

Delft University of Technology

The Effect of Sr^{2+} on Luminescence of Ce^{3+} -Doped (Ca,Sr)₂Al₂SiO₇

Lin, Litian; Shi, Rui; Zhou, Rongfu; Peng, Qi; Liu, Chunmeng; Tao, Ye; Huang, Yan; Dorenbos, Pieter; Liang, Hongbin

DOI 10.1021/acs.inorgchem.7b01939

Publication date 2017

Document Version Final published version

Published in Inorganic Chemistry: including bioinorganic chemistry

Citation (APA)

Lin, L., Shi, R., Zhou, R., Peng, Q., Liu, C., Tao, Y., Huang, Y., Dorenbos, P., & Liang, H. (2017). The Effect of Sr²⁺ on Luminescence of Ce³⁺-Doped (Ca,Sr), Al SiO_. *Inorganic Chemistry: including bioinorganic chemistry*, *56*(20), 12476-12484. https://doi.org/10.1021/acs.inorgchem.7b01939

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

The Effect of Sr²⁺ on Luminescence of Ce³⁺-Doped (Ca,Sr)₂Al₂SiO₇

Litian Lin,[†][®] Rui Shi,[†][®] Rongfu Zhou,[†] Qi Peng,[†] Chunmeng Liu,[†] Ye Tao,[‡] Yan Huang,[‡] Pieter Dorenbos,[§] and Hongbin Liang^{*,†}[®]

[†]MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

[‡]Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China [§]Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands

Supporting Information

ABSTRACT: A series of Ce^{3+} -doped $(Ca,Sr)_2Al_2SiO_7$ phosphors with different Ce^{3+} and Ca^{2+}/Sr^{2+} concentrations were prepared by a high temperature solid-state reaction technique. To get insight into the structure—luminescence relationship, the impact of incorporation of Sr^{2+} on structure of $(Ca,Sr)_2Al_2SiO_7$ was first investigated via Rietveld refinement of high quality X-ray diffraction (XRD) data, and then the VUV–UV excitation and UV–vis emission spectra of $(Ca,Sr)_2Al_2SiO_7$:Ce³⁺ were collected at low temperature. The results reveal that the crystal structure evolution of $(Ca,Sr)_2Al_2SiO_7$:Ce³⁺ has influences on band gaps and Ce³⁺ luminescence properties including 4f–5d_i (i = 1-5) transition energies, radiative lifetime, emission intensity, quantum efficiency, and thermal stability. Moreover, the

influence of Sr^{2+} content on the energy of $Eu^{3+}-O^{2-}$ charge-transfer states (CTS) in $(Ca,Sr)_2Al_2SiO_7:Eu^{3+}$ was studied in order to construct vacuum referred binding energy (VRBE) schemes with the aim to further understand the luminescence properties of $(Ca,Sr)_2Al_2SiO_7:Ce^{3+}$. Finally, X-ray excited luminescence (XEL) spectra were measured to evaluate the possibility of $(Ca,Sr)_2Al_2SiO_7:Ce^{3+}$ as a scintillation material.

1. INTRODUCTION

Ce³⁺-activated luminescent materials have drawn much attention due to their scientific importance and practical applications in scintillators, solid state lighting (SSL), persistent luminescence, solar energy converters, and so on.^{1,2} The applications in all these aspects benefit from the typical parityallowed 4f-5d transition of Ce³⁺ which is characterized by a large absorption cross section and high radiative emission rate. Particularly, the energy of the Ce3+ 4f-5d transition can be changed to satisfy specific demands of applications by choosing a suitable host matrix or by tuning its composition, owing to the high sensitivity of the 5d orbital to the variation of local coordination environment.³⁻⁷ For example, through precisely controlling the composition of Al³⁺/Ga³⁺ in $Y_3(Al_{1-x}Ga_x)_5O_{12}:Ce^{3+}$, the first 5d level (5d₁) of Ce³⁺ can be placed at an appropriate position relative to the conduction band maximum (CBM), which makes this series of materials suitable for SSL $(x = 0)^8$ or persistent luminescence $(x = 3)^{9,10}$ applications. This composition engineering procedure has already become an important method in optimizing and exploring novel Ce3+-activated materials.¹¹⁻¹⁵ More importantly, the change of relative distance between the Ce³⁺ 5d₁ level and the CBM is expected to further influence the thermal stability of Ce³⁺ luminescence after the structural modification.¹⁶ Indeed, the thermal stability is a crucial issue for

applications of luminescent materials in various areas. Therefore, it is of interest and essential to get a systematic and deep insight into the impacts of the tuning of chemical compositions and structure on the band gap, 5d energies, and thermal stability for the different applications of Ce^{3+} -activated materials.

Silicates are important host compounds for luminescence of Ce³⁺. For example, Lu₂SiO₅ crystals doped with Ce³⁺ are a commercial scintillator for positron emission tomography (PET).¹⁷ The isomorphic M₂Al₂SiO₇ (M = Ca, Sr) compounds have the melilite crystal structure.¹⁸ This type of compound contains rigid SiO₄⁴⁻ and AlO₄⁵⁻ tetrahedral anionic groups, and alkaline earth cations M²⁺ can be easily modified with Ca²⁺ or Sr^{2+.19} These structure features are well-suited for the investigation on the influence of different M²⁺ on the band gap energy. Moreover, the single-site occupation of M²⁺ also facilitates the study of composition-dependent 5d energy and luminescence of Ce³⁺ ions.

In this article, the influence of Ca^{2+}/Sr^{2+} concentrations on the crystal structure evolution of $(Ca,Sr)_2Al_2SiO_7$, the VUV– UV–vis photoluminescence, and the X-ray radioluminescence of a series of Ce^{3+} -doped $(Ca,Sr)_2Al_2SiO_7$ were investigated

Received: August 1, 2017 Published: September 27, 2017

Figure 1. (a) Rietveld refinement for the powder XRD pattern of $Ca_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ and a depiction of the unit cell structure in the inset; (b) XRD patterns and (c) diffraction peaks corresponding to (121) crystallographic plane of $Ca_{2-2x}Ce_xNa_xAl_2SiO_7$ (x = 0.01, 0.03, 0.05, 0.07, 0.09) samples at RT.

systematically. We focus on the composition-dependent f–d transition energies and luminescence thermal stability of Ce^{3+} , showing that the lowest 5d levels of Ce^{3+} shift toward higher energies with increasing Sr^{2+} contents. In addition we found uplifts of the valence band maximum (VBM) and the CBM, leading to different thermal stability. These findings are interpreted and further understood by construction of vacuum referred binding energy (VRBE) schemes. The work provides an approach to understanding the composition-dependent thermal stability of luminescence and a clue for the future design of advanced phosphors.

2. EXPERIMENTAL SECTION

Powder samples of $Ca_{2-2x}Ce_xNa_xAl_2SiO_7$ (x = 0.01, 0.03, 0.05, 0.07, 0.09), $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$, and $Ca_{1.98-y}Sr_yEu_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 0.50, 1.00, 1.50, 1.98) were synthesized by a high temperature solid-state reaction technique. Due to the mismatch of electrical charge between trivalent Ce^{3+} and divalent Ca^{2+}/Sr^{2+} , the monovalent Na^+ ions from Na_2CO_3 are introduced as electrical compensators. The details of preparation and characterization are described in the Supporting Information.

2.1. Phase Identification and Structure Analysis. Figure 1a shows the Rietveld refinement of the representative Ca1.98Ce0.01Na0.01Al2SiO7 sample implemented with tetragonal Ca₂Al₂SiO₇ (ICSD 66740) as the initial model.¹⁸ The obtained fitting parameters are $R_{wp} = 3.23\%$, $R_{exp} = 1.73\%$, and $R_b = 2.99\%$, indicating that the refined results are reliable. Our sample forms a single phase with the $P\overline{4}2_1m$ (113) space group, whose lattice parameters are a = b= 7.6710(1) Å, c = 5.0605(1) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 297.78(1) Å³, and Z = 2. Table S1 shows the final refined structural parameters. There are two kinds of Al³⁺ at different Wyckoff positions, i.e., Al1 at 2a and Al2 at 4e. The Al2 shares one half of its crystallographic sites with Si. All Al1, Al2, and Si ions coordinate respectively with four oxygen ions to form AlO₄ and (Al,Si)O₄ tetrahedrons that further connect with each other to construct the rigid layers of anionic groups via corner sharing approximately along the *ab*-plane. In addition, the layer of Ca²⁺ ions inserts between the layers of anionic groups to produce a sandwich-structural unit cell as shown in the inset of Figure 1a. Then along the *c*-axis the structure of the compound is softer than that along the *ab*-plane, because of the lack of protection of the rigid layers of anionic groups. Besides, there is only one type of Ca²⁺ site surrounded by eight neighboring O^{2-} ions to form a CaO_8 dodecahedron with C_s symmetry, which can be approximately regarded as a distorted Thompson cube. The average Ca/Ce-O bond distance is ~2.562 Å (256.2 pm), and the distance of the two

nearest adjacent Ca–Ca is ~3.499 Å (349.9 pm). Considering the similar ionic radii at 8-fold coordination, Ce³⁺ (1.14 Å) and Na⁺ (1.18 Å) ions are expected to occupy Ca²⁺ (1.12 Å) sites.²⁰ Figure 1b shows the Ce³⁺/Na⁺ concentration-dependent XRD patterns of Ca_{2-2x}Ce_xNa_xAl₂SiO₇ (x = 0.01, 0.03, 0.05, 0.07, 0.09) samples. All patterns are similar to each other and match well with the refinements. With a rise in doping concentration, the diffraction peaks of (121) crystallographic planes slightly shift toward the low-angle side as shown in Figure 1c. This phenomenon implies that slightly larger Ce³⁺ and Na⁺ ions are effectively incorporated into the smaller Ca²⁺ sites, therefore resulting in the expansion of the unit cell with increasing Ce³⁺/Na⁺ concentration.

Figure 2a shows the XRD patterns of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (*y* = 0, 0.50, 1.00, 1.50, 1.98) samples. With increasing Sr^{2+} content, all

Figure 2. (a) XRD patterns and (b) diffraction peaks corresponding to (121) crystallographic planes of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 0.50, 1.00, 1.50, 1.98) at RT; (c) the linear fitting results of refined unit-cell parameters (*a*, *b*, and *c*), volumes (*V*), and average M–O (M = Ca²⁺, Sr²⁺, Ce³⁺, Na⁺) bond lengths with the mole ratio (y/2) of Sr²⁺-doping concentration in Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO₇.

diffraction peaks match well with the refined results, and no impurities have been detected. These phenomena indicate that the samples form continuous solid solutions. In addition, we notice that diffraction peaks of (121) crystallographic planes systematically shift toward the low-angle side with increasing Sr^{2+} concentration as shown in Figure 2b, because the incorporation of the larger radii Sr^{2+} (1.26 Å) results in an expansion of the dodecahedron and the unit cell.²⁰ This is confirmed by the monotonous increase of the refined unit-cell parameters,

volumes, and average M–O (M = Ca²⁺, Sr²⁺, Ce³⁺, Na⁺) bond lengths as observed in Figure 2c and Table S2. It should be noted that the Sr²⁺ content has linear contributions to the above parameters due to the isomorphic properties of Ca₂Al₂SiO₇ and Sr₂Al₂SiO₇, sticking to Vegard's law. Moreover, we find that the linearly fitted slope of the unit-cell parameter *c* (0.212) with the mole ratio (*y*/2) of Sr²⁺-doping concentration is larger than that of *a* and *b* (0.155), indicating that Sr²⁺ substituting for Ca²⁺ results in a more obvious expansion of the unit cell along the *c*-axis due to the softness between layers as discussed in Figure 1a. According to Table S3, we also know that the expansion of SrO₈ is not isotropic comparing with the initial CaO₈ polyhedron. These phenomena suggest that the doping of Sr²⁺ ions leads to a slight expansion and distortion of cation sites, which is expected to have influences on luminescence properties of Ce³⁺-doped (Ca, Sr)₂Al₂SiO₇.

2.2. VUV–UV–Vis Luminescence of $Ca_{2-x}Ce_xNa_xAl_2SiO_7$. Figure 3 shows the synchrotron radiation (SR) VUV–UV (line a)

Figure 3. Synchrotron radiation VUV–UV (a, 26.5 K) and laboratory UV (b, 4 K) excitation spectra of $Ca_{1,98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ of 400 nm emission. The inset shows the magnified spectrum in the region from 4.8 to 5.7 eV.

and laboratory UV (line b) excitation spectra of 400 nm emission at 26.5 and 4 K, correspondingly. Band F with a maximum at ~6.89 eV (180 nm) is attributed to the host absorption, corresponding to the excitation of an electron from the VBM to the host bound excitonic state. By adding the exciton binding energy (~8% of host absorption energy),²¹ the mobility band gap of $Ca_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ is estimated to be ~7.44 eV, which is considered as the energy difference between the VBM and the CBM. This value falls between those of other silicates and aluminates, such as Lu₂SiO₅ (7.24 eV),²² LiY₉(SiO₄)₆O₂ (7.40 eV),⁵ Sr₃Al₂O₅Cl₂ (7.24 eV),²³ and Y₃Al₃O₁₂ (7.74 eV).²⁴

In addition, an intense excitation band A (at 3.48 eV, 356 nm) and three weaker ones (B, C, D) are observed in the lower energy region of spectra, and the peak maxima of these weaker bands are estimated to be 4.41 eV (B, 281 nm), 5.04 eV (C, 246 nm), and 5.44 eV (D, 228 nm), respectively. The peaks of the bands A, B, and C are close to the reported values (352, 279, and 248 nm),²⁵ while band D is undetected in the reference because of the too high temperature of measurement and too weak intensity of the xenon lamp below 250 nm. Above four excitation bands are attributed to the Ce³⁺ transitions from the 4f ground state to the different $5d_{1-4}$ states, respectively. In consideration of the low symmetry (C_s) of Ca²⁺ sites, it is expected that Ce³⁺ 5d states should be split into five $5d_i$ (i = 1-5) by the crystal field. The enlargement of the spectrum in the 4.8–5.7 eV region is exhibited in the figure inset. Another shoulder band E is observed at the highenergy side of band D with the energy maximum at ~5.60 eV (221 nm) based on three Gaussian functions ($R^2 > 0.99$), which is tentatively ascribed to the missed Ce³⁺ Sd₅ level. The crystal-field splitting (CFS) energy of Ce³⁺ Sd states in

The crystal-field splitting (CFS) energy of Ce³⁺ 5d states in Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ is calculated to be 2.12 eV, which corresponds to the energy difference between Ce³⁺ 5d₅ and 5d₁ states. Generally, the CFS energy of Ce³⁺ in a specific site is directly associated with the average Ce–O bond length and the shape of coordination polyhedron, which can be scaled as

$$\varepsilon_{\rm CFS} = \beta \cdot R^{-2} \tag{1}$$

where $\varepsilon_{\rm CFS}$ is the CFS energy, β is dependent on the polyhedral shape, and *R* is the average Ce–O bond length.⁴ In the current case, taking β = 1.07 × 10⁹ pm² cm⁻¹ (8-coordinated dodecahedron) and *R* = 256.2 pm (mentioned in section 2.1), we obtain the calculated CFS energy 1.63 × 10⁴ cm⁻¹ (2.02 eV), which is consistent with the experimental one (2.12 eV). In addition, this experimental CFS energy is also close to the value of Ce³⁺ in CaSO₄ (2.24 eV),²⁶ Li₂CaSiO₄ (2.42 eV),²⁷ and LiCaPO₄ (1.98 eV)²⁷ where Ce³⁺ substitute Ca²⁺ ions in 8-coordinated dodecahedra. Therefore, the above discussions support our attribution of band E to be the Ce³⁺ 5d₅ level, and the CFS energy of Ce³⁺ 5d states is 2.12 eV.

The centroid of five Ce³⁺ 5d states, i.e., the average energy, is calculated to be 4.79 eV, which shifts down 1.56 eV with respect to ~6.35 eV in the gaseous state.³ This down-shift value is comparable to that in LiYSiO₄ (1.49 eV),²⁸ Lu₂Si₂O₇ (1.54 eV),⁴ YAIO₃ (1.57 eV),²⁹ and Y₃Al₅O₁₂ (1.63 eV),²⁴ showing that these silicates and aluminates have similar Ce³⁺-O²⁻ bond covalency, spectroscopic polarizability of anion, or nephelauxetic effect. Based on the discussed 8-coordinated dodecahedral shape and point symmetry (C_s) of sites, bands A and B can be further ascribed to the doublet nondegenerate Eg levels of the 5d orbit and bands C, D, and E to the 3-fold nondegenerate T_{2g} levels.^{7,30} In addition, the barycenter energies of $E_{\rm g}$ and ${\rm \tilde{T}}_{2g}$ levels are calculated to be 3.94 and 5.36 eV, respectively. The energy difference (0.85 eV) between the E_g barycenter and the 5d centroid is 1.49 eV times larger than that (0.5 $\mathring{7}$ eV) between the T_{2g} barycenter and the 5d centroid, which coincides with 1.5 times in distorted cubic coordination, since the CaO8 dodecahedron can be approximately regarded as distorted Thompson cube as mentioned in section 2.1.7

Lastly, under excitation in the host absorption (180 nm) or in either of the five Ce^{3+} 5d states (220, 227, 245, 280, and 350 nm), all height-normalized emission spectra (26.5 K) overlap as shown in Figure S1, indicating that those bands originate from the same Ce^{3+} center and supporting the above band assignments.

Figure 4a shows the emission spectrum of $Ca_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ under 356 nm excitation at 4 K in our lab, which appears slightly different from those measured in the SR VUV station at 26.5 K (Figure S1) due to the use of different setups of spectrometers as well as

Figure 4. (a) Emission spectrum ($\lambda_{ex} = 356$ nm) and (b) decay curve ($\lambda_{ex} = 356$ nm, $\lambda_{em} = 400$ nm) of Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ at 4 K.

Figure 5. Ce^{3+} concentration-dependent (a) excitation ($\lambda_{em} = 400 \text{ nm}$) and (b) emission ($\lambda_{ex} = 350 \text{ nm}$) spectra, and (c) decay curve ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 400 \text{ nm}$) of $Ca_{2-x}Ce_xNa_xAl_2SiO_7$ (x = 0.01, 0.03, 0.05, 0.07, 0.09) at RT. The inset in panel a corresponds to the intensity-normalized excitation spectra, while that in panel c corresponds to the Ce^{3+} -concentration dependent lifetime.

different measurement temperatures. A broad and asymmetric emission band with the maximum at 2.95 eV is observed and well-fitted with a sum of two Gaussian functions ($R^2 > 0.99$). Two Gaussian bands have maxima at about 3.19 and 2.95 eV, respectively, which are attributed to the transitions from the Ce³⁺ 5d₁ state to ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ spin—orbit multiplets. Then deriving from the energy difference between the band maxima of 4f–5d₁ excitation and 5d₁– ${}^{2}F_{5/2}$ emission, the Stokes shift of Ce³⁺ in our case is evaluated to be 0.29 eV (2.34 × 10³ cm⁻¹), close to the most frequent cases (2.20 × 10³ cm⁻¹).³¹ This result indicates that Ce³⁺ 5d electrons in Ca₂Al₂SiO₇ experience a moderate effect of electron—phonon interaction with coordination environment. In addition, the luminescence decay curve of Ce³⁺ ($\lambda_{ex} = 356$ nm, $\lambda_{em} = 400$ nm) at 4 K strictly obeys the exponential characteristic with lifetime ~37.8 ns as shown in Figure 4b.

Figure 5a shows the Ce³⁺ concentration-dependent excitation spectra (λ_{em} = 400 nm) of Ca_{2-x}Ce_xNa_xAl₂SiO₇ at RT. With the increase of doping content, the profile and peak remain almost unchanged because of the close radii between Ce^{3+}/Na^+ and Ca^{2+} ions. The intensity of band A seems to stabilize after x = 0.03, while that of band B keeps increasing with increasing Ce3+ content. After being normalized to the integrated intensity as shown in the inset, the relative intensity of band B to A increases with increasing doping concentration, which can be traced to the saturation effect of absorption. That is to say, the stronger absorption band A starts saturation at lower concentrations, which results in the relative intensity of the weaker absorption band B appearing to increase in the normalized spectra.⁸ In addition, band A gets slightly broadened at the long-wavelength side. This broadening increases the overlap between band A and the emission band, and therefore enlarges the strength of reabsorption and subsequently slightly shifts the emission band toward longer wavelengths as shown in Figure 5b. Figure 5c depicts the decay curves that all overlap to each other. The corresponding lifetimes are all about \sim 37.8 ns (the figure inset), indicating that there occurs no concentration quenching below x = 0.09.

2.3. VUV–UV–Vis Luminescence of Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}-Al₂SiO₇. Figure 6a shows the Sr²⁺-concentration dependent SR VUV– UV (solid) and lab UV (dash) excitation spectra of Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al₂SiO₇ (y = 0, 0.50, 1.00, 1.50, 1.98) of emission maxima at 26.5 and 4 K, respectively. The energies of Ce³⁺ Sd₁₋₅ states are summarized in rows 2–6 of Table 1. To estimate the energy of up-lying Ce³⁺ Sd states as in the case of Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇, other four SR VUV–UV spectra (y = 0.50-1.98) were fitted according to three Gaussian functions ($R^2 > 0.99$) in the 4.8–5.7 eV region as shown in Figures S2–S5. Apparently the content of Sr²⁺ has a systematic influence on the positions of the Ce³⁺ 4f–5d excitation bands in Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al₂SiO₇. With

Figure 6. Sr²⁺-concentration dependent (a) synchrotron radiation VUV–UV (solid, 26.5 K), laboratory UV (dash, 4 K) excitation, and (b) UV–vis emission (4 K) spectra of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 0.50, 1.00, 1.50, 1.98) of emission and excitation maxima, respectively.

the gradual replacement of Ca^{2+} by Sr^{2+} , the $4f-5d_1$ band shifts toward high energies by 0.21 eV accompanied by the shift of the $4f-5d_5$ by 0.04 eV and the $4f-5d_2$ by 0.18 eV toward low energies. The opposite shift of the $4f-5d_1$ and $4f-5d_5$ bands is because the increased Sr^{2+} enlarges the Ce–O coordination polyhedron and then reduces the CFS by 0.25 eV as shown in row 7 of Table 1. In addition, the various shifts of $5d_{2,3,4}$ may relate to the slight distortion of sites as mentioned in section 2.1. The substitution of Sr^{2+} for Ca^{2+} ions slightly and systematically shifts the host absorption toward lower energy (from 6.89 to 6.85, 6.84, 6.82, and 6.81 eV) as shown in row 9 of Table 1 or, in other words, slightly and continuously reduces the band gap energy (from 7.44 to 7.40, 7.39, 7.37, and 7.35 eV), while it exerts a limited influence on the Ce³⁺ 5d centroid shift (from 1.56 to 1.58 eV, in row 8).

Figure 6b depicts the UV-vis emission spectra of $Ca_{1,98-y}Sr_yCe_{0,01}Na_{0,01}Al_2SiO_7$ of excitation maxima at 4 K. Based on two Gaussian functions ($R^2 > 0.99$), all of the emission spectra were fitted and plotted in the figure, and the energies of $Ce^{3+} Sd_1-^2F_{5/2}$ emissions are summarized in row 10 of Table 1. We notice that the emission bands systematically shift toward the high-energy side with increasing Sr^{2+} concentration, like the behavior of $Ce^{3+} Sd_1$ states. The energy of zero phonon line (ZPL) is an important parameter to

Table 1. Energies of $Ce^{3+} 4f-5d_{1-5}$ Excitation Bands, CFS, Centroid Shift $\varepsilon_c(A)$, $5d_1-{}^2F_{5/2}$ Emission Band, ZPL, Stokes Shift, and Host Absorption as Well as the Coulomb Repulsion Energy U(6,A) in $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 0.50, 1.00, 1.50, 1.98)^{*a*}

property	y = 0	y = 0.50	y = 1.00	y=1.50	y = 1.98
4f–5d ₁ excitation band	3.48	3.57	3.61	3.65	3.69
4f-5d ₂ excitation band	4.41	4.37	4.31	4.28	4.23
4f–5d ₃ excitation band	5.04	5.04	5.02	4.99	5.00
4f–5d ₄ excitation band	5.44	5.44	5.42	5.38	5.35
4f–5d ₅ excitation band	5.60	5.60	5.58	5.57	5.56
Ce ³⁺ 5d CFS	2.12	2.03	1.97	1.92	1.87
Ce ³⁺ 5d centroid shift	1.56	1.55	1.56	1.58	1.58
host absorption	6.89	6.85	6.84	6.82	6.81
$5d_1-{}^2F_{5/2}$ emission band	3.19	3.27	3.33	3.38	3.46
ZPL	3.31	3.38	3.43	3.49	3.55
Stokes shift	0.29	0.30	0.28	0.27	0.23
$U(6,A)^{b}$	6.84	6.84	6.83	6.82	6.82
^{<i>a</i>} All energies are scaled as electronvolts (eV). ^{<i>b</i>} Derived from Ce ³⁺ 5d centroid shift $\varepsilon_{*}(A)$ via $U(6A) = 5.44 + 2.834e^{-\varepsilon_{*}(A)/2.2} \frac{21,32-34}{21,32-34}$					

understand luminescence properties.^{8,35–37} According to the intersection point of the excitation and emission spectra as shown in Figure S6 and row 11 of Table 1,³⁷ the evaluated energy of the ZPL gradually increases by 0.24 eV, which is correlated to the increasing average $Ce^{3+}-O^{2-}$ bond length and is indeed comparable with the decreasing CFS (0.25 eV) with increasing Sr²⁺ content.

In addition, the derived Stokes shift is about 0.27 \pm 0.04 eV as summarized in row 12 of Table 1. With increasing Sr²⁺ content, the Stokes shift almost keeps invariable and only roughly decreases about 0.06 eV. The observation seems to imply that the effect of electron–vibration interaction (EVI) is nearly unchanged at different Sr²⁺ contents. The 5d centroid shift, CFS, and EVI together decide the position of Ce³⁺ emission.³⁷ Therefore, the shift of emission toward shorter wavelengths in the current case mainly results from the contribution of a reduced CFS of Ce³⁺ Sd states, while the EVI effect only imposes a limited contribution.

Figure 7 exhibits decay curves of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ of excitation and emission maxima at 4 K. All decay curves obey the

Figure 7. Sr²⁺-concentration dependent decay curves (4 K) of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 0.50, 1.00, 1.50, 1.98) of excitation and emission maxima.

exponential characteristic and show a faster decay rate with increasing Sr^{2+} content. The corresponding radiative lifetime has a sequential decrease (~25%) from ~37.8 to 35.1, 33.0, 31.1, and 28.3 ns. This reduction of lifetime can be qualitatively understood via the polarization effect or usually termed as a local-field effect that has been used to interpret the various lifetimes of the Ce³⁺³⁸ and Pr³⁺³⁹ f-d emissions in different media with the following formulas:

$$\frac{1}{\tau_{\rm r}} = \frac{4.34 \times 10^{17} \left| \left< \text{5d} \right| r |4f\rangle_{\rm eff} \right|^2 \chi}{\lambda^3}$$

$$\chi = n[(n^2 + 2)/3]^2 \tag{3}$$

where τ_r is the radiative lifetime (in seconds), λ is the average emission wavelength (in nanometers) in a given host, $(5d|r|4f)_{eff}$ represents the effective radial integral with best-fit value 0.0281 nm for Ce³⁺, and χ is the refractive index (n) dependent factor related to the virtual-cavity model. Based on the above equations, the radiative lifetime positively correlates to the cube of the emission wavelength. The shorter the Ce^{3+} emission wavelength, the shorter the lifetime of 5d electrons. It is indeed the fact when increasing Sr^{2+} content as shown in Figures 6b and 7. In addition, the radiative lifetime is anticorrelated to the refractive index of the samples. According to the additive scheme,⁴⁰ the mean refractive index of the majority of complex oxides can be estimated within 5% error. In the current case the estimated refractive index has a limited increase ~0.86% corresponding to ~0.60% decrease of $1/\chi$, therefore confirming that the influence of refractive index on the decrease of lifetime is insignificant, instead, it is the shift of emissions toward the short-wavelength side that takes the dominant responsibility.

At RT we also measured Sr^{2+} -concentration dependent UV-vis emission spectra of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ of excitation maxima in order to compare their intensities under the same conditions as shown in Figure S7a. Except for the experimental point y = 1.00, whose intensity is unexpectedly stronger than that of y = 0.50 because of possible error of experiment, the integrated intensity has a significant decrease beyond y = 0.50, which keeps in line with the result of the measured internal quantum efficiency decreasing from 78.7% to 77.0%, 61.6%, 47.2%, and 29.7%. More importantly, after y =0.50 the corresponding decay curves also gradually deviate from the single-exponential characteristic as shown in Figure S7b. The above phenomena point out a fact that highly doping Sr^{2+} (y > 0.50) into $Ca_2Al_2SiO_7$ can open a thermal-quenching channel at RT for Ce³⁺ Sd electrons, which may influence their thermal stability.

2.4. Temperature-Dependent Luminescence of $M_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ (M = Ca, Sr). Figure S8 shows the temperature-dependent (77–500 K) integrated emission intensities of $M_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ (M = Ca, Sr). They suffer from significant decreases with increasing temperature, and 50% of them are left at ~470 K (i.e., thermal-quenching temperature, $T_{50\%}$) for Ca_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO₇ and at ~340 K for Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO₇. Figure S9 shows their temperature-dependent decay curves. Below specific temperatures (320 vs 250 K), they all obey the single-exponential characteristic and subsequently deviate because of thermal quenching. The corresponding average fluorescence lifetimes of Ce³⁺ at different temperatures are exhibited in Figure 8, in which the average lifetime (τ) is estimated by adopting the following formula:

Figure 8. Temperature-dependent average lifetime of $Ca_{1,98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ (a) and $Sr_{1,98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ (b).

(2)

$$\tau = \frac{\int_0^\infty tI(t) \, \mathrm{d}t}{\int_0^\infty I(t) \, \mathrm{d}t} \tag{4}$$

where I(t) is the emission intensity after pulsed excitation and I(0) is the emission intensity at t = 0. It can be seen that the lifetime of Ce^{3+} emission in $Ca_2Al_2SiO_7$ is longer than that in $Sr_2Al_2SiO_7$ at overall specific temperatures because of the longer emission wavelength as mentioned in section 2.3. Besides, the onset temperature of thermal quenching ($T_{95\%}$) is estimated at 375 K for $Ca_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$, and that at 310 K for $Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$. When we consider that quenching is mainly caused by thermal ionization of Ce^{3+} 5d electrons to the conduction band (CB) as proposed in Ce^{3+} -doped garnets,⁴¹⁻⁴³ Ln_2O_3 (Ln = Y, Lu, La),⁴⁴ Lu₂SiO₅,⁴⁴ and GdAlO₃,⁴⁵ the activation energy ΔE of thermal quenching can be derived from the single-barrier quenching model, eq 5,

$$\Gamma(T) = \Gamma(0) \left[1 + A \exp\left(-\frac{\Delta E}{kT}\right) \right]^{-1}$$
(5)

where $\Gamma(T)$ and $\Gamma(0)$ denote the decay time at temperature T and 0 K, correspondingly, A is a pre-exponential factor indicating the rate constant for the thermally activated escape, and k is the Boltzmann constant [8.6173324(78) × 10⁻⁵ eV/K]. The fitting curves are plotted as red lines in Figure 8. We obtain ΔE 0.24 eV (A 91.79) for Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ and 0.19 eV (A 50.03) for Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇, in which the larger value of the former is consistent with its much higher $T_{50\%}$ and $T_{95\%}$ compared with those of the latter as displayed in Figures S8 and 8.

In addition, the difference in ΔE and $T_{50\%}$ can be understood through the electronic structure from the VRBE scheme for $\text{Ln}^{3+} 4f^{\mu}$ and $4f^{\mu-1}$ 5d states and $\text{Ln}^{2+} 4f^{\mu}$ states in hosts. In the next section, we will discuss the Eu³⁺ $-O^{2-}$ charge-transfer states (CTS) of Ca_{1.98-y}Sr_yEu_{0.01}Na_{0.01}Al₂SiO₇ and construct the VRBE schemes for these compounds.

2.5. The Energy of the Eu³⁺–O^{2–} Charge-Transfer State of Ca_{1.98–y}Sr_yEu_{0.01}Na_{0.01}Al₂SiO₇ and the Construction of VRBE Schemes. Figure S10 exhibits the Sr²⁺ concentration-dependent XRD patterns of Ca_{1.98–y}Sr_yEu_{0.01}Na_{0.01}Al₂SiO₇ (y = 0, 0.50, 1.00, 1.50, 1.98) samples with single-phase purities. The height-normalized emission spectra under excitation at 265 nm in Figure S11 presents the typical ⁵D₀ \rightarrow ⁷F_J (J = 0-4) transitions of Eu³⁺ ions. Figure 9 shows their height-normalized VUV–UV excitation spectra by monitoring 616 nm emission of Eu³⁺ ⁵D₀–⁷F₂ transition at 26.5 K. In the 4.0–6.5 eV energy range, the intense and broad excitation bands are ascribed to transitions of Eu³⁺–O^{2–} CTS with peak energies from 4.97 to 4.94, 4.92, 4.88, and 4.79 eV in the order of increasing Sr²⁺ content, in which the first and last values are slightly larger than those of the

Figure 9. Sr^{2+} concentration-dependent VUV–UV excitation spectra of $Ca_{1.98-y}$ Sr_yEu_{0.01}Na_{0.01}Al₂SiO₇ (y = 0, 0.50, 1.00, 1.50, 1.98) of 616 nm emission at 26.5 K.

reported ones (4.88 eV in $Ca_{1.86}Al_2SiO_7{:}0.14Eu^{3+}\ \text{and}\ 4.73$ eV in Sr_{1.86}Al₂SiO₇:0.14Eu³⁺) measured at RT and higher doping concen-⁴⁶ On the other hand, the narrow lines on the lower energies tration.4 and very weak broad bands on another side are attributed to f-f transitions of Eu³⁺ ions and host absorptions, respectively. With increasing Sr^{2+} content, the energy of $Eu^{3+} - O^{2-}$ CTS systematically reduces by 0.18 eV. This decreasing energy is dominantly arising from the increased average bond length between center and ligand ions in host when increasing Sr^{2+} concentration. Similar phenomena have been noticed in previous reports, ^{47,48} and attributed to a smaller Madelung potential. That is to say, an increase in distance between center ions and nearby ligands decreases their mutual repulsion of electrons, and then reduces the energy difference between the VBM and the ground state of Eu²⁺. Therefore, it can be expected that the VBM would move upward when increasing Sr²⁺ content because the vacuum referred electron binding energy of the Eu²⁺ ground state is always found to be located at around -4 eV in the chemical shift model of oxides.^{21,32–34,49}

Based on the energies of (i) the Ce³⁺ 4f-5d₁ transition (row 2 of Table 1), (ii) the Ce³⁺ 5d centroid shift (row 8 of Table 1) and the derived Coulomb repulsion energy U(6,A) (row 13 of Table 1), (iii) the host absorption (row 9 of Table 1), and (iv) the Eu³⁺-O²⁻ CTS, we construct the stacked VRBE schemes of Ca_{2-y}Sr_yAl₂SiO₇ (y = 0, 0.5, 1.0, 1.5, 2.0) as shown in Figure 10.^{21,32-34,50} According to these

Figure 10. VRBE schemes of $Ca_{2-y}Sr_{y}Al_{2}SiO_{7}$ (y = 0, 0.5, 1.0, 1.5, 2.0) with location of Ce^{3+}/Eu^{2+} 4f and Ce^{3+} 5d_i states. E_{x} represents the binding energy at the host exciton creation, while the cyan (top) and green (bottom) rectangles represent the conduction band and the valence band, respectively.

VRBE schemes, the energies of Ce^{3+} and Eu^{2+} 4f ground states keep almost invariable due to the shielding effect of the outer filled $5s^2$ and $5p^6$ orbitals, but the VBM and the CBM as well as the Ce^{3+} $5d_1$ state move upward with increasing Sr^{2+} content. The uplift of the VBM and CBM is mainly arising from a smaller Madelung potential as mentioned above, while that of the Ce^{3+} $5d_1$ state is dominantly ascribed to a decreased CFS induced by increased Sr^{2+} content.

The discussed luminescence of Ce³⁺-doped (Ca,Sr)₂Al₂SiO₇ in the above sections can be further understood by these VRBE schemes. First, except for Ce³⁺ 5d₁ level locating within the band gap, 5d₂₋₅ states in (Ca,Sr)₂Al₂SiO₇:Ce³⁺ have immersed into the CB according to VRBE schemes, resulting in easy thermal ionization of 5d electrons and the much weaker intensities of 4f–5d₂₋₅ transitions than that of 4f–5d₁ as shown in the VUV–UV excitation spectra even at low temperature (see Figures 3 and 6a). Second, the experimental ΔE and $T_{50\%}$ of Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ are much larger than those of Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ as shown in Figures 8 and S8, which also can be understood via Figure 10. The competitive uplifts of Ce³⁺ 5d₁ level and the CBM result in an overall decrease of their energy difference

(0.59 eV for Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ first and 0.45 eV for Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ at last) with increasing Sr²⁺ concentration, indicating that Ca_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ has a larger barrier of thermal quenching through thermal ionization of 5d electrons to the CB so that it owns a better thermal stability. While Sr²⁺ can reduce this barrier, it therefore leads to a worse thermal stability of Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇.

2.6. X-ray Excited Luminescence. Lastly, to evaluate the possibility of $(Ca,Sr)_2Al_2SiO_7:Ce^{3+}$ as a scintillation material, the X-ray excited luminescence spectra and scintillation light yield of $Ca_{1.98-y}Sr_yCe_{0.01}Na_{0.01}Al_2SiO_7$ (y = 0, 1.98) were studied as shown in Figure 11. Under X-ray excitation the as-prepared samples give broad

Figure 11. X-ray excited luminescence spectra of $Ca_{1,98-y}Sr_yCe_{0,01}$ - $Na_{0,01}Al_2SiO_7$ (y = 0, 1.98) and a reference sample BaF_2 at RT.

and featureless emission bands at ~420 (y = 0) and 393 nm (y = 1.98) due to Ce³⁺ 5d₁-4f transitions. They keep in line with the RT emission spectra in Figure S7a, with slight differences in emission peaks as a result of different detector and instrument responses. Deriving from the integrated intensity, the light yields are estimated to be only ~1500 and 2500 photon/MeV for the y = 0 and 1.98 samples, correspondingly, in which BaF₂ (8800 photon/MeV) is used as the reference. Although the light yield has a significant increase (~67%) after doping Sr²⁺ because of the larger density (see row 6 of Table S2) facilitating the absorption of X-ray radiation, however, the low light yield of the studied samples implies that they are not suitable as scintillators.

3. CONCLUSION

In summary, we have systematically studied the effect of Ce³⁺ and Ca^{2+}/Sr^{2+} on the crystal structure evolution and luminescence properties, including 4f-5d transition energies, radiative lifetime, emission intensity, quantum efficiency, and thermal stability, of Ce³⁺-doped (Ca,Sr)₂Al₂SiO₇ through Rietveld refinement and VUV-UV-vis spectra. In $Ca_2Al_2SiO_7:Ce^{3+}$, the host absorption (6.89 eV) and five Ce^{3+} 5d states are identified, and the band gap and Ce³⁺ 5d CFS and centroid shift are estimated to be 7.44, 2.12, and 1.56 eV, respectively. With the gradual substitution of Sr^{2+} for Ca^{2+} ions, the cation sites experience a slight expansion and distortion leading to a sequential decrease of Ce³⁺5d CFS (0.25 eV) and the systematical shift of the 4f-5d excitation and emission bands. Meanwhile, the lifetime of Ce³⁺ 5d electrons has a continuous decrease (\sim 25%) because of the shift of emission. In comparison with the CFS, the change of cations and

structure slightly reduces the band gap only, while its influence on Ce^{3+} 5d centroid shift almost can be neglected.

Moreover, highly doping Sr^{2+} ($\gamma > 0.50$) can open a thermalquenching channel at RT for Ca_{1.98-v}Sr_vCe_{0.01}Na_{0.01}Al₂SiO₇, mainly thermal ionizing of 5d electrons to CB, therefore resulting in the much lower emission intensity, quantum efficiency, activation energy, and thermal-quenching temperature of $Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ than those of Ca1.98Ce0.01Na0.01Al2SiO7. Before constructing VRBE schemes, the energy of $Eu^{3+}-O^{2-}$ CTS in $(Ca,Sr)_2Al_2SiO_7:Eu^{3+}$ has been discussed, and its shift toward the low-energy side is because of the effect of the increased Sr^{2+} on the decreased Madelung potential, which also results in the slight uplift for the VBM and the CBM. In combination with VUV-UV spectra and VRBE schemes, the effect of Sr²⁺ on the deteriorated thermal stability is understood and ascribed to the fact that it reduces Ce³⁺ 5d CFS and then the barrier of thermal quenching in $(Ca,Sr)_2Al_2SiO_7$. In addition, except for the Ce³⁺ 5d₁ state located within the band gap, 5d₂₋₅ states in (Ca,Sr)₂Al₂SiO₇ have immersed into the CB according to VRBE schemes, therefore leading to the much weaker intensities of Ce³⁺ 4f- $5d_{2-5}$ transitions than that of $4f-5d_1$. Lastly, the light yield of as-prepared samples under X-ray radiation has a remarkable increase ($\sim 67\%$) after Sr²⁺ replacement, however, their overall low light yields imply that they are not suitable as scintillators.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.7b01939.

Details of sample preparation and characterization, final refined structural parameters, bond distances, emission, VUV–UV, and UV spectra, ZPL, and XRD patterns (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: cesbin@mail.sysu.edu.cn. Phone: +86-20-84113695. Fax: +86-20-84111038.

ORCID 0

Litian Lin: 0000-0003-3241-2651 Rui Shi: 0000-0002-3120-0596

Hongbin Liang: 0000-0002-3972-2049

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been financially supported by the National Natural Science Foundation of China (U1432249, U1632101 and 21671201), and the Science and Technology Project of Guangdong Province (2017A010103034).

REFERENCES

(1) Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanideactivated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. *Chem. Rev.* **2017**, *117*, 4488–4527.

(2) Zhou, L.; Zhou, W.; Pan, F.; Shi, R.; Huang, L.; Liang, H.; Tanner, P. A.; Du, X.; Huang, Y.; Tao, Y.; Zheng, L. Spectral Properties and Energy Transfer of a Potential Solar Energy Converter. *Chem. Mater.* **2016**, *28*, 2834–2843. (3) Dorenbos, P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2000, 62, 15640.

(4) Dorenbos, P. 5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *64*, 125117.

(5) Zhou, W.; Pan, F.; Zhou, L.; Hou, D.; Huang, Y.; Tao, Y.; Liang, H. Site Occupancies, Luminescence, and Thermometric Properties of LiY9(SiO4)6O2:Ce3+ Phosphors. *Inorg. Chem.* **2016**, *55*, 10415–10424.

(6) Zhang, L.; Zhang, J.; Pan, G.-H.; Zhang, X.; Hao, Z.; Luo, Y.; Wu, H. Low-Concentration Eu2+-Doped SrAlSi4N7:Ce3+ Yellow Phosphor for wLEDs with Improved Color-Rendering Index. *Inorg. Chem.* **2016**, *55*, 9736–9741.

(7) Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V. Crystal chemistry and luminescence of Ce3+doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting. *Chem. Mater.* **2006**, *18*, 3314–3322.

(8) Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. *Chem. Mater.* **2009**, *21*, 2077–2084.

(9) Holloway, W.; Kestigian, M. Optical properties of ceriumactivated garnet crystals. J. Opt. Soc. Am. 1969, 59, 60-63.

(10) Ueda, J.; Kuroishi, K.; Tanabe, S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light. *Appl. Phys. Lett.* **2014**, *104*, 101904.

(11) Xia, Z.; Meijerink, A. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. *Chem. Soc. Rev.* **2017**, *46*, 275–299.

(12) Jary, V.; Nikl, M.; Kurosawa, S.; Shoji, Y.; Mihokova, E.; Beitlerova, A.; Pazzi, G. P.; Yoshikawa, A. Luminescence characteristics of the Ce3+-doped pyrosilicates: The case of La-admixed Gd2Si2O7 single crystals. *J. Phys. Chem. C* **2014**, *118*, 26521–26529.

(13) Kamada, K.; Endo, T.; Tsutumi, K.; Yanagida, T.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.; Pejchal, J.; Nikl, M. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. *Cryst. Growth Des.* **2011**, *11*, 4484–4490.

(14) Shang, M.; Fan, J.; Lian, H.; Zhang, Y.; Geng, D.; Lin, J. A double substitution of Mg2+–Si4+/Ge4+ for Al(1)3+-Al(2)3+ in Ce3+-doped garnet phosphor for white LEDs. *Inorg. Chem.* **2014**, *53*, 7748–7755.

(15) Lin, H.; Xu, J.; Huang, Q.; Wang, B.; Chen, H.; Lin, Z.; Wang, Y. Bandgap tailoring via Si doping in inverse-garnet Mg3Y2-Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED. ACS Appl. Mater. Interfaces **2015**, *7*, 21835–21843.

(16) Ogieglo, J. M.; Katelnikovas, A.; Zych, A.; Jüstel, T.; Meijerink, A.; Ronda, C. R. Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+. *J. Phys. Chem. A* **2013**, *117*, 2479–2484.

(17) Liu, B.; Shi, C.; Yin, M.; Fu, Y.; Zhang, G.; Ren, G. Luminescence and energy transfer processes in Lu2SiO5:Ce3+ scintillator. *J. Lumin.* **2006**, *117*, 129–134.

(18) Kimata, M.; Shimizu, M.; Saito, S. Refinement of the hightemperature crystal structure of gehlenite using a new radiative air-cooled heater. *Trans. Am. Crystallogr. Assoc.* **1991**, *27*, 301–308.

(19) Zhang, Q.; Wang, J.; Zhang, M.; Su, Q. Tunable bluish green to yellowish green Ca2(1-x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED application. *Appl. Phys. B: Lasers Opt.* **2008**, *92*, 195–198.

(20) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, *32*, 751–767.

(21) Dorenbos, P. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2013**, *87*, 035118.

(22) Fan, L.; Lin, D.; Zhang, X.; Shi, Y.; Zhang, J.; Xie, J.; Lei, F.; Zhang, L. Local structures of Lu atoms in a core-shell approach for synthesis of Lu2SiO5 phase. *Chem. Phys. Lett.* **2016**, *644*, 41–44.

(23) Ning, L.; Zhou, C.; Chen, W.; Huang, Y.; Duan, C.; Dorenbos, P.; Tao, Y.; Liang, H. Electronic properties of Ce3+-doped Sr3Al2O5Cl2: a combined spectroscopic and theoretical study. *J. Phys. Chem. C* 2015, *119*, 6785–6792.

(24) Tanner, P. A.; Fu, L.; Ning, L.; Cheng, B.-M.; Brik, M. G. Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels. *J. Phys.: Condens. Matter* **2007**, *19*, 216213.

(25) Jiao, H.; Wang, Y. Ca2Al2SiO7:Ce3+,Tb3+: a white-light phosphor suitable for white-light-emitting diodes. *J. Electrochem. Soc.* **2009**, *156*, J117–J120.

(26) Van der Kolk, E.; Dorenbos, P.; Vink, A.; Perego, R.; Van Eijk, C.; Lakshmanan, A. Vacuum ultraviolet excitation and emission properties of Pr3+ and Ce3+ in MSO4 (M= Ba, Sr, and Ca) and predicting quantum splitting by Pr3+ in oxides and fluorides. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *64*, 195129.

(27) Dorenbos, P.; Pierron, L.; Dinca, L.; Van Eijk, C.; Kahn-Harari, A.; Viana, B. 4f–5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4. *J. Phys.: Condens. Matter* **2003**, *15*, 511.

(28) Shi, R.; Xu, J.; Liu, G.; Zhang, X.; Zhou, W.; Pan, F.; Huang, Y.; Tao, Y.; Liang, H. Spectroscopy and Luminescence Dynamics of Ce3+ and Sm3+ in LiYSiO4. *J. Phys. Chem. C* **2016**, *120*, 4529–4537.

(29) Weber, M. Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAIO3. J. Appl. Phys. **1973**, 44, 3205–3208.

(30) Kodama, N.; Yamaga, M.; Kurahashi, T. Crystal field splitting and symmetry of Ce3+ polyhedra in oxide crystals. *Radiat. Eff. Defects Solids* **1999**, *151*, 159–164.

(31) Dorenbos, P. The 5d level positions of the trivalent lanthanides in inorganic compounds. *J. Lumin.* **2000**, *91*, 155–176.

(32) Dorenbos, P. Modeling the chemical shift of lanthanide 4 f electron binding energies. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, 85, 165107.

(33) Dorenbos, P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds. *ECS J. Solid State Sci. Technol.* **2013**, *2*, R3001–R3011.

(34) Dorenbos, P. Ce3+ 5d-centroid shift and vacuum referred 4felectron binding energies of all lanthanide impurities in 150 different compounds. *J. Lumin.* **2013**, *135*, 93–104.

(35) Huang, B.; Sun, M. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels. *Phys. Chem. Chem. Phys.* **2017**, *19*, 9457–9469.

(36) Huang, B. Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence. *Inorg. Chem.* **2015**, *54*, 11423–11440.

(37) Peng, Q.; Liu, C.; Hou, D.; Zhou, W.; Ma, C.-G.; Liu, G.; Brik, M. G.; Tao, Y.; Liang, H. Luminescence of Ce3+-Doped MB2Si2O8 (M= Sr, Ba): A Deeper Insight into the Effects of Electronic Structure and Stokes Shift. J. Phys. Chem. C 2016, 120, 569–580.

(38) Duan, C.-K.; Reid, M. F. Local field effects on the radiative lifetimes of Ce3+ in different hosts. *Curr. Appl. Phys.* **2006**, *6*, 348–350.

(39) Zych, A.; de Lange, M.; de Mello Donegá, C.; Meijerink, A. Analysis of the radiative lifetime of Pr3+ df emission. *J. Appl. Phys.* **2012**, *112*, 013536.

(40) Korotkov, A.; Atuchin, V. Accurate prediction of refractive index of inorganic oxides by chemical formula. *J. Phys. Chem. Solids* **2010**, *71*, 958–964.

(41) Ueda, J.; Yagi, M.; Tanabe, S. Investigation of Luminescence and Photoacoustic Properties in Ce3+-Doped Ln3Al5O12 (Ln = Lu,Y,Gd) Garnet. ECS J. Solid State Sci. Technol. **2016**, *5*, R219–R222.

(42) Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. **2011**, 110, 053102.

(43) Ueda, J.; Dorenbos, P.; Bos, A. J.; Meijerink, A.; Tanabe, S. Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy. *J. Phys. Chem. C* **2015**, *119*, 25003–25008.

(44) Yen, W.; Raukas, M.; Basun, S.; Van Schaik, W.; Happek, U. Optical and photoconductive properties of cerium-doped crystalline solids. *J. Lumin.* **1996**, *69*, 287–294.

(45) Van der Kolk, E.; Dorenbos, P.; De Haas, J.; Van Eijk, C. Thermally stimulated electron delocalization and luminescence quenching of Ce impurities in GdAlO3. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2005**, *71*, 045121.

(46) Jiao, H. Y.; Wang, Y. A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes. *Phys. B* **2012**, 407, 2729–2733.

(47) Blasse, G. The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides. J. Solid State Chem. 1972, 4, 52–54.

(48) Dorenbos, P. The Eu3+ charge transfer energy and the relation with the band gap of compounds. *J. Lumin.* **2005**, *111*, 89–104.

(49) Luo, H.; Ning, L.; Dong, Y.; Bos, A. J.; Dorenbos, P. Electronic Structure and Site Occupancy of Lanthanide-Doped (Sr,Ca)3(Y,Lu)-2Ge3O12 Garnets: A Spectroscopic and First-Principles Study. *J. Phys. Chem. C* 2016, *120*, 28743–28752.

(50) Dorenbos, P. Charge transfer bands in optical materials and related defect level location. *Opt. Mater.* **2017**, *69*, 8–22.