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A B S T R A C T

Predicting the cavitation impact loads on a propeller surface using numerical tools is becoming essential,
as the demand for more efficient designs, stretched to the limit, is increasing. One of the possible design
limits is governed by cavitation erosion. The accuracy of estimating such loads, using a URANS approach, has
been investigated. We follow the energy balance approach by (Schenke and van Terwisga, 2019), (Schenke
et al., 2019), where we take account of the focusing of the potential energy into the collapse center before
it is radiated as shock wave energy in the domain. In complex flows, satisfying the total energy balance,
when reconstructing the radiated energy, has always been an issue in the past. Therefore, in this study, we
investigate different considerations for the vapor reduction rate, in order to minimize the numerical errors,
when estimating the local surface impact power. We show that when the vapor volume reduction rate is
estimated using the mass transfer source term, then all the energy is conserved and the total energy balance
is satisfied. The model is verified on a single cavitating bubble collapse, and it is further validated on a
model propeller test case. The obtained surface impact distribution agrees well with the experimental paint
test results, illustrating the potential for practical use of our fully conservative method to predict cavitation
implosion loads on propeller blades.

1. Introduction

Cavitation is the formation of vapor bubbles of a flowing liquid in
regions where the liquid accelerates such that the local pressure of the
liquid drops below its vapor pressure. The collapse of these cavities
in pressure recovery regions, often leads to vibration and damage of
mechanical components, for instance bearings, fuel injectors, impellers,
pumps, propellers and rudders. Propeller cavitation might have a big
impact on the whole operation of a ship and its environment. Hull
vibrations, thrust breakdown, propeller erosion, and underwater radi-
ated noise are the main threats. Cavitation erosion when experienced,
normally leads to significant repair and maintenance costs, and even
safety issues. Thus, there is a clear need for more efficient designs.
Stringent regulations on the fuel efficiency of ships and their propulsion
units, make things even more urgent, and designs should be stretched
to the limits. For a propeller design this means taking away the mar-
gins against unwanted cavitation phenomena as much as possible in
favor of higher propulsive efficiency. Most often the performance of
propulsion systems is sub-optimal because countermeasures are needed
to prevent erosion. Hence, the challenge for modern designs is to find
the right balance between efficiency and the allowable level of cavita-
tion. Evaluation of different designs requires objective numerical tools

∗ Correspondence to: Wärtsilä Netherlands BV, Drunen 5151DM, The Netherlands.
E-mail address: themis.melissaris@wartsila.com (T. Melissaris).

and methods, capable of providing accurate and reliable prediction of
cavitation implosion loads, to secure the selection of the best design.

The history of cavitation research dates back to the mid-eighteenth
century, when Euler discussed the possibility of a phenomenon, which
influences the performance of a water wheel. The first to introduce
the phenomenon as it is known today, was Reynolds in 1850’s, by
discussing the effect it had on the performance of a screw propelled
steamer. However, the first observer of cavitation was Parsons, whose
ship, Turbinia, suffered from severe thrust breakdown due to cavitation,
in 1894. Since then, a lot of knowledge has been gained on cavitation
dynamics on propellers, however the underlying physics behind the
mechanisms of cavitation erosion due to the implosion of cavitating
structures in the vicinity of the propeller surface, remain yet unclear.
And even though cavitation dynamics and cavitation behavior on ma-
rine propellers are being extensively investigated, for more than a
century experimentally [1], and over 20 years numerically, cavitation
erosion prediction is still a major challenge.

The assessment of cavitation erosion risk on marine propellers from
numerical simulations had not been studied thoroughly, until recently.
The lack of physical understanding on how the cavitation implosion
loads correlate with the material properties, increases the complexity
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Subscripts

0 Initial
𝐶 Condensation
𝑐𝑒𝑙𝑙 Cell (center)
𝑐𝑜𝑙 Collapse
𝑖𝑛𝑒𝑟 Inertial
𝑘𝑖𝑛 Kinetic
𝑝𝑜𝑡 Potential
𝑟𝑎𝑑 Radiated
𝑟𝑒𝑏 Rebound
𝑆𝐹 Scaling factor
𝑆𝑊 Shock wave
𝑆 Surface
𝑣 Vapor/Evaporation

Nomenclature

𝛼𝑣 Vapor volume fraction (–)
𝛽 Collapse parameter (–)
𝛾 Non-dimensional distance between the

bubble center and the wall (–)
𝛥𝑈 Internal energy (J)
𝛿𝑡, 𝛥𝑡 Time increment, simulation time step size

(s)
𝜀 Collapse induced kinetic energy per volume

(J/m3)
𝜇, 𝜇𝑣, 𝜇𝑙 Turbulent eddy viscosity of mixture, liquid,

vapor (kg/ms)
𝜌, 𝜌𝑙, 𝜌𝑣 Density of mixture, liquid, vapor (kg/m3)
𝜎 cavitation number (–)
𝝉 Viscous shear stress tensor (N/m2)
𝜙 Spatial transport operator
𝜔 Specific dissipation rate of turbulent kinetic

energy (1/s)
P𝑏(𝑎) Normalized projection of vector a on vector

b such that P𝑏(𝑎) =
a⋅b

∥𝑎∥∥𝑏∥
𝐶𝜔 Turbulence model constant (s2/m)
𝐶𝑐,𝑆𝐹 , 𝐶𝑣,𝑆𝐹 Condensation, evaporation scaling factor

(–)
𝑑, 𝜕,𝐷 General, partial, material derivative opera-

tor
𝐸 Energy (J)
𝑒 Energy per volume (J/m3)
𝑓 External force per unit mass (N/kg)
𝐻 Distance of bubble center from the wall (m)
𝐽 Propeller advance coefficient (–)
𝑘 Turbulence kinetic energy (J/kg)
𝑛0 Bubble seed density (m−3)
𝑃 ,𝐷 Propeller pitch, diameter (m)
𝑝 Absolute pressure (Pa)
𝑝𝑑 , 𝑝𝑣 Driving, vapor pressure (Pa)
𝑅𝑏, 𝑅 Bubble, propeller radius (m)
𝑅𝑒0.7%𝑅 Reynolds number at 0.7% of propeller

radius
𝑆𝛼𝑣 Mass transfer source term (1/s)
𝑡, 𝜏, 𝑇𝑚 Time, collapse time, moving time window

(s) (–)

of such simulations. Besides, a good estimation of the dynamics and
the aggressiveness of cavitation impact loads requires extremely high
resolution in space and time, as these flow phenomena act on extremely

𝒖 Flow velocity vector (m/s)
𝒖𝒊, 𝒖𝒂 Collapse induced, advective flow velocity

vector (m/s)
𝑉𝑖𝑛 Magnitude of inflow velocity vector (m/s)
𝑉𝑣, 𝑉𝑐𝑒𝑙𝑙 Vapor, cell volume (m3)
𝒙 Location vector (m)

small scales (from mm down to μm and from μs to ns [2]). These are
cardinal reasons why research was first focused mainly on the hydro-
dynamic aspects of cavitation erosion, and primarily on the dynamics
of large scale cavitating structures.

In one of the first attempts to estimate the cavitation erosion risk
numerically on marine propellers, Hasuike et al. [3] investigated the
risk of cavitation erosion in four differently loaded propellers operating
in a wake flow. They used the erosion indices proposed by Nohmi
et al. [4] to estimate the aggressiveness of the cavitation impact loads.
However, it is not very clear how these indices are derived and they
also seem quite empirical. Ponkratov and Caldas [5] and Ponkratov [6],
tried to predict the cavitation erosion risk on a ship scale rudder and
propeller, respectively. To estimate the cavitation erosion aggressive-
ness, they used several numerical functions, developed by the Lloyd’s
Register Technical Investigation Department (LR TID). Unfortunately,
the formulation of these functions was not reported. Usta et al. [7]
and Usta and Korkut [8] estimated the erosion aggressiveness using dif-
ferent indicators, as found in the literature. All the indicators are based
on the potential energy hypothesis [9,10], which states that the initial
potential energy of a cavitating structure is proportional to its volume
and the pressure difference driving the collapse. One of the indicators
they used was the Erosion Intensity Function by Li et al. [11]. However,
in all the indicators, an artificial threshold needs to be defined for the
erosive cavitation impact loads. All of the aforementioned attempts to
estimate the cavitation erosion risk on the propeller blades are more or
less based on the potential energy hypothesis. None of the attempts was
able to ensure energy conservation, while they all ignore the spatial and
temporal focusing of the potential energy, which actually takes place
during a cavity collapse.

Another philosophy applies the microjet erosion model [12,13], as
elaborated by Peters et al. [14], considering only collapses of single
bubbles near the blade surface. In a previous work [15], we have
discussed in detail the importance of the water hammer originating
from a microjet impingement, and the pressure wave originated from
the collapse of a cavity, with respect to erosion. We hypothesized that
the impact load due to a collective cloud collapse, may be much more
powerful than the one from a microjet, formed on a single bubble
collapsing close to the surface. A more detailed comparison, can be
found in Joshi et al. [16], who simulated a single bubble collapse
close to a wall, using SPH. They focused on the relation between the
shock at the moment of the jet impact, and the shock wave from the
eventual collapse of the bubble. The authors also modeled the material
plastic deformation. They concluded that, although the water hammer
can produce twice the maximum plastic deformation compared to a
shock wave from the collapse, the volume of material that is plastically
deformed, is miniscule. Basically, a collapse shock wave can plastify
almost 800 times larger volume, and hence, the erosion rate will be
higher. Considering that both the collapse shock and the microjet
impact are eventually fed by the initial potential energy content, and
the fact that reliable prediction of a microjet formation and its water
hammer would require extremely high resolution in time and space,
an energy balance consideration, based on the initial potential energy
contained in cavitating structures, is believed to be more successful on
a macroscopic scale.

In the present study, an energy conservative method is used to
predict the cavitation erosion aggressiveness on a surface. This method
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is based on the potential energy hypothesis, but it allows for the spacial
and temporal focusing of the potential energy during the collapse of
cavitating structures. First, the initial potential energy is converted
into kinetic energy in the surrounding liquid, and focused in space
before the conversion to shock wave energy, and eventually to local
surface impact power takes place, at the final stage to the collapse.
The model is first applied to a single cavitation bubble, collapsing
under ambient pressure of 1 bar, in order to investigate the source
of different numerical errors made on the estimation of the radiated
power during the collapse. Then, the flow around the KCD-193 model
propeller is investigated and the erosion risk on the blades is assessed.
The propeller performance under cavitating conditions is compared
with the experimental observations and measurements, whereas the
identified high erosion risk areas are compared with paint test results.

Previous studies [15,17] have shown, that the overall energy bal-
ance can be satisfied if and only if the numerical errors, involved in
the reconstruction of the radiated energy, are minimized. In simple
cases, where condensation can be separated from evaporation (for
instance a single bubble or a bubbly cloud collapse initially at rest),
those numerical errors can easily be eliminated. However, in complex
flows where it is impossible to isolate a cavity collapse (flow over a
hydrofoil, propeller blade etc.) the errors made on the reconstruction
of the radiated energy cannot easily be avoided, resulting in eventual
violation of the energy balance. Thus, it is imminent to investigate
different possible approaches to reconstruct the radiated energy in such
a way that all the initial potential energy is conserved.

2. Numerical modeling

2.1. Governing equations

The Unsteady Reynolds Averaged Navier–Stokes (URANS) equations
for momentum and mass continuity to be solved, are given by
𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + 𝜌𝑓 + ∇ ⋅ 𝜏 (1)
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0 (2)

where 𝐮 is the velocity tensor, 𝜌 is the fluid density, 𝑝 the pressure, 𝑓 the
external force per unit mass and 𝜏 the viscous part of the stress tensor.
The finite volume method is employed to discretize the continuous
governing equations, and a segregated approach is adopted, where the
flow equations are solved in a SIMPLE like manner to achieve pressure–
velocity coupling. A second-order implicit method, and a second-order
upwind scheme are used for the time marching and the convective
terms respectively.

The SST k-𝜔 turbulence model is employed with a low-𝑦+ wall
treatment similarly to previous studies [15,18,19]. The empirical re-
duction of turbulence dissipative terms in the two-phase regions has
been applied, by modifying the turbulent eddy viscosity [20]

𝜇 = 𝑓 (𝜌)𝐶𝜔
𝑘
𝜔

(3)

𝑓 (𝜌) = 𝜌𝑣 +
(𝜌 − 𝜌𝑣)𝑛

(𝜌𝑙 − 𝜌𝑣)(𝑛−1)
; 𝑛 ≫ 1 (4)

where 𝜌𝑣 is the vapor density, 𝜌𝑙 the liquid density and 𝜌 the mixture
density. For the constant 𝑛 the recommended value 𝑛 = 10 has been
used.

2.2. Cavitation modeling

In Eqs. (1) and (2), the fluid density 𝜌 and the turbulent eddy
viscosity 𝜇 are given by the linear mixture relations

𝜌 = 𝑎𝑣𝜌𝑣 + (1 − 𝑎𝑣)𝜌𝑙 𝑎𝑛𝑑 𝜇 = 𝑎𝑣𝜇𝑣 + (1 − 𝑎𝑣)𝜇𝑙 (5)

respectively, where 0 < 𝑎𝑣 < 1 is the vapor fraction. A homogeneous
multiphase mixture model is employed to achieve phase transition, and

to track the interfaces between the two phases. The pure liquid (𝑎𝑣 = 0)
and vapor (𝑎𝑣 = 1) phases are modeled as incompressible. The mixture
regime is also incompressible, however, compressible behavior can be
mimicked during phase transition.

An additional conservation equation that describes the transport of
vapor volume fraction 𝛼𝑣 is solved
𝜕𝛼𝑣
𝜕𝑡

+ ∇ ⋅ (𝛼𝑣𝐮) = 𝑆𝛼𝑣 (6)

In Eq. (6), 𝑆𝛼𝑣 represents the mass transfer source term. In order to
account for bubble growth and collapse, a cavitation model should be
introduced. The Schnerr–Sauer [21] cavitation model is used in this
study, based on a simplified Rayleigh–Plesset equation, which neglects
the influence of bubble growth acceleration, as well as viscous and
surface tension effects. Within the control volume, the vapor phase is
assumed to be present in the form of bubbles. Each bubble has the
same radius 𝑅𝑏. The number density of seeds is defined as 𝑛0, which
corresponds to the number of bubbles per unit volume [22]. Therefore
the mass transfer source term becomes

𝑆𝛼𝑣 =
4𝜋𝑅2

𝑏𝑛0

1 +
( 4
3
𝜋𝑅3

𝑏

)

𝑛0

𝑑𝑅𝑏
𝑑𝑡

(7)

where the bubble radius 𝑅𝑏 can be expressed as:

𝑅𝑏 =

⎛

⎜

⎜

⎜

⎝

𝛼𝑣

𝑛0
4
3
𝜋(1 − 𝛼𝑣)

⎞

⎟

⎟

⎟

⎠

1∕3

(8)

The seed density 𝑛0 and the seed diameter 𝐷0 = 2𝑅0 are user specified,
and the latter provides a lower limit 𝑅𝑚𝑖𝑛 for the bubble size. Finally the
bubble radius change rate 𝑑𝑅𝑏

𝑑𝑡 is estimated using the inertia controlled
growth model

𝑑𝑅
𝑑𝑡

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝐶𝑐,𝑆𝐹

√

2
3
𝑝 − 𝑝𝑣
𝜌𝑙

, 𝑖𝑓 𝑝 > 𝑝𝑣

𝐶𝑣,𝑆𝐹

√

2
3
𝑝𝑣 − 𝑝
𝜌𝑙

, 𝑖𝑓 𝑝 < 𝑝𝑣

(9)

where 𝑝𝑣 is the saturation pressure, 𝑝 is the local pressure around the
bubble and 𝜌𝑙 is the fluid density. 𝐶𝑐,𝑆𝐹 and 𝐶𝑣,𝑆𝐹 are scaling factors to
adjust the source term magnitude for the condensation and the evap-
oration process, respectively. They work similarly to the condensation
and evaporation coefficients found in other cavitation models [23–25].

In mass transfer models, compressibility is mimicked only in regions
subjected to phase transition. Frikha et al. [26] and Morgut and Nobile
[27] have shown that such models are at least able to correctly reflect
the inertia driven kinematics of cavitating flows. Additionally, Kouk-
ouvinis and Gavaises [28] and Schenke and van Terwisga [29] have
pointed out that the equilibrium assumption for a barotropic flow can
theoretically be mimicked by the mass transfer model, if the finite
transfer rate tended to infinity. This transfer rate is controlled by the
mass transfer model coefficients, which in this case are the scaling
factors 𝐶𝑐,𝑆𝐹 and 𝐶𝑣,𝑆𝐹 . These factors should be set as such, that the
transfer rate is forced towards infinity, and thus a sharp transition is
achieved from liquid to vapor phase and vice versa. Given that, the
mass transfer source term always provide enough capacity to establish
the equilibrium flow condition, where the time scale of phase transition
is not important within the advective time scale of the flow. The
density–pressure trajectory then remains close to vapor pressure during
phase transition and the behavior of more realistic thermodynamic
models is mimicked. Thus, in strong inertia driven flows, mass transfer
models, and fully compressible models, can give very similar results
as far as the inertial dynamics of cavitating flows are concerned.
However, a fully compressible flow model still behaves differently in
many aspects, such as wave propagation, and compressibility of pure
phases and mixture.
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3. Cavitation erosion modeling

The increased demand for the prediction of cavitation erosion has
paved the way for the development of computational tools that can
give a numerical estimation of high erosion risk areas. Model testing
of the propeller cavitation behavior in a depressurized towing tank is
nowadays the most typical way a propeller designer can get an assess-
ment of the erosion risk on the propeller blades. However, assessing the
cavitation intensity through optical observation requires a high degree
of experience, and thus remains rather subjective. Besides, it does not
provide more detailed information than high fidelity numerical simula-
tions. Recent work shows that cavitation erosion risk assessment with
numerical methods has a great potential, and it is expected to become
integrated into the design process in the near future [15,17,18,30].
The presented method to estimate the cavitation erosion risk, has been
developed within the European project ‘‘CaFE’’, as proposed by Schenke
et al. [30].

3.1. Energy balance

In previous studies [15,17,19], we assumed that the potential en-
ergy within the vapor structures is instantaneously radiated in the
domain, during the condensation process. However, it has been shown
that the initial potential energy is partitioned into different forms of
energy during the collapse, while the total energy is conserved [30–
32]. When the vapor structure enters a pressure recovery region, then
the potential energy is converted gradually into kinetic energy till
the final moment of the collapse, where the initial potential energy
is fully converted into kinetic energy [30]. At the final stage of the
collapse, Tinguely et al. [32] showed that the initial potential bubble
energy 𝐸𝑝𝑜𝑡,0 is eventually partitioned into shock wave energy 𝐸𝑆𝑊 ,
dissipative thermal energy 𝛥𝑈 and rebound energy 𝐸𝑟𝑒𝑏, such that

𝐸𝑆𝑊 = 𝐸𝑝𝑜𝑡,0 − 𝐸𝑟𝑒𝑏 − 𝛥𝑈 (10)

The dissipative thermal energy has been shown to be negligible,
as thermal processes typically absorb negligible energy fractions [33].
The rebound energy depends strongly on the initial gas content and the
pressure driving the collapse. As we assume that the cavitating struc-
tures are completely filled with vapor and there is no non-condensable
gas in the flow, the rebound energy depends only on the driving
pressure, and thus it becomes relevant only for low ambient pressures,
significantly lower than 1 bar [32]. Therefore we can assume that the
initial potential energy in the structure is first feeding into kinetic en-
ergy 𝐸𝑘𝑖𝑛 until it has fully collapsed and the kinetic energy is completely
converted into shock wave energy 𝐸𝑆𝑊 .

3.2. Potential energy in collapsing cavitating structures

Following the notion by Hammit [9], Vogel and Laterborn [10]
proposed that the potential energy of a cavity is equal to the work done
by the driving pressure difference 𝑝𝑑 − 𝑝𝑣 on its vapor volume 𝑉𝑣

𝐸𝑝𝑜𝑡 = (𝑝𝑑 − 𝑝𝑣) ⋅ 𝑉𝑣 (11)

where 𝑝𝑑 is the ambient pressure driving the collapse and 𝑝𝑣 the vapor
pressure. The instantaneous change of volume specific potential energy
then, can be estimated in every cell at location 𝑥 from the material
derivative of 𝐸𝑝𝑜𝑡(𝑡, 𝑥), written as

�̇�𝑝𝑜𝑡 =
𝐷𝐸𝑝𝑜𝑡∕𝐷𝑡

𝑉𝑐𝑒𝑙𝑙
= (𝑝𝑑 − 𝑝𝑣) ⋅

(

𝜕𝛼𝑣
𝜕𝑡

+ 𝐮𝐢 ⋅ ∇𝛼𝑣
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
collapse induced energy flux

+
(

𝜕𝑝𝑑
𝜕𝑡

+ 𝐮𝐚 ⋅ ∇𝑝𝑑
)

⋅ 𝛼𝑣
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inertial energy flux

(12)

𝑤ℎ𝑒𝑟𝑒 𝐷
𝐷𝑡

∶= 𝜕
𝜕𝑡

+ 𝐮 ⋅ ∇. 𝑎𝑛𝑑 𝛼𝑣 =
𝑉𝑣
𝑉𝑐𝑒𝑙𝑙

Fig. 1. Examples of potential energy feeding into kinetic energy for a single cavitation
bubble under constant driving pressure (a), under a negative pressure gradient (b), and
under an adverse pressure gradient (flow over a hydrofoil, c).

Considering the change of potential energy in time in the domain,
the potential energy is going to convert into kinetic energy. However,
each term of Eq. (12) will contribute in a different way. It is crucial,
at this point, to distinguish two different sources of kinetic energy. The
first term on the r.h.s. of Eq. (12) includes a change in cavity volume.
This will result in a collapse induced energy flux, and part of the initial
potential energy in the bubble will convert into collapse induced kinetic
energy, distributed to the liquid around the cavity interface. That is the
kinetic energy which is responsible for the relative motion of the cavity
interface with respect to the cavity (collapse) center, with velocity 𝑢𝑖,
proportional to the pressure difference between the ambient driving
pressure 𝑝𝑑 and the vapor pressure 𝑝𝑣.

The second term on the r.h.s. of Eq. (12) is activated only when
the driving pressure is time dependent in the Lagrangian frame of
reference, and it represents a change in pressure. Following the cavity
in time, it can experience a change in driving pressure in two ways.
One is when the cavity is subjected to a steady state driving pressure
gradient. In this case, the change of driving pressure can only be seen
by following the cavity in space, hence in the Lagrangian reference
frame. Due to the pressure gradient, part of the initial potential will
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convert into inertial kinetic energy. This change of potential energy
can only contribute to the acceleration or deceleration of the cavity
as a rigid body (or deformable body if we assume that the shape of
the cavity can change, but without changing its volume). The cavity
interface is then forced to move along with the center of the cavity with
velocity 𝑢𝑎. The second way that the cavity can experience a change
in driving pressure is if the driving pressure somehow changes in the
entire control volume in time. This effect can be seen in the Eulerian
reference frame as well. As the pressure is uniform everywhere, and
the driving pressure gradient is zero, there will be no change in the
inertial kinetic energy. However, there will be a change in the potential
energy of the cavity. This effect appears in the first term on the r.h.s.
of Eq. (12) by expanding the driving pressure 𝑝𝑑 in time using a first
order Taylor series approximation in the Lagrangian reference frame,
as shown by Schenke and van Terwisga [17].

Fig. 1 illustrates the contribution of each term on the r.h.s. of
Eq. (12) by depicting three conditions with changing potential en-
ergy. In the first example, Fig. 1a, a cavitation bubble is collapsing
under steady driving pressure. Therefore the second term on the r.h.s.
of Eq. (12) is zero. In this case, the collapse center does not move
during the collapse, and the liquid around the cavity interface cannot
accelerate without volume change. Thus, the bubble will start shrinking
with collapse induced velocity 𝑢𝑖, and all the potential energy contained
in the bubble will convert into collapse induced kinetic energy 𝐸𝑘𝑖𝑛,𝑐𝑜𝑙.

In the second example, Fig. 1b, the cavitation bubble is subjected
to a negative pressure gradient in the 𝑥-direction. We assume that the
volume of the bubble remains constant during this process. Then, the
first term on the r.h.s. of Eq. (12) is zero. Consequently, all the potential
energy initially contained in the bubble will convert into ‘‘inertial’’
kinetic energy 𝐸𝑘𝑖𝑛,𝑖𝑛𝑒𝑟, which will accelerate the bubble towards the
positive x direction. In a Lagrangian frame of reference (following the
bubble motion), the bubble will experience a time dependent driving
pressure. In the Eulerian reference frame this is translated as a partial
time derivative term 𝜕𝑝𝑑

𝜕𝑡 , and an advective term 𝒖 ⋅ ∇𝑝𝑑 (see second
term on the r.h.s. of Eq. (12)). In this specific case, the driving pressure
field is constant in time but not in space. This means that the partial
derivative of pressure is zero, and the pressure gradient ∇𝑝𝑑 is the only
responsible for the bubble motion with advective velocity 𝑢𝑎. If the
bubble volume is free to change its volume, the first term on the r.h.s.
of Eq. (12) is not zero anymore. Then, the bubble will start shrinking,
and eventually collapse, as the liquid pressure is always higher than
the vapor pressure 𝑝𝑣. However, the bubble will collapse at a location
𝑥 different than the initial location of the bubble 𝑥0.

In the last example, Fig. 1c, the flow around a hydrofoil is inves-
tigated. We assume that a cavitation bubble is shed from the sheet
cavity on the suction side. The bubble reaches its maximum volume
(and hence potential energy) the time instant 𝑡 = 𝑡0. As the bubble is
advected due to the main flow towards the trailing edge, it experiences
an adverse pressure gradient. Since the pressure is higher than the
vapor pressure 𝑝𝑣, the bubble will start to collapse. At the same time,
due to the positive pressure gradient, the fluid force is opposed to the
bubble motion, resulting in a deceleration of the bubble. At a time
instant 𝑡 = 𝑡0+𝛥𝑡, part of the initial potential energy has been converted
into collapse induced kinetic energy 𝐸𝑘𝑖𝑛,𝑐𝑜𝑙, responsible for the bubble
volume change, while another part has been converted into ‘‘inertial’’
kinetic energy 𝐸𝑘𝑖𝑛,𝑖𝑛𝑒𝑟, responsible for the deceleration of the bubble.
At the final stage of the collapse, the ‘‘inertial’’ kinetic energy will be
minimum, while the collapse induced kinetic energy will be maximum,
which will eventually feed into acoustic energy. Thus, only the first
term on the r.h.s. of Eq. (12) is contributing to the radiated energy from
the collapse of the bubble, and consequently to the surface accumulated
energy.

Then, the volume specific potential energy reduction rate in every
cell is given by

�̇�𝑝𝑜𝑡 = (𝑝𝑑 − 𝑝𝑣) ⋅
(

𝐷𝛼𝑣
𝐷𝑡

)−
(13)

where
(

𝐷𝛼𝑣
𝐷𝑡

)−
denotes specific volume change due to condensation.

In Eq. (13), the unknowns are the material derivative of 𝛼𝑣, and the
driving pressure 𝑝𝑑 . The material derivative of 𝛼𝑣 is proportional to
the velocity divergence ∇ ⋅ 𝐮 and the mass transfer source term 𝑆𝛼𝑣
according to Eq. (6). Furthermore, the void fraction is defined as 𝛼𝑣 =
𝜌 − 𝜌𝑙
𝜌𝑣 − 𝜌𝑙

, and from the local mass conservation 𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑢) = 0 we
deduce [34]:
𝐷𝛼𝑣
𝐷𝑡

=
(

𝜕𝛼𝑣
𝜕𝑡

+ 𝑢 ⋅ ∇𝛼𝑣

)

=
𝜌

𝜌𝑙 − 𝜌𝑣
∇ ⋅ 𝐮 =

𝜌
𝜌𝑙
𝑆𝛼𝑣 (14)

Thus, we end up with the following three formulations for the material
derivative of 𝛼𝑣:

𝐷𝛼𝑣
𝐷𝑡

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝛼𝑣
𝜕𝑡

+ 𝐮 ⋅ ∇𝛼𝑣 (a)

𝜌
𝜌𝑙 − 𝜌𝑣

∇ ⋅ 𝐮 (b)

𝜌
𝜌𝑙
𝑆𝛼𝑣 (c)

(15)

All the considerations above, should theoretically give the same vol-
ume change rate. Nevertheless, each formulation introduces a different
numerical error. For instance, the advective term 𝐮 ⋅∇𝛼𝑣 in Eq. (15)(a),
and the velocity divergence term ∇ ⋅ 𝐮 in Eq. (15)(b), are discretized
as one term in the transport equation of the vapor fraction, and thus,
they cannot be computed separately from the solver. Nonetheless, a
combined term is computed, that includes the contribution of both
terms. Consequently, each one of them needs to be reconstructed. The
velocity divergence term ∇ ⋅𝐮 can easily be reconstructed directly from
the face fluxes. However, the reconstruction of this term introduces
a non-negligible numerical error. One possible reason is that the face
fluxes of 𝐮 are the result of an interpolation from the cell centers due
to the collocated grid arrangement.

On the other hand, the advective term 𝐮 ⋅ ∇𝛼𝑣 involves the re-
construction of ∇𝛼𝑣. As we use a homogeneous multi-phase method
to model the different phases in the flow, the cells at the interface
consist of a homogeneous mixture of liquid and vapor. In cases where a
sharp interface is pursued (e.g. a single bubble or a cloud of separated
bubbles) the derivatives of 𝛼𝑣 with respect to space are not defined,
due to the sudden jump in vapor fraction from 0 to 1, and therefore,
this term cannot be reconstructed. In case of a cloudy mixture (with
unresolved sub-grid bubbles) the interface is more diffused and the
advective term 𝐮 ⋅ ∇𝛼𝑣 can be computed. However, the accuracy of
reconstructed gradients on unstructured meshes depends strongly on
grid quality and grid effects (e.g. mesh stretching, curvature, skewness),
and therefore a (sometimes significant) numerical error is introduced.

Furthermore, the mass transfer source term, on the r.h.s. of
Eq. (15)(c), is obtained from the instantaneous pressure 𝑝 and the vapor
fraction 𝛼𝑣. Thereby, it is a direct outcome of the solution at each time
step. In that case, the introduced error is equal to the iterative error
during each time step. The source of the aforementioned errors and
their magnitude are investigated in Section 4.

Finally, the volume specific potential energy reduction rate can be
estimated, accordingly, by the following three considerations

�̇�𝑝𝑜𝑡,𝐶 (𝑡,𝒙𝑐𝑒𝑙𝑙) = (𝑝𝑑 − 𝑝𝑣)⋅

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
[

𝜕𝛼𝑣
𝜕𝑡

, 0
]

(a)

min
[

𝜌
𝜌𝑙 − 𝜌𝑣

∇ ⋅ 𝐮, 0
]

(b)

min
[

𝜌
𝜌𝑙
𝑆𝛼𝑣 , 0

]

(c)

(16)

where only the volume change due to condensation is considered in
each case, and it is indicated by the subscript 𝐶. In Eq. (16)(a), the ad-
vective term has been omitted, since either it cannot be reconstructed,
when a sharp interface is achieved, or its error cannot be estimated, and
thus we introduce an additional modeling error. For simplicity, from
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now on, we will refer to Eqs. (16)(a), (c) and (c), as ‘‘partial derivative’’,
‘‘divergence’’ and ‘‘source term’’, respectively.

The unsteady term of Eq. (15)(a),
𝜕𝛼𝑣
𝜕𝑡

, represents the rate of change
of 𝛼𝑣 in time, and it can be accurately predicted assuming a sufficient
temporal discretization. In Eq. (14), moving the advective term to the
right hand side gives
𝜕𝛼𝑣
𝜕𝑡

=
𝜌

𝜌𝑙 − 𝜌𝑣
∇ ⋅ 𝐮 − 𝐮 ⋅ ∇𝛼𝑣 (17)

As long as only condensation takes place (for instance a single cavi-
tation bubble collapsing under ambient pressure higher than its vapor
pressure, while far from the bubble the liquid is assumed at rest), the
advective term 𝐮 ⋅ ∇𝛼𝑣 is zero, and thus, the partial derivative of 𝛼𝑣
will be equal to the material derivative of 𝛼𝑣. Similarly, in cases where
we know a priori that the advective term is negligible compared to the
velocity divergence term (see r.h.s of Eq. (17)), then the rate of vapor
reduction can be approximated by the partial time derivative of 𝛼𝑣.

3.3. Effective driving pressure

The second unknown in Eq. (13) is the pressure driving the collapse
𝑝𝑑 . The determination of this quantity is not straightforward for com-
plex flows, and it introduces the largest uncertainty in the prediction
of the cavitation impact loads on a surface. For an isolated single
cavitation bubble, collapsing in an infinite liquid volume, without the
effect of gravity, the pressure effectively driving the collapse is just the
pressure at infinity, which will result in a spherical collapse. Neverthe-
less, when the bubble is collapsing close to a wall (or close to another
bubble), the driving pressure across its interface will vary due to the
interaction with the wall (or the other bubble), as there is no space for
the pressure to recover to ambient pressure. Similarly, in a flow around
a lifting body, a hydrofoil or a propeller for instance, the interaction
between the cavities formed on the blade or the hydrofoil surface, and
their interaction with the wall, should be taken into account, as the
pressure recovery gradients along the surface are considered important
for the cavitation dynamics.

Unfortunately, the determination of the driving pressure in such
complex flows is not an easy task. The local instantaneous pressure 𝑝
could not be used to estimate the driving pressure, because it would
imply that the pressure at the cavity interface is higher than the vapor
pressure, in order to obtain a non-zero driving pressure difference
𝑝𝑑 − 𝑝𝑣, at locations where energy is radiated. However, looking at
the density–pressure trajectory, it remains very close to vapor pressure
during phase change, thus the corresponding pressure difference would
physically be nearly zero, in case the local cell pressure is used as a
measure for the driving pressure. Therefore, a different way to estimate
the driving pressure should be found.

In previous studies [15,17,18], the time-averaged pressure field at
time instant 𝑡, 𝑝𝑡, computed from the instantaneous pressure field in
cavitating conditions 𝑝, was assumed to be the ambient pressure field
driving the cavity collapses. In this way, a rough estimate of the con-
ditions that collapsing cavities experience on statistical average can be
achieved. However, this implies that the time-averaged pressure field is
sufficiently converged (almost constant in time), which always requires
several cycles. In the present study, we investigate the influence of
several more instantaneous pressure field definitions, computed by
averaging the instantaneous pressure field over a moving time window
of size 𝑇𝑚

𝑝𝑡 =
1
𝑇𝑚 ∫

𝑡

𝑡−𝑇𝑚
𝑝(𝑡)𝑑𝑡 (18)

Computing the moving average requires to store all the values
within the chosen time window of the pressure signal in a buffer at
each time step, for every cell of the computational domain. Depending
on the size of the window, the amount of data can easily exceed
the available random-access memory (RAM) limit [35]. Therefore, we

apply the method by Welford [36] to approximate the moving average
of the pressure field at time instant 𝑡, 𝑝𝑡, over a sliding window 𝑇𝑚 at
each computational cell

𝑝𝑡 = 𝑝𝑡−1 +
𝑝𝑡 − 𝑝𝑡−1

𝑛
𝑛=𝑇𝑚∕𝛥𝑡
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑝𝑡 = 𝑝𝑡−1 +

(

𝑝𝑡 − 𝑝𝑡−1
) 𝛥𝑡
𝑇𝑚

(19)

where 𝑛 is the number of time steps within the sliding window, and 𝛥𝑡
the time step size.

3.4. Radiated energy and surface impact power

Let us consider the potential energy released instantaneously at each
time step and each location where condensation takes place. Then, the
instantaneous radiated power is given directly by the reduction rate of
the volume specific potential energy:

�̇�𝑟𝑎𝑑 (𝑡,𝒙𝑐𝑒𝑙𝑙) = −�̇�𝑝𝑜𝑡,𝐶 (𝑡,𝒙𝑐𝑒𝑙𝑙) (20)

where the minus (−) sign is a consequence of the energy conservation.
However, in order to follow the energy consideration, as discussed in
Section 3), the potential energy should somehow be stored as kinetic
energy around the cavities, focused towards the collapse center, and
eventually converted into radiated (acoustic) energy, at the final stage
of the collapse, giving a more physical representation of the collapsing
process of cavitating structures.

To account for the conversion of the potential energy into kinetic
energy, and the focusing of the kinetic energy into the collapse center,
a novel approach is employed, as introduced by Schenke et al. [30].
In this ‘‘focusing’’ model the reduction of the potential energy due
to condensation is absorbed by an accumulated kinetic energy field
𝜀(𝑡,𝒙𝑐𝑒𝑙𝑙), until a criterion for the conversion of the kinetic energy
into acoustic energy is met. This process is described by an additional
transport equation:
𝜕𝜀
𝜕𝑡

+ ∇ ⋅ (𝜀𝐮𝑖) = −�̇�𝑟𝑎𝑑 (𝑡) (21)

and by applying the product rule, Eq. (21) becomes
𝜕𝜀
𝜕𝑡

+ 𝐮𝑖 ⋅ ∇𝜀 = −𝜀(∇ ⋅ 𝐮𝑖) − �̇�𝑟𝑎𝑑 (𝑡) (22)

where 𝐮𝑖 is the collapse induced velocity, and 𝜀 is the consequent
kinetic energy induced by the volume reduction of the cavitating
structures in the flow. Practically, this collapse induced kinetic energy
is induced from locations of negative velocity divergence only, or in
general, only from locations where condensation takes place. The sum
of the two terms on the left hand side of Eq. (22), i.e, the unsteady term
and the advection, is the material derivative of 𝜀 that gives the rate of
change of 𝜀 following a fluid particle. In particular, the term 𝐮𝑖 ⋅ ∇𝜀
represents the conservative advective transport of the collapse induced
kinetic energy, and it is responsible for its spatial distribution around
the cavitating structure as the kinetic energy is focusing towards the
collapse center. However, the exact spatial distribution of 𝜀(𝑡,𝒙𝑐𝑒𝑙𝑙) is
unknown, and consequently, a modeling assumption is required for the
conservative transport of the accumulated kinetic energy 𝐮𝑖 ⋅ ∇𝜀.

Furthermore, the two source terms on the right hand side, represent
the kinetic energy source (or creation of kinetic energy), and the
radiation source (or reduction of kinetic energy), respectively. The
kinetic energy source is directly connected to the reduction of potential
energy. When the volume specific potential energy is reducing at any
location 𝑥𝑐𝑒𝑙𝑙, as a result of condensation, then the kinetic energy source
term is activated. On the other hand, the kinetic energy source term
remains zero, when an increase of potential energy, associated with
cavity growth, takes place. Consequently, the kinetic energy source
term 𝜀(∇ ⋅ 𝐮𝑖) can be modeled by the volume specific potential energy
reduction rate, discussed in Section 3.2.

The radiation source term, �̇�𝑟𝑎𝑑 (𝑡), is activated only when a certain
criterion is met. To physically represent a cavity collapse, most of
the energy, initially contained as potential energy in the structure,
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should be released at the final stage of the collapse. To chose a suitable
criterion, we should take a close look to what happens as we approach
the final stage of the collapse. The pressure in the mixture regime
cannot be much higher than the vapor pressure, and therefore, a high
amplitude pressure wave can only form in the liquid phase. Besides, the
absorbed kinetic energy should accumulate on the low pressure side,
and propagate inwards, towards the collapse center. Considering these
assumptions, we derive the following criterion for 𝛽:

𝛽 =

{

1, 𝑖𝑓 𝑝 > 𝑝∞ 𝑎𝑛𝑑 𝛼 = 0
0, 𝑒𝑙𝑠𝑒

(23)

According to Eq. (23), the parameter 𝛽 is defined such that 𝛽 = 1 at
locations where the vapor has completely disappeared and the local
pressure is higher than the pressure at infinity. Considering also the fact
that the value of 𝛽 is of interest only at locations where the potential
energy has been converted into collapse induced kinetic energy, then
we can isolate all the locations where a collapse of a vapor structure has
taken place. Consequently, a volume cell, where there is some collapse
induced kinetic energy focused, is a candidate to radiate energy, if and
only if its vapor volume has fully condensed and if a pressure wave is
emitted.

Then Eq. (22) can be replaced by the following modeling assump-
tion:
𝜕𝜀
𝜕𝑡

= (1 − 𝛽)[𝜙(𝜀) − �̇�𝑝𝑜𝑡,𝐶 (𝑡)] − 𝛽 𝜀
𝛿𝑡

(24)

The term 𝜙(𝜀) is a model for the unknown conservative advective
transport of the kinetic energy 𝐮𝑖 ⋅ ∇𝜀 in Eq. (22). The term �̇�𝑝𝑜𝑡,𝐶 (𝑡)
represents the source term for the reduction of potential energy, and
consequently the generation of kinetic energy 𝜀(∇ ⋅ 𝐮𝑖) in Eq. (22).
Hence, 𝜙(𝜀) − �̇�𝑝𝑜𝑡,𝐶 (𝑡) serves for the kinetic energy flux. The term 𝛽 𝜀

𝛿𝑡
is a model for the radiation source term �̇�𝑟𝑎𝑑 (𝑡) in Eq. (22). The energy
radiation is modeled as a discrete event, because all the focused energy
is released within the time interval 𝛿𝑡, which means that the energy
content of the radiated wave is conserved, while the exact wave shape
across the wave front is not captured. Finally, the term (1 − 𝛽) in
Eq. (24) has been added to make sure that at locations where volume
specific energy is radiated, there is no production of kinetic energy, and
therefore the overall energy balance is satisfied.

The advective transport term 𝜙(𝜀) in Eq. (24) is given by [30]

𝜙(𝜀) = �̇�𝑝𝑜𝑡,𝐶𝑘 − 𝜀
𝛿𝑡
P𝑢(∇𝜀) (25)

where 𝑘 is assumed constant in space and is defined such that

𝑘 =
∫𝑉

𝜀
𝛿𝑡
P𝑢(∇𝜀)𝑑𝑉

∫𝑉 �̇�𝑝𝑜𝑡,𝐶 (𝑡)𝑑𝑉
(26)

and P𝑢(∇𝜀) is the normalized projection of ∇𝜀 on the local flow velocity
vector 𝐮

P𝑢(∇𝜀) = max
[

𝐮 ⋅ ∇𝜀
‖𝐮‖‖∇𝜀‖

, 0
]

(27)

where division by zero is prevented by adding a small number to the
denominator (𝛿 = 10−15), such that it does not affect the accuracy of
the final result.

In Eq. (25), the first term on the right hand side is associated with
the production of collapse induced kinetic energy, and it is proportional
to the reduction rate of potential energy. The second term is related to
the transport of the kinetic energy, and it is based on the assumption
that the flow around the interface of the collapsing cavity is directed
towards the center, thus aligned with ∇𝜀, considering that 𝜀 is stored
at the cavity interface. To get the collapse induced kinetic energy at
each time step 𝛿𝑡, we explicitly forward the solution in time using a
first order Taylor expansion, which gives

𝜀|𝑡+𝛿𝑡 = 𝜀|𝑡 +
𝜕𝜀
𝜕𝑡

|

|

|𝑡
𝛿𝑡 = (1 − 𝛽|𝑡)

[

�̇�𝑝𝑜𝑡,𝐶𝛿𝑡(𝑘 − 1) − 𝜀(P𝑢(∇𝜀) − 1)
]

|

|

|𝑡
(28)

and the volume specific radiated power is given by

�̇�𝑟𝑎𝑑 |𝑡+𝛿𝑡 =
1
𝛿𝑡
(𝛽𝜀)|𝑡 (29)

Knowing the radiated volume specific power at each cell in the
domain, and assuming that each point source 𝑥𝑐𝑒𝑙𝑙 emits its converted
potential energy as a radial wave with an infinitely large propagation
speed, the instantaneous surface specific impact power �̇�𝑆 (𝑡, 𝑥𝑆 ), at
some surface location 𝑥𝑆 is given by Schenke and van Terwisga [17]
as

�̇�𝑆 (𝑡, 𝐱𝑆 ) =
1
4𝜋 ∫𝑉

�̇�𝑟𝑎𝑑 (𝑡, 𝐱𝑐𝑒𝑙𝑙)
[

(𝐱𝑐𝑒𝑙𝑙 − 𝐱𝑆 ) ⋅ 𝐧
‖𝐱𝑐𝑒𝑙𝑙 − 𝐱𝑆‖3

]

𝑑𝑉 (30)

where 𝐧 is the surface normal vector at the impact location.
Finally, cases where the cavity collapse rate goes from negative to

zero before the cavity is fully collapsed, and the condensation process
stops, or it is even reversed and evaporation takes place, are not
considered in this model. In such cases, the kinetic energy accumulated
at the cavity interface should be dissipated or even converted back to
potential energy, which cannot be handle by the model as described
in this section. However, such cases are assumed to occur quite rarely
when the cavities undergo high pressure differences.

4. Single cavitation bubble collapse

A verification study is conducted on a single cavitation bubble
collapse, considering an inviscid flow. This study serves for verification
of the cavitation and erosion model. First, an idealized spherical bubble
is simulated in an infinite liquid. The sensitivity of the collapse time
to the condensation scaling factor 𝐶𝑐,𝑆𝐹 , the time step size 𝛥𝑡, and
the grid size has been investigated. The obtained converged solution
is then compared to the analytical solution of the Rayleigh–Plesset
equation [37]. Then, the focusing model is applied to verify that the
potential energy is stored at the interface as kinetic energy, until
the final stage of the collapse, when it is radiated to the domain as
acoustic energy. Subsequently, we apply an inflow velocity at the one
boundary, parallel to the 𝑥-axis, so that the flow around the bubble
is advected downstream during the collapse. This configuration serves
for identification of the numerical error sources on the prediction of
the total radiated energy 𝐸𝑟𝑎𝑑 .

As mentioned in Section 3 we consider three alternative methods
to estimate the change in potential energy during condensation. The
volume reduction rate can be estimated by using the partial derivative
of the vapor fraction, the velocity divergence, or the cavitation mass
transfer source term. In the case where the flow is initially at rest,
the total volume change can be accurately predicted by the volume
integration of the partial derivative of the vapor fraction ∫𝑣(

𝜕𝛼
𝜕𝑡 )𝑑𝑉 , as

the advective term 𝐮 ⋅∇𝛼𝑣 is zero then. However, it is interesting to see
how this term behaves when there is large advection in the flow, and
how it compares with the other two considerations for the prediction
of the volume change.

Finally, we let the bubble collapse close to an infinite flat surface
to verify that half of the energy is accumulated on the surface and the
total energy is conserved [17].

4.1. Isolated bubble collapse

4.1.1. Sensitivity study
The collapse of an isolated single cavitation bubble with a radius

of 𝑅𝑏 = 3.84 mm has been simulated. Six different meshes are used for
the sensitivity studies. Table 1 shows the number of cells per diameter,
the total amount of cells and the volume off-set from the theoretical
bubble volume. For all grids, apart from the coarsest grid (Grid 1), the
volume off-set is less than 1%. Fig. 2 shows the domain size and the
grid refinement around the bubble in Grid 5. The domain boundaries
are located 250 radii away from the bubble center.
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Table 1
Description of the different generated grids, where the number of cells per diameter,
the total number of cells, and the volume off-set from the theoretical bubble volume
is demonstrated.

Grid # Cells/Diameter # cells total Volume off-set

Grid 1 2 3200 2.58%
Grid 2 6 14,384 0.86%
Grid 3 10 43,840 0.52%
Grid 4 14 84,504 0.37%
Grid 5 18 177,752 0.29%
Grid 6 22 282,640 0.24%

Fig. 2. Dimensions of the domain and the refinement box around the bubble in Grid
5.

A pressure outlet boundary condition has been applied to all bound-
aries with 𝑝∞ = 1 bar, while the vapor pressure inside the bubble is
equal to 𝑝𝑣 = 2340 Pa (see Fig. 3). The pressure field in the rest of the
domain is initialized such that it satisfies the Laplace equation ∇ ⋅ ∇𝑝
outside the bubble surface. An initialization algorithm has been used to
compute the Laplacian pressure field and the vapor volume fraction at
each cell for each grid. The initial vapor fraction field is such, that all
the cells entirely located inside the bubble are assigned a vapor fraction
of 𝛼𝑣 = 1, while those entirely located outside the bubble are assigned
a vapor fraction of 𝛼𝑣 = 0. To determine the vapor fraction of the
cells at the interface, a sample algorithm has been used. The algorithm
divides every cell that is cut by the bubble interface in 1003 subcells
and determines the amount of the subcells that are entirely inside the
interface, assigning a percentage of vapor to each cut cell. The initial
vapor fraction field for the second coarsest (Grid 2) and second finest
(Grid 5) mesh is depicted in Fig. 4, where the better representation of
the bubble interface (red line) can be seen as we refine the mesh around
the bubble. The bubble interface is shown as an iso-line of 𝛼𝑣 = 0.5.

The sensitivity of the collapse time to the condensation scaling
factor 𝐶𝑐,𝑆𝐹 (see Eq. (9)), and the temporal and spatial resolution has
been investigated. Fig. 5 shows the evolution of the dimensionless
vapor volume for different values of the condensation scaling factor
𝐶𝑐,𝑆𝐹 , and a fixed time step size 𝛥𝑡 = 1 × 10−6, in grid 3. For very
small values, a significant delay of the collapse time is observed, while
for 𝐶𝑐,𝑆𝐹 ≥ 1 the solution becomes independent of the coefficient
value. However, this behavior can only be achieved if the temporal
and spatial resolution are sufficient. Fig. 6 depicts the evolution of
the dimensionless vapor volume in time, for a constant condensation
scaling factor 𝐶𝑐,𝑆𝐹 = 10, and a systematic variation of the time step
size 𝛥𝑡 in grid 3. Surprisingly, the collapse time is not very sensitive to
the temporal resolution, as already with a time step size of 𝛥𝑡 = 1×10−5,
a time step size independent solution is achieved. In other words, we
need no more than 40 time steps during the collapse, in order to obtain
a time step size independent solution. The sensitivity of the grid size
is depicted in Fig. 7 for 6 different grid sizes. It shows the evolution
of the dimensionless vapor volume for 𝐶𝑐,𝑆𝐹 = 10 and 𝛥𝑡 = 1 × 10−6,
and how they compare to the Rayleigh–Plesset equation. As we move
to a grid density higher than grid 2, the collapse time does not show
high sensitivity. Looking more thoroughly at the predicted collapse
time, grid 5 gives a fully converged and grid size independent solution,
which deviates less than 1% from the collapse time obtained from the
Rayleigh–Plesset equation.

Fig. 3. Evolution of pressure within and around the bubble in Grid 5. The size of the
refinement area is shown.

4.1.2. Energy consideration
As discussed in Section 3, in this study we assume that the initial po-

tential energy 𝐸𝑝𝑜𝑡,0, contained in the vapor structures, is continuously
feeding into kinetic energy 𝐸𝑘𝑖𝑛, during the condensation process, until
eventually it is fully converted into radiated energy 𝐸𝑟𝑎𝑑 , at the final
stage of the collapse. In this Section, we compare the energy focusing
approach, with the original consideration that energy is continuously
released in the domain, and the potential energy is instantaneously con-
verted into radiated energy (see Eq. (20)). Fig. 8 shows the evolution of
the radiated energy, normalized by the initial potential energy, in time
for the non-focusing and the focusing approach. In the non-focusing
approach, the instantaneous potential power is computed using the
three different considerations, as explained in Section 3.2. The volume
integrated rate of vapor reduction is predicted (see Eq. (16)) using
the partial derivative (red), the velocity divergence (green), and the
cavitation mass transfer source term (blue dotted). While the total
energy in the domain is conserved, when the partial derivative and
the source term are considered for the prediction of the instantaneous
power, with the velocity divergence, part of the energy is being lost
and only 63% of the total energy is finally being released. The source
of this error is the divergence term ∇⋅𝐮. The velocity divergence cannot
be computed directly from the solver, as has been demonstrated in a
previous study [15], and as a result it needs to be reconstructed. The
reconstruction of the velocity divergence introduces a numerical error,
which results in the error shown here. In this particular test case, this
error could be eliminated by correcting the velocity divergence field by
a constant factor c, determined at each time step as reported by Schenke
and van Terwisga [17], as the vapor volume change is subjected only
to the condensation process during the cavity collapse, and there is no
advection in the flow. However, in most of the cases the condensation
process cannot be estimated from the total volume change and this
correction is not possible.

The focusing approach has only been applied in the case where the
mass transfer source term is used to predict the vapor volume reduction
rate. It is demonstrated that the potential energy, initially contained
in the bubble, is successfully converted into kinetic energy during the
condensation process, until we approach the final stage of the collapse
where all the energy is radiated radially to the domain and the total
energy is conserved. We could also use the partial derivative, however,
this would hold for that particular case only, due to the fact that the
flow is at rest and no advection takes place. The partial derivative term
includes an advective contribution, which in this case is negligible.
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Fig. 4. Initial field of the vapor fraction 𝛼𝑣 for the second coarsest (Grid 2) and second finest (Grid 5) mesh. The bubble interface is shown as an iso-line of 𝛼𝑣 = 0.5.

Fig. 5. Evolution of the dimensionless vapor volume, normalized by the initial vapor
volume, over time for 𝛥𝑡 = 1 × 10−6 in grid 3, and a systematic variation of the
condensation mass transfer coefficient 𝐶𝑐 .

Fig. 6. Evolution of the dimensionless vapor volume, normalized by the initial vapor
volume, over time for 𝐶𝑆𝐹 = 10 in grid 3, and a systematic variation of the timestep
size 𝛥𝑡.

Nevertheless, in case we would have a non-zero advective velocity,
then the predicted total energy would not be conserved. This can be
shown by applying an inflow velocity in positive x direction, as shown
in Fig. 9.

Now, the computed partial derivative of the vapor volume includes
an advective contribution which cannot be neglected. The error made
in the energy conservation is getting more dominant with increasing
the inflow velocity, as illustrated in Fig. 10. The total energy released in
the domain after the bubble has collapsed is overpredicted, while with
the material derivative consideration is still underpredicted. However,
in the latter case, the magnitude of the error is diminishing as the flow
velocity increases. Finally, when the volume integrated rate of vapor

Fig. 7. Evolution of the dimensionless vapor volume, normalized by the initial vapor
volume, over time for 𝐶𝑆𝐹 = 10, 𝛥𝑡 = 1 × 10−6, and a systematic variation of the mesh
density.

Fig. 8. Total radiated energy, normalized by the initial potential energy, with the
non-focusing and the energy focusing model. For the non-focusing model, the volume
integrated rate of vapor reduction is predicted using the partial derivative (red), the
velocity divergence (green), and the mass transfer source term (blue). For the energy
focusing model, the volume integrated rate of vapor reduction is predicted using the
mass transfer source term only (black). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Boundary conditions when a non-zero inflow velocity is applied to the domain.
A velocity inlet boundary condition is assigned to the left boundary, and a flow
advection is forced in positive x direction.

reduction is predicted from the mass transfer source term, all the energy
is fully conserved, regardless of the magnitude of the flow velocity.

4.2. Collapse near an infinite flat surface

The collapse of the same spherical cavitation bubble close to an
infinite flat wall has been simulated (see Fig. 11). The bottom boundary
has been placed close to the bubble at a distance 𝐻 = 5 mm (𝛾 =
𝐻
𝑅𝑏

= 1.3) from the bubble center, and a slip wall boundary condition
has been assigned. In the previous section, 4.1.2, we showed that all
the initial potential energy is released and converted into shock wave
energy during the collapse, such that the total energy is conserved. It
can be argued that half of this energy should be distributed to the lower
surface of infinite dimensions. Fig. 12 shows the total accumulated
surface energy over time, normalized by the initial potential energy,
obtained from the non-focusing cavitation intensity model, and the
energy focusing approach. The surface energy is estimated at twelve
time instants during the collapse. Similar to Fig. 8, the total energy
is conserved when the volume integrated rate of vapor reduction is
predicted from the partial derivative or the mass transfer source term,

Fig. 11. Representation of the bubble interface for an iso-surface of 𝛼𝑣 = 0.5 in Grid
5, at a distance 𝐻 = 5 mm (𝛾 = 𝐻

𝑅𝑏
= 1.3) from an infinite flat surface.

as half of the initial potential energy is transmitted to the surface. When
the volume change is predicted from the velocity divergence term, part
of the energy is lost, due to numerical error in the reconstruction of
the velocity divergence, however the final energy, distributed on the
flat surface, is still half of that in the case of the bubble collapse in an
infinite liquid.

The accumulated specific energy on the surface can be estimated
for the two different approaches, which should give an indication
of the cavitation erosion intensity of the impact. Fig. 13 depicts the
distribution of the accumulated surface specific energy, after the bubble
has collapsed. In both cases, there is a distinct axisymmetric footprint
with a clear peak value in the center. However, the magnitude of
the maximum specific energy in the middle, is higher in the focusing
approach. This can be explained by the fact that in this approach
the potential energy is continuously focused into the collapse center,
therefore right before the collapse, all the energy is concentrated at a
single point, and is released all at once, giving a footprint with high
intensity towards the middle. While with the non-focusing approach,
the energy is continuously being released in the domain, such that
the energy remained in the cavity right before the collapse is less
than in the focusing approach. This results in an accumulated surface
energy, which smears out throughout the collapse, and the energy is
continuously distributed over a larger area.

Fig. 10. Total radiated energy, normalized by the initial potential energy, with the non-focusing and the energy focusing approach for a systematic variation of the inlet flow
velocity. For the non-focusing model, the volume integrated rate of vapor reduction is predicted using the partial derivative (red), the velocity divergence (green), and the mass
transfer source term (blue), while for the energy focusing model the volume integrated rate of vapor reduction is predicted only using the mass transfer source term. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Total accumulated surface energy over time, normalized by the initial
potential energy, with and without focusing. For the non-focusing model, the volume
integrated rate of vapor reduction is predicted using the partial derivative (red-circle),
the velocity divergence (green-square), and the mass transfer source term (blue-
triangle). The latter is also used to predict the accumulated surface energy with the
energy focusing model (black-diamond). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Distribution of the accumulated surface specific energy for the non-focusing
model (left) and the focusing model (right).

Table 2
Propeller characteristics.

Propeller diameter 0.3048 m
P/D 1
Blade area ratio 0.65
Number of blades 4

Table 3
Flow characteristics.

Condition 𝑝𝑟𝑒𝑓 (kPa) n (RPM) 𝑉𝑖𝑛 (m/s) J 𝜎 𝑅𝑒0.7%𝑅
Atmospheric 116.72 1500 3 0.393 3.88 2.45 × 106

5. Propeller test case

5.1. Case description

The cavitation erosion intensity is estimated on the King’s College-
D (KCD)-193 model propeller. This propeller has been tested at the
Emerson Cavitation Tunnel of Newcastle University. Experimental paint
test has been conducted on the propeller blades [38]. A 2D wake
screen was used, located 0.4572 m (1.5𝐷) from the propeller center,
to create a non-uniform inflow to the propeller, and test the propeller
performance under more realistic conditions. The propeller geometry,
and the velocity and turbulence intensity measurements at the 2D
wake screen plane, were provided by the University of Strathclyde,
Glasgow [7].

Table 2 shows the propeller characteristics. The propeller was tested
in atmospheric condition (see Table 3). Fig. 14 shows the propeller
geometry within the computational domain. The dimensions of the
tunnel cross section and the position of the propeller are identical with

Fig. 14. Computational domain with the tunnel cross section being 1.22 m × 0.81 m,
and the propeller center being 1.5𝐷 from the velocity inlet and 15𝐷 from the pressure
outlet. The size of the rotating region (light blue) is also shown. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 15. Velocity distribution in the inlet (left) and in a plane just in front of the
propeller hubcap (right).

the experimental set-up by Mantzaris et al. [38]. The location of the
inlet boundary is located 1.5 diameters from the propeller center, where
the non-uniform inflow velocity is specified only in the 𝑥-direction.
The size of the rotating domain (light blue) is chosen such, that the
interfaces are not located in areas, where high pressure gradients occur.
The propeller rigid motion is simulated using a sliding mesh approach.
In Fig. 15 the velocity distribution in the inlet is shown, and in a plane
just in front of the propeller hubcap. The flow is slightly accelerated
by the propeller motion, before entering the rotating domain, however,
the character of the non-uniform overall flow is maintained. A pressure
boundary condition, with a constant ambient pressure, is applied 15
diameters downstream, while the top, bottom and the side boundaries
are set to slip wall condition, as they are assumed to not interfere with
the propeller motion. The Reynolds number at 70% of the radius 𝑅 is of
the order of 106 (see Table 3), which is higher than the critical Reynolds
numbers for transition from laminar to turbulent flow (typically 105 <
𝑅𝑒 < 106). Besides, the non-uniform inflow reduces even more the risk
of regions with laminar flow, and the flow over the whole blade can be
considered, more or less, fully turbulent.

For the grid generation, trimmed hexahedral cells are used with
local refinements and prism layers along the wall to resolve the viscous
sub-layer. First a coarse grid, with a refinement at the propeller leading
and trailing edge, is generated to roughly estimate the amount of vapor
on the propeller blades. Then, an additional refinement is applied on
one of the blades to assess the cavitation intensity on the surface, in
order to follow the guidelines for the spatial resolution, as proposed
in Section 4. First, the size of the cavitating structures needs to be
estimated, so that the required grid resolution and time step size can
be determined. In Fig. 16, a 2D section of the developed cavity is
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Fig. 16. Volume fraction of vapor 𝛼𝑣 at an arbitrary cross section, showing the
maximum width of the developed cavity on the propeller blade over one revolution.
The location of the cross section is located approximately where the maximum amount
of paint was removed from the blade during the paint test.

Fig. 17. Computational mesh around the propeller and the vapor cavity on the refined
blade at its top position. The vapor volume is represented by an iso-surface of 𝛼𝑣 = 0.01.

shown, approximately at the location on the blade, where the maximum
amount of paint was removed during the paint test. The width of
the cavity in the 𝑥-direction is estimated to be around 1.2 cm. The
corresponding Rayleigh collapse time is found to be 𝜏 ≃ 4.27 × 10−4 s.

In Section 4 we showed that approximately 18 cells per diameter,
and about 40 time steps, are required to get a grid and time step size
independent solution for the single bubble collapse test case. For a
cavity with diameter 𝐷 = 1.2 cm, this translates to a minimum cell
size of 𝑐 ≃ 0.667 mm, and a time step size of 𝛥𝑡 = 1.28 × 10−5 or a
rotation rate of 0.115 deg per time step. Eventually, the minimum cell
size of the current domain is selected, 𝑐 ≃ 0.45 mm, which corresponds
to approximately 27 cells over the cavity width, and a time step size
of 𝛥𝑡 = 1.11 × 10−5, or a rotation rate of 0.1 deg per time step. Then,
the refinement is applied at locations where the maximum value of
𝛼𝑣 over one rotation is not zero, and only on one blade to reduce the
computational cost. This results in a refinement region that covers the
whole cavity in the vicinity of the blade surface, at any time instant,
during a full rotation. Fig. 17 shows the mesh refinement and the cavity
size when the refined blade is located at the top position (0◦).

Three finer grids have been generated to assess the temporal and
spatial discretization error. In order to keep the different grids as
geometrically similar as possible, special attention has been paid to the

Table 4
Description of the four different generated grids and propeller thrust an torque results
for each grid. Comparison with experimental measurements.

Grid # cells total # cells on # prism layers Average 𝑦+ on
refined blade refined blade

Grid 1 3.64 M 43.3 k 10 0.24
Grid 2 6.86 M 78.7 k 15 0.15
Grid 3 10.1 M 112.6 k 20 0.11
Grid 4 17.55 M 165.2 k 25 0.09

Fig. 18. Wall 𝑦+ values on the refined blade for Grid 1 (left) and Grid 3 (right). The
blade is depicted at its top position.

Fig. 19. Qualitative comparison between the experimental observation [38] and the
cavitation development on the blade, where the mesh refinement is applied, visualized
as an isosurface of 𝛼𝑣 = 0.01.

generation of the prism layers close to the blade surface (for details
see Crepier [39], Melissaris et al. [15]). Eca et al. [40] have shown
that for the SST k-𝜔 turbulence model at high Reynolds number, wall
𝑦+ equal to 1 is not sufficient to obtain low numerical uncertainties, and
𝑦+ values as low as 0.1 (or at least below 0.5) are required to obtain
numerical uncertainties similar to other turbulence models. Thus, aver-
age wall 𝑦+ values at the refined blade are kept lower than 0.25 for all
grids. Table 4 shows, for each grid, the number of computational cells
in the whole domain, as well as on the refined blade, and the number
of prism layers, and the average wall 𝑦+ values on the refined blade.
Finally, Fig. 18 shows the wall 𝑦+ distribution on the refined blade, for
the coarsest (Grid 1) and the second finest grid (Grid 3). Clearly, the 𝑦+
values drop as we go to finer grids and more prism layers, even below
0.1 for the finest grid (Grid 4, see Table 4).

Finally, the condensation and evaporation coefficients, 𝐶𝑐,𝑆𝐹 and
𝐶𝑣,𝑆𝐹 , are selected based on the results from the single bubble collapse
test case (Section 4). Coefficient values equal or larger than one gave
solutions, which were independent of these coefficient values. How-
ever, in the propeller test case, we observed that values higher than
one introduce some numerical instabilities to the solver, and thus the
default value of one was chosen for both coefficients for all cases.

5.2. Results

5.2.1. Propeller performance and numerical uncertainty
The propeller performance is predicted and compared with experi-

mental measurements as reported in Usta et al. [7]. Propeller thrust and
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Table 5
Propeller performance for the coarsest grid (Grid 1) and four different time-step sizes,
and comparison with experimental measurements.

Time step Thrust Deviation from Torque Deviation from
(deg/𝛥𝑡) (N) experiment (N) experiment

1 2038.9 1.26% 90.38 1.75%
0.5 2039.3 1.28% 90.37 1.75%
0.2 2041.2 1.37% 90.45 1.84%
0.1 2043.1 1.47% 90.54 1.94%

Fig. 20. Convergence of the propeller thrust with the time step size. Impression of the
numerical uncertainty estimate, and comparison with the experimental measurement.

Fig. 21. Convergence of the propeller torque with the time step size. Impression of the
numerical uncertainty estimate, and comparison with the experimental measurement.

torque are computed for the refined blade, and then multiplied by the
number of blades. The numerical uncertainty is assessed following the
procedure by Eca and Hoekstra [41], using the Validation & Verifica-
tion tool, developed by MARIN.1 In Fig. 19 the cavitation development
on the propeller blades is compared with the experimental observation.
Because of the non-uniform inflow, the vapor volume varies at different
blade positions, and unfortunately, due to the limited documentation of
the vapor volume development during the cavitation test, it is hard to
compare between the experiment and the simulated cavity. However,
qualitatively, the cavitation extent seems comparable.

First the temporal discretization error is estimated. Table 5 shows
the propeller thrust and torque for the coarsest grid (Grid 1), and
different time step sizes, and how they compare with the experiment.
The convergence of the propeller thrust and torque with respect to
the rotation rate, is depicted in Figs. 20 and 21 respectively. The
corresponding numerical uncertainty is indicated by an interval that
contains the exact solution with 95% coverage. Propeller thrust and
torque are not very sensitive to the time step size. The deviation
between the computed thrust and torque, and the experimental values
is less than 2% even for the highest time step size, while the numerical
uncertainty is estimated less than 0.5% for all time step sizes.

The grid discretization error is also assessed for each grid. Table 6
compares the propeller performance for each grid, and Figs. 22 and 23

1 http://www.refresco.org/verification-validation/utilitiesvv-tools/.

Table 6
Propeller performance for the four generated grids, and comparison with experimental
measurements.

Grid density Thrust Deviation from Torque Deviation from
ℎ𝑖∕ℎ1 (N) experiment (N m) experiment

2.5 (Grid 1) 2043.1 1.47% 90.54 1.94%
1.67 (Grid 2) 2049.6 1.79% 90.95 2.40%
1.25 (Grid 3) 2033.8 1.01% 90.35 1.73%
1 (Grid 4) 2058.8 2.25% 91.20 2.68%

Fig. 22. Convergence of the propeller thrust with the refinement ratio ℎ𝑖∕ℎ1. Impres-
sion of the numerical uncertainty estimate, and comparison with the experimental
measurement.

Fig. 23. Convergence of the propeller torque with the refinement ratio ℎ𝑖∕ℎ1. Im-
pression of the numerical uncertainty estimate, and comparison with the experimental
measurement.

depict the convergence of propeller thrust and torque with respect to
the refinement ratio ℎ𝑖∕ℎ1, and the corresponding numerical estimates.
Here, ℎ𝑖 is the typical cell size of the 𝑖𝑡ℎ grid, and ℎ1 the typical cell size
of the finest grid. Propeller thrust is slightly more sensitive to the grid
density. The observed order of convergence is equal to the theoretical
one (𝑃 = 2), and the numerical uncertainty is below 3% for all grids,
while it drops below 1% only for the finest grid, probably because
the average wall 𝑦+ is below 0.1 only for Grid 4. On the other hand,
propeller torque is not that sensitive to the grid size. The observed
order of convergence is close to the theoretical one (𝑃 = 1.61), and
the numerical uncertainty is very low for each grid (about 1% for Grid
1 and 0.3% for Grid 4).

5.2.2. Erosion risk assessment
The cavitation intensity on the propeller blades is estimated by

determining the local surface impact power �̇�𝑆 (𝑡,𝒙𝑆 ), according to
Eq. (30). First, an investigation on the effect of the pressure field
effectively driving the collapses has been conducted. The accumulated
volume specific potential energy in the domain is estimated using the
mass transfer source term and different driving pressure fields. The
driving pressure fields are obtained by averaging in time the local cell
pressure 𝑝 over different time windows. Fig. 24, demonstrates the influ-
ence of the different driving pressure fields, as computed for different
sliding windows, on the total potential energy. The total accumulated

http://www.refresco.org/verification-validation/utilitiesvv-tools/
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Fig. 24. Total accumulated volume specific potential energy in the domain for different
driving pressure fields. The driving pressure fields are obtained from a moving average
of the instantaneous pressure field over different sliding windows (SW).

potential energy obtained from the instantaneous pressure field, is
compared with the one obtained from pressure fields averaged over a
time window of 1 deg, 10 deg, 30 deg, 90 deg, 360 deg, and eventually,
the pressure field obtained from a time averaging over the total sample
time. We observe, that when the chosen time window is smaller than
one full propeller rotation, the predicted energy is quite sensitive to
the window size. As the time window decreases, the predicted energy
is approaching what we obtain when the instantaneous pressure is
used as driving pressure. Thereby, high amplitude pressure peaks are
expected by the periodic cavity collapses and thus, we cannot account
for pressure recovery gradients, as typically present along lifting bodies.
As the time window is getting larger, so does the total accumulated
volume specific potential energy. Eventually, when a time window of
one whole revolution is used, the predicted energy is almost identical
to the one obtained with a time window of the total sample time. Thus,
a time averaged pressure field over one rotation, or one shedding cycle,
is considered sufficient for an estimate of the effective driving pressure
field.

Afterwards, the distributions of the accumulated surface specific
energy on the refined blade, obtained by the non-focusing and the
energy focusing model, after eight propeller revolutions, using the
three different considerations for the vapor volume reduction rate are
compared. Fig. 25 depicts the distributions of the non-focusing model.
It is obvious that there is a huge discrepancy between the distribution
obtained with the partial derivative and the one obtained with the
source term. This is explained by the fact that the partial derivative
of 𝛼 in Eq. (15)(a) includes an advective term. As the flow accelerates
in higher radii, the advective term contributes more and more to the
radiated energy, and as a consequence, it deviates from the radiated
energy obtained with the source term. The higher the velocities occur-
ring around the blade, the larger the error. Similarly, the distribution
obtained with the divergence, still shows a discrepancy from the one
obtained with the source term, although quite smaller. The reason
for that is that the numerical error involved in the reconstruction of
the radiated energy using Eq. (15)(b) is getting smaller as the flow
velocities get larger, and the inertia in the flow increases.

To further analyze the errors made in the reconstruction of the
radiated energy in a more quantitative manner, the total accumulated
surface energy per rotation 𝐸𝑆𝑖

is obtained by the surface integral of
the accumulated surface specific energy at the end of each rotation 𝑖

𝐸𝑆𝑖
= ∫𝐴

𝑒𝑆𝑖
𝑑𝐴 𝑓𝑜𝑟 𝑖 = 1, 2,… , 8 (31)

and it is depicted in Fig. 26. The total accumulated energy obtained
by the partial derivative of 𝛼 is almost an order of magnitude smaller
than the other two, while the accumulated energy obtained by the
divergence term is about 20% smaller than the one obtained by the
mass transfer source term..

Fig. 25. Surface specific accumulated energy on the refined propeller blade, obtained
from the non-focusing model after eight propeller revolutions, where the vapor volume
reduction rate has been estimated using the partial derivative (left), the divergence
(middle), and the source term (right).

Fig. 26. Surface integrated accumulated energy per rotation on the refined blade, in
𝐽 , obtained by the non-focusing model over 8 propeller revolutions, using the partial
derivative (blue), the divergence (green), and the source term (red). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Now, comparing the impact distribution between the non-focusing
model, where the potential energy is radiated instantaneously, Fig. 25,
and the energy focusing model, Fig. 27, the energy appears to be
accumulated in a much larger area, with the non-focusing model. Any
dynamics of the sheet cavity, result in energy transfer to the surface,
thus leaving a footprint, which extends almost over the whole blade
along the cavity trailing edge. On the other hand, the surface impacts
are much more scattered, and shifted towards the trailing edge, when
the energy focusing approach is applied. In addition to that, these
localized events are expected to be more aggressive, as big amounts
of energy are concentrated into very small areas of the blade surface.

Looking at the total accumulated energy per rotation as obtained by
the energy focusing model for the three different energy reconstruction
methods (see Fig. 28), one can notice that the error magnitudes are
different than the ones with the non-focusing model. The accumulated
energy obtained by the partial derivative is higher than before, while
the one obtained by the velocity divergence is smaller, which shows
that the errors involved in these two energy reconstruction methods
are highly dependent on the flow characteristics. As shown in the single
bubble collapse test case, when the inertia in the main flow increases,
the error involved in the reconstruction of the radiated energy using
the partial derivative of 𝛼 and the velocity divergence are getting larger
and smaller respectively. The total inertia in the flow depends on the
flow velocity and the collapse induced velocity. While the collapse
induced velocity is the highest at the final stage of a collapse, the flow
velocity is almost zero as the collapsing cavities are decelerated by the
adverse pressure gradient. Thus, the total inertia at locations where
we approach the final stage of a collapse is lower than locations with
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Fig. 27. Surface specific accumulated energy on the refined propeller blade, obtained
from the energy focusing model after eight propeller revolutions, where the vapor
volume reduction rate has been estimated using the partial derivative (left), the
divergence (middle), and the source term (right).

Fig. 28. Surface integrated accumulated energy per rotation on the refined blade, in 𝐽 ,
obtained by the energy focusing model over 8 propeller revolutions, using the partial
derivative (blue), the divergence (green), and the source term (red). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

higher flow velocity but low collapse induced velocity. Since with the
energy focusing model, the radiated energy is reconstructed only at
locations of the final stage of the collapse the errors involved in the
reconstruction of the radiated energy using the partial derivative will
be smaller and the ones using the velocity divergence will be larger.
All in all, we see a similar behavior as in the single bubble collapse
in Section 4, and the radiated energy reconstruction errors obtained
from the partial derivative of 𝛼 and the velocity divergence are strongly
dependent on the inertia of the flow.

Figs. 29 and 30 show the surface integrated accumulated energy
per rotation for eight propeller revolutions for the two grids, using the
non-focusing and the energy focusing model respectively. The radiated
energy on the blade is rather insensitive to the grid density, for both
models. Similar energy content is predicted on the blade surface during
each revolution for both grids. These results are well in line with the
findings in Section 4, and the resolution of the coarsest grid is already
sufficient to obtain a grid independent solution for the amount of accu-
mulated energy on the blade. However, the total surface accumulated
energy obtained from the energy focusing model is about an order of
magnitude less than the one obtained from the non-focusing model.
When no potential energy focusing is considered, the energy is radiated
instantaneously, when there is a reduction of vapor volume. On the
other hand, with the energy focusing model, energy is radiated only
from structures that actually reach a final collapse stage, resulting in
less accumulated energy on the surface.

Furthermore, some small variations are observed between the pro-
peller revolutions. These variations are partly related to cloud cavita-
tion and system instabilities. One can show from the localized Euler

Fig. 29. Surface integrated accumulated energy per rotation on the refined blade, in
𝐽 , obtained by the non-focusing model over 8 propeller revolutions, for Grid 1 (red)
and Grid 3 (black). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 30. Surface integrated accumulated energy per rotation on the refined blade, in
𝐽 , obtained by the energy focusing model over 8 propeller revolutions, for Grid 1 (red)
and Grid 3 (black). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

equations at the cavity closure that the stagnation point is highly un-
stable, even for a globally steady cavity flow [2]. The instability affects
the re-entrant jet and the whole closure region, leading to irregular
break-up patterns. It appears that the re-entrant jet and cloud cavi-
tation instability preferably occurs in short cavities with pronounced
adverse pressure gradients, whereas system instability mostly effects
long cavities with weak adverse pressure gradients. Long cavities can
be very sensitive to variations in the incoming flow, which is the case
for a propeller operating in a non-uniform inflow. These 3-D aspects of
cloud shedding are referred to as being intrinsic instabilities or often
referred to as self-excited instabilities [2], and it has been shown that
they are essentially inertia controlled, and developed naturally, sepa-
rated from instabilities due to turbulence [42]. In a RANS modeling,
most of those instabilities are restrained due to the increase of eddy
viscosity at the mixture interface. However, employing the correction
to suppress the eddy viscosity at the interface, we allow for partial
cavity shedding and therefore we introduce intrinsic instabilities. The
other part of these variations at each propeller revolution is related to
modeling and iterative convergence errors. Therefore, more than one
propeller rotations are necessary in order to obtain a reliable estimate
for the average accumulated surface energy. Still, these discrepancies
are rather small, and already after the first revolution we get a good
idea of the amount of the accumulated energy on the blade.

Comparing the accumulated energy distribution on the blade ob-
tained by the non-focusing model for Grid 1 and Grid 3 after 8 propeller
rotations (Fig. 31), they look quite similar. On the other hand, when
we compare the distributions obtained by the energy focusing model,
some differences are rather noticeable. While for the coarse grid (Grid
1) most of the energy is radiated towards the blade trailing edge, for the
fine grid (Grid 3) some part of the initial potential energy is distributed
closer to the leading edge. This is because small scale properties are
typically dependent on the chosen resolution in unsteady solution of
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Fig. 31. Surface specific accumulated energy on the refined propeller blade, obtained
by the non-focusing (top) and the energy focusing model (bottom) for Grid 1 (left) and
Grid 4 (right) after 8 propeller rotations.

cavitating flows [42], and thus with the finer grid we resolve more
vapor structures in the domain than in the coarse grid. To generate
the coarse grid, we estimated the width of the sheet cavity close to
the trailing edge, at the area where the maximum paint removal was
observed during the paint test. Therefore, the grid resolution in areas
closer to the leading edge, where the width of the sheet cavity is
thinner, is perhaps not sufficient to resolve any possible collapse, but
only bigger structures that are shed towards the trailing edge. However,
the finer grid probably provides this resolution to resolve some of the
smaller structures closer to the leading edge. On top of that, due to the
smaller cell size in the finer grid, the energy at the final stage of the
collapse is focused on a much smaller area, and therefore the radiated
energy is more localized to smaller surface areas. That explains why
for the coarse grid the high energy density areas are broader than for
the fine grid. However, the total energy on the blade for both grids is
similar, since large scale properties such as shedding frequencies and
characteristic void fraction distributions, regarding the basic shape of
the sheet and cloud cavities, seem to be less dependent on the grid
density.

Furthermore, we compare the distributions of the accumulated sur-
face specific energy on the refined blade, obtained by the energy
focusing model for the coarse and the fine grid (Grid 1 and Grid 3
respectively), with the one obtained from the paint test (see Fig. 32).
Although the impacted areas are not as extensive as in the test, this is
reasonable since the erosion pattern on the blade was obtained after
half an hour of testing, and thousands of propeller revolutions, while
we assessed the impact distribution after only 0.32 s and 8 revolutions.
Due to the intrinsic instabilities of the partial cavity dynamics and the
modeling/numerical instabilities we introduce, the location of the final
collapse of shed cavities of smaller scale, will vary between different
propeller revolutions and, thus much more time is needed to get a
fully converged impact distribution on the blade, especially for the
finest grid, where more small scale structures are resolved. However,
in both grids, high energy density is obtained in blade areas, where
paint was removed during the test, and the main impact areas are

Fig. 32. Comparison between the experimental paint test (left) and the surface specific
accumulated energy on the refined blade, obtained by the energy focusing model, after
8 propeller revolution, with the coarse (middle) and the finer grid (right).

captured. Finally, it is important to mention that areas with high energy
density are not necessarily areas with the highest erosion risk. As we
have indicated in previous studies on hydrofoils [15,17], the impact
power is of much higher importance. Surface areas with similar high
energy content can be observed either by repetitive low amplitude
events, or by extreme events of lower frequency. While in both cases the
energy content might be comparable, in an extreme event large amount
of energy is released, and distributed to the surface, during a small
period of time, which might render such an event more aggressive.
Such analysis of the rapidness of the cavity collapses could be done
using aggressiveness indicators (see Schenke and van Terwisga [17],
Melissaris et al. [15], Schenke et al. [35]), however that is beyond the
scope of this paper.

6. Conclusion

A novel methodology, developed within the European project
‘‘CaFE’’, by Schenke et al. [30], has been used in this study to predict
cavitation implosion loads on a surface. This model takes into consider-
ation the time accurate energy balance during a cavity collapse. While
the cavity starts to condense, the initial potential energy is continuously
feeding into kinetic energy, around the cavity interface. At the final
stage of collapse, all the potential energy has been converted into
kinetic energy, and has been focused into the collapse center. That is
the point, when all the energy is released in the domain as shock wave
energy.

The model has been verified on a single cavitating bubble collapsing
in an infinite fluid and close to a wall, where an investigation on the
numerical errors involved in the reconstruction of the radiated energy
has been conducted. The vapor volume reduction rate is predicted using
three different considerations. One involves the partial derivative of the
vapor fraction 𝛼𝑣, the second involves the velocity divergence, and the
last one involves the mass transfer model source term. The model is
further applied to the KCD 193 model propeller test case, that was
tested in the Newcastle cavitation tunnel behind a 2D wake screen.
From these studies, we draw the following conclusions:

• When the vapor volume reduction rate is estimated using the
cavitation model mass transfer source term, then the numerical
error, involved in the reconstruction of the radiated energy, is
minimal. All the energy is then conserved and the total energy
balance is fully satisfied. The error (modeling or numerical) in
the other two considerations depends strongly on the inertia of
the flow. They could provide a good estimate of the surface
accumulated energy in specific cases, however one should be
aware of their sensitivity to the flow conditions.

• The temporal and spatial discretization errors have been assessed
for the propeller performance. Propeller thrust and torque are
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rather insensitive to the time step size and low uncertainty es-
timates are obtained (below 0.5%). Propeller thrust is more sensi-
tive to the grid density than torque. However, the uncertainty of
the propeller thrust is below 3% for all grids, and it drops below
1% for the finest grid. The uncertainty of the propeller torque is
rather low for all grids (about 1% or lower).

• The moving time average of the instantaneous pressure field over
a time window equal to one shedding cycle (or one revolution)
or higher, is considered sufficient for an estimate of the effective
driving pressure field. It has been shown that when the sliding
window is equal to one shedding cycle or higher, the difference
on the total accumulated potential energy in the domain is neg-
ligible. Nevertheless, as long as the driving pressure distribution
is not exactly known, some uncertainties regarding the potential
energy content remain.

• The total accumulated surface energy on the refined blade was
found to be insensitive to the grid density for the non-focusing
and the energy focusing model. Comparable amount of energy
was obtained for the coarse and the fine grid (Grid 1 and Grid
3) during each propeller revolution. However, the total surface
accumulated energy obtained from the energy focusing model is
about an order of magnitude less than the one obtained from
the non-focusing model. In the latter, each volume variation re-
sults in radiated energy, leading to over-prediction of the surface
accumulated energy.

• When the potential energy focusing is considered some discrepan-
cies are observed on the impact distribution between the coarse
and the fine grid, which are related to the grid resolution. The
finer mesh resolves smaller scale structures, and provides suf-
ficient resolution for thinner parts of the sheet cavity, while
the energy at the final stage of the collapse is focused to a
much smaller area. Therefore, the events are more localized, and
the energy scattering is increased, so does the time to get a
fully converged impact distribution on the blade. Yet, the impact
distribution obtained by the energy focusing model agrees well
with the high erosion risk areas, as indicated from the paint test,
for both grids, and high energy density is observed in the areas
of maximum paint removal. The basic cavity dynamics (shape
of sheet and cloud cavities) are well captured even with the
coarser grid, while, in the finer grid some part of the energy
is distributed closer to the leading edge, however it does not
necessarily indicate that the erosion risk in those areas is high,
as the rapidness/aggressiveness of the collapsing events has not
been taken into account.

• Finally, the capabilities of our fully energy conservative model
to predict the implosion loads of large scale cavitating struc-
tures on propeller blades illustrates its potential for engineering
applications. Nonetheless, a good estimate of the size of the
collapsing cavitating structures to be resolved is a prerequisite
for this model, in order to apply the required grid and temporal
resolution, as proposed in this study.
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