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Chapter 1

Introduction and Problem
Formulation

The most recent demands for the development of sustainahigoss in the chemi-
cal industry encourage multidisciplinary research whghriented towards improving
process performance with minimum energy consumption anefo/ironmental risks.
Operating processes with high efficiency and low operationats per unit volume
on different scales becomes increasingly important. Tlyeckallenge in developing
suitable solutions is to establish a multiscale technotbgy can intensify production
processes with low environmental risks. Successful impleation of the multiscale
technology will eventually lead to sustainable solutiamghie chemical industry. This
thesis contributes to the developments in this area bydntrimg different scales of
modeling chemical processes using a control-oriented fimugd@pproach to fluid flow
systems inside chemical reactors. This introductory drgpiovides a brief overview
of the issues related to modeling chemical processes cereliff scales, current mod-
eling problems related to hydrodynamics, and opportunftefuture developments in
the chemical industry.

1.1 Developments in Chemical Engineering

Under the influence of unprecedented market demands in thelgaem, pharmaceu-
tical, food, and cosmetic industries, the chemical induktis evolved considerably
over the last two decades. Following the demands and ach@ws made in these
fields, plant capacities have greatly increased, incotppgraew technologies to main-
tain the enlargement. Most of the new technologies haved@hn developments from
different fields such as: material science (safe constmaif large-size reactors and
pipes), mechanical engineering (construction of agitatbat enhance the mixing of
reactants), chemical engineering (decreasing procegsdimd increasing productiv-
ity), and control engineering (safe regulation of pressamd temperature inside the
reactors). However, operating chemical processes in amaland safe manner is al-
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2 1 Introduction and Problem Formulation

most impossible for some production processes on the laaje €.g., mixing inside
large-scale reactors, transportation of fluid in long piped, distribution of particles in
crystallizers, or pressure distribution in distillatioolemns). These production-related
problems cannot be effectively solved with the current t@adesign and are still not
scaled-up to the optimal volume. Due to the complex natutbethemical processes
and equipment designs, the ability to build plants “a bitgeiq is slowly reaching its
limitations [22]. This dictates a growing need to replaceent large, expensive, and
energy-intensive equipment with smaller, less costly, mode efficient equipment for
an optimal production process. In order to be able to reptlagecurrent large-scale
equipment and to scale-up a plant more efficiently, a bettdetstanding and more ac-
curate mathematical descriptions of the process dynameécseeded. It is, therefore,
exceedingly important to derive an accurate mathematiestription of a chemical
process that can predict the future behavior of the procedsan be used for control
design. This approach to chemical processes is known asl+haded control design.
The philosophy behind the model-based control approachaisthe process can be
manipulated by exploiting the ability of a model to predice tbehavior of a process
and influence the dynamics in a desirable manner.

This thesis contributes to the developments in the area deirmased control strat-
egy of chemical processes through the introduction of agspic scale with a wide
range of possible actuation strategies. The main conioibwf this project is in the
development of a microscopic model-based control apprtatho-phase flow inside
bubble column reactors with different spatially distribditcontrol strategies to influ-
ence the flow. Furthermore, this thesis proposes variousalabjectives and control
designs that can be used to operate fluid flow systems unékenadif flow regimes. The
modeling and control perspectives of fluid flow systems ardistl on two numerical
examples: single-phase and two-phase fluid flow. The maitribation of this thesis
is in the control-oriented microscopic approach to the ffiod inside a chemical re-
actor, which provides a new way of thinking about the purpagenodels in chemical
engineering, the relationship between the mass and floneptiep in the reactors, and
the level of details needed for control designs.

1.2 Mathematical Description of Chemical Processes

1.2.1 Material Properties

The mathematical description of a chemical process playsngortant role in the
engineering design and operation of the process in modezmicial design. Basic
prerequisites for a model-based representation of a pgacelside a thorough analysis
of the chemical and physical properties of pure compondrdassformation of the
components in a system of mixtures, ways that the procesbeanfluenced, and
available measurement techniques. A model of a chemicakpmois usually based
on mass and energy balance equations observed in each.gnitéactors, separation
vessels, filters). The units are integrated into a prodactetwork and operate through



1.2 Mathematical Description of Chemical Processes

a process simulator by manipulating the process variabfisce the manipulation
of the system is based on models embedded into the procesksgins, this means
that the production can be both influenced and significantigroved by improving
the models used to describe the process. For the model-saskdup and control
design in the chemical industry, it is essential to spedify tharacteristic length at
each scale. The process performance and productivity derefift scales improved
in such a way eventually leads to more efficient and susté&nafoductions where
a process is intensified over the spatial, temporal, theymaaical, and functional
domain [97]. Factors that have to be considered in order pyarre the performance
and productivity of a chemical process are transfer rat@sass, momentum, and heat
among the components involved in the process.

However, due to the different scales of modeling chemicatesses as illustrated
in Figure[1.1, the level of model complexity increases asdeereases the character-
istic length of observation (i.e., “zooming in”) of matdrgoperties. Before we intro-
duce the model complexity, it is important to study the chehand physical phenom-
ena that exist on different scales, including the modelirequents for a model-based
control design on each scale.

1.2.2 Modeling Scales

Three different scales are commonly used in chemical psoeegineering: the plant,
reactor, and microscopic scale. Figure 1.1 roughly ilaist those scales. Currently
used models in the chemical industry are derived on the aeactplant scale. The
models derived on the reactor or plant scale do not take otoumnt the spatial varia-
tion of material properties which can be observed only omtieroscopic scale. The
reason for this lies in the complex nature of microscopicngmeena that exist on
the microscopic scale, which requires advanced analystsveMer, the microscopic
model-based approach to chemical processes gives a bpdisttibuted mathemati-
cal description of chemical properties and provides a wéthgje of different actuation
strategies. This will be further discussed in Chapter 2 ebee will briefly outline the
scales and major design issues.

1. Plant scale

Chemical plants use a wide range of equipment where matéioal throughout
the process, starting as feeds and ending up as productsmdtiels used to
describe the flow of material are based either on mass badgjuagions to model
flow between the units or on empirical correlations betweatenial properties
that are usually obtained from experiments [94].

2. Reactor scale

On this scale, the process is assumed to be well-mixed ooutithny varia-
tion of the flow properties with respect to space. There amethasic reactor
types according to operating modes: batch reactor, camtisgtirred-tank re-
actor (CSTR), and plug flow reactor (PFR). The process behawide these
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Time

Microscopic Reactor Plant Scale

Figure 1.1: Different levels of modeling chemical processe

reactors is fully determined by the operating mode and ptgseof the reac-
tants. The reactants include pure fluid or solid componentsmixture of both.
In all three types of reactors, the reactants move insideghetors creating dif-
ferent flow patterns. The flow patterns cannot be observetlisstale because
the material property is assumed to be spatially uniformrr&dion of models
for flow variation obtained on this scale is done by introdgailifferent corre-
lation factors between flow variables and material pararadte each reactor

separately@ﬂq.

3. Microscopic scale

A detailed picture of a chemical process can be obtained enrticroscopic
scale. The process inside the reactor is viewed during these®f the kinetics,
mass transfer, hydrodynamics, and heat transfer that detween components
on this scale. However, the downside to modeling on thisesisathat the mi-
croscopic scale requires not only an increased level ofiizunderstanding
and engineering enhancement, it also requires furthemadwaent in the mod-
eling approach to physical and chemical phenomena whiclongnbe found
in the microscopic world. One of the most important progsrtivhich can be
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observed on this scale is the velocity of components, iedocity field. In prin-
ciple, a velocity field describes different flow patterns @rhoccur in different
operating modes. Due to the fact that we can observe the motiall compo-
nents, i.e., phases inside a reactor, these systems arenalso as systems in
motion or multiphase flow systems. The knowledge and tectesigsed to solve
models of fluid flow on the microscopic scale are known as cdatjmunal fluid
dynamics (CFD)[4]. Using the CFD models allows for a rathemeate deter-
mination of the velocity field of the entire reactor volume &ach component
separately or for the whole mixture of components. Dewvistiand fluctuations
of fluid flow properties in CFD models are observed dynamyoalth respect to
space. This, in itself, gives a rather accurate descrigfghysical phenomena
on the microscopic scale because this unique aspect of #resobpic models
increases possibilities to improve productivity and edficdy per unit volume.
On the other hand, due to the complex nature of the physieiqmena on the
microscopic scale, the microscopic models are computaltiorather involved,
which explains why the microscopic models have not yet baed in the chem-
ical industry. The microscopic models have been mostlytéichio a few aca-
demic examples (e.g., the heated plate and the flow of readtaa plug flow
reactor). In recent years, a great effort has been devotewtteling different
phenomena on the microscopic scale (e.g., convectivepoangiffusion, and
friction) and to the development of related numerical mdthtm solve model
equations. This is due to the high interest in understanalingmanipulating the
mixing of the fluid, which can be observed only on the micrgscacale. This
will be discussed in detail in Chapfer 2.

1.2.3 Model Complexity

In this section, we will emphasize the complexity of the neatiatical description of
chemical processes on different scales. A mathematicaftigésn of a chemical pro-
cess is usually based on conservation laws of mass, momeathdenergy. Depend-
ing on the scale and system boundaries, the models are fatedly a set of ordinary
differential equations (ODESs) for spatially uniform preses on the plant and reac-
tor scale, or a set of partial differential equations (PDfes)spatially non-uniform
processes on the microscopic scale. The non-uniformigiéed to the spatial distri-
bution of the material properties. This means that the PDHaisggovern variations of
the material properties with respect to time and space.dBeghe equations obtained
by first principles modeling, some chemical processes Wvabnstitutive and con-
straint equations which usually lead to a set of differdatigebraic equations (DAES)
for the time variation only, and a set of partial differehéibyebraic equations (PDAES)
for time and space variations. This will be further discasiseChaptefP.

In general, PDE/PDAE models are more accurate compared E/QAE models.
The PDE models allow engineers to improve on existing desad to understand
the influences of physical parameters on the product quatitthe microscopic scale.
Consequently, the PDE models can be used to manipulate #iegnaif fluid, concen-
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tration of chemical components, and other microscopic @tigs on the microscopic
level. However, the PDE models, in particular the CFD madedgquire a compre-
hensive knowledge of detailed geometric design, numemedhods, the mathematics
behind different types of PDEs and extensive modeling effidris all makes the CFD
models complex and computationally involved. Dependinghencomplexities of the
models, it is generally quite difficult to obtain fast simtidé@ models that can be used
for real-time control designs.

The development of CFD models is commonly done using comiaiiravailable
software packages, and it consists of the following steps:

1. Pre-processingln this step, the spatial domain, shapes, and discrete giid d
sions have to be defined. In order to approximate the contimbehavior, CFD
models are solved numerically where the spatial domainvigleldl into many
grid cells. The number of grid cells in the CFD models aredgfly in the range
of 107 to 10*° grid cells [72]. This means that the CFD software has to siame-
ously solve 18 to 10 equations for every time step. Advanced CFD packages
usually have a default mesh generator for solving fluid dqoat(see Section
[2.2.3). In this step, it is necessary to specify initial andhdary conditions. As
far as the system parameters are concerned, most of theaseftackages have a
database of physical parameters, such as density, vigasit heat conductivity
with temperature dependence for a wide range of reactahtshwimplifies the
modeling of fluid systems.

2. Solving.This is the most demanding part of the CFD algorithms sincwdlves
discretization of the governing equations, selection efdgblvers and numerical
algorithms, and iterative calculations needed to solverdized equations. The
computations can take from a few minutes up to a few days or eeeks. This
step became shorter with the development of high speed denspbut it is still
far from the real-time computation offered by most on-lipplications in the
chemical industry.

3. Post-processingln this step, the results of the simulations can be visudline
each grid pointin graphical interfaces in one-dimensi¢bB)), two-dimensional
(2D) and three-dimensional (3D) plots at all time steps. 3ineulation results
can also be exported to data files for further manipulati@ahrandel analysis.

All the above steps are very complex and computationallplirad. However, with
high speed computers, the number of CFD packages has iadreasr the last few
years. FLUENT, COMSOL (formerly FEMLAB), ANSYS, FEMtooleD - ADAPCO,
and CFX are just a few of the most commonly used software ggeskéor simulation
of fluid flow. These packages include static and dynamic giratanalysis with lin-
ear and nonlinear solvers embedded as an integral part sbtheare. The choice of
software usually depends on the required accuracy andablaiéxamples.

Most of the available software packages use different mmlubutines to shorten
the computation time. One of the first routines was develap&@RTRAN and C++.
Those programs still offer a wide range of well-worked ouamples. The existing
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routines can be used to modify the CFD models for any pasgtrcapplication or to
build new models.

FLUENT plays a central role in the fluid flow engineering desig all the above-
mentioned software packages. It has become an essentidétaimulation of fluid
flow with a large library of engineering problems, rangingrfrthe chemical industry
and oil refineries to the construction of vehicles and boigdi FLUENT’s strongest
point is its ability to solve problems involving complicdtphysical phenomena allow-
ing other programs, such as GAMBIT, to design different €issgmd complex geome-
tries. The CFD community has tailored different complexrgetries using different
numerical techniques, and uploaded them to the librarie§f&ENT’s users. The
main shortcoming of this package is that it does not suppostmof the chemical and
control engineering software.

Another CFD package that recently started to be extensivgdy in chemical en-
gineering is COMSOL Multiphysics. The COMSOL Multiphysigackage is a finite
element analysis and solver package for simulating vandysics and engineering
applications. COMSOL Multiphysics also offers an intedfagith MATLAB and its
toolboxes. This allows for a large variety of programmingg-processing and post-
processing possibilities which can be very beneficial fortaa design.

Despite the fact that there is a wide range of CFD packageseihs that we are still
far away from implementing developed theory on practicadpe The CFD models
are generally too slow and too large to be used in on-linerobdésigns and real-time
prediction of fluid motion. Consequently, the applicalitf CFD in control design is
currently rather limited even with fast computers. For coldesign, it is exceedingly
important to solve the model equations faster than thetieg-changes. In this way,
the controllers have time to take an action and influenceuhe&d system behavior.
In addition, fast models are beneficial not only for the colhdlesign, but also for on-
line tuning of the process parameters and process conslitidris opens new research
directions, putting the current flow design into a new cdrtiiented perspective.

1.3 Control-Oriented Modeling

1.3.1 Input/Output Structures

The strongest connection between control and chemicaheagng is shown in the
modeling of physical systems and developing tools to siteulze models. However,
one of the fundamental differences between control-cgintodeling and modeling in
other disciplines lies in modeling interactions betweespgrties. Whereas modeling
in other disciplines relies on the balance equations arslickoequations that form a set
of solutions, the model-based control framework relies typa of input/output mod-
eling that allows one to influence the system behavior (eegulations, optimization,
and disturbance attenuation). Generally speaking, art/myiput structure describes
variations of outputs (i.e., measured quantities) witipeesto inputs (i.e., manipulated
variables). As far as different modeling scales are corezkrtie input/output structure
depends on the selected modeling scale and operating mieoleexample, a process
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on the reactor scale is usually controlled through the =gpri of valve positioning at

the vassal boundaries for the fluid transportation, reguraif temperature, manipu-
lation of pressure, and concentration of the material fransed throughout the sys-
tem. In the early days, control engineers used simple clbetspsuch as proportional-
integral-derivative (PID) controllers, to influence chealiprocesses. The PID con-
troller minimizes the difference between a measured psvasable and a desired
set-point which stabilizes the overall process around ttosen set-point. The models
used in control design were obtained from the simple balagcations and empirical
correlations within a control loop. The control loop can kessified on the basis of
their properties as: flow, pressure, liquid level, produgliy, and temperature con-
trol loop. Following developments in the control field ovieetast few decades, more
powerful control techniques have been developed and ugéé ithemical industry. A

typical example is the use of advanced models in the petroidadindustry and the

application of model-based predictive control (MPC) desighich improves the pu-

rity of some products by 1-5% and yields a very important ahptofit per operational

unit [20].

The model-based control design involves defining the fdhowasks:

1. selection of manipulated variables (i.e., inputs),
2. selection of controlled variables (i.e., outputs),

3. selection of a control configuration (i.e., structuretad bverall controller that
interconnects the manipulated and controlled variabées]},

4. selection of controllers for the model which is deriveahfrthe first principles.

Any future developments of the modeling tools should be dimteproviding ad-
ditional knowledge about how to influence the process, hoentance process per-
formances with minimal effort and a maximal production raaad how to operate
processes on the microscopic scale with higher efficienaynfluence the process in
an optimal manner on the microscopic scale, a systematimapp to complex fluid
systems is needed. This means that a control-oriented mbddluid system has to be
developed in order to control macroscopic phenomena ard doavn current large-
scale reactors. This thesis contributes to the developafeontrol-oriented fluid flow
systems by studying the two-phase flow inside bubble colusantors, which appear
in a wide range of chemical processes.

1.3.2 Two-Phase Fluid Flow

Many examples involving two-phase fluid flow systems appe#né chemical indus-

try, such as the partial oxidation of ethylene to acetaldehy.e., the Wacker-Hoechst
process) or the carbonization of methanol to acetic acichebdccurrences of two-

phase flow appear in the injection of steam into oil wells foh@nced oil recovery, in

the condensation of higher hydrocarbons, in natural gasipgs due to low tempera-
tures of surrounding air or soil, in a boiling water nuclesactor, and in fermentors for
the production of enzymes and drugs. For a more extensiveieve we refer tol[35].
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Figure 1.2: Flow patterns in a vertical bubble column: (a)lhle, (b) bubble-slug
transition, (c) slug, and (d) annular.

All these processes take place in reactors that are ofterregfto as bubble column
reactors. As shown in Figuke1.2, a bubble column reactowvertical cylinder, where
a gas phase enters at the bottom of the column through a gebudiz. The column
is filled with liquid which expands under the influence of thesgnjection. Different
flow regimes can be created on the microscopic scale depgendithe magnitude of
the gas injection. Figufe1.2 shows different flow regimed kewels of coalescence
of bubbles present in the column on a microscopic scale. drbtibble flow, the gas
consists of discrete bubbles immersed in the liquid phaserntfoves against the gas
flow. Increasing the gas injection or pressure at the top efctiumn, these small
bubbles coalesce into slugs. The transition from bubble fieigure[1.2(d)) towards
annular flow (Figurgé T.2({l)) depends on the size of the bubliigection techniques,
and surface-tension effects. The large number of bubblaghacan coalesce into
slugs, increases the gas volume fraction and decreaseeenpe of the liquid phase.
Consequently, the gap between the gas and the wall narrousstiie downward flow
dominates the column. This causes a rather strong relatleeity between the gas and
the liquid phase. As shown in Figyre 1.2(c), the coalescffegecaused by different
flow regimes inside the bubble column can be observed onlh@microscopic scale.
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On the reactor scale, the coalescing of the bubbles intesdkignainly observed in
decreased production rates.

Although the bubble column reactor is characterized byadhk bf any mechanical
means of agitation, due to the large contact area betweephifiges, bubble flow is
particularly efficient from a mass and energy transfer pofntiew. The transfer rates
are mainly determined by the size of the contact area, tlalaiion rates of the liquid
and gas phase, and can be increased by enlarging the caetatteiween the phases.
A poor liquid circulation has an adverse effect on the trangite and residence time
of the gas phase, whereas a well-circulated liquid phaseases the reactor volume.
In reactor design, the main objective is to keep a large cbarga between the phases
while maintaining an ideal balance between those two exr@noulation phenomena.
In this thesis, we will introduce a new microscopic modelargl control approach to
the problem of two-phase fluid flow circulation inside bubbdéumns rectors.

1.3.3 Control Perspectives

As can be seen in Figufe_1.2, the bubble column can operater whiffierent flow
regimes which can be observed only on the microscopic scetese flow regimes
depend on the magnitude of the gas injection at the bottomdeies and the possible
actuation strategies (e.g., injection from the bottom lataumy, injection from the bot-
tom boundary and side walls). In this setting, the injec8tmategy can be considered
as an input strategy where the valves can be placed at diffeyeations. This will
be further discussed in Section.4. Furthermore, the tiparaf bubble columns can
also be improved by adjusting the position of gas injectag.( bottom boundary, side
walls, top boundary). The existing flow patterns inside Beldwlumn reactors can
be influenced, introducing additional gas injection andndfirag the actuation strate-
gies (see Sectiofis 2.4 dnd 612.3). Different actuationegfies can offer a wide range
of bubble column designs that can operate with a high effigieange, reduce reac-
tor volume with minimal energy consumptions, and lead toersrstainable reactor
designs. The spatially distributed actuation designs lertale adjustment of existing
flows (e.g., plug flow), reduction or enhancement of liquidteiation, improvement
of mixing performances, etc. Developing a control-oriemeicroscopic model that
can suggest smart injection strategies can provide answére current challenges in
the microscopic modeling of chemical processes. The cbatiented two-phase flow
model will be introduced in ChaptEf 4.

1.4 Literature Overview

1.4.1 Introduction

In this section, we will provide an overview of the literaguirom the fluid commu-
nity that deals with modeling issues of two-phase flow (ireujtiphase flow), and the
literature from the control community that works towardseleping control tools for
PDE models. An interdisciplinary perspective to this tyfpe@blem is very impor-
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tant to understand fluid systems, process dynamics andotetrspective for future
developments.

1.4.2 Microscopic Two-Phase Flow Models

The simplest microscopic models of two-phase flow (i.e.,beiflow) are developed
under the assumption that the variation of mass is the omlggaty that changes with
respect to space, i.e., ideal flow (see Sedfion P.2.2). Timeskels take into account
flow with a constant velocity profile and deviation only in tt@ncentration of the fluid
component[3, 18, 36, 43,195, 102]. The assumption on themmitlistribution of the
property in space is rather reasonable because most of dledqgal applications aim
for homogeneous regimes. However, the real flow always tis/feom the ideal flow,
which is caused by variation in the gas and liquid velocitgrahe space. By including
the variation of the velocity field, a more accurate desimipbf the fluid flow system
is possible based on microscopic conservation laws.

Many contributions to the modeling of hydrodynamics of tplwase flow systems
have been presented, some in general terms [32, 61] and nttaeng gpecifically for
bubble flow [16] 45]. The latter research ranges from fundaai{63] to more applied
and phenomenological [61,68]. Although the correct formtioh of the basic two-
phase flow models and the appropriate form of the closuretiemsehave been widely
discussed in the past [47,80], so far no commonly agreedappthas been achieved.
An exact description of the hydrodynamics in bubble coluisngery difficult to for-
mulate, not only because there are two phases present inlitdebcolumn, but also
because there is a strong interaction between the phasdesatses turbulence on the
microscopic level. A specific concern has been that most leaderently used in the
large computer codes are based on governing equations Wwnehcomplex solutions,
and therefore do not represent a mathematically well-posedel [80, 92]. We will
also address this issue in Chajpter 4. Nevertheless, theoension agreement that the
pure fluid transport has to be governed by a set of hyperbBliEsH73]. This is a very
important characteristic of the two-phase flow which wil@be discussed in Chapter
4.

Review articles on modeling two-phase flow and the modebsgés are given in
[4<,182,101]. Despite the fact that the modeling of two-gh#iew systems and the
interaction between the phases have been presented ireanlaingber of publications
[47,162,83], the concept of causality and stability withpest to the boundary condi-
tions have not yet been studied.

1.4.3 Model-Based Flow Control Designs

Most of the existing control literature that focuses on thebpem of spatially dis-

tributed systems described by a set of PDEs makes use oibpetiniques that can
either reduce the computational complexity or enforcerithisted structure for con-
trol design|[11} 31, 54, 88]. However, their applicabilitgpends largely on the type
of model under consideration (e.g., hyperbolic PDEs or lpali@a PDES) and model
representation (e.g., the Fourier transformation or thdce transformation) [25].
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Some publications on model-based control of the hydrodyecsracently appeared
in the control community treating single-phase flow as a asicopic example [14].
In general, the motion of a single fluid is described by the iBla8tokes equations,
where the boundary conditions are considered as manipulatébles, i.e., spatially
distributed input. The models include a simple geometrydiffdrent boundary con-
ditions. Due to the different boundary conditions, the colftterature developed dif-
ferent flow prototypes. The following geometries have begerisively studied: plane
channel (one bounded direction and two periodic direcjigpipe (two bounded di-
rections and one periodic direction), and cavity flow (noigmic directions). For the
channel and pipe flow, different control approaches hava peblished, starting with a
linearized control approach [27,/28/ 52| 53,|55, 56], towanbre complex algorithms
based on the optimal control theoty [15]. For the cavity flopen-loop and closed-
loop strategies are usually based on either reduced modexperiments [21,, 85—37],
since steady-state solutions can be obtained only nuntigrica

For all the mentioned geometries, the actuation and flowisgriis the proposed
algorithms require massive arrays of actuators and seestibedded in a control de-
sign. These massive arrays limit practical applicatiorthefroposed algorithms. The
number of actuators needed for a control design has beearexidor a channel flow
in [8] and for a pipe inl[9]. In both cases, the analysis is das® a global stabiliza-
tion approach using Lyapunov functions. The results shawttie spatial changes in
the velocities are smooth and small for a homogeneous flounesgvhich suggests
that in practice a small number of actuators can achieveaime goal regarding mix-
ing criteria given in|[1]. The analysis also indicates appiate values of proportional
feedback coefficients which enhance the stability of the dgeneous flow, whereas
destabilization of the homogeneous flow yields an exceli@ring of fluid elements
[1]. This is a rather promising result for practical apptioas.

Another well-studied microscopic model of fluid flow is an apehannel fluid flow
model, i.e., the Saint-Venant equations, which is a hyderB®E model that describes
the fluid flow between two gates in the channel. The contratetyy for the open-
channel model is mainly based on manipulating fluid props#i the boundaries, i.e.,
gates. This type of spatially distributed control desighkriswn as boundary control
design. Here, we will mention only the most relevant cordesigns1 Q control meth-
ods [10], robusH., control design techniques [65], and boundary PI reguldi®d]
based on a linearized model. One interesting contributganding the open-channel
fluid flow model is that the input/output structure has to béndel at the boundaries
while the flow between the boundaries can be considered aace sfelay function
[34]. This suggests that the same boundary control stratagybe applied to other
hyperbolic-like PDE models. Another interesting conttibo of the open-channel flow
is presented ir [12]. The boundary control design based dricalsyapunov function
in [12] gives a direct correlation between exponential ditglof a steady-state situ-
ation and dissipation of the energy throughout the bouedariThe strict Lyapunov
function suggests the control of energy dissipation thhmug the boundaries under
the assumption that the system of hyperbolic PDEs is didgaide with the Riemann
invariants|[12]. In this case, the time derivative of the ayaov function can be made
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strictly negative by an appropriate selection of the boupdantrol laws. This result
leads to a well-posed boundary control strategy for hypgert®iDEs and can be ap-
plied in a wide range of other models that describe transgdhaid. In Chaptef#, the
method of characteristics presented.in [34] will be illagtd using the two-phase flow
model.

To the best of our knowledge, there has not been any striigtdeveloped work
published that deals with the control strategy for two-ghBisw using microscopic
models that describe the hydrodynamics of two-phase flow.wiWemnake an initial
contribution in this thesis which contains the work that hasn published in [39, 40].

1.5 Problem Formulation

1.5.1 Overview

As we previously discussed, there is a growing need for thdatbased control de-
signs of chemical processes to move from modeling on theaescale towards mod-
eling on the microscopic scale. This is because the modatigtivern spatial variation
of the properties under consideration give a more detaigstription of the chem-
ical process. However, due to the complexity of microscopadels, it is obvious
that the control-oriented microscopic models have to preadrade-off between ac-
curacy and model complexity. The microscopic model doespnetend to have the
accuracy of complex solvers (e.g., FLUENT, ANSYS, and FEdD Instead, the
control-oriented model has to represent the main contpultimfluences on fluid flow
behavior and to provide a sensing strategy for real-timérobriThe current challenge
in the chemical industry is to develop a structural analgsisicroscopic models and
possible input/output strategies in order to operate cbalprocesses more efficiently
and control the processes in a real-time manner. Howevertalthe complex nature
of currently used microscopic models and CFD algorithmsfithid flow is very often
beyond the reach of control analysis. Most of the multiph@e® work uses trial-
and-error manipulation of the boundary conditions to infleesthe fluid flow inside the
given boundaries, or uses different model reduction tephes to obtain lower-order
models. For future developments, the focus of fluid flow cardesign should lie not
only on the manipulation of the boundary conditions, it ddalso focus on develop-
ing control-oriented models rather than on the availabl® @Gtodels. Developing an
efficient modeling and control tool for fluid flow systems désed by PDEs will lead
to a good decision-making strategy for influencing the fluisvfion the microscopic
scale, which will eventually lead to more efficient prodoativith minimal operational
costs per unit volume.

1.5.2 Research Objective

Our main objective is to offer the control community a unifsat of rules and con-
ditions for microscopic modeling of fluid systems in chenhieactors, which can be
used to design spatially distributed controllers. Everugifoin this thesis we have
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restricted ourselves essentially to simple single-phadeao-phase flow without the
reaction between fluid components, the modeling conceph#ocontrol design is es-
sentially the same.

The main research objective of this thesis is:

Develop a control-oriented microscopic two-phase flow
model with a causal input/output structure that is well-
suited for spatially distributed control designs.

As previously discussed, there are many open problems oangethe model-
based control approach to fluid systems (e.g., the complekiCFD models, compu-
tational load, and input/output strictures). Therefohe, topic of flow control can be
studied along three main research directidrBY.

Microscopic model

RD1 RD3
Numerical Control-oriented
approach modeling

Macroscopic Well-posed Functional
observation il actuation strategy relationship
Boundary Distributed control
control design [ design

Centralized Boundary

Figure 1.3: Scheme of the contributions of this thesis.
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RD1 Numerical approximation of microscopic models

In general, microscopic models are usually approximated tayge number of
differential equations using specific discretization noely where the number of
discretization points determines the order of a model. Theerical approxima-

tion requires information on a full flow field and is computeidlly expensive,

involving iterative direct numerical simulations (DNS)hd& DNS allow us to

quantify the best possible system performance for givembary conditions

and geometry [15, 53].

— This research direction investigates microscopic modeigols of fluid
properties that are commonly used in chemical reactor eeging using a
numerical approach to the microscopic model. This appr@alcased on a
fine spatial discretization of the microscopic model, whriesults in a large
number of flow variables (i.e., microstates).

— For the purposes of flow control, the flow variables may be iclemed to be
aggregated. It is interesting to investigate the level afestation required
for control designs (see Chapter 3). In this thesis, we wilspnt a next
step in this research direction which moves towards theraétation of
implementable boundary control strategy to stabilize thal filow. The
results obtained using this method have been publishedin [3

RD2 Model reduction of CFD models

The main motivation behind the model reduction technigse®ireduce the
computation time of the corresponding simulations. Inaystheory, model
reduction is associated with model-order reduction, wimeplies reduction of
the number of differential equations obtained from diszeet PDE models. The
model reduction method that has been widely studied irglitee is the Proper
Orthogonal Decomposition (POD), which is also known as thehkinen-Loéve
decomposition/[57, 66]. This method is based on simulatiata disually ob-
tained by CFD software packages, and is well suited for riéoluof large-scale
complex systems [5]. Although there are numerous otheofa¢hat can con-
tribute to decreasing the computation time of the CFD mottels are studied
in along the line ofRD1 illustrated in Figuré_1J3, this research direction falls
outside the scope of this thesis. For the model reductidmigoes, we refer to
[5,169,189, 95].

RD3 Defining functional relationships between inputs and otputs

The control-oriented microscopic model is intended to gtihe relationship be-
tween model properties and the choice of inputs and outputis@microscopic
scale. This is an important research direction for comrggnted microscopic
modeling. It involves not only the physics and first prineiphodels, but also
suggests possible control designs and functional relstiips between inputs
and outputs [11, 55]. Defining functional relationshipsazsn inputs and out-
puts for two-phase flow in the time-space domain is the maindof this thesis.
In the remainder of this section we will provide the solutgiaps which are the
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key concepts in the control-oriented microscopic modebh¢wo-phase flow
(see Figuré1l3).

— The main modeling goal is to derive a model that comprisesidan sys-
tem dynamics, whereas the less dominant dynamics are lefufther
redesign. The control-oriented microscopic model will baduced in
Chaptef 4.

— Important aspects of input/output structures involve alitys boundary
conditions, spatial discretization schemes, and numariethods. These
aspects are crucial in setting the theoretical frameworksfstems de-
scribed by the microscopic model. This will be discussedhia@ei’s.

— Following a wide range of possible input/output structudiferent spa-
tially distributed control designs can be suggested. Recenuations for
the practical use of different spatially distributed cohtiesigns are given
in Chaptef 6.

1.5.3 Thesis Outline

This thesis discusses current issues in the modeling of fllmid for the chemical in-
dustry and provides new solutions to current fluid flow praide The remainder of the
thesis is organized as follows:

Chaptef® provides basic microscopic conservation lawsgineern the behav-
ior of fluid flow treated in the chemical industry. Various asts of modeling
issues are discussed, which need to be understood in ordevétop a control-
oriented microscopic model of chemical processes that earsbed for spatially
distributed control design.

ChaptefB focuses on several important aspects of CHdptareceming model-
ing on the microscopic scale, which fall along researchatiive RD1. First, the
multiscale modeling aspect of single-phase flow is analyzsinple geometry,
i.e., the lid-driven cavity case. Second, a boundary cdletris designed using
macroscopic output regulation of the single-phase flow &staeixample of the
flow control.

In Chaptef#, we translate the findings of multiscale modefiom Chapter
into requirements for the control-oriented modeling ob{phase flow (i.e.,
RD3 in Figure[1.8). We propose a new modeling approach to tweeffiaw

as a starting point to develop a control-oriented two-piise model. The

well-posedness of the derived control-oriented two-plilagemodel is studied
using the method of characteristics and eigenvalue asalyiich leads to the
determination of a well-posed boundary actuation strategy

Chaptefb is focused on the causality of different inpugatistructures for the
derived control-oriented two-phase flow model. The efféénputs on the cho-
sen outputs is studied in the Laplace-space domain, whiadsdhe functional
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relationships between the chosen inputs and the outputsLdplace represen-
tation of the model leads to a condition for a causal inpupoustructure. This

chapter contains the main contribution of the thesis, ngiastrategy to develop
a causal input/output structure.

e Chapte[ 6 proposes different spatially distributed cdmtesigns which are easy
to implement. We place great emphasis on centralized anadaoy controllers,
whereas other possible spatially distributed control glesiare suggested for
future work. The centralized and boundary control desigestested on the
numerical example developed in Chajter 4.

e Finally, the conclusions and recommendations are set dCihaptef .






Chapter 2

Modeling on the Microscopic
Scale

In this chapter, we will discuss issues related to the meggpi& modeling of chemical

processes and fluid flow that are important to understanddardo develop a well-

posed microscopic model. The issues such as conservatienttze well-posedness of
the problem formulation, general solution, and initiabbdary value problem will be

presented. At the end of this chapter, we will summarize tbdeting issue and control
aspects that have to be considered while developing a daiemted microscopic

model.

2.1 Introduction

As we discussed in Chapier 1, in the microscopic modelindnefrical processes we
often encounter a large number of problems related to PDicthid chapter, we will
investigate the conservation laws that are commonly useéiwe microscopic mod-
els. This chapter is structured in such a way that readersamanfamiliar with the
complexity of microscopic models used in the chemical ilgughould be able to grad-
ually build a knowledge of PDE models and related issuesrAsfbrief overview of the
idea of balance equations given in Secfiof] 2.2, we will disdasues related to PDEs
in Sectio 2.8, which we will expand in Sectidns]2.4 2 8rasksing the control
perspectives of microscopic modeling. After this chaptee should get a clear idea
of what we mean by control-oriented microscopic models aalitposed input/output
structures for spatially distributed systems. Since thésis is concerned with the con-
trol of fluid flow systems, we are more interested in how to ttgve structural control
approach to models that describe fluid flow than the accurithyegproposed numer-
ical methods for solving microscopic models. To represeatinput/output structure,
we will use a single-phase flow model as a numerical examplghiapte B, and a
two-phase flow model in Chapter 4.

19
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2.2 Microscopic Models

2.2.1 Microscopic Conservation Laws

In chemical engineering, the flow of material through a systan be quantitatively
described by conservation laws. Depending on the quagititynder consideration
within the system, the conservation laws are classified as:

e mass ),

e momentum §v), and

e energy E),

with p being the density andbeing the fluid velocity. In most of the fluid examples,
we usually observe more than one quantity which forms a maditieal description
of system dynamics, i.e., a model. In such cadess simply a vector consisting of
the following elementsm, pv, andE of the fluid system. In general, conservation of
a system means that there is no net gain or loss of those theedities, only their
redistribution (e.g., conversion of energy).

The conservation laws (e.g., mass and energy) are commadBrstood through
the transformation of one property to another. The disgipadf mass and energy
from a system can simply be seen as an exchange of the sysimpirties with its
surroundings through the system boundaries. Accordinfealiscussion presented
in Sectior 1.2, the conservation laws can be derived derdiit scales as illustrated
in Figure[1.1, which result in the formulation of differenbdels (see Sectidn 1.2.3).
On a reactor scale, as illustrated in Figure 2]1(a), thergébalance equation can be

written as
do

& = Qjp — Doyt + S(P), (2.1)
where the subscriph stands for the inlet flow andut for the outlet flow across the
system boundaries. The source teB(®) is used to represent all sorts of terms that
describe different phenomena (e.g., reaction rate, shiersss dissipation of energy),
which will be discussed later in this section for each propseparately. In general,
models obtained by (2.1) assume the spatially uniformibigiion of ® and are known
as ODE models.

On the microscopic scale, the material properties are sbdeyn a much smaller
scale compared to the reactor scale (see Figure 2.1(b)) raféef change involves
all cross-sections along the space (exg.andxy). The overall rate of change can be
expressed as an integral on the quantity and flow field in thenveV = Ly x Ly x L;
as

E/<1>dv+/q>v-no|A=/de, 2.2)
ot Jv A \Y;

where ®v - ndA symbolizes the amount of flow of quantity through the areadA
per unit time which is integrated over the whole observedin@V. Equation[[Z.P)
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Figure 2.1: The flow ofP on (a) a reactor scale that results in ODE models (i.e.,
lumped parameter models) and (b) a microscopic scale tisaitgin PDE
models (i.e., distributed parameter models).

gives the most general form of microscopic model of a chelpiezcess written as the
following PDE

a£+va£+va£+va£_s(¢a£a£6202_¢02_¢az_¢> (2.3)
ot Yox Yoy ‘oz TOx’dy 9z’ ax2’ oy 02 )’ '
wherex, y, andz refer to the spatial direction and the right-hand side_oB)% the
source term which describes the spatial redistributio.obepending on the quantity
under consideration and the microscopic law, the souree tamn be a function o
only, or a function of the spatial gradients®f which depends on the quantity under
consideration. This will be discussed in the following smt$ for each quantityp
separately.

2.2.2 Models Based on Mass Balance Equations

In chemical engineering, the rate of change in mass is ysobfierved over a volume
element, and therefore insteadmfit is commonly expressed as changes of dersity
in [kg/m?®] or concentratior€ in [mol/m?], which is discussed in [17, 30,/64].
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The microscopic mass balance equation written as the clafragpacentration in a
3D system can be given as

6_C+V6_C+V6_C+V0_C_ 62—C+62—C+62—C +r(C) (2.4)
ot '~ Yox Yoy ‘oz S\ox ' ay2 | 02 '

whereDe is the effective diffusion coefficient ardC) is the reaction rate. The right-
hand side of((Z]4) represents the source term. The formulafithe microscopic mass
conservation law given a5 (2.4) assumes that the veloeitieg, andv, are constant

values. Usually, the velocity field= [ Vx Wy Vy ]T is an average estimate of the
real velocity field inside a reactor.
The fluid flow and transport mechanism of the flow[in {2.4) arecdéed through
convective transport v; o +V o + V. %€ and diffusionD 62_C + 62_C + OZ_C
POt Yax T Way T V752 f\ad "oy R )
For this reason[{214) is also known as tlo@vection-diffusion equation with reaction
The ratio between the convection and diffusion transpioriain the dominant flow

direction is commonly defined by the Peclet numbas

convection vyl

diffusion =~ D¢’
for x-direction as the dominant flow direction. The Peclet numiaeies between in-
finity (De = 0) for plug-flow, and zerov = vy = v, = 0) for well-mixed flow. In this
way, the back flow is modeled via the diffusion coefficient @bhis determined experi-
mentally. Due to the assumption that the velocity field isstant over the entire space,
the relationship between the diffusion coefficient and thieity field can be esti-
mated using different empirical correlations for differéiow regimes. Over the last
few decades a wide range of empirical correlations betwgemd D, for two-phase
flow have been published [102]. These empirical correlatedfow us to examine the
diffusion coefficient for different practical setups anceagitional regimes regardless of
the properties described by fluid dynamics. Clearly, theseetations give acceptable
results for a specific type of flow regime and specific reactadun the experiments
for the estimation of the diffusion coefficient. For a morewate representation of
the fluid flow, the velocity fields has to be derived on the basis of the classical hydro-
dynamic laws.

2.2.3 Models Based on Momentum Balance Equations

The momentum balance equation is the basic equation of figndmics. It balances
the motion of fluid systems (i.e., phases) with respect te tamd space. The equations
arise from applying Newton’s second law to fluid elements [#his law is applied
under the assumption that the fluid stress is a sum of a diffugiscous term and
a pressure term of each phase in a multiphase fluid flow systé@rm[r | 51]. Before
we introduce the balance equations for multiphase flow, lgovésent the momentum

1In multiphase flow literature, this model is also known astbeaxial dispersion model.
2Alternatively, the term Bodenstein number has been usexl[8€ 64]).
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balance equations for single-phase flow which is the basiditermining a multiphase
fluid flow model.

Single-Phase Flow

The quantities under consideration for momentum balaretharvelocity and pressure
fields. These two quantities fully determine the directidrthe fluid flow inside the
observed space. A 3D representation of the basic momentlandeaequation for a
single-phase flow, often referred to as the Navier-Stokes@ens, can be written for
each velocity component efseparately as

pvx 0PV Opvx 0PV (0% 0%V 0%vy\ Op
o o W ay Ve ay (ax2 + ay? + 622) ox TP (29)
dpvy Opvy  Opvy dpvy (0% 0%y 0%\ Op
o e Ty Ty MG g R ) ey TP @9)

opVy opVy, opv,  0pv; (GZVZ v, 0%,

o W Ve 2 oy oz

op
ey oy = )—E+pgz. 2.7)

wherep is the pressurey is the fluid viscosity, ang is the gravitational acceleration.
Note that the gravitational force can act only in one spadliiaction (or under anglé
of the given direction). Without loss of generality, we add\gtational force in all three
spatial directions, although the gravity is mainly oriehtertically, i.e.,gx = gcog0),
gy = 0,9, = 0. The Navier-Stokes equations govern the motion of nedirfiua flow
systems with some additional terms required for turbulegimes.

The complexity of the Navier-Stokes solution lies in the licily modeled pres-
sure effect and the nonlinearity of the convective term.réfare, in order to solve the
pressure field, an additional equation is requiredI[1, 4, $8E additional equation to
close the solution set can be obtained from the concept of oasservation. The mass
balance equation is written as a density variation for casgible flow as

op  Opvx  0pvy 0PV
o ox Ty +5, =0, (2.8)

and for incompressible flow as

ovy Ovy 0V,

I + 3y + 3 =0. (2.9)
Now we have two sets of PDEs which form a set of solutions/fand p in the given
domain. The first PDE is obtained from the mass balance equii9), whereas the
second set of PDEs is obtained from the momentum balande@%. The hydrody-
namic models, i.e., CFD models, always involve those twe sEPDES known as the
Navier-Stokes equations. Although the Navier-Stokes ggusiseem to be the same
type of PDE as the convection-diffusion equatibn}(2.4),ithplicitly modeled pres-
sure creates an additional complexity which requires difienumerical algorithms in
order to obtain a solution. This will be further discusse€haptefB.
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Multiphase Flow

In the classical fluid flow approach, the model equations faitiphase flows are
mainly derived by “averaging” equations describing the nmécopic flow problem,
i.e., the Navier-Stokes equations|[41, 47]. This approashilts in a set of equations
having a similar structure as the Navier-Stokes equatiam fvhich they originate.

The mass and momentum balance equations of a multiphaseréddvased on the
following relations

m V/ m
V=3V, o= —~ /Z oy =1,
/Zl YVl A

wherem represents the number of phasésis the volume occupied by phaggV is
the total observed volume, amd is the volume fraction of phage This means that
an observation space is partly occupied by one phase ang pgarthe others|[41].
Based on the aforesaid assumptions, the multiphase badguetions can be written
in a compact form as

oa,p,Vy

— O- (agpeveve) = —ay0pe — (pei — pe) Do+ (2.10)

+ 0 (agty) + apeg+ O (apV)V)) + (—1)°F,

for the momentum balance, and

Ja
Pl D (aupv) =0, (2.11)
o 0 T : .
for the mass balance, where=| — — — is an operator in the Cartesian
ox oy o0z

coordinate systenp, denotes the density of pha&ey, is the velocity of phasé, p; is
the pressurep,; is the interfacial pressuré, is the two-way coupling term, arng is
the viscous stress that can be expressed by

2
Tg:ug(DVg—l—DVZ)—éugD'Vf'- (2.12)

The termayp,v,v, in (2.10) is added in order to model the turbulent stressoigns
which has to be closed by an appropriate multiphase turbalerodef. The model is
formulated in terms of sets of equations for each pHd2&]. The termF explicitly
contains the interaction phenomena between the phasetdeloy different coupling
terms. The common expression for the interfacial couplng i

F =Fa+Fa+F +Fn, (2.13)

whereFy is the viscous drag forcés, is the added mass force due to inertia of the
carrier fluid (e.g., liquid phase in bubble columrg)is the transversal force due to the

3The prime sign is commonly used in physics to describe thefflatuation and should not be mistaken
with time derivatives.
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rotational strain, an#, is the collective memory effects [47.,/162]. Many of the preken

used advanced models consider different interfacial ¢Gogpérms that have complete
physical background and closure equations [51]. Most ofcthsure relations are of
an empirical nature, or include some heuristic elementghlvbannot be completely
deduced from the first principles (see Chapler 4) and, thezebring an additional

complexity into the multiphase flow modeling.

In the multiphase flow models, the effect of pressure is memtleia total pressure
and interfacial pressure. This is a unique aspect of mwsptlow. Multiphase flow
literature mentions several interfacial pressure coiwaanodels|[41| 47, 51]. The
models that involve interfacial pressure are also knowrhaswo-pressure models
[8Q]. The single pressure model is known to be ill-posed duthé assumption that
there is only one pressure present [93]. This will be furitiscussed in Chaptét 4
using the method of characteristics to prove this statemgithough it seems rea-
sonable to require that the pressure correction term vasishce the phase becomes
identical, there are still models treated in multiphase flibgrature that do not meet
this requirement [47].

2.2.4 Models Based on Energy Balance Equations

The formulation of the energy balance equation for a chelnsiggtem is much more
involved compared to the classical mechanical systemsenbegy balance equations
for chemical systems involve thermal, chemical, and mech&energy|[5]. In gen-
eral, energy balance equations are defined by first thernzodigs laws (i.e., balanced
thermal and kinetic energy) and second thermodynamics(eevsbalanced entropy)
[84]. There have been suggestions of additional energysrwaton laws|[1/7, 58].

In many cases, thermal energy is the most dominant one, afkimetic and chem-
ical energy can be neglected for control design. Here, we @imodel which is based
on thermal energy (i.e., heat flow) as a form of energy trarefen illustration of the
microscopic energy conservation law

2 2 2
oT  oT _oT oT T(aT 02T aT)7 (2.1

a VT TV ez TP\ e T o Tz
whereDt = % is the thermal diffusion coefficient witk being thermal conductivity

p

andc, being specific heat capacity. Equatién (2.14) with= vy = v, = 0 (i.e., with-
out convective transport) is one of the most studied eneadgrizce equations in the
literature [1¥|, 25, 64], and it is also known as theat equation

2.3 Solutions to PDE Models

2.3.1 General PDEs

As presented in the previous section, the conservation famsystems in motion are
mathematically described by a set of PDEs involving a funmctif several variables
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and their partial derivatives. According to their specifitusion, PDEs belong to fun-
damentally different types of equations known aspagbolic hyperbolic andelliptic
PDEs [67] that explain diffusion processes, wave propagaéind static potential phe-
nomena, respectively (see Tablg]2.1). This classificaitmased on the discriminant of
the highest derivative coefficients in a PDE. To illustréte ¢oncept, we give a simple
second-order PDE example

9%u |, d%u

where the discriminant can be computed from the given caefiis asD = b? — 4ac. If

D =0, (2.13) is said to be parabolic with real repeated eige@gllfD > 0 then[2.15)
is said to be hyperbolic, which means that the eigenvaluésofiyperbolic equations
are real and distinct. The behavior of systems described/pgrbolic equations can
be characterized as a wave propagation, where the speed wfatre is specified by
the eigenvalue. This implies that the quantity under carsition propagates along a
characteristic direction with finite speed. This will baigtrated on a control-oriented
two-phase flow model in Chaptgl 4. The solution to the hypai®RDEs may also
contain shock-like discontinuities because of the nosipi&ive nature of these equa-
tions [29/92]. On the other hand,Of < 0, (2.15) is said to be elliptic with complex
eigenvalues, where the observed quantity propagates gpatial directions simulta-
neously with a closed solution domain [77]. The elliptic aons are characteristic of
constraint equations in spatial domain and static potigpiidlems in material science
or mechanics (see Talile 2.1).

The given classification of the PDE models is based on thdicieitsa, b, andc,
and it can also be used to analyze PDEs where the coefficinttate independent
with nonlinearity on the right-hand side df (2]15), ig(u). For the nonlinear and
quasi-linear class of PDEs with the state dependent casffiga(u), b(u), andc(u),
such as the convective terms in the Navier-Stokes equatiomglassification is more
involved.

Table 2.1: Different types of PDEs with related exampleshyfsgral phenomena, and
initial-boundary conditions required to obtain a solution

Example of PDE  Type Physical phenomena Conditions

0d 020 : T -

5 GW parabolic  diffusion initial and boundary
20 %0 : -

v GW hyperbolic wave initial and boundary
2’0 9%

Fa + a—y2 =0 elliptic static potential boundary
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The general categorization of solution of PDE models is thase whether the
equations are solved using analytical or numerical teckesqg

1. Numerical: The numerical techniques mainly involves different diizegion
techniques in order to obtain a solution. To solve the gangrRDES numeri-
cally, one has to discretize the equations with respectdoespnd time [42].

In spatial discretization, the following methods are comiyased:

e Finite difference. At each intersection of the lines of theté difference
techniques, the governing equation is replaced by a finfferdnce ap-
proximation.

e Finite volume. The finite volume method discretizes a volume a num-
ber of cells of an arbitrary shape. Subsequently, the gavgrequations
on these discrete control volumes are solved satisfyingitions for con-
servation of mass, momentum, and energy between the firlitenes.

e Finite element. Here, the governing PDEs are solved usingdifiad
mesh domain. The unknown values of the flow property insidel@ment
are approximated by shape functions.

Besides the spatial discretization, time discretizatian also use a wide range
of numerical methods to ensure solutions. Examples inctbhdesxplicit and
implicit Euler method, the midpoint rule, and the trapezuilé [98]. In explicit
time integration schemes, the time step for a solver duritegration is limited.
The limit is determined by the Courant number which definesia between the
time and space step= vAt/Ax, whereAx is the characteristic length of the
cell defined between two spatial discretization points, Ands the time step.
To ensure correct computations in explicit methods, ther@aunumberc may
not exceed 1. This condition is often referred to as the Qutiaedrichs-Lewy
(CFL) condition, and it represents a necessary conditioiwdavergence while
solving certain PDEs numerically.

2. Analytical: In some cases, the governing equations can be solved aadliyti
following a number of simplification steps. In microscopiodeling, it is com-
mon to simplify details of the models, such as geometry ofsystem and de-
tailed phenomena, in order to obtain mathematical modeishwdovern domi-
nant dynamics. The simplified models are usually descrilyeegidample equa-
tions which are given in Table 2.1.

3. Combination of numerical and analyticarhis method can be applied to models
that are solved analytically in some directions and nunadlyién others.

The PDE models which do not have analytical solutions regthie use of exten-
sive numerical computations in order to obtain a solutiors discussed in Chapter
[, the computation in the time-space domain can be rathehied, especially in the
case of the Navier-Stokes equations where the pressureisemmodeled implicitly.
The Navier-Stokes equation and the equations that degbetraultiphase flow can be
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solved only numerically using different numerical scheraerd approximations, such
as optimization methods for solving pressure field, iteeatigorithms for solving con-
straint equations, linearization or assumptions of weaklinearity, small fluctuations,
and multigrid algorithms_[98]. The high-resolution nuneati methods play an im-
portant role in obtaining solutions for most of the modelsdito describe fluid flow.
Although it might seem trivial, we would like to stress hdre importance of numerical
methods to solve the Navier-Stokes equations. For the CF@efadased on the mi-
croscopic momentum equations, this includes the methasisdban the Approximate
Riemann Solver, Flux Vector Splitting techniques, and tipét £oefficient Matrix
Method [46]. The former two belong to Godinov-type methodsdd on a finite vol-
ume discretization assuming a constant or linear parandéteibution between two
discretization points in space. The split coefficient mdthepresents a finite differ-
ence technique, where the new time steps of all spatial paietcalculated by solving
the linearized characteristic form of the governing eduretialong the characteristic
curves. The concept of “up-winding” which combines the preation of wave prop-
agation along the characteristic directions with the cors®n of mass, momentum,
and energy for the solution of the convective term is comnmalk these methods
[29,192]. A large number of publications can be found on thjsd.

2.3.2 Initial and Boundary Conditions

One of the fundamental problems of PDEs is an initial-boupdalue problem. It is
possible to find a general solution of a single PDE for givétisiikboundary conditions
only in special cases. In most physical problems descriyeddet of PDEs, the main
concern is finding initial and boundary conditions that léad unique solution. The
initial-boundary conditions are often suggested in probfermulation, such as open
boundary conditions for the flow in pipes, no-slip boundamditions on the side walls
of cavities. To solve the 1D flow equation as given[in{2.3),hage to define a well-
posed initial conditior®(0,x) and/or a well-posed boundary conditionxat 0, i.e.,
®(t,0) andax=L, i.e.,d(t,L). Tabld2.1 presents an analogy between PDEs, physics,
and initial-boundary conditions. It is obvious from thel@athat in addition to having
to define the boundary conditions which are functions of tiaig 0) and®d(t,L), we
also have to define the initial conditi@ 0, x) for parabolic and hyperbolic PDEs. The
boundary conditions of hyperbolic-like PDE problems will Biscussed in Chaptel 4
and further justified in Chaptet 5 for a microscopic two-ghtisw model.

2.3.3 Well-Posed Problems

Besides the initial-boundary value problem, the well-plvess of a PDE problem is
another very important attribute to modeling any physicabem. The physical in-
tuition suggests that we have a well-posed problem if a PREsgA unique solution
for time-dependent problems. Parabolic and hyperbolic Bjafems are known to be
well-posed problems with a stable and unique solution, e&eelliptic PDE systems
are ill-posed with a solution that propagates in all di@tsi which is characteristic
of time independent problems, i.e., static potential pgotd. In general, an ill-posed
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problem usually means that the PDE has to be solved backwahitsh is not physi-
cally possible in the time domain, and therefore it represélaposed problems with
respect to time.

Here, we also use the tenwell-posednitial-boundary condition to refer to a PDE
problem defined by associated initial-boundary conditiwhih ensure a solution. A
problem involving a PDE defined in a given domain that is ndtywesed is often said
to be an improperly posed or ill-posed initial-boundary dition. There are several
fundamental issues associated with the initial-boundalyesproblem [50, 67]:

e existence of solutions

e unigueness

e continuous dependencand
o stability.

The existence of a solution depends on the nature of the POBhinitial-
boundary conditions. Posing too many initial and boundanyditions or conditions
that cannot be satisfied might lead to the absence of a sojut®, ill-posed bound-
ary conditions. On the other hand, posing fewer conditianslead to the existence
of more than one solution, i.e., the nonuniqueness of thetisal Another require-
ment of a physical problem is stability. The stability of dwsmn of a PDE subject
to the initial and boundary conditions is a natural expémtaivhen modeling physical
problems. The stability means that if the initial conditisrchanged by only a small
amount, the system should behave in almost the same way. ematically, this is
translated into the statement that the solution shouldrzpentinuously on the initial
value. A similar statement can be made for boundary valublenes. To be more
precise regarding these fundamental issues, we needsfysaveral inequalities with
regard to a stable solution, e.g., Cauchy theory and Panpaguality[77]. There are
numerous articles published dealing with the existenceuaiglieness of a single solu-
tion of a PDE, its structure, and asymptotic behavior, whimhproperties that depend
on the class of PDEs used to model the microscopic behaviarsystem|[19, 67].
These are just a few of the issues in the study of PDESs. Theapyilasues, however,
from the point of view of applied analysis of PDEs, are thehnds of solution avail-
able to obtain either an exact or approximate solution, hadvay the solution can be
influenced. These issues will be addressed in subsequeptechaising microscopic
momentum balance equations for the single-phase and tasepftuid flow systems.
These control-oriented microscopic models will eventul@hd to spatially distributed
control strategies that can be used to influence the fluid fictems.

2.4 Input/Output Structures

For the model-based control strategy, a substantial diffe in actuation strategies
exists between problems described by a set of ODEs and byo& BBIES. Figuré&212
illustrates the different input/output structures for OBiRd PDE systems. As shown
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Figure 2.2: Input/output structures on (a) the reactor sab) the microscopic scale
with a boundary actuation, and (c) the microscopic scaleéhvgpatially
distributed actuation.

in Figure[2.2(d), for the systems described by a set of ODHsput/output does not
depend on the spatial domain. The manipulated vari@hlen Figurg2.1(d) represents
the input as shown in Figufe 2.2(a). In contrast to these OD@Hets, PDE models
allow an independent actuation access at each point in tireedespatial domain as
illustrated in Figurep 2.2(p) and 2.2|(c). DiscretizatidiP®E models leads to a large
number of ODEs that can be written in a state-space form, evtier states are the
properties in each grid block and the inputs are defined ih blxck [75, 79, 91].

In Figurg 2.2(B), the choice for the input/output structisrbased on the boundary
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conditions (see Figure 2.1{b)). The boundary conditig(n,0) represents the input
whereasb(L,0) represents the output. This means that the model-basewbdesign
with the input/output structure as shown in Figlire 2J1(br) Spstems described by
microscopic conservation laws is based on manipulatindpthendary conditions. As
illustrated in Figurd 2.2(¢), the inputs may also be placedaah grid block which
creates a distributed network of inputs on the spatial dorfiés]. In this way, we
can manipulate the spatial distribution of flow propettft,x). A similar difference
exists in sensing of ODE systems and spatially distributatsieig of PDE systems.
Different actuation and sensing strategies for the mi@pictwo-phase flow model
will be discussed in Chaptét 6 for the bubble column reactoickvis described in
Chaptef]L.

2.5 Control-Oriented Modeling

In order to obtain a microscopic model for practical use, wecdha set of PDEs that
describe dominant dynamics of a process based on a set difgingpassumptions.
These simplifying assumptions may involve, for exampledgiimg in 1D only, domi-
nance of convection transport over the diffusion, empigcarelations between some
properties, such as diffusion and velocity. However, tmepdification of the micro-
scopic model should not be an end in itself. Instead, it shoahtain a clear strategy
of how to use the models in improving process performancéisérchemical indus-
try. For example, for the purpose of control design, the ascopic modeling of fluid
systems should ideally aim to develop a simplified model wsitivell-developed in-
put/output structure, whereas all the detailed phenomieoald be left for redesign.
The input/output structure can be further used to desigmé&aier which can influ-
ence the system behavior and improve the overall procefsrpemce. In this thesis,
we refer to models obtained in this way with a clear contn@tegy in mind for a par-
ticular example, as eontrol-oriented microscopic moder acontrol-oriented model
for short. The benefits of the control-oriented modeling lsarsignificant since it pro-
vides additional understanding as to how to influence thd flow inside a reactor,
instead of only getting an accurate microscopic model. @téveloping a control-
oriented model, we have to observe the following aspectdfen problem:

e Model complexityThe model complexity is to be kept as low as possible. Focus-
ing on the dominant dynamics and desired process perfomriaribe first step
in deriving a simple control-oriented model which providles insights needed
for control design. It is favorable to keep the computatidoad as small as
possible. We will study this aspect in Chagiér 3 for the sfgjase flow and
in Chaptef# for the two-phase flow. For the two-phase flovg toimplexity is
mainly caused by the interactive terms between the phasdsiebulence effect.

e Multiscale modeling As discussed in Sectidn 1.2.2, the aggregation of fluid
elements can appear on different scales. However, the stiopic scale and
reactor scale are two extremes of continuous and discrategbservation. The
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molecules are usually aggregated in large formations,(a.targe number of
bubbles in bubble columns). This scale is defined by desigeh e can refer
to it as a macroscopic scale or compartmental scale. Ondhie some of the
detailed phenomena can be neglected or taken as an aveag#yqun Chapter
[3, we will use single-phase flow to illustrate the concept aftrecale modeling
and possibilities for control designs.

e Accuracy.Although accuracy is an obvious requirement, it is still orant to
state our exact objectives in this matter. We have to acelyratedict the be-
havior of the fluid system, the well-posedness of the moahel jitial-boundary
conditions; all other details can be left for redesign. Baraple, for control pur-
poses, lower accuracy is acceptable since it can be seen adel umcertainty.
This implies that the major performance determining fluidvflshould be pre-
dicted accurately with well-posed initial-boundary cdratis, whereas numeri-
cal issues can be considered later in control design. Funtire, it is preferable
to have functional relationships between inputs and ostthat do not rely on
discretization methods. These functional relationshigs lze used to simplify
distributed control designs (see Chapfer 6).

e Multiphase modeling The multiphase modeling can be described by the gov-
erning equations of fluid mechanics where several fluid atid somponents
move at the same time. One of the simplest examples of théphatte model-
ing involves only two phases (e.g., gas and liquid, gas ald)s@he multiphase
modeling studies the flow of the fluid and solid componentsegiseparately or
as mixture flow. The main contribution of this theses is in tihie-phase fluid
flow modeling, which is the simplest case of the multiphasel@liog. Chap-
ters4[b, anfl6 describe the use of a control-oriented tvas@fow model for
control design.

e Geometry.The geometry of a chemical reactor, where the motion of flakd$
place, often presents an additional problem in the micnoissoodeling of chem-
ical processes. Itis very difficult to generate a refined magiout using a CFD
package, which was discussed in Secfion 1.2.3. Given theehnedquirements
and the complexity of geometry involved, the model geomeairy be simplified
retaining the main modeling framework. In Chagdiér 3, we wtsitigle-phase
flow in 2D on a rectangular domain, whereas in Chalpter 4 wevelerilD two-
phase flow model.

The main challenge for new developmentsin the field of mimppg& modeling is to
study the above given aspects for a chemical process andétngea control-oriented
strategy that can influence the microscopic system behaVioe following chapters
will give a detailed description of the control-orientedWlonodels and spatially dis-
tributed control designs for single-phase and two-phasedistems.
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2.6 Discussion

This chapter outlined the available modeling tools for eion of models on a mi-
croscopic scale and introduced notation that will be usefdiither chapters. In this
chapter, we first presented the basic microscopic consematvs used in modeling
chemical processes, after which we discussed the mairsisslaged to problems de-
scribed by PDEs. As has been shown, the more details we trgdelasing the micro-
scopic conservation laws, the more the models become catigmetlly involved. The
microscopic model becomes computationally unfeasibleragdires advanced CFD
packages to fully simulate the motion of fluid systems. Eigdgcin case of micro-
scopic momentum equations, the two-phase flow model mayttead FD model that
has a limited use for on-line application due to the long cotapon time and model
complexity. In order to obtain a solution to a CFD model, géanumber of numerical
techniques and discretization schemes have to be employedCFD models are tai-
lored in order to mathematically describe different inteiree terms, e.g., added mass
and virtual mass, in order to establish the cause of probleaisrise from coalescing
and bubble size distribution. The CFD complex models ofiemta describe most
of the phenomena that exist on the microscopic scale rdtlertieing constructed to
assess an overall performance. As a result, many complexrfidd®|s have been be-
yond the reach of engineers in the chemical industry and lraited practical use for
control designs.

In the following chapters of this thesis, we will derive canttoriented strategies
for different fluid flow systems that are of high relevancetfag chemical industry. In
Chapte[B, we will use a single-phase flow in a closed geontetiystrate the concept
of multiscale modeling which is beneficial for boundary feadk control design. Com-
plementary to the single-phase flow, in Chapler 4, we willyse a control-oriented
two-phase flow model with a well-posed actuation strategy ¢an eventually be used
for a wide range of different control designs that will begeeted in Chaptéid 6.






Chapter 3

Control of Macroscopic
Properties of Single-Phase Flow

After a brief overview of the microscopic modeling presehie ChaptefR, in this

chapter we will set out a numerical approach to the microsompdels that describe
single-phase flow in simple geometry. In this chapter, diffie modeling scales will

be used to design a boundary controller for the single-pfiase The main focus of

this chapter is on a boundary control design based on maipizsebservation, i.e., a
higher level of aggregation of controlled variable in thegée-phase flow systems. In
order to demonstrate the applicability of the macroscopangitative varables for the
boundary control design, the results are illustrated uailidrdriven cavity case, which
has a broad range of industrial applications.

3.1 Introduction

As we discussed in Chaptel 1, the microscopic models thafibesthe motion of
fluid are usually very complex, and they can only be solvederigally using various
types of discretization methods (see Sediion 2.3.1). Iegg#ithe numerical approach
to a microscopic fluid flow model uses fine grids to obtain mtates which can be
manipulated and measured. However, the flow properties imdda the microscopic
scale give a very detailed picture of the fluid flow that, in jaases, is not directly
measurable. Thus, concentrating large efforts on fine elizattion schemes does not
necessarily provide a solution to the control related protsl.

In Chapter 2, we discussed the most important aspects ofatamiented model-
ing and their contribution to control designs. In this cleaptve will investigate two
aspects: the input/output structures and the multiscaldetimy aspects of fluid flow
using the numerical approach describedR®&¥l in Chaptefdl. The analysis presented
in this chapter will eventually lead to a computationallfi@ént system with a well-
posed input/output structure (see Secfion 3.4.1) that eagabily used for boundary
control design (see Sectibn 3.4.2). The concept of macpiscontrol design will be

35
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introduced in Sectioh 3.2, after which every derivatiorpsté the macroscopic prop-
erties needed for the design will follow. As an illustratiexample of the single-phase
flow in simple geometry, in Sectidn 3.8.1 we will introduceig@driven cavity case
[24]. The lid-driven cavity flow study is useful for improMgrmany practical appli-
cation prototypes such as drying chambers, rotating rescbort-dwell coaters, and
melt-spinning processes in forming continuous metal nitshoAs a result of the pro-
posed macroscopic output regulation of the fluid flow, we astlablish a macroscopic
boundary control technique for regulation of the fluid flovst®m. Results contained
in this chapter have been published.in/[38].

This chapter is structured in such a way that readers whordeemiliar with the
complexity of the single-phase flow (i.e., the Navier-Swkgquations) and the numer-
ical approach to the problem of single-phase flow should teetatgradually build an
understanding of the complexity behind the fluid flow models.

3.2 Macroscopic Control Design

The main objective of the multiscale modeling is to expldre possibility of using
macroscopic quantities for regulating different fluid flosgimes. Despite the mod-
eling scale, the fluid flow regimes can be categorizel@sogeneou§.e., laminar)
and heterogeneou§.e., turbulent). The homogeneous regimes are charaeteby
uniform, laminar flow with hardly any mixing, i.e., plug flowdn the other hand, the
heterogeneous regimes have good mixing properties due tarbulent effect and cir-
culation of fluid systems with a tendency to create a chaa@iior of fluid elements.
The main control goal in fluid flow regulation control is tofigia fluid system to a de-
sirable fluid behavior and stabilizing the flow around themeisfluid flow. According
to the desired flow regime, different control objectives bardefined.[1, 44]:

o stabilization of laminar flow,

e delaying or advancing transition from laminar to turbuléoty,

e suppressing or enhancing turbulence, and

e preventing or enhancing separation of phases in multipth@sesystems.

Benefits that can be gained from these control objectivésdearag reduction, lift en-
hancement, mixing enhancement, and flow-induced noiseresgipn. These aspects
are very important for increasing process productivityhiea themical industry.

As we discussed in Sectign 1.4, many different control mdsHwave been pre-
sented in the control literature dealing with the flow cohpoblem, starting from
control designs that stabilize laminar regimes [27,128)352,55, 56], towards more
complex optimal control designs that control turbulendd [The most common flow
control approach is based on the linearized Navier-Stogest®n where the lami-
nar flow inside a pipe or a channel can be stabilized usingmifft distributed control
methods![B]. A shortcoming of this method is that the propasistributed input/output
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Figure 3.1: Block diagram of a control design based on a macapic observation of
fluid flow obtained from the microscopic model.

structure might not be implementable in practice since gigests a massive array of
actuators and sensors.

Recent results published in |2, 9] have shown that the dpztenges of the fluid
flow are smooth and small, which suggests that in practice alermumber of ac-
tuators can achieve the same goal. This analysis also tedieppropriate values of
control coefficients which enhance thg stability of the flow, pointing out that destabi-
lization of the flow yields an excellent result for fluid mixgjfil]. The results published
in [2,19] also raise an additional question about the numbsensors needed for the
control design and accuracy of the measurement with respegiace. However, not
much attention has been given to the control requirementaédflow sensors and size
of images that describe velocity fields which should be erdbddn the distributed
control design.

The work presented in this chapter deals with multiscaleeting and sensing of
fluid properties on a higher level of aggregation. In thispteg a macroscopic output
regulation as illustrated in Figuke 3.1 is introduced. Thecmscopic control design
can be seen almost as a filtering of the microstates obtandiad discretization of
the flow properties. In essence, this means that the indibifluid elements (i.e.,
microstates) are observed by an aggregation of fluid elesn@et, macrostates) as
controlled variables. This will be discussed in detail ircB®[3.4.2. In the next
section, we will present a single-phase flow in a lid-drivawity case to illustrate the
microstates and macrostates of the single-phase flow gieper

3.3 Single-Phase Flow in Simple Geometry

3.3.1 Lid-Driven Cavity Case

The lid-driven cavity case is a simple case of fluid flow in assgudomain that has three
stationary sides and one moving side [85]. The geometryefithdriven cavity case
is illustrated in Figur€3J]2. In order to model the velocisidis of the lid-driven cavity
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Figure 3.2: Geometry of the lid-driven cavity case with aggfared grid. The spa-
tial discretization is performed on the staggered grid witie pressure
Pirdjel in the cell midpoint &), the velocmesp +3 and Yinjsd placed
on the vertlcal cell interfaceso, and the velocmes V1 and Vil
placed on the horizontal cell interfaces)(
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case, we consider a dimensionless fbohthe single-phase flow model derived from
the Navier-Stokes equations (see Sedfion ?.2.3) and defimedrectangular domain
Q=10,1] x [0,1]

Jdu ov
ou ou odu 1 ,0%u d%uy Odp
a **“&*Va—yw—e(ﬁw—yz) X (32)
ov ov av 02v  d%v\ ap
a - Yax Vay Re(axﬁa—yz)*a—y’ (33)

where the dimensionless variablesndv are the velocity components in tixeand
y-direction, p is the pressure, arRReis the Reynolds number. The gravitational effect
and viscous dissipation outside this rectangular doma@maglected. Note also that
the dimensionless form of the Navier-Stokes equation hsame parameter which is
the Reynolds number.

The initial conditions for the velocity field ang(t,x,y) = 0 andv(t,x,y) = 0 for
t = 0. According to the geometry shown in Figlire]3.2, the boundanditions are the

1Dimensionless in the sense that the variables are scalbdwiphysical units.
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velocity component in th&-direction on the top wall (lid), and the no-slip conditions
for the velocity components at the bottom wall and the twesidalls, i.e.,

u(t,x,1) = w, u(t,x,0) =0,
v(t,x,1) =0, v(t,x,0) =0,
u(t,0,y) =0, u(t,1,y) =0,
v(t,0,y) =0, v(t,1,y) =0,

wherew is the velocity of the lid.

The momentum equations (B.2) and {3.3) describe the timkitamo of the ve-
locity vector field (1,v) under inertial and viscous forces, whereas the pregsigan
implicit variable that satisfies the incompressibility dition (3.1). This was discussed
in Sectio 2.2.8. As we already discussed in Secfion 2.Be3incompressibility con-
dition is not a time evolution equation but an algebraic ¢bon instead. Therefore,
the pressure term can be solved only by projecting the mameetjuations onto the
divergence-free velocity field [90]. The CFD has develop&t@e number of numeri-
cal schemes and softaware packages that are able to sobeedtpeations (see Section
[1.2.3). Here, the numerical schemes based on DNS is usedttalpdiscretize[(3.11)-
3). In the remaining of this section, we will discuss thattal discretization of the
given equations and numerical issues related to the chasertization method.

Spatial Discretization

In order to illustrate the concept of projection of the momuem equations onto the
divergence-free velocity field, we will first start with thésdretization method as
shown in Figuré_3]2. The figure emphasizes three types ofematkat will be used
to explain the discretization scheme. Any point inside tak marked as %" is an
interior point, while the points marked as™and "e” are the grid points. The body
forces are positioned in the midpoints, while the surfaceds are positioned at the
cell interfaces. The terms which contain the spatial dévigea are approximated using
the interior grid points to obtain the numerical solution(®fl)-(3.3) as follows:

o Approximation of the first derivatives:
The first derivatives (i.e., convective terms and presstadignt) in a grid point
can be approximated by a centered stencil as

U Uiyrj—Ui-1j
0x  (Xit1—Xi-1)

(Ux)i—1,-

. N ' o . ou .
This approximation of the first derivative for the nonlineeimu—— might cause

different numerical instabilities [4, 98]. This is the reasvhy we introduce the
staggered grids as illustrated in Figlire 3.2 to overcompitbielem of numerical
instabilities. The principle behind the staggered gridisteate the data in the
midpoints by averaging the flow properties at grid pointsl andi — 1 for thex-
direction, and + 1 andj — 1 for they-direction. This means that we approximate
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the value in the middle using data between the paints; andu; j, which is, in
essence, a stable centered approximatian of

U1, — Uij
Wigi ™ Tx
i+1—Xi

In the staggered griding of (3.2)-(3.3), this position is ttosition of pressure

pi.j. The pressure term in the staggered griding will be disauitser in this
section.

o Approximation of the second derivatives
The second derivatives (i.e., viscous terms) are apprdriiiay a finite differ-
ence method for the grid point at the centered stencil. Agxpration of the
second derivatives at any interior po{intj) is done by

o%u N 0% U1 —2Uij+Uinj | Uijo1— 22U+ Uija
X2 ay? (Xir1—%i-1)2 (Yj+1—Yj-1)?

= (Uxx)i,j + (Uyy)i,j,

where one or two of the neighboring points (eig-1 andi — 1 in thex-direction)
might be the boundary points.

e Approximation of the nonlinear terms:
The approximation of nonlinear terms on the staggered guthot be applied
directly. It requires an additional numerical approximati For instance, the
productuv is not directly defined at the positigh, j), since the velocitiesi; j
andv; j are defined at different positions. In order to update theoisi ui j,
we need the following term@i)?; and(ui jvi j)y.? If the flow in each time step
is shown to be slow, we can use the same centered staggereatides at the

o101 : . . . . .
position(i + > ] 5)' This requires the use of different positions in space ireord

to define the velocity terms, e.gJﬁj has to be defined in the cell centers and
ui,jVvi,j has to be defined in the cell corners

2
2 [ Uij Uiy
i+3, 2 ’
Uij +Uij+1
u .  1=(—%7"7"—1,
L+35 2

_ [ VijtVigaj
Vi+%,j - 2 ’

The above centered differencing is appropriate if the dtiastare not trans-
ported too far in each time step [4, 98]. This was discussekictior 2.8, and
for the numerical algorithm we refer to Appendik A.

du 10u?
2 _ = = —
Note thatu X 2o
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Table 3.1: Boundary conditions.

Type of boundary conditions Mathematical expressions
ou
Neumann — =0
o ox
Dirichlet u=20

e Boundary conditions:

In the lid-driven cavity case, we use the Dirichlet boundeopditions forui j
andyv; j, and the Neumann boundary conditions fpy (see Tablé _3]1). This
is because the points™and "e” lie on the boundaries, whereas the point™
has the boundary between two neighboring points. The value at the points
that lie on the boundary is directly prescribed by the giveariary conditions.
For example the velocityy at the left boundary, often referred as the right-wall
boundary, has to satisfy the Dirichlet boundary conditimey in Tabld 3.1L. The
same analogy holds for the velocity; at the bottom boundary, as well as for
the velocityv; j at the right-wall and left-wall boundary. For the pressuhe,

.0 0 . ) . . .
derlvatlvesa—z anda—p at the boundaries are defined using two points which are

placed in the middle. For instance, the Neumann boundargitons at the
top wall give a solution of pressure at the top boundary. Tiksns that the
following condition holds for this point

Piiri—Pij _
Yi+1—Yj

If the boundary conditions are not properly defined, or th@dio is not properly
discretized, then the solution to the PDE problem does nist.ekhis was also
discussed in Sectidn 2.3 in terms of ill-posed boundary itimms.

For the full numerical algorithm that is used to compute tekwity and pressure fields
in the time-space domain, we refer to Apperdix A.

3.3.2 Summary of the Numerical Approach to the Single-Phase
Flow Model

In this section, we briefly summarize the outcome of the nicakapproach to the
single-phase flow model in the lid-driven cavity case. Fiwg used the spatial dis-
cretization method based on the staggered gridding torohtablution to the dimen-
sionless Navier-Stoke equations written [as](3.1)}(3.3hcedthe staggered grid has
been defined, we proposed a finite difference approach tondiete approximate ex-
pressions for the necessary derivatives of the flow varsainléhex andy-direction.
Such a numerical approach to the Navier-Stokes equaticnged in a large number
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of microstates§ j,vi,j, andpi j) in the given spatial domaif2. Numerical results of
this approach will be given in Sectién 8.5.

The next step in the macroscopic control design is to definapgmopriate in-
put/output structure that can capture the system behaqrflow regime, which can
be used to influence the flow regime. The flow regime, whettmeinar or turbulent, is
a very important feature of any fluid system. The level of rdixess, which determines
the energy required to maintain the desired flow, dependa@tetel of observation
of the aggregated fluid elements and on the available meastechniques. For the
lid-driven cavity case, the boundary conditions at the tafl (i.e., the lid velocity) are
considered as the inputs, whereas the outputs will be dateras the flow properties
on the macroscopic scale. As discussed in Se€fidn 3.2, tlive aoatrol objective is
to design a controller using a higher level of aggregatiotheffluid elements. In the
following sections, we will discuss how to use the microssatbtained in Sectidn 3.3.1
to quantify the macroscopic properties of the fluid flow thert be used for the control
design illustrated in Figufe 3.1.

3.4 Boundary Control Design

3.4.1 Interconnected Form of a Large-Scale System

In order to develop a control strategy for the previoushcdssed microscopic fluid

flow, an appropriate control framework is required. First; the proposed model-
based control design shown in Figlire]3.1, we start with airadythe microscopic

variables. An interconnection between the microscopicaées for the cavity case
previously discussed is illustrated in Figlrel3.3. Aftee tpatial discretization of

B1)-(3.3), the Navier-Stokes equations are approxichatth a large number of finite-

dimensional differential equations with algebraic coaisits for the pressure correction
(see AppendikA). The discretized model is described by dhHewing state vector

7= [ Ui ] (3.4)

wherei =1,2,...,n, j = 1,2,...,n are the spatial indexes amgj is the state vector in

R2" as illustrated in Figure_3.3. The number of grid points in xhendy-direction
is chosen to be equal. This discretization method resulsléange number of nonlin-
ear equations with algebraic constraints that can be repted in a general form as
interconnection of subsysterfis; with the following model equations

2j="j(zj.2-1j,2+1j,4,j-1.2,j+1, Bi,j) (3.5)
+0i,j (2}, 21,241, 4, -1, Z,j+1, Pi,j )W, j

0=0.j(2,j,2-1,j,2Z+1,j,%,j-1,%,j+1, Pi.j), (3.6)

wherew; j is the input,f; ; andg; j are the nonlinear functions. The indexesl,i+1,
j—1, andj+ 1 are complementary indexes which illustrate the way subsys are
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coupled|[1B, 76, 78]. The functiorfs; andg j are smooth functions that approximate
the time evolution of the velocity field (3.1)-(3.3) and thenstraint equatior (3.1),
respectively. The velocity vector of the top wall (see F&8r3) is considered to be the

boundary inputv; 1
| U1 || W
W"l_|:Vi,l:|_|:O:|-

Equations[(35)E(3]6) represent a system consistingf slubsystemg; ; that are
interconnected by the complementary state veci&rs,j, z+1 j, z,j—1, andz j.1, to
the systems_1j, Yit1j, Yij-1, andy; .1, respectively. In this way, the stability
of the interconnected system is reduced to the stabilitplpro of the subsystems.
On the other hand, the controllability and observabilitytied interconnected system
are reduced to the influence of the complementary state /8e%tq j, zy1j, z j—1
andz j,1 on the state vectar, ;. Since the flow regimes are characterizedRyy
the value ofRedetermines the stability regions. The overall flow is coasid to be
stable for lowReand unstable for higiRe The unstable flows are characterized by
the growth of small fluctuations from the steady velocityfiieonvhich can, eventually,
cause instability of the velocity profile.

Boundary input

Y11

1|5}

IT U7 i

13 4t 1%
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Figure 3.3: Two-dimensional interconnection of subsystem
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3.4.2 Macroscopic Output Regulation

For the large-scale system which contains many statesahaie controlled and mea-
sured, the measurable variables have to be chosen in sughthat#he overall system
can be evaluated. This means that, instead of observingitirestates j in the do-
mainQ; j, we introduce macroscopic domeﬁkk over which the controlled variables
are defined, i.e.,

ﬁk,k:AxkAyk, k:1,2,...,r.

The indexk is a macroscopic observation index which specifies the nsaopic do-
main Qxx. The number of grid points in the andy-direction for the macroscopic
space equals. We should emphasize that the number of discretizationtpdainthe
macroscopic space is much smaller than the microscopicieng; < n. As illus-
trated in Figuré_3]1, the microstates obtained from the fimmerical discretization
of the dimensionless Navier-Stokes equations serve as toaderive the macroscopic
controlled variables

it
S

it
S

hij(zj), (3.7)
n+1

y 1
kk — =
’ Q
k,k i:(k:l n+1j:(k;1

whereyx « is the output irier, andh; j(z ;) is the output function. Here, we consider
an average function as mapping between the microstatasdeéni [3.5)43.5) and the
macrostates as the controlled variables, although otmetifins can be used as well.
The proposed macroscopic output regulation shown in Figuidés applicable to any
system where the changes in microstates of each subsystesmatl and bounded in
time. This will be discussed in detail in Section]3.5.

Following the control design presented in Secfiod 3.2, amtml objective is to
find a boundary controlles; 1 such that the system output converges to a desired point
with an arbitrary fast exponential decay. In general, alstappstem with a constant
input reaches a steady-state if the output of the systenpappes a constant value
as time increases [48]. However, if the starggt) approach constant values when
t goes to infinity, therg'; () is the steady-state response of the system for the given
input, which can be considered as the desired output taajecin the microscopic
scale. According to the macroscopic scale, the desiredoseopic trajectory/‘gk can
be obtained using the following expression 7

n n

=X

Yik =

hi j(Zj()) = const (3.8)
(kD

n+1j="-=n+1

1
Qk,k . (k=D

|:r

wherez’ () is considered as the microstate at co. For the stable systerg;; () =
const. For example, suppose that the system governéd y(@8) is actuated with a
specific constant inpwtf' ;. In that case, the system will have a certain response to the
input that can be considered as an open-loop response.

The next step in the control design is to find a controller thaintains the desired
outputyﬂ,k produced by the model under the effectrgf . Note that the boundary input
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w; 1 can have only one value since the lid can have only one velocity component in
the x-direction (see Figurg_3.2). The error between the outpdtthe desired set can
be defined by the following equation

Bk = Yok — YRk (3.9)

Then, the output feedback controller that achieves therabobjective can be given
by a simple PI controller that has a goal to minimize the eegr for the chosen
macroscopic spadg, k), i.e.,

Wi = Ky (Yick — Yieg) + K ik (3.10)
€k = Ykk — Yiko (3.11)

whereKy) andK; , are the control parameters that can be tuned. In fact, if vatyap
the boundary condltlonzyl*l without the controllers given in (3.10), we will still obtai
the same steady-state solution, but the settling time willdnger compared to the
controlled flow. This clearly implies that, for any arbityaw; 1 in the laminar flow
regime, there is a microscopic velocity field with unique naacopic flow properties.
This will be discussed in Sectién 8.5 and illustrated onidheltiven cavity case where
we will present the macroscopic output regulation and tywiirthe control parameters
for two differentRein the laminar regime.

The procedure for tuning the control parameters in this ogmpic output control
framework can be summarized in the following steps:

1. Select the initial condition(0, x,y) andv(0,x,y) for the entire microscopic do-
mainQ = [0,1] x [0,1].

2. Define well-posed boundary conditions.
For the lid-driven cavity case, the boundary conditionstefned by the design
(see Section 3.3.1).

3. Simulate the microscopic model by using an appropriatearical algorithm
(see Appendik’A) and a spatial discretization method (sed®¢3.3.1).

4. Analyze the steady-state solution that is obtained biyappan arbitrary bound-
ary inputw;’;. As mentioned earlier, if the states |im, hz2(z ;) = const, then
z,j(0) can be considered as a steady-state response of the systtra given
initial and boundary conditions and chosBe for the dimensionless Navier-
Stokes equations given &s (3.0)-(3.3).

5. Introduce the macroscopic domﬁn}k that will be used to obtain the macrospic
outputyk k.
The output functiorn; j is chosen to be an energy function since it preserves the
stability of the proposed control designs illustrated igufe3.1.

6. Now that we have the well-posed input/output structuth wistable steady-state
solution, we can tune the control paramellé& andKj  such that the system
output converges to the desired point with an arbitrarydapbnential decay.
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The above steps show the procedure that can be easily usegigmdhe stabilizing
boundary controller for the chosen macroscopic space irgiven geometry. The
same procedure can be used for other geometries with aricamdimodification of
the output functior; j and the macroscopic dom@kk.

3.4.3 Macroscopic Energy of Fluid Motion

In Section[3.411, we discussed the velocity field with congras in thex and y-
direction and the boundary conditions for the lid-driveritsacase, where the system
is fully driven by the lid velocityw; 1. In general, the work done by the boundary input
influences the velocity and, consequently, influences tleeggrdistribution over the
domainQ. Since the system under consideration is an incomprediidewith no
heat exchange, the rate of energy changes over the recéartpuhainQ is propor-
tional to the kinetic energy of the subsystems. Using theesgion for kinetic energy,
we can obtain a kinetic energy distribution that can reprege flow patterns defined
by the microscopic velocity field

1
yij=Eij= E(Ufj +V)). (3.12)

In this way, we can obtain the macroscopic variables frioJBusing the averaging
procedure given irL(317). The macroscopic variables in tmaalnQx equal

Eij. (3.13)

The fact that the energy level for the given initial and boanycconditions is bounded
in time can be used to assign the desired output for the datdsign. In the following
section, we will numerically demonstrate the derived macopic control design based
on the macroscopic output regulation of the fluid flow inside tavity, which was
illustrated in Figuré&_3]1.

3.5 Numerical Example

To demonstrate the numerical approach to the fluid flow systera used the single-
phase flow for the lid-driven cavity case shown in Figuré 3[Be single-phase flow
model, which is based on the Navier-Stokes equations initee ggeometry, is solved
in Matlab using the algorithm developed by [90]. In the giagorithm, [3.1){(3.B)
are discretized on 64 64 grid points in the spatial domain. To improve the numérica
stability, the viscous term, which is a linear part[of {3(2)3), is treated implicitly; and
the convective term, which is a nonlinear part[of [3[2)J3iS treated explicitly (see
AppendixXA).
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Figure 3.4: Microscopic energy distribution; Ein Q; ; and the macroscopic spaces
Qi x where k= 1,2 att = 25for (a) Re= 100and (b) Re= 250,
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© (d)

Figure 3.5: Time sequences of the velocity vector field ardcetiergy field in the lid-
driven cavity at Re= 100(a) t=1, (b) t=4, (c) t=10, and (d) t=20.

Figured3:4(3) and 3.4(b) show the steady-state simulagisults of the velocity
field and energy distribution for two different Reynolds rars in the steady-state for
Re= 100 andRe= 250, respectively. In Figuré¢s 3.4(a) gnd 3.4(b), we markend f
macroscopic spacék, k), wherek = 1,2, that will be used later for control design.

The time evolutions of the velocity field and energy disttibo are shown in Figure
3.5 forRe= 100 and in Figure3]7 foRe= 250. In all of these cases, the fluid flow in
the cavity is strongly dominated by the recirculating vee®in the counter-clockwise.

As shown in FigureE 315 arid 3.7, the flow is characterized bypttimary dom-
inance of a clockwise rotating subspace which are joint with counterclockwise
secondary rotating subspaces at the corners of the bottdim™ee regions with the
highest energy levels are located near the top right comeach time step and are
illustrated in Figure§ 3.5(A), 3.5(1), 3.5(c), dnd 3.p@)Re= 100 att = 1,t = 4,

t =10, and = 20, respectively. The corresponding pressure fields anershroFigure
[B.8. In the very first stage of the lid motion, the pressurt¥es the formation of the
rotating subspaces (see Figures 3]5(a)and 3.5(b), afiehiire established pressure
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Re=100, t=1.00 Re=100, t=4.00

(@) (b)

© (d)

Figure 3.6: Pressure fields for Re 100 at time (a) t=1, (b) t=4, (c) t=10, and (d)
t=20.

att = 10 (see Figurg 3.5(c)) takes on a radial form that remainsahee at = 20 (see
Figure[3:5(d)). These four time sequences showrR= 100 indicate formation of
a small-scale circulation pressure zone located at theigbp eorner (see Figuie 3.6),
which cooresponds to the velocity filed with the highest gnéevel (see Figure3.5).

The similar observation can be made fe= 250. The time evolutions of the
velocity field and energy distribution are given in Figlird 8iith the corresponding
pressure field shown in Figuie_B.8. The energy level decseiasthe same manner
as shown folRe= 100, starting from the top wall to the bottom wall. This casiae
non-uniform distribution of the energy.

Now, following the theoretical framework presented in $8ti3.4.2, the macro-
scopic space€yy are used to quantify the macroscopic properties as desciibe
Sectior 3. 4.B. First, an equilibrium-like profile is evetiehfrom the energy leveé
in each subspad®y k over the time domain, which is defined iy (3.13) and illustdat
in Figured 3.9(3) and 3.9(b) fdte= 100 andRe= 250, respectively. Figur¢s 3.4(a)
and[3:4{B) show four different microscopic spaces marked ds, (1,2), (2,1), and
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Figure 3.7: Time sequences of the velocity vector field aaa@ttergy field in lid-driven
cavity at Re= 100(a) t=1, (b) t=4, (c) t=10, and (d) t=20.

(2,2), which give four different macroscopic functions evalaaie Figure[3.9. We
chooseQ, ; as the macroscopic space to quantify the energy [Eyel The energy
level in Q2 is the most sensitive energy level compared to the othegghevels.

As expected, for lonRethe energy level of each subspace approaches constant
values when time increases. Furthermore, the macroscopigtrajectories of each
subspacé)y x show stable responses with respect to time and the maciiositop
behavior under influence of the boundary input. The conaldlerinfluence of the
boundary input is noticed i1 andQ; >, where the secondary vortex enlarges by
increasing the boundary input. Thus, the macroscopic gniexgl of Q,, which
corresponds to the constant values, is considered to bethmted variable.
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Re=250, 1=1.00 x10° Re=100, t=4.00

(@) (b)

Re=250, t=10.00
T — 1\

© (d)

Figure 3.8: Pressure fields for Re 250 at time (a) t=1, (b) t=4, (c) t=10, and (d)
t=20.

The desired macroscopic poipﬁ2 for Re= 100 is 0.0081 and foRe= 250 is
0.0152, as illustrated in Figures 3.9(a) and 319(b), retsyedy. Af’[ery‘i2 is determined,

the parameter!’, andK} , can be tuned to enhance the asymptotic output regulation

for the chosen macroscopic space, i.e.ilimhy2(z j) = Egz andlim_,e > =0. By
tuning the control parameters thg, andK} ,, the error convergences to zero, and
the desired output is reached arbifrary fast. The contn@rpaters can be tuned until
a desired performance is obtained. The effectiveness ofdh&olled (i.e., closed-
loop) system achieved by tuning the control parametersasstin Figure 3,10 for
Re= 100 and Figure3.11 fdRe= 250. First, it was observed that applying a high gain
leads to flow instability and transition regimes that neetgkr time to be stabilized
by the controller. Second, for small valuesl(i)jz, the observed macroscopic energy
level moves towards the reference level, whereas for largleres ofK), ,, the error
approaches zero with a small bounded oscillation. 7

The satisfactory output regulation of the chosen macropézgy level inQ; » for
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Figure 3.9: Time evolution of the macroscopic energy distiions Ky in ﬁk,k domain
for (a) Re= 100and (b) Re= 250

0.01 T T T T
8 — %
£
S 0.005¢ 1 | =2,
2
Q
3
j<}
["%
0 i i i i
0 5 10 15 20 25
Time
(@)
x10°
15

2,2
Y22

y2,2

Process dynamics
o
T
i
o

0 5 10 15 20 25
Time
(b)
0% 10°
T T T T
é —_,,
g Y22
> 5H — D
o \ Y22
@
@
&
<
o of i i i i
0 5 10 15 20 25
Time
©

Figure 3.10: Feedback control of the lid-driven cavity céseRe= 100with the con-
trol parameter: (a)K’, = 100, (b) K;, = 62, and (c) K, = 100 and
K}, =62
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Figure 3.11: Feedback control of the lid-driven cavity cdee Re= 250 with the
control parameter: (a)&, = 60, (b) K}, = 21, and (c) K, = 60 and
Kb, =21

bothReare guaranteed with the control parameters given in Table 3.

Table 3.2: Control parameters for macroscopic output regjon of energy level in
62’2.

Re | Ez2 | K%, ng

100 | 0.0081| 100 | 62
250| 0.0152| 60 | 21

To examine the controlled and uncontrolled flow, we complageniicroscopic en-
ergy fields for the controlled and uncontrolled flow. The dieatate flow without any
control action is obtained at= 25 for bothRe whereas the controlled flow reaches
the same energy distribution = 4 for Re= 100, and at = 7 for Re= 250. The
simulation results show that the structural numerical apph to the fluid flow control
can be effectively used for the flow regulation in the cavitiRa= 100 andRe= 250.
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Figure 3.12: Time sequences of the controlled velocityorditld and the energy field
for Re= 100Re= 100at time (a) t=1 and (b) t=4.
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Figure 3.13: Time sequences of the controlled velocityorditld and the energy field
for Re= 250at time (a) t=1 and (b) t=7.

It is important to mention that the algorithm used in thisrapée cannot capture
dynamics of turbulent flow regimes; however, it can capturgfuctuations from the
desired energy level. Therefore, it is highly appreciatduitve a well-suited numerical
algorithm in order to obtain a solution to the microscopiddlfiow model, and it
is also crucial for a reliably quantification of the corresgdimg macroscopic output.
Finding a good compromise between the microstates for ateand the macrostates
for the control design is important for stable computatians applicability of the
macroscopic control designed presented in SeEfion]3.4.2.
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3.6 Discussion

In this chapter, we presented the numerical approach to estiopic model that de-
scribes fluid flow. This research direction was discussedap®1 along the research
directionRD1 illustrated in Figuré_1]3. The main contribution of this pkex is in the
proposed output regulation based on a macroscopic quanfityid properties. In fact,
we use the microscopic scale to guarantee a solution to tiig 8@ the macroscopic
scale for control design. We have shown that the compleXitthe control design
in fluid flows can be considerably reduced by taking into actalifferent modeling
scales (i.e., multiscale modeling). In contrast to the odcopic phenomenological
approach which falls under the classical domain of physiastrol-oriented modeling
aims to describe the dominant dynamics of the fluid flow andewstdnd the dynam-
ics in order to design a control strategy. Therefore, therosmopic control design
presents a valuable contribution of theory to practice éahemical industry.

From the simulation point of view, the macroscopic simwalatapproach seems
to be less attractive than the microscopic approach dueetdotl accuracy. How-
ever, from the control perspective, the macroscopic amréa the fluid system has
enormous potential for industrial applications since dfuiees only four outputs for the
given design. The macroscopic flow regulation is a simpleraff between simplicity
and accuracy that leads to a structural control design @as#tk centralized boundary
control design. The control approach to the hydrodynamiiesghe closed-loop form
of the fluid system, where the control parameters can be ttmebtain the desirable
performance determined by the production process. The impsirtant feature of the
control approach to the hydrodynamics is that it offers aewihge of possibilities to
influence the hydrodynamics otherwise unreachable by aickhysics approach to
fluid systems. In classical physics, influencing the fluidteysis usually done by a
trial-and-error approach to the boundary conditions. Tti# and error approach to
the boundary conditions can easily lead to stability protdgto problems of choosing
inappropriate numerical schemes and discretization nde#ts. Since the main con-
trol objective is to control and manipulate processes imuicsiral and easy way, this
trial-and-error approach is unacceptable. For this regbermultiscale modeling is a
very important aspect in fluid flow modeling that can be veryaddageous for control
designs. Furthermore, the concept of a macroscopic owgutation can be tested for
a wide range of feedback and feedforward control designitaine.

In the next chapter, we will derive a microscopic contrdeated two-phase flow
model that can be used for designing a similar boundary obtbeity and we will ver-
ify the importance of control-oriented microscopic modglpf fluid flow systems for
control design.






Chapter 4

Control-Oriented Modeling of
Two-Phase Flow

Inthe previous chapters, we introduced the microscopicatmitsingle-phase flow and
a boundary control strategy based on the numerical appitoagticroscopic models
(seeRD1in Chapte[1). In this chapter, we will develop a controleottied microscopic
two-phase flow model for the flow inside bubble columns basea et of assumptions
that can be used to reduce the model complexity of the malsiptilow discussed in
Sectior 2.2.8. At this stage of the development of a cordriginted two-phase flow
model, we will focus mainly on understanding the complexunabf hydrodynamics
behind the two-phase flow and on development of differentififqutput structures.
In this chapter, particular attention is given to the isstedated to well-posedness,
coupling terms, eigenvalues, steady-state solutionshpanddary actuation strategies
for the derived two-phase fluid flow system.

4.1 Introduction

In this chapter, we will derive a control-oriented microgimtwo-phase flow model
which will be treated in the remaining chapters of this thesihe derived control-
oriented microscopic two-phase flow model provides a neveaspf modeling two-

phase flow systems and control of two-phase flow systems. &hadpect in devel-
oping the control-oriented two-phase flow model is that a/\&rong mathematical
theory is needed to study the well-posedness of the modeluiation and the well-

posedness of boundary conditions before using any nunherethods to approximate
the solution. As discussed in Chagiker 1, the model-baseddatsirategy for two-phase
fluid flow systems should not rely on the numerical methodsrukthe currently used
CFD models. Instead, it should provide a theoretical fraor&for the development
of different input/output strategies using available gtiedl tools. Furthermore, in this
chapter, we will introduce a list of modeling assumptions;aading to the aspects
stated in Section 2.5, which eventually lead to the deivedif the final compact form

57
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of the control-oriented two-phase flow model for gas-ligsydtems. The main focus
of this chapter is on the well-posedness of the derived obptiented two-phase flow
model and on the methods available to relate the well-poseblgms to the type of
PDE models as discussed in Secfion 2.3.3. The method basgidanvalue analysis
which directly links the model formulation with the well-ped boundary conditions
will be used to derive a well-posed actuation strategy. Tdivate this observation,
we will introduce the linearization technique and coortirteansformations for which
a very general decomposition theorem is applicable. Thedioate transformations
will enable developments that will be presented for caugalif/output relationships
between boundaries in Chagiér 5, and for different spatisditributed control designs
in Chaptef 6.

This chapter starts with a brief description of two-phasi fllow systems (see Sec-
tion[4.2.1), with an overview of the literature presentedimaptefdl. This overview
is intentionally not complete, and it aims only to preser ittnportant concepts and
issues related to the microscopic modeling of two-phase flbwere are many other
results in the field that can be found in the CFD and multiplilageliterature. Section
[4.2.2 contains a set of modeling assumptions used to detiReao-phase flow model.
The well-posedness of the model is studied in Sedfion418.8ectior 4.8, we intro-
duce the method of characteristics for the derived PDE mimdééfine a well-posed
boundary actuation strategy for the given control-oridmigcroscopic two-phase flow
model. The problem of the well-posed boundary actuatioatesgy is studied on a
linearized PDE model which is obtained using a linearizatechnique similar to the
linearization technique presentediin [1] for the singl@gahflow. The linearized model
allows us to introduce the definition of decoupled systemgwkvill be the subject
of Section 4.3 4 of this thesis and later chapters. Finailgection 4.5, we present
numerical results which illustrate the presented thecakframework.

4.2 Two-Phase Flow Models

4.2.1 Introduction

Two-phase flow is of great relevance for many industrial mpgibns ranging from the
chemical industry to oil production and nuclear enginegrlhis generally understood
as a simultaneous flow of two interactive and different pegsee Chaptéd 1). In most
cases, the phases are simply referred to as gas/vapod, lagolid staté. According
to the combinations of the phases, it is easy to classifypgivase mixtures as

e gas-liquid,
e gas-solid, and

e liquid-solid.

1plasmaiis lately considered to be a distinct state of mastered.
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For a long time, the analysis of two-phase flow processes watetl to mostly
empirical correlations, or to largely simplified enginegrimodels|[18, 36, 37]. In
recent years, due to the wide range of applications, gréat éfas been spent on the
analysis of fluid dynamics in two-phase systems, and on thkelolement of related
numerical simulation methods [47,151, 92]. The microscopadels for two-phase
flow in the fluid dynamics approach have been mostly derivehfthe fluid dynamics
of the single-phase flow with specific interactions betwedan gghases (see Section
[2.2.3). The result of this approach is a set of equationgigavisimilar structure as the
single-phase flow (i.e., the Navier-Stokes equations) fndrith they originated. The
currently used models rely on different interactive pheanambetween the phases with
specific physical background and closure equations [51].

In this chapter, instead of using CFD two-phase flow modetswill develop a
control-oriented model which comprises the findings from finevious chapters and
multiphase flow literature. The results contained in thiggter have been published in
[39].

4.2.2 1D Two-Phase Flow Model for Gas-Liquid Systems

In order to develop a comprehensive strategy for a two-pthaseystem inside a reac-
tor column illustrated Figule11.2, the first step is to defipeablem of our interest and
a set of assumptions needed to simplify the problem (seéo8&EB). The following

assumptions have been made in order to derive a contraitedamicroscopic two-
phase flow model based on the microscopic conservation lésesigbed in Chapter

2L
e The fluids (gas and liquid) are considered to be incomprkssib

e The entire volume is occupied by gas and liquid and is definethé volume
fractions of the gas phasg and the liquid phase, and for each volume ele-
mentog + o) = 1 holds.

e The flow over the entire cross section is uniform, i.e., the& fl@riations occur
only in 1D.

e The gas phase is dispersed and consists of bubbles whicpledal in shape
and uniform in size. The processes of coalescence and lyeaka neglected.

e No mass transfer occurs between the two phases.

e Each phase is treated as a continuum in any size of the domder aonsidera-
tion.

¢ Ineachvolume element, there is a sufficiently large numblenbbles that create
the continuum gas phase.

e The pressure influence is modeled by distinguishing a budkgarre and an in-
terfacial pressure.
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e The pressure in each volume element is assumed to be shaithe iphases
proportional to the fractional area occupied by the phases.

¢ The interfacial tension also causes the presgupg for the tension from the gas
side, andA p for the tension from the liquid side at the surface.

e The drag force is considered to be the only coupling term éetvthe phases as
described in[{2.73). All the other coupling terms are neglc

According to the given assumptions, a 1D form of the micrpgcoonservation laws
can be obtained. The following set of PDEs based on the maseoation laws (see
Section Z.22) and the momentum conservation laws (seéoB88CP.3) is obtained.
The mass conservation laws for both phases read as

dag  dog ovg

B ox Yo% =0 “1)
oq aq v .
o T T =0 (4.2)
and the momentum conservation laws for both phases read as
oV, oV, d Ja
ov| oV dp oo
aIpI - +O(|V|P|a— Hog AP = —0pig+B (Vg Vi), (4.4)

whereqy is the volume fraction of the gas phasg,is the velocity of the gas phase,
andy; is the velocity of the liquid phase, with the drag force ctbdg the following
equation

l3— OlgO'|p||Vg vil,

whereCy is the drag coefficient ando is the diameter of a single bubble. In princi-
ple, the balance equations are derived for each phase s&lpaad are coupled via

interactive terms given as (2]13). According to the givesuasption, the drag force is

considered to be the most dominant coupling term

F=F=B(vg—V),

which appears on the right-hand side [of {4.3) dndl (4.4). Mazfrihe presently used
two-phase flow models use different interfacial couplingn® with sometimes am-
biguous physical background and empirical closure egnaiigl]. Thus, we consider
only the most dominant coupling term which is the drag force.

In setting the momentum balance equations, we use theastalpressures pg
andApy in (4.3) and[(4.4) respectively, which can also be consiiiasscoupling terms
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since they are functions af, andyv;. The liquid interfacial pressure can be obtained
from the following expression

Apr = Cpaipr (Vg —Vi)?,

whereC, is the interfacial pressure coefficient [71] 80]. The presslifference/ py
can be neglected due to the low density of the gas phase.

As far as the total pressure is concerned, the momentumdeakouationd (413)
and [4.4) share the pressure term proportional to the gasdns. This fact can be
used to derive a more compact representation of the twoedleag The pressure term
can be eliminated by dividing (4.3) arid (4.4) &yanda , respectively, and subtracting
one from the other. Under conditions teaf # 0 anda; # 0, we can obtain the total
momentum equation of the two-phase flow system as

ovg ovg oV, »00g
pg ot p| at erg 9 73, X —pPVi=—— ox +Cpp| (Vg*V|) W (45)
B B
(pgpl)g(Vng)<u—g+a—l .

Equation [4.b) describes the total momentum of the mixtuite no pressure varia-
tion outside the system boundaries. The signs in front otithe derivatives can be
assigned to the direction of the velocities.

Before writing the final form of the model, we can make one neingplification
step. Due to the assumption that the volume under consideiiatoccupied with gas
and liquid, i.e.ag+ o) = 1, (4.2) can be rewritten in terms of oty as

0(1—ag) 0(1l—ag) o
i + FV +(1-0g)=— PVl 0. (4.6)
After rearranging [(4]6) reads as
—at + —aX V| - (1* Gg)& - 0 (47)

The last step includes subtracting {4.1) fram{4.7). Now, fihal set of PDEs can be
written as

dog | dag ovg
o + X ——Vg+0g— I =0,
ov, ov| oV, v o
Pg atg pl +ngg ag PIVi— ax +Cppi(vg )Za—xg

l1-ag
dag 0vg ov
— E— 1 _ _— =
X (Vg V') + FI% ug + ( ag) X Oa
which in a compact form reads as

oD oD
Esr TA@) - =c(@), (4.8)
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whered = [ ag vg Vi | is the vector of fluid variables. The matrices

1 0 0
E=|0 pg —p |, (4.9)
0 O 0
and
Vg Og 0
A®) = | Copi(vg—V)® Po¥g —PVI |, (4.10)
Vg — Vi Og 1-aqg
are the system matrices, and
0
@ = | —(pg—p)a—(vg—) (£ + L) (4.12)
0

is the coupling force vector. Equatidn (4.8) is just a sirfigdi representation of (2.111)
and [2.10), where the variation of fluid variables is obsérivelD space direction
with additional assumptions outlined at the beginning @f #ection. A similar set
of simplification steps has been publishedlin [73] where thegpting forces between
the phases were studied using a two-phase flow model for atitigtvo-phase bubble
flow. The interfacial momentum exchange includes the sarfa@ss developed on the
interface, which is induced by the relative motion of the g interfacial pressure,
and the drag force. In this work, we focus on the drag forceiatetfacial pressure
only for the incompressible two-phase fluid flow system.

4.2.3 Linearized Model Representation

A linear approximation of nonlinear models aims to analyre lbcal behavior of a
system. This is a very important aspect of the linearizedehrebresentation, which
is widely used in control theory to design controllers theat stabilize system behavior
around the chosen operational regime. In the followingisest we will utilize the
linearized model to analyze the well-posedness of the nfodmlulation described by
the nonlinear PDAE(4]8) and to define conditions for a wekgd boundary actuation
strategy. Even though we will study the linearized modet gfeows local behavior
of the two-phase flow system, the results obtained are végyamt for spatially dis-
tributed control designs that will be introduced in Chafiemnd can be extended for
the nonlinear PDAE model.

4.2.4 Well-Posedness of the Model Formulation

As we already discussed in Sectlon 213.3, the first step imidgfthe well-posedness
of the model formulation is to classify the derived PDE maated to suggest the well-
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Table 4.1: Well-posed regions of the two-phase flow modeddas the eigenvalues
(4.15) and[(4.16) for a wide range of the velocitigemd v, whereog = 0.1,
pg = 1 kg/m?, andp; = 1000kg,/ .

Eigenvalues Velocity conditions Ratio between the velesit
obtained from
(@.15) and[(4.16)
A=A 70.45Vg+ 1.45v, = V| /Vg =1
A >0 Vi /vg > —0.89 vi/vg>0.3
A >0 Vi/vg>0.3
A <O Vi /vg > —0.89 —0.89<Vv/vg< 0.3
A >0 Vi/vg < 0.3
A1<O Vi /vg < —0.89 Vi /vg > —0.89
A <0 Vi /vg < 0.3

posed initial-boundary conditions. The nature of possdolitions to[[4.B) is essen-
tially characterized by coefficients of a characteristitypomial obtained from the

system matrices of the derived model{4.9) dnd (4.10). FekPBodels, the degree
of the characteristic polynomial is smaller than or equahtnumber of states. This
means that the eigenvalues corresponding to the algetadib@ve eigenvalues with
infinitely many solutions, and the eigenvalues with the drsblutions correspond to
the dynamical part. For the model given Bs4.8), the eigaavanalysis shows that
the system has one infinite eigenvalue and two finite eigaegalhich can be obtained
from the characteristic polynomial

detAE — A(®)) = a1A? + aA + as, (4.12)
where

a1 = —0OgP; — Pg+ PyQg,
ap = 2pgVg — 2VgPgOg+ 20gP1 Vi,

ag=—Cppi (Vg— V) g+ (ngg2 —Pv? + Cppi (Vg — Vi )2) Og— PgVg”-
The discriminant of[(4.12) is then defined by
Dc = a3 — 4ajaa. (4.13)

If Dc > 0, the system[(4]8) is said to be hyperbolic/ [60, 77]. In thise; the
eigenvalues of the hyperbolic equations are real and distihD. = 0, the system is
parabolic with real repeated eigenvalued{f< 0, the system is elliptic with complex
eigenvalues. In general, elliptic system with one cooriib&ing time are proven to be
ill-posed, whereas parabolic and hyperbolic systems alepesed with a stable and
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unique solution/[77]. This was discussed in Secfion 2.3His Theans that the well-
posedness of (4.8) is defined by the eigenvalues of the pé#p)(E) and the system
parameters of the derived two-phase flow model [80]. In otaeefine a critical point
between the well-posed and ill-posed solutions of the ddriwo-phase flow model

(4.8), we evaluaté (4.13) as
DCD(l (M) Cp), (4.14)

Pg

whereD = dgpgpi (Vg — Vi) (—1+0ag). Sinceag < 1, then the discriminant is nega-
tive, i.e.,D < O for all values of the velocitiegg andv;. This implies that the well-
posedness of the PDAE model is determined by the interfpogsisure coefficierd,.
The criticalCy, for which the discriminanD. = 0 and the system is parabolic, can be
obtained from the system parametggsandp,, and the volume fractiong as

Co=—PT
P g + pgat

There have been many studies over the last two decadesrigcosithe interfacial
pressure coefficier@, for different fluid systems [51]. For the air-water systerhjoin
will be treated in this thesis, the interfacial pressurefficient C,, is reported to be
between 0.25 and 0.5.[73]. For this value@y, the derived two-phase flow model
(4.8) is well-posed for a wide range of gas fractiomg(see Tablé&4]1).

4.2.5 Eigenvalue Analysis

After deriving the 1D two-phase flow model, we are in positiombtain the eigenval-
ues of [4.8) from the following expressions

_ OgPrVi + 0 PgVy
A(P) = —Otgp| P + /D, (4.15)
OgPrVi + O PgVy
Ao(p) = 90 TAIMOTS /D 4.16
2 Ogpr +aiPg Ve ( )

These eigenvalues represent the characteristic veloaotithe gas/liquid phase in the
two-phase fluid flow system. Due to the fact tipgt> 0 andp, > 0, the signs of the
eigenvalues change according to the velocitigandyv;. The results of the eigenvalues
and the range of the velocities for which the model is welqubare given in Table
[41. In the range outside the given velocity ratios, the rhisddl-posed. In Figures
41 and 4R, we present an analysis of the eigenvaluesges 0.1, pg = 1 kg/m?,
andp, = 1000 kg/m? in order to illustrate the velocity influence on the charestie
polynomial.

Figureg[4.1(d) illustrates the influences of the velocitytaf gas phase on the char-
acteristic polynomial, whereas the influence of the vejoeftthe liquid phase on the
characteristic polynomial is shown in Figlre 4.1(b). Thewas in Figure$ 4.1(f) and
[4.1(b) indicate the direction of the increased gas anddigelocities, respectively. As
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Figure 4.1: Influence of the velocitieg &nd y on the characteristic polynomial with
the characteristic polynomial dgtE — A(®)) for (a) vy = 0.2 m/s and (b)
vi =—0.02m/s.
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Figure 4.2: Hyperbolic region of the derived two-phase floadel forag = 0.1.

can be observed from Figure 4.7(b), by increasing the gaxitglvy, the character-
istic curve is shifted upwards, and it crosses zero for eelaajue of the gas velocity
vg. These cross points are the eigenvalues given asl (4.15/at®) ( Depending on
the values of the velocitieg; andvi, we can determine the well-posed region of the
derived two-phase flow model. The influencevpbn the well-posedness of the solu-
tion is to some extent already determined/g\gince there is a strong relation between
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their eigenvalues. The effect @§ andv; on the characteristic polynomial is shown in
3D in Figure 4.2 fomg = 0.1. WhenA; = A2 = 0, the model is parabolic whereas for
the rest of the region the model is elliptic. For all poss#itms of the eigenvalues, we
refer to Tablé 411.

4.2.6 Summary of the Model Formulation

In the previous sections, we have derived a well-posed 1Bbphase flow model which

is in agreement with the discussion given in Chapier 2, whiebcribes the micro-
scopic modeling of chemical processes. The given analysiseowell-posedness of
the model formulation and influence of different terms in tlegived two-phase flow
model are written in a comprehensive manner that can bediunted to develop actu-
ation strategies. The derived two-phase flow model is sinhilahe model published
in [73]. In contrast to the CFD model presented.in [73], whaitms to analyze all the
effects of bubbles on two-phase flow, we focus mainly on thaidant dynamics of

the two-phase flow system that are important for the strattigvelopment of well-

posed actuation strategies and spatially distributedrabdesigns. Our approach to
the two-phase flow model is very different from the CFD mogatswe will see in the

following sections of this chapter, and in Chapférs 5[dnd 6.

4.3 Boundary Conditions

4.3.1 Introduction

In Chapte B, we saw that the boundary conditions of the flided cavity case of
single-phase flow can be used as inputs to control the flow imuataral way. In
this section, we will first study the well-posedness of thermary conditions for the
derived two-phase flow model before we suggest differertiapadistributed control
strategies (see Chaplér 6). Here, we will use the methodasfcleristics to study the
boundary conditions and to define well-posed input/outpputtures for different flow
regimes. Once the well-posed input/output structure has betained for all possible
regimes, one can return to the original problem to seek tis¢ dcmntrol design. In
general, it is more desirable to have a model which can belatediwith a well-
posed input/output structure than to use large numerigalrdhms which require a
considerable computation time (see Chalpter 1).

After the linearization that will be discussed in Secf{ioB.&, we will apply a suit-
able transformation to eliminate the algebraic parofl(48d reduce the model to
a PDE model (see Sectidn 4.8.4). These two techniques alfove wonsider the
well-posedness of the boundary conditions and to deterdifferent well-posed in-
put/output structures.
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Figure 4.3: Characteristic curves afi (®) andA(P).

4.3.2 Method of Characteristics

As discussed in Chaptel 2, the solution to a PDE model ingafletermining a well-
posed boundary condition. Posing too many or fewer bounclamgitions on a PDE
model can lead to a non-uniqueness of the solution. Thexgitois crucial for a suc-
cessful control design to develop a control strategy tHaes®n a well-posed bound-
ary condition. In order to develop a well-posed boundaryativn strategy for the
derived control-oriented model of the two-phase flow, weoidtice the characteristic
curve analysis of the linearized two-phase flow model baseth® method of charac-
teristics. The characteristics represent lines with attartic directions as shown in
Figure[4.3. The curves shown in Figlire]4.3 represent naanliokaracteristic curves
and their linear approximations. The analysis of the chargstic curves provides sev-
eral important conclusions concerning the boundary c@arditfor the model written
as [4.8), which will be discussed later in this section.

Using the method of characteristics, a set of PDEs can beftianed into a set
of ODEs along the characteristic directions in {ket)-plane. To prove this statement,
we start with the elementary calculus for a set of nonlindE®where

do(t,x) _ 0P(t,x)  0P(t,x) dx
dt ot ox dt’

The left-hand side of(4.17) is a total derivatived®falong curves defined by the coef-

(4.17)
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Figure 4.4: The wave propagation along characteristic @s\vand boundary condi-
tions for (a)A1(P) > 0andAz(P) > 0, (b) A1(P) < 0andA(P) <0, and
(€)A1(P) > 0andiz(P) < 0.

ficient in front of the time derivativelx/dt. Since [4.8) belongs to the class of PDAEs
with E being a singular matrix[{4.17) has to be multipliediyi.e.,

do(t,x) _0d(t,x) oP(t,x) dx
E— i =E— T H+E— (4.18)
Then the time evolution of(41.8) is set as

do i d
EE =c(P) along the curves defined byEd—i( =A(D).

The characteristic curves of the linearized modekin)-plane are shown in Figute 4.3
as vectors with the directiong (®) andA,(®).

The directional derivatives, which correspond to the eigéres of the system ma-
trices(A(®), E) along the characteristic curves, can be defined by the folp®@DEs

% =A1(®P), and % =A2(P).

The quantities; and&; can be seen as the total derivatives in tkg)-plane,
along the nonlinear curves defined by the ODES$([25, 34]. Thersialues, in essence,
describe the direction of the wave propagation of the twasgtfluid flow.

According to the signs of the eigenvalukg @) andAx(®), different boundary
actuation strategies are possible. Figure 4.4 illustihieslirection of the wave propa-
gation according the eigenvalueg ®) andAz(®), and the boundary conditions asso-
ciated with the flow directions. For example, if the eigemesl are negative, then the
flow along both characteristic curves propagat&as x— A1(P)t and§z = x— Az(d)t
in the (x,t) plane (see Figule 4.4{a)). This means that the boundanyitemmimust
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be specified at the location= 0 asd(t, 0), otherwise the boundary conditions are ill-
posed (see Sectifn 2.8.2). However, if the eigenvaluesayative, the flow along the
characteristic curves are defined&@s= x; + A1(P)t and&z = xo + Ao(P)t, then the
boundary conditions must be defined at the locatienL as®(t,L). This situation is
illustrated in Figurg¢ 4.4(b). It is rather common to haveifs and negative eigen-
values, where for the positive eigenvalue the boundaryitionchas to be specified at
the locationx = 0 asd(t,0), whereas for the negative eigenvalue the boundary condi-
tions has to be specified at the locatios: L as®(t,L). This type of flow represents
counter-current flow which will be discussed in detail in @&t4.4. In Figuré 414 next
to the(x,t)-plots, we also show the bubble columns with different atbuastrategies
in order to give the physical interpretation of the givenesigalue analysis. As can be
seen, the physical interpretation of the characteristigesianalysis is rather straight-
forward. The waves with the characteristic velocitd$®) andA,(®) carry the gas
fraction of phases injected at the boundaries accordinige®igns of the characteris-
tic velocities. When we inject the gas/liquid phase at tHetlautlet, the phases will
propagate upwards or downwards according to the signs @igeavalued(P) and
Ao(P).

4.3.3 Linearized Two-Phase Flow Model

In the previous section, we discussed the boundary conditltat immediately follow
from the signs of eigenvalues that can be locally obtained EBguré 413). This means
that for the derived PDAE moddl(4.8), in each point in spaeehave to determine
the eigenvalues and locally approximate the nonlinear PQAB) by a linear one.
This requires a large number of locally linearized equati@&ince we are interested in
developing an input/output structure for the derived tviage flow model that can be
used to control the fluid flow around different operationgjimees, in this section we
will introduce the linearization technique that can sirfipthe approach of the local
linearization.

Suppose thab is a steady-state solution of the derived two-phase flow @8,
and®’ is a small perturbation around the steady-state solutimm the flow variable
® can be written as

P=0D+, (4.19)
and the linearized two-phase flow model can be defined as

oY oD
Er +A@) 5+

K(cp’)%;f =F®/, (4.20)
with
Vg g 0
A®) = | Cop (F-W)? pg¥g —PVT |

G-v @ 1-0
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i ag’ 0
A@) = | 2Cpi (Fg—W) (Vg'— Vi) Pgvg’ —pivi" |,
] dg  —0g
representing the linearized system matrices, and
0 0 0
F=| o _gpe/law)’ 5,00 Goa)” |,
0 0 0

representing the linearized force vector. Here, we prefentoncept of the local
behavior of the linearized two-phase flow, where the liresion procedure is given in
AppendixB.

In essence[ (4.20) represents the linearized two-phaseftmiel with the space de-

. . o [)
pendent steady-state solution, according to the The space dependent steady-

state solutions, in essence, represent the flow patterhs ioltserved domain. If there
is no variation of the steady-state solution with respeciptace, i.e.® = const, the
linearized two-phase flow model reduces to the followingatigun
o’ — 09 ,
E—r TA®) - =Fv. (4.21)

In general, a system of equations written as a linear setuteans represents small
variations of properties. Here, the system matrices desche rate of fluctuation in
the neighborhood ob. If the flow is smooth in a sufficiently small neighborhood of
the steady-state solutiah, the fluctuationsd’ are essentially linear. As the fluctuation
of the two-phase flow properti&® represents the small variation in the linear approx-
imation of the two-phase flow modél(4.8), one can think oflthear approximation
as a linear deformation described by eigenvalues and eigéons of the linearized
two-phase fluid flow model.

In order to demonstrate the linearization technique, sithurhs are carried out us-
ing a space independent steady-state solution i.e., qtesgiysstate solution, while
enforcing the well-posedness of the problem statement. (liasi steady-state solu-
tion, which is spatially uniform, can be used as an equilioripoint for the lineariza-
tion of the two-phase flow model. Sectionl4.4 will discusssille quasi steady-state
solutions and their physical interpretations.

4.3.4 Coordinate Transformations

In this section, we use the linearized two-phase flow madd@{yto reformulate the

linear PDAE problem into a linear PDE using standard co@iditransformation tech-
niques. It is important to emphasize that the coordinatesframations do not change
the system dynamics, instead with the coordinate transftom the model is repre-
sented in another coordinate system. The linearized tvesgfiow model written as a
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linear PDE model is beneficial for control designs, which w illustrated in the fol-
lowing chapters. In ChaptEt 5, a causality problem of diffginput/output structures
will be discussed, whereas a wide range of spatially disteith control designs will be
shown in Chaptdr]6.

In this section, we introduce two sets of coordinate tramsédions: one that elim-
inates the algebraic part of the linearized two-phase floweh§.21), and one that
decouples the characteristic wave velocitigé®) andA,(®P). The first coordinate
transformation is introduced in order to simplify the cortgiions involving the alge-
braic equation in the linear PDAE model(4.21). First, thetegn matrixE in (4.21) has
to be diagonalized, so that in the new coordinate systemirtbarized PDAE model
(@.21) can be reduced by eliminating the algebraic equafibis means that the sys-
tem can be decomposed into the dynamics part and the algganaiby diagonalizing

100 100
EP=ET=|0 1 0|, and T=| 0 pg* p with @' =TW',
000 0 0 op

whereT stands for the coordinate transformation matrix. Now, we ttansform the
state vecto®’ into a new state vectéP’ such that according to the given fluid variables
(og, vg, @andy;), the new states are given as

W — pg\/g - pIVT
vi

The two-phase flow model in the new coordindtésan be written as

oW = v
ET— +AW)T - =FTV. (4.22)

Due to the simplicity, here, we use a symbolic representatiothe linearized
model [4.22), and later on we will present some numericalltesWe start with the

two-phase flow mode[{4.22) in the coordinaté's

Ty _

Y Ogpi
1 00 9 g
oW R W
010 T‘i’ Cppl (Vg—VI) Vg PgVgPI — PIVIPg W: (423)
000 T B
Vg1 —  TUgpi + (1—-0g)pg
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0 0 0
3CoP(T-W°  3Cep?y (% )" 3Capy/(%G- )y |y,
2 db Py 2 dy 2 dp

0 0 0

The statéd’; can be obtained from the last equation in the diagonalizedfarm
(4.23) as
ow; (PgVg — Pg¥i) oy Oy 0w,
0x  pg(—0gpi —Pg+Pglg) OX  Pg(—0gPi — Pg+ Pylig) OX

(4.24)

Equation [4.24) can be used to eliminate the st##efrom the linearized two-phase
flow model [4.21) given iV’ coordinate system. After the elimination ®f;, the
system contains only PDEs. The derived PDE model reads as

o[ v 0 W W
3t [ Lp'; :| +Areda—x |: L|J’; ] = Fred[ kp’i ]7 (4.25)

whereAeq has the same eigenvalues [as](4.8). The two-phase flow moittenias
(4.28) captures the flow dynamics in th& coordinate system, which are described by
the eigenvalues o4 eq.

Now, we will introduce the secgnd coordinate transfornratidnich is used to de-

N A . : . .
couple the directional derlvatlvegy, i.e., diagonalizéAqq. First, we introduce the
following coordinate transformation

RN
W W,
whereV is the transformation matrix that gives

ovVW’ LA ovVW/’
ot e ax

which reads as follows in the new coordinate syst&m

= FredVW/, (4.26)

ow’ 1 ow’
Equation[(4.2]7) describes the linearized two-phase flowahedtten as the PDE with
the decoupled wave propagatién The final form of the linearized two-phase flow

model with the decoupled directional derivatives can bétemias

0w M O 0 [ W C11 C12 W/
=l w |t =l w | = 1. (4.28)
ot | W, 0 A |ox| W C21 C22 W,
2The notation(-)’ is used to emphasize the linear approximation of the naaliteo-phase flow model
written in different coordinate systems.

=V IFeqVW'. (4.27)
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The solutiond/ (t,x) andWj(t,x) represent the fluid variables in the new coor-

: . .. dx
dinate system, which are constant along the same chasln:tdlmesa = A1 and

dx _ A2 discussed in Sectidn 4.3.2. Note that= A1(®) andA, = Ao (P).

dt

The coordinate transformations used in this section leakdetd®DE model formu-
lation of the two-phase flow (4.28) written in the coordinaystemW’(t,x). Due to
the model simplicity given in th&V’(t,x) coordinate system[ (4.28) is well-suited for
different spatially distributed control designs that wié discussed in Chapter 6. In
essence, the applied transformations are a permutatidmedPDAE, and it also in-
volves a full state transformation. In the case of full stagémsformation ofd’(t,x),
the new state®V'(t,x) cannot be associated with physical states any more, but the
relationships between new and old states are fixed by theftnamation matrice§
andV. There are different arguments to arrive at a suitable dnate system, which
will be discussed in Sectidn 4.5 and further extended in @&rEp Although the main
purpose of the coordinate transformation presented instéhision is to decouple the
directional derivatives, the decoupled model also leadkealetermination of a well-
posed boundary actuation strategy. Furthermore, the ocwiedtransformations sug-
gest a well-suited numerical scheme for spatial discriétimaof (4.28), which will be
discussed in the next section.

4.3.5 Spatially Discretized Model

Another important aspect of the PDE models discussed in #€Haps the choice of
appropriate numerical schemes for the spatial discratizatf the PDE models. The
PDE models are usually numerically approximated by a latgeber of ODEs accord-
ing to the chosen discretization schemes [76, 79]. The diteeaderived ODE model
depends on the number of discretization points and the acgwf the discretization
method used to approximate the PDE solution. In the fluid dos, the number of
points depends on the problem formulation and chosen gegraet it is typically in
the range of 19and 18°. Furthermore, for the hyperbolic-like PDE models, the choi
of the spatial discretization has to be in agreement withdilhection of wave propa-
gation. The direction of the wave propagation, which cantmractarized as positive
or negative, has to agree with forward and backward numesiteemes. The forward
and backward numerical schemes are given according togheo§ithe eigenvalua
as

i/ _l 7wl
%—V:‘ = )\% for A >0, (4.29)

/ Wliwl
d;’l‘ :)\'T'*l for A <0, (4.30)

whereAx represents the characteristic length defined between timtsgo space and
indexi denotes the point in space. It is also important to point betdonsequences
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of the discretization methods. Choosing inappropriateemical schemes may lead to
numerical instabilities caused by discarding the directibthe wave propagation [42].

The discretized two-phase flow model can be obtained flo@Bj4using either
(@.29) or [4.3D) according to the signs of the eigenvaleandA;. For example,
suppose that the two-phase flow propagates in the vertidaintpas illustrated in
Figure[4.4(d), then the appropriate numerical scheme hasritain both discretiza-
tion schemes. Fok; < 0, we use the forward discretization scheine (4.29) with the
well-defined boundary conditions at the locato#s: L, whereas foi, the backward
discretization schem&{(4.130) is necessary in order to mlataiumerically stable solu-
tion. After the spatial discretization, the spatially disized two-phase flow model can
be written as a large-scale linearized ODE model

1 AN
%{ ¥ ]:Hi QZHW{Z ]+[§§]an (431)
where
[ —A1+c1n M - -0
—A1+C11 Ar 0
A= B |
—A1+cCun A1 0
—A1+C11 M

corresponds to the forward spatial discretizationXfpr- 0, and

[ A2+cC22 —A2
-2 A2+ Co2 0
Axp = , Ba= ;
—A2 Az2+cCoo 0
—A2  A2+cC 0

corresponds to the backward spatial discretizatio\for. 0. The off-diagonal matri-
cesA1z andA;; in (4.31) contain only the coupling elememts andc;1, respectively.
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C12 C21
C12 C21

C12 C21

The spatially discretized mod€l{4]131) represents a mionais interconnected form
of the two-phase flow model, which is similar to the intercected form of the single-
phase flow presented in Section 314.1. Although the spatidkcretized model might
be difficult to approach and influence due to the size of thtesymatrix{ ﬁi 2;2 ]
the discretized model have a rather deterministic strecithrich can be exploited to
reduce the computational complexity and design a simpléadlyadistributed con-
troller. The spatially distributed control designs for th@-phase flow systems will be
discussed in ChaptEl 6.

To illustrate the deterministic structure of the discretizwo-phase flow model
and to visualize sparsity patterns of the system matridestwo-phase flow model
written as [(4.2B) is descretized with= 1,2,...,10. The sparsity of the state matrix in
(4.373) for two different cases are shown in Figurd 4.5. FegLE(a) shows the sparsity
of the system matrix for the decoupled system whagfe= c12> = €21 = C2 = 0, and
Figure[4.5(0) for the coupled system whexg # 0, c12 # 0, C21 # 0, andcyy # 0.
Both systems have rather deterministic structures whidhbeiexplored more on a
numerical example in Sectidn 4.5. Before we present the ricaieesults, we will
introduce possible operational regimes that can be usedukbeium points for the
linearization derived in Sectidn 4.3.3.

® o & 0N
® o & 0N

12 . 12
14 .o 14
16 . 16

18 .o 18

20 . 20

[ 5 10 15 20 [ 5 10 15 20
nz=58

@) (b)

Figure 4.5: Sparsity of the state matrix [n.(4131) for i=1,210 where the dot indicates
a non-zero entry for (a) a decoupled system wheage=AA>; = 01910, and
(b) a coupled system werg A# A1 # 010,10
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4.4 Operational Regimes

4.4.1 Steady-State Solutions

As discussed in Sectign 1.8.2, there is a wide range of pesgilerational regimesin a
bubble column[70]. For example, the bubble column reactarhiomogeneous regime
is characterized by a more or less uniform gas volume fradistribution within the
reactor, whereas a heterogeneous regime is characteyizeddn-uniform distribution
and an internal re-circulation of the phases (see Figuje Tt2s means that a steady-
state solution is space dependent for the non-uniform fldwereas for the uniform
flow, the gas distribution is constant in the entire sp@ce const. As discussed in
the previous sections, in this thesis we will only considettiee space independent

operational regimes and the linearized mofel{4.28) wheghasents the perturbation
!

of the variable wz around the space independent operational regime. Thig spac
independent steady-state solution will be called the gstasidy-state solution.

In the quasi steady-state situation, the gravitationatdand the drag force are
in balance, and the flow is uniform through the whole donj@jh] as illustrated in
Figure[4.6 where the observed space is discretized acepialthe numerical methods
presented in Sectign 4.3.5. The figure also illustrates f¥ferdnt flow regimes that of-
ten appear in bubble columns. Fig{ire 4.6(a) illustratesuat-current flow, whereas
Figure[4.6(D) illustrates a co-current flow. The distinoti®tween those flows is based
on the direction of the phase velocities. Roughly speakifngpoth phases move up-
wards (i.e., from bottom to top), the flow is considered to becarrent; whereas for
fluid systems in which the phases flow in opposite directitmsflow is considered to
be counter-current. To predict the direction of the velesiin the quasi steady-state
regime, we introduce a slip velocity as a difference betwibenvelocity of the gas
phase and the velocity of the liquid phase, Me= vy — V. According to the definition
of the slip velocity and its relationship to the velocitigsandyv;, we can obtain the
following expression from the momentum equatidnsl(4.3) End)

vee |4 (P —Pg)gdb(1—0g)
>3 Capi

In order to determine the gas and liquid velocitigsindy; in the quasi steady-state
regime, we need an additional relation that will rekgf@ndv,. The additional equation
can be obtained from the volumetric fluxes across the digektvolume sections.
For a bubble column with an open flow through the boundaries Bgurd_416), the
compensating volumetric flux across the volume in the quaesidy-state equals zero,
ie.,

OgVg+oyvi =0.
In this case, the velocity of each phase can be computed as

Vg = Q| Vs,
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Figure 4.6: A spatially discretized model of bubble coluraaator with open bound-
aries operating in two regimes: (a) counter-current and ¢b)current.

These relationships give a closing to the slip velocity aetkdnine the quasi steady-
state regime.

In the case of real flows, a certain amount of fluid moves dowdsvand a cer-
tain amount moves upwards. For the 1D two-phase flow, thédligelocity simply
represents a sum of the upwards and downwards flow:

ijownjL V|UP =v.

Which of the two liquid velocities is more dominant dependstioe gas and liquid
injection at the boundaries. In Sectlonl4.5, we will illage the use of the quasi steady-
state operational regimes in analyzing the boundary cimmdit which leads to the
development of well-posed actuation strategies.

4.4.2 Pressure Recovery

In the previous section, we studied the gas and liquid veésan the quasi steady-state
regime. Here, we will return to the momentum equatidns (dr®) [4.4) to define the
pressure in the quasi steady-state regime. Due to the facthth model is obtained

after a few simplification steps, in order to recover the gues term in the steady-state

regime, we have to considér (4.3) a@4.4)%{9 =0 and% = 0 which are given
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by
0V, dp
orgvgpga—)i4 +0(gd—x = —0OgPgd— B (Vg—V), (4.32)
and
oV d da
orvipy a—xl +a d—f()*cppl (VngI)Za—Xg =—opig+B(vg—w). (4.33)
Adding (4.32) and{4.33), the pressure gradient can be leddzlidirectly as
dp oV, ovi Ja
ax *“ngpga—)? —ovipr o+ Cppi (Vg — Vi )za_xg —(agpg+0aipr)g,  (4.34)
for the steady-state solution, and
d
d_f: = —(0gPg +QIpI)g,

for the quasi steady-state whewg = const. As expected, the pressure in the quasi
steadiness equals a hydrostatic pressure. Equbiion #a84)form similar the Bernoulli
equation written for the two-phase flow modell[47]. To prokis tstatement, we can
setag = 1 in (4.34) which gives the following relation between thegsure and the
gas velocity

dp ovg
ax — VoPagy —Pg- (4.35)

This verifies that our modeling assumptions introduced uti6e(4.2.2 are well-posed.

In the following section, we will present numerical resufghe discritized two-
phase flow mode[{4.31) which is obtained from the linearizea phase flow model
around the quasi steady-state solution.

4.5 Numerical Example

In this section, we establish the well-posed boundary d¢ardi for the derived lin-
earized two-phase flow modgl{4]31). This numerical examiphs to get an additional
insight behind fluid dynamics of two-phase flow and to develeyell-posed actuation
strategy based on the theoretical framework previouslyudised. The fluid properties
and the system parameters are given in Table 4.2.

The fluid variables in the quasi steady-state are obtaired & constant gas distri-
bution in the entire space divided intb= 10 volume elements. According to the anal-
ysis of the operational regimes given in Secfion 4.4, forstant gas fractiog = 0.1,
the slip velocity isvs = 0.17 m/s, the gas velocity iS5 = 0.155 ny's, and the liquid
velocityvi = —0.017 nys. According to the signs of the velocitiggandvi, the phases
move in the opposite spatial direction which is illustraiteéFigure[4.6(d).

For the given quasi steady-state situation, the eigensadueAr; = 0.0954 and
A2 = —0.064, and they suggest the choice of the boundary conditidnsording to
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Table 4.2: Fluid properties and system parameters.

Symbol | Value Unit
Py 1 [ [kg/m]
p__| 1000 | [kg/m¥
Cy 0.440 []
dp 0.001 [m]
Cp 1/4 []

g 9.81 | [m/s]

(4.31), the analysis given in Sectibn 413.2 for the boundary condition has to be
defined at the inlet, i.eWV(t,0), and the boundary condition fag has to be defined

at the outlet, i.e.Ws(t,L). Figured 4.7 anfd 418 illustrate the wave propagation of the
characteristic solutions from the boundaries withoutédezm, i.e., the right-hand side

of ([4.28) equals zero,

/ 0.064 0 / 00
ow + W’ _ W', (4.36)
ot 0 —-0095 | 0x 00

Time

Space

Figure 4.7: The wave propagation of;{¥,x) with the speed without the force term
c11W, + c1oW.
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The simulation results clearly show the direction of the &vpvopagation and the
stability of the solution&Vj (t,x) andW,(t,x), respectively. As shown, for the given
boundary conditions the linearized model, which repreenperturbations around the
chosen operational regime, without force term (i.e., omgaional derivatives) is sta-
ble. This verifies the well-posedness of the boundary carditwhich were obtained
through the analysis of the eigenvalugs= 0.0954 and\, = —0.064. Furthermore,
Figured 4.V and 418 show a typical behavior of the first orgeerbolic system [81].

Now, we will introduce the right-hand side ¢f (4128) to examthe influence of the
linearized force vector. The influence of the linearizea#ovector, i.e., the right-hand
side of [4.28) is calculated from

/
o W, (4.37)

oW’ 0.064 0 oW’ 52126 164764
+ —
ot 0 -0.095 52126 —164764

and presented in Figures #.9 and 4.10.

For the wave that propagates from bottom to top, the effeciraf force is ob-
served mostly at the top boundary causeathyV; (t,x) andciW(t,x) with a minor
oscillation with respect to space (Figlirel4.9). The dragddras much stronger effect
on the wave that propagates from top to bottom. Although ys¢éem is still stable,
the wave velocities are rather influenced by the force caeffiscy 1, c12, €21, andcya.
Sinceciz > ¢11 > 0 andcy; = —Cp1 Whereas 2 = —Cpp, the stability of the wave which

Time 0 o

Figure 4.8: The wave propagation of{¥,x) with the speed. without the force term
c21W, + CooW.
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Time 0 o0

Figure 4.9: The wave propagation of\,x) with the speed\; forced by g;W, +
012W2'.

propagates with the velocifys is largely influenced bgy.

The simulation results given in Figures 4.7.14.8] 4.9,[add 4re given in th&v’
coordinates, which were obtained in Secfion 4.3.2. As dised in Section 4.3.4, the
original coordinate systery’ can be recovered using the inverse transformation of the
coordinate transformation matrix To recover the original set of PDEs given[as|4.8),
we can use the following expression to, first, recover thedioate systeny’

1! 7
Vfla% + (VflAredV)V*laaiX = (V  FreqV)V W/, (4.38)

where the inverse transformation matvxs

l 446726 05 1
vi= ,

| 446726 05

and, after that, to recover the original PDE model using taesformation matrix .

The time evolution of the original linearized two-phase flmodel [4.28) along the
characteristic directions for the given eigenvalues canliiained from the following
equations

for Ay =0.064 (4.39)

dat d(paV — pV]
4 446726309 | ,59(PaVo — PV

- - = 21770140, — 12.66(pgVy — A1),
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0.01

-0.01
= -0.02

-0.03

-0.04
100

Time 0 o

Figure 4.10: The wave propagation of){,x) with the speed forced by ;W +

022W2'.
and
for A, =—0.095 (4.40)
da’ d(pgV,— PV,
— 44'6726d—tg + O.SM = —21770140g+ 12.66(pgvy — piV))-

Equations[(4.39) an@ (4.40) represent the time evolutigheroriginal coordinate sys-
tem @'. In this coordinate system, the influence of the drag force lwa observed
through the coefficients on the right-hand side[of (4.39) @) for the eigenvalues
A1 andAy, respectively. The coefficients have a strong influence ersyistem dynam-
ics, which explains the system behavior illustrated in Fegld.9 an@4.10. According
to the signs of the coefficients, we can conclude that theandghe gravitational force
have a negative delay response regarding the impulseioneat the boundary. This
explains the oscillation in the simulation results showrrigured 4.9 anff4.10. The
effect is much stronger on the wave that propagates fronoiwotb top compared to
the wave that propagates from top to bottom.
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4.6 Discussion

In this chapter, we derived a control-oriented 1D two-phawelel that has several
unique features which make this model very attractive fortid design. Advantages
of the derived two-phase flow model can be summarized asafsllo

1. Physical aspects of the derived two-phase flow model:

e The system of equationg (4.8) for the two-phase flow have bb&ined
using mass and momentum balance equations of a purely hytaodcal
nature. The system is consistent in two ways. Firstly, aliagipns have
been obtained by macroscopic observation of a large nunilbetbbles in
a given volume, omitting the effects of individual bubbl&econdly, it is
assumed that the mixture is diluted and that the change®indlocity at
a given point is due to the motion of phases excluding thecetfethe in-
dividual bubbles. These two assumptions allow us to simptié complex
set of equations for multiphase flow given in Secfion 2.2.@aR))-[2.11)
to the control-oriented two-phase flow model given[as] (4 B)e list of
assumptions used to derive the control-oriented modelisngin Section

[4.2.2.

e The derived 1D two-phase model is well-posed, and it has &rgtic-
like nature (see Chapter 2). The well-posedness of the mydnditions
is studied using the method of characteristics that utilizely the system
matrix to obtain well-posed boundary conditions. We havashthat the
hyperbolic nature of the solution is a function of systemnnas only, and
any coupling term that is not a function of the directionalisgives will
not influence the well-posedness of the model formulation.

e The interfacial pressure difference for the liquid phas®isd to be the
most significant in determining the behavior of wave propiagaof the
two-phase flow and well-posedness of the model formulafiw. interfa-
cial pressure, which is introduced in order to guaranteeieposedness,
is described by the interfacial coefficigy. The interfacial coefficient re-
mains an open flow parameter that can be used to describeedifftow
regimes. It can also overcome the problem of shared presffer which
might be crucial for different pressure conditions![51]. eTtierived gas
wave speed based on the eigenvalue analysis agrees welheigfas wave
data of bubbly air/water flow [73].

e Due to the presence of the two pressure terms (i.e., inialfpoessure
and total pressure), the derived two-phase flow model isvilbbepressure
model of two-phase flow [80]. The two-pressure models aravaied by
the fact that the single-pressure models of two-phase flowadgrovide
well-posed solutions. The ill-posed single-pressure rhapgears to result
from an unrealistic assumption, called the “hydrostatsuagption” [80].
The hydrostatic assumption gives an unrealistic flow prafiag speed in
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a dynamic flow situation. In general, models with a real antglex set
of solutions are ill-posed, and any numerical scheme usedlite such a
system will be unstable. In our formulation of the two-phfieer model,

the interfacial pressure is considered in order to avoigaked model for-
mulation.

e The key aspect of the derived two-phase fluid flow model give@aB) is
the elimination of total pressure by subtracting4.1) fi@x). This allows
analysis related to different control aspects without g€dfD algorithms
and complex gridding as presented in Chalpter 3 for the sipigéese flow.

2. Control perspectives of the derived two-phase flow model:

e The numerical simulations of complex two-phase flow modaishe largely
simplified by the wave propagation analysis of processesrites! by the
hyperbolic-like PDAE/PDE models. It also allows a complatgebraic
evaluation of the solutions using an explicit formulatidrtiee eigenvalue
and its eigenvectors.

e The decoupled model given ds (4.28) in a new coordinatersystes the
same eigenvalues and dynamics as the original PDAE modsh gis{(4.B)
and can be directly used to determine the boundary conditiased on
the signs of eigenvalues. This is an important aspect of éneet two-
phase flow model since the eigenvalue analysis directlyetirtke system
dynamics and boundary conditions.

e Solutions to the problem of defining well-posed actuatioategies can be
divided into two parts:

(a) linearizing the model around a steady-state, i.e.,igti@ady-state so-
lution that casts the problem into the form that we can haraaid

(b) applying different coordinate transformations in arteeliminate the
remaining algebraic constraint equation of the derived EDAodel
and to the decouple directional derivatives without apmyany dis-
cretization scheme.

e Using the linearized representation of a flow regime and vpawpagation
analysis, the two-phase flow can be broughtinto a controiésaork which
is easy to implement on a real practical setup. Once the nsbdeture is
well-posed for dominant dynamics, the model can be redesifwpilowing
the same modeling framework.

e Due to the model simplicity in the final compact form given @28),
the derived control-oriented two-phase flow model gives & perspec-
tive from the control point of view. The spatial domain candeen as the
actuation domain where the inputs can be placed at the boesda at
any point in space. This will be utilized in Chapiér 6 to destlifferent
spatially distributed control strategies.
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e The main difference between this new decomposed lineatizegphase
flow model and the observation in classical fluid dynamic théothat the
new results offer a real equivalence between the globaésy$tehavior
and the boundary conditions, not only in terms of initialshdary value
problems, but also in terms of causal input/output strgstur

e Finally, the computational load is reduced tremendouslieyaseconds)
compared to the computational load of the CFD models, whiakes the
derived two-phase flow model attractive for control design.

In the next two chapters, we will demonstrate the use of thigecontrol-oriented
two-phase flow model to build different spatially distribdtdesigns.






Chapter 5

Causal Input/Output Structures
In Linearized PDE Models

This chapter focuses on causal input/output structurdsdifriearized two-phase flow
model presented in Chapiér 4. The main contribution of thigter is to interpret the

effect of the coupling terms 1, €12, C21, andcy2 in (4.28) using functional relationships
that connect the properties at the boundaries. To investidpe influence of those
coefficients on the overall system behavior, the Laplagsspepresentation of the
linearized two-phase flow model and causal input/outputstires will be introduced.

The results are illustrated using the same numerical exawmipthe linearized two-

phase flow model as given in Chagdtér 4.

5.1 Causality in PDE models

5.1.1 Input/Output Structures

In the model-based control approach to spatially disteétwgystems, it is crucial to
have a causal input/output structure between actuatorsemsbrs (see Sectibn P.4).
In ODE systems causality comes almost naturally, where®Pid systems causality
also involves the space, which makes the problem of defimpgtioutput structures
in PDE models more involved. Even when a PDE is approximattédararge number
of ODEs, we may face a challenging problem which concerns#usality of large
scale model and possible input/output strategies. Thet/ogiput structure shown in
Figure2.2 for the discretized PDE model indicates not dméyrtumber and position of
actuators and sensors, it also indicates relationshipgaeetcauses (inputs) and effects
(outputs). Therefore, the causality of an input/outputicttire is a very important
aspectin designing a controller for all systems. It is eigbmot only to develop a well-
posed actuation strategy for PDE systems, as discussedhjpt€ifl, but also to define
causal input/output structures and functional relatigrsh Although the theoretical
frameworks presented in Chapiér 4 and in this chapter arelajged for two-phase

87
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fluid flow systems, they can be easily extended to a large ofdsgperbolic-like PDE
systems.

The main focus of this chapter is to determine functionatiehships that describe
the behavior of a two-phase flow system through a causal/myipiut structure with a
structure-preserving boundary actuation strategy. &&&i2.1 will investigate causal-
ity of differentinput/output structures using the Laplagace representation 6f (4128).
For ease of reference, we repéaf (#.28) here

alwe | +[o ol ]-la Gl e
ot | W, 0 A |ox| W | |[cCa 2| [ W] '

The Laplace-space representation[of](5.1) will eventuatyl to functional rela-
tionships between the chosen inputs and outputs inclutimgaupling termsz 1, C12,
C21, andcyy, i.e., the right-hand side df(8.1). As we discussed in Cévétthe bound-
ary actuation strategy based on the method of charactsritinsiders only the direc-
tional derivatives of[(5]1). The main advantage of the Le@lapace representation of
the two-phase flow model compared to the spatially disadtinodel [[4.311) is that
it relies on a causal input/output structure described Imgtional relationships. Fur-
thermore, the functional relationships are computatigrrather attractive since they
do not require complex discretization schemes (e.g., #ggstred grid as described in
ChaptefB for the single-phase flow) and complex numeriggrihms to solve the
PDE model (see Appendix]A for the Navier-Stokes equatioBSg)eral properties of
the functional relationships and the analysis presentddsrchapter can play a crucial
role in designing spatially distributed controllers, wiiwill be discussed in Chapter
6.

5.1.2 Causality of the Two-Phase Flow Model

The boundary actuation strategies for the two-phase fluid flescribed in Chapter
[ relate to the direction of the fluid flow at the boundariese Boundary actuation
strategies are based on the method of characteristicsthieeeigenvalues analysis of
the linearized two-phase flow mod€l (b.1). The concept oferMawnt propagation
and possible placement of actuators and sensors at the &demthased on the re-
sults presented in Sectién 4.8.2 is shown in Figuré 5.1. Agated in Figuré 5.1(R)
for co-current flow, two inputsVj (t,0) andW,(t,0) in (6.1) and their respective out-
putsWj(t,L) andWj(t,L) define a causal input/output structure Aar> 0 andA, > 0
according to the method of characteristics. If we imposéediht actuation strate-
gies on the co-current flow, the system will be non-causalessence, a non-causal
input/output structure forecasts a difference in inpufeteeit actually occurs. There-
fore, the location of actuators and sensors should preaécsystem behavior at the
chosen locations as illustrated in Figlirel5.1. For exangléging the actuators be-
hind sensors, i.e., at the positignof the bubble column for the wave that propagates
with A2 > 0 andA; > 0 (see Figur¢ 5.1(p)) which corresponds to the locatipat
the characteristic curves (see Figire 5]1(a)), gives acaoisal input/output structure
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(@ (b)

(© (d)

Figure 5.1: Causality of the input/output structures (aj fa > 0 and A, > 0 using
the characteristic curves, (b) pertaining to the co-cutréaw in a bubble
column, (c) forA1 > 0 andA2 < 0 using the characteristic curves, and (d)
pertaining to the counter-current flow in a bubble columneBiue circles
in (a) and (c), and blue arrows in (b) and (d) represent inpultsle the red
circles in (a) and (c), and red arrows in (b) and (d) represthg outputs.
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that cannot be used to describe system dynamics [74]. The sbeervation holds for
the system with directional derivatives that are descrined; > 0 andA, < 0, i.e.,
the counter-current flow, as illustrated in Figures 5]1¢)[&.1(d). For the counter-
current flow, a causal input/output structure has to be defiyetwo inputsWj (t,0)
andWj(t,L) and two outputdV(t,L) andW;(t,0). However, the method of charac-
teristics involves only directional derivatives, i.e.ethigenvalued; andA;, which

is a sufficient condition in the case of small coefficieaig ci2, Co1, andcyo. The
large magnitude of those coefficients can change the sidreaigenvalues and conse-
guently influence the established causality. This sevéiralys the causality analysis
of the linearized two-phase flow systems for flow regimes lttzae large coefficients
on the right-hand side of (3.1). In order to establish a danpat/output structure for
a wide range of operational regimes, we will introduce thplaee transformations of
the linearized two-phase flow modgl(b.1). The Laplace darabdws the decomposi-
tion of the two-phase flow model into individual componerdamected through their
inputs and outputs with rational transfer functions asti@teships between the chosen
inputs and outputs, including the eigenvaldg@sandA, and the coefficients; 1, €12,
C21, andcya.

5.2 Functional Relationships

5.2.1 Laplace-Space Domain

In a control design, one of the first modeling concepts fosahaystems is developed
in the frequency domain using the Laplace transformatidxsdiscussed in Section
B.1.1, the Laplace representation of PDE models can alstfibietly used to choose
a causal input/output structure between quantities at thedaries, i.e., any location
in space. The concept of the Laplace transformation is toesextent similar to the
Fourier transformation of the spatial derivatives, whisttommonly used in CFD to
approximate spatial variations of an infinite dimensiompalce[93].

Applying the Laplace transformation to the model{5.1) gl

STwies s 2 aven]-[e =] ven ] o

which can be reordered providing a set of ODEs parametrigetidlLaplace varaible
sin the space coordinate

dWsx) | _[A& 0 len o sl W (s,X) (5.3)
dx | Wi(sx) | | O A2 Co1 Co W(s,x) | '
The advantage of the Laplace-space representation of th@hase flow model
given by [5.3B) is that it can be solved analytically by inttgrg [5.3) over the spatial

domain. This means that the relationships between thesrgnd outputs are given by
transfer functions. The following relationship betweea thputs and outputs defined
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at the bottom boundary= 0 and at any locatior > 0 can be obtained

W(s,x) | W, (s,0)
[ Wz(&w } = exp(4(s)X) [ Wz(s, 0) ] ) (5.4)

with 4 (s) being the system matrix parametrizedsy
C11—S C12

A1 N
a(s) = o oS | (5.5)
A2 A2

Equation [5.1) directly connects the inputs and outputsretthe system dynamics
are described by the system matrxs). A causal input/output structure for the sys-
tem [5.4) can be determined by decoupling the system in thigesimanner as it was
presented in Chapt&rl 4. In contrast to the decoupling preden Sectioh 4.314, de-
coupling of [5.4) includes the directional derivativesandA, and the coupling coef-
ficientscyy, €12, C21, andcyo. The Laplace-space representation of the two-phase flow
model allows us to examine the influence of the drag force emtundary conditions
and to define the causal input/output structures. The adgartf the decoupled system
is that the system dynamics can be fully decoupled presgtiim dynamics described
by the eigenvalues of the system matsixs). The coordinate®V’(s,x) can be trans-
formed into the new coordinate systétf(s, x) using the following general expression

[ 2522 ] = { &;m } (5.6)

whereQ(s) represents a transformation matrix which contains thersigetors corre-
sponding to the eigenvalues a{s) in the right order, i.e.,

Q(s) = [ q11(s)  d12(s) } :

G21(S)  G22(s)
with the following elements

hi(s) =1,  dia(s) = L ()\2011— A1C22+4 (A1 —A2)s+ \/s(s)) )

- 2c1\
(—)\2011-1-7\1022— (AL —A2)s+ \/8(3)) .

G1(s) =1, Q28 =— 2ea

where
&(s) = (A1 — A2) S+ (CraA2 — A1C22)) 2 + 4A1A2Co1. (5.7)

Note that the elementsi2(s) andapz(s) are irrational functions since they are a func-
tion of \/&(s). This will be further discussed in Sectibn 513.2.

Using the coordinate transformatidn (5.6), the fully dgged system in the new
coordinate syster#’ can be written as
[ Z(s%) ] l i 0 ] { Z)(s.0
!

)
Z5(s,X) 0 esox 2(s,0) } ' (>8)
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Table 5.1: Wave propagation and input/output structuresdubon the eigenvalue anal-
ysis in the Laplace-space domain in s, x) coordinate system.

Case Eigenvalues of the system Inputs Outputs
parametrized bg

) M(s) <0 2(s0) ] [Z(sy ]
A5(s) <0 | Z5(s,0) | | Zy(sL) |
) M(s) >0 Zsb) ] [ zi(s0) ]
A5(s) <0 | 25(s,0) | | Z(sL) |
3 N(s)<0 [Z(s0) ] [Z(sy) ]
Ay(s) >0 | (L) | [ Z(s0) |
A M(9) >0 [ZsL) | [ Z(s0) ]
A3(9) >0 zysL) | | Z(s0) |

Then, the eigenvalues af(s) can be obtained from the following expressions

1 —(A1+A2)s+A1Ca2+ AzCi1+ /€(S)

Ai(s) = > Ao (5.9)
—(A1+A A A2C11—
AS(S) = 1 —(A1+A2)s+MaCo+ AsCri — VE(S) (5.10)
2 A1A2

The signs of the eigenvalug$(s) andA5(s) determine the causality of the input/output
structure for the linearized two-phase flow system. NotéXhés) andA;(s) contain
the eigenvalued; andA; and the coefficientg;1, €12, C21, andcy,. Different in-
put/output structures are possible according to the si§ia$(s) andAs(s). Table[5.1
outlines four different cases.

For example, suppose thei(s) < 0 andA}(s) < 0 (case 1 in Table5.1), then the
inputs have to be defined:at 0 and the outputs at= L as illustrated in Figurfe 5.2(a).
Then, according td_(518), the connections between the $ifjigs, 0) andZ;(s,0) and
the outputsZ)(s,L) andZ,(s,L) are defined by the delay functiog® (9" ande2(9t,
respectively, i.e.,

ZisL) ] [ € o 71(s.0)
{Zi(SL)]_l 0 @t [Zi(s,O)] (5.12)

Suppose now that; (s) > 0 andAj(s) < 0 (case 2 in Table 5.1), then the first equa-
tion in (5.8) is the inverse of a time delay function which @ physically realizable.
In terms of dynamics[{5l8) represents a non-causal raktiip between inputs and
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Zl'(s,L)T l Z,'(s.L)

Zl'(s,L)T TZz'(s,L)

decoupled decoupled
system system

Zl'(S,O) T T Zz'(S,O) ZIV(S,O) T l Z2‘(S,0)
@) (b)

Figure 5.2: Input/output structures of the decoupled sysie the Z(s,x) coordinate
system, which has wavag(s) and A3(s) that propagate (a) in the same
direction and (b) in the opposite directions (also known asilaterally
coupled system).

outputs. This means that the wave wikj(s) > O propagates in the spatial direction
opposite to the predicted one, i.e., from top to bottom. Bydering [5.11), the sys-
tem can be put into a causal input/output form that followes direction of the wave
propagation, i.e.,

][ S )[E] e

This inversion of the relationship between the inf{(s, L) and the outpuZ; (s,0) ren-
ders the set of equatioris (51 12) into a causal form. Fig@@®Hillustrates the inversion
which implies that the resulting system is bilaterally claaii74]. As illustrated in Fig-
ure[5.2, the causal input/output structures between theepties at the boundaries can
be viewed as an extension of the system boundaries to threinsdings.

5.2.2 Laplace-Space Domain and Method of Characteristics

In Section[4.3.2, we used the method of characteristics telde the well-posed
boundary conditions based on the eigenvalue analysis gbaivgA(®P),E). Accord-

ing to the eigenvaluek; andA,, the well-posed boundary conditions were set based
on the signs of the eigenvalues. For the numerical exampéngn Sectiof 4]5, the
top boundary was required for the wave that has the positjjenealue, whereas the
bottom boundary was required for the wave that has the negeitienvalue. The sign

of A1 indicates the inversion of the boundary conditions thahiere the well-posed
boundary actuation strategy for the wat(s, x). Basically, the method of character-
istics presented in Sectidn 4.B.2 used only the coefficiehtirectional derivatives,
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i.e., the eigenvalugs; andA,, to indicate the well-posed boundary conditions without
taking into account the coefficiends;, c12, C21, andcyz. The influence of these coeffi-
cients was illustrated in Figures 4.9 dnd 4.10M¢(s, x) andWj(s,x), respectively.

In order to derive more general requirements for settind-p@ted boundary con-
ditions, the coefficients have to be included in the analyBi®se coefficients; 1, c12,
Cz1, andcy are included in the model representation giver[ad (5.4)hénLaplace-
space representation of the two-phase flow mdde] (5.4),dk#icientsci1, €12, Co1,
and cp2 appear in4(s), and together with the eigenvalugs and A, give the in-
put/output responses of the fluid properties at the boueslarBince both methods
are used to obtain boundary conditions to define a causat/oyiput structure, the
input/output strategy in the time-space and the Laplaeeeplomain focy1 = c12 =
C21 = Cp2 = 0 must agree.

Here, we will examine the causal input/output structuredounter-current flow
defined byA; = 0.064 and\, = —0.095 given in Sectioh 4]5. Fai; = 1o = Cp1 =
c22 = 0, the eigenvalues in the Laplace-space domain read as

)\1(8) )\17 and )\Z(S) - }\25
which gives
Zj(s,0 R
[ 1(Sa ) } |: l(S, ) ] (5_13)
Zy(sL) o ot |LZ(6s0

This means that the eigenvaldg = 0.064 requires an inversion in order to define a
causal input/output structure. Equati@n (5.13) shows dmeesinversion between the
inputs and the outputs as given in Secfion 4.3.2. This resuifies both theoretical
frameworks. For analyzing the influence of the coefficients c12, cz1, andcp, on
input/output structures, the eigenvalues in the LaplageadoA;(s) andA’(s) change
according to the expressidn (5.9) ahd (5.10), which will eeated in Section 5.3.2.

5.2.3 Coordinate Transformations

As already discussed in Chapiér 4, a simple coordinateftanation allows us to

transform a PDE model from one coordinate system to anothapplying the inverse

of the transformation matrix (see Section 413.4). Howexenordinate transformation
for PDE models in the Laplace-space domain is a bit more uagbl In this section,

we will present two coordinate transformations for the fmiase flow mode[{514) for:

the co-current flow illustrated in Figufe 5.3(a) and the detcurrent flow illustrated

in Figure[5.3(D).

The coordinate transformation can be recovered using tteviog relationship

Rl ECRET el (5.14)
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W1'(s,L) Wy'(s,L) W'(s,.L) W,'(s,L)
top top
boundary boundary
A A A
Z{'(s.L) Z,(s,L) Zy'(s.L) Zy'(s,L)
A\
decoupled decoupled
system system
4 4 A
Z1'(s,0) Z5'(s,0) Z1'(s,0) | Z5'(s,0)
bottom bottom
boundary boundary
W1{'(s,0) W5'(s,0) W1'(s,0) W5'(s,0)

(@) (b)

Figure 5.3: Input/output structures for (a) a co-currentfl@nd (b) a counter-current
flow. The blue arrows represent inputs, whereas the red am@present
the outputs.

e Co-current flow

The following model representation in thi#'(s,x) coordinates can be obtained
on basis of the actuation strategy shown in Figure §.3(a)

W/(S, L) _ W/(S, O)
[ Wg(s, L) ] = Gco(9) { Wz(s, 0) ] ) (5.15)
where
G 1 eM(S)X 0
S e e
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o Counter-current flow

Figure[5.3(0) shows the way to recover #W(s, x) coordinates for the counter-
current flow. The bottom boundary can be recovered as

U2(9%1(s)  Gua(S)

{Z’ll<s,0> }: l (s - Vel HW;’(SO)} (5.16)
21 ’ '

Wa(s.0) T 022(9) 022(9) %(s0)

R

whereas the top boundary can be recovered as

1 d12(s)
{W,l’(s, L) } _ | @me e { Zi(s L) } (5.17)
Z(sL) Ay Tea(s) — WS | | V(s L)

Using the linear combination of the given boundaries (5&t8) [5.17), the orig-
inal coordinates can be fully recovered as

W, (s,0) - W, (s,L)
wien) | =50 Wieo | (5.18)
where
_ taa(S) —di2(s)eM T quue N —q12(9)
Gecls) = [ Ga(s)€2®  —agpa(s) ] [ Ri(S)  —Op2(s)eMs®

Equation[(5.IB) represents a causal input/output stredtetween the properties
at the boundaries, where the system dynamics are descijoibe lelements of
Gec(S)-

The functional relationship§ (5.115) arild (5.18) are algelmepresentations of the
two-phase flow model using the Laplace transformation. Dude simple algebraic
expressionSco(s) andGe(s), the behavior of the system in the Laplace-space domain
can be easily observed with a little computational effartgéneral, a rational transfer
function has many useful interpretations and featureshvaie often associated with
important system properties and control designs. Thisheiltliscussed in Chapier 6.
The following section presents numerical methods needagpooximate the irrational
transfer function&¢,(s) andGec(s) to a set of rational transfer functions.

5.3 Numerical Approximations in the Laplace-Space Do-
main
5.3.1 Numerical Methods

The numerical approximation of the Laplace-space reptaten of the two-phase
flow model starts with a series expansion after which thesRgbroximation of the ir-
rational elements can be effectively used. The Padé appations can take on many
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increasingly complicated forms, depending upon the degfeecuracy needed. The
total approximation is based on a numerical approximatioanoinfinite series rep-
resentation of a transportation delay by a rational polyiabfnaction in which the
coefficients and orders are defined by the required accuracy.

First, we start with the series functions computed as a tattseries expansion of
A (s) with respect to the variabkeas the series variable, i.e.,

A (s) =hig+hi1s+hi 28+ +hins", (5.19)

where the index denotes the wave characterized by either one or the othes wav
i = 1,2, with the polynomial coefficients o, hj 1, hi 2, ..., hin. The first three polyno-
mial coefficients for the numerical approximationXjf(s) can be computed from the
following expressions

_ 1M+ Aol + v/ (M1C22 — A2C11)2 + 4A1A2C21C12

Mo=3 AA2
het— 7% <}\_12 N }\_11> N A2%Cr1+M1°Coz — Aoh1Caz — )\20111\/12 . and
((7\2011 — M1C22)* + 4?\1}\2021012)
he s — C21C12(A2 — A1)?
12 = 3/2?
(()\2011 —MC22)% + 4)\1>\2021012)
whereas foR3(s), the coefficients read as
hyo— L —MC2—Axcui+ v/ (M1C22 — A2C11)? + 4N 1AoCo1Cr2
20 = 2 A2 ’
1 /1 1Y\ APcia+A%co2—A2AiCoo— AaCiah
o= <}\_2+}\_1> 2°C11+A17Co2 — ApA1C2 2111/12 . and
(()\2011 —MC22)?+ 4)\1>\2021012)
hy o — c21C12(A2 — A1)?
22 =—

32
((7\2011 — NC22)%+ 4?\1)\2021012)

The given coefficients are obtained using Maple Symbolid@a Since the sym-
bolical representation is more complex for the higher omefficients, we explicitly
present here only the coefficierits, hi 1, andh; », and in Sectiofi 5.312, we will eval-
uate the influence of the higher order coefficient§in (5.18yerically.

Once the eigenvalues are approximated by the séries (BhE9¢xponential func-
tions in [5.8) can be further approximated using the Pagiecqimations. The expo-
nential functions, which represent the transportatioayketharacterized by the eigen-
valueshi(s) andAj(s), can be approximated by rational transfer functions. Ong wa
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to obtain an approximate model is to assume a model struatatenatch terms in the
power series expansion of the approximation to that of teetesolution of the model,
ie.,

O - ehi,oJrhi,thizSZvL---Jrhi.n§q _ ehi,oehi‘lsehi‘zsz ghins® (5.20)

Each of the terms i (5.20) represent matching of momentsghaan be analyzed
numerically using the Padé approximation![33]. The Pam@&aximation brings the
system[(5.B) into a form of the rational transfer functiontmeas G¢o(s) and Gec(s)
for co-current flow and counter-current flow, respectively.

Applying the proposed numerical approximations brings mler of advantages
for the spatially distributed control designs that will bisalissed in Chaptél 6. Be-
fore we introduce different spatially distributed contstiategies, we will evaluate the
Laplace-space representation of the two-phase flow modehgn Sectiof 5.2]1. In
the next section, the Laplace-space representation ofvitvphase flow model will be
tested on the same numerical example as the one given iroSdch.

5.3.2 Numerical Example

The Laplace-space domain of the derived two-phase flow nambeirding to[(5.8) for
the parameters given in Talfle ¥.2 in Secfiod 4.5 for coucterent flow reads as

{Wli(L) } - 81447 — 15.62s 257444 {le(o)] 5.21)
W;(L) 54869 173436+ 105s | | Ws(0)

with eigenvalues

Ai(s) = 12744 2.549342105 — /&(s) (5.22)
A5(s) = 12744 2.549342105+ \/&(s), (5.23)

where
g(s) = 0.0002%(2.6-10'°+1.9-10'%s+2.7.9 &)

The changes of in the expressions for the eigenvaluggs) andAj(s) can have
large or small influences on the overall system behavior. ifita¢ional functions
(5:22) and[(5.23), which are generated by the matr{s), are parametrized by the
Laplace varaibles that influences the magnitude of the eigenvalues. The infkieh
the Laplace varaible on the eigenvaluek;(s) andA(s) is shown in Figuré 5]4 for
both eigenvalues in the frequency domain.

The magnitude ok’(s) is almost the same for the whole frequency range, whereas
the magnitude ok} (s) shows small changes for low frequencies. The phase shift be-
tween the eigenvaluesis around 100 degrees, which in essgmesents the dominant
dynamics. In order to understand these findings and possibans of the complex
eigenvalues, we use the numerical approximations givee@i@{5.3 in order to ob-
tain the rational transfer functidBcc(s) and check the causality requirement.
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Figure 5.4: Bode diagram of the Padapproximation of the eigenvalu@g(s) and

A5(8)-

First, we start with the series expansion of the eigenvakiés) wherei = 1,2.
The values of the first seven coefficients in the series expayise,hi o, hi 1,... hi 7, are

Table 5.2: Polynomial coefficients in the series expansiotite eigenvalues; (s) and
A5(s) given ag5.2B anld 5.23, respectively.

Ai(s) A5(s)
hi 1 0 25488.32648
hi» | -7.268436753 2.169752
his | -0.00583416 -0.005841
hi4 | 0.0000021603 0.00000216035
his | 535410719 53544.10°10
hie | —1.18-10°12  1.187.10712

3.77-10°16 3.776-10°16
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Figure 5.5: Frequency responses of the exact and approeismttions of & (9 using
different (a) Pa& approximations and (b) order of accuracy of the series
expansion.

given in Tabld 5.R. Figurds 3.5 ahdb.6 show the influenceeftidé approximation
and the higher order terms in the series expansion on thaamcof approximate

solutions for both eigenvalues. As can be seen, the higlder eerms have almost no
influence on the magnitude of approximate solution and hdaege influence on the
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phases for the high frequency range. Due to the fact that theesvrepresent pure
delays of the flow betwen the boundaries, these results abe texpected. Using
these findings, we can limit the approximate solutiongof® for both eigenvalues
to €01, This means that the delay function in the cas@ {dg) is e 725, and in
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the case oij(s) is e725488-21s (see Tablé 52 for the coefficients). Fuj(s), the
inversion of the boundary condition is imposed on the wawag phopagates with;(s),
i.e., e 25488-21s according to the theoretical framework presented in Seig.1. The
inversion gives the following causal input/output struetu

{ Zy(s L) ] _ l e e 0 ] [ Z;l(ao) } (5.24)

Z5(s,0) 0 ol—25488-2.19)L

The responses of the approximate solutions shown in FigliBeand 5.6 are close
to the exact solution for low frequencies, whereas for highifiencies the approximate
solutions show a large error. This is to be expected sinceuihe delay functions are
rarely known accurately. For a control design, it is ofterrenionportant to understand
the delays and system dynamics in order to choose a propegrieahapproximation
than to predict the delay functions accurately. To illusttais, we create the following
example.

Suppose that the following external dynamics are imposéteaboundaries

(s+3)
(£ +0.3s+1)°

The cooresponding responses in the time domain are showigimef5.7. Figures
and 5.7(b) show the step responces with differentrac@s of the approximate
solutions of the wave that propagates with sp&é&@), whereas Figurds 5.7{c) and
[5.7(d) show the step responses of the wave that propagatespeied\;(s). As shown,
the higher order terms have no influence on the accuraey26f ande?(S.

Figurel5.T shows different Padé approximations. The &hoithe most appropri-
ate Padé approximation is, generally, based on the desgedracy and the conver-
gence of the approximation. Here, a few Padé approximaitidth different accuracy
are used (see AppendiX D). First, we show in Fiduré 5.5 [2n?] [6,6] Padé. As a
general rule, we can say the higher the accuracy, the mor saktions can be ob-
tained. The effect of the higher order terms in the Padé anemisible in the time
domain as illustrated in Figurgs 5.7(a) @nd 5]7(c). The@gpration error of [2,2] for
€9 is rather large, while foe’1(¥ it gives already a good approximation. To get a
better approximation o8'1(9, the Padé [6,6] is introduced. The Padeé [6,6] gives the
solution close to the exact solution@f.(¥),

Furthermore, the wave with the speés) represents the dominant system behav-
ior since the magnitude of its change is much higher than thgnitude of the wave
with the speed(s). This can be also concluded from the approximagiotr488-2-1s =
e 25488215 ~ 0. €215, The reason behind the small magnitude\pfs) lies in the
effect of the coupling coefficients 1, c12, C21, andcyy. These coefficients represent
the effect of the drag force on the overall behavior. Babjictiie drag force balances
the transportation of the two-phase fluid flow, which disgégahrough the boundaries.
The dissipation of the two-phase fluid flow can have a posiivaegative effect on
the overall system behavior. As shown in Figlire 5.7, the vihae propagates from
bottom to top is slowed down by the other wave, which expl#iessmall changes in
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the magnitude of the wave characterized by the spgés.

The simulation results presented in this sections are takemtmainly qualitatively
due to the fact that they illustrate the responses of thephase flow with the causal
input/output structure in the Laplace-space domain by simgpthe arbitrary dynamics
G imposed on the boundaries. In the next chapter, the efficadypanefits of the the
Laplace-space representation of the two-phase flow wilkipéoeed quantitatively for
stabilizing/destabilizing the two-phase flow system ugliffigrent spatially distributed
control designs.
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5.4 Discussion

In this chapter, we introduced the concept of input/outputsality for the linearized
two-phase flow model using the Laplace-space represemtatithe model. The de-
rived Laplace-space representation of the linearizedghase flow model and the re-
sulting functional relationships lead to the conditionsdausal input/output structures
for two-phase fluid flow.

From the numerical results presented in this chapter, flerfimg conclusions can
be drawn:

e Putting the decoupled system into a causal input/outputttre strictly deter-
mines the placement of the actuators at the boundaries @ncesults in only
one possible solution. This means that a well-posed actatrategy has to be
defined on the basis of the causality between the inputs apdisias illustrated
in Figure[5.1.

e The functional relationships between the properties avtiumdaries (i.e., inputs
and outputs) are fully described by the output delay fumstiwhere the eigen-
valuesA;(s) andAj(s) determine the magnitude of the delays and the signs of
Aj(s) andAj(s) determine the causal input/output structure. Such delag-fu
tions do not change the values of the quantity under corsider The delay
function, in principle, introduces a constant travel timafi one boundary to the
other.

e As illustrated in Figuré 512, the boundary conditions areldelay functions of
fluid flow are defined by a transformation fragf(s, x) to W’ (s, x). Although the
coordinate transformation represents the system in twerdifit state represen-
tations, it still describes exactly the same input/outphdvior as the original
model.

e Furthermore, the computational complexity associated thie CFD modeling
can be greatly simplified by making use of theory associatitid tive rational
transfer functions and the Padé approximations. The sitioul time required
for rational transfer functions in Matlab is just a few sedsn This is a huge
advantage of the two-phase flow model in the Laplace-spacaito

The analysis presented in this chapter establishes a mgdedimework of two-
phase fluid flow systems (i.e., input/output relationshipa eystem) and proposes a
new approach to influencing the fluid flow without using the Gffbdels. The main
advantage of this approach is that it guarantees the cgushthe input/output struc-
tures for a wide range of operating regimes, and provideghts needed for control
designs. Furthermore, the Laplace-space representdtiba two-phase flow systems
does not rely on the accuracy of the spatial discretizatamon complicated numeri-
cal schemes. Instead, it gives functional relationshipa®en inputs and outputs. The
derived rational transfer functions, which describe thiedwéor of the two-phase fluid
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system at the boundaries, put the flow control into a new petage for spatially dis-
tributed control designs. The spatially distributed desigill be introduced in the next
chapter.






Chapter 6

Distributed Control Designs

All the modeling perspectives of fluid flow systems introddizethe previous chapters
have served to provide the control-oriented models of flygtesns. In Chaptéd 3, the
macroscopic model of single-phase flow was introduced fsigiéng a boundary feed-
back controller, whereas in Chaplér 4 great attention wango the development of
the control-oriented two-phase flow model. In this chapterwill show how to design
spatially distributed controllers for the derived contoniented two-phase flow model.
The numerical results for the boundary and centralizedrotiet will be given in order
to illustrate the advantages of applying the spatiallyriisted control designs. The
spatially distributed control designs presented in thegdér can easily be extended to
a wide range of hyperbolic-like PDE models.

6.1 Introduction

As discussed in the previous chapters, the most importatdrfe of the microscopic
modeling approach to the hydrodynamicsis that it offersdewange of possibilities to
influence the hydrodynamics using spatially distributedsed input/output structures
(see Sectioh 214). In this chapter, we consider the probletesigning spatially dis-
tributed controllers for the two-phase flow model derive€imaptef# with the causal
input/output structure defined in Chagiér 5. Although theta laws will be given for
the Laplace-space representation of the mddel (5.4) fottarkikustration of possible
spatially distributed control designs, in this chapterwileuse the spatially discretized
model [4.31) as given in Figure 4.6 [91].

The aim of this chapter is to give an overview of possibleigfigtdistributed con-
trol designs that can be used to control the two-phase flotesysand to deliver a
theoretical framework accomplishing the primary objextf this thesis. The chapter
is organized as follows. In Sectién 6.2.3, we will preseffedent spatially distributed
control designs that can be imposed on the bubble columngseton 1.3.P). The
choice of the spatially distributed control designs depemtthe problem formulation
and desired process performances, which can be motivataghbiticular application

107
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of the bubble columns. Different control objectives will ppiesented in Sectidn 6.2.2,
and in Sectiofi 6.213 mathematical descriptions of two tyffepatially distributed con-
trollers will be given. Section @ 3 will present numericasults for both controllers:
boundary and centralized.

6.2 Control of Two-Phase Flow Systems

6.2.1 Spatially Discretized Two-Phase Flow Model

As we discussed in Chaptel 4, the linearized two-phase floweinwas obtained

from the control-oriented two-phase flow model which waedirized around the quasi
steady-state regime. In order to define a causal input/ogtpucture, the linearized
model was decoupled in the Laplace-space donaih (5.8). &péate representation
of the PDE model makes the two-phase flow model very attraébivvarious spatially

distributed control designs due to the simplicity of thedtional relationships and a
very short computation time.

The spatially discretized two-phase flow model can be obthiny dividing the
total volume of a bubble column intd volume elements with the system boundary
around each element. These volume elements have the sanmeevlV, which was
illustrated in Figur€4l6. According to the theoreticahfi@vork given in Chaptéi 5, the
interconnection between the volume elemehts (i.e., compartments) must be causal.
The causality follows from the direction of wave propagatiSince the two-phase flow
model belongs to a class of PDAE models, we distinguish twsafesariablesexplicit
system variableandimplicit system variablesThe explicit system variables are the
flow rates of gas phasg; and the liquid phase ;, as well as the volume fraction of
the gas phasegy; and the liquid phase, ; in each compartmeit The implicit variable
is the pressure which appears between the elements, i.lcationsi — % andi + %
(see Figuré4l6) and the interfacial pressure which apjedveeen the phases in each
element.

Before we introduce different spatially distributed cahttesigns for the spatially
discretized two-phase flow model, we will give an overviewddferent control goals
that are relevant for the bubble column design.

6.2.2 Control Goals

There is a wide range of possible control objectives for fstesn described in Sec-
tion[1.3.2. The control objective mainly depends on the fizakapplication. In this
section, we will outline some of the control objectives ceming the application of
two-phase flow as discussed in Secfion 1.3.2.

The main control objectives concerning the two-phase flavappears in the bub-
ble columns are:

e stabilization of flow around an equilibrium (i.e., suppiiegdluctuations caused
by disturbances or secondary flow),
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o destabilization of flow (i.e., enhancement of turbulencd amensification of
fluid mixing), and

e endorsing of fluid separation (i.e., extraction of phases).

These control objectives cannot be achieved by a unique/oytput strategy and
control design. Instead, a wide range of control designeéslad in order to achieve the
above given control objectives. For instance, enhanceafeniiking of phases inside a
bubble column can be easily obtained by introducing moreegabn the side wall and
using a more powerful pump/compressor equipment (see &@dya)). On the other
hand, for a laminar flow regime which is characterized by tisg) force between the
phases, the flow can be stabilized around the laminar flowyayppé controller at the
boundaries only (see Figure 6.7(b)). Therefore, it is intguurto outline all possible
spatially distributed control designs.

6.2.3 Distributed Control Designs

In this section, we will investigate four different typesgyfatially distributed control
designs and discuss the implementation of such contr¢BeesFigure 6.1(d), 6.1(b),
6-2(a), and 6.2(h)).

The design presented in Figlire 6.1(a) is known as a boundatyat design which
is commonly used to stabilize the flow between the bound{i&s34,60]. The de-
sign is based on a feedback control of the flow from one boynaeanother. The
controllersKi, andK»1 in the feedback loops represent the control parametersaimat
influence the fluid properties from one boundary to anothée dontroller;; and
K22 can be additionally added at the boundaries to improve thsed-loop process
performance, and can be regarded as a set of valves thaategtihe amount of gas
phase injected to the column. This type of spatially distiéll controller is common
for a system governed by hyperbolic PDEs which describesa\pave propagation
from one boundary to another. The key point in this contrdigie is that the fluid
properties at the boundarigs= 0 andx = L are used as control actions to regulate the
flow. This design can be effectively used to stabilize the fl’aund an operational
regime as described in Sectionl4.4. In general, the bouratariyoller has a goal to
minimize the fluctuation of the flow inside the column and $&othe residence time
of the fluctuations. This will be further discussed in Setfia3.

In contrast to the boundary control design, the centralizautrol designs illus-
trated in Figure§ 6.1(p) allow the actuation and sensinghftoe side walls at each
volume element. In practice, this means that we have to degltkre to place the
valves (i.e., inputs) and where to place the flow-meter, (batputs) along the side
wall. The centralized approach is the simplest spatialtyriiuted design in terms of
its derivation and implementation. As indicated in Figuré(B), the implementation
of this approach is straightforward since it requires a sdaoy flow that is connected
to the bubble column. This type of experimental realizati@s recommended in [27]
for the single-phase flow.

Depending on the communication between controlgrig each volume element,
we can distinguish two different distributed designs:yfulecentralized controller (see
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Figure 6.1: Control strategies for the spatially discretiztwo-phase flow model using
(a) boundary controller and (b) centralized controller.

Figure[6.2(d)) and distributed controller, i.e., locatizsee Figuré 6.2(p)). In fully
decentralized strategies, the control paramktarses only information from thieth
compartment, and there is no communication between theattems from the neigh-
boring compartmentkj ;1 andK;_1. This approach usually results in the best perfor-
mance, but it requires excessive communicationl[14, 76].

Another localized control strategy is the distributed coler shown in Figure
[6-2(b). The aim of this spatially distributed control desig to provide a good per-
formance by using communication capability of the flow begwéne controllers; 1,
Ki, andK;_;1. In this way a smooth transient flow between the waves is plessin
contrats to the decentralized control strategy, here thirakbers are interconnected in
the same manner as the volume elements. For the bubble calisimeans that there
is a valve for injection of a secondary flow or suction of thamary flow inside the
column in each volume element. The controll&rs;, K;, Ki+1 can act independently
and exchange the information between each other. Thisalatgsign requires mas-
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Figure 6.2: Control strategies for the spatially discretikztwo-phase flow model based
on (a) a fully decentralized controller, (b) a distributedraroller (i.e., a
localized controller).

sive arrays of actuators and sensors that is rather difficuihplement. This can be
considered a drawback of the distributed control designnvamplying the distributed
controller in practice. Thus, the designs presented in i@ will be beyond the
scope of this thesis.

6.2.4 Control Laws in the Laplace-Space Domain

Taking advantage of the system causality and the spatigtyilsited control designs
presented in Sectidn 6.2.3, we derive the following corleek for the designs shown
in Figure[6.1:
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1. Boundary controller design

The boundary control law can be derived for the Laplace-spaadel represen-
tation of the two-phase flow

d [ Wi(sx ] _ Wi (s x)
dx [ wisx) |~ wisx) |- (61)
using the following conditions

WZI(Sa L) = K21W2/(Sa O)a (63)

where the controller&1, andKy; are placed at location = 0 andx =L, re-
spectively. The controllers connect the flow between thesghat the opposite
boundaries. This design represents a boundary feedbatiocdesign. Ac-
cording to the design shown in Figre 6.1(a), a more generaidlation of the
boundary control law for the two-phase flow can be given tgkiho account the
additional controller$&1; andKs»

wi(s0) ] _[ ki Kie ] wis)
Pk ][Kn KZZ] W0 | 69

Numerical results of the boundary control of the two-phas& fhodel are given
in Sectior{ 6.8, and final concluding remarks are made in @&64.

. Centralized controller design

The centralized controller for the system given[as](5.4)ikmstrated in Figure
[6.1(b) can be described by the following expression

d [ Wi(sx) Wi (s, x)
_— = B .
5| v | =26 | Wien | +eoous), (65)
whereU (s) is the input vector an8(x) is the spatially distributed input matrix
given in the Laplace-space domain that satisfies the fatiggedback control
law /%)
— Wl(S,X

U(s) = —K(s) [ W(s%) ] . (6.6)
According to [6.5), the controller directly influences themémics of the uncon-
trolled flow by shaping the transfer functions defined by ®p.for co-current
flow, i.e., [5.I8) for counter-current flow.

In the next section, we will give simulation results of thegented designs using
the Laplace-space representation of the two-phase flow Imageawill first present the
feedback control designs for the system without the cogginmsci; = 12 = Co1 =
c22 = 0. After that, we will introduce the coupling ternes; # €12 # €1 # Co2 # 0.
Both spatially distributed control designs presentedimdbction will be considered as
numerical examples using the same numerical example oftiphase flow as given
in Chapter§ ¥4 and 5.
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6.3 Numerical Results

Example 1: Boundary controller

Following the boundary control design illustrated in Fig[§.1(a) and described by
(&.1), the simulation results for the proposed boundaryrobof the two-phase flow
are illustrated in Figurds 8.3 for the two-phase flow withthe coupling terms, i.e.,
C11 = C12 = Cp1 = Cp2 = 0, and in Figur&8J5 for the two-phase flow with the coupling
termscy1 # C12 # Cp1 # C22 # 0. In essence, the coupling terms represent the effect of
the drag force on the two-phase flow.

Figurd 6.8 shows the effect of the control coefficikpt on stabilizing the fluid flow
in contrast to the uncontrolled flow. The control coeffici&pt from the top boundary
to the bottom boundary is tuned based on the expected peafaen The values for the
proportional actiork}; and the integral actioK)}, are given in TablE6]1. As can be
seen, the controlldf,; influences the internal delay of the flow between the propgrti
at the bottom and top boundaries. The oscillations of the fibauld be as small as
possible in order to keep the flow close to the plug flow regifethermore, the plug
flow regime that is created in this way has the shortest trived of the two-phase
flow from one boundary to the other. This means that the cbabjective is to place
the eigenvalues;(s) andA}(s) closer to zero. The zero eigenvalues represent the flow
without the delayg!1(® ande22(9 of the two-phase flow between the boundaries.

Figure[6.8 shows the simulation results obtained for diffévalues of the control
coefficientkb, for the wave that propagates with the sp@é¢s). The value of the
coefficientsk; andK}, are tuned until there is no oscillation of the two-phase flow
close to the top boundary. The flow is almost totally dampedfouthe wave that
propagates with the spe@gl(s). The similar results can be expected for the wave that
propagates in the opposite direction with the spegd).

Step Response Step Response

14 14
Boundary controlled exact

Boundary controlled approx
Uncontrolled exact 12

Boundary controlled exact
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@ (b)

Figure 6.3: Step responses of the boundary feedback ctedrslystem illustrated in
Figure[6.1(@) (a) with the proportional gain K= 0.8 and (b) with the
proportional gain K = 1.8.
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Table 6.1: Control coefficients for the control design shawRigure[6.1(a) and given
by 6.).

Eigenvalues| K}, | K},
MO 0.8 | 0.1840
A5(9) 18| 0.012

Step Response Step Response

With drag force With drag force
—— Without drag force 11 —— Without drag force
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Figure 6.4: Step responses of the controlled system withwatiebut the drag force for
the wave that propagates (a) from the bottom and (b) from dipeof the
bubble column.

In order to evaluate the effectiveness of the boundary otetron the two-phase
flow, we show the simulation results of the controlled twagd flow with and without
the drag force. Figule 8.4 illustrates the controlled tviage flow for the both waves
with and without the drag force. When comparing the dewiettiof the waves in Figure
[6.4, it is clear that the drag force has a shifting effect ancbntrolled flow and the
flow arise earlier in time, but it still follows the same dyniamas the pure flow without
the drag force. As can be seen, the proposed boundary dentrohimizes the effect
of the drag force almost completely.

The results are also illustrated in the frequency domainhasvs in Figurd 6.b.
In some cases, the time and frequency responses of the deletjoins can look odd
in the Bode diagrams. The Bode diagrams of the delay funs@wa not software or
numerical errors, but very often real features of such systthat can be validated
comparing the approximated and exact results.

Example 2: Centralized controller

Figure6.6 shows the simulation results obtained by apglthe centralized controller
on the two-phase flow model without the drag force. The sitrara results given here
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Figure 6.5: Frequency responses of the decoupled systethdavave that propagates
with the speed;(s) (i.e., with the drag force) anal; (i.e., without the drag
force) according to[(5.12).

evaluate the exact and approximated solutions of the céedrand uncontrolled flow
in the Laplace-space domain, which was also discussed ipt&fia.

Step Response Step Response

Cenralized controlled exact
Centralized controlled approx

Cenralized controlled exact
Centralized controlled approx
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o
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(@) (b)

Figure 6.6: Step responses of the boundary feedback ctedrelstem with the cen-
tralized controller (a) with the proportional gain'K= 0.8 and (b) with the
proportional gain K = 0.5.

The approximate solutions are obtained using the serieansign and the Padé
approximations as discussed in Chapler 5. The exact soligin good agreement
with the approximate solution, which is illustrated in tmeduency domain in Figure
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Bode Diagram
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Figure 6.7: Frequency responses of the exact and approgithstlutions of the wave
that propagates with the speagi(s).

As expected, the controlled flow shown in Figlrel 6.8 os&#adround the unity
input due to the simultaneous injection of the secondary fibveach location, i.e.,
compartment. The control parametéfs) in (6.8) is tuned in such a way to enhance
the oscillations of the flow around the unity input. Basigathe highly oscillated
controlled flow represents the highest possible mixing ef itijected flow into the
primary uncontrolled flow. Note that the control parametgesadded to the open-loop
dynamics as given i (68.5). Using the side-wall injectio® @an influence the drag
force manipulating the two-phase flow in the entire spaceesmidncing the mixing in
the entire volume.

Figure[6.9 depicts the step response of the linearized tvesg flow model. For
the proportional gairk(s)® = 0.1, the controlled flow is marginally stable. For the
proportional gairk (s)P > 0.1 the closed-loop becomes unstable because the amplitude
of the oscillations increases (see Fidure 6]6(a)), whdoedise proportional gaik” <
0.1, the oscillations fade out. The discrepancies occur ahitje frequencies and at
the small gain, which is why they are not clearly visible ie #tep response given in
Figure[6.8. This corresponds to the fact that a lower orddeRgproximation of the
delay function influences accuracy of the approximatione ®hcillations induce the
degree of the chosen polynomial given in numerator and dogsravide any physical
explanations.

Although the given analysis of the two-phase flow withoutdh®g force does not
have a real physical meaning, it has a major contributionnideustanding the two-
phase flow system. FigurEs 6110 6.9 incorporate therdésigne single figure
in the time domain and in the frequency domain, respectivAly shown, the wave
that propagates from bottom to top can oscillate largel wéspect to the step input,
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Figure 6.8: Step responses of the boundary feedback ctedrelstem with the cen-
tralized controller without the drag force.
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defined byAj(s) (i.e., with the drag force) and: (i.e., without the drag
force) according to[(5.12).
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Step Response
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Figure 6.10: Time responses of the controlled system withwithout the drag force
for the wave that propagates (a) from the bottom and (b) froentop of
the bubble column.

whereas the wave that propagates in the opposite direatmsfout faster. The reason
for this lies in the drag force. The effect of the drag forcerisaller in one direction
compared to the other direction. The centralized contrsigiecan be also supported
by scheduling the control action with respect to space affierdnt oscillation accord-
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Figure 6.11: Time responses of the controlled and uncoletoflow with and with-
out the drag flow using the exact and approximate solutiorth@ivave
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propagation of the two-phase flow.
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6.4 Discussion

In this chapter, we presented different spatially distilducontrol designs for the
control-oriented two-phase flow model derived in ChapteA#.of the designs pre-
sented indicate that the spatially distributed controligtedor controlling the two-
phase flow is not unique. The most suitable design relies @rtecplar application of
the two-phase flow model and control objective. The contofctive is extremely im-
portant for deriving a model-based control strategy for practical application of the
two-phase flow (e.g., enhancement of mixing, transportatiogas phase in mixture
of gas and liquid). To illustrate different control obje®s, we derived control laws
for two different spatially distributed control designgiundary and centralized. These
two designs are analytically given in Section 612.4 anatken the same numerical ex-
ample given in Chaptelts$ 4 and 5. The results presented iohhjger close the research
directionRD3 and highlight the importance of the control-oriented madgebf fluid
systems. The following results that support the develogroéthe control-oriented
two-phase flow model can be determined:

e The control laws of distributed control designs presente&igure[6.1 allow
for changes in fluid properties across an entire space. Theifiside a bub-
ble column is controlled by injection and suction of fluid la¢ tboundaries and
side wall. This network of actuators and sensors gives néwnuodesigns that
can operate the flow in a desirable manner which depends aptieation of
bubble columns.

e The centralized and boundary control designs given in i@l are tested on
the same numerical example given in Chapter 5. Both of thpgeed designs
showed performances which satisfy different control godlke benefits that
can be gained from these control goals include reductiohefrtfluence of the
drag force in the fluid flow (see Sectibn 6.3, Example 1), arfthenement of
mixing of the gas phase and the liquid phase (see SdciibEgadnple 2). These
completely different control goals can cause extremelfeddht flow regimes,
and cannot be achieved applying a unique actuation strategy

e The implementation of the proposed spatially distributedtml designs in-
volves actuation of the flow at different locations accogdimthe design. The ac-
tuation at the boundaries for boundary controller mean@uand injection of
the fluid throughout the boundaries. The injection/suctibthe boundaries par-
ticularly affects the shape of the velocity profile near thefidaries and changes
the boundary layer shape. The proposed boundary contr@rdean reduce
the delay of the flow between the top and bottom boundary otthemn and
can suppress the fluctuations at the boundaries. Applymgitiall gain at the
boundaries, the delay can be considerably reduced with kfmecguation of the
fluid flow. The actuation strategy in the case of a centralizamtroller means
suction and injection of a secondary flow at the side wall amcalready estab-
lished flow which is in the quasi-steady state regime. Thérabped controller
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improves mixing of the primary flow inside the bubble colunmdaan signifi-
cantly affect the overall fluid flow field.

Although in this chapter the unity step responses were ptedewhich are un-
likely to happen in reality for the two-phase flow, they show system dynamics
of the two-phase flow model and influence of the controllershendynamics.

The input can be easily scaled in the control design in ordeteiscribed the
real injections and suctions throughout the valves. Inotddave more real-
istic simulations, a practical setup and measurementseséatl to validate the
design.

Finally, from a computational point of view, the controliemted modeling based
on microscopic conservation laws is very efficient sincakes only a few sec-
onds to simulate the functional relationships of the unaai®d and controlled
flow. This again emphasizes the need for development of thealeoriented
two-phase flow model that can be used to structurally inflaghe fluid flow in
real time.

These results conclude the research dired®Dr3, which indicates the steps from
control-oriented modeling towards the spatially distté@alicontrol designs for the two-
phase flow. The results presented in this chapter completeeiearch objective and
show how to structurally influence the hydrodynamics of piase flow using the
control-oriented model. The main conclusions and reconaatons for future work
will be summarized in Chaptéf 7.



Chapter 7

Conclusions and
Recommendations

This thesis introduces a new control-oriented microscapdeling approach to fluid
flow systems that leads to different spatially distributedteol designs that can be used
to structurally influence the fluid flow. In the previous chept different modeling and
control techniques have been provided in order to develogatanput/output struc-
tures and spatially distributed control designs for sifgtase and two-phase flow.
This chapter summarizes the findings and discusses futseaneh directions in the
control-oriented microscopic modeling of fluid flow systeamsl in the distributed con-
trol designs.

7.1 Conclusions

This research project was started in order to develop a @eatirented microscopic
two-phase flow model with a causal input-output structued ith well-suited for spa-
tially distributed control designs. The control-orientaetroscopic modeling leads to
a large number of possible control designs and providesidigolfor spatially dis-
tributed actuation strategies. In many cases, the micpiseconodel (PDE model) is
much more computationally demanding compared to a spatiaiform model (ODE
model). Most of the currently used PDE models of fluid flow eys$ include the de-
tailed flow phenomena (CFD models), which increase the mmataplexity and com-
putation time. Although model accuracy is an obvious rezaint for any modeling
approach, it is still important to establish an exact regpuient for a specific applica-
tion since the accuracy can tremendously increase the datigrutime and reduce
the applicability of a PDE model. Developing control-ottieth microscopic models
can bridge the gap between the detailed PDE/CFD models dfffmiv systems and
spatially nonuniform models (ODE models). The derived oardriented models can
fulfill the increasing expectation of improved performasncé processes on the mi-
croscopic scale, which is very important in developing austble processes in the
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chemical industry.

In this thesis, we have proposed a theoretical frameworkiéeeloping a control-
oriented microscopic model of a two-phase flow system thatlEa used to design
different spatially distributed controllers. Three rasbadirections were proposed in
Sectior1 (see Figufe1.3). In the following paragraphsctreclusions are grouped
along two research directions that have been considerédsithiesis.

RD1 Numerical approach to microscopic models

e As shown in Chaptdr]2, microscopic models governed by a SeDéfs require
a significant amount of mathematical analysis in order to/@rihe existence
of solutions and to compute the solutions numerically. A&t game time, high
accuracy means large model complexity. It has been showthianodel com-
plexity and numerical methods are the core of the problemaafeting fluid flow
systems, which leads to the main motivation behind the nsaoqgic properties.
Putting a large effort into developing numerical algorithim order to obtain a
solution is, therefore, not a solution to flow control. Forragtical application, it
is more attractive to observe the problem on a higher levayigfegation defined
on a macroscopic scale and to have real-time computation.

¢ In ChaptefB, the higher level of aggregation, i.e., mudtisenodeling, has been
tested on single-phase flow in a simple geometry. An impbeewantage of the
macroscopic approach presented in Chdgter 3 is that itderssonly a few out-
puts which represent a large set of microstates. The mampasiiow properties
are not only interesting from the application point of viemdaverification of
the mathematical equations, but they can also be considsredtput regulation
quantity of the fluid properties.

¢ In Chaptef B, it has been shown that a simple boundary fe&dimantroller can
be designed on the already developed CFD model of singleepftawv based on
the macroscopic outputs. The boundary feedback contqoléessented in Chap-
ter[3 succeeded in stabilizing the flow around a desired nsaopic energy with
a considerably small control error and with a fast convecgeio the desired
macroscopic energy. The major conclusion has been that tiokelibased con-
trol of fluid flow is more feasible for systems with a simple gesry relying on
less complex models with multiscale modeling compared ¢octtmplex CFD
models that are currently used to model fluid flow systems.

¢ In general, the control design presented in Chdgter 3 reptes trade-off be-
tween the accuracy of discretization and the control dedige results presented
in ChaptefB motivated the introduction of the control-otesl modeling of fluid
flow systems.
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RD3 Control-oriented modeling

¢ Inthe scope of the main research objective, we have inastigwo-phase fluid
systems and the control-oriented modeling of such systeksshas been dis-
cussed in Chaptét 1, the main obstacle in using CFD moddis istk of avail-
able numerical tools and understanding of dominant dynamitwo-phase flow
systems. For this reason, in Chagiér 2, different modelspeets have been
outlined, which have to be taken into account while derivdngpntrol-oriented
model of the two-phase flow system.

¢ In Chaptef#, a control-oriented model has been derivednadet of assump-
tions that were made following the modeling aspects giveBention 2.b. It
has been shown that the drag force and interfacial pressllyedetermine the
well-posedness of any 1D two-phase flow model. This proveetihe key issue
in deriving the well-posed control-oriented model with agerved input/output
structure. The derived control oriented-model is a simp&hamatical repre-
sentation of the two-phase flow system in 1D, which is suétédt a wide range
of spatially distributed control designs easy to implement

¢ In Chaptel#, the eigenvalue analysis and the method of ctesistics have been
used to analyze the well-posedness of the derived contietted model. It has
been discovered that the method of characteristics andigeewalue analysis
can be a guide to help in the selection of the coupling ternastbe boundary
actuation strategies and causal input/output structures.

e Following the findings from Chaptél 4, in Chaplér 5 the conadausal in-
put/output structures of the control-oriented two-phase finodel has been in-
troduced. The causality in case of the PDE models is rativehiad, and re-
quires extensive analysis. For this reason, a new repigsmnbdf the two-phase
flow model has been proposed using the Laplace-space traratfon of the
derived control-oriented two-phase flow model. It was atsawm that the selec-
tion of inputs and outputs is uniquely determined at the lolawies for the causal
two-phase flow. The causality defined in this way gives theesandition for
developing causal input/output structures, which areiaihatistributed. The
Laplace-space representation of the two-phase flow modebisa successfully
used to derive rational transfer functions that show thel fhehavior between
the boundaries. The computational load has been tremelydedsiced, which
is very beneficial for on-line control.

e The control-oriented modeling derived in Chagdier 4 playsnaportant role in
the development of different actuation strategies whictnéwally lead to dif-
ferent spatially distributed control designs. This typenoddeling represents
a trade-off between the accuracy and preservation of theatigudiscussed in
Chapte[b. As shown in Chapfér 5, the control-oriented PDHehaf two-phase
flow is easy to use in a control design where control pararsetertuned based
on desired process performances. In general, contrattedemodeling relies
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on the input/output structure which allows us to structyraifluence the flow
regimes in a bubble column and to establish the correspgradintrol design.

¢ In Chaptei b, we have suggested different spatially disteith control designs.
Based on the control laws for spatially distributed conérsl, different con-
trollers have been designed that can maintain differentftmames of two-phase
flow in a bubble column. It was also shown that different colnproblem for-
mulations require different control strategies. Adjugtihe control designs, we
have shown that the mixing can be enhanced using the spaistitibute central-
ized controller, whereas the plug flow regime can be adjusted) the boundary
controller. Both spatially distributed designs have bessted on the two-phase
flow model represented in the Laplace-space domain. Theatagdpace rep-
resentation of the two-phase flow model is a rather attractiedel representa-
tion since it does not rely on the choice of discretizatiorthrods. Instead, the
Laplace-space representation of the two-phase flow modsinasional transfer
functions to model the system behavior between the boueslaihese func-
tional relationships can simplify control designs tremeunsly.

Based on these observations, it can be concluded that thekoriented modeling

of two-phase flow fulfills the main objective of this thesigdagives a new modeling
framework for the control of fluid flow systems which advoealmv complexity and

high applicability of fluid flow models. We would also like terass that while we
have considered the particular two-phase flow problem aecifipspatially distributed

designs, the techniques and algorithms presented heneibecaf use in many other
areas of microscopic modeling.

7.2 Recommendations

As a continuation of the results presented and open resgaegtions in the field of
flow control, the following challenges can be suggesteddaure research:

e While a well-posed input/output structure and developnoémistributed con-
trollers are very promising steps towards automatic operaif a bubble col-
umn, there are several issues that need to be addressed thefonethod can be
applied in practice.

e Dissipation of fluid properties at the boundaries is veryat®ent on the design
of practical equipment, and it should be also considerdudmlesign. In practice,
different macroscopic scales should be included in couisign.

e The quasi steady-state and steady-state regimes have @itdeted. This re-
quires a further investigation of the linearization teciu@ presented in Section
[4.:33. This mainly involves different operational reginaesl linearized model
representations which are not uniform in space. Furtherstigation in this di-
rection will build a stronger concept of stabilizing diféert operational regimes.
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e Two-phase flow systems can have a wide range of two-phase #terps. For
instance, the homogeneous two-phase flow is characterizedhll-size bub-
bles which move in a very regular and deterministic way withsiderably less
drag between the phases, whereas the heterogeneous floaritehized by
small-scale fluctuations that appear to be stochastic asdlieterministic in na-
ture. Studying different operational regimes and flow pagevould be an in-
teresting research direction that should aim to undertiegohysical phenomena
behind the two-phase fluid flow and their contribution to therall spatially dis-
tributed control designs. Also, cross-effects have to kertanto account which
will result in 2D and 3D two-phase flow models. The analysisuti involve
model robustness and parameter uncertainty (e.g., buldreeter, interfacial
pressure coefficient, and drag coefficient).

e Inthe proposed distributed control designs, applying #eelback controller was
conceptually straightforward. It would be interestingrtedstigate other possible
spatially distributed control designs that have a feedémdastructure. We also
suggested localized spatially distributed control desigrChaptel 16, which have
not been treated in this thesis, and they can also be ineg¢stign the future.

e Finally, testing the derived two-phase flow model and theppsed spatially dis-
tributed designs in practice is required for verificatior grossible redesigns.
Comparing numerical results with experimental resultsniseasential step in
model validation. This might lead to new insights and exgreces that will bring
the control-oriented modeling from the simulation envirant to reality.

The main challenge for future research is to use and impreelicroscopic con-
trol framework while keeping the necessary practical resqaents for industrial pur-
poses. Clearly, this will be a guarantee for the structueakbtbpment in intensifying
chemical processes on the microscopic scale and desigangtgirsable plants in the
future.






Appendix A

Numerical Algorithm for
Solving the Single-Phase Flow
Model

Assume we have the velocity field; andVv'; at then-th time step, and the condition
given by [3.1) that has to be sat|sf|ed Flrst we have to fiadttution at thén+ 1)-th
time step {+ At) by the following three-step approach:

1. Explicit solutions of the nonlinear terms
The nonlinear terms are treated explicitly. This circuntgehe solution of the
nonlinear terms, introducing the CFL condition that linthe time step by the
spatial resolutiom\x
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2. Implicit viscosity
The viscosity terms are treated implicitly. If they wereatied explicitly, we
would have a time step restriction proportional to the sppdiscretization squared.
This results in two linear systems that have to be solvedéh &ene step.
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A Numerical Algorithm for Solving the Single-Phase Fidedel

3. Pressure correction

The intermediate velocity fiell j,vi j) are corrected by the gradient of a pres-
surepn.1 to enforce the incompressibility conditidn (B.1)

n+1_ U

SN
At X

Vln;rlivﬁk _ _(anrl)
At v

The pressure is denoted Ip)t1, since it is only given implicitly. The pressure
term in each point in space is obtained by solving a lineatesys In a vector
notation, the correction equation reads as

1

1
Un+li — U= 7DPn+l
At At ’

where the capital letters denote the numerical approxanaif the discretized
PDEs[3.2) and (313).
Applying the divergence to both sides yields the linearesyst

1
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Table A.1: Algorithm which is used to correct the pressurmte

Correction steps

Step 1 Computed"=0-U"
; ; 1_1
Step 2 Solve the Poisson equatighP™* = 5 J"
Step 3 ComputeH"+1 = Op+1
Step 4 Update the velocity fielt)"1 = U" — AtH"!

A standard approach to the pressure correction at the baesdsito prescribe
the homogeneous Neumann boundary conditionsPfavhenever the no-slip
boundary conditions are prescribed for the velocity fielor the lid-driven cav-
ity problem, this means that the homogeneous Neumann bounrdaditions
are prescribed for the pressure at each boundary (i.e.othdobttom, and side
walls). This implies that the pressupas only defined up to a constant, since the
gradient ofP enters the momentum equatiohs{3.2) (3.3).



Appendix B

Linearization of the Two-Phase
Flow Model

This section gives a short overview of the linearizationh# two-phase flow model
derived in Chapter]4, which is used to develop a well-posédasion structure. The
same linearization technique is also used to derive thaldined Navier-Stokes equa-
tions [1].

First, we start with the two-phase flow model{4.0[),{4.5) &hd), where[(4.19) is
inserted for each state separately

2o )y 2008 w4 + o o o,
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Notice that the drag force is simplified using the followirdation

1 1
ag C(|

Now, we can evaluate each equation separately in order trofte linearized two-
phase flow model, which can be written as
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/

a
whereq,, a—g ~ 0 for the perturbation in the vicinity of the steady-statkition, i.e.,
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Equation [[B.1) is the linearized mass equation which actsothe variation of the
. . 00y vy

steady-state solution with respect to spagX@\/g anduéa—)?. If the steady-state solu-

tion is space independent, the linearized mass equatiaiequ
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In contrast to the linearization of the mass equation, thesliization of the momen-
tum equation is more computationally involved due to thelinear interfacial pressure
and the drag force.
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The linearized momentum equation is given by
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final form of the linearized momentum equation is
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And finally, we linearize the algebraic part of the two-phéises model suggested in
Chaptef#. The linearized algebraic equation can be writtéarms of perturbations
as

-+ e @2)
- o T o

The final form of the linearized algebraic equatién_(B.2) ¢@nobtained from the
following equation

a p v V. _

The linearized two-phase flow model can be written in a cormpadrix form as

0.
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with
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representing the linearized system matrices, and
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representing the linearized force vector.
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Appendix C

Coordinate Transformations

The coordinate transformation presented in Chdgter 4 iscbas the following trans-
formation

10 0 1 0 o0
E°P=ET=|0 1 0|, and T=| 0 pg* p with @ =TW',
000 0 0 op

whereT stands for the coordinate transformation matrix. Now, we ttansform the
state vectof” into a new state vecté¥’ such that according to the given fluid variables
(og, vg, @andy;), the new states are given as

o
w _ | PaVg—PM
v
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The two-phase flow model written in th coordinates reads as
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From [C.2), the algebraic equation reads as

oW (PgVg — Pg¥) Cae B Jg v

OX  pg(—Tgpi—Pg+Pglg) 0X  Pg(—0gpi — Pg+ Pglg) OX |

(C.3)

By subtracting[[C13) from{Cl2), the PDAE model of the twcaph flow can be
reduced to PDE model

—PgVg +VgPgTg—TgP V[ Ty(—14+0g)
10 oy’ —0gP| —Pg+Pgdg —0gPp|—Pg+Pgdg o
2 . o =
0 1] ot (Vg—Vi) “pi (—~CppiTg+PgTgCP+Pg—PgCP)  —PgVg+VgiPgOg—TgPI Vi 0x
—0gpP| —Pg+Pg0g —0gpP| —Pg+Pglg
(C.4)
0 0
LIJ/
~ 3CaP () (P +PVi+Pg%g—Pg%) 3 Capi (W) J
2 dy (—0gP1—Pg+Pglig) 2 dp(—0rgp —Pg+Pg0g)

The directional derivatives ifL(d.4) can be decoupled usliegsecond coordinate
transformation which gives the following equation writierthe W’ coordinates as

—PgVg+VgPgllg—TgP Vi ag(-—1+dg)
ow’ RV —0gpi —Pg+Pgg —0gpPi —Pg+Pglig VGW/
2 N .
ot (vg—%) P (—Cp P Tg+Pg0gCp+Pg—PgCp)  —PgVg+VgiPglg—0gPI T 0x
—0gPi —Pg+Pylg —UgP —Pg+pPylg
(C.5)
0 0
WI
_ 3CaP (V) (—Pg+PIVi+Pgg—PgVi) 3 Capi (V) ’
2 dy (—0gP1 —Pg+Pglig) 2 dy(—TgPI—Pg+Pgli)

where the transformation matrik equals

1/2 1/2
g [y 2]
1/26 -1/2c
with o being
o pi (Vg — i) (—CpPiT0g + Pg0gCo + Pg — PoCy)

\/O‘gipl (Vg —W)? (—1+10g) (—Cp P10 + PglgCp + Pg — P4Cp)

Finally, the two-phase flow model written as the PDE modehvwiite decoupled
directional derivatives can be written as
ow’ |: A O ] ow’ _ |: Ci11 Ci12 ]W/,

0 h | ax | o o (C.6)
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where o0 VT + TTpuVe
OgP1Vi + 01 PgVy —
LT dgpr +aipg ¢ (€N
UgPIVi +01pg¥g =
A == g_—_ - D 3 C-8
2 Ogp1 + 01 Pg ¢ (C8)
with

De = 000 (% — )% (~1-+ 1) (1— (@) cp) )
g
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Appendix D

Pade Approximant

The second step in the numerical approximation of the bayntanditions and the
transportation delays described in Chapler 5 is the Papi@zimation. In general, the
Padé approximation uses the quotient of two polynomialksstomate a power series
which can be defined as

RL(s)

Rwm (S) ’
whereP,_ (s) is a polynomial of degrek andRy (s) is a polynomial of degre# [7].
The explicit equation that approximate the power sezte§) reads from

im Ru(Sn(S) ~RL(s)

s T M

[Lv M] =

=0.

The more accurate approximations can be obtained usinghigiyree of polynomials
to replace the output delay element. To clarify this, coasi delay, of which the
Taylor expansion is given by the following series

1 1 1
—his _ 2 3 n
e MS—1—hs+ Ehlszf éhl§+ et Z!hléq
The first three terms of the expansion arehis and %h%sz. Suppose now that we

approximate the delay by the following first order system

1

=1—as+a%.
1+as

Then, by choosing = hy, the first two terms of the approximation match those of the
delay. If, instead, we approximate the delay by the follay@xpression

17%5 1 2 3 n
i 1—h13+§h132—hls,3+...+hls“,
2

then, we can expect more accuracy since its first three cieefficmatch those of the
delaye s, Usually, the more coefficients B (s) andRy (s) that match the delay, the
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more accurate the approximation becomes. As an illustratie consider here a pure
delay functione™ which is approximated by the first-order [1,1], second-of@¢?],
and third-order [3,3] Padé approximations as

[1,1]:1 ®_1-s4: 52 s3+ S+O(s5)
+25
_logsH® 1o 15 01
[2’2]_1+25+1232 1 s+232 6s3+24s4+0(55),
3,3 = 1- ZS+ 1% ~ 120% =1-s+= 52 s3+—s +0(s).

1+ 25jL 1052jL 1%o§

As shown, the polynomial coefficients for the second anditbider approximations
are the same for the first four terms, whereas for the highdgraerms, they differ
slightly from each other.
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Glossary

Lists of symbols and notations

Below follows a list of the most frequently used symbols anthtions in this thesis.

Symbol Description Units
m mass kg

P density kgm?
v velocity m/s

E energy Jms

t time S

) state vector -

S source term

L length m

\% volume n

X x-direction in the Cartesian coordinates -

y y-direction in the Cartesian coordinates -
A Cross section area n

n normal vector on the surfade m

C concentration mgim?
De effective diffusion coefficient -

r reaction rate 1s
Pe Peclet number -

p pressure Nm?
Il fluid viscosity kg/(sm)
g gravity acceleration

0 angle rad
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Glossary

Symbol

a
m
l
Pe,i
F
Fq

S o-pmm

T<SPOUQLOT®CS XO

(0]

ONAMENE

DTS

o rxma

Description

volumetric fraction

number of phases

phase indicator

interfacial pressure

coupling term

drag force

added mass force

transversal force

force due to collective memory effects
temperature

thermal diffusion coefficient
specific heat capacity

thermal conductivity

state

coefficient

coefficient

coefficient

coefficient

discriminant

Courant number

rectangular domain
dimensionless velocity componenbirdirection
dimensionless velocity componentyrdirection
Reynolds number
dimensionless velocity of the lid
state vector

boundary input

systems

macroscopic observation index
steady-state solution

error

state

drag closer term

drag coefficient

interfacial pressure coefficient
diameter of a single bubble
system matrix

system matrix

state vactor

Units
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Symbol
Ai

ap

a

az

Dc

&i

Description

eigenvalues

coefficient of a characteristic polynomial
coefficient of a characteristic polynomial
coefficient of a characteristic polynomial
discriminant

states

state vector

transformation matrix

transformation matrix

state vector

state matrix of spatially discretized model
state matrix of spatially discretized model
state matrix of spatially discretized model
state matrix of spatially discretized model
input matrix of spatially discretized model
input matrix of spatially discretized model
eigenvalues in the Laplace-space domain
the system matrix parametrized by

the spatially distributed input matrix
function in the Laplace-space domain
transformation matrix

element of matrixQ

element of matrixQ

element of matrbQ

element of matrixQ

rational transfer function matrix
coefficient of polynomial

coefficient of polynomial

coefficient of polynomial

coefficient of polynomial

boundary controller

boundary controller

boundary controller

boundary controller

distributed controller

vector

vector

discretized pressure written as a vector

Units
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Glossary

Operator

gij

Description

partial derivatives
gradient operator
divergence operator
fluctuations

finite difference operator
averaged quantity
state function

state function

state function
output function
Laplace varable

Sub/Superscript  Description

in

o
c
—

W OO —T T UQaeS S XS T TaQ NB N < X

inlet

outlet

x-component in the Cartesian coordinates
y-component in the Cartesian coordinates
zcomponent in the Cartesian coordinates
number of phases

phase indicator

gas phase

liquid phase

spatial index in thex-direction on microscopic scale
spatial index in theg-direction on microscopic space
number of discretization points in microscopic space
spatial index on macroscopic space

number of discretization points in microscopic space
number of discretization points in macroscopic space
desired value

proportional action

integral action

diagonalized

slip

downwards

upwards

reduced

inlet

co-current flow

counter-current flow
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Abbreviation Description
CSTR Continuous Stirred-Tank Reactor
PFR Plug Flow Reactor
PID Proportional-Integral-Derivative
MPC Model-Based Predictive Controller
CFD Computational Fluid Dynamics
RD Research Direction
DAE Differential Algebraic Equation
ODE Ordinary Differential Equation
PDAE Partial Differential Algebraic Equation
PDE Partial Differential Equation
1D One Dimensional
2D Two Dimensional
3D Three Dimensional
LQ Linear Quadratic

DNS

Direct Numerical Simulations






Summary

The recent progress in the chemical industry is now forcimgjreeers and physicists to
get to deal with control-oriented modeling of material pedjies on microscopic scale
inside reactors in order to build more efficient chemicahga The control-oriented
modeling provides a new way of thinking about the purposesadels in the chemical
industry, the relationships between the material propeitiside the chemical reactors,
and the level of details needed for control designs.

The main objective of this thesis is to offer the physics,nalval, and control
communities a unified set of rules and conditions for the rm@riented microscopic
modeling of fluid systems in the chemical industry. The wor&sented in this the-
sis includes not only the physics of fluid systems and firsigiple models, but also
suggests requirements for developing causal input/ostputtures and spatially dis-
tributed control designs.

The first part of this thesis concerns the problem of the nsimspic modeling of
a fluid flow system and the requirements needed to obtain aatariented model
of the fluid flow system. The derivation of the control-oriethimodel can be a rather
demanding task due to the fact that the dynamics of a paatidiow regime have to
be determined explicitly. In order to demonstrate the flowtral, a single-phase flow
system in simple geometry, such as a lid-driven cavity casepnsidered. The com-
plexity of the single-phase flow model is illustrated using Navier-Stokes equations
and different discretization methods. The conventiongragch to the microscopic
fluid flow model involves fine discretization of the microseomodel in order to ob-
tain microstates which can be manipulated and measured.ettwthe microstates
give a very detailed picture of the fluid flow that, in many case not directly measur-
able. Therefore, different modeling scales have to be densd for designing spatially
distributed control strategies for the single-phase floworder to demonstrate the ap-
plicability of the different modeling scales for the fluid ilcsystem, a macroscopic
output regulation is studied on the lid-driven cavity caskich has a broad range of
industrial applications.

The second part of this thesis deals with the problem of @egia control-oriented
model of a two-phase fluid flow system, which is complementare single-phase
flow model given in the first part of the thesis. In essence cthr@rol-oriented two-
phase flow modeling namely means deriving a simplified mddlis available from
the first principles and to examine the dominant dynamice ddntrol-oriented model
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of the two-phase flow investigates the possibility of idiitig different flow regimes
inside a bubble column reactor, where the fluid is injectediféerent locations of the
reactor. Besides being useful for control, the contrototéd model of the two-phase
flow inside the bubble column also suggest new reactor dedigsed on the most
efficient actuation strategies. Following a wide range dafgilole actuation structures
for the two-phase fluid flow, different spatially distribdteontrol designs for the two-
phase flow inside the bubble column reactor are suggestédkithesis. The spatially
distributed control strategies can be successfully usestabilize or destabilize the
two-phase flow around a desired two-phase flow regime.

In general, the stabilization or destabilization of thedlfiow plays a crucial role
in designing efficient and sustainable processes that reth@manipulation of hydro-
dynamics. The spatially distributed control designs ofdimgle-phase and two-phase
flow systems presented in this thesis suggest more efficéattor designs and new
developments in the process intensification in the cheriidailstry.



Samenvatting

De recente ontwikkelingen in de chemische industrie metak het bouwen van
efficintere chemische installaties zetten steeds meenieges en fysici aan tot de ont-
wikkeling en het gebruik van regeltechnische modellen vateniaaleigenschappen in
reactoren. Het modelleren vanuit een regeltechnisch petis biedt een nieuwe ma-
nier van denken over de toepassing van modellen in de cheeniisdustrie, de relaties
tussen de eigenschappen van het materiaal in de chemisahieren en het niveau van
de details die nodig zijn voor het ontwerpen van een regelaar

De belangrijkste bijdrage van dit proefschrift is het orgvean een uniforme set
van regels en voorwaarden voor de regeltechnische modeivgivan vloeistofsyste-
men in de chemische industrie. Naast het gebruik van defysio vloeitstofsystemen
en de constructie van modellen op basis van fundamenteleraindige wetten wor-
den er eisen opgesteld die nodig zijn voor de constructieceaisale ingang-uitgang
structuren en ruimtelijk gedistribueerde regelontwerpen

Het eerste deel van dit proefschrift heeft betrekking op érascopische model-
vorming van een vloeistofstroomsysteem en de eisen digyraijdi om een regeltech-
nisch model te verkrijgen. De afleiding van een regeltedimisodel kan veeleisend
zijn wanneer de dynamiek van een bepaald vloeistof reginpioiat moet worden
bepaald. De complexiteit wordt gellustreerd aan de handdeaNavier-Stokes ver-
gelijkingen en de verschillende beschikbare discretésagthoden voor een eenfase
stromingssysteem met een eenvoudige geometrie — het zageledid-driven cavity
systeem — waarvan het principe kan worden teruggevondesmibesed scala aan in-
dustrile toepassingen. De conventionele oplossingsrdethwan het microscopische
stromingsmodel gaan uit van een fijne discretisatie. Dearitféne discretisatie ver-
kregen microtoestanden kunnen vervolgens worden geasaty€n gemanipuleerd.
Ondanks het feit dat de microtoestanden een zeer gedetdileeld geven van de stro-
ming zijn deze over het algemeen niet direct te meten. Daanoeten verschillende
modelvormingsschalen worden beschouwd voor het ontweseruimtelijk gedistri-
bueerde regelontwerpen. De toepasbaarheid van de makistiodelvormingsaanpak
van een stromingssysteem wordt aangetoond door middeleramacroscopische uit-
gangsregelaar van het lid-driven cavity systeem.

Het tweede deel van dit proefschrift behandelt de conséwetn een regeltech-
nisch model van een tweefasen stromingssysteem. Dit modehiplementair aan het
eenfase stromingsmodel zoals behandelt in het eerste\éealit de multischaal mo-
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delvormingsaanpak wordt een vereenvoudigd model op basiBmdamentele natuur-
kundige wetten opgesteld en vervolgens wordt de domingmiardica bestudeerd. Op
basis van het verkregen regeltechnisch model worden dehibesde stroomregimes
in een bubbelkolom reactor onderzocht door vloeistof ogatgtiende plaatsen te in-
jecteren. Als uitkomst van deze studie worden verschibamimtelijk gedistribueerde

regelontwerpen voor de tweefasen stroming binnen de bkdloeh reactor voorge-

steld. Deze gedistribueerde regelontwerpen kunnen wayderuikt om de tweefasen
stroming te stabiliseren of te destabiliseren rond een gsinsgromingsregime. Naast
het gebruik van het regeltechnisch model van de tweefasamisig in een bubbelko-

lom voor het ontwerpen van een regelaar kan het ook bijdragamieuwe reactoront-
werpen gebaseerd op de meest efficinte actuatiestrategien.

In het algemeen spelen de stabilisatie en destabilisatieega vloeistofstroming
een cruciale rol bij het ontwerpen van efficinte en duurzamegssen die afhankelijk
zijn van de manipulatie van vloeistof-dynamica. De ruiljitededistribueerde regel-
ontwerpen van de stromingssystemen zoals gepresentektrginefschrift suggereren
efficinter reactor ontwerpen en nieuwe ontwikkelingen irpdecesintensivering in de
chemische industrie.
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