. This effect has been observed also with other materials, for instance, in

starch foam by Warburton et al. (1990). The measured density of the material in walls

occurred then to be lower than of the original unfoamed solid because of the foaming

effect in the walls. It is clearly seen from the views in Figs. 3.13c-d that both the walls and

the struts in the foam are considerably foamed too. This effect should be taken into

Fig. 3.12. Young’s modulus of the foam models as a function of the unit cell type.
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account during the modelling.

First, the views of the glass foam have been studied with the image processing tech-

nique to determine the geometrical features of the foam. The cell walls thickness  and

the struts cross-section  have been measured by SEM and are presented in Table 3.2. The

foam structures have been studied with the image processing technique, as described by

Waterman and Phillips (1974), to determine the average cell diameter . By measuring

the average diameter of cells in the real foam  and the cell diameter in the model , the

scale factor  has been determined. Further, the model wall thickness and the

struts cross-section are determined as  and . Knowing the total walls

area  and the total struts length  in the unit cell, the model density

may be obtained from

, (3.10)

where  is a volume of the unit cell. The model density  is approximately a factor

three different from the measured foam density . This points to the fact that the density

Fig. 3.13. Scanning electron micrographs of closed-cell glass foam: (a) overview;
(b) a wall between two cells; (c) a foamed wall section; (d) foamed strut
sections.

(a) (b)

(c) (d)
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of the walls and struts is three times lower than it would be in the foam with unfoamed walls

and struts. In other words, two various foam densities can be introduced for this foam. First,

conventional relative foam density  and the relative density (or porosity) of the ma-

terial in struts and walls.

There are two possibilities to model the glass foam from Fig. 3.13. The first one is

schematically depicted in Fig. 3.14a and assumes the structural elements of the foam to be

unfoamed and to have, therefore, three times lower sections. This simplification will lead

Table 3.2. Glass foam characteristics

Foam characteristic Value

Solid density,  [kg/m3] 2400

Measured foam density,  [kg/m3] 111

Mean measured membranes thickness,  [ ]

Mean measured struts cross-section,  [ ]

Fraction of the material in struts, 28.5

Cell diameter,  [ ]

Model cell diameter,  [ ] 0.15

Magnification (scaling) factor, 209

Total walls surface in the model,  [m2] 4.08

Total struts length in the model,  [m] 62.97

Struts cross-section in the model,  [m2] 0.000140

Walls thickness in the model,  [m] 0.005434

Computed foam density,  [kg/m3] 344

Computed struts cross-section in the model with the simplification
from Fig. 3.14a,  [m2] 0.000045

Computed walls thickness in the model with the simplification from
Fig. 3.14a,  [m] 0.00175

Solid Young’s modulus,  [MPa] 70000

ρs

ρf

δ µm 26 6±

a µm
2 3200 900±

φ

D mm 0.72 0.12±

D' m
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to a drop in the bending stiffness of the struts and walls, while axial stiffness will remain

the same. To keep both, axial and bending stiffness of the structural elements of the model

adequate, the cell walls and struts thickness can be kept as measured and the Young’s

modulus of the material can be reduced proportionally to the porosity of the material in

struts and walls. This can be motivated by the fact that the struts and walls are high-den-

sity foams for which the properties are about proportional to the relative foam density [see

Meinecke and Clark (1973)]. The corresponding modelling is shown in Fig. 3.14b.

Both model simplifications are used in the FEM modelling to predict the Young’s

modulus of the glass foam. The model has been generated 4 times and the Young’s modu-

lus in three orthogonal directions is determined. The results are presented in Table 3.3.

The small difference in the initial Young’s moduli of the models arranged in two different

ways (as shown in Figs. 3.14a and b correspondingly) demonstrates that the axial (in-

plane) deformations in the closed-cell foam are dominant. Both models agree very good

with the experimental data. The cubic model of Gibson and Ashby (1988) is also used to

predict the Young’s modulus of the closed-cell glass foam. The cubic models based on the

simplifications from Figs. 3.14a and b [see Eq. (3.1)] overestimate the measured Young’s

modulus considerably.

The presented modelling demonstrates a very good agreement between the Young’s

modulus predicted by the random model and the measured Young’s modulus of the

closed-cell foam. The random model provides much better results than the widely-used

cubic model. This occurs due to the geometry of the closed-cell random model which

approaches the geometry of the real foam much closer than the regular foam models.

Es Es 3⁄
(a) (b)

Fig. 3.14. Modelling of the cell walls by (a) decreasing the cell walls thickness and
(b) by decreasing the cell walls stiffness.

δ 3⁄

δ
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Simulation of PMI Foam

The same approach is used to simulate the linear elastic properties of polymer foam.

For the computations concerning the Young’s modulus of a closed-cell foam, the bcc-

based foam model with a randomization degree  is applied. To

verify the random foam model, two closed-cell foams, PMI-30 and PMI-110 of RÖHM,

are studied. Scanning electron micrographs of both foams are presented in Fig. 3.15. PMI-

30 from Fig. 3.15a has relatively thin walls and struts and somewhat larger cells dimen-

sions in comparison with PMI-110 from Fig. 3.15b, having a higher density. The geometry

of the foams, like the struts cross-section , cell diameter  and the cell walls thickness

 (see Figs. 3.15c and d), is measured by SEM as it has also been done for the glass foam.

The results are given in Table 3.4 together with the calculation results. The foam model

density is determined by Eq. (3.10). The deviations of the model densities  from the

measured foam densities  are small, indicating that the model resembles the real foam.

It is remarkable that the estimated density of PMI-30 is much closer to reality, than that of

PMI-110. As it has been shown in Section 1, the geometry of foam can be subdivided into

walls, struts and vertices. As far as low-density foams are considered here, the material in

vertices is ignored. With the increasing foam density, the relative part of the material in

vertices increases too. In both PMI foams models, the material in vertices is not taken into

account and, therefore, a minor error is produced which is lower for the lower-density

foams. Mechanically, the material in vertices is hardly loaded and may be neglected.

Table 3.3. Analysis of the random isotropic model and measurements of the
closed-cell glass foam in compression

Model

 Young’s moduli of foams
with thin walls (Fig. 3.14a)

and  [MPa]

 Young’s moduli of foams  with

low  (Fig. 3.14b) and with

 [MPa]

1 833; 881; 846 841; 888; 853

2 892; 857; 859 908; 874; 872

3 789; 844; 909 801; 852; 919

4 862; 871; 891 873; 882; 902

Average 861 32 872 32

Measured 800 800

Gibson and Ashby
cubic model 2327 2373

Ef
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----- 0.046=

Ef

Es

ρf

ρs
----- 0.14=

± ±

1 2d Luc⁄–( )3 0.512=

a D

δ

ρf'

ρf



Modelling of the mechanical properties of low-density foams  103

Blocks of solid PMI were provided by RÖHM. As far as PMI is a thermoplastic and

the foaming process is only a physical one, its mechanical properties are assumed not to

change significantly during the foaming processes. The modulus of elasticity of the solid

material, , is measured in uniaxial tension and compression experiments. For this pur-

pose, two kinds of samples are cut from the blocks of solid PMI. Compression tests of 4

samples as shown in Fig. 3.16a are performed according to ASTM D695 at a deformation

rate of 0.044 min-1. The resulting Young’s modulus comprises MPa.

Tension experiments are performed on 7 solid PMI “dogbone”–samples illustrated in Fig.

3.16b according to ASTM D638 at the same deformation rate between the clamps. The

corresponding Young’s modulus of the solid PMI in tension has a value of

MPa. The difference between the determined Young’s moduli in ten-

sion and compression points to an asymmetric behaviour of the polymer. The averaged

value of 6780 MPa is used in the model.

The FE model computations give results (see Table 3.4) which are closer to the real

foam than the values predicted by Eq. (3.1) of Gibson and Ashby (1988). However, the

Young’s moduli predicted by the random model of both PMI foams overestimate the

measured values. A possible reason for this may be the idealization of the model by

(a) (b)

(c) (d)

Fig. 3.15. Closed-cell PMI foams. Overview SEM images of (a) PMI-30 and (b) PMI-
110. (c) A strut cross-section and (d) a wall between two cells in PMI-30.
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Es 7060 200±=

Es 6490 450±( )=



Chapter 3. Closed-cell foams  104

assuming the walls to have a constant thickness which is also the same for all cells. Also

the coarse modelling (about 8% stiffer behaviour) contributes to the difference. Moreover,

the model contains only unruptured cell walls, while real closed-cell foams contain also

some open cells.

Berlin and Shutov (1980), who studied closed-cell PUR foams, suggest that the frac-

tion of open cells, , is a function of the foam relative density. In the region of the low-

density foams the factor  is approximately equal to 0.3 for foams in their study. They

explain this effect by the fact, that in low-density foams the membranes become very thin

Table 3.4. Geometrical features and Young’s moduli of the PMI foams

Foam feature PMI-30 PMI-110

Measured solid density,  [kg/m3] 1192 2

Measured foam density,  [kg/m3] 37.7 0.4 116.0 2.0

Measured walls thickness,  [µm] 1.9 0.2 3.6 0.4

Measured struts cross-section,  [µm2] 183 40 470 20

Measured average cell diameter,  [ m] ~425 ~370

Model average cell diameter,  [m] 0.2

Scale factor, 470 540

Model cell walls thickness,  [m] 0.00089 0.00194

Model cell struts cross-section,  [m2]

Content of the solid material in struts, 0.41 0.51

Calculated model foam density,  [kg/m3] 36.3 96.3

Measured average solid Young’s modulus,  [MPa] 6780

Measured foam Young’s modulus,  [MPa] (from the com-

pression experiment, deformation rate 0.027 min-1)
20.1 83.2

Gibson–Ashby model Young’s modulus,  [MPa] 130 360

Computed foam Young’s modulus,  [MPa] 43.3 100.5

Computed foam Young’s modulus with , [MPa] 22.5 75.7

ρs ±

ρf ± ±

δ ± ±

a ± ±

D µ

D'

M D D'⁄=
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and can easily rupture during or after the processing.

In order to study the effect of the presence of open cells, a bcc-based model with the

randomization parameter  has been created where 30% of all

walls were removed. The Young’s modulus of this model, given in Table 3.4, predicts the

real PMI-30 foam modulus much better. The Young’s modulus of PMI-110 is now under-

estimated. Considering the mentioned effect of density on the open cell fraction, this is

understood. The open cell fraction  in PMI-110 will be less than of PMI-30 and less than

0.3.

To create a model of a real foam, the geometry of the foam should be known, includ-

ing the fraction of open cells  in the closed-cell foam. An air flow method has been

described by Yasunaga et al. (1996) where air is blown through a closed-cell foam and the

drop in air pressure has been measured. A correlation between air flow and fraction of

Table 3.5. Percolation thresholds for various 3D packings [from Stauffer
(1985)]

Type of packing Bond

Diamond 0.3880

Simple cubic 0.2492

BCC (tetrakaidecahedron) 0.1785

FCC (rhombic dodecahedron) 0.1190

1 2d Luc⁄–( )3 0.512=

22.5 mm

8 mm
8 mm

19 mm

25 mm

25 mm

5 mm25 mm

100 mm

Fig. 3.16. Specimens of PMI solid for (a) compression and (b) tension tests.

(a) (b)

ϑ

ϑ



Chapter 3. Closed-cell foams  106

open cells  has been found. Moreover, a typical value of  is obtained, a so-called

“threshold”, under which no air flow has been measured through the foam. It occurred to

be equal to approximately %. It is known from the percolation theory [see, for

example, Stauffer (1985)], that there is always a threshold value of open bonds between

cells in 3D, above which continuous channels of open bonds can be found in the structure

from one side to the opposite one. This value of open bonds is dependent on the type of

structure. Table 3.5 demonstrates percolation thresholds of some of them.

The same method is used to measure the fraction of open cells in the two available

PMI foams. In both cases, no air flow occurred through the samples. As far as a real cell

shape corresponds to that of tetrakaidecahedron (as shown in Table 2.1), a foam with

nearly 18% of ruptured walls will have no air flow through it. This means that at most

about 18% of the walls in the PMI-30 and PMI-110 foams can be ruptured. This is less

than the 30% applied in the calculations. Obviously, the overestimation of the stiffness of

PMI-30 calculated without ruptured cell walls cannot be explained entirely by the pres-

ence of open cells.

Another very important effect that can affect the mechanical properties of foams is the

effect of the blowing agent on the mechanical properties of the solid material in struts and

walls. During the production, blowing agent always influences the properties of solid,

making it weaker. Some blowing agents might remain in the solid. This might also explain

the discrepancy in the measured and computed Young’s modulus of foam.

3.4.2  Alternative nonlinear modelling of the anisotropic closed-cell foam

Complete random “model”

Further development of the model concerns complete randomization of the model. It

means that no regular boundaries are present. This can be achieved at the sacrifice of the

“unit cell” concept. In both previous cases of the unit cell construction, the open-cell unit

cell in Section 2.3.1 and the closed-cell unit cell in the last Section, boundaries have been

arranged in such a way, that the created structure could be repeated in space by mirrorizing

the original unit cell. The behaviour of the whole structure could be represented by the

behaviour of a unit cell, by prescribing the corresponding boundary conditions.

All related complications vanish if boundaries have no symmetry conditions. The

characteristic dimension of such a model should be sufficiently large to allow the assump-

tion that this model is a representation of a real foam. The resulting structure should con-

tain at least several tens of cells. The non-symmetrical boundaries are arranged then in the

following way. First, randomly distributed nuclei are placed in a box with the minimum

ϑ ϑ

ϑ 10=
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distance  between them. Consequently, Voronoi tessellation is applied and the structure

containing cells with walls and struts arises. To obtain the model cell, a box with smaller

dimensions  is introduced inside the already existing box, as it has been done in the

open-cell foam modelling described in Section 2.3.1 and shown in Fig. 2.10b. As opposed

to the open-cell foam modelling, the border of the closed-cell random model is arranged in

another way. All walls passing the model border are “cut” with that border and only an

inner part of the wall is included in the “model”. The representation of this arrangement is

given in Fig. 3.17. All points at a boundary are connected with each other in a way to keep

boundaries shear stress-free and flat during the deformation. The prescribed flatness is

chosen in order to simulate the effect of adjacent foam material to some extent. The result-

ing model is a direct analogue of the cubic sample cut out of the real foam. In comparison

with the closed-cell foam model presented in Section 3.4.1, where the boundaries were

regular and the core remained random, the present model does not contain any regular part

at all and, therefore, has no influence of any regular structure. Moreover, the model may

stay smaller than that with the regular boundaries. This technique leads to vanishing of the

conventional micromechanical concept of “unit cell”. Its application is motivated by the

relatively large dimensions of the model in comparison with the regular models used ear-

lier.

Dimensions analysis

The value of  can be a good measure of the model dimensions similar to the

modelling with the regular boundaries in Section 3.4.1. The dimensions parameter

was chosen here to be 1, 2, 3, 4 and 5. For each value of the dimensions parameter, three

isotropic model cells are created with the relative foam density  and with

the equally distributed solid material between the cell walls and struts, i.e., . Each

model cell is uniaxially loaded subsequently in the three directions (see Fig. 2.5) in the

standard FE program. Consequently, nine results are obtained for each condition. Aver-

d

L

Fig. 3.17. Arrangement of the border of the closed-cell random model.

L d⁄
L d⁄
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aged values of the Young’s modulus are plotted against the model cell dimensions in Fig.

3.18. The models with , 4 and 5 have the same value of the Young’s modulus as

the extrapolated value in Fig. 3.12. The random model with the dimensions  is

accepted as the smallest model that is sufficiently accurate and it will be used in all further

computations.

Modelling of the XPS foam

This model is used here to estimate the nonlinear mechanical properties of the aniso-

tropic closed-cell XPS foam shown in Fig. 3.1b and modelled in Section 3.3. Geometrical

features of the XPS foam are measured in the way similar to the PMI and glass foams and

are presented in Table 3.1. In contrast to the closed-cell foams discussed above, XPS foam

is anisotropic. To simulate the mechanical behaviour of this foam, the same principles of

the anisotropy introduction in the foam model as for the open-cell foam model in Section

2.3.5 are to be used here. Similarly, the same initial anisotropy ratio  equal to 0.38 will

be applied to the model. This approach is based on the assumption that both open- and

closed-cell foams are produced in a similar way. The only difference is that in the case of

open-cell foams, walls are being removed from the structure by physical or chemical treat-

ments without any impact on the geometry of the foam structure.

All geometrical features of the XPS foam are taken from the measurements used in

the regular modelling in Section 3.3 and given in Table 3.1. The random model is gener-

ated based on the randomly distributed nuclei with the primary anisotropy ratio
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Fig. 3.18. Young’s modulus with the standard deviation as a function of the foam
model dimensions.

3–×10

L d⁄ 3=

L d⁄ 3=

n



Modelling of the mechanical properties of low-density foams  109

, as it has been demonstrated in Fig. 2.39. After the 3D Voronoi tessellation is

completed, the boundaries of the model are arranged as shown in Fig. 3.17. Next, the

model is geometrically extended in the directions of the anisotropy with the secondary

anisotropy ratio . Finally, global compression and tension loads are applied to

the model boundaries and large displacements analysis can be completed. The solid mate-

rial in struts and walls is assumed to have nonlinear behaviour according to the data for

XPS obtained from Van Krevelen (1976) [see Table 3.1].

The random XPS foam model has been generated five times based on five various

nuclei distributions and each model has been loaded in tension and compression in FEM.

Because the solid content in struts is very small ( ), struts are eliminated from

the model. This leads to a considerable saving of computation time without losing accu-

racy. Table 3.6 summarizes the results of the five random XPS foam simulations and the

measurements and predictions of the foams Young’s moduli by the regular anisotropic

tetrakaidecahedron with the initial anisotropy degree . The random model predicts

the ratio of the Young’s moduli better than the regular tetrakaidecahedron, because the

random structure with the chosen value of initial anisotropy degree  is geometrically

much closer to the real foam. Unfortunately, no other model is available to predict proper-

ties of an anisotropic closed-cell foam. However, verification can take place by compari-

son to experimental results.

It is clearly seen from Table 3.6 that the tensile strength and compression collapse

stress are predicted very good by the model in all three directions. Moreover, the stiffness

ratios of the XPS foam are also predicted very accurately. However, the Young’s moduli in

three directions are overestimated by the random model. Remarkable is that the difference

in the Young’s moduli of the model and of the real foam are always nearly a factor two.

This points out that the geometry of the random foam model corresponds to that of the

XPS foam. The most reasonable explanation of the observed discrepancy is an incorrect

Young’s modulus of the solid XPS, , used in the modelling. This discrepancy may arise

from a possible difference in the mechanical properties of the solid XPS taken from the

tables [for instance, from Van Krevelen (1976)] and actual mechanical properties of the

foamed material inside the struts and walls. In the above case, the basic material in the

XPS foam might be expected to have a two times lower Young’s modulus  in compari-

son with the solid Young’s modulus given in Table 3.1. In fact, this discrepancy is similar

to the result with the other polymer (PMI) in the previous section. The discussion on the

observed discrepancy for PMI will also apply to the present XPS case.
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Table 3.6. Computations of the random anisotropic model (XPS) and
measurements

Model

Relative Young’s moduli Moduli anisotropy

1 0.0126 0.0083 0.0058 2.17 1.43

2 0.0131 0.0098 0.0072 1.82 1.36

3 0.0130 0.0090 0.0069 1.88 1.30

4 0.0133 0.0087 0.0063 2.11 1.38

5 0.0130 0.0091 0.0063 2.06 1.44

Average 0.0130 0.0090 0.0065 2.00 1.38

Measured 0.0068 0.0042 0.0032 2.12 1.31

Tetrakaidecahedron
with 0.0159 0.0087 0.0044 3.61 1.98

Model

Tensile strength [MPa] Compression collapse stress [MPa]

1 0.76 0.53 0.40 0.43 0.31 0.20

2 0.75 0.57 0.51 0.48 0.36 0.30

3 0.75 0.59 0.47 0.45 0.30 0.27

4 0.73 0.54 0.46 0.47 0.29 0.26

5 0.73 0.58 0.42 0.51 0.26 0.28

Average 0.74 0.56 0.46 0.47 0.30 0.26

Measured 0.76 0.55 0.54 0.60 0.33 0.28

E1 Es⁄ E2 Es⁄ E3 Es⁄ E13 E23

n 0=

Σpl, 1 Σpl, 2 Σpl, 3 Σc, 1 Σc, 2 Σc, 3
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3.5  Discussion and Conclusions

A regular tetrakaidecahedron model was used to predict the behaviour of the aniso-

tropic closed-cell foam. The FEM computations were based on the properties of monolitic

polymer and on the geometrical features of the adopted foam structure as a tetrakaidecahe-

dron regular cell structure. The simplicity of the geometry is one of the most attractive

features of this model. However, compared to the geometry of the real foam, the tetrakai-

decahedron is too regular to describe the real foam behaviour. The FEM simulations with

the isotropic regular model showed a reasonable agreement with the experiment.

Although, the accuracy in the compression region was limited. The reasons of that lay,

probably, in the wrong introduction of the anisotropy and in the ignoring of the asymmet-

ric behaviour typical for polymers. Moreover, some buckling effects in the membranes

could not be reproduced because of the coarse meshing in the FE analysis.

Low-density isotropic closed-cell foam was consequently modelled using 3D Voronoi

tessellation of space. Unit cells containing various numbers of foam cells were composed

to be applied in the linear elastic FE computations. Boundaries of a unit cell were kept

regular by placing the nucleation points in a fcc- or bcc-pattern at the border of the unit

cell. Special attention was paid to the distribution of the material between struts and walls

of cells.

Analyses for unit cells of various dimensions and material distributions showed that

for a model without struts (all material in walls) even a small unit cell (several foam cells)

with a low random volume percentage was quite representative for the elastic behaviour of

closed-cell foam and the effect of randomness was small. In the case of a model without

walls (open-cell foam), the effect of randomness was large, but the applied method of the

boundaries arrangement was found to be inefficient. The method of the unit cell bounda-

ries arrangement used in Section 2.3.1 would be more efficient and is recommended for

the open-cell foam random modelling.

For the foams with solid material distributed between walls and struts, the unit cell

with bcc-boundaries containing a relative random volume of 0.512 and about 200 foam

cells exhibited a behaviour similar to that of the unit cell that would be completely ran-

dom. This unit cell has been used in the computations to predict the linear elastic proper-

ties of the closed-cell PMI foam. The geometrical features of foam and solid material

properties have been obtained from measurements of the real foam. Computed values of

the Young’s moduli of foams overestimated that of the real foam. To approach the real

closed-cell foam structure which always contains open cells, 30% of the cell walls has

been removed from the model. The obtained elastic moduli predicted the measured values
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much better. However, the percentage of the open cells has been estimated from the litera-

ture data on a different foam and, therefore, may not be reliable. Moreover, the air flow

measurements indicated that probably less than 30% of the cell walls were ruptured in the

closed-cell PMI foam. The adopted percentage of open cells is probably overestimated.

Measurement of the fraction of open cells in the closed-cell foam is difficult.

The randomized model has been used to simulate isotropic glass foam. Glass foam

was found to be foamed at two levels, i.e., the struts and the walls of the foam were also

foamed. For this reason, the randomized model has been adopted in two various ways.

First, all structural elements of the foam were scaled by a factor, corresponding to the rel-

ative density of the foamed struts and walls. Second, the thickness of the walls and the

struts was kept as measured and the stiffness of the solid material (the Young’s modulus of

glass) was reduced respectively. Both models gave a foam Young’s modulus very similar

to the measured value. The following two main inferences can be drawn from this:

1. The dominant deformation mechanism in the closed-cell glass foam is in-plane de-

formation in the foam cell walls. This conclusion is based on the fact, that the main dif-

ference in the two above described approaches (reduction of the walls and struts

thicknesses or reduction of the stiffness) is the changing of the bending stiffness of the walls

and struts. In the second modelling, the bending stiffness of the struts and walls increased

significantly in comparison with the first modelling, while the axial stiffness remained the

same. The stiffness of the two models occurred to differ by about 1% only.

2. The randomized closed-cell foam model predicts the stiffness of the isotropic closed-

cell foams correctly, if two conditions are met: a) the constitutive behaviour of the solid

material in struts and walls is determined correctly and b) all geometrical features of the

closed-cell foam, like the struts and the walls thickness, are taken into account.

A complete random model has been created by the introduction of a cube filled by

foam cells and by arranging boundaries without geometrical symmetry, but with flat and

shear stress free boundaries. This model does not include a regular part and, therefore, it

shows a better converge to the correct result then the model with the regular part. This

allows the use of a smaller model, because the geometry is very close to that of the real

closed-cell foam structure.

The complete anisotropic closed-cell foam model including large deformation analy-

sis with nonlinear solid material behaviour was successfully used to simulate the aniso-

tropic XPS foam. Anisotropy has been introduced in a way similar to that used in the

open-cell foam modelling. The Young’s moduli ratios, global compressive collapse stress

and tensile stress are predicted very accurately in all three directions. However, the abso-

lute values of the Young’s moduli were overestimated in all three directions with the same
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factor. This fact might be explained by the use of the Young’s modulus of the solid PS

before the foaming and without taking into account changes in the properties of the solid

because of the foaming. This overestimation also occurred in PMI foam, and might be typ-

ical for foams made of polymers.

As a result of the modelling, it was found that:

• The topological model based on the geometry of the tetrakaidecahedron is a good

approximation of the Young’s modulus of the real foam structure with considerable

content of the solid material in walls.

• Anisotropy effects enhance the mechanical properties of the foam in the rise direction.

• The mass distribution of polymer over struts and walls has a considerable impact on the

mechanical properties of the foam. The stiffness and yield stress of the foam increase

with an increasing portion of polymer in walls; 100% material in walls appears to be

optimal. Apparently, the cell walls are dominant structural elements in closed-cell

foams.

• Walls experience higher stresses and strains than struts.

• The fraction of open cells in a closed-cell foam impacts the properties of the foam.

Measurements are recommended for the future investigations.

• Special attention should be paid to the mechanical properties of the solid material in the

foamed structure. This may differ strongly from the original properties of the solid

before the foaming processes.

• The anisotropic random model with the initial anisotropy degree  gives ade-

quate results for the Young’s moduli anisotropy of a real foam. This indicates that the

described geometry in the model is correct.

n 0.38=
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4. Discussion and Conclusions

A comprehensive low-density foam model is created and described in Chapters 2 and

3. Due to the application of the geometrical features of real foam, the mechanical proper-

ties of foams can be modelled. The geometry of the real foam is emulated by the applica-

tion of the 3D Voronoi tessellation which closely resembles the growing of bubbles during

the foaming processes. The subsequent implementation of the geometry in the FE analysis

and the application of the correct mechanical properties of the solid material logically

leads to a model that is able to emulate the behaviour of foams.

The main deformation mechanisms in foams could be analysed and the effect of vari-

ous topological features of the foam morphology could be investigated in detail using the

geometry which is close to the geometry of the real foam. First of all, the main deforma-

tion mechanism in the open-cell foam is strut bending, while the axial deformation of

struts was also found to play a certain role in the stiffness of foams even in the initial state,

especially for foams with a random morphology. On the other hand, in-plane stiffness of

cell walls influences the Young’s modulus of the closed-cell foam. In general, the open-

cell foam can be defined as the closed-cell one with cell walls having zero thickness. From

this point of view, an important conclusion can be made about the linear elastic deforma-

tion of foams: the Young’s modulus of foam is governed by the in-plane deformation of

cell walls and bending of struts; the amount of the solid material in walls determines the

stiffness of a foam to a very large extent. Bending struts represent flexible (micro-)struc-

tural elements, whereas walls experience predominantly in-plane stresses and, therefore,

they represent stiff (micro-)structural elements.

In comparison with regular foam models, the presented random model includes irreg-

ularities of the geometry typical for the real foams. This fact allows to analyse the influ-

ence of the structural irregularities on the mechanical properties of foams. It was found,

that the Young’s modulus of foam is dependent on the degree of the foam irregularity.

Moreover, the open-cell foam model was very sensitive to the irregularities, while the ran-

domness had a small impact on the Young’s modulus of the closed-cell foam without

struts (cell walls only). However, the randomization degree of the foam structure is still

important for the large deformation of foams.

The other advantage gained from the Voronoi approach is the possibility of the intro-

duction of a new kind of the geometrical anisotropy in the foam structure. As opposed to

the previous anisotropic foam models, the link can be made between the structure of the

foam model and the production process of the observed foam. This leads to a more correct
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modelling of the geometry of the anisotropic foam and to a more accurate prediction of the

real foam behaviour.

One more advantage of the presented model as compared with the foregoing models is

the possibility to vary the geometrical features within the model. For instance, the struts

cross-sectional area and the walls thickness may be variable. Moreover, the usage of a

considerable number of foam cells in the model allows to remove a number of cell walls

and study the effects on foam properties. This modelling corresponds to the real closed-

cell foam structure, where some cell walls are ruptured during or after the foaming proc-

ess.

To keep the model practical, a number of simplifications has been accepted. First of

all, gas pressure inside cells in closed-cell foams has not been taken into account. As men-

tioned above, the mechanical properties of foam depend, besides the gas pressure, on the

foam geometry and solid material in the geometrical elements of foams. Consequently,

two main groups of simplifications are distinguished — the foam geometry and the solid

material simplifications. The additional group results from the limitations of the computer

capacities.

The first group includes simplifications concerning struts and walls geometry. First,

struts cross-section and wall thickness are assumed to be constant within each strut and

wall. Moreover, this thickness is kept constant for all struts and walls (except Section

2.3.2, where struts have various cross-sections). These assumptions are shown to be

acceptable, because only low-density foams are modelled. Struts are modelled by a circu-

lar cross-section instead of the much more complicated Plateau-Gibbs border. This simpli-

fication decreases the bending stiffness of struts. Nevertheless, all effects in foam, like

occurrence of the percolating chains of axially loaded struts, remain unchanged. The fol-

lowing assumption used in the presented modelling is related to the walls in the random

model. They are flat in the undeformed state due to the 3D Voronoi tessellation based on

the nuclei that grow with the same rate. This can be violated in real foams where the

curved walls are sometimes observed. Consequently, mechanical properties of the foam

would change. However, presence of the gas inside the cells of real foams has stabilizing

effect for the walls and curved walls are not expected to considerably change the proper-

ties of foams. Moreover, the dominant deformation mechanism found in closed-cell foams

is the in-plane deformation of cell walls.

In the second group of simplifications of the model, the behaviour of the solid mate-

rial in struts and walls is simplified. First of all, the mechanical properties of the solid

material in foam should be determined carefully. The properties of the base material
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before foaming are very often very different from those inside the walls and struts. More-

over, mechanical properties of the material in walls can differ from those in struts, because

of the different way of the material orientation in struts and walls. This is especially appro-

priate for the polymeric foams, where macromolecules of the solid polymer may get uni-

directional orientation inside struts and two dimensional alignment inside walls. The

resulting material might posses higher stiffness than the original unfoamed bulk polymer.

This phenomenon requires determination of the properties of the material inside the struts

and walls by, for example, direct experiments on walls and struts. Unfortunately, this is

often impossible because of the needed small scale of the testing equipment. Moreover,

the solid material behaviour in the linear elastic analyses is assumed to be linear and time-

independent, while structural elements of foam will have various strain rates. Conse-

quently, material in struts and walls of foam made of polymers will respond diversely and

this can influence the global behaviour of foam. Further, solid polymers may behave

asymmetrically in compression and tension and this effect should be taken into account.

Moreover, no failure criteria are applied to the solid material inside struts and walls. As a

result, the foam model presented cannot predict failure of foam.

The other important group of the simplifications pertains to the restrictions of the

computer capabilities. First, the use of a rather rough meshing in the closed-cell foam

modelling introduces a certain error in the modelling. This error, still small in the linear

analysis of closed-cell foams due to absence of walls buckling, becomes larger when non-

linear analysis is applied. Secondly, the possible contact between walls and struts during

the foam deformation was not incorporated. This simplification leads to the impossibility

of the modelling of the densification effect in the compression region of foams. In addi-

tion, the unit cell dimensions are still limited due to the number of elements that could be

used in the FE computations.

A worthwhile future development of the model is seen in the elimination of the main

simplifications of the random model, namely, by:

• more accurate determination of the mechanical properties of the solid material inside

walls and struts;

• introduction of failure criteria of the solid material in the FE model;

• application of a variable wall thickness within walls in foam cells in such a way, that

walls become thinner in the middle, and not all walls have equal thickness;

• substitution of the simplified circular cross-section of struts by a more complicated one

having a Plateau-Gibbs border shape;

• exact determination of the fraction of open cells (or ruptured walls) in the closed-cell

foam and application of that open cells fraction in the model;
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• taking into account gas pressure inside the cells in closed-cell foams, which is espe-

cially important in the large deformation analysis;

• the use of the larger computer capacities which would allow finer FE meshing and

larger unit cell dimensions;

• adoption of a “unit element” concept with a considerable amount of random foam cells,

but without symmetric boundaries, instead of the more conventional in view of the pre-

scribed symmetry conditions “unit cell” concept which needs a regular boundary layer.



Modelling of the mechanical properties of low-density foams  119

APPENDIX

This Appendix discusses the procedure adopted to carry out the FE analyses using the

nonlinear material behaviour of the struts (B or C in Fig. 2.23 in the main text). An incre-

mental, Updated Lagrange approach is used in which the incremental (or tangent) stiffness

against tension and bending are determined from the integrated deformation history of the

cross-section. This integration is carried out numerically by subdividing the cross-section

into  by  segments as shown in Fig. A1. The axial strain  at segment ,

with coordinates , follows from standard kinematics as

, (A1)

where  is the average axial strain of the strut,  and  are curvatures about correspond-

ing local - and -axis. For the nonlinear constitutive relations in Fig. 2.23, the local tan-

gent  at this segment is a function of the local strain . The local incremental

response  at all segments is then used together with the in-

cremental form of Eq. (A1) to determine the global incremental relations for normal force

 and bending moments ,  in terms of the global incremental deformations ,

 and  through
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,  and

. (A2)

Here,  is the area of segment  in the undeformed configuration (geometric non-

linearity associated with contraction of the cross-section is neglected throughout).

Because of the relatively small torsional strains found in the foam (see Section 2.3.2),

material nonlinearity is neglected in the torsional resistance. Thus, the torsional stiffness is

taken to be determined by the initial shear modulus  of the solid material.
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SUMMARY

Foamed materials are applied in many products, because of the special combination of

mechanical properties and low density. The mechanical properties of foams are deter-

mined by the properties of the solid material inside the foam and the topology of the foam

structure. This makes it possible to model the mechanical behaviour of foams with the

help of a Finite Element Method. In this thesis, FE analyses are performed on various

types of foams and the effects of various geometrical features of the foam geometry are

studied.

The majority of the existing models is based on regular structures consisting of struts

and walls associated with the structural elements in foams. The main advantage of the pre-

sented random model in comparison with already existed ones is the use of a geometry

very close to the real foam geometry. This allows to understand the dominant deformation

mechanisms in foams and, therefore, to predict the behaviour of foams. The FE analysis

results were compared to the results of experiments from which the mechanical properties

were obtained. The experimental investigations of foams also comprised a microscopic

analysis of the geometrical features of the foam. Various types of foams were studied in

this way: polyurethane, polystyrene, polymethacrylimide, glass and aluminium foams.

First, an open-cell random foam model has been created with the help of the 3D Voro-

noi technique. The deformation behaviour of regular foams is dominated by bending of

struts. This has already been recognized by several other scientists. However, it has been

shown in this thesis that the behaviour of random foams is different. Axial deformations in

random foams play an important role even in the initial stage of the deformations. This is

opposed to the regular models often used in practice. The FE analyses showed that the

stiffness of a random foam model is higher than that of corresponding regular models due

to the “coincidental” percolations of chains of randomly oriented struts. These chains bear

a significant axial load. The random open-cell model showed that axial deformation

becomes dominant in all foams under large tensile strains.

Geometrical anisotropy of open-cell foam is also modelled. It is described by the

introduction of two kinds of anisotropy. This technique allows to reach a close corre-

spondence between the geometrical features of real foams and those of the model. Conse-

quently, the behaviour of foam can be modelled and predicted.

Similar to the open-cell foams, also a closed-cell random foam model is created. It has

been shown that the geometry of a model is important for the prediction of the mechanical

properties of foams. The distribution of the solid material between struts and walls in
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foam is very important, and foams with all material inside the walls (struts are not pro-

nounced) exhibit the highest mechanical properties. Moreover, not all walls are closed in

closed-cell foams. Some of them are ruptured during or after processing. This is also one

of the geometrical features which influence the foam behaviour considerably. Comparison

of regular and random foam models showed that simple fcc- and bcc-based foam models

can be used to predict the Young's modulus of isotropic foam, if the main part of the mate-

rial in the modelled foam is concentrated in walls. Otherwise, if the fraction of solid in

struts is considerable, regular models give inaccurate results and the use of the random

model is advisable.

Furthermore, the anisotropy in closed-cell foam is described analogous to that in the

open-cell foam model. The predicted Young's modulus in real foam is much more accurate

than previously described (literature) models. Finally, a complete random anisotropic

closed-cell foam model is created and successfully used to predict both linear and nonlin-

ear mechanical behaviour of a real anisotropic closed-cell foam.

Vladimir Shulmeister
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SAMENVATTING

Geschuimde materialen worden in veel produkten toegepast wegens hun bijzondere

combinatie van lage dichtheid met goede mechanische eigenschappen. De mechanische

eigenschappen van geschuimde materialen worden bepaald door de eigenschappen van

het materiaal waar het schuim van gemaakt is en door de topologie van de schuim struct-

uur. Dit maakt het mogelijk de mechanische eigenschappen van een schuim te modelleren

met behulp van de Eindige Elementen Methode (EEM). In dit proefschrift wordt een EEM

analyse gepresenteerd van de invloed van diverse geometrische factoren op de mecha-

nische eigenschappen van verschillende schuimsoorten.

De meerderheid van de bestaande modellen zijn gebaseerd op regelmatige structuren,

bestaande uit kleine staven “struts” en celwanden “walls” als elementaire constructieve

elementen waaruit het schuim is opgebouwd. In dit proefschrift zijn ook meer onregel-

matige, z.g. gerandomiseerde structuren onderzocht. Het voordeel t.o.v. de eerder beschre-

ven regelmatige structuren is dat de onregelmatige structuren veel beter overeen komen

met de waargenomen werkelijke structuur van schuimen. Zo is het nu mogelijk de domi-

nante vervormingsmechanismes in geschuimde materialen beter te begrijpen en het

gedrag beter te voorspellen. De resultaten van de EEM modeleringen zijn vergeleken met

experimenteel bepaalde schuim-eigenschappen. Verder zijn er diverse microscopische

analyses uitgevoerd om de topologische karakteristieken van de schuimgeometrie te

bepalen. De experimenten zijn uitgevoerd voor diverse materialen: polyurethaan, polysty-

reen, polymethacrylimide, glas en aluminium schuimen.

Opencellige schuimen worden het eerst gemodelleerd. Een topologisch schuimmodel

is gemaakt met behulp van een drie-dimensionale Voronoi methode. Het vervormingsge-

drag van regelmatige schuimen blijkt gedomineerd te worden door buiging van de

“struts”. Dit is al eerder herkend door verschillende andere onderzoekers. Uit het onder-

zoek in dit proefschrift blijkt echter dat axiale vervormingen belangrijk worden wanneer

de schuimstructuur gerandomiseerd wordt. De stijfheid van een “volledig gerandomise-

erd” onregelmatig schuim is een factor twee tot vier hoger dan van een regelmatig schuim,

afhankelijk van het type model voor het regelmatige schuim waarmee wordt vergeleken.

De EEM analyse toonde dat de stijfheidstoename ontstaat door het “toevallig” optreden

van ketens van “struts” die in de belastingsrichting georiënteerd zijn. Deze ketens dragen

een relatief grote axiale belasting. Dit effect wordt in geen van de eerder gepubliceerde

modellen beschreven.

Het effect van geometrische anisotropie van opencellige schuimen op de mechanische

eigenschappen is ook gemodelleerd. Er is een nieuwe manier gevonden om geometrische
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anisotropie te modelleren. Daarbij worden twee verschillende soorten anisotropie ondersc-

heiden. Op deze manier blijkt het mogelijk de werkelijke topologie van anisotrope schui-

men zeer goed te benaderen en het gedrag realistisch te modelleren. De mechanische

eigenschappen van opencellige anisotrope schuimen konden op deze manier goed voor-

speld worden.

Op een analoge manier zijn ook geslotencellige schuimen gemodelleerd. Ook hier bli-

jkt de topologie van het gemodelleerde schuim belangrijk te zijn. De verdeling van het

materiaal over “struts” en “walls” heeft grote invloed op de stijfheid van het schuim.

Schuimen met veel materiaal in de celwanden (“walls”) blijken relatief stijf te zijn. Het

blijkt dat niet alle celwanden in geslotencellig schuim ook werkelijk gesloten zijn. Som-

mige celwanden zijn beschadigd tijdens of na de produktie van het schuim. Hoe meer cel-

wanden open zijn, hoe lager de stijfheid van het schuim is.

Een vergelijking van regelmatige en onregelmatige structuren blijkt voor geslotencel-

lige schuimen een veel kleiner verschil op te leveren dan voor de eerder genoemde open-

cellige schuimen. Simpele fcc en bcc modellen voldoen hier, zolang het grootste deel van

het materiaal aanwezig is in de celwanden.

Het effect van geometrische anisotropie in geslotencellige schuimen is gemodelleerd

op een analoge manier als voor opencellige schuimen. De resulterende stijfheden komen

veel beter overeen met de gemeten stijfheid van echte schuimen dan de stijfheden volgens

eerder gepubliceerde modellen uit de literatuur. Tenslotte is een onregelmatig anisotroop

model geconstrueerd voor geslotencellig schuim. Hiermee kon het mechanisch gedrag in

het lineaire en het niet lineaire gebied van een echt schuim goed beschreven worden.

Vladimir Shulmeister
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Propositions

accompanying thesis
“Modelling of Mechanical Properties of Low-Density Foams”

Vladimir Shulmeister
January, 1998

1. The main drawback of the regular foam models is not their inability to predict the behaviour
of foamed materials. To make it work, some adaptive coefficients may be used (and are
used!). The main problem is the inability of the regular models to demonstrate “why” it is
so.

2. Chaos is difficult to predict. From this point of view, the mechanical properties of polymer
foams are very difficult to model not only because of their irregular (chaotic) geometry, but
also due to the chaotic structure of the solid polymer itself on the macromolecular level
within the  structural elements of the foam.

3. Nature is at least three-dimensional.

4. From the geometrical point of view, the cover of this thesis is very close to the evolution
process.

5. One of the problems of models that use the fitting of the experimental data is that they plot
different materials with very different parameters on one graph and then try to fit this data
for one of the parameters without taking the others into account. This drawback is much
easier to overcome in the sort of modelling presented in the thesis, where one may change
only one parameter and be sure about the purity of the comparison among several models.

6. Everything can be explained! And even in several ways!

7. An important thing in the life of a person is his communication with the world around, or
with other people. His situation may be modelled by a hammock. When some of the con-
nections break (ropes rupture), the load is redistributed among the other ropes. At a certain
point the load may exceed the limit and, if no new connections are made, a crisis ensues.

8. Everything starts from nothing. And it ends there too...

9. Every PhD student has a right to write a dissertation and everybody else has a right not to
read it.

10.One of the formulations of the meaning of life is to be happy. Everybody just fills this
meaning with his own understanding of happiness.

11.A human being is originally lazy. From this point of view, “success” may be defined as
“overcome laziness multiplied by a fortune factor”.

12.An understanding of the purpose of life is to leave some remembrance after. It can be real-
ized through “children” and through “work”. Many people choose only the first realization
(often due to their “original laziness”, see the foregoing proposition) without being con-
scious that “the main work” comes after the children are made.

13.Number 13 may be a lucky number. Just believe in it!



Stellingen

behorende bij het proefschrift
“Modelling of the Mechanical Properties of Low-Density Foams”

Vladimir Shulmeister
January, 1998

1. Het belangrijkste nadeel van de huidige schuimmodellen is niet het feit dat men er het
gedrag van geschuimde materialen niet mee kan voorspellen. Om ze te laten werken, kun-
nen immers enige variabele coëfficiënten worden gebruikt (en dat wordt ook gedaan!). Het
grootste probleem is het feit dat de huidige modellen niet kunnen verklaren waarom dingen
zijn zoals ze zijn.

2. Chaos is moeilijk te voorspellen. Hieruit volgt dat de mechanische eigenschappen van
polymeerschuimen zeer moeilijk te modelleren zijn, niet alleen vanwege hun onregelmatige
(chaotische) geometrie maar ook vanwege de chaotische structuur van de vaste polymeren
zelf op het macromoleculaire niveau binnen de structurele elementen van het schuim.

3. De natuur is tenminste drie-dimensionaal.

4. Vanuit een geometrisch gezichtspunt komt de omslagillustratie van dit proefschrift sterk in
de buurt van het evolutieproces.

5. Eén van de problemen met modellen waarin experimentele resultaten worden verdiscon-
teerd is het feit dat diverse materialen met zeer diverse parameters in één grafiek worden
samengebracht en dat men daarna probeert deze gegevens te laten kloppen voor één param-
eter zonder de andere in acht te nemen. Aan dit nadeel is veel eenvoudiger te ontkomen bij
het type modellering dat in dit proefschrift wordt gepresenteerd; hierin mag men maar één
parameter veranderen en kan men zeker zijn van de zuiverheid bij een vergelijking van de
diverse modellen.

6. Alles kan worden uitgelegd! En zelfs op verschillende manieren!

7. Een belangrijk aspect in het leven van een mens is zijn communicatie met de wereld om
hem heen of met andere mensen. Zijn situatie kan vergeleken worden met een hangmat. Als
enkele verbindingen verbroken worden, dan wordt de belasting herverdeeld over de andere
verbindingen. Op een zeker punt kan de belasting een grens overschrijden en zal, indien
geen nieuwe verbindingen worden gemaakt, een crisis intreden.

8. Alles begint vanuit niets. En daar eindigt het ook...

9. Elke promovendus heeft het recht een proefschrift te schrijven en ieder ander heeft het recht
dit niet te lezen.

10.Eén van de formuleringen voor ‘de zin van het leven’ is: gelukkig zijn. Iedereen vult dit in
aan de hand van zijn eigen opvatting van geluk.

11.Een mens is van origine lui. Vanuit dit gezichtspunt kan “succes” gedefinieerd worden als
“overwonnen luiheid, vermenigvuldigd met een geluksfactor”.

12.Eén van de opvattingen over het doel van het leven is: het achterlaten van een herinnering.
Dit kan worden gerealiseerd middels “kinderen” en middels “werk”. Veel mensen kiezen
alleen voor de eerste optie (vaak vanwege hun “oorspronkelijke luiheid”, zie de voorgaande
stelling) zonder dat zij zich ervan bewust zijn dat “het echte werk” begint nadat de kinderen
zijn gemaakt.

13.Het getal 13 kan een geluksgetal zijn. Je moet er gewoon in geloven!


