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Abstract-Purpose: Parkinson’s Disease (PD) is
the second most common neurodegenerative dis-
ease with a still increasing incidence. The im-
plementation of new medical technology also in-
creases yearly, to achieve better and a more
efficient healthcare. One implementation of
such a corresponding medical technology is
Medtronic’s sensing technology, which allows
for reading of Local Field Potentials (LFPs).
Furthermore, new assessment options are also
investigated, with Markerless Motion Tracking
(MMT) programs as interesting option for as-
sessment of the Unified Parkinson’s Disease Rate
Scale (UDPRS). This study aims to investigate
correlations between these LFP signals and pa-
rameters extracted from MMT programs dur-
ing gait.
Methods: Pose estimation in this study was per-
formed using MMT programs, while simulta-
neously recording LFP data in PD patients im-
planted with a Deep Brain Stimulation (DBS)
device. LFP activity was filtered to only include
beta activity, while this is primarily correlated
with motor impairment. Normalisation meth-
ods were then applied on pose estimation data
for allowance of distance calculation and extrac-
tion of the arm-swing parameters: velocity, ac-
celeration and jerk.
Results: Results indicate a negative trend be-
tween LFP data and among almost all exam-
ined parameters. This applies for both trends
observed: beta power analysis, as well as the
UPDRS analysis. Left hemisphere shows signifi-
cant correlation for the velocity (ρ =−0.356, p=
0.046), acceleration (ρ = −0.456, p = 0.01) and
jerk (ρ = −0.465, p = 0.01). While right hemi-
sphere does not show this significance. Whereas,
amplitude calculations even show contrary out-
comes.
Conclusion: This study shows multiple con-
nections between LFP data and gait parame-
ters. Furthermore, it confirms the importance
of arm-swing as indication for gait abnormali-
ties. Finally, these findings suggest the need for
more research on other parameters originated
from different UPDRS tasks.

1 Introduction
Currently, PD is the second most common neurode-
generative disease in the world. There is still an
increasing growth in the amount of patients diag-
nosed with PD. [1]Clinically PD is characterized
by the primary motor symptoms including: aki-
nesia, bradykinesia, rigidity, postural stability and
tremor, and secondary by: gait disturbances, speech
problems, micrographia and precision grip impair-
ment. [2,3] Additionally, PD patients can also expe-
rience non motoric symptoms, which comprise off:
behavioural changes, sleep disturbances, sensory
abnormalities, depression, autonomic dysfunction
and fatigue, which are harder to quantify. [4, 5]
Assessment of PD symptoms is frequently done
with the UPDRS, which consists of the subsets:
Mentation, Behaviour, Motor and Mood and Ac-
tivities of Daily Living. [6] Consequently, this UP-
DRS has been revised by the Movement Disor-
der Society and thus PD symptoms are primar-
ily assessed using the Movement Disorder Society
- Unified Parkinson’s Disease Rate Scale (MDS-
UPDRS). [7] Furthermore, an increase in symp-
toms means an increase in UPDRS score.
To get an objective UPDRS score and more UPDRS
scores, collection of video material combined with
automatic UPDRS assessment has become more in-
teresting. Consequently, video analysis and move-
ments of patients are tracked through MMT pro-
grams. Currently, motion tracking through sen-
sors, for example accelerometers are still the golden
standard. However, when comparing MMT tech-
niques with marker based methods, not much dif-
ference in study parameters are found. [8] More-
over, when analysing gait, a sub part of the UP-
DRS, good results are found. This study again
compared sensor based techniques with MMT tech-
niques. Results show, high similarity for all; flex-
ion/extension angles, hip adduction/abduction an-
gles and ankle inversion/eversion. [9] This indicates
that video material, could provide valuable biome-
chanical information.
When tracking is captured well and symptoms are
also well assessed, symptom management becomes
an important part in disease progression of PD. Ini-
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tially, medical therapy is given when patients are di-
agnosed with PD. However, the dose and frequency
of this medical therapy increases throughout the
years, because of disease progression. Eventu-
ally, when patients still experience symptoms even
though medication is given, advanced therapies as
Deep Brain Stimulation (DBS) are indicated. There
are two different DBS treatment options: unilat-
eral or bilateral stimulation. Unilateral has one
lead located in the brain, whereas bilateral has two
leads located in the brain. Correspondingly, these
leads and thus stimulation is either located in the
globus pallidus interna (GPI) or subthalamic nu-
cleus (STN). [10] Where, in PD patients the most
common lead placement is the STN. While there
is more motoric improvement in PD patients im-
planted with STN leads. [11]
In recent years technological advancements have
been made regarding these neurostimulators, the
DBS devices. Currently, there are new neurostim-
ulators, which are able to sense brain data. [12]
These neurostimulators are able to sense LFP sig-
nals directly from the brain. LFPs are generated
through multiple mesoscopic and microscopic fac-
tors, induced by cells including neurons. Further-
more, these field potentials (FPs) may reflect the
dynamics of single cells, or are caused by assembly
firing of cells. [13] Nonetheless, these LFP signals
reflect a form of brain activity. Correspondingly,
multiple studies show a correlation between LFP
signals and motor symptoms. Specifically, changes
in the beta range frequency (13-30 Hz) and mo-
tor symptom severity. [14–16] Therefore, this is the
selected region of interest for studies investigating
motor impairments in PD patients.
Currently, there are no studies, examining rela-
tionships between parameters extracted from MMT
programs and LFP data. Therefore, this research
aims to investigate how parameters extracted from
real time video data correlates with LFP data in PD
patients executing gait movement. This eventually
could lead to improvement better control of symp-
toms. When gait parameters decrease during move-
ment for example, a change in DBS settings would
be initiated.

2 Methods

2.1 Settings
This is a single center study, where all patients re-
cruited are under general care of neurologists and
specialised nurses located at the Amsterdam Uni-
versity Medical Center (UMC) location AMC. The
Medische Etische Toetsing Commisie (METC) has
granted approval to perform this study. All patients
provided written informed consent for participa-
tion. Eventually, 7 patients with PD and DBS were
included during this research. These 7 patients de-
livered a total of 32 files available for analysis. The
following inclusion criteria were assessed and im-
plemented by a neurologist: 1.Parkinson’s disease
diagnosis based on the clinical diagnostic criteria of
Movement Disorder Society (MDS), 2. In posses-
sion of a DBS device, 3. Age of 18 years or older,
4. Understand the Dutch language. Contrary to in-
clusion criteria, exclusion criteria were also made;
1. Legally incompetent adults, 2. No written in-
formed consent, 3. Previous functional stereotactic
neurosurgery, 4. Dementia, 5. Current depression
or psychosis.

2.2 Setup
Patients included in this study are implanted
with the Medtronic Percept PC dual-channel im-
plantable neurostimulator. This neurostimulator is
equipped with two SenSight™ directional leads of
varying sizes. [17] During hospital visits and at
home patients were to asked record the UPDRS.
In hospital recordings were done with an Apple
Iphone 10 or higher. Furthermore, the phone was
placed in a tripod for a steady recording. The cam-
era position was positioned in parallel with the gait
of the patient. At home recordings were mainly
captured with an Apple Iphone 8, but in very few
cases with an Apple Iphone 6. Similar, a tripod
was given to the patients for steady recordings at
home as well. Both phones allow for recordings of
approximately 30 frames per second. Recordings
captured at home were performed using the Kelvin-
Reach-PD app at home. While recordings during
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hospital visits performed by researchers were cap-
tured with KELVIN-PDT M app. Both are mobile
applications which allow for capture of UPDRS
tasks. Although, both are similar apps the Kelvin-
Reach-PD is more user friendly, because patients
need to this app. Nonetheless, the computer-vision
system is identical with both apps.

2.3 Protocol
All patients included were tracked during the en-
tire procedure of finding the correct DBS settings,
which is approximately 6 months for each patient.
Following the DBS operation, patients are invited
to the hospital for exploration of initial DBS set-
tings. During this visit patient receive the equip-
ment for filming at home recordings. Throughout
this time period, from initial DBS settings (visit
2) and final visit (visit 5), patients were asked to
make a weekly video recording of themselves. This
video recording consists of a subset from part III of
the UPDRS. Accordingly, this subset consisted of;
”3.1 & 3.2 Speech and Facial Movement”, ”3.4 Fin-
ger tapping”, ”3.5 Hand Movements”, ”3.9 Arising
from chair”, ”3.10 Gait”, ”3.15 Postural Tremor of
Hands”. After these videos were recorded patients
were also asked to register when they completed
these tasks. The system would then save a short
window of LFP signals. Also, during this period of
finding proper DBS settings the patient has in hos-
pital visits as regular care. After the initial in hos-
pital visit, patients are invited again to the hospital
after generally 6-8 week for regular care. Follow-
ing, these regular care hospital visits patients were
evaluated for in study purposes. This occurred two
times and those visits were called visit 2.5 and visit
3.5. During those visits, patients were checked on
rigidity at those moments and were asked whether
there medication changed to the last visit. Ad-
ditionally, patients were asked if they felt ”OFF”
or ”ON”. Where the OFF state primary includes
bradykinesia, rest tremor and rigidity. [18] Logi-
cally, the ON state characterises itself by the ab-
sence of these symptoms. Finally, an additional
UPDRS was conducted on video tape in the hos-
pital as well. However, this recording does include

all part III items of the UPDRS, instead of a sub-
set. While patients perform the UPDRS, LFP sig-
nals are simultaneously captured with Medtronic’s
sensing technology. During, one specific task, the
”Speech” task a ”ticking” method was performed,
where patients underwent ticking on the neurostim-
ulator. This ticking had to create an artifact to syn-
chronise LFP data with video material. When this
artifact was present, synchronisation was possible.
All data collected during the in hospital visits and
at home are saved in JavaScript Object Notation
(JSON) files. These JSON files can be downloaded
from tablets containing the DBS app by Medtronic,
which connects with the neurostimulator. At first
these JSONs contain primarily LFP data. Then
these LFP files are uploaded to the Kelvin Cloud,
provided by Machine Medicine Technologies. Con-
sequently, Machine Medicine processes these files.
Adding in the pose estimation data and the UPDRS
score provided by the clinician, as well as the auto-
matic UPDRS labeling.

2.4 Data analysis

2.4.1 Motion Markerless Tracking

This system makes use of the deep learning library
OpenPose [19]. This open-source library provides
state of the art pose estimation performance. Open-
Pose used Motion Markerless Tracking (MMT) to
extract 25 body and 21 hand key-point coordinates
on each frame.
During analysis a peak detection method was used
to analyse maxima (peaks) and minima (trough),
see Figure 1. These peaks and troughs are used for
detection of critical points during movement. For
example, when a foot strikes the floor or when it
is lifted off at a maximum. It may seem contrary,
but normally a peak means not in contact with the
floor. However, due to it being the proportional dis-
tance between a neck marker and a marker on the
left foot. The highest proportional distance between
these points means the foot is on the floor, thus giv-
ing a peak in the data. Therefore, a trough means
the highest point the foot comes off the floor.
Furthermore, to capture which task was performed

3



Figure 1: Peak and trough analysis: Peaks are visible due to the a combination of the three given parameters: Threshold
(relative vertical distance between peaks), Distance (horizontal distance between peaks) and Height (absolute vertical distance
between peaks). Troughs are visible due to inversion of the signal and applying the same method. The y-axis shows the
distance [cm] between the elbow and wrist, with the x-axis showing time [s].

an automatic labeling occurred. This automatic
labeling provided Regions Of Interest (ROIs) in
which a patient performed the specific task. Sep-
arations within a video were made between the per-
formed task with the left leg and the right leg. How-
ever, some tasks did not need this separation and
then the automatic labeling in general was used.

2.4.2 Time Series

During performance of all the UPDRS tasks a time
serie signal was created, that is able to capture that
specific task. Correspondingly, the time serie sig-
nals are also automatically cut to match the selected
ROIs of that task. Based on these time serie signals,
different features were extracted. Multiple signals
are defined using the following description as given
by Machine Medicine [20]:

• xb(i),yb(i),Pb(i) are the x coordinate, y coordi-

nate and 2D positional vector
(

xb(i)
yb(i)

)
of the

ith body key point.

2.4.3 Distance calculation

The output of the MMT program are the body
key points xb(i) and yb(i) . Although, it outputs
a xb(i) and yb(i) processing needs to be done,
because these xb(i) and yb(i) are pixel coordinates.
Therefore, a normalisation method has been
applied. This normalisation is necessary, because
parameters extracted from the MMT will change
based on position of patients. To illustrate, a pixel
location can be the same in two different frames,
while the position is different between the frames.
Then calculations with actual distances would
be inaccurate. A normalisation of pixel distance
would eliminate this problem. According to this
normalisation method the pixel length per frame
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Figure 2: Pose Extraction Model: An example of a patient
walking towards the camera. Not all points are included in
this example, while not each individual hand point is of inter-
est during the gait task.

is calculated based on spine and total length. Due
to the spine not being completely straight, first
Pythagoras theorem needs to be applied to know
the pixel distance of the spine:

Pixel Distance =
√

(xb(i)− xb( j))
2 − (yb(i)− yb( j))

2

Where i indicates the pixel coordinate of the
neck and j the pixel coordinate point of the middle
of the hip.

Due to spine length on average being a proportion
of body length, indicated by body proportion,
calculation of pixel length is possible. [21] Total
length is almost always stored in the electronic
patient record, while this is commonly measured in
general care as part of the vital statistic. Knowl-
edge of both these metrics allows for integration of
the following formula in eventually pixel length:

Spine Length = Total Length/Body Proportion

Pixel Length = Spine Length/Pixel Distance

This formula outputs the pixel length per frame,
which allows for calculation of distances and
speeds respectively. However, this normalisation
method only applies on each patient individually,
but can not be applied between patients.

Additionally, to extract peak and trough coor-
dinates a find peak function from the Scipy Python
library was used. This algorithm is able to identify
local maxima (peaks), however to find the local
minima (troughs) an inverse of the signal was
created and then the same algorithm was used .
This function requires at least two inputs (three
were given), for which the following formula is
given:

Height = median(nyi)+(std(nyi)/2)

Threshold = mean(nyi)−max(nyi)

Distance = length(nyi)/12

First, the nyi stands for the normalised yi, repre-
senting a real point instead of a pixel coordinate. In
these formulas height indicates the absolute mini-
mal height a peak has to be to be detected. Thresh-
old is defined as the the relative vertical distance
to the next peak. The minimal horizontal distance
is samples between peaks is described by distance.
Figure 1 provides a clear image of all the specific
inputs.

2.4.4 Local Field Potentials

Currently, neurostimulators are able to detect LFP
signals originated from the STN or the GPI.
Medtronic’s sensing technology allows for capture
of LFP signals. These captured signals were then
used for further analysis. Commonly, these signals
are presented on a frequency scale ranging from 0 -
125 Hz. Additionally, this total frequency range is
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divided into different frequency bands: delta 0 - 4,
theta 4 - 7, alpha 8 - 12, beta 13 - 35 and gamma 35
- 250 Hz. [22] PD patients frequently show peaks
in the beta range, where almost all patients show
at least one peak in this range. [23] Therefore, the
ROI will be in this beta range. Due to DBS sys-
tems stimulating at a certain frequency, which is
frequently at 125 Hz, signal modulation is neces-
sary.
Due to stimulation in high frequency range and the
focus on beta activity a low pass filter and a high
pass filter was used. For both filters a Butterworth
filter was used. First the low pass filter was applied,
where a 4rd order Butterworth filter was applied.
Due to the focus on beta range, the critical frequen-
cies Wn = [13 - 30 Hz] are determined based on this
range.
Initially, LFP data is captured during UPDRS tasks
and is automatically plotted against time. From this
LFP data the Power Spectral Density (PSD) (Ap-
pendix Figure 1A) will be calculated, using Welch
averaging. [24] The signal was cut in 4 segments
(Nperseg = len(y)/4), because some LFP signals are
not that long depended on task. The sample fre-
quency remains 250 Hz. Furthermore, a Hanning
window has been applied, to minimise effects of
frequency leakage. Finally, because it is a real sig-
nal, only positive frequencies are returned. How-
ever, the PSD will output onto the whole frequency
spectrum. To get an outcome measure for only beta
activity, the area under PSD within the frequency
range of 13 - 30 Hz was calculated. This outputs
the beta power per hemisphere, which is associated
with motoric impairment in PD patients. Addition-
ally, while beta power can differ considerably be-
tween patients also a normalisation for beta power
per patient has been applied. Where beta power
during activity was divided by beta power during
rest task of that specific patient.

2.4.5 Gait parameter

To score motor impairments the UPDRS is used,
this is also the golden standard for assessment of
gait. This UPDRS looks at general parameters like
bradykinesia to score gait impairment. However,

gait can be characterised by many more spatial
parameters and temporal parameter, for example
stride length and arm-swing. Accordingly, a recent
study shows a significant correlation between
arm-swing and UPDRS scores. [25] In addition
to correlation between arm-swing and UPDRS,
this study will try to correlate arm-swing data
with LFP data as well. Through analysis of video
data combined with MMT extraction, estimates
of arm-swing were created. This was done with
the calculation of the Pixel Length. The following
formula was used to calculate lengths between
different body markers:

Limb Length = Pixel Length∗Pixel Distance

This formula was used to calculate the length
between the elbow and the wrist, which are the
most prominent parts involved in the arm swing.

Furthermore, to calculate speeds of important
body markers the difference between either
xb(i)or yb(i) coordinates per frame were calculated.
Additionally, a moving average filter was used, due
to high variability of body key points from frame to
frame. A simple moving average filter was made,
and then used with a window size of 3 frames. This
relatively small window size was chosen, because
the task size of gait is highly variable between
patients. Thus, some patients have arrays that
are not long enough to average over a larger size
without creating more bias. This moving average
filter allows for better observation of trends within
the data. From this task analysis three parameters
will be available for further examination. These
compose of velocity, acceleration and jerk. Fur-
thermore, for all these variables a mean will be
calculated.
As with beta power, preferably one estimated mea-
sure will be present for arm-swing for allowance of
correlation calculations. This estimated measure
will be a smoothness factor. In addition to jerk as
being a smoothness factor for movement. Fourier
transforms will be performed on the velocity of
the arm swings. With this Fourier transform the
power of the movement will be calculated. Where
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Figure 3: LFP and arm-swing data during UPDRS Task: Top: Raw left STN LFP data of a PD patient during Gait towards
camera with on the y-axis LFP amplitude [muV]. Bottom: difference in distance [cm] between elbow and wrist marker, where
distance between the elbow and wrist is on the y-axis and on the x-axis time [s].

movements with high smoothness will have high
powers in the lower frequencies. While, sudden
changes in movement will have more power in the
higher frequencies.

2.5 Statistical Analysis

All statistical analysis are performed using Py-
charm (Python version 3.13). Spearman’s test was
used for correlation of data, including correlation
coefficient ρ and p values. P values > 0.05 were
considered significant. Cross correlation was also
performed to check whether movement artifact was
based on neural delay, values were presented as cor-
relation coefficient and max lag. Adjustments were
made to correlate LFP data with gait data. There-
fore, interpolation of data was applied, because
Spearman and cross correlation does not allow for
correlations between different size arrays. Correla-
tions between multiple parameters have been done.
First, LFP data was correlated with movement to
check whether movement artifact was present. Sec-
ond, all parameters extracted from the gait were
correlated with beta power as well as normalised
beta power. In order to see whether gait impair-

ments are present in LFP data. Moreover, ampli-
tude correlations with beta power were made, in or-
der to check differences between amplitudes con-
nected with beta power. A smoothness factor of the
Fourier transform of velocity was correlated with
beta power. To see whether smoother movements
are present when beta power changes. Finally, UP-
DRS scores were correlated with the gait parame-
ters, beta power and normalised beta power. As ad-
ditional check, whether gait parameters have high
influence on UPDRS scores.

3 Results

3.1 Sub Second Synchronisation
During most calculations only beta power is anal-
ysed, in association with parameters originating
from gait. However, in some patients it is also
possible to examine whether movement artifact is
present in the LFP data. To analyse this a ”sub sec-
ond synchronisation” is necessary. This sub second
synchronisation was made possible due to creating
an artifact. This artifact had to be present in LFP
data to synchronise it with available video data.
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Figure 4: Beta Activity during UPDRS gait task: A) Top: Velocity of the left and right arm-swing (combined marker points
elbow and wrist) defined by the difference in positions between different frames, where the y-axis indicates the velocity [m/s].
Bottom: Beta activity of the right and left STN of a PD patient UPDRS Score 0, during gait towards camera with on the y-axis
the beta activity amplitude [muV] and on the x-axis time [s]. B) Top: Acceleration [m/s2] of the left and right arm-swing.
Bottom: Beta activity of the left and right STN of a PD patient with UPDRS Score 1. C) Top: Jerk [m/s3] of the left and right
arm-swing. Bottom: Beta activity of the left and right STN of a PD patient with UPDRS Score 2.

Processing needed to be done to detect these arti-
facts and to detect whether this artifact was present
enough for sub second synchronisation. Only then
correlation of LFP data with movement data was
possible.
Figure 3 shows the velocity of the arm swing and
the corresponding LFP data of a patient walking to-
wards the camera with an UPDRS score of 0. In the
second part of the figure the same task is performed,
only the different hemisphere and arm are made vis-
ible. To see whether movement artifact was present
in the LFP, correlations between the movement and
the LFP data was made. Average results for both
hemispheres indicate no movement artifacts were
present in the data(ρl = −0.0235, pl = 0.509) &

(ρr = 0.0303, pr = 0.429). However, individual
correlations do show significant values in one of
the hemispheres. Only one visit shows significance
in both hemisphere during one visit, thus meaning
movement artifact. Furthermore, cross correlation
for these visits have been performed. With no visit
showing movement artifact caused by physiological
neural conduction of the brain nerves to the mus-
cles. Data with movement artifact from this one
visit is excluded for further analysis. An overview
of individual correlations and cross correlations can
be found in Appendix Table 1A and Appendix Ta-
ble 2A respectively.
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Figure 5: Amplitude Boxplots of different UPDRS Scores: Left: Boxplots of all the different UPDRS scores, with on the
y-axis the difference in amplitude [cm] of the left arm-swing. The x-axis shows the different scores. With score 0 indicated
with red, score 1 indicated with blue and score 2 with yellow. Right: Identical description only observed for right movement.

3.2 Gait Parameters

3.2.1 Distance Derivatives

The arm-swing was examined with multiple param-
eters, starting with the velocity parameter. While
this data contains gait, data of both hemispheres
and both body parts will be analysed. Figure 4A
shows an example of velocity during the gait task,
while walking towards the camera. This patient
had an UPDRS score of 0. Additionally, at the
bottom of figure 4A a visualisation of the beta ac-
tivity over the associated task is shown. Analysis
of beta power with velocity in both hemispheres,
show for the right hemisphere a low correlation
with beta power (ρ = −0.133, p = 0.475). How-
ever, the other hemisphere does show significant
correlation (ρ =−0.403, p = 0.024).
The derivative of velocity was then taken to see
whether acceleration also shows correlation with
beta power. Figure 4B illustrates acceleration of
the arm-swing of a patient performing the gait task,
while the beta activity is shown simultaneously.
This patient had an UPDRS score of 1. Similar, as
with velocity, acceleration of arm-swing decreases

Table 1: Table with Spearman’s correlation coefficients be-
tween Beta Power and Gait Parameters.

Beta Power
Left Movement Right Movement
ρ p value ρ p value

Velocity -0.133 0.475 -0.403 0.024
Acceleration -0.122 0.514 -0.510 0.003
Jerk -0.248 0.178 -0.518 0.003

as beta power increases. Again, the left hemi-
sphere however shows a highly negative correlation
(ρ =−0.510, p = 0.003).
Finally, figure 4C shows the jerk of a patient per-
forming the gait task, with beta activity at the bot-
tom. Furthermore, this patient had an UPDRS
score of 2. The same trend is observed for jerk
where the left hemisphere shows the highest neg-
ative correlation. So, the most significant result
is seen in the left hemisphere regarding the jerk
(ρ = −0.518, p = 0.003). An overview of all val-
ues is provided in Table 1.
After normalising the beta power the values regard-
ing the right hemisphere does not become signifi-
cant. However, right hemisphere p values show a
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Figure 6: All present UPDRS scores: Velocity of the left and right arm-swing of all the combined marker points (elbow and
wrist) defined by the difference in position between different frames. Where the y-axis indicates the velocity [m/s] and the
x-axis time [s]

Table 2: Table with Spearman’s correlation coefficients be-
tween Normalised Beta Power and Gait Parameters.

Normalised Beta Power
Left Movement Right Movement
ρ p value ρ p value

Velocity -0.219 0.237 -0.394 0.028
Acceleration -0.177 0.342 -0.457 0.010
Jerk -0.315 0.085 -0.450 0.011

relatively high decrease. Despite an increase in all
p values for the left hemisphere, influence from the
normalisation is minimal. As seen in Table 2, only a
small increase in correlation is observed. Nonethe-
less, left hemisphere p values are still highly signif-
icant.

3.2.2 Amplitude calculation

With use of the find peaks function (See Figure
1), amplitudes where found and calculated. Fig-
ure 5 shows boxplots for both hemispheres with
the differences in arm swing amplitudes between
the various UPDRS scores. Out of all the calcu-
lated peaks and troughs a mean amplitude for both
left and right were calculated. This was both based

Table 3: Table with Spearman’s correlation coefficients be-
tween Amplitude Differences, Beta Power and Normalised
Beta Power.

Amplitude Difference
Left Movement Right Movement
ρ p value ρ p value

Beta Power -0.137 0.486 0.251 0.197
Normalised Beta Power -0.173 0.379 0.414 0.028

on the normalised distance between the elbow and
the wrist (representing the arm-swing). Both hemi-
spheres do not show a very strong correlation, in
addition to being opposite. Respectively, the right
hemisphere shows the more reasonable relation-
ship, compared to the left one. Normalised beta
power shows for the right hemisphere still a neg-
ative, but stronger correlation. Whereas, the left
hemisphere shows a significant positive correlation
(ρ = 0.414, p = 0.028). Table 3 shows an overview
of all statistics.

3.2.3 Smoothness factor

When Fourier transforming the velocity into fre-
quency content, the power will be divided over all
frequencies. If a lot of power is present in the
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Table 4: Table with Spearman’s correlation coefficients be-
tween Smoothness Factor, Beta Power and Normalised Beta
Power.

Smoothness
Left Movement Right Movement
ρ p value ρ p value

Beta Power -0.278 0.153 -0.274 0.158
Normalised Beta Power -0.460 0.013 -0.145 0.461

higher frequencies, sudden movements are present.
Due to this velocity being a real signal only pos-
itive frequencies are considered in this analysis,
because the signal is conjugate symmetric. Both
hemispheres do give negative correlation as well,
however again no significant results. Right hemi-
sphere show very similar results compared with left
hemisphere. After normalisation the same negative
trend is observed. With right hemisphere p val-
ues becoming significant (ρ =−0.460, p = 0.013),
while left hemisphere p values decrease even fur-
ther, as shown in Table 4.

3.3 UPDRS

UPDRS scores are the golden standard when as-
sessing symptom severity. Therefore, compari-
son are made between the gait parameters and this
golden standard the UPDRS. Figure 6 shows the ve-
locity of the arm-swing of three different patients
while performing the gait task of the UDPRS. As
with beta power, correlations between both hemi-
spheres and all three derivatives are made. Not
all values are significant with the UPDRS. Yet, all
show the same trend and are almost significant.
Right hemisphere gives the lowest correlation com-
pared to the left (ρvel =−0.445, pvel = 0.029) with
only one significant result for velocity. However,
beta power as well as normalised hemisphere show
the highest correlation for right hemisphere. Sim-
ilarly, the left hemisphere also shows a negative
trend, but one that is stronger(ρvel =−0.530, pvel =
0.008), (ρacc = −0.470, pacc = 0.021) & (ρ jerk =
−0.517, p jerk = 0.010). With all gait parameters
showing significant correlations. All remaining
statistics are presented in Table 3.

Table 5: Table with Spearman’s correlation coefficients be-
tween UPDRS, Gait Parameters Beta Power and Normalised
Beta Power.

UPDRS
Left movement Right movement
ρ p value ρ p value

Velocity -0.445 0.029 -0.530 0.008
Acceleration -0.289 0.171 -0.470 0.021
Jerk -0.289 0.171 -0.518 0.010
Beta Power 0.494 0.014 0.193 0.367
Normalised Beta Power 0.361 0.083 0.205 0.337

4 Discussion
In this study, relationships between STN LFP data
and real time video data of PD patients is inves-
tigated. A relationship between the two was ob-
served, only one hemisphere showed a compelling
result. All gait parameters from the right hemi-
sphere do not show significance, except for the
normalised beta power in smoothness which also
shows significance. However, a negative correla-
tion is seen in all parameters. By contrast, re-
sults from the left hemisphere do present as impact-
full. This could be caused by the low amount of
data present in this study, which sequentially causes
higher p-values. Thus, this does mean that a strong
relationship is present between the left hemisphere
and the gait parameters. Frequently, PD patients
have a irregular gait pattern. [26] One possible ex-
planation for the results in the left hemisphere is
hand domination. Most people are right handed
[27], so it is reasonable to assume posture dis bal-
ance will sway to the dominant side. Therefore,
creating less swing at the right side of the body.
Changes in beta power do occur in the contralateral
side of the body, possibly explaining the observed
results. [28]
Amplitudes were calculated based on the find peaks
function. However, in some patients very high
peaks or very high troughs were found in the data.
These could be present due to failure of MMT pro-
grams tracking properly, creating unrealistic data-
points. Which then could cause biased results for
the gait parameters, and thus also biased correla-
tions. It is difficult to solve this problem, while fill-
ing in these values based on previous pattern seems
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a plausible option. However, this will also cre-
ate unrealistic results, because the pattern in some
cases is not smooth and this algorithm will try
to create smooth patterns. Therefore, results will
again become biased. Additionally, in some pa-
tients the MMT program was not able to track any
points, possibly because of the disappearance of
points behind other body parts. Meaning, missing
data and again creating biased data. Therefore, this
analysis could also give contrary results, with one
giving a positive correlation and the other hemi-
sphere giving a negative correlation. Furthermore,
normalising the data means removing outliers in the
data, which contributes to the amplitudes correla-
tions to be stronger. However, the above mentioned
bias still exists. Additionally, movement artifact
undetected can still cause the value to become sig-
nificant.
In addition to jerk an extra smoothing factor was
examined, this is based on how power is divided
in the frequency spectrum. This method has been
used by Chidean et al,. and shows to work prop-
erly. Although, patients were not diagnosed with
PD, gait was assessed using this method. [29] Sim-
ilarly, the amount of data for this analysis is on the
low side even lower than for other analysis. The ob-
served trend tends to also having relationship with
beta power. Where smoother movements indicate
a better arm-swing and therefore lower beta power.
However, after normalisation one becomes signifi-
cant, while the other decreases in p value. Possibly,
as a result of the aforementioned removing of out-
liers.
Comparisons between UPDRS and the gait pa-
rameters are made, while it serves as control on
whether these parameters also correlate with the
golden standard. Neurologists determine gait UP-
DRS score based on numerous factors, including:
postural instability, insufficient stride length and re-
duced or absent arm-swing. [25, 30] This was done
to determine whether this parameter could be one
of the key elements in assessment of gait abnor-
malities. Results indicate that arm-swing is one of
those high contributing elements. Although, not ev-
ery parameter has the same impact, all parameters
are almost or are significant. Despite the amount

of data present in this study. An additional check
between beta power and UPDRS was also made.
This is consistent with previous research. As higher
beta peaks are frequently observed in higher UP-
DRS scores. [31]
When capturing LFP data, there is a possibility data
is contaminated with artifact. Two different types
of artifact are occasionally present in LFP data:
ECG artifact and movement artifact. [14] Move-
ment artifact will be present as very high peak in
LFP data, while ECG artifact presents as a rhyth-
mic pattern with preliminary peaks that exceed the
normal LFP patterns. In addition to visual inspec-
tion of movement artifact, correlations between raw
LFP data and arm-swing data were done. Con-
trary results were found were one indicate a posi-
tive correlation, the other hemisphere shows a neg-
ative correlation. Furthermore, both values are rel-
atively small. Based on this general result, it seems
that there is no general correlation between the
arm-swing and raw LFP data. This implies that
no peak in LFP data originated from movements
during the gait. However, when looking at indi-
vidual relationships, it is seen that some patients
do have movement artifact present. In most cases,
this occurs in only one hemisphere. Therefore, no
exclusion of these patients have been performed.
Only one patient showed correlation for both hemi-
spheres and is therefore excluded for further analy-
sis. Likewise, the data is visually checked for ECG
artifacts, where no apparent ECG artifacts were
present. However, some ECG artifacts can still be
present that have gone unnoticed. Currently, there
are multiple studies that introduced methods to find
and filter these ECG artifacts. [14, 32, 33] Apply-
ing these method to this study would improve qual-
ity. Therefore, it is recommended that during future
studies this filtering should be applied.
Also, this study includes PD patients. Presence
of symptoms are commonly described as ”ON” or
”OFF”. [34, 35] Although patients were asked be-
fore every visit they categorised themselves as ei-
ther ON or OFF, during data analysis no distinction
was made between those patients. In addition to ap-
plying a ECG filter, future research should include
patient states as well. Preferably, increase sample
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size, while examining other parameters from other
UPDRS tasks. Finally, it could be interesting to as-
sess whether other frequency bands have similar re-
lationships with gait parameters.

5 Conclusion
In this study STN LFP data of PD patients im-
planted with a DBS device and gait parameters have
been assessed. Results suggest definitive connec-
tions between beta power and arm-swing param-
eters. Although, not all parameters show signifi-
cance a negative trend is observed for almost all
parameters. Additionally, it confirms the impor-
tance of arm-swing assessment, when evaluating
gait severity. This study also suggests that more
parameters from different tasks could potentially
correlate with LFP data. This could be explored
in future research. In the far future, some parame-
ters could potentially be used as input for adaptive
DBS. A change in parameters captured by video
data would then initiate a change DBS settings. So,
patients are less affected by negative symptoms re-
garding PD.
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Subthalamic beta band suppression reflects
effective neuromodulation in chronic record-
ings. European Journal of Neurology,
28(7):2372–2377, 7 2021.

[17] Medtronic, Percept™ PC Neurostimulator
with BrainSense™ Technology.

[18] Kelvin L. Chou, Mark Stacy, Tanya Simuni,
Janis Miyasaki, Wolfgang H. Oertel, Kapil

Sethi, Hubert H. Fernandez, and Fabrizio
Stocchi. The spectrum of “off” in Parkinson’s
disease: What have we learned over 40 years?,
6 2018.

[19] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-
En Wei, and Yaser Sheikh. OpenPose: Real-
time Multi-Person 2D Pose Estimation using
Part Affinity Fields. 12 2018.

[20] Gareth Morinan, Yuriy Dushin, Grzegorz
Sarapata, Samuel Rupprechter, Yuwei Peng,
Christine Girges, Maricel Salazar, Cather-
ine Milabo, Krista Sibley, Thomas Foltynie,
Ioana Cociasu, Lucia Ricciardi, Fahd Baig,
Francesca Morgante, Louise-Ann Leyland,
Rimona S Weil, and ee Gilron. Computer
vision quantification of whole-body Parkinso-
nian bradykinesia using a large multi-site pop-
ulation. Technical report.

[21] Christoph Heidt, ; Thomas Angst, Philippe
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Figure 1A: Power Spectral Density: Top: Raw PSD from a Visits LFP signal during the gait task. On the y-axis the power
[dB/Hz] is displayed, while the x-axis displays frequency [Hz]. Bottom: Welch averaged PSD of the same Visit (Nperseg =
len(y)/4, window = Hanning, Wn = [13-30]).
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Table 1A: Table with Spearman’s correlation coefficients between Arm Swing and raw LFP data, from multiple visits of
multiple patients.

Left Movement Right Movement
Correlation P- value Correlation P-value

Visit 1 -0.106 0.127 0.016 0.815
Visit 2 -0.043 0.602 -0.011 0.888
Visit 3 -0.058 0.436 0.087 0.240
Visit 4 0.155 0.023 0.049 0.472
Visit 5 0.013 0.873 -0.009 0.914
Visit 6 0.176 0.029 -0.173 0.031
Visit 7 0.126 0.065 -0.020 0.764
Visit 8 0.044 0.620 -0.102 0.255
Visit 9 -0.018 0.819 -0.047 0.562
Visit 10 0.036 0.583 -0.019 0.778
Visit 11 -0.072 0.362 -0.105 0.185
Visit 12 0.229 0.001 0.096 0.253
Visit 13 -0.136 0.080 -0.002 0.978
Visit 14 0.127 0.141 -0.280 0.001
Visit 15 0.002 0.980 0.113 0.152
Visit 16 0.024 0.696 0.032 0.607
Visit 17 0.014 0.851 -0.023 0.760
Total
n = 17

Avg corr =
0.030

Avg p-value =
0.127

Avg corr =
-0.023

Avg p-value =
0.509
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Table 2A: Table with cross correlation coefficients between Arm Swing and raw LFP data, from multiple visits of multiple
patients.

Left Movement Right Movement
Max Cross Correlation Max Lag [s] Max Cross Correlation Max Lag [s]

Visit 1 0.039 1.14 0.042 3.79
Visit 2 0.058 3.47 0.045 1.25
Visit 3 0.061 0.248 0.051 -0.11
Visit 4 0.070 3.05 0.049 2.21
Visit 5 0.064 3.91 0.065 3.05
Visit 6 0.072 0.384 0.053 1.66
Visit 7 0.060 -0.368 0.037 3.17
Visit 8 0.059 1.36 0.085 1.94
Visit 9 0.056 1.44 0.074 4.19
Visit 10 0.039 5.06 0.050 3.61
Visit 11 0.054 4.43 0.060 4.64
Visit 12 0.071 0.40 0.048 3.19
Visit 13 0.052 5.32 0.057 1.00
Visit 14 0.055 3.82 0.048 4.04
Visit 15 NaN -0.66 NaN -0.66
Visit 16 NaN -1.05 NaN -1.05
Visit 17 NaN -0.70 NaN -0.70
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