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Preface
I’m proud to present this thesis report, which describes research on Static Output Feedback over a period
which lasted a little over a year at the Delft University of Technology. I am pleased to say that I will be the
first student to graduate on a Robust Control subject at the Aerospace Engineering Faculty at TU Delft since
many years, and I’m confident more groundbreaking researches will succeed mine. I would like to express my
sincere gratitude to Coen, and to Spilios, my supervisor, for masterfully guiding me through this complicated
branch of control. I would also like to thank Fedrik, Yair, and Chari, my student peers, without whom this
project probably would’ve taken me much longer to finish. Lastly, I would like to express gratitude to my
family and friends as well for their emotional support and encouragement.

This thesis provides a full implementation of promising Lyapunov-based Static Output Feedback (SOF)
algorithms for H∞-performance. Additionally, the algorithms have been extended to incorporate structured
SOF, and I have tried to improve upon the original algorithms in terms of computational efficiency. The
algorithms have been compared to well-established non-smooth optimization methods to assess their compet-
itiveness.

Thank you so much for your interest in my thesis and I hope it can inspire you to do more research on
SOF, because it is still very much an open problem.

A.D.P. Schoon
Delft, December 2023
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Introduction
In many applications, including aerospace applications, it is often not possible to measure all the states.
State-feedback, i.e. full-information, controllers are therefore less realistic when compared to output feedback
controllers, which are based on the measurable outputs only and are therefore more applicable in practical
applications.

Furthermore, in H∞ control, synthesized controllers are often of high order. It is often desired, however,
to construct fixed-order controllers with lower order in contrast to full-order controllers, the latter of which
are more expensive to tune and apply in practice. It is therefore cheaper and more practical to use fixed-order
controllers that have a lower order, e.g. PI controllers. This also makes it easier to provide hardware and soft-
ware maintenance in industrial applications. The simplest subset of fixed-order output feedback controllers
are static output feedback (SOF) controllers, in contrast to dynamic output feedback (DOF) controllers. The
simplicity of SOF controllers leads to them being desirable in practice, also because of the fact that these
controllers are direct, meaning the entries of the controller have a physical interpretation, as they directly
link a certain input with a certain output. Lastly, the long-term memory aspect of dynamic controllers is
rendered useless when dealing with fast changing dynamics and/or random noise.

The problem of designing SOF controllers is a difficult challenge and is the reason for much of the scientific
research in the late 1990s and to this day it is still an open problem in control engineering. This is due to
the fact that fixed-order control problems, i.e. (Lyapunov based) Bilinear Matrix Inequality (BMI) problems
or spectral abscissa minimization problems, are NP-hard to solve due to their non-convexity and/or non-
differentiability, making it difficult to solve in polynomial time (Toker and Ozbay 1995).

Many attempts have been made in recent years to tackle the problem of SOF control. Methods that are highly
efficient in synthesizing fixed-order controllers and SOF controllers are HIFOO (Burke et al. 2006) and Hin-
fstruct (Apkarian and Noll 2006b). Although their undeniable power in synthesizing SOF controllers, these
methods do not allow for much flexibility and transparency in their approach as they rely on rather sophisti-
cated theoretical tools (non-smooth optimization) without much control interpretation in their approach. So
from the perspective of a control designer, it might be preferable to opt for alternative methods.

Research gap and contribution
SOF synthesis methods have been compared in papers before (Syrmos et al. 1997; Sadabadi and Dimitri
Peaucelle 2016). However, there has been a great amount of research done on SOF synthesis since then,
which has not been covered by the aforementioned papers, the most significant being (M. Saeki and C. M.
Saeki 2018; Dingchao Ren 2022; Holicki and C. W. Scherer 2021; Harikumar, Dhall, and Bhat 2019; Chanekar,
Chopra, and Azarm 2017; Cheng et al. 2022; Feng, She, and Xu 2019; Feng, Guo, et al. 2022; P. Li et al. 2021;
D. Ren, Xiong, and Daniel W.C. Ho 2021; Y. Ren et al. 2021; Sereni et al. 2018; B. Sereni 2023; Sahoo et al.
2019; Gopmandal and Ghosh 2021; Chou and Wei 2020; Y. Peretz 2017; Yossi Peretz 2018; Peretz, Merzbach,
and Moyall 2020; Tian et al. 2020; D. Arzelier et al. 2018; Felipe and R. Oliveira 2021). Furthermore,
these comparative studies mostly compared the methods qualitatively, explaining the different advantages
and disadvantages of each group of approaches. While this is useful in order to gain understanding of the
methods, decisive conclusions on the competitiveness of these methods can be drawn with more confidence
when accompanied with quantitative analysis of their performance. To the best of the author’s knowledge,
there has not been such comparative study done this to this day.

This research will try to fill this gap by investigating different SOF synthesis approaches and comparing
their results to commercially available software and to other experimented SOF methods. Hence, conclusions
can be drawn on the current state of SOF synthesis approaches and their competitiveness with highly efficient
methods such as HIFOO and Hinfstruct. It is worth noting as well that the authors of the SOF approaches
generally do not provide public domain software to reproduce the computational experiments. It is therefore
already useful should implementation of the written theory be able to be performed.

Besides contributing to the field of research on SOF, this study will contribute to the field of aerospace, by
analyzing the possibility of applying a SOF controller to stabilize the complex and often coupled dynamics
of military fighter aircraft, which are open-loop unstable and thus more difficult to control (Stein 2003).
Applying SOF controllers to aeronautical applications would greatly reduce the long and expensive process
of certifying flight control systems. To showcase the effectiveness of the approaches, the methods will be
applied on the F-16 Fighting Falcon. Finally, mixed sensitivity allows for a good framework for application
of the SOF algorithms, due to its transparency in meeting closed-loop design objectives with weighting filter
selection for multi-variable systems.



3

Objective and research questions
To obtain a clear purpose and define the structure of the research, the research objective and its research
questions are formulated as follows:

Research Objective:

”To obtain more insight into the performance of Lyapunov-based static output feedback controller syn-
thesis methods in the H∞ mixed sensitivity framework.”

Research Questions:
The main research question that can be formulated is as follows:

Q: ”How competitive are Lyapunov-based static output feedback synthesis methods in an
H∞ mixed sensitivity framework for flight control of fighter aircraft, so that it is robust
against uncertainties and achieves good performance?”

The main research question can be subdivided in the following subquestions:

Q1: What mixed sensitivity approaches are suitable for flight control of fighter aircraft?
Q1.a: What approaches are stated in the literature?
Q1.b: What are the strengths and limitations of each approach?

Q2: What are the state-of-the-art Lyapunov-based algorithms for static output feedback control?
Q2.a: What algorithms are stated in the literature?
Q2.b: What are the strengths and limitations of each algorithm?

Q3: How well do the static output feedback algorithms perform on benchmark models, in comparison to
well-established methods?
Q4: How well do the controllers synthesized by the static output feedback algorithms perform on the
nominal aircraft model?
Q5: How robust is the closed-loop system tuned with static output feedback synthesis to uncertainties in
the aircraft model?

Report structure
The bibliographic review can be divided into two main parts. The first part consists of covering the robust
control methods. It will cover the literature concerning the mixed sensitivity and tries to compare and ex-
plain different approaches on the application on fighter aircraft. This can be found in section 1.1. After that,
different algorithms for SOF controller synthesis are explained and their advantages and disadvantages are
elaborated on in section 1.2.

Notation: X⊤ for a matrix X denotes the transpose, Sym
{
X
}
denotes X +X⊤, X⊥ denotes the orthogonal

complement, X+ denotes the Moore-Penrose pseudo-inverse, and ||X||∞ denotes the H∞-norm of X, lastly,
* in a symmetric matrix denotes the symmetric term.
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1.1. Robust Control Method
In this chapter, the robust control method that is used on the F-16 is presented and elaborated on. In
subsection 1.1.1, the history and theory of the H∞ control is given. Then, in subsection 1.1.2 an overview is
given of the characteristics of fighter aircraft and their implications and an overview of control methods on
fighter aircraft is given. Finally, in subsection 1.1.3, the different approaches to mixed sensitivity design are
presented and compared for their strengths and limitations.

1.1.1. H∞ control
Most of the 20th century was dominated by classical and optimal control, which provided powerful methods
for optimal performance and stability. However, in practice, these methods were found to be unable to
withstand model uncertainty and this lead to many systems becoming unstable in practice. Therefore, a
change of paradigm was on the horizon and this lead to the birth of robust control and with it, H∞ control.

The introduction of the H∞ norm was introduced in the 1960s by George Zames, but the research for
H∞ control came much later, after Zames introduced it in (Zames 1981). The core was defined by the
minimization of the H∞-norm, i.e. the maximum gain of the system over all frequencies and in all directions.
Minimizing this will minimize the effect of external (exogenous) inputs on the evaluated output of the system.
In (Keith Glover and J. C. Doyle 1988), the problem was proven to be solvable using Algebraic Ricatti
Equations (AREs). After that in (Pascal Gahinet and Apkarian 1994), semi-definite programming was used
to solve the problem using Linear Matrix Inequality (LMI) constraints.

Many methods rose from the introduction of the H∞ control. These include for example mixed H2/H∞
control (J. Doyle, Zhou, and Bodenheimer 1989) and H∞ loop-shaping (D. C. McFarlane and Keith Glover
1990; D. McFarlane and K. Glover 1992). For mixed sensitivity loop shaping, early considerations of min-
imization of infinity norms on weighted sensitivity functions can be traced back to Zames’ paper already
and early examples of mixed sensitivity control can be found in (Francis 1987; Safonov, RY Chiang, and
Flashner 1988). A discussion of these methods and their different advantages and disadvantages with respect
to eachother can be found in (Bates and Ian Postlethwaite 2002a).

1.1.2. Control of fighter aircraft
Before diving into the different methods for H∞ mixed sensitivity control, first the configuration shall be
investigated on which these methods will be applied. The F-16 and its flying characteristics will be described
including discussion on its open-loop instability, after which an overview of control methods on fighter aircraft
will be presented next.

Aircraft description and flying characteristics
The Lockheed Martin F-16 ”Fighting Falcon” is a fighter aircraft, falling under Class IV of high-maneuverability
airplanes in (“MIL-F-8785C” 1980). Due to the fact that it is a Class IV aircraft, high-performance precision
tracking of targets is required. The F-16 is fly-by-wire and is open-loop unstable with the center of pressure
lying ahead of the center of gravity, leading to the fact that it is much harder to control than statically stable
aircraft. This is done in order to greatly improve maneuverability, one of the inherent requirements to Class
IV aircraft. In fact, the F-16 is the first fighter aircraft where open-loop instability was used deliberately.
The implications of this on the design of the controller are described in (Stein 2003) and can be summarized
as follows:

• Sensitivity equilibrium: Attenuation of sensitivity peaks at certain (low) frequencies must be ”paid
for” at other (higher) frequencies, within a certain frequency range called the ”available bandwidth”, and
this price is worse for open-loop unstable systems. The price of sensitivity reduction is directly related
to the location of the unstable pole(s) and the bandwidth up to which one wants good performance.

• Operation critical: Controllers for open-loop unstable systems are operation critical. Therefore, for
fly-by-wire systems such as the F-16, careful reliable control systems must be designed that involve
redundancy management with multiple backup channels in case of failure. A voting system then takes
place to identify failure channels. In case of unstable dynamics this voting process becomes troublesome
due to set thresholds being exceeded on which the voting is based.

• Local stability: Closed-loop systems with unstable components are only locally stable. Special care
must be taken to avoid position and rate limits saturation, in which case divergence would occur.

The non-linear equations of motion stem from (Zipfel 2007), the six degrees-of-freedom aerodynamic model
is taken from (Stevens, Frank L. Lewis, and Johnson 2016, p. 714-723), and the flight requirements stem
from (“MIL-F-8785C” 1980). These include bounds for the natural frequency and damping ratio for different
flight modes, e.g. Dutch roll, short-period, etc. Knowing these, one can obtain the required placement of the
poles to satisfy handling qualities. However, in case of highly augmented aircraft such as the F-16, pole-zero
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specifications become quickly impractical due to the contribution of additional poles and zeros by the control
systems. In that case, frequency-response techniques can be applied by, for example, fitting a low-order
modal system to a higher-order system (Stevens, Frank L. Lewis, and Johnson 2016). This will be further
described in subsubsection 1.1.3.

Control methods overview
H∞ robust control has been implemented widely in aerospace applications due to their robustness guarantees
and performance. In (Voulgaris and Valavani 1991), mixed sensitivity control is applied on the F-18 and in
(Ikeda, McDowell, and Hargis 1990), mixed sensitivity control was applied on the longitudinal dynamics of
a fighter aircraft and results were compared to that of LQG design. In (Garg and Ouzts 1991; Garg 1993),
mixed sensitivity was applied on a supersonic short take-off and vertical landing (STOVL) to operate in
transonic flight conditions. In (Anderson, Emami-Naeini, and Vincent 1991), a mixed sensitivity approach
has been used for the control law design on the lateral-directional dynamics of a hypersonic vehicle. In (R.Y.
Chiang et al. 1993), a non-scheduled fixed mixed sensitivity controller is designed for a supermaneuverable
aircraft in order to perform a Herbst maneuver. In (Kwakernaak 2002b), the S/KS mixed sensitivity design
discussed in subsection 1.1.3 by the same author is applied on a design example of a fighter aircraft. Finally,
in (Yang, Chang, and Y.-P. Sun 1996), the S/T mixed sensitivity approach was applied on a pitch-axis
controller of the Rockwell HiMAT, a highly maneuverable aircraft.

Concerning the F-16, in (Alvarez and Lu 2011), comparisons between different control approaches (classi-
cal, H∞, and LPV control) were compared in piloted simulation on the longitudinal dynamics of an F-16 and
they were tested on pilot scores of handling qualities. In (Gadewadikar and F. Lewis 2006; J. Gadewadikar
et al. 2006), a two-stage approach proposed by the same authors is applied, respectively, on the longitudinal
and lateral dynamics of the F-16 using H∞ control to obtain a SOF controller (see subsubsection 1.2.2 for
more details). In (Lu and F. Wu 2005), with a randomized algorithm, a weighted sensitivity problem is syn-
thesized for a longitudinal autopilot controller of the F-16 to be robust against probabilistic uncertainties. In
chapter 4 of (Adams et al. 1994), using dynamic inversion and µ-synthesis, a lateral-directional controller is
designed for the F-16 and lastly, in chapter 4 of (Bates and Ian Postlethwaite 2002a), a wing-leveller control
law was designed for the F-16 using H∞ loop shaping.

There is a large amount of research done on the F-16 besides H∞ control. Some of the other methods are
listed as follows: Sliding Mode Control is used for the F-16 in (Vo and Seshagiri 2008; Seshagiri and Promtun
2008; Nguyen and Tran 2020). In (Stevens, Frank L. Lewis, and Johnson 2016), LQQ/LTR design was
applied to the F-16 for different autopilots. In (Tol et al. 2014), Non-linear Dynamic Inversion (NDI) was
combined with control allocation based on multivariate splines to improve high-performance tracking for the
F-16, even in non-linear regions such as high angle-of-attacks. In (Reigelsperger, Hammett, and Banda 1997),
µ-synthesis and dynamic inversion was applied on the lateral-directional modes of an F-16. In (Keviczky and
Balas 2006), model-predictive control is applied on the longitudinal axis of the F-16. In (Lu, F. Wu, and
S. Kim 2006; Shin, Balas, and Kaya 2002), LPV control is used to stabilize the F-16 over the entire flight
envelope and in (Lars Sonneveldt, Chu, and Mulder 2006; L. Sonneveldt et al. 2009), nonlinear constrained
adaptive backstepping is applied on the F-16 to design a stability and control augmentation system.

1.1.3. Mixed-sensitivity methods
Mixed sensitivity H∞ controller design tries to satisfy multiple design objectives, formulated in terms of
the singular values of certain closed-loop transfer functions in the system. This provides a way to specify
requirements to both robust stability to unstructured system uncertainty, and to nominal performance. The
design objectives relevant to this type of aircraft include low-frequency disturbance attenuation and reference
tracking, and the closed-loop system must be robust to model uncertainty.

The following methods will try to exploit the relevant sensitivity functions to meet these design require-
ments. In (Huang et al. 2010), a comparison is made between the common S/KS method, the four-block
method (Skogestad and Ian Postlethwaite 2005, p.508), and an alternated S/KS method by (Kwakernaak
2002a).

S/KS methods
In general, constraining the sensitivity function S leads to better disturbance attenuation and less steady-
state error, and constraining KS leads to less control effort, more measurement noise attenuation at the
input, and robustness to additive uncertainty. σ̄(S) is required to be small at low frequencies, since those are
the frequencies of most disturbance signals and σ̄(KS) is to be small at high frequencies since that is where
the frequencies of the noise (at the plant input) lies. W1 is generally a diagonal matrix containing low-pass
filters with bandwidth equal to that of the disturbance and W2 a high-pass filter with crossover frequency
equal to the desired bandwidth (Bates and Ian Postlethwaite 2002a).
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An advantage of S/KS is the simplicity of the design. With only 2 stacked cost functions as above, the
bandwidth requirement is often complementary and simple filters are enough to carry out the required shap-
ing (Skogestad and Ian Postlethwaite 2005). Disadvantages of the standard S/KS method are that pole-zero
cancellations are inherent to the problem and make stability of the closed-loop system dependent on these
cancellations. A further discussion of this problem can be found in (Sefton and K. Glover 1990; Tsai, Geddes,
and Ian Postlethwaite 1992). Pole-zero cancellations can induce instability when unstable poles are cancelled
with compensator zeros and, due to uncertainties, the zeros are slightly moved. Besides inherent pole-zero
cancellations, the S/KS method fails to provide specifications on other design objectives other than those
linked to σ̄(S) and σ̄(KS). So, only constraining S and KS leads to problems when considering, for example,
input disturbance signals at the plant output (SG would be relevant).

An alternated S/KS method is described in (I. Postlethwaite, Tsai, and Gu 1990; Tsai, Geddes, and Ian
Postlethwaite 1992; Kwakernaak 2002a; Kwakernaak 2002b), where a rational matrix V is added as a pre-
filter on the exogenous signals (reference and/or disturbance). Assuming that the plant transfer matrix has
the left polynomial fraction representation P = D−1N , then V consists of a product of the inverse of D, the
polynomial coprime factor of the plant and lastly M , which is a polynomial matrix chosen in order for V to
be bi-proper. The authors then proceed to tackle the problem of pole-zero cancellations by partially placing
the dominant closed-loop poles as the roots of M . Partially, because only the dominant poles are reassigned
as the roots of M and there are other closed-loop poles present. Besides preventing pole-zero cancellations,
one could alter the performance of the closed-loop system by assigning the poles.

However, according to (Huang et al. 2010), tuning of the pre-filter V is a process that takes a lot of time
and effort and it is heavily dependent on the plant, so there is not a lot of freedom in tuning W1V and W2V
in the alternate S/KS method.

S/T and S/KS/T methods
As described in (Bates and Ian Postlethwaite 2002a), constraining T is done to ensure good reference tracking,
one of the design objectives, and this motivates the use of S/T and S/KS/T methods. The S/T method is
less complex than the S/KS/T method. However, as mentioned above, constraining KS as well helps to
be robust against additive uncertainty as well as reducing the control effort, which is important for aircraft
applications, where there are physical constraints on the actuator angles and rates.

S/KS/T approaches are the most used methods from the mixed sensitivity methods, since it provides a
good balance between performance (disturbance attenuation and reference tracking) and robustness against
additive and multiplicative uncertainties at the plant output, while minimizing the control effort as much
as possible to stay within the physical bounds of the actuators. Some of the current day literature that use
S/KS/T are (Pirat et al. 2020; Ma et al. 2021; Zhao et al. 2019; M. Zhang et al. 2021; Asali, Indriyanto,
Trilaksono, et al. 2019; Ji and A. Wu 2011; Nag et al. 2013).

Four block methods
Four-block methods give the designer possibility to constrain more transfer functions where the other meth-
ods above fail to do so. Attenuating KSG and SG could minimize the effect of input disturbance on the
error signal, plant output, and plant input. This approach has more exact relations between the weighting
functions in each block and the closed-loop performance objectives, making the tuning process more trans-
parent. However, interference between the weighting functions are more common since different closed-loop
performance objectives can be achieved through more ways than in comparison to two-block methods (Huang
et al. 2010).

An example of a variant of the four-block method that was used to enhance disturbance rejection is given
in (Skogestad and Ian Postlethwaite 2005, p.508). In this case, pre-filters are used that act on the reference
signal and disturbance signal and act as tuning knobs for the designer. The system includes a disturbance
model Gd, which allows to incorporate modelled atmospheric turbulence. A system including disturbance
rejection is shown in Figure 1.1.

The four block method with disturbance rejection aims at improving passenger comfort. More impor-
tantly for fighter aircraft, it also aims at alleviating pilot workload in countering gust. Thereby, it enables
aggressive maneuvers in poor weather conditions and in general, improves tracking precision during aggressive
maneuvers.

Model following
This method includes a (second-order) reference model which is obtained from inspecting the desired short
period characteristics, i.e. the natural frequency and damping ratio of the response.
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Figure 1.1: Disturbance rejection interconnection diagram (Skogestad and Ian Postlethwaite 2005, p.508)

An example of an application which includes model following is described in (Florian Sève et al. 2014; Sève
et al. 2017), where the error between the output to the reference model and output to the model (which
correlates with the model-matching sensitivity) is constrained by a different weighting function. When done
correctly, this will lead to the system following the reference model and in turn leads to desired handling
qualities, which are described in (“MIL-F-8785C” 1980). With this method, the reference model serves as
a pre-compensator and due to the use of the four stacked functions instead of two for the S/KS method, it
gives the designer more capabilities of loop-shaping the system. An extensive discussion on the procedure for
model-following design in application to mixed sensitivity can be found in (Daniel WC Ho, James Lam, and
TWK Chan 1992; D. Ho, J. Lam, and T.W.K. Chan 1994).

Figure 1.2: Interconnection of four-block configuration including reference model. From (Sève et al. 2017).

Weight selection
All the weights in mixed sensitivity design should be stable and proper. This is due to assumptions made on
the shaped generalized plant for solving the controller K (Bates and Ian Postlethwaite 2002b). Furthermore,
the weight matrices are diagonal matrices containing their filters on the diagonal elements, so that the tuning
can be related to specific inputs/outputs.

For the weighting filter on the error Ws, one should bear in mind that the inverse should serve as an
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upper bound for the singular values of the sensitivity function S:

|Ws(s)S(s)| < 1 → σ(S(s)) <
1

|Ws(s)|
(1.1)

A similar relationship holds for the other weighting filters as well. A common choice is the following low-pass
filter ((J. H. Kim and Whang 2018; Bates and Ian Postlethwaite 2002a; Feng, Guo, et al. 2022) to name a
few that use this):

Ws(s) = M
s+ ωb

s+ ωbϵ
(1.2)

where M = 0.5 is a typical value. The cross-over frequency is denoted by ωb, and 10−6 ≤ ϵ ≤ 10−4 a very
small number to make Ws stable. This number also represents an upper bound on the steady-state error. It
is known that the tuning of this weight can be a difficult task and requires skill of the designer. The aim of
Wu is to constrain KS in order to limit the control effort, attenuate measurement noise signals at the plant
input and improve robust stability to additive uncertainty (Bates and Ian Postlethwaite 2002a). The filter is
a high-pass filter, which in case of first order looks as M 1+τ1s

1+τ2s
where τ2 >> τ1.

Optimizing weighting functions
In recent years, there has been some research dedicated to the optimization of the parameters of the weighting
functions of the mixed-sensitivity approach. The classical way of tuning these functions is by engineering
experience and skill. However, it is not hard to understand why this would be sub-optimal, and automatic
tuning of the parameters might be give a better solution. To this end, intelligent optimization methods have
been researched to solve the multi-objective optimization of the weighting functions. These include genetic
algorithms (Varsek, Urbancic, and Filipic 1993; Kumar and Narayan 2016), particle swarm optimization
(Ali et al. 2011), ant colony optimization(Hsiao, Chuang, and Chien 2004) and quantum genetic algorithms
(M. Zhang et al. 2021), just to name a few. More optimal tuning parameters have been reported, although
significant computational and design effort is needed for these algorithms. Therefore, although the methods
are a good option for potential fine-tuning in later stages of control design, for now it is considered beyond
the scope of the current research topic, but nonetheless worth mentioning. Lastly, it is also possible to render
the weighting filters parameters as individual gains and to let Systune tune these parameters. This process
is called co-design and is performed in (Pérez et al. 2022).

1.2. SOF Controller Design
This chapter will give an overview of necessary and/or sufficient conditions for SOF and give an overview of
the different approaches to SOF. It should be noted that the methods described below are categorized but are
not exclusive to such categorization. For example, the method by (Apkarian and Noll 2006a) belongs to Direct
Search methods, but can also belong to the Non-Lyapunov methods and the method by (J. Gadewadikar
et al. 2006) belongs to the Ricatti methods, but can also belong to the two-stage approaches. In general there
are categories where combinations of groups of methods can be used.

In subsection 1.2.1, the SOF problem is defined, after which in subsection 1.2.2 iterative LMI (ILMI)
approaches are presented. Then, in subsection 1.2.3, rank minimization methods are presented, in subsec-
tion 1.2.4 two-stage approaches are covered, in subsection 1.2.5 direct synthesis methods are described, in
subsection 1.2.6 decoupled Lyapunov methods are described, and finally in subsection 1.2.7 non-Lyapunov
methods are elaborated on.

1.2.1. SOF problem definition
The SOF controller gain K is known to stabilize the closed-loop system if one of the following equivalent
statements is true:

The eigenvalues of A+BKC are all in the LHP (1.3)
There exist a P = P⊤ > 0 s.t. P > 0 and Sym{P (A+BKC)} < 0 (1.4)
There exist a Q = Q⊤ > 0 s.t. Q > 0 and Sym{(A+BKC)Q} < 0 (1.5)

The methods in the following sections aim to deal with either the non-convexity and/or the non-differentiability
(non-smoothness) of the conditions above.



1.2. SOF Controller Design 9

1.2.2. ILMI heuristic approaches
In this section the most important and relevant approaches that use iterative LMI’s are given. These ap-
proaches try to deal with the non-convexity of the problem above and work by alternatively freezing variables
of the BMI, to render the said BMI as LMI, which is convex and solvable in polynomial time. A history is
given of these approaches as well as current day developments.

P-K iteration
This is the simplest form of the proposed ILMI heuristics and it is also one of the first approaches that was
proposed (El Ghaoui and Balakrishnan 1994). The idea is to alternatively freeze/fix the Lyapunov matrix P
(or Q), or the controller gain K at each step in the iteration. By doing this, one renders the BMI (1.4) (or
(1.5)) as a convex LMI, which can be solved for P or K in polynomial time.

One of the advantages to this approach is that structural constraints to K can be imposed, since the
corresponding LMI is convex in K. However, the objective function value of the optimization problem has
no control interpretation and the terminal step consequently gives no knowledge or characterization whether
the solution to the objective function is a local minimum/plateau, while rapid convergence to a local plateau
is very probable for most of the ILMI methods descibed in this section.

Path-following method
The problem of having no control interpretation of the objective function in P-K iteration is tackled in the
path-following method that was developed a few years after P-K iteration by (Hassibi, How, and S. P. Boyd
1999). In this method, a level of decay rate is introduced, which is defined as the maximal real part of the
eigenvalues of Acl. The procedure tries to convexify the following BMI:

Sym {P (A+BKC − αI)} < 0 (1.6)
where α is the level of decay rate. (1.6) is convexified by iteratively freezing variables, similar to P-K iteration,
by a first order perturbation approximation around P (or Q) and K with a small search step. The biggest
downside to this approach is that the convergence is very dependent on the step size of the approximation.
If the step size is too small, the convergence might take too much time. In contrast, if it is too large, the
convergence might fail. Also, the initial gain K is again chosen to be zero, there is no intelligent initialization
procedure for this method and this consequently induces conservatism in the results.

Ricatti approaches
The approach in (Cao, Y.-X. Sun, and Mao 1998; Cao and Y.-X. Sun 1998) works by solving Algebraic
Ricatti Equations iteratively to find a stabilizing K. However, similar to other ILMI methods, the algorithm
might converge to a local minimum rapidly, without being able to conclude anything about the dead-point.

The approaches by (J. Gadewadikar et al. 2006; Jyotirmay Gadewadikar, Bhilegaonkar, and F. L. Lewis
2007; Jyotirmay Gadewadikar, Frank L. Lewis, and Abu-Khalaf 2012; Jyotirmay Gadewadikar, Frank L.
Lewis, Subbarao, et al. 2009) are based on AREs as well. Advantages to these approaches are that no
random or null initial gain K0 has to be used. This is in contrast to several iterative methods such as
linearized convex-concave decomposition, path-following method, etc. This leads to the algorithm being
more likely to converge to a local (or global) optimum instead of a local plateau. Furthermore, one can
specify the desired L2 gain bound (γ2) in advance, but if the value is taken too small, the ARE will not
converge. γ thus serves as a design variable which can be tuned.

A disadvantage to this approach is that there is also no dead-point criterion with a control interpretation.
The algorithm just stops whenever the difference in gains between iterations is sufficiently small. However,
the authors claim the algorithm most often leads to convergence and good results are presented using this
approach.

Convex-concave decomposition
This approach introduced by (Tran Dinh et al. 2012) works as well by solving (1.6), which is BMI due to its
term containing the product of P and K. α is again the exponential decay rate, similar to the path-following
method. Instead of dealing with (1.6) directly, as was done for the path-following method, convex-concave
decomposition works by first decomposing (1.6) into convex and concave terms G(.) and H(.). The convex
term G(.) can be transformed into an LMI with use of the Schur complement.
This procedure has been applied to e.g. (Debrouwere et al. 2013; M. Saeki and C. M. Saeki 2018) for dynamic
controllers. The procedure has been applied for the SOF in (Dingchao Ren 2022) with the H2-norm and
negativity imaginary system constraints, the latter which is defined by no poles in the RHP for all frequencies.

The procedure runs into the same problems as the approaches described in the former sections in this
chapter. The solution might converge to a local plateau rapidly without any dead-point criterion characteriza-
tion. In contrast to P-K iteration, the algorithm for SOF includes the exponential decay rate α, which has a
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control interpretation as it is the maximum real eigenvalue of the closed-loop system dynamics. Another one
of the advantages is that, in contrast to the path-following method, one only needs to linearize the concave
part H(.) instead of the whole problem. Furthermore, the procedure has no need for tuning the step size
parameter, which was the case for the path-following method.

Dual-iteration approach
Introduced by (Tetsuya Iwasaki 1999), this approach works by iterating between two stages where the first
version of a dual formulation of (1.6) is first solved with a fixed state-feedback gain. After that, the second
version is solved for a fixed output feedback gain.

The main disadvantage of this approach is the quasi-bilinearity with the terms αP and αQ. This requires
quasi convex optimization at each step. Also, there is no possibility to impose structural constraints on
the gain during iteration, except at the terminal step, which then does not guarantee convergence with this
controller gain structure. However, at each step, P and Q are optimized over, which increases the designer
freedom. Furthermore, the approach relies on an initial state feedback gain, which is less arbitrary than
K0 = 0, which is used in other ILMI methods, such as convex-concave linearization.

In (Holicki and C. W. Scherer 2021), the problem is revisited and the algorithm is extended to robust
gain-scheduled controller design.

Genetic algorithms
In (Marrison and Stengel 1997; Sekaj and Veselý 2002; Arfiadi and Hadi 2001; Harikumar, Dhall, and Bhat
2019), a SOF controller is designed using a genetic algorithm. With a fixed initial matrix that is any square
matrix, LMI’s are solved to obtain the SOF gain and the Lyapunov matrix. The initial matrix serves as a
design variable and is changed until a satisfactory solution is obtained. The fitness of the solution is judged by
a penalty function. Evaluating the internal stability of the closed-loop system with the eigenvalues, one can
construct a penalty function which includes penalties for instability and undesired performance characteristics
of this closed-loop system. Advantage to this approach is its simplicity and ease of implementing. However,
there is no clear reasoning for finding the initial design variable matrix other than randomized approaches,
and convergence to a local minimum (or convergence at all) is heavily dependent on this initialization. Rapid
convergence to a local plateau is a strong possibility when running this algorithm.

Remarks on ILMI approaches
ILMI approaches are in general easy to implement and coding is not that complex, with convergence to a
local solution being a good possibility (Sadabadi and Dimitri Peaucelle 2016). However, for all the ILMI
approaches, the results are heavily dependent on the initialization procedure for either K or the design
matrices. Rapid convergence to a local plateau is common and is again dependent on that initialization step.
Lastly, robust synthesis may be achieved through the so-called ”Lyapunov Shaping Paradigm” where the
Lyapunov matrix obtained holds for all realizations of the uncertain plant.

1.2.3. Rank minimization approaches
The following methods are based on the following inequalities which are necessary conditions for a stabilizing
controller for the system.

B⊥Sym {AQ}B⊥⊤
< 0 (1.7)

C⊥⊤
Sym {PA}C⊥ < 0 (1.8)

W (P,Q) =

[
Q I
I P

]
≥ 0 (1.9)

rank(W (P,Q)) ≤ n (1.10)

where A, B, and C are the system equations, P and Q are the Lyapunov Matrices and n is the order of the
plant.

Min/max algorithm
This algorithm from (J. C. Geromel, Souza, and Robert E Skelton 1998) works by directly and alternatively
optimizing both (1.7) and (1.8) with a given P and Q, respectively. The idea exploits the fact that the rank
constraint (1.10) holds if PQ = I.
Downsides of this algorithm is that the procedure has no dead-point criterion, no local optimum convergence
is guaranteed, and the objective values for the optimization have no control interpretation and are not strictly
non-increasing. Furthermore, the algorithm stops when (1.10) holds, which is not always exactly the case.
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XY-centering algorithm
This method from (Iwasaki and R. Skelton 1995) is similar to the min/max method, but in comparison to
the min/max algorithm described above, this algorithm includes strictly non-increasing criteria values during
iterations. Furthermore, (1.10) (or equivalently PQ = I) does not need to exactly hold for the terminal step.
These two things are advantages over the min/max algorithm. For this algorithm and rank minimization
algorithms that follow, the stopping criterion is dependent on whether (1.4) is feasible for a given P that
comes from a converged ||PkQk − I|| (at least close to zero), where k is the iteration number.

Projection methods
The alternating projection method (Grigoriadis and Robert E Skelton 1996) works by searching (P,Q) in the
intersection of the non-convex set where (1.10) holds and the convex set where (1.8)-(1.9) hold. It finds this
by taking orthogonal projections on each set alternately. The projection on the non-convex set of constraints
is found by computing the eigenvalue decomposition of the positive semi-definite matrix W (P̃ , Q̃). The pro-
jection on the convex set of constraints is the solution to an optimization problem subject to (1.8)-(1.9). Thus,
as a major advantage it optimizes over both P and Q at each step, which are included in both projections.
The major disadvantage is that convergence cannot be guaranteed.

The directional alternating projection algorithm is an alteration on the standard alternating projection
method, where directions are chosen based on the geometry of the constraint sets. It is proposed in (Grigori-
adis and E. B. Beran 2000) and its aim is to have a faster convergence than the non-directional alternating
projection algorithm. However, convergence is still not guaranteed, and there is no indication of improve-
ment over iterations. The algorithm was improved in (Ebihara, Tokuyama, and Hagiwara 2004) to include
structural constraints on the SOF gain by keeping the controller variable in the convex LMI.

A third variant of a projection algorithm is the penalty function method by (S.-J. Kim, Moon, and Kwon 2007).
For this method, the (local or global) convergence of the penalty function is also not guaranteed. Furthermore,
convergence is heavily dependent on initialization of the design parameters of the penalty function for which
only a trial-and-error tuning process is available based on guidelines from the Langrangian method, described
later in this section. This method is easy to implement, though, due to the simplicity of the objective function.

In (E. Beran, Vandenberghe, and S. Boyd 1997; Chanekar, Chopra, and Azarm 2017), the problem of
structured SOF is tackled head-on in the optimal control framework. First, the problem of SOF is formulated
in a Linear Quadratic (LQ) function. Next, this problem was reformulated into an optimization problem
with a linear objective function and a BMI constraint. After this, a combination of Generalized Benders
Decomposition (GBD) and a Gradient Projection Method (GPM) was used in combination, iteratively, to
compute a solution. Necessary conditions for the proof of K being a local minimum can be obtained, which
is an advantage over other ILMI methods where no information on the minima was present. However, this
approach does not include proof of convergence to a local (or global) minimum yet, which is still part of
future research and convergence is limited by the first-order optimization problem. This latter problem is
tackled in (Cheng et al. 2022), where convergence of the LQ problem is improved by using a second-order
optimization.

Cone complementarity linearization approach
Cone complementarity linearization (CCL) was first introduced by (Ghaoui, Oustry, and Aitrami 1997). The
idea of this approach works by minimizing Trace(PQ), which is minimal when (1.10) holds1. This problem
is nonlinear, which is the reason for applying a Frank and Wolfe linearization procedure to the problem. In
(Leibfritz and Optim 2001), an additional line search step is applied to the iteration to improve convergence.

An advantage of this approach is that at each step, one can optimize over the Lyapunov matrices, which
allows for more design freedom. However, similar to most rank minimization methods, there exist no dead-
point criteria for this approach, so it is hard to determine whether the local minimum/plateau is also a global
solution to the problem.

Lagrangian methods
Proposed in (Apkarian, Noll, and Tuan 2003) and (Noll, Torki, and Apkarian 2004), the augmented La-
grangian method aims at minimizing a tangent version around some point of a penalty function including
a Lagrangian multiplier matrix. As reported in the aforementioned papers, this method shows improved
numerical results to CCL, but comments and remarks on the advantages and disadvantages are of the same
nature.

1(1.10) holds iff PQ = I. Also, Tr(PQ) is minimal when (1.10) holds (Tr(PQ) = n iff PQ = I).
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Another method is the partially augmented Lagrangian method proposed by (Ankelhed, Helmersson, and
Hansson 2012). This method aims at minimizing a reformulation of (1.10)2. An advantage over the augmented
method is that the rank constraint is tackled directly through the reformulation. Other than that, similar
comments hold with the method described above.

T-K iteration
A novel approach is proposed in (Feng, She, and Xu 2019). T-K iteration works with two steps. First, an
initial coordinate transformation matrix (CTM) is found by CCL (see subsubsection 1.2.3). Once this CTM
is found and fixed, a solution is found by first optimizing for the de-composed Lyapunov matrix elements P1

and P2 and Y to find a gain K = Y P−1
1 . With this gain, one can subsequently optimize again to find the

Lyapunov matrix P for the fixed K.
Significant advantages of this approach are that, in contrast to many other methods described in this

section, this method produces locally optimal solutions instead of converging to a local plateau, which would
yield conservative results. Furthermore, there exists a dead-point criterion evaluation index in N . When
N = P−1

11 P12 = 0 (or P12 = 0), the solution is a local optimum. For many other iterative methods, the
algorithm stops when there is no better solution found, but this would provide no intelligent characterization
of the dead-point. Lastly, at each iteration, P is optimized over, allowing for more design freedom, similarly to
CCL. Results are shown to be promising for low- to moderate sized systems, where the algorithm is presented
to be competitive with HIFOO.

In (Feng, Guo, et al. 2022), the problem is extended to a weighted sensitivity approach, and a multivariable
PID controller is synthesized by first transforming the fixed-order PID problem into a SOF problem and then
applying T-K iteration on it to obtain the controller.

Remarks on rank minimization methods
Advantages of rank constraints methods include that for most of the methods, P (or Q) are optimized over at
each iteration, allowing for more design freedom. Drawbacks include that for most methods (with exception
of T-K iteration and augmented Lagrangian methods) there exists no dead-point criterion characterization.
The solutions mostly stop when there is no better solution found. Despite this, the algorithms often are shown
to converge to benchmark examples from Compleib3. Another downside to rank minimization methods is
that robust synthesis is not available, since a common-to-all Lyapunov matrix4 that satisfies (1.7)-(1.10) for
all vertices on the polytopic model does unfortunately not guarantee that the resulting K satisfies (1.4) for
all vertices.

1.2.4. Two-stage approaches
In recent years, the two-stage approaches have gained popularity in the field of research on SOF. A downside
of many methods described before, is that no clear approach for finding initial values for the gains are used
(often they are just set to null). Introduced by (D. Peaucelle and D. Arzelier 2001; Arzelier, Peaucelle,
and Salhi 2003) and further researched by (Mehdi, Boukas, and Bachelier 2004; X. Li and Gao 2014; H.
Zhang et al. 2014; P. Li et al. 2021) to name a few, this method works by first finding an initial stabilizing
state-feedback gain, after which this initial gain is used to find the stabilizing SOF controller.

Two-stage approaches have received a great amount of scientific attention in recent years as well (Sereni
et al. 2018; B. Sereni 2023; D. Ren, Xiong, and Daniel W.C. Ho 2021; Y. Ren et al. 2021; Denis Arzelier et al.
2010). In (Sereni et al. 2018), the two-stage approach is used to design a robust SOF controller with relaxed
LMI conditions. These include parameter-dependent Lyapunov functions to reduce conservatism when dealing
with uncertainties. In (B. Sereni 2023), the two-stage method is applied in a gain-scheduling framework to
ensure stability in the switching zones between different linearized operating points. In (D. Ren, Xiong, and
Daniel W.C. Ho 2021) for H∞ performance, first an initial Output-Injection (OI) controller is found after
which the SOF gain is found using this fixed OI gain. In (Y. Ren et al. 2021) first an initial state-feedback gain
is found after which sufficient conditions for the SOF controller is found using the Kalman-Yakubovich-Popov
lemma (Tetsuya Iwasaki and Hara 2005) and a homogeneous polynomially parameter-dependent technique
to reduced conservatism. In (Denis Arzelier et al. 2010), randomized hit-and-run algorithms are used to find
many guesses of initial stabilizing state-feedback gains, with shown efficiency in finding feasible solutions.

Two-stage approaches are less likely to converge to a local plateau, since the initial gain is not defined as
random or zero, but rather a (quasi-)optimum initial gain is produced, which will increase the likelihood of
converging to a local optimum instead of a local plateau.

2(1.10) is satisfied iff an−1(I−PQ) = 0 where ai are the non-zero characteristic polynomial coefficients of a matrix (Helmersson
2009).

3Link to COMPlib
4According to the Lyapunov shaping paradigm.

http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf
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The two-stage approaches provide only sufficient conditions for the existence of stabilizing SOF gains, since
the choice of stabilizing state-feedback gain is not unique and different methods exist for finding it. These
include, for example, methods with Ricatti equations (J. Gadewadikar et al. 2006), but also randomized
methods such as the one described in (Denis Arzelier et al. 2010).

1.2.5. Direct synthesis methods
The methods described above use some sort of iterations to either alternatively fix P or K to render a
BMI → LMI, or try to iteratively minimize the rank constraint (1.10). The following methods exploit certain
conditions in which stability of the system is proven or direct search is exploited to obtain a solution without
need for iterating.

Direct search methods
Direct search (DS) methods can be traced back to as early as the late 1950s when it was pioneered by
algorithms such as (Hooke and Jeeves 1961; Box 1957). Direct search methods are mostly neglected by the
control community in researching SOF stabilization algorithms. This statement is supported by the fact that
it was not included in the papers by (Sadabadi and Dimitri Peaucelle 2016; Syrmos et al. 1997) and the
fact that it was strongly criticized in (Apkarian and Noll 2006a) by its inability to deal with nonsmoothness
issues such as in spectral abscissa maximization and H∞ minimization. Nonsmooth optimization methods
were therefore combined with the DS method called multidirectional search method in the paper to reach
adequate H∞ performance. Lastly, DS algorithms could not provide convergence guarantees until the early
nineties in (Torczon 1989). This was also the time when (iterative) LMI methods started to arise though,
bringing DS methods even more to the background in SOF research.

Two other noteworthy DS methods besides multidirectional search are mesh-adaptive DS (Audet and
Dennis Jr 2006) with convergence guarantees even for nonsmooth functions and the Nelder-Mead algorithm
(Nelder and Mead 1965) improved in (Emile Simon 2011) to improve convergence on nonsmooth functions.
These methods were compared on performance in (Henrion 2006) on benchmark examples of COMPlib and
it showed that the algorithms were very efficient, being able to solve the problems in seconds. However, this
paper only dealt with SOF stablization and did not extend it to H∞ performance.

Despite the call for more research in this field by (E. Simon 2011), there has been little research on DS
methods for SOF since then. It can be noted that DS methods can be combined with other methods to refine
their potentially conservative results. The gain K resulting from these methods could be set as initilization
point for the DS algorithm to improve the solution.

Information constraints
The method by (Sahoo et al. 2019) is based on necessary and sufficient conditions introduced in (Rubió-
Massegú et al. 2013). (Sahoo et al. 2019) improves on these conditions by considering the off-diagonal terms
of the Lyapunov matrices, which were simply neglected in the former paper. This used to lead to more
restrictions in the developed criteria, and consequently to a more conservative result. The idea of the novel
paper works by decomposing matrices corresponding to the multiplication terms in (1.4) and (1.5), that render
them BMI. LMI criteria are subsequently derived, including for H∞ control and pole placement constraints.
In (Gopmandal and Ghosh 2021), the method by (Rubió-Massegú et al. 2013) is further extended to include
suitable initialization matrices based on the L2 bound γ and to include norm-bounded uncertainties in the
design phase for robust synthesis.

It is worth noting that through the Lyapunov matrices (and their components) and other design variables,
structural constraints can be indirectly imposed on the controller gain K. As an example, P22 is commonly
chosen to be block-diagonal and another design variable YB is chosen to have the same desired structure as
K, because K = P−1

22 YB in this approach. This is an advantage over approaches that are unable to impose
structural constraints on the SOF gain matrix.

Convexifying by plant structure
This group of methods aims to convexify the problem by rendering the generalized plant in a certain way,
either through assuming some structure on the plant or by transforming the plant. The LMIs can then be
solved using standard LMI solvers, like MOSEK, SDPT3 or SEDUMI. No iteration/optimization is necessary
to go BMI → LMI, which is in contrast to the methods described in the previous sections on iterative LMI
heuristics and rank constraints and it can be considered a clear advantage to these approaches.

The method by (Crusius and Trofino 1999) which yields sufficient conditions for a set of stabilizing gains
assumes that BP or CQ is close to commute. However, in general this does not hold for most plants. In
(Prempain and Ian Postlethwaite 2001), structural constraints for existence of a stabilizing gain include as-
sumptions which, among others, state that the system is a minimal realization, the plant is square and CB is
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of full row-rank. In (Ebihara, Dimitri Peaucelle, and Denis Arzelier 2014), plant conditions for convexifying
the problem are that Dzw and Dyw (or Dzu) are null, that the matrix Bw can be partitioned as [BuBw,2] for
some matrix Bw,2, which can be null, and lastly, DT

zuDzu ≥ Ir. This last assumption is the most limiting
assumption, as this is often not the case for generalized plants. This method allows to generate a subset of
stabilizing controllers instead of one resulting controller though, which is an advantage, but this subset may
be empty and is dependent on the matrix Dzu.

In the novel method from (Chou and Wei 2020), the generalized plant is transformed in such a manner that
necessary and sufficient conditions can be derived for the existence of SOF gains. This method resembles the
method described in (C. Scherer, P. Gahinet, and Chilali 1997) for the full-order Dynamic Output Feedback
(DOF) controller design, but extents it to the SOF framework.

The assumptions for the structure of the generalized plant are as follows:

1. The first assumption states that there needs to be an even number of states. In case of an odd number
of states, an isolated system with odd dimensions and appropriate parameters can be augmented to the
given system to give it even dimensions.

2. The second assumption states that the number of inputs and number of outputs must both be greater
than half the number of states.

3. The plant must be transformed if necessary to obtain the desired form.

The method shows great promise when the results were compared to methods such as HIFOO and Hin-
fstruct, with the authors presenting H∞ norms lower than for both of the powerful non-smooth non-convex
optimization methods. Unfortunately, no computational times are presented and it might be interesting to
see whether the algorithm outperforms the other methods in that regard.

1.2.6. Decoupled Lyapunov matrices
The following methods will aim to reduce conservatism by decoupling the Lyapunov matrices from the system
matrices thus giving the designer an extra degree of freedom by allowing to optimize over both the Lyapunov
matrices and controller gain separately.

Resilient Approach
This approach proposed in (D. Peaucelle, D. Arzelier, and Farges 2004) aims at reassembling the conditions
in such a manner that the Lyapunov marices are decoupled from the system gain. Subsequently, rank
minimization methods can be applied since the non-LMI part of the conditions can be reformulated as a
rank constraint, similar to what was done in subsection 1.2.3. A big advantage of this approach is that
simultaneous stabilization and robust stabilization are easily achievable by copying the LMI’s for each vertex
in the polytopic model. This is done with a common-for-all Lyapunov matrix P , by considering the ”Lyapunov
Shaping Paradigm” (C. Scherer, P. Gahinet, and Chilali 1997).

Furthermore, compared to methods in subsection 1.2.3, the rank constraint is of much smaller size, since
the rank needs to be equal to the size of the input vector instead of the size of the plant. The latter is in
general much larger. Also, instead of finding only one gain, a set of controllers is obtained. This allows for
imprecisions in the solution to K, since multiple options for viable controllers are obtained. Resilience in this
sense differs from robustness, since robustness implies uncertainties in the modelling of the closed-loop system
and resilience implies uncertainties in the implementation of the controller. Lastly, structural constraints can
be easily imposed, because variables directly related to the control gain enter in the constraints explicitly.

This method has been combined with CCL (see subsubsection 1.2.3) in (D. Peaucelle and D. Arzelier
2005) for the SOF problem and in (Tian et al. 2020) for SOF control of semi-Markov jump systems.

S-variable methods
Proposed by (J. Geromel, M. C. d. Oliveira, and Hsu 1998) and extensively described in (Ebihara, Dimitri
Peaucelle, and Denis Arzelier 2015), in the S-variable approaches the BMI is transformed into a variant by
use of the Finsler’s lemma (i.e. inverse of the elimination lemma). In this variant, closed-loop stability is
established by investigating if there exist slack variables F and G, and Lyapunov matrix P such that the
conditions are satisfied. The key of this method is that it reduces conservatism by decoupling the system
dynamic (with the gain) and the Lyapunov matrix by introducing slack variables. This will lead to more
design freedom as it inherently adds another degree of freedom by optimizing over both separately. Iterative
methods described above can subsequently be applied to this BMI to convexify the problem to LMI.

S-variable methods can be easily extended to robust stabilization with the search for parameter dependent
Lyapunov matrices for all the vertices of the polytopic model, with reduced conservatism compared to the
BMI (1.4) and (1.5). This is done with a common gain and S-variables for each vertex. This is done in both
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(Felipe and R. Oliveira 2021; Ebihara, Dimitri Peaucelle, and Denis Arzelier 2015; Sereni et al. 2018) and in
(D. Arzelier et al. 2018) for probabilistic uncertainties. The biggest downside is that the size of the BMI is
doubled compared to the coupled BMI’s, thus increasing the computational complexity with an increase in
problem size.

1.2.7. Non-Lyapunov approaches
The following methods will make no use of optimization over any Lyapunov matrices:

The sum-of-squares method by (Chesi 2013) works by making use of the Routh-Hurwitz table characteristic
polynomials which define stabilization. Using convex optimization on the constraints of these polynomials,
one can guarantee robust stabilization for systems that depend affinely on the uncertainties. However, this
method can often not be used in practice due to the fact that dimensions of the polynomials explode with
increase in size of the plant, thus rendering the method impractical for moderate to large systems.

These methods will try to optimize the following problem. This problem is non-convex and non-smooth.

Given matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rl×n, find a matrix K ∈ Rr×l such that the spectral abscissa
of matrix A+BKC is strictly negative.

A group of methods that has a lot of potential are the randomized algorithm (Denis Arzelier et al. 2010) and
in particular the ray-shooting algorithm. Introduced in (Yossi Peretz 2016), the ray-shooting algorithm is
a general randomised method that is able to find a global minimum on any non-convex set (either smooth
or non-smooth). The method is extended beyond stabilization and pole placement to structured SOF in (Y.
Peretz 2017), H∞ performance is obtained on a PID controller in (Yossi Peretz 2018) and proof of conver-
gence (by probability) in the framework of robust stabilization is shown in (Peretz, Merzbach, and Moyall
2020). Advantages of these approaches are the fact that they are able to find global minima instead of local
minima. Furthermore, the algorithms are able to find a set of stablizing controllers which is an advantage
over other methods that are only able to find one gain.

In the 1990s and early 2000s, the focus for SOF research was mostly on solving LMI’s including Lyapunov
matrices. The following methods introduced a change in paradigm. The method for HIFOO in (Burke et al.
2006) tried to tackle the non-convex non-smooth problem described above in two-phases, first by classical
quasi-Newton updating and then by gradient sampling. Gradient sampling is stochastic by nature, so different
runs give different solutions, even with consistent initial starting point.

The algorithms for Hinfstruct and Systune (Apkarian and Noll 2006b) work with Clarke’s subgradient
calculus (Clarke 1983). The methods are deterministic, in contrast to HIFOO. However, randomized initial
points lead to different local minima. These algorithms have been widely incorporated in MATLAB toolboxes
and are the standard for fixed-structure controller synthesis. They are able to cope with any control structure
imposed by the designer (e.g. number and configuration of loops, complexity of transfer functions, gains),
but also due to their computational efficiency. LMI approaches are prone to be much slower with increase
in plant size due to the Lyapunov matrices containing most of the decision variables that are to be tuned.
The methods described in this section only need to tune the controller parameters, which have much smaller
dimensions than the Lyapunov matrices. In (Apkarian, Dao, and Noll 2015) the issue of parametric robust
synthesis is addressed for the non-smooth non-convex optimization methods.

While powerful, the Hinfstruct and Systune in this section are dependent on the Robust Control Toolbox
in MATLAB, which is not open-source. This is in contrast to methods above, which can be solved using
open-source LMI solvers. Furthermore, the methods only produce local minima and no proof of convergence
to a global minimum is present.
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Conclusion and Future Research
The purpose of this survey was to provide a bibliographic review on the current state of SOF synthesis in the
framework of H∞ mixed-sensitivity control of fighter aircraft and to define a structure for future research on
this matter. This was done as follows.

First, the motivation for researching SOF was mostly explained by the desire for simple controllers, which
are much easier and cheaper to use in practice. This would aid the field of aeronautical engineering by sim-
plifying the often long and expensive certification process of flight control systems. After this motivation was
established, the gap in research was argued to be a lack of quantitative comparisons of SOF results, which
lead to the inability to accurately draw conclusions on the competitiveness of the SOF methods with respect
to already established commercially available software. The research questions were formulated to try to fill
this gap and the subsequent chapters aimed at answering Q1 and Q2 by investigating what was done on H∞-
control in literature and investigating current state-of-the-art methods on SOF synthesis, while elaborating
on their strengths and limitations. The application, the F-16, was also investigated and its characteristics
and its implications on the design process were presented.

Future research will aim at answering Q3, Q4, and Q5 by reproducing SOF algorithms on the generalized
plant and analyzing their stability, performance and robustness in light of uncertainties in the model. Com-
parisons will be made between these methods and commercially available methods on some benchmark models
to draw conclusions on their competitiveness. This will allow one to answer the main research question Q
on the competitiveness of Lyapunov-based SOF methods for H∞-control of fighter aircraft. In the end, this
will allow one to achieve the research objective of gaining more insight into the performance of different SOF
algorithms.
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Review of 𝐻∞ Static Output Feedback Controller Synthesis
Methods for Fighter Aircraft Control

A.D.P. Schoon∗

Delft University of Technology, Delft, The Netherlands

To gain more insight into the performance of state-of-the-art Static Output Feedback
(SOF) controller synthesis methods for H∞-control, quantitative comparisons are made between
Lyapunov methods and well-known established non-smooth optimization methods, i.e. Hinfstruct
and HIFOO. Three methods were deemed to be the most promising to compete and were bundled
into one toolbox named SOFHi. The algorithms were extended to incorporate structured SOF
and a variant of SOFHi was proposed to significantly improve upon the computational efficiency
of the original implementation. Extensive comparisons show that SOFHi was able to compete
with the established non-smooth methods and even able to significantly outperform one of them.
Lastly, an elaborate flight control benchmark example is given to showcase the effectiveness
of the algorithms, which involves the design of a gain-scheduled normal acceleration Control
Augmentation System (CAS) for a highly maneuverable fighter aircraft.

I. Nomenclature

Latin Description Unit
𝐴 state matrix
𝑎𝑛 normal acceleration [𝑔]
𝐵𝑢 control input matrix
𝐵𝑤 exogenous input matrix
𝐶𝑦 measured output matrix
𝐶𝑧 evaluated output matrix
𝐷𝑦𝑢 input to measured output
𝐷𝑦𝑤 exogenous input to measured output
𝐷𝑧𝑢 input to evaluated output
𝐷𝑧𝑤 exogenous input to evaluated output
𝑒 tracking error [𝑔]
𝑒ref model-matching error [𝑔]
𝐹 feedforward function
𝐹, 𝑍 slack variable matrices
𝐺 aircraft model
𝐾 gain matrix
𝑚 mass [kg]
𝑀 model-matching sensitivity function
𝑁 local minimum evaluation
𝑃,𝑄 Lyapunov matrices
𝑞 pitch rate [rad/s]
𝑆𝑎𝑛 norm. acc. output sensitivity function

𝑆𝑖 input sensitivity function
𝑇𝑎𝑛 complementary output sensitivity function
𝑇𝑐1 constant matrix to build 𝑇𝑦
𝑇𝑖 complementary input sensitivity function
𝑇ref reference model
𝑇𝑦 coordinate transformation matrix
𝑇𝑧𝑤 exogenous input to evaluated output
𝑢 input vector
𝑤 exogenous input vector
𝑊 weighting filter
𝑥 state vector
𝑋COG center of gravity position [m]
𝑦 measured output vector
𝑌 decision variable matrix
𝑧 evaluated output vector
𝔎,ℭ,𝔏 sets of gain matrices
Greek Description Unit
𝑛/𝛼 load factor per angle of attack [𝑔/rad]
𝛾 𝐻∞ performance index [-]
𝜖 integrated control error 𝑔·s
𝜁sp short period damping ratio [-]
𝜔sp short period natural frequency [rad/s]
𝜔BW bandwidth [rad/s]

∗M.Sc. student, Control & Simulation division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600GB Delft, The Netherlands;
adpschoon@gmail.com, a.d.p.schoon@student.tudelft.nl.
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II. Introduction

The problem of Static Output Feedback (SOF) controller synthesis is well-known, and has garnered a lot of attention
from the field of research in recent decades. It is a challenging problem, which is why it is still an open problem to

this day. The challenge lies in the fact that the problem is a Bilinear Matrix Inequality due to terms containing a product
between decision variables, which makes the problem non-convex by nature and it becomes non-smooth when using
the problem formulation in the space of controller parameters [1]. It is shown in [2] that these problems are generally
NP-hard to solve.

Solutions to the SOF problem can be categorized in three main groups: BMI solvers, Lyapunov methods, and
non-Lyapunov methods. BMI solvers that try to solve BMI’s directly are heavily dependent on initial conditions, and
even then, most often do not find solutions [3]. This paper will therefore only investigate the latter two groups of
methods. Examples of Lyapunov methods include iterative Linear Matrix Inequality (LMI) methods [4–8], iterative
rank minimization methods [9–11], and direct search methods [12–14]. Most often, iterative LMI (ILMI) methods aim
to render the original BMI into a convex LMI by fixing one of the decision variable matrices inside terms containing
a product between two decision variable matrices. The LMI problem can then be described as a Semi-Definite
Programming (SDP) optimization problem, which can be solved efficiently by interior point optimizers, as described
in [15, Section 1.4.4]; examples of such optimizers are MOSEK or SDPT3. A disadvantage of iterative Lyapunov
methods is that their computational performance is limited by the large amount of decision variables in their problem
formulation when compared to non-Lyapunov methods. In contrast, direct search methods are non-iterative and are thus
more numerically tractable. However, they mostly describe sufficient conditions and are generally more conservative
due to additional assumptions made about the plant to make the problem convex. Iterative methods are often derived
from these sufficient conditions though, to make the method less conservative by optimizing parts of the conditions in
an iterative manner. For example, [16] is based on conditions in [12], and similarly, [17] is based on conditions in [13]∗.

Examples of non-Lyapunov methods are the non-smooth optimization methods Hinfstruct and HIFOO, which
are described in [18, 19], respectively. A disadvantage of these methods is that they cannot guarantee robustness to
uncertainties in the plant, at least not in the same way as the Lyapunov methods can [3]. Furthermore, they do not allow
for much flexibility and transparency in their approach as they rely on rather sophisticated theoretical tools (non-smooth
optimization), without much control interpretation in said approach. They are, however, extremely efficient and provide
exceptional performance in terms of performance index 𝛾, and have therefore grown into the most well-established
methods. For example, Hinfstruct has been implemented in MATLAB’s Robust Control Toolbox.

Further extensive comparisons of the aforementioned group of methods can be found in [3, 20]. However, these
papers compared the methods mostly qualitatively, explaining the different advantages and disadvantages of each
method. Decisive conclusions on the competitiveness of the methods could be drawn with more confidence when these
conclusions are accompanied by quantitative results to support their claims. There is thus a clear gap to exploit in
research, which is defined to be a lack in assessment of the competitiveness of Lyapunov-based SOF algorithms to the
well-established non-smooth optimization methods.

The main contribution of this paper is two-fold. The first aspect is the investigation and implementation of Lyapunov-
based SOF synthesis methods that could potentially compete with the well-established non-smooth optimization methods
Hinfstruct and HIFOO. In particular, three Lyapunov methods were deemed most promising; these are T-K iteration
described in [16, 21], and two S-variable approaches described in [22, Section 6.3]. These methods are bundled
into a toolbox, which will be called SOFHi for the remainder of the paper. Besides comparing these algorithms
to the non-smooth methods, they will also be used to design a gain-scheduled flight controller for the longitudinal
dynamics of a highly maneuverable aircraft. The second aspect of the contribution is the presentation of a variant to the
original implementation of the algorithms, which aims to significantly improve the original implementation in terms of
computational efficiency. This variant will be called SOFHiEVO for the remainder of the paper.

The paper is organized as follows. In section III, the SOF problem for 𝐻∞ performance is described, after which the
SOF algorithms that try to tackle this problem are presented and elaborated on in section IV. The results of comparing
the algorithms are shown in section V and lastly, an elaborate flight control example is given in section VI to showcase
the effectiveness of SOFHi.
Notation: 𝑋⊤ for a matrix 𝑋 denotes the transpose, Sym {𝑋} denotes 𝑋 + 𝑋⊤, 𝑋⊥ denotes the orthogonal complement,
𝑋+ denotes the Moore-Penrose pseudo-inverse, | |𝑋 | |∞ denotes the 𝐻∞-norm of 𝑋 , and lastly, * denotes the symmetric
term in a block matrix.

∗The conditions in [17] are also made less conservative by considering a triangular part of the Lyapunov matrix, instead of a diagonal structure.
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III. H∞ Static Output Feedback Problem
Consider the following state-space system,

¤𝑥 = 𝐴𝑥 + 𝐵𝑤𝑤 + 𝐵𝑢𝑢
𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑤𝑤 + 𝐷𝑧𝑢𝑢
𝑦 = 𝐶𝑦𝑦 + 𝐷𝑦𝑤𝑤 + 𝐷𝑦𝑢𝑢

(1)

where the dependence on time is neglected (e.g. 𝑦 ← 𝑦(𝑡)), 𝑥 ∈ R𝑛 is the state vector, 𝑤 ∈ R𝑞 the exogenous input
vector, 𝑢 ∈ R𝑟 the input vector, 𝑧 ∈ R𝑝 the evaluated output vector, and 𝑦 ∈ R𝑙 the measured output vector. Without
loss of generality, it is assumed that the input and output matrices are of full rank (rank(𝐵𝑢) = 𝑟 and rank(𝐶𝑦) = 𝑙,
respectively).

The SOF problem defines the control input to be related to the measured output as

𝑢 = 𝐾𝑦, (2)

where 𝐾 is the SOF gain matrix. Applying Eq. (2) to the system in Eqs. (1) leads to the following closed-loop system:

¤𝑥 = 𝐴𝑐𝑙𝑥 + 𝐵𝑤𝑤
𝑧 = 𝐶𝑐𝑙𝑥 + 𝐷𝑧𝑤𝑤

(3)

where
𝐴𝑐𝑙 = 𝐴 + 𝐵𝑢𝐾𝐶𝑦 , 𝐶𝑐𝑙 = 𝐶𝑧 + 𝐷𝑧𝑢𝐾𝐶𝑦 (4)

In [23], it was shown that the system in Eqs. (3) is internally stable and the 𝐻∞-norm of the transfer function from 𝑤 to
𝑧 is smaller than a positive scalar 𝛾 (i.e. ∥𝑇𝑧𝑤 ∥∞ < 𝛾) if and only if there exist a positive-definite matrix 𝑃 ∈ S𝑛 and a
controller matrix 𝐾 ∈ R𝑟×𝑙 , such that 

Sym {𝐴𝑐𝑙𝑃} ∗ ∗
𝐶𝑐𝑙𝑃 −𝛾𝐼 ∗
𝐵⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0 (5)

Eq. (5) is a BMI due to the product between the decision variables 𝑃 and 𝐾, which makes the optimization problem
non-convex. The following section will cover algorithms that try to tackle this problem.

IV. Static Output Feedback Algorithms
The conditions provided in this section for 𝐻∞ SOF are derived from the BMI in Eq. (5) and provide sufficient

conditions for said BMI. The algorithms described in this section then utilize these conditions to monotonically decrease
𝛾 by alternatively fixing decision variables to render the BMI conditions as an LMI, the latter of which is convex by
nature and easy to solve using interior point methods, such as MOSEK or SDPT3 [15, Section 1.4.4].

Three algorithms were found to be most promising, namely T-K iteration [16, 21], and two S-variable approaches
described in [22, 24]. For full details on the theorems and corresponding proofs, the reader is referred to the
aforementioned literature, but the main procedures of the algorithms will nevertheless be described in this section.

A. T-K Iteration
It was explained before that ILMI methods often use sufficient conditions derived in other direct search methods,

and then opt to reduce conservatism by optimizing parts of the conditions for 𝐻∞ performance. T-K iteration is no
exception and is based on the following conditions.

Lemma 4.1 from [16]: The closed-loop system in Eqs. (3) is internally stable and ∥𝑇𝑧𝑤 ∥∞ < 𝛾 if there exist a
positive-definite matrix 𝑃 ∈ S𝑛++ and control gain matrix 𝐾 ∈ R𝑟×𝑙 s.t.


Sym

{
( �̄� + �̄�𝑢𝐾�̄�𝑦)𝑃

}
∗ ∗

(�̄�𝑧 + 𝐷𝑧𝑢𝐾�̄�𝑦)𝑃 −𝛾𝐼 ∗
�̄�⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0, (6)

3

https://www.mosek.com/
https://www.math.cmu.edu/~reha/sdpt3.html


where

�̄� = 𝑇𝑦𝐴𝑇
−1
𝑦 , �̄�𝑤 = 𝑇𝑦𝐵𝑤 , �̄�𝑢 = 𝑇𝑦𝐵𝑢

�̄�𝑧𝑇
−1
𝑦 = 𝐶𝑧𝑇

−1
𝑦 �̄�𝑦 = 𝐶𝑦𝑇

−1
𝑦 = [𝐼𝑙 0]

and 𝑇𝑦 is a non-singular matrix such that 𝐶𝑦𝑇−1
𝑦 = [𝐼𝑙 0]

Lemma 4.2 from [25]: The closed-loop system in Eqs. (3) is internally stable and ∥𝑇𝑧𝑤 ∥∞ < 𝛾 if there exist a

positive-definite matrix 𝑃𝑑 =

[
𝑃1 0
0 𝑃2

]
with 𝑃1 ∈ S𝑙++, 𝑃2 ∈ S(𝑛−𝑙)×(𝑛−𝑙)++ , and matrix 𝑌 ∈ R𝑟×𝑙 s.t.


Sym

{
�̄�𝑃𝑑 + �̄�𝑢𝑌�̄�𝑦

}
∗ ∗

�̄�𝑧𝑃𝑑 + 𝐷𝑧𝑢𝑌�̄�𝑦 −𝛾𝐼 ∗
�̄�⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0 (7)

where �̄� ,�̄�𝑢, �̄�𝑤 , �̄�𝑧 , and �̄�𝑦 are defined in Lemma 4.1. When Eq. (7) holds, the optimal 𝐻∞ SOF controller gain
matrix can be obtained through:

𝐾 = 𝑌𝑃−1
1

The conditions described in Lemma’s 4.1 and 4.2 are generally conservative, due to the fact that the Coordinate
Transformation Matrix (CTM) 𝑇𝑦 is chosen to be a constant value in [26] (i.e. 𝑇𝑦 = [𝐶⊤𝑦 𝐶⊥𝑦 ]⊤). T-K iteration opts to
reduce this conservatism by using a parametrisation form of 𝑇𝑦 to perform a coordinate transformation on the original
system. This form is given by

𝑇−1
𝑦 =

[
𝐶+𝑦 + 𝐶⊥𝑦 𝑇𝑐1 𝐶⊥𝑦

]
(8)

Using this form allows one to optimize the CTM through 𝑇𝑐1, which ultimately reduces conservatism of Eqs. (6). The
first step of this optimization is to find an initial 𝑇𝑐1 to ensure feasibility of Eqs. (7), which is done as follows: first,
an initial stabilizing SOF gain matrix 𝐾 is obtained through Cone Complementarity Linearization (CCL)†, which is
described in [11]. Second, Eqs. (6) are solved using 𝐾 to obtain 𝑃, after which an initial CTM 𝑇𝑐1 = 𝑃21𝑃

−1
11 can now

be obtained. This process of finding an initial 𝑇𝑐1 is described below [16].

Part 1 of T-K iteration from [16]:
1) Check if (𝐴, 𝐵𝑢) is stabilizable. If it is not, stop. If it is, continue to step 2).
2) Randomly generate 𝑃0 and 𝑄0 from a uniform distribution𝑈 ∼ (0, 1).
3) Obtain a stabilizing 𝐾 through CCL(𝑃0, 𝑄0).
4) Use 𝑇−1

𝑦 = [𝐶+𝑦 𝐶⊥𝑦 ] to solve the following SDP problem with a fixed 𝐾:

min
𝑃
𝛾 s.t. Eqs. (6).

An initial 𝑇𝑐1 = 𝑃21𝑃
−1
11 is found, stop.

The second step, as mentioned above, is to optimize the choice of 𝑇𝑐1 in an iterative procedure to reduce conservatism
of the solution and reach a locally optimal solution.

Part 2 of T-K iteration from [16]:
1) Set 𝑘 = 0 and 𝑇 (0)

𝑐1 as the initial 𝑇𝑐1 produced by Part 1 of T-K iteration.
2) Use 𝑇−1

𝑦 = [𝐶+𝑦 + 𝐶⊥𝑦 𝑇
(𝑘 )
𝑐1 𝐶⊥𝑦 ] to solve the following SDP problem:

min
𝑃1 ,𝑃2 ,𝑌

𝛾1 s.t. Eqs. (7).

Calculate 𝐾 = 𝑌𝑃−1
1 .

†The algorithm is not recalled here for practical purposes, the reader is referred to [11] for more details on CCL.
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3) Use 𝑇−1
𝑦 = [𝐶+𝑦 + 𝐶⊥𝑦 𝑇

(𝑘 )
𝑐1 𝐶⊥𝑦 ] and the obtained 𝐾 to solve the following SDP problem:

min
𝑃
𝛾2 s.t. Eqs. (6).

Calculate 𝑁 = 𝑃−1
11 𝑃12.

4) Let 𝜖 << 1 be the prescribed tolerance. If | |𝑁 | | < 𝜖 , | |𝛾1 − 𝛾2 | | < 𝜖 , or 𝑘 > 𝑘max, a given maximum iteration
number, 𝐾 is a locally optimal H∞ SOF gain matrix, stop. Otherwise, set 𝑇 (𝑘+1)

𝑐1 ← 𝑇
(𝑘 )
𝑐1 + 𝑁

⊤ and 𝑘 ← 𝑘 + 1,
and go to 2).

The procedure of fixing decision variables to render the BMI conditions into LMI conditions is a common theme among
ILMI methods. In fact, the two algorithms described in subsection IV.B will use this philosophy as well.

Remark 1: When the variable 𝑁 = 𝑃−1
11 𝑃12 approaches zero, the algorithm has approached a local solution as the CTM

has converged by then. 𝑁 thus serves as an evaluation index of the obtained minimum, which is a rare feature among
ILMI methods, that almost always provide no conclusive characterisation of the local minimum and just stop when no
better solution is found.
Remark 2: T-K iteration is extended in SOFHi to incorporate structured SOF. A zero-nonzero structure of 𝐾SOF can be
imposed through the SDP variable 𝑌 in Lemma 4.2, while keeping 𝑃1 proportional to the identity matrix.
Remark 3: 𝐾 = 𝑌𝑃−1

1 in Lemma 4.2 is replaced in SOFHi by 𝐾 = 𝑌𝑃+1 when 𝑃1 is singular or near-singular, to
avoid inaccuracies in the results. Singularity is checked through the condition number 𝜅(𝑃1) = | |𝑃1 | | · | |𝑃−1

1 | |. When
𝜅(𝑃1) → ∞, 𝑃1 is considered singular. Ultimately, this increases the robustness of the algorithm in at least obtaining an
adequate result.

B. S-variable Approaches
This section describes two approaches that aim to render variations to Eq. (5) as LMI’s, by alternatively fixing

the decision variables in the conditions. The name of the S-variable methods lends itself from the use of slack
variables in the Lyapunov conditions for 𝐻∞ SOF performance. By introducing slack variables in the conditions, a new
parametrization form can be constructed, where the Lyapunov matrix 𝑃 is de-coupled from the other SDP variables.
This de-coupling allows one to optimize over 𝑃 with less constraints and consequently less conservatism in the solution.
This section describes two approaches that stem from this philosophy, but which are based on different parametrizations.
The difference lies in that Approach I is based on an initial state-feedback gain, whereas Approach II is based on an
initial SOF gain. The parametrizations on which Approaches I and II are based, respectively, are given as follows [22,
Section 6.3.3]:

Lemma 4.3 from [22, Section 6.3.3]: The H∞ optimal SOF gain is given by 𝐾 = −𝐹−1𝑍 , where the triplet
(𝑃∞, 𝑍, 𝐹) ∈ S𝑛++ × R𝑟×𝑙 × R𝑟×𝑟 is the global optimal solution of the following non-convex optimization problem:

min
𝑃∞ ,𝑍,𝐹,𝐾𝑆𝐹∞ ,𝐾𝑤∞

𝛾2 s.t.

𝑁∞ (𝑃∞) + Sym



𝐾⊤
𝑆𝐹∞

𝐾⊤𝑤∞
−𝐼


[
𝑍𝐶𝑦 𝑍𝐷𝑦𝑤 𝐹

] < 0,
(9)

where

𝑁∞ (𝑃∞) =
[
𝐼 0 0
𝐴 𝐵𝑤 𝐵𝑢

]⊤ [
0 𝑃∞
𝑃∞ 0

] [
𝐼 0 0
𝐴 𝐵𝑤 𝐵𝑢

]
+
[
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢

0 𝐼 0

]⊤ [
𝐼 0
0 −𝛾2𝐼

] [
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢

0 𝐼 0

]
(10)
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Lemma 4.4 from [22, Section 6.3.3]: Given the quadruple (𝑃∞, 𝐾1, 𝐾2, 𝐹) ∈ S𝑛++ × R𝑛×𝑟 × R𝑞×𝑟 × R𝑟×𝑟 , the optimal
𝐻∞ SOF gain matrix 𝐾 = 𝐾𝑆𝑂𝐹 is the global optimal solution to the following non-convex optimization problem:

min
𝑃∞ ,𝐾1 ,𝐾2 ,𝐹,𝐾𝑆𝑂𝐹

𝛾2 s.t.

𝑁∞ (𝑃∞) + Sym



𝐾1

𝐾2

𝐹


[
𝐾𝑆𝑂𝐹𝐶𝑦 𝐾𝑆𝑂𝐹𝐷𝑦𝑤 −𝐼

] < 0
(11)

with 𝑁∞ (𝑃∞) defined in Eq. (10).

Eqs. (9) and (11) are BMI due to the product terms between the different SDP variables. Approaches I and II are both
coordinate-descent cross-decomposition algorithms, which means that SDP variables are alternatively fixed to render
the BMI’s into LMI’s, while monotonically decreasing the performance value 𝛾.

1. S-variable Approach I
The first approach needs an initial guess of the SDP variables 𝐾𝑆𝐹∞ and 𝐾𝑤∞ in Eqs. (9) before it starts iterating.

These can be chosen at random, but a good guess for the BMI in Eqs. (9) can be found by assuming full-information
feedback:

Lemma 4.5 from [22, Section 6.3.3]: Given the quadruple (𝑋∞, 𝑅,𝑌 , 𝐾𝑤) ∈ S𝑛++ × R𝑟×𝑛 × R𝑟×𝑛 × R𝑟×𝑛, solve the
following SDP problem:

min
𝑋∞ ,𝑅,𝑌 ,𝐾𝑤

𝛾2 s.t.
Sym{𝐴𝑋∞ + 𝐵𝑢𝑌 } ∗ ∗
(𝐵𝑤 + 𝐵𝑢𝐾𝑤)⊤ −𝛾2𝐼 ∗
(𝐶𝑧 + 𝐷𝑧𝑢𝑅) (𝐷𝑧𝑤 + 𝐷𝑧𝑢𝐾𝑤) −𝐼

 < 0

𝐾𝑆𝐹∞ = 𝑌𝑋−1
∞

𝐾𝑤∞ = 𝐾𝑤

(12)

where 𝐶𝑦 = [𝐼 0]⊤ and 𝐷𝑦𝑤 = [0 𝐼]⊤.

In [22, Section 6.3], 𝐾𝑆𝐹∞ and 𝐾𝑤∞ are used as a good initial guess for the subsequent coordinate-descent algorithm. A
Hit-and-Run (H.R.) algorithm‡ in [24] is applied to generate a set of state-feedback gains based on the initial guess
𝐾𝑆𝐹∞ . By using several initial guesses, instead of only 𝐾𝑆𝐹∞ , better results were obtained, since the results of the
algorithms are heavily dependent on their initial conditions. Thus, having many initial guesses instead of just one,
increases the likelihood of converging to a local solution.

Approach I from [22, Chapter 6]:
1) Solve the following SDP problem:

min
𝑋∞ ,𝑅,𝑌 ,𝐾𝑤

𝛾2 s.t. Eqs. (12)

Let the solutions be 𝐾𝑆𝐹∞ and 𝐾𝑤∞
2) Choose 𝑘max as a positive integer and apply H.R.(𝐾𝑆𝐹∞ ) to generate 𝔎𝑆𝐹:

𝔎SF =

{
𝐾
(1)
SF , 𝐾

(2)
SF , ..., 𝐾

(𝑘max )
SF ∈ R𝑟×𝑛 : 𝜆(𝐴 + 𝐵𝑢𝐾SF) ∈ C−−

}
,

where 𝐾 (1)SF := 𝐾𝑆𝐹∞

‡H.R. is able to construct a set of gains of any size, starting from one gain, using a randomized approach. This method is found to be very
efficient in generating many stabilizing SOF gains. For practical purposes, the reader is referred to [24] for the full description of the algorithm.
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3) Set 𝑘 = 1 and choose 𝐾 (1)
𝑆𝐹
∈ 𝔎𝑆𝐹 .

4) For fixed 𝐾 (𝑘 )SF and 𝐾 (𝑘 )𝑤∞ , solve the following SDP problem:

min
𝑃∞ ,𝑍,𝐹

𝛾2
1 s.t. Eqs. (9)

Let the solutions be 𝑍 (𝑘 ) = 𝑍 , 𝐹 (𝑘 ) = 𝐹.
5) For fixed 𝑍 (𝑘 ) and 𝐹 (𝑘 ) , solve the following SDP problem:

min
𝑃∞ ,𝐾

𝛾2
2 s.t. Eqs. (9)

Let the solutions be 𝐾 (𝑘 ) = 𝐾 .
6) Let 𝜖 << 1 be the prescribed tolerance. If




𝛾 (𝑘 )1 − 𝛾 (𝑘 )2




 < 𝜖 , stop, the algorithm has converged. Else if

𝑘 = 𝑘𝑚𝑎𝑥 , stop, the maximum amount of iterations has been reached. Set 𝐾SOF = 𝐾
(𝑘 )
SOF. Else, 𝑘 ← 𝑘 + 1 and go

to step 4.

A similar procedure to T-K iteration can be observed, where SDP variables are alternatively fixed to render BMI’s into
LMI’s. This procedure can also be observed in the subsequent section.

2. S-variable Approach II
The general procedure for Approach II of the S-variable methods is of similar nature to that of Approach I, where

both algorithms are of the coordinate-descent cross-decomposition type. However, where Approach I is based on an
initial 𝐾SF ∈ 𝔎SF, Approach II is in fact based on a stabilizing 𝐾SOF ∈ 𝔎SOF, where 𝔎SOF of size 𝑗max is defined by

𝔎SOF =

{
𝐾
(1)
SOF, 𝐾

(2)
SOF, ..., 𝐾

( 𝑗max )
SOF ∈ R𝑟×𝑙 : 𝜆(𝐴 + 𝐵𝑢𝐾SOF𝐶𝑦) ∈ C−−

}
(13)

Approach II uses the following lemma from [22, Section 6.2] to obtain 𝐾SOF from an initial 𝐾SF:

Lemma 4.5 from [22, Chapter 6]: There exists 𝐾SOF ∈ 𝔎SOF for the closed-loop system in Eqs. (3) if and only if there
exist a stabilizing state-feedback matrix 𝐾SF ∈ 𝔎SF, a matrix 𝑃 ∈ S𝑛++, and matrices 𝐹 ∈ R𝑟×𝑟 , 𝑍 ∈ R𝑟×𝑙 , s.t.

Trace(𝑃) > 0

𝑀 (𝑃) + Sym

{[
𝐼

−𝐾⊤SF

] [
𝐹 𝑍𝐶𝑦

]}
< 0

(14)

where 𝑀 (𝑃) =
[
𝐵⊤𝑢 0
𝐴⊤ 𝐼

] [
0 𝑃

𝑃 0

] [
𝐵𝑢 𝐴

0 𝐼

]
and 𝐾SOF = 𝐹−1𝑍 .

Approach II can then be described as follows, where steps 1) to 4) generate a set of SOF gains and steps 5) to 8) deal
with obtaining the optimum SOF gain from the set of gains.

Approach II from [22, Chapter 6]:
1) Choose 𝑘max and generate 𝔎𝑆𝐹 of size 𝑘max, in a similar way to Approach I using H.R..
2) Let 𝑘 = 1.
3) Choose a 𝐾 (𝑘 )

𝑆𝐹
∈ 𝔎𝑆𝐹 and solve the following SDP problem with a fixed 𝐾 (𝑘 )

𝑆𝐹
:

min
𝑃,𝐹,𝑍

Trace(𝑃) s.t. Eqs. (14).

Let the solution be 𝐾 (𝑘 )SOF = −𝐹−1𝑍 . If 𝐾 (𝑘 )SOF ∈ 𝔎SOF, 𝐾SOF = 𝐾
(𝑘 )
SOF and continue to step 4). Else, if 𝑘 = 𝑘max,

stop, the algorithm was not able to find a stabilizing 𝐾SOF. Else, 𝑘 ← 𝑘 + 1 and repeat step 3).
4) Choose 𝑗max and apply H.R.(𝐾SOF) to generate 𝔎SOF of size 𝑗max defined in Eq. 13, where 𝐾 (1)SOF := 𝐾SOF.
5) Let 𝑗 = 1.

7



6) For fixed 𝐾 ( 𝑗 )SOF = 𝐾SOF, solve the following SDP optimization problem:

min
𝑃∞ ,𝐾1 ,𝐾2 ,𝐹

𝛾2
1 s.t. Eqs. (11)

Let the solutions be 𝐾 ( 𝑗 )1 = 𝐾1, 𝐾 ( 𝑗 )2 = 𝐾2, and 𝐹 ( 𝑗 ) = 𝐹.
7) For fixed 𝐾 ( 𝑗 )1 , 𝐾 ( 𝑗 )2 , and 𝐹 ( 𝑗 ) , solve the following SDP optimization problem:

min
𝑃∞ ,𝐾SOF

𝛾2
2 s.t. Eqs. (11)

Let the solution be 𝐾 ( 𝑗 )SOF = 𝐾SOF.
8) Let 𝜖 << 1 be the prescribed tolerance. If




𝛾 ( 𝑗 )1 − 𝛾 ( 𝑗 )2




 < 𝜖 , stop, the algorithm has converged. Set 𝐾 = 𝐾
( 𝑗 )
SOF.

Else, if 𝑗 = 𝑗max, stop, the maximum number of iterations has been reached. Else, 𝑗 ← 𝑗 + 1 and go to step 6).
Remark 1: Approaches I and II are, like most iterative LMI methods, heavily dependent on their initial conditions.
Unfortunately, there exists no dead-point criterion for the local minima, as was the case for T-K iteration with 𝑁 , the
algorithm just stops whenever 𝛾 has converged.
Remark 2: Approaches I and II are easily extended in SOFHi to incorporate structured SOF. A zero-nonzero structure
of 𝐾SOF can be imposed through 𝑍 in Lemma 4.3 (keeping 𝐹 proportional to the identity matrix), and directly through
𝐾SOF in Lemma 4.4.
Remark 3: 𝐾 = −𝐹−1𝑍 in Lemma 4.3 is replaced in SOFHi by 𝐾 = −𝐹+𝑍 when 𝐹 is singular or near-singular, to avoid
inaccurate results. Singularity is checked through the condition number 𝜅(𝐹) = | |𝐹 | | · | |𝐹−1 | |. When 𝜅(𝐹) → ∞, 𝐹 is
considered singular. Ultimately, this increases the robustness of the algorithm in at least obtaining an adequate result.

C. SOFHiEVO
The algorithms described in subsection IV.A-IV.B are implemented and bundled into one toolbox named SOFHi. A

downside that is intrinsic to Lyapunov methods is their lack of computational efficiency when compared to non-smooth
optimization methods, since the latter do not have Lyapunov matrices in their problem formulation. Let 𝑛 be the #states,
𝑟 the #inputs, and 𝑙 the #outputs. Lyapunov methods are then of computational complexity 𝑂 (𝑛2), while non-Lyapunov
methods are of complexity𝑂 (𝑟 · 𝑙), the latter of which is generally much smaller. Consequently, this leads to non-smooth
methods being more computationally efficient than Lyapunov methods, even more so for systems that include many
states.

Additionally, the methods in SOFHi are prone to converge to a local plateau, since they are probabilistic by nature
and highly dependent on the initial conditions: the initial CTM 𝑇𝑦 for T-K iteration and the initial stabilizing gain
matrices for the S-variable approaches. To reduce conservatism and likely improve the solution to a local optimum,
multiple runs starting from different initial conditions are beneficial, which ultimately increases the likelihood of the
algorithms to converge to- or near a local optimum. However, the need to run multiple times from different initial points
emphasizes the need for more computational efficiency in the Lyapunov methods, since the required computational
power is directly proportional to the amount of runs performed.

For those reasons, SOFHiEVO is introduced in this paper to serve as an additional "fast setting" for SOFHi. It is based
on the idea of filtering out unfavorable runs early and proceeding with the set of promising runs, which is a subset of the
original set of runs. The concept is visualized in Fig. 1, where the three parameters of SOFHiEVO are shown, namely
the number of starts 𝑁starts, the number of samples 𝑁samples, and the number of candidates 𝑁candidates. The idea is to start
from multiple random initial conditions, evaluate 𝛾 of each run after 𝑁samples, and discard the unfavorable runs, except
for the candidates, i.e. the runs that are optimized further. Let 𝔏 be the set of gains at the iteration index 𝑘 that is equal
to 𝑁samples:

𝔏 =

{
𝐾 (1) , 𝐾 (2) , ..., 𝐾 (𝑁starts ) : 𝑘 = 𝑁samples

}
(15)

The set of candidates is then described as ℭ ⊆ 𝔏:

ℭ =

{
𝐾 (1) , 𝐾 (2) , ..., 𝐾 (𝑁candidates ) : 𝑁candidates < 𝑁starts

}
, (16)

where 𝐾 ∈ ℭ are the gain matrices that lead to the set with lowest 𝛾’s of size 𝑁candidates. ℭ then serves as the new set
of initial gains which is optimized further. The motivation for using SOFHiEVO and its computational efficiency with
respect to SOFHi will become apparent from the results in section V.
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Fig. 1 Visualization of the solution space for a fictional case to explain the sampling phase in SOFHiEVO, where
the gain matrix 𝐾 is assumed to be the only decision variable and is a single scalar gain to be able to have a
two-dimensional visualization of the optimization procedure. The following user-defined settings are emphasized:
in this example, 𝑁starts = 5 and 𝑁candidates = 3, meaning that 2 of the 5 runs are discarded after 𝑁samples iterations,
based on the fact that their corresponding performance indices (𝛾4 and 𝛾5) are worse than (𝛾1, 𝛾2, and 𝛾3). The
runs corresponding to (𝛾1, 𝛾2, 𝛾3) are then iterated further until convergence.

V. Results
This section will cover the results from implementing the SOF algorithms described in section IV. The algorithms

are applied on 54 low-medium sized benchmark models from the Compleib library in [27]. Comparisons are made
between SOFHi, SOFHiEVO, and the two most well-established fixed-structure synthesis algorithms that optimize the
𝐻∞-norm of the complete block, these algorithms are HIFOO and Hinfstruct. The latter comparisons are made only
on 𝛾, not on computational times, since the Lyapunov methods are limited by the amount of decision variables in the
problem formulation, as explained in subsection IV.C, and further improvements could be made by writing in Fortran.

Quad-core computations in the subsequent sections have been performed on hardware with the following specifica-
tions:

Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81 GHz
16.0 GB RAM

A. SOFHi comparison
A full overview of the benchmark models and results can be found in Table 8 and Table 9. A summary of the

comparisons between standard SOFHi, Hinfstruct, and HIFOO is presented in Table 2, though. It can be seen that SOFHi
outperforms HIFOO in terms of performance index 𝛾, where the difference becomes more apparent when considering a
margin of significance. When comparing SOFHi to Hinfstruct, however, Hinfstruct can be seen to outperform SOFHi
when no margin of significance is considered. When a margin is considered, however, the results are very similar and
SOFHi is able to slightly outperform Hinfstruct.

Table 2 Summary for both 30 and 100 starts. Results represent the % of times, from all the 54 example models,
method 𝐴 has a more optimal 𝛾 than 𝐵. When a margin of e.g. 1% is included, the results are considered equal
when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵). Superior results are placed in bold.

30 starts 100 starts

SOFHi HIFOO SOFHi Hinfstruct SOFHi HIFOO SOFHi Hinfstruct
No margin 64.81% 33.33% 40.74% 53.70% 62.96% 35.19% 44.44% 51.85%
Margin = 1% 14.81% 0.00% 9.26% 0.00% 12.96% 0.00% 9.26% 1.85%
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B. SOFHiEVO comparison
The comparison between SOFHi and SOFHiEVO in terms of performance index 𝛾 is presented in Table 3. It can be

seen that even for significantly less candidates than the number of starts of SOFHi, SOFHiEVO is able to outperform
SOFHi and takes up less computational time. The most extreme case is emphasized, when SOFHiEVO and SOFHi have
the same 𝑁starts and SOFHiEVO only proceeds with 8 of the original 30 starts after 30 sample iterations. It is expected
that SOFHi will outperform SOFHiEVO, since SOFHiEVO discards 22 runs, without the added benefit of starting out
with more runs. The difference is marginal though, highlighting the motivation for creating SOFHiEVO: the loss in
accuracy after discarding the unfavorable runs is marginal, and more often than not, the optimal run is present among
the number of candidates, given that 𝑁samples and 𝑁candidates are chosen appropriately.

Table 3 Comparisons between SOFHiEVO and SOFHi on computational performance and 𝛾. Parameters are
denoted as "(𝑁starts, 𝑁samples, 𝑁candidates)" for SOFHiEVO and as "𝑁starts" for SOFHi. Relative computational
time denotes the time it takes for SOFHiEVO to compute for all 54 benchmark models relative to SOFHi, e.g.
100% means it has taken exactly the same amount of (real) time as SOFHi. Further results represent the % of
times, from all the 54 example models, method 𝐴 has a more optimal 𝛾 than method 𝐵. When a margin of e.g.
1% is included, the results are considered equal when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵).

SOFHiEVO SOFHi SOFHiEVO SOFHi SOFHiEVO SOFHi SOFHiEVO SOFHi
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30 (30, 30, 8) 30
Rel. comp. time 93.29% - 60.45% - 48.07% - 22.76% -
No Margin 62.96% 31.48% 57.41% 37.04% 55.56% 40.74% 42.59% 53.70%
Margin = 1% 3.70% 0.00% 3.70% 0.00% 1.85% 0.00% 3.70% 1.85%

The results of SOFHiEVO when compared to HIFOO and Hinfstruct are presented in Table 4. It can be seen that
SOFHiEVO scores significantly better than HIFOO, with and without a margin. Compared to Hinfstruct, it can be seen
that SOFHiEVO is able to outperform with and without a margin for the (250, 50, 16) run where a gradual decrease in
results can be observed when choosing runs with faster computational times, relative to SOFHi. Even then, SOFHiEVO
is at least competitive to Hinfstruct, slightly outperforming when a significance margin is included.

Table 4 Comparison between SOFHiEVO, HIFOO, and Hinfstruct on 𝛾. Parameters are denoted as
"(𝑁starts, 𝑁samples, 𝑁candidates)" for SOFHiEVO and as "𝑁starts" for HIFOO and Hinfstruct. Furthermore, results
represent the % of times, from all the 54 example models, method 𝐴 has a more optimal 𝛾 than 𝐵. When a
margin of e.g. 1% is included, the results are considered equal when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵). Superior
results are placed in bold.

SOFHiEVO HIFOO SOFHiEVO HIFOO SOFHiEVO HIFOO
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30
No Margin 70.37% 27.78% 68.52% 29.63% 59.26% 38.89%
Margin = 1% 14.81% 0.00% 14.81% 0.00% 14.81% 0.00%

SOFHiEVO Hinfstruct SOFHiEVO Hinfstruct SOFHiEVO Hinfstruct
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30
No Margin 51.85% 44.44% 48.15% 48.15% 42.59% 55.56%
Margin = 1% 9.26% 1.85% 9.26% 0.00% 9.26% 1.85%

Remark: It is important to acknowledge that the comparisons in Table 3 and Table 4 are akin to "comparing apples to
pears", since SOFHiEVO has many more starts than 30. However, most of these runs are discarded after the sampling
phase and SOFHiEVO ends up with much less runs, i.e. the candidates. The point of this comparison is merely to show
that within the same time-frame of the original algorithms (see "Rel. comp. time." in Table 3), SOFHiEVO is able to be
more competitive to HIFOO and Hinfstruct than the original algorithms in SOFHi were, to the point that SOFHiEVO is
even able to outperform Hinfstruct for one of its runs. It is thus shown that the original algorithms were improved upon.
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VI. Fighter Aircraft Example
To showcase the effectiveness of SOFHi in tuning 𝐻∞ SOF controllers, a classical PI-controller with an inner-loop

pitch-rate feedback is designed for a normal acceleration Control Augmentation System (CAS) for the F-16 Fighting
Falcon. The non-linear equations of motion stem from [28], and the aerodynamic model is taken from [29, p. 714-723].

A Two-Degree-of-Freedom (2-DoF) approach is implemented, where the first stage is based on a classical Four-Block
design, similar to [30, Section 5.1]. Furthermore in the second stage, a second-order feedforward function 𝐹 is tuned
using an additional 𝐻∞-block. The full configuration of the 2-DoF design can be seen in Fig. 2, where 𝐹 is added
outside the loop to improve the transient time response without affecting the robustness and disturbance rejection
characteristics of the Four-Block design. Furthermore, the proportional part of the PI-controller is chosen to be in the
feedback path. This is done to reduce the effect of proportional kicks on the output and control input, which occur in
presence of step reference input [31, Section II.F]. This ultimately favors soft-starts and smooth responses in tracking
applications.

Fig. 2 2-DoF design for the normal acceleration CAS. 𝐺 denotes the Linear Time Invariant (LTI) plant, which
originates from trimming and linearizing the non-linear model around each flight point. 𝑊𝑖 denotes the weighting
functions that shape the closed-loop sensitivity functions. (𝐾𝑖 , 𝐾𝑝 , 𝐾𝑞) are the SOF gains in the Four-Block
design. For the second stage in the 2-DoF design, 𝐹 denotes the feedforward transfer function, and 𝑇ref denotes
the reference model that is to be followed.

A. Design Objectives
One can formulate design objectives in terms of the closed-loop sensitivity functions, which describe the desired

performance and robustness of the closed-loop system. An overview of the sensitivity functions in Fig. 2 can be found
in Table 5. The design objectives to the sensitivity functions in the frequency domain for this 2-DoF design are as
follows [32].

• To attenuate output disturbance signals at the plant output and to reduce the steady-state tracking error, �̄�(𝑆𝑎𝑛 ) is
to be minimized, where 𝑆𝑎𝑛 is the output sensitivity function of the normal acceleration loop 𝑎𝑛.

• To attenuate control input, �̄�(𝐾𝑆𝑎𝑛 ) is desired to be minimized, where 𝐾 is the controller block. Additionally,
high-frequency measurement noise at the plant input is to be attenuated through 𝐾𝑆𝑎𝑛 .

• To attenuate input disturbance signals at the plant output, �̄�(𝑆𝑎𝑛𝐺) is to be minimized, where 𝐺 is the plant.
• To attenuate high-frequency unmodelled dynamics at the plant input, �̄�(𝑇𝑖) is to be minimized, where 𝑇𝑖 is the

complementary input sensitivity function.
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• In the second stage of the 2-DoF design, to accurately follow the reference model 𝑇ref, �̄�(𝑀) is to be minimized,
where 𝑀 is the model-matching sensitivity.

• In the second stage of the 2-DoF design, to limit the actuator effort from pilot input, �̄�(𝐾𝑆𝑎𝑛𝐹) is to be minimized.

Table 5 Overview of the closed-loop sensitivity functions in Fig. 2.

From To
𝑒 𝑎𝑛 𝑢𝑐 𝑒ref

𝑤1 𝑆𝑎𝑛𝐹 𝑇𝑎𝑛𝐹 𝐾𝑆𝑎𝑛𝐹 𝑀

𝑟 𝑆𝑎𝑛 𝑇𝑎𝑛 𝐾𝑆𝑎𝑛 −𝑇𝑎𝑛
𝑑𝑖 −𝑆𝑎𝑛𝐺 𝑆𝑎𝑛𝐺 𝑇𝑖 −𝑆𝑎𝑛𝐺

It is not possible to minimize all the sensitivity functions above over all frequencies. Luckily, the design objectives
stated above are relevant over different frequency ranges, so one can therefore use weighting functions (𝑊1,𝑊2,𝑊3, and
𝑊4 in Fig. 2) to shape the closed-loop sensitivity functions, in order to meet the design objectives to the best of its
abilities§. This often involves certain trade-offs between performance and robustness. Other requirements are stated as
follows, which stem from [29, 33, 34].

• The closed-loop system shall be internally stable.
• The overshoot of the normal acceleration time responses shall not exceed 10% [34].
• The settling times of the normal acceleration time responses shall not exceed 3 [s] [34].
• The damping ratio of the normal acceleration time responses shall be at least 0.3 [-] [33, 34].
• The control actuator deflections [deg] and deflection rates [deg/s] shall not exceed the physical limits, i.e. 25 deg

and 60 deg/s, respectively [29].
• The minimum gain and phase margins shall be at least 6 [dB] and 40 [deg], respectively [33].
• The Control Anticipation Parameter (CAP) requirements shall be met [33].

B. H∞ SOF Design
This section describes the two design stages for a 2-DoF design. The first stage tunes the feedback gains, whereas

the second stage tunes the parameters of the feedforward function 𝐹.

1. First Stage of the 2-DoF Design
The first stage of the 2-DoF design aims at providing disturbance rejection and robustness to the system. From the

design objectives defined in subsection VI.A and Fig. 2, the transfer function from the exogenous inputs to the evaluated
outputs 𝑇𝑧𝑤 is described by: [

𝑧1

𝑧2

]
=

[
𝑊1 0
0 𝑊2

] [
𝑆𝑎𝑛 −𝑆𝑎𝑛𝐺
𝐾𝑆𝑎𝑛 −𝑇𝑖

] [
1 0
0 𝑊3

] [
𝑤1

𝑤2

]
(17)

The 𝐻∞-performance function to which the SOF algorithms in section IV are applied can now be defined as:

∥𝑇𝑧𝑤 ∥∞ =







[
𝑊1𝑆𝑎𝑛 𝑊1𝑆𝑎𝑛𝐺𝑊3

𝑊2𝐾𝑆𝑎𝑛 𝑊2𝑇𝑖𝑊3

]





∞
< 𝛾1 (18)

Eq. 18 is tuned using SOFHi to obtain the feedback gains.
§These weighting functions must be stable and proper due to assumptions made about the generalized plant [32, Page 98].
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2. Second Stage of the 2-DoF Design
The second stage aims at improving the transient response by tuning the second-order feedforward function 𝐹, in

order for the output of the model to follow a reference model 𝑇ref, with 𝑇ref being defined as:

𝑇ref =
𝜔2

sp,ref

𝑠2 + 2𝜁sp,ref𝜔sp,ref𝑠 + 𝜔2
sp,ref

, (19)

where 𝜔sp,ref and 𝜁sp,ref are the desired natural frequency and damping ratio of the short period dynamics, respectively.
𝑇𝑧𝑤 is now the transfer function from 𝑤1 → [𝑧2 𝑧3]⊤ and so ∥𝑇𝑧𝑤 ∥∞ becomes

∥𝑇𝑧𝑤 ∥∞ =







[
𝑊2𝐾𝑆𝑎𝑛𝐹

𝑊4𝑀

]





∞
< 𝛾2, (20)

where the bandwidth of 𝑊2 is now set to a higher value than for the first stage to allow for more transient tracking
performance. The parameters of the transfer function 𝐹 are then tuned using Hinfstruct instead of SOFHi, since the
matrices 𝐵𝑢 and 𝐶𝑦 are not of full rank in that case, which is an assumption made by the algorithms in SOFHi.

C. Gain-Scheduling
Flight dynamics change significantly with varying Mach and altitude through dynamic pressure. To make the

designed CAS more adaptable to variations in speeds and altitudes, 27 flight points are designed throughout the flight
envelope, between which the controller parameters are linearly interpolated. The shape of the flight envelope is based
on [34], where 15 flight points are added to the original 12 in the aforementioned literature to make the design grid
more dense, and ultimately make the controller perform better in between the original 12 flight points. The 2-DoF
design procedure described in subsection VI.B is applied around all the design points shown in Fig. 3a.

The (sub)-optimal 𝐻∞-norm of each flight point is presented in Table 6 for both the first and the second stage of the
2-DoF design, i.e. 𝛾1 and 𝛾2, respectively. The consequent gain surfaces can be seen in Figs. 3b-3d, where it can be
seen that gains with higher magnitude are observed at lower speeds and higher altitudes; the system needs more actuator
effort at these points in the flight envelope to meet the design objectives described in subsection VI.A.

Table 6 𝐻∞ norms for each flight point in both stages of the 2-DoF design.

(a) 𝛾1 [-] in Eq. 18 of the first stage in the 2-DoF design.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.08 1.18 1.23 1.07
2500 1.15 1.20 1.08
4000 1.16 1.17 1.23
5000 1.11 1.15 1.19 1.16
6000 1.13 1.18 1.10
7250 1.11 1.17 1.11
8500 1.13 1.14 1.07
10000 1.14 1.13 1.06 1.08

(b) 𝛾2 [-] in Eq. 20 of the second stage in the 2-DoF design.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.03 1.09 1.07 1.04
2500 1.06 1.04 1.02
4000 1.06 1.02 1.08
5000 1.07 1.03 1.08 1.06
6000 1.03 1.10 1.09
7250 1.03 1.10 1.02
8500 1.06 1.09 1.04
10000 1.06 1.11 1.08 1.06
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(a) Flight envelope including its design points. (b) 𝐾𝑖 [deg/(𝑔 · 𝑠)] gain surface.

(c) 𝐾𝑝 [deg/𝑔] gain surface. (d) 𝐾𝑞 [s] gain surface.

Fig. 3 Gain-scheduling results: Flight envelope and the gain surfaces, tuned by SOFHi.

D. Linear Analysis
Now that the gain surfaces have been tuned in subsection VI.B and subsection VI.C, the closed-loop system can be

analyzed in both frequency- and time-domain. This will be done in the subsequent subsections.

1. Sensitivity Functions
The six most relevant sensitivity functions to assess the frequency-domain characteristics of the closed-loop system

are shown in Fig. 4 for the first stage in the 2-DoF design. To attenuate input- and output disturbances acting on both
the plant input and output, 𝑆𝑎𝑛 , 𝑆𝑎𝑛𝐺, and 𝑆𝑖 are minimized at low frequencies. Furthermore, it can be seen that the
𝐾𝑆𝑎𝑛 , 𝑇𝑎𝑛 , and 𝑇𝑖 have adequate roll-off at higher frequencies to attenuate the higher frequency measurement noise and
unmodelled dynamics at the plant input.
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(a) Singular value plot of 𝑆𝑎𝑛 . (b) Singular value plot of 𝑆𝑖 .

(c) Singular value plot of 𝑇𝑎𝑛 . (d) Singular value plot of 𝑇𝑖 .

(e) Singular value plot of 𝑆𝑎𝑛𝐺. (f) Singular value plot of 𝐾𝑆𝑎𝑛 .

Fig. 4 Sensitivity functions of the first stage in the 2-DoF design described in subsection VI.B.
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The sensitivity functions of the second stage in the 2-DoF design are shown in Fig. 5. In Fig. 5a, it can be seen
that 𝐾𝑆𝑎𝑛𝐹 has a higher peak than 𝐾𝑆𝑎𝑛 in the mid-frequency range, which is due to the addition of the feedforward
function 𝐹, which leads to the controlled system requiring more control effort in this frequency range. Furthermore, the
function 𝑀 in Fig. 5b is seen to be small at lower frequencies to reduce the error between the reference model and the
output of the system at lower- to mid-frequencies. A clear trade-off takes place, where the peak of 𝑀 is limited as much
as possible in the mid-frequency range, while minimizing 𝐾𝑆𝑎𝑛𝐹, i.e. the required control effort from pilot input.

(a) Singular value plot of 𝐾𝑆𝑎𝑛𝐹. (b) Singular value plot of 𝑀 .

Fig. 5 Singular values of the sensitivity functions of the second stage in the 2-DoF design described in
subsection VI.B.

2. Stability Margins
Classical stability margins can give an optimistic perspective of the stability margins, since they do not take into

account simultaneous gain and phase. To assess the stability of the closed-loop system more conservatively, the Nichols
plots of each flight point including the worse-case exclusion region are shown in Fig. 6 at plant input and output. The
smallest disk margin can be seen in Fig. 6b and consists of a 10 [dB] gain margin and 56 [deg] phase margin. The
minimum requirements of 6 [dB] and 40 [deg], as defined in subsection VI.A, are thus considered to be met.

(a) At plant input. (b) At plant output.

Fig. 6 Nichols plots of all flight points [blue] at both plant input as well as normal acceleration output. Exclusion
region [red] is based on the worst-case disk margin of all the flight points.
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3. Linear Simulations
To assess the performance in controlling the normal acceleration output, time-domain simulations were performed

on linear models around each of the 27 flight points in Fig. 3a. These are presented in Fig. 7. The results show good
reference tracking and disturbance rejection, with no steady-state error, very small percentages in overshoot and a
settling time under the required 3 seconds.

Fig. 7 Linear simulations of all the flight points including an input disturbance of 0.2 [deg] at 5 seconds and an
output disturbance of 0.2 [𝑔] at 10 seconds.

The specific values for the response parameters are presented in Table 7. In Table 7b, it can be seen that the damping
ratios of the short-period dynamics are all above the minimum requirement of 0.3 [-] set in subsection VI.A. Furthermore,
the settling times in Table 7c and the percentages overshoot in Table 7e meet the requirements of respectively 3 seconds
and 10% for all of the flight points.

4. Handling Qualities
Handling qualities are analyzed to assess the short-period dynamics of the controlled system. To do this, first a

Low-Order Equivalent System (LOES) is fit to the Higher-Order System (HOS). Since the LOES is a second-order
transfer function, this allows to extract important short-period characteristics such as the natural frequency, damping
ratio and time constant. Ultimately, this allows one to obtain the longitudinal handling qualities, which are assessed
through the Control Anticipation Parameter (CAP) [35], one of the design requirements defined in subsection VI.A:

CAP =
𝜔2

sp

𝑛/𝛼 , (21)

The result of this is visualized in Fig. 8. It can be seen that the gain-scheduled controller meets the requirements for
CAP. Naturally, there is a clear trade-off between improving CAP requirements and reducing control effort, so care was
taken to ensure as little control effort as possible, while still meeting the CAP requirements.

E. Non-Linear Simulations
To showcase the robustness of the gain-scheduled controller, Monte-Carlo simulations are performed with varying

uncertain parameters, which are chosen to be the longitudinal position of the center of gravity 𝑋COG and the aircraft
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Table 7 Linear response characteristics for all designed flight points.

(a) Natural frequency 𝜔sp [rad/s].

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.28 2.77 3.23 3.79
2500 2.52 2.92 3.38
4000 2.29 2.65 3.10
5000 2.15 2.49 2.87 3.23
6000 2.46 2.67 3.03
7250 2.12 2.47 2.75
8500 1.93 2.24 2.55
10000 1.75 2.01 2.26 2.54

(b) Damping ratio 𝜁sp [-].

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 0.47 0.49 0.51 0.54
2500 0.47 0.50 0.52
4000 0.46 0.48 0.51
5000 0.46 0.48 0.49 0.52
6000 0.48 0.49 0.50
7250 0.46 0.48 0.49
8500 0.45 0.47 0.49
10000 0.44 0.46 0.47 0.49

(c) Settling times [s] with a 5% threshold.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.21 1.85 1.56 1.01
2500 2.03 1.75 1.45
4000 2.21 1.92 1.65
5000 2.34 2.02 1.79 1.57
6000 2.04 1.92 1.69
7250 2.35 2.06 1.85
8500 2.57 2.23 1.98
10000 2.81 2.46 2.22 1.99

(d) Rise times [s] from 10% to 90% of the steady-state value.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.08 0.88 0.77 0.68
2500 0.96 0.84 0.73
4000 1.04 0.91 0.79
5000 1.11 0.97 0.84 0.75
6000 0.97 0.89 0.79
7250 1.11 0.95 0.86
8500 1.20 1.04 0.92
10000 1.32 1.15 1.03 0.92

(e) Percentages in overshoot.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.31 2.53 2.22 1.45
2500 2.69 2.54 2.08
4000 2.80 2.70 2.60
5000 2.80 2.65 2.79 2.42
6000 2.93 3.02 2.76
7250 2.85 3.12 2.86
8500 2.94 3.10 2.99
10000 2.91 3.18 3.19 3.15

(f) Bandwidth 𝜔𝐵𝑊 [rad/s] of the loop gain 𝐿𝑎𝑛 .

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.23 2.49 2.78 3.28
2500 2.40 2.68 3.11
4000 2.23 2.58 2.68
5000 2.15 2.49 2.68 3.11
6000 2.36 2.58 3.00
7250 2.27 2.54 2.89
8500 2.11 2.49 2.78
10000 2.03 2.27 2.58 2.78

mass 𝑚. Variations in these parameters range in 𝑋COG ± 4.35% and 𝑚 ± 1000 kg, similarly to [34]. The simulations
were performed on the non-linear 6-DoF model from [28, 29] for high-𝑔 maneuvers, for which the results are shown in
Fig. 9. It can be seen that even for very high 𝑔’s, the control effort is small and the response accurately follows the
reference signal. Furthermore, although uncertainties can be seen to have an effect on the response, the controller is still
able to accurately track the reference signal with a gradual degradation in performance for increasing uncertainty. The
6-DoF position and attitude trajectory of the aircraft for the nominal run can be seen in Fig. 10 in the Appendix.
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(a) CAP requirement. (b) Damping ratio requirement.

Fig. 8 Level 1 CAP requirements for Category A flight phases based on [35]. Dots indicate the result for each of
the 27 flight points. Green indicates that the dot is within the desired region.

Fig. 9 Monte-Carlo simulations applied on the non-linear model with 50 runs to showcase the robustness of the
controller at high-𝑔’s maneuvers.
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VII. Conclusion
The purpose of this paper was to investigate Lyapunov-based SOF synthesis methods that could potentially compete

with the well-established non-smooth optimization methods, Hinfstruct and HIFOO. This would ultimately lead to more
insight into the performance of SOF controller synthesis methods in the 𝐻∞ framework.

Three algorithms were deemed most promising, i.e. T-K iteration and two S-variable approaches; these were
implemented and bundled into a toolbox named SOFHi. Results showed that SOFHi was able to significantly
outperform HIFOO in terms of 𝐻∞ performance index. However, comparing SOFHi to Hinfstruct showed that Hinfstruct
outperformed SOFHi when no significance margin was considered, but SOFHi was able to compete and even slightly
outperform Hinfstruct when this margin was in fact considered. It was thus shown that Lyapunov-based methods are
indeed competitive to the non-smooth optimization methods, although the Lyapunov methods are limited by the amount
of decision variables in the Lyapunov matrices, so the methods are mostly applicable to low-medium sized plants. In the
end, the Lyapunov methods serve as an alternative to the well-established non-smooth methods.

Structured SOF was achieved in the implementation and a "fast setting" of SOFHi was proposed, SOFHiEVO, which
was able to significantly improve on SOFHi in terms of computational efficiency. This allows one to start many more
runs from different initial conditions within the same time-frame. Doing this, SOFHiEVO was able to significantly
outperform HIFOO and was able to be competitive to Hinfstruct, even outperforming it for one of its runs.

Finally, to showcase the effectiveness of the algorithms, SOFHi was applied to design a robust gain-scheduled
PI-controller for a normal acceleration CAS of the F-16 Fighting Falcon for a large portion of the flight envelope.
Performance was achieved through meeting the handling qualities and robustness to uncertainties was demonstrated
through Monte-Carlo simulations.

VIII. Appendix

Fig. 10 Position and attitude trajectory of the aircraft, based on 6-DoF data from the non-linear model [36].
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Table 8 ∥𝑇𝑧𝑤 (𝑃, 𝐾)∥∞ for 30 random starts applied on benchmark models from the Compleib library. ’X’
denotes either that the algorithm has failed or that the algorithm is not applicable to that model. Superior results
are placed in bold.

Model T-K S-approach I S-approach II SOFHi Hinfstruct HIFOO
AC2 1.114893E-01 1.114946E-01 1.114893E-01 1.114893E-01 1.114893E-01 1.114893E-01
AC3 3.429719E+00 3.444490E+00 3.523945E+00 3.429719E+00 3.606264E+00 3.424724E+00
AC5 6.640498E+02 6.610349E+02 6.636103E+02 6.610349E+02 6.644574E+02 6.652504E+02
AC6 4.113974E+00 4.113943E+00 4.113965E+00 4.113943E+00 4.113956E+00 4.113944E+00
AC7 X 6.509075E-02 6.509076E-02 6.509075E-02 6.509066E-02 6.509060E-02
AC8 X 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00
AC11 2.834266E+00 2.814323E+00 2.827427E+00 2.814323E+00 2.812956E+00 2.831976E+00
AC15 1.516871E+01 1.602499E+01 1.589971E+01 1.516871E+01 1.516871E+01 1.516884E+01
AC17 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00
AC18 1.074842E+01 X 1.069786E+01 1.069786E+01 1.069716E+01 1.255910E+01
HE1 1.538209E-01 1.538620E-01 1.539639E-01 1.538209E-01 1.538209E-01 1.537869E-01
HE2 4.258125E+00 3.936859E+00 3.900153E+00 3.900153E+00 3.896131E+00 3.921615E+00
HE4 2.304968E+01 2.413298E+01 2.283837E+01 2.283837E+01 2.283817E+01 2.283867E+01
HE6 X 1.923842E+02 1.923599E+02 1.923599E+02 1.923531E+02 1.923736E+02
HE7 X 1.923880E+02 1.923882E+02 1.923880E+02 1.923862E+02 1.923913E+02

REA1 8.665937E-01 8.670439E-01 8.656412E-01 8.656412E-01 8.654988E-01 8.665155E-01
REA2 1.149412E+00 1.149488E+00 1.154296E+00 1.149412E+00 1.148838E+00 1.148353E+00
DIS1 4.159406E+00 4.162835E+00 4.160295E+00 4.159406E+00 4.159706E+00 4.163724E+00
DIS2 1.022484E+00 1.040235E+00 1.037782E+00 1.022484E+00 1.054774E+00 1.022421E+00
DIS3 1.062568E+00 1.299316E+00 1.063933E+00 1.062568E+00 1.061249E+00 1.066600E+00

WEC1 4.055088E+00 4.074383E+00 4.050097E+00 4.050097E+00 4.050014E+00 4.050143E+00
MFP 3.277044E+01 4.273129E+01 3.159155E+01 3.159155E+01 3.158987E+01 3.158987E+01
EB1 X 3.122517E+00 3.122520E+00 3.122517E+00 3.122525E+00 3.122521E+00
EB2 X 2.020041E+00 2.020041E+00 2.020041E+00 2.020102E+00 2.020041E+00
EB3 X 2.057463E+00 2.057463E+00 2.057463E+00 2.057527E+00 2.057463E+00
EB4 X 2.056323E+00 2.056323E+00 2.056323E+00 2.056387E+00 2.056323E+00
PAS 5.232251E-01 1.980016E+01 X 5.232251E-01 X 7.046017E-01
PSM 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01
NN1 1.376257E+01 1.630724E+01 1.438951E+01 1.376257E+01 1.376959E+01 1.382931E+01
NN2 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221583E+00 2.221556E+00
NN4 1.362297E+00 1.360271E+00 1.358669E+00 1.358669E+00 1.358663E+00 1.359066E+00
NN5 2.665445E+02 X X 2.665445E+02 2.665445E+02 2.665445E+02
NN6 5.812074E+03 5.738319E+03 3.688675E+03 3.688675E+03 5.602556E+03 5.602552E+03
NN7 7.410449E+01 7.407439E+01 X 7.407439E+01 7.407568E+01 7.407439E+01
NN8 2.890486E+00 2.891936E+00 2.914111E+00 2.890486E+00 2.884880E+00 2.885378E+00
NN11 X 8.383050E-02 8.335992E-02 8.335992E-02 9.116151E-02 9.261801E-02
NN12 1.618333E+01 1.730641E+01 1.682266E+01 1.618333E+01 1.611875E+01 1.683929E+01
NN13 X 1.405944E+01 1.406420E+01 1.405944E+01 1.405794E+01 1.405795E+01
NN15 9.808961E-02 9.809005E-02 8.322924E+00 9.808961E-02 9.808961E-02 9.809001E-02
NN16 9.555152E-01 9.568741E-01 9.559968E-01 9.555152E-01 9.555567E-01 9.555658E-01
NN17 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01

HF2D10 7.979732E+04 X X 7.979732E+04 7.978836E+04 7.989110E+04
HF2D11 7.689651E+04 X X 7.689651E+04 7.723728E+04 7.700805E+04
HF2D13 1.015485E+05 X X 1.015485E+05 1.015485E+05 1.015485E+05
HF2D14 5.308371E+05 X X 5.308371E+05 5.263977E+05 5.270185E+05
HF2D15 1.749107E+05 X X 1.749107E+05 1.733239E+05 1.749827E+05
HF2D16 4.441442E+05 X X 4.441442E+05 4.441442E+05 4.441442E+05
HF2D17 3.002366E+05 X X 3.002366E+05 3.002366E+05 3.002366E+05
HF2D18 1.196238E+02 1.227614E+02 1.196883E+02 1.196238E+02 1.195602E+02 1.236557E+02
BDT1 2.662119E-01 2.680469E-01 2.662325E-01 2.662119E-01 2.662119E-01 2.662119E-01
TMD X 2.180880E+00 2.157190E+00 2.157190E+00 2.136572E+00 2.523276E+00
FS 8.548169E+04 X X 8.548169E+04 8.551230E+04 X

DLR1 X X 2.779558E+00 2.779558E+00 2.777289E+00 2.777289E+00
ROC7 1.121820E+00 1.117512E+00 1.119708E+00 1.117512E+00 1.120327E+00 1.122203E+00
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Table 9 ∥𝑇𝑧𝑤 (𝑃, 𝐾)∥∞ for 100 random starts applied on benchmark models from the Compleib library. ’X’
denotes either that the algorithm has failed or that the algorithm is not applicable to that model. Superior results
are placed in bold.

Model T-K S-approach I S-approach II SOFHi Hinfstruct HIFOO
AC2 1.114893E-01 1.114895E-01 1.114893E-01 1.114893E-01 1.114893E-01 1.114893E-01
AC3 3.417253E+00 3.434777E+00 3.432525E+00 3.417253E+00 3.403622E+00 3.435171E+00
AC5 6.602662E+02 6.616976E+02 6.636129E+02 6.602662E+02 6.640303E+02 6.653228E+02
AC6 4.113973E+00 4.113941E+00 4.113955E+00 4.113941E+00 4.113942E+00 4.113956E+00
AC7 X 6.509075E-02 6.509076E-02 6.509075E-02 6.509060E-02 6.509066E-02
AC8 X 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00
AC11 2.819620E+00 2.815367E+00 2.826457E+00 2.815367E+00 2.812758E+00 2.826595E+00
AC15 1.516871E+01 1.599973E+01 1.579698E+01 1.516871E+01 1.516871E+01 1.516876E+01
AC17 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00
AC18 1.074677E+01 1.069754E+01 1.069794E+01 1.069754E+01 1.069715E+01 1.191095E+01
HE1 1.538209E-01 1.538620E-01 1.539636E-01 1.538209E-01 1.538209E-01 1.538309E-01
HE2 3.922528E+00 3.904555E+00 3.901241E+00 3.901241E+00 3.895785E+00 3.908621E+00
HE4 2.286146E+01 2.377527E+01 2.283858E+01 2.283858E+01 2.283817E+01 2.283817E+01
HE6 X 1.923592E+02 1.923570E+02 1.923570E+02 1.923529E+02 1.923544E+02
HE7 X 1.923879E+02 1.923882E+02 1.923879E+02 1.923860E+02 1.923902E+02

REA1 8.666032E-01 8.659882E-01 8.657506E-01 8.657506E-01 8.654989E-01 8.660901E-01
REA2 1.148926E+00 1.148471E+00 1.154289E+00 1.148471E+00 1.148223E+00 1.148925E+00
DIS1 4.159374E+00 4.162344E+00 4.160670E+00 4.159374E+00 4.159532E+00 4.159992E+00
DIS2 1.022326E+00 1.022920E+00 1.022776E+00 1.022326E+00 1.054774E+00 1.023024E+00
DIS3 1.063862E+00 1.107925E+00 1.068321E+00 1.063862E+00 1.061295E+00 1.062616E+00

WEC1 4.053096E+00 4.050243E+00 4.050419E+00 4.050243E+00 4.050012E+00 4.050237E+00
MFP 3.167343E+01 3.159272E+01 3.159157E+01 3.159157E+01 3.158987E+01 3.158987E+01
EB1 X 3.122517E+00 3.122520E+00 3.122517E+00 3.122521E+00 3.122525E+00
EB2 X 2.020041E+00 2.020041E+00 2.020041E+00 2.020041E+00 2.020102E+00
EB3 X 2.057463E+00 2.057463E+00 2.057463E+00 2.057463E+00 2.057527E+00
EB4 X 2.056323E+00 2.056323E+00 2.056323E+00 2.056323E+00 2.056387E+00
PAS 5.068844E-01 3.146420E+01 X 5.068844E-01 X 7.965271E-01
PSM 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01
NN1 1.374446E+01 1.383531E+01 1.388575E+01 1.374446E+01 1.377347E+01 1.384751E+01
NN2 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221583E+00
NN4 1.362235E+00 1.360414E+00 1.359962E+00 1.359962E+00 1.358776E+00 1.359355E+00
NN5 2.665445E+02 X 2.665445E+02 2.665445E+02 2.665445E+02 2.665445E+02
NN6 5.777714E+03 5.602552E+03 3.688675E+03 3.688675E+03 5.602552E+03 5.602553E+03
NN7 7.411120E+01 7.407439E+01 7.407439E+01 7.407439E+01 7.407439E+01 7.407568E+01
NN8 2.886156E+00 2.887578E+00 2.891828E+00 2.886156E+00 2.884885E+00 2.884980E+00
NN11 X 8.494687E-02 8.329533E-02 8.329533E-02 9.112113E-02 9.298774E-02
NN12 1.573776E+01 X 2.035457E+01 1.573776E+01 1.635851E+01 1.668808E+01
NN13 X 1.405835E+01 1.405809E+01 1.405809E+01 1.405794E+01 1.405795E+01
NN15 9.808961E-02 9.808962E-02 9.809066E-02 9.808961E-02 9.808961E-02 9.808988E-02
NN16 9.552605E-01 9.578570E-01 9.559619E-01 9.552605E-01 9.555631E-01 9.556033E-01
NN17 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01

HF2D10 7.979057E+04 X X 7.979057E+04 7.978000E+04 7.990348E+04
HF2D11 7.689588E+04 X X 7.689588E+04 7.712759E+04 7.702937E+04
HF2D13 1.015485E+05 X X 1.015485E+05 1.015485E+05 1.015485E+05
HF2D14 5.270742E+05 X X 5.270742E+05 5.263977E+05 5.273724E+05
HF2D15 1.749006E+05 X X 1.749006E+05 1.733193E+05 1.737786E+05
HF2D16 4.441442E+05 X X 4.441442E+05 4.441442E+05 4.442765E+05
HF2D17 3.002366E+05 X X 3.002366E+05 3.002366E+05 3.002366E+05
HF2D18 1.196188E+02 1.247764E+02 1.237381E+02 1.196188E+02 1.195597E+02 1.195751E+02
BDT1 2.662119E-01 2.662240E-01 2.662323E-01 2.662119E-01 2.662119E-01 2.662119E-01
TMD X 2.160220E+00 2.150294E+00 2.150294E+00 2.128761E+00 2.294840E+00
FS 8.548154E+04 X X 8.548154E+04 8.548257E+04 X

DLR1 X X 2.777886E+00 2.777886E+00 2.777289E+00 2.777289E+00
ROC7 1.121657E+00 1.116740E+00 1.119300E+00 1.116740E+00 1.120098E+00 1.121316E+00
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In this chapter any additional results to those of presented in the paper in chapter 2 are shown and
elaborated on. Furthermore, verification and validation of the SOF algorithms and their corresponding
results will be covered.

3.1. Loop-at-a-time Disk Margins
The worst-case disk margin was already presented through the Nichols plots in chapter 2, but an overview of
the disk margins for each flight point is presented in Figure 3.1. It can be seen that the margins are all far
above the minimum required values of 6 [dB] and 40 [deg] for the gain and phase margins, respectively, as
defined in the design objectives in chapter 2.

(a) Gain Margin at normal acceleration output. (b) Phase Margin at normal acceleration output.

(c) Gain Margin at plant input. (d) Phase Margin at plant input.

Figure 3.1: Loop-at-a-time disk margins at different locations in the controlled system. Green dots indicate significant
margin to the minimum requirement.

3.2. Comparison Within SOFHi
The main purpose of this research is to assess the competitiveness of LMI-based SOF algorithms to the well-
established methods, Hinfstruct and HIFOO; this has been covered in chapter 2. Additionally, it is worth it
to compare the algorithms to themselves, to get a complete comparison. The result of this is presented in
Table 3.1. It can be seen that the results do not change significantly with number of starts and that T-K
iteration performs the best out of the three LMI algorithms.

Table 3.1: Comparison of the three algorithms in SOFHi for both 30 and 100 starts, applied on 54 benchmark models from
Compleib. Results represent the percentage of times the algorithm obtained the most optimal γ from all the algorithms.

Superior results are placed in bold.

T-K Iteration S-variable App. I S-variable App. II
30 starts 53.70% 24.07% 22.22%
100 starts 50.00% 27.78& 22.22%
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3.3. Verification
In this section, the verification process and results of the SOF algorithms are presented and elaborated on
in subsection 3.3.1. Furthermore, verification of correct calculation of all stability margins are presented and
explained in subsection 3.3.2.

3.3.1. Verification of the SOF algorithms
To obtain confidence in the output of the SOF algorithms, the results of the implementation are compared
to the examples in the paper. Analysis on the closed-loop system with the obtained gain matrix should yield
exactly similar values as the output of the algorithms.

Verifying T-K iteration
Verifying correct implementation of T-K iteration algorithm is done by comparing the results from the
implementation to the results that are presented in the paper. Fortunately, the authors provide a reproducible
example. Any probabilistic factors, such as determining the initial CTM, are circumvented because this CTM
is already provided for Example 1 in (Feng, She, and Xu 2019). The results of this are presented in Figure 3.2.
When the same LMI solver as the paper is selected, the exact same results are found as those presented in
(Feng, She, and Xu 2019). T-K iteration is therefore considered verified.

(a) From (Feng, She, and Xu 2019).
(b) From SOFHi implementation with the LMI Toolbox as

LMI solver.

Figure 3.2: Comparison in iteration procedure through γ for T
(0)
c1 =

[
0.0382 −0.4379 0.0132

]⊤ for Example 1 in (Feng,
She, and Xu 2019).

Verifying Hit-and-Run
(Ebihara, Dimitri Peaucelle, and Denis Arzelier 2015) unfortunately provides no reproducible example for
the S-variable approaches. So, the same procedure as subsubsection 3.3.1 cannot be applied. Luckily, results
were shown for the H.R. algorithm, so to verify the Hit-and-Run algorithm, results shown in the paper are
exactly reproduced to ensure correct implementation. The results of this are shown in Figure 3.3, where 1000
stabilizing SOF gain matricesKSOF ∈ R1×2 are obtained. It can be seen that the solution space for SOF gains
obtained by the SOFHi implementation, corresponds to the results shown in (Ebihara, Dimitri Peaucelle, and
Denis Arzelier 2015) for both AC7 and NN5 benchmark models. The H.R. algorithm is therefore considered
verified.1

Verifying the peak gains
A major part of the verification process of the SOF algorithms is verifying that the γ’s obtained from the
SOF algorithms correspond to ∥Tzw(P,K)∥∞, where Tzw(P,K) is the interconnection between P and K in
Linear Fractional Transformation (LFT) form. Consider P to be defined as follows:

P :=

 A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

 (3.1)

Tzw is then obtained using the MATLAB function lft and the SOF gain matrix K synthesized by SOFHi
to make the lower LFT Fl(P,K) = Pzw + PzuK(I − PyuK)−1Pyw = Tzw.

To verify with full confidence, the γ’s are compared to two values: the output of the MATLAB function
getPeakGain(Tzw), which outputs the peak gain of the frequency response, and the maximum of the upper

1The exact same gains do not have to be found since it is a probabilistic algorithm. 1000 runs are therefore done, so the same
solution space can be observed.
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(a) Results of H.R. for AC7, extracted from (Ebihara,
Dimitri Peaucelle, and Denis Arzelier 2015, Page 193).

(b) Results of H.R. for NN5, extracted from (Ebihara,
Dimitri Peaucelle, and Denis Arzelier 2015, Page 194).

(c) Results of H.R. for AC7, from SOFHi implementation. (d) Results of H.R. for NN5, from SOFHi implementation.

Figure 3.3: Comparisons in stabilizing SOF gain matrices between (Ebihara, Dimitri Peaucelle, and Denis Arzelier 2015) and
the SOFHi implementation of the H.R. algorithm. KSOF ∈ R1×2 for both AC7 and NN5.

singular values over all frequencies maxω σ̄(Tzw). The results of this verification can be found in Table 3.2 and
Figure 3.4. It can be seen that besides marginal numerical errors, the three results correspond to eachother
for all three algorithms. It is thus verified that the synthesized gain matrices lead to closed-loop systems
with correct H∞ norms corresponding to the γ’s obtained from the algorithms. To ensure that the peak gain
is always correct, this process is checked for each γ that SOFHi outputs at each iteration. If it does not
correspond, that run is considered failed.

Table 3.2: Verification of the obtained γ’s of each algorithm in SOFHi for one random run on model AC3 of the Compleib
library in (Friedemann Leibfritz 2004).

Algorithm γ(SOFHi) [-] getPeakGain(Tzw) [-] maxω σ̄(Tzw) [-]
T-K 4.4855 4.4852 4.4852
S1 3.7277 3.7277 3.7277
S2 3.5095 3.5094 3.5095

3.3.2. Verification of the stability margins
Verification of the loop transfer functions is a straightforward process; however, it should be done with care
to ensure sufficient confidence in the resulting stability margins. The idea is to apply a multiplicative factor
F to the system at the relevant signals. Either pure gain or pure phase is added to the system through F at
the relevant signals (in this case at uc, an, and q, to analyze both plant input as plant output). This process
is implemented by building a simplified closed-loop system with the MATLAB function connect including
the feedback gains and the model G. Multiplicative factors F are then added to the system at strategic
locations.
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(a) T-K iteration. (b) S-variable Approach I.

(c) S-variable Approach II.

Figure 3.4: Comparison of γ with maxω σ̄(Tzw).

The locations of F can be seen in Figure 3.5. To verify the gain margin, F would be a static gain with
the obtained gain margin as its value. To verify the phase margin, F would be a time-delay block with the
calculated delay that corresponds to the phase margin value.2 Consequently, analysis of the poles of the
system should indicate that a pole is crossing the right-hand plane at the frequency of the gain- or phase
margin, which would mean the system is on the verge of instability at this frequency and for this multiplicative
factor F . That way, one verifies that the correct loop transfer functions are generated, since the consequent
stability margins from allmargin and diskmargin are correct.

Figure 3.5: Locations of the multiplicative factors Fi, where i indicates the signal name.

2Delay T in seconds is calculated by T = π
180

Phase [deg]
w[rad/s] , where w is the frequency at the phase margin.
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3.4. Validation
In this section the validation of the designed gain-scheduled controller is described. Validation is achieved
by ensuring that the controlled system behaves as desired throughout each point in the flight envelope
when applied on the non-linear model. For this, the CAS is tested at points at the very edge of the flight
envelope (at points with the highest velocities). Then, using a repetitive reference signal, the flight envelope
is ”discovered”. This validation process serves as an addition to the non-linear model simulations described
in chapter 2, which already validates that the flight controller behaves as desired on the 6-DoF model.

The results of this are presented in Figure 3.6 and Figure 3.7. It can be seen that the entirety of the flight
envelope is covered with this method and no significant outliers are observed in the responses. The percentages
in overshoot are small for each of the step responses with fast rise times. Significantly more overshoot in
normal acceleration can be observed for the first step input, though, since these are the responses in the
neighbourhood around the most difficult flight point, i.e. (Mach = 0.4, h = 1000m).

Figure 3.6: Mach-altitude trajectories for each of the 100 simulations throughout the flight envelope. Red crosses indicate the
starting points of the simulations and the blue arrows indicate the direction of the trajectory. A stopping criterion is used for

when the trajectory moves outside of the designed flight envelope.
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(a) Normal acceleration response.

(b) Pitch rate response.

(c) Actuator deflection.

(d) Actuator deflection rate.

Figure 3.7: Responses to the simulations of the validation procedure shown in Figure 3.6.
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4.1. Conclusion
The objective of this thesis was to obtain more insight into the performance of Lyapunov-based SOF controller
synthesis methods in the H∞ framework.

Research questions Q1 and Q2 were answered in the literature study, by comparing different mixed-
sensitivity methods and SOF synthesis methods, and commenting on the strengths and limitations of each
approach. The most promising SOF methods were implemented and bundled into a toolbox named SOFHi,
and a variant of SOFHi, i.e. SOFHiEVO, was proposed to greatly improve upon computational efficiency.
This allowed one to answer Q3 of the research questions, by comparing the performance of the methods
to Hinfstruct and HIFOO on 54 benchmark models. Results showed that SOFHi was able to significantly
outperform HIFOO in terms of the performance index γ and was at least able to be competitive with
Hinfstruct. Furthermore, SOFHiEVO was observed to significantly outperform HIFOO and to even slightly
outperform Hinfstruct for one of its runs.

Lastly, to showcase the effectiveness of SOFHi and to provide an answer to research questions Q4 and Q5,
an elaborate flight example is performed in which SOFHi was able to robustly tune the controllers around 27
flight points to have good H∞ performance and robustness, while meeting the design objectives and handling
qualities requirements.

Finally, to answer the main research question Q, it was shown that the Lyapunov methods are at least
competitive to the non-smooth optimization methods in terms of performance index γ, although their usage
is limited to low-medium sized plants. In the end, SOFHi provides an alternative to the well-established
non-smooth methods.

4.2. Outlook
Further research on SOFHi would include more testing of the existing methods. For e.g. SOFHiEVO, more
testing on the settings of the algorithm would potentially yield more insight into the optimal performance
and competitiveness to Hinfstruct. For example, would choosing more candidates be more optimal, or would
increasing the sample size be more preferable? Optimal settings might also be dependent on the sizes of
the plants and the rate of convergence of the algorithms, so a more automated approach to determining the
settings based on model characteristics such as plant size might lead to better results. These questions could
be answered more accurately when more testing on SOFHiEVO is performed in addition to the runs that have
been performed already.

Consider Figure 4.1. SOFHiEVO now performs a single sampling procedure to discard unfavourable runs
once, as shown in Figure 4.1a. It might be beneficial to investigate the use of multiple or many sampling
phases to have a ”funnel-like” type of filtering where runs are discarded gradually, as shown in Figure 4.1b
and Figure 4.1c. This might limit the risk of discarding the optimal run from the original set of runs, since
more evaluations take place. In the end, many types of funnel shapes are possible, so time could be spent
on finding the optimal settings of SOFHiEVO to manage the trade-off between computational efficiency and
optimal γ.

(a) Current ”T-like” procedure in
SOFHiEVO, where one sampling phase

takes place.

(b) Proposed ”funnel-like” procedure
where multiple sampling phases take place.

(c) Second proposed ”funnel-like”
procedure where more runs are discarded

at start.

Figure 4.1: Visualization of different filtering procedures.
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Furthermore, SOFHi could potentially be optimized for computational efficiency to make it even more
competitive to the non-smooth optimization methods in that regard. Although the efficiency of Lyapunov
methods is limited by the amount of decision variables, as explained before, care could be taken to optimize
the code with the aim of improving the performance of the algorithms. This could, for example, be done by
a group of experts in the field of computer science, if needed.

Although three algorithms were deemed most promising to implement into SOFHi, more algorithms could
be added in a later stage. For example, T-K iteration as described in (Feng, She, and Xu 2019) assumes that
Dyw is null. (Feng, Guo, et al. 2022) does not have this assumption, but in turn assumes that Dzu is null.
T-K iteration could therefore be extended to include (Feng, Guo, et al. 2022) in cases where Dyw ̸= 0 and
Dzu = 0. This was not done in this implementation yet due to practical considerations and the fact that Dzu

is more often non-zero than Dyw is, e.g. in an S/KS configuration.
Additionally, for the aircraft model, µ-analysis would achieve more confidence in the robustness of the

controller. This was considered beyond the scope of this current research though, where robustness was
demonstrated through a Monte-Carlo approach. Further improvements could also be made in the aircraft
design part by tuning more flight points than the current 27 flight points to obtain more accurate gain
surfaces, which would ultimately lead to better performance between the flight points.



A
Flowcharts

(a) Part 1. (b) Part 2.

Figure A.1: Part 1 and 2 of T-K iteration. LMI (7) and LMI (9) refer to equations 7 and 9 in (Feng, She, and Xu 2019).
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(a) Hit-and-Run algorithm procedure. (b) S-variable Approach I.

(c) S-variable Approach II.

Figure A.2: S-variable methods procedure.



B
SOFHi User Guide

1 %% Made by:
2 % A.D.P. Schoon
3 % M.Sc. student at Delft University of Technology , Control & Simulation
4 % department in the Aerospace Engineering faculty.
5 % As part of my thesis "Advancements in H-infinity Static Output Feedback Synthesis for

Fighter Aircraft Control".
6 %% SOFHi serves as an implementation of the following algorithms:
7 % --------------------------------------------------------------------------------------
8 % T-K iteration:
9 % [1]. Feng, Zhi Yong, Jinhua She, and Li Xu (Sept. 2019). "A brief review and insights into

matrix inequalities for H-infinity static-output-feedback control and a local optimal
”solution. In: International Journal of Systems Science 50 (12), pp. –22922305. issn:
14645319. doi: 10.1080/00207721.2019.1654008.

10

11 % S-variable methods:
12 % [2]. Ebihara , Yoshio, Dimitri Peaucelle , and Denis Arzelier (2015). S-variable approach to LMI-

based robust control. Springer
13 % --------------------------------------------------------------------------------------
14 %% Note!
15 % Make sure to have Yalmip and the desired solvers installed properly and
16 % added to the path before running.
17

18 %% Inputs:
19 % P
20 % class: struct
21 % P defines the plant and must be a struct class with the following fields
22 % containing your system matrices:
23 % A, Bu, Bw, Cz, Cy, Dzw, Dzu, Dyw, Dyu
24

25 % options.choice
26 % class: double
27 % default: 123 [all algorithms]
28 % Defines which algorithms to run.
29 % 1 defines T-K iteration , 2 the S-variable Approach I, 3 defines
30 % S-variable Approach II. E.g., 31 will run S-variable Approach II and T-K
31 % iteration.
32

33 % options.parallel
34 % class: binary
35 % default: 1
36 % Defines whether to use parallel computing (highly advised).
37 % !! This requires the Parallel Computing Toolbox. !!
38

39 % options.starts
40 % class: double
41 % default: 10
42 % Defines the number of tries for the algorithm. Since the
43 % algorithm produces local solutions and these are dependent on the initial
44 % conditions , different results occur. Therefore , to increase the
45 % chance of a local solution being a local optimum , it is advised to have
46 % multiple random starts at the cost of computational time.
47

48 % options.evo
49 % class: binary

30



31

50 % default: 0
51 % Selects whether to use the "fast" option. Algorithm pre-selects from a
52 % pool of runs (#starts) the most promosing runs: the candidates.
53 % The selection takes place after a certain amount of iterations: the
54 % number of samples. These candidates are then continued to run.
55

56 % options.iterSample
57 % class: double
58 % default: 10
59 % Related to options.evo. Defines the number of iterations after which a
60 % selection takes place to define the most promising runs
61

62 % options.struc
63 % class: double
64 % default: ones(#inputs ,#outputs)
65 % Allows to define zero elements of Ksof. The ones indicate non-zero
66 % elements , the zeros in options.struc define the zeros in Ksof
67

68 % options.itermaxTK | options.itermaxS1 | options.itermaxS2
69 % class: double
70 % default: 3000
71 % Defines the maximum amount of iterations for each algorithm
72

73 % options.display defines if the level of user display
74 % class: string
75 % default: 'iter'
76 % 1. 'final' will display only the final gamma
77 % 2. 'iter' will display the gamma after every start
78 % 3. 'off' will display nothing
79

80 % options.candidates
81 % class: double
82 % default: 3
83 % Defines the number of candidates which are further optimized , after the
84 % sampling phase.
85

86 % options.tolerance
87 % class: double
88 % default: 1e-6
89 % Defines tolerance level for convergence of gamma. Does not define the
90 % tolerance of the actual LMI solvers , which are at default values.
91

92 %% Outputs:
93 % K is the optimal SOF gain matrix.
94

95 % gamma is the best (sub)-optimal ∞H-norm found by the algorithm(s).
96

97 % T is the time in seconds it has taken to obtain the best gamma by the
98 % corresponding algorithm.
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