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Chapter 1

Introduction and Problem
Formulation

The most recent demands for the development of sustainable solutions in the chemi-
cal industry encourage multidisciplinary research which is oriented towards improving
process performance with minimum energy consumption and low environmental risks.
Operating processes with high efficiency and low operational costs per unit volume
on different scales becomes increasingly important. The key challenge in developing
suitable solutions is to establish a multiscale technologythat can intensify production
processes with low environmental risks. Successful implementation of the multiscale
technology will eventually lead to sustainable solutions in the chemical industry. This
thesis contributes to the developments in this area by introducing different scales of
modeling chemical processes using a control-oriented modeling approach to fluid flow
systems inside chemical reactors. This introductory chapter provides a brief overview
of the issues related to modeling chemical processes on different scales, current mod-
eling problems related to hydrodynamics, and opportunities for future developments in
the chemical industry.

1.1 Developments in Chemical Engineering

Under the influence of unprecedented market demands in the petroleum, pharmaceu-
tical, food, and cosmetic industries, the chemical industry has evolved considerably
over the last two decades. Following the demands and achievements made in these
fields, plant capacities have greatly increased, incorporating new technologies to main-
tain the enlargement. Most of the new technologies have relied on developments from
different fields such as: material science (safe construction of large-size reactors and
pipes), mechanical engineering (construction of agitators that enhance the mixing of
reactants), chemical engineering (decreasing process time and increasing productiv-
ity), and control engineering (safe regulation of pressureand temperature inside the
reactors). However, operating chemical processes in an optimal and safe manner is al-
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2 1 Introduction and Problem Formulation

most impossible for some production processes on the large scale (e.g., mixing inside
large-scale reactors, transportation of fluid in long pipelines, distribution of particles in
crystallizers, or pressure distribution in distillation columns). These production-related
problems cannot be effectively solved with the current reactor design and are still not
scaled-up to the optimal volume. Due to the complex nature ofthe chemical processes
and equipment designs, the ability to build plants “a bit bigger” is slowly reaching its
limitations [22]. This dictates a growing need to replace current large, expensive, and
energy-intensive equipment with smaller, less costly, andmore efficient equipment for
an optimal production process. In order to be able to replacethe current large-scale
equipment and to scale-up a plant more efficiently, a better understanding and more ac-
curate mathematical descriptions of the process dynamics are needed. It is, therefore,
exceedingly important to derive an accurate mathematical description of a chemical
process that can predict the future behavior of the process and can be used for control
design. This approach to chemical processes is known as model-based control design.
The philosophy behind the model-based control approach is that the process can be
manipulated by exploiting the ability of a model to predict the behavior of a process
and influence the dynamics in a desirable manner.

This thesis contributes to the developments in the area of model-based control strat-
egy of chemical processes through the introduction of a microscopic scale with a wide
range of possible actuation strategies. The main contribution of this project is in the
development of a microscopic model-based control approachto two-phase flow inside
bubble column reactors with different spatially distributed control strategies to influ-
ence the flow. Furthermore, this thesis proposes various control objectives and control
designs that can be used to operate fluid flow systems under different flow regimes. The
modeling and control perspectives of fluid flow systems are studied on two numerical
examples: single-phase and two-phase fluid flow. The main contribution of this thesis
is in the control-oriented microscopic approach to the fluidflow inside a chemical re-
actor, which provides a new way of thinking about the purposes of models in chemical
engineering, the relationship between the mass and flow properties in the reactors, and
the level of details needed for control designs.

1.2 Mathematical Description of Chemical Processes

1.2.1 Material Properties

The mathematical description of a chemical process plays animportant role in the
engineering design and operation of the process in modern chemical design. Basic
prerequisites for a model-based representation of a process include a thorough analysis
of the chemical and physical properties of pure components,transformation of the
components in a system of mixtures, ways that the process canbe influenced, and
available measurement techniques. A model of a chemical process is usually based
on mass and energy balance equations observed in each unit (e.g., reactors, separation
vessels, filters). The units are integrated into a production network and operate through
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a process simulator by manipulating the process variables.Since the manipulation
of the system is based on models embedded into the process simulators, this means
that the production can be both influenced and significantly improved by improving
the models used to describe the process. For the model-basedscale-up and control
design in the chemical industry, it is essential to specify the characteristic length at
each scale. The process performance and productivity on different scales improved
in such a way eventually leads to more efficient and sustainable productions where
a process is intensified over the spatial, temporal, thermodynamical, and functional
domain [97]. Factors that have to be considered in order to improve the performance
and productivity of a chemical process are transfer rates ofmass, momentum, and heat
among the components involved in the process.

However, due to the different scales of modeling chemical processes as illustrated
in Figure 1.1, the level of model complexity increases as onedecreases the character-
istic length of observation (i.e., “zooming in”) of material properties. Before we intro-
duce the model complexity, it is important to study the chemical and physical phenom-
ena that exist on different scales, including the model requirements for a model-based
control design on each scale.

1.2.2 Modeling Scales

Three different scales are commonly used in chemical process engineering: the plant,
reactor, and microscopic scale. Figure 1.1 roughly illustrates those scales. Currently
used models in the chemical industry are derived on the reactor or plant scale. The
models derived on the reactor or plant scale do not take into account the spatial varia-
tion of material properties which can be observed only on themicroscopic scale. The
reason for this lies in the complex nature of microscopic phenomena that exist on
the microscopic scale, which requires advanced analysis. However, the microscopic
model-based approach to chemical processes gives a spatially distributed mathemati-
cal description of chemical properties and provides a wide range of different actuation
strategies. This will be further discussed in Chapter 2. Here, we will briefly outline the
scales and major design issues.

1. Plant scale

Chemical plants use a wide range of equipment where materials flow throughout
the process, starting as feeds and ending up as products. Themodels used to
describe the flow of material are based either on mass balanceequations to model
flow between the units or on empirical correlations between material properties
that are usually obtained from experiments [94].

2. Reactor scale

On this scale, the process is assumed to be well-mixed or without any varia-
tion of the flow properties with respect to space. There are three basic reactor
types according to operating modes: batch reactor, continuous stirred-tank re-
actor (CSTR), and plug flow reactor (PFR). The process behavior inside these
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Figure 1.1: Different levels of modeling chemical processes.

reactors is fully determined by the operating mode and properties of the reac-
tants. The reactants include pure fluid or solid components,or a mixture of both.
In all three types of reactors, the reactants move inside thereactors creating dif-
ferent flow patterns. The flow patterns cannot be observed on this scale because
the material property is assumed to be spatially uniform. Correction of models
for flow variation obtained on this scale is done by introducing different corre-
lation factors between flow variables and material parameters for each reactor
separately [59, 94].

3. Microscopic scale

A detailed picture of a chemical process can be obtained on the microscopic
scale. The process inside the reactor is viewed during the course of the kinetics,
mass transfer, hydrodynamics, and heat transfer that occurbetween components
on this scale. However, the downside to modeling on this scale is that the mi-
croscopic scale requires not only an increased level of scientific understanding
and engineering enhancement, it also requires further advancement in the mod-
eling approach to physical and chemical phenomena which canonly be found
in the microscopic world. One of the most important properties which can be
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observed on this scale is the velocity of components, i.e., velocity field. In prin-
ciple, a velocity field describes different flow patterns which occur in different
operating modes. Due to the fact that we can observe the motion of all compo-
nents, i.e., phases inside a reactor, these systems are alsoknown as systems in
motion or multiphase flow systems. The knowledge and techniques used to solve
models of fluid flow on the microscopic scale are known as computational fluid
dynamics (CFD) [4]. Using the CFD models allows for a rather accurate deter-
mination of the velocity field of the entire reactor volume for each component
separately or for the whole mixture of components. Deviations and fluctuations
of fluid flow properties in CFD models are observed dynamically with respect to
space. This, in itself, gives a rather accurate descriptionof physical phenomena
on the microscopic scale because this unique aspect of the microscopic models
increases possibilities to improve productivity and efficiency per unit volume.
On the other hand, due to the complex nature of the physical phenomena on the
microscopic scale, the microscopic models are computationally rather involved,
which explains why the microscopic models have not yet been used in the chem-
ical industry. The microscopic models have been mostly limited to a few aca-
demic examples (e.g., the heated plate and the flow of reactants in a plug flow
reactor). In recent years, a great effort has been devoted tomodeling different
phenomena on the microscopic scale (e.g., convective transport, diffusion, and
friction) and to the development of related numerical methods to solve model
equations. This is due to the high interest in understandingand manipulating the
mixing of the fluid, which can be observed only on the microscopic scale. This
will be discussed in detail in Chapter 2.

1.2.3 Model Complexity

In this section, we will emphasize the complexity of the mathematical description of
chemical processes on different scales. A mathematical description of a chemical pro-
cess is usually based on conservation laws of mass, momentum, and energy. Depend-
ing on the scale and system boundaries, the models are formulated by a set of ordinary
differential equations (ODEs) for spatially uniform processes on the plant and reac-
tor scale, or a set of partial differential equations (PDEs)for spatially non-uniform
processes on the microscopic scale. The non-uniformity is related to the spatial distri-
bution of the material properties. This means that the PDE models govern variations of
the material properties with respect to time and space. Besides the equations obtained
by first principles modeling, some chemical processes involve constitutive and con-
straint equations which usually lead to a set of differential algebraic equations (DAEs)
for the time variation only, and a set of partial differential algebraic equations (PDAEs)
for time and space variations. This will be further discussed in Chapter 2.

In general, PDE/PDAE models are more accurate compared to ODE/DAE models.
The PDE models allow engineers to improve on existing designs and to understand
the influences of physical parameters on the product qualityon the microscopic scale.
Consequently, the PDE models can be used to manipulate the mixing of fluid, concen-
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tration of chemical components, and other microscopic properties on the microscopic
level. However, the PDE models, in particular the CFD models, require a compre-
hensive knowledge of detailed geometric design, numericalmethods, the mathematics
behind different types of PDEs and extensive modeling effort. This all makes the CFD
models complex and computationally involved. Depending onthe complexities of the
models, it is generally quite difficult to obtain fast simulation models that can be used
for real-time control designs.

The development of CFD models is commonly done using commercially available
software packages, and it consists of the following steps:

1. Pre-processing.In this step, the spatial domain, shapes, and discrete grid divi-
sions have to be defined. In order to approximate the continuous behavior, CFD
models are solved numerically where the spatial domain is divided into many
grid cells. The number of grid cells in the CFD models are typically in the range
of 102 to 1015 grid cells [72]. This means that the CFD software has to simultane-
ously solve 102 to 1015 equations for every time step. Advanced CFD packages
usually have a default mesh generator for solving fluid equations (see Section
2.2.3). In this step, it is necessary to specify initial and boundary conditions. As
far as the system parameters are concerned, most of the software packages have a
database of physical parameters, such as density, viscosity, and heat conductivity
with temperature dependence for a wide range of reactants, which simplifies the
modeling of fluid systems.

2. Solving.This is the most demanding part of the CFD algorithms since itinvolves
discretization of the governing equations, selection of the solvers and numerical
algorithms, and iterative calculations needed to solve discretized equations. The
computations can take from a few minutes up to a few days or even weeks. This
step became shorter with the development of high speed computers, but it is still
far from the real-time computation offered by most on-line applications in the
chemical industry.

3. Post-processing.In this step, the results of the simulations can be visualized in
each grid point in graphical interfaces in one-dimensional(1D), two-dimensional
(2D) and three-dimensional (3D) plots at all time steps. Thesimulation results
can also be exported to data files for further manipulation and model analysis.

All the above steps are very complex and computationally involved. However, with
high speed computers, the number of CFD packages has increased over the last few
years. FLUENT, COMSOL (formerly FEMLAB), ANSYS, FEMtools,CD - ADAPCO,
and CFX are just a few of the most commonly used software packages for simulation
of fluid flow. These packages include static and dynamic structural analysis with lin-
ear and nonlinear solvers embedded as an integral part of thesoftware. The choice of
software usually depends on the required accuracy and available examples.

Most of the available software packages use different solution routines to shorten
the computation time. One of the first routines was developedin FORTRAN and C++.
Those programs still offer a wide range of well-worked out examples. The existing
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routines can be used to modify the CFD models for any particular application or to
build new models.

FLUENT plays a central role in the fluid flow engineering design of all the above-
mentioned software packages. It has become an essential tool for simulation of fluid
flow with a large library of engineering problems, ranging from the chemical industry
and oil refineries to the construction of vehicles and buildings. FLUENT’s strongest
point is its ability to solve problems involving complicated physical phenomena allow-
ing other programs, such as GAMBIT, to design different shapes and complex geome-
tries. The CFD community has tailored different complex geometries using different
numerical techniques, and uploaded them to the libraries for FLUENT’s users. The
main shortcoming of this package is that it does not support most of the chemical and
control engineering software.

Another CFD package that recently started to be extensivelyused in chemical en-
gineering is COMSOL Multiphysics. The COMSOL Multiphysicspackage is a finite
element analysis and solver package for simulating variousphysics and engineering
applications. COMSOL Multiphysics also offers an interface with MATLAB and its
toolboxes. This allows for a large variety of programming, pre-processing and post-
processing possibilities which can be very beneficial for control design.

Despite the fact that there is a wide range of CFD packages, itseems that we are still
far away from implementing developed theory on practical setups. The CFD models
are generally too slow and too large to be used in on-line control designs and real-time
prediction of fluid motion. Consequently, the applicability of CFD in control design is
currently rather limited even with fast computers. For control design, it is exceedingly
important to solve the model equations faster than the real-time changes. In this way,
the controllers have time to take an action and influence the future system behavior.
In addition, fast models are beneficial not only for the control design, but also for on-
line tuning of the process parameters and process conditions. This opens new research
directions, putting the current flow design into a new control-oriented perspective.

1.3 Control-Oriented Modeling

1.3.1 Input/Output Structures

The strongest connection between control and chemical engineering is shown in the
modeling of physical systems and developing tools to simulate the models. However,
one of the fundamental differences between control-oriented modeling and modeling in
other disciplines lies in modeling interactions between properties. Whereas modeling
in other disciplines relies on the balance equations and closure equations that form a set
of solutions, the model-based control framework relies on atype of input/output mod-
eling that allows one to influence the system behavior (e.g.,regulations, optimization,
and disturbance attenuation). Generally speaking, an input/output structure describes
variations of outputs (i.e., measured quantities) with respect to inputs (i.e., manipulated
variables). As far as different modeling scales are concerned, the input/output structure
depends on the selected modeling scale and operating modes.For example, a process
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on the reactor scale is usually controlled through the regulation of valve positioning at
the vassal boundaries for the fluid transportation, regulation of temperature, manipu-
lation of pressure, and concentration of the material transformed throughout the sys-
tem. In the early days, control engineers used simple controllers, such as proportional-
integral-derivative (PID) controllers, to influence chemical processes. The PID con-
troller minimizes the difference between a measured process variable and a desired
set-point which stabilizes the overall process around the chosen set-point. The models
used in control design were obtained from the simple balanceequations and empirical
correlations within a control loop. The control loop can be classified on the basis of
their properties as: flow, pressure, liquid level, product quality, and temperature con-
trol loop. Following developments in the control field over the last few decades, more
powerful control techniques have been developed and used inthe chemical industry. A
typical example is the use of advanced models in the petrochemical industry and the
application of model-based predictive control (MPC) design, which improves the pu-
rity of some products by 1-5% and yields a very important annual profit per operational
unit [20].

The model-based control design involves defining the following tasks:

1. selection of manipulated variables (i.e., inputs),

2. selection of controlled variables (i.e., outputs),

3. selection of a control configuration (i.e., structure of the overall controller that
interconnects the manipulated and controlled variables),and

4. selection of controllers for the model which is derived from the first principles.

Any future developments of the modeling tools should be aimed at providing ad-
ditional knowledge about how to influence the process, how toenhance process per-
formances with minimal effort and a maximal production rate, and how to operate
processes on the microscopic scale with higher efficiency. To influence the process in
an optimal manner on the microscopic scale, a systematic approach to complex fluid
systems is needed. This means that a control-oriented modelof a fluid system has to be
developed in order to control macroscopic phenomena and scale down current large-
scale reactors. This thesis contributes to the developmentof control-oriented fluid flow
systems by studying the two-phase flow inside bubble column reactors, which appear
in a wide range of chemical processes.

1.3.2 Two-Phase Fluid Flow

Many examples involving two-phase fluid flow systems appear in the chemical indus-
try, such as the partial oxidation of ethylene to acetaldehyde (i.e., the Wacker-Hoechst
process) or the carbonization of methanol to acetic acid. Other occurrences of two-
phase flow appear in the injection of steam into oil wells for enhanced oil recovery, in
the condensation of higher hydrocarbons, in natural gas pipelines due to low tempera-
tures of surrounding air or soil, in a boiling water nuclear reactor, and in fermentors for
the production of enzymes and drugs. For a more extensive overview, we refer to [35].
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Figure 1.2: Flow patterns in a vertical bubble column: (a) bubble, (b) bubble-slug
transition, (c) slug, and (d) annular.

All these processes take place in reactors that are often referred to as bubble column
reactors. As shown in Figure 1.2, a bubble column reactor is avertical cylinder, where
a gas phase enters at the bottom of the column through a gas distributor. The column
is filled with liquid which expands under the influence of the gas injection. Different
flow regimes can be created on the microscopic scale depending on the magnitude of
the gas injection. Figure 1.2 shows different flow regimes and levels of coalescence
of bubbles present in the column on a microscopic scale. In the bubble flow, the gas
consists of discrete bubbles immersed in the liquid phase that moves against the gas
flow. Increasing the gas injection or pressure at the top of the column, these small
bubbles coalesce into slugs. The transition from bubble flow(Figure 1.2(a)) towards
annular flow (Figure 1.2(d)) depends on the size of the bubbles, injection techniques,
and surface-tension effects. The large number of bubbles, which can coalesce into
slugs, increases the gas volume fraction and decreases the presence of the liquid phase.
Consequently, the gap between the gas and the wall narrows, thus the downward flow
dominates the column. This causes a rather strong relative velocity between the gas and
the liquid phase. As shown in Figure 1.2(c), the coalescing effect caused by different
flow regimes inside the bubble column can be observed only on the microscopic scale.



10 1 Introduction and Problem Formulation

On the reactor scale, the coalescing of the bubbles into slugs is mainly observed in
decreased production rates.

Although the bubble column reactor is characterized by the lack of any mechanical
means of agitation, due to the large contact area between thephases, bubble flow is
particularly efficient from a mass and energy transfer pointof view. The transfer rates
are mainly determined by the size of the contact area, the circulation rates of the liquid
and gas phase, and can be increased by enlarging the contact area between the phases.
A poor liquid circulation has an adverse effect on the transfer rate and residence time
of the gas phase, whereas a well-circulated liquid phase increases the reactor volume.
In reactor design, the main objective is to keep a large contact area between the phases
while maintaining an ideal balance between those two extreme circulation phenomena.
In this thesis, we will introduce a new microscopic modelingand control approach to
the problem of two-phase fluid flow circulation inside bubblecolumns rectors.

1.3.3 Control Perspectives

As can be seen in Figure 1.2, the bubble column can operate under different flow
regimes which can be observed only on the microscopic scale.These flow regimes
depend on the magnitude of the gas injection at the bottom boundaries and the possible
actuation strategies (e.g., injection from the bottom boundary, injection from the bot-
tom boundary and side walls). In this setting, the injectionstrategy can be considered
as an input strategy where the valves can be placed at different locations. This will
be further discussed in Section 2.4. Furthermore, the operation of bubble columns can
also be improved by adjusting the position of gas injection (e.g., bottom boundary, side
walls, top boundary). The existing flow patterns inside bubble column reactors can
be influenced, introducing additional gas injection and changing the actuation strate-
gies (see Sections 2.4 and 6.2.3). Different actuation strategies can offer a wide range
of bubble column designs that can operate with a high efficiency range, reduce reac-
tor volume with minimal energy consumptions, and lead to more sustainable reactor
designs. The spatially distributed actuation designs enable the adjustment of existing
flows (e.g., plug flow), reduction or enhancement of liquid circulation, improvement
of mixing performances, etc. Developing a control-oriented microscopic model that
can suggest smart injection strategies can provide answersto the current challenges in
the microscopic modeling of chemical processes. The control-oriented two-phase flow
model will be introduced in Chapter 4.

1.4 Literature Overview

1.4.1 Introduction

In this section, we will provide an overview of the literature from the fluid commu-
nity that deals with modeling issues of two-phase flow (i.e.,multiphase flow), and the
literature from the control community that works towards developing control tools for
PDE models. An interdisciplinary perspective to this type of problem is very impor-
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tant to understand fluid systems, process dynamics and control perspective for future
developments.

1.4.2 Microscopic Two-Phase Flow Models

The simplest microscopic models of two-phase flow (i.e., bubble flow) are developed
under the assumption that the variation of mass is the only property that changes with
respect to space, i.e., ideal flow (see Section 2.2.2). Thesemodels take into account
flow with a constant velocity profile and deviation only in theconcentration of the fluid
component [3, 18, 36, 43, 95, 102]. The assumption on the uniform distribution of the
property in space is rather reasonable because most of the practical applications aim
for homogeneous regimes. However, the real flow always deviates from the ideal flow,
which is caused by variation in the gas and liquid velocity over the space. By including
the variation of the velocity field, a more accurate description of the fluid flow system
is possible based on microscopic conservation laws.

Many contributions to the modeling of hydrodynamics of two-phase flow systems
have been presented, some in general terms [32, 61] and many others specifically for
bubble flow [16, 45]. The latter research ranges from fundamental [63] to more applied
and phenomenological [61, 68]. Although the correct formulation of the basic two-
phase flow models and the appropriate form of the closure equations have been widely
discussed in the past [47, 80], so far no commonly agreed approach has been achieved.
An exact description of the hydrodynamics in bubble columnsis very difficult to for-
mulate, not only because there are two phases present in the bubble column, but also
because there is a strong interaction between the phases that causes turbulence on the
microscopic level. A specific concern has been that most models currently used in the
large computer codes are based on governing equations whichhave complex solutions,
and therefore do not represent a mathematically well-posedmodel [80, 92]. We will
also address this issue in Chapter 4. Nevertheless, there iscommon agreement that the
pure fluid transport has to be governed by a set of hyperbolic PDEs [73]. This is a very
important characteristic of the two-phase flow which will also be discussed in Chapter
4.

Review articles on modeling two-phase flow and the modeling issues are given in
[49, 82, 101]. Despite the fact that the modeling of two-phase flow systems and the
interaction between the phases have been presented in a large number of publications
[47, 62, 83], the concept of causality and stability with respect to the boundary condi-
tions have not yet been studied.

1.4.3 Model-Based Flow Control Designs

Most of the existing control literature that focuses on the problem of spatially dis-
tributed systems described by a set of PDEs makes use of special techniques that can
either reduce the computational complexity or enforce distributed structure for con-
trol design [11, 31, 54, 88]. However, their applicability depends largely on the type
of model under consideration (e.g., hyperbolic PDEs or parabolic PDEs) and model
representation (e.g., the Fourier transformation or the Laplace transformation) [25].
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Some publications on model-based control of the hydrodynamics recently appeared
in the control community treating single-phase flow as a microscopic example [14].
In general, the motion of a single fluid is described by the Navier-Stokes equations,
where the boundary conditions are considered as manipulated variables, i.e., spatially
distributed input. The models include a simple geometry anddifferent boundary con-
ditions. Due to the different boundary conditions, the control literature developed dif-
ferent flow prototypes. The following geometries have been intensively studied: plane
channel (one bounded direction and two periodic directions), pipe (two bounded di-
rections and one periodic direction), and cavity flow (no periodic directions). For the
channel and pipe flow, different control approaches have been published, starting with a
linearized control approach [27, 28, 52, 53, 55, 56], towards more complex algorithms
based on the optimal control theory [15]. For the cavity flow,open-loop and closed-
loop strategies are usually based on either reduced models or experiments [21, 85–87],
since steady-state solutions can be obtained only numerically.

For all the mentioned geometries, the actuation and flow sensing in the proposed
algorithms require massive arrays of actuators and sensorsembedded in a control de-
sign. These massive arrays limit practical applications ofthe proposed algorithms. The
number of actuators needed for a control design has been explored for a channel flow
in [8] and for a pipe in [9]. In both cases, the analysis is based on a global stabiliza-
tion approach using Lyapunov functions. The results show that the spatial changes in
the velocities are smooth and small for a homogeneous flow regime, which suggests
that in practice a small number of actuators can achieve the same goal regarding mix-
ing criteria given in [1]. The analysis also indicates appropriate values of proportional
feedback coefficients which enhance the stability of the homogeneous flow, whereas
destabilization of the homogeneous flow yields an excellentmixing of fluid elements
[1]. This is a rather promising result for practical applications.

Another well-studied microscopic model of fluid flow is an open-channel fluid flow
model, i.e., the Saint-Venant equations, which is a hyperbolic PDE model that describes
the fluid flow between two gates in the channel. The control strategy for the open-
channel model is mainly based on manipulating fluid properties at the boundaries, i.e.,
gates. This type of spatially distributed control design isknown as boundary control
design. Here, we will mention only the most relevant controldesigns:LQ control meth-
ods [10], robustH∞ control design techniques [65], and boundary PI regulation[100]
based on a linearized model. One interesting contribution regarding the open-channel
fluid flow model is that the input/output structure has to be defined at the boundaries
while the flow between the boundaries can be considered as a space delay function
[34]. This suggests that the same boundary control strategycan be applied to other
hyperbolic-like PDE models. Another interesting contribution of the open-channel flow
is presented in [12]. The boundary control design based on a strict Lyapunov function
in [12] gives a direct correlation between exponential stability of a steady-state situ-
ation and dissipation of the energy throughout the boundaries. The strict Lyapunov
function suggests the control of energy dissipation throughout the boundaries under
the assumption that the system of hyperbolic PDEs is diagonalizable with the Riemann
invariants [12]. In this case, the time derivative of the Lyapunov function can be made
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strictly negative by an appropriate selection of the boundary control laws. This result
leads to a well-posed boundary control strategy for hyperbolic PDEs and can be ap-
plied in a wide range of other models that describe transportof fluid. In Chapter 4, the
method of characteristics presented in [34] will be illustrated using the two-phase flow
model.

To the best of our knowledge, there has not been any structurally developed work
published that deals with the control strategy for two-phase flow using microscopic
models that describe the hydrodynamics of two-phase flow. Wewill make an initial
contribution in this thesis which contains the work that hasbeen published in [39, 40].

1.5 Problem Formulation

1.5.1 Overview

As we previously discussed, there is a growing need for the model-based control de-
signs of chemical processes to move from modeling on the reactor scale towards mod-
eling on the microscopic scale. This is because the models that govern spatial variation
of the properties under consideration give a more detailed description of the chem-
ical process. However, due to the complexity of microscopicmodels, it is obvious
that the control-oriented microscopic models have to present a trade-off between ac-
curacy and model complexity. The microscopic model does notpretend to have the
accuracy of complex solvers (e.g., FLUENT, ANSYS, and FEMtools). Instead, the
control-oriented model has to represent the main control input influences on fluid flow
behavior and to provide a sensing strategy for real-time control. The current challenge
in the chemical industry is to develop a structural analysisof microscopic models and
possible input/output strategies in order to operate chemical processes more efficiently
and control the processes in a real-time manner. However, due to the complex nature
of currently used microscopic models and CFD algorithms, the fluid flow is very often
beyond the reach of control analysis. Most of the multiphaseCFD work uses trial-
and-error manipulation of the boundary conditions to influence the fluid flow inside the
given boundaries, or uses different model reduction techniques to obtain lower-order
models. For future developments, the focus of fluid flow control design should lie not
only on the manipulation of the boundary conditions, it should also focus on develop-
ing control-oriented models rather than on the available CFD models. Developing an
efficient modeling and control tool for fluid flow systems described by PDEs will lead
to a good decision-making strategy for influencing the fluid flow on the microscopic
scale, which will eventually lead to more efficient production with minimal operational
costs per unit volume.

1.5.2 Research Objective

Our main objective is to offer the control community a unifiedset of rules and con-
ditions for microscopic modeling of fluid systems in chemical reactors, which can be
used to design spatially distributed controllers. Even though in this thesis we have
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restricted ourselves essentially to simple single-phase and two-phase flow without the
reaction between fluid components, the modeling concept forthe control design is es-
sentially the same.

The main research objective of this thesis is:

Develop a control-oriented microscopic two-phase flow
model with a causal input/output structure that is well-
suited for spatially distributed control designs.

As previously discussed, there are many open problems concerning the model-
based control approach to fluid systems (e.g., the complexity of CFD models, compu-
tational load, and input/output strictures). Therefore, the topic of flow control can be
studied along three main research directions (RD).

Numerical 
approach

Control-oriented 
modeling

Microscopic model

Macroscopic 
observation

Boundary 
control design

Well-posed 
actuation strategy

Functional 
relationship

Distributed control 
design 

Centralized Boundary

RD1 RD3

Figure 1.3: Scheme of the contributions of this thesis.
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RD1 Numerical approximation of microscopic models
In general, microscopic models are usually approximated bya large number of
differential equations using specific discretization methods, where the number of
discretization points determines the order of a model. The numerical approxima-
tion requires information on a full flow field and is computationally expensive,
involving iterative direct numerical simulations (DNS). The DNS allow us to
quantify the best possible system performance for given boundary conditions
and geometry [15, 53].

– This research direction investigates microscopic modeling tools of fluid
properties that are commonly used in chemical reactor engineering using a
numerical approach to the microscopic model. This approachis based on a
fine spatial discretization of the microscopic model, whichresults in a large
number of flow variables (i.e., microstates).

– For the purposes of flow control, the flow variables may be considered to be
aggregated. It is interesting to investigate the level of observation required
for control designs (see Chapter 3). In this thesis, we will present a next
step in this research direction which moves towards the determination of
implementable boundary control strategy to stabilize the fluid flow. The
results obtained using this method have been published in [38].

RD2 Model reduction of CFD models
The main motivation behind the model reduction techniques is to reduce the
computation time of the corresponding simulations. In system theory, model
reduction is associated with model-order reduction, whichimplies reduction of
the number of differential equations obtained from discretized PDE models. The
model reduction method that has been widely studied in literature is the Proper
Orthogonal Decomposition (POD), which is also known as the Karhunen-Loève
decomposition [57, 66]. This method is based on simulation data usually ob-
tained by CFD software packages, and is well suited for reduction of large-scale
complex systems [5]. Although there are numerous other factors that can con-
tribute to decreasing the computation time of the CFD modelsthat are studied
in along the line ofRD1 illustrated in Figure 1.3, this research direction falls
outside the scope of this thesis. For the model reduction techniques, we refer to
[5, 69, 89, 96].

RD3 Defining functional relationships between inputs and outputs
The control-oriented microscopic model is intended to study the relationship be-
tween model properties and the choice of inputs and outputs on the microscopic
scale. This is an important research direction for control-oriented microscopic
modeling. It involves not only the physics and first principle models, but also
suggests possible control designs and functional relationships between inputs
and outputs [11, 55]. Defining functional relationships between inputs and out-
puts for two-phase flow in the time-space domain is the main focus of this thesis.
In the remainder of this section we will provide the solutionsteps which are the
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key concepts in the control-oriented microscopic modelingof two-phase flow
(see Figure 1.3).

– The main modeling goal is to derive a model that comprises dominant sys-
tem dynamics, whereas the less dominant dynamics are left for further
redesign. The control-oriented microscopic model will be introduced in
Chapter 4.

– Important aspects of input/output structures involve causality, boundary
conditions, spatial discretization schemes, and numerical methods. These
aspects are crucial in setting the theoretical framework for systems de-
scribed by the microscopic model. This will be discussed in Chapter 5.

– Following a wide range of possible input/output structures, different spa-
tially distributed control designs can be suggested. Recommendations for
the practical use of different spatially distributed control designs are given
in Chapter 6.

1.5.3 Thesis Outline

This thesis discusses current issues in the modeling of fluidflow for the chemical in-
dustry and provides new solutions to current fluid flow problems. The remainder of the
thesis is organized as follows:

• Chapter 2 provides basic microscopic conservation laws that govern the behav-
ior of fluid flow treated in the chemical industry. Various aspects of modeling
issues are discussed, which need to be understood in order todevelop a control-
oriented microscopic model of chemical processes that can be used for spatially
distributed control design.

• Chapter 3 focuses on several important aspects of Chapter 4 concerning model-
ing on the microscopic scale, which fall along research directionRD1. First, the
multiscale modeling aspect of single-phase flow is analyzedin simple geometry,
i.e., the lid-driven cavity case. Second, a boundary controller is designed using
macroscopic output regulation of the single-phase flow as a test example of the
flow control.

• In Chapter 4, we translate the findings of multiscale modeling from Chapter
3 into requirements for the control-oriented modeling of two-phase flow (i.e.,
RD3 in Figure 1.3). We propose a new modeling approach to two-phase flow
as a starting point to develop a control-oriented two-phaseflow model. The
well-posedness of the derived control-oriented two-phaseflow model is studied
using the method of characteristics and eigenvalue analysis, which leads to the
determination of a well-posed boundary actuation strategy.

• Chapter 5 is focused on the causality of different input/output structures for the
derived control-oriented two-phase flow model. The effect of inputs on the cho-
sen outputs is studied in the Laplace-space domain, which gives the functional
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relationships between the chosen inputs and the outputs. The Laplace represen-
tation of the model leads to a condition for a causal input/output structure. This
chapter contains the main contribution of the thesis, namely a strategy to develop
a causal input/output structure.

• Chapter 6 proposes different spatially distributed control designs which are easy
to implement. We place great emphasis on centralized and boundary controllers,
whereas other possible spatially distributed control designs are suggested for
future work. The centralized and boundary control designs are tested on the
numerical example developed in Chapter 4.

• Finally, the conclusions and recommendations are set out inChapter 7.





Chapter 2

Modeling on the Microscopic
Scale

In this chapter, we will discuss issues related to the microscopic modeling of chemical
processes and fluid flow that are important to understand in order to develop a well-
posed microscopic model. The issues such as conservation laws, the well-posedness of
the problem formulation, general solution, and initial-boundary value problem will be
presented. At the end of this chapter, we will summarize the modeling issue and control
aspects that have to be considered while developing a control-oriented microscopic
model.

2.1 Introduction

As we discussed in Chapter 1, in the microscopic modeling of chemical processes we
often encounter a large number of problems related to PDEs. In this chapter, we will
investigate the conservation laws that are commonly used toderive microscopic mod-
els. This chapter is structured in such a way that readers whoare unfamiliar with the
complexity of microscopic models used in the chemical industry should be able to grad-
ually build a knowledge of PDE models and related issues. After a brief overview of the
idea of balance equations given in Section 2.2, we will discuss issues related to PDEs
in Section 2.3, which we will expand in Sections 2.4 and 2.5 addressing the control
perspectives of microscopic modeling. After this chapter,one should get a clear idea
of what we mean by control-oriented microscopic models and well-posed input/output
structures for spatially distributed systems. Since this thesis is concerned with the con-
trol of fluid flow systems, we are more interested in how to develop a structural control
approach to models that describe fluid flow than the accuracy of the proposed numer-
ical methods for solving microscopic models. To represent the input/output structure,
we will use a single-phase flow model as a numerical example inChapter 3, and a
two-phase flow model in Chapter 4.

19
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2.2 Microscopic Models

2.2.1 Microscopic Conservation Laws

In chemical engineering, the flow of material through a system can be quantitatively
described by conservation laws. Depending on the quantityΦ under consideration
within the system, the conservation laws are classified as:

• mass (m),

• momentum (ρv), and

• energy (E),

with ρ being the density andv being the fluid velocity. In most of the fluid examples,
we usually observe more than one quantity which forms a mathematical description
of system dynamics, i.e., a model. In such cases,Φ is simply a vector consisting of
the following elements:m, ρv, andE of the fluid system. In general, conservation of
a system means that there is no net gain or loss of those three quantities, only their
redistribution (e.g., conversion of energy).

The conservation laws (e.g., mass and energy) are commonly understood through
the transformation of one property to another. The dissipation of mass and energy
from a system can simply be seen as an exchange of the system’sproperties with its
surroundings through the system boundaries. According to the discussion presented
in Section 1.2.2, the conservation laws can be derived on different scales as illustrated
in Figure 1.1, which result in the formulation of different models (see Section 1.2.3).
On a reactor scale, as illustrated in Figure 2.1(a), the general balance equation can be
written as

dΦ
dt

= Φin −Φout+S(Φ), (2.1)

where the subscriptin stands for the inlet flow andout for the outlet flow across the
system boundaries. The source termS(Φ) is used to represent all sorts of terms that
describe different phenomena (e.g., reaction rate, shear stress, dissipation of energy),
which will be discussed later in this section for each property separately. In general,
models obtained by (2.1) assume the spatially uniform distribution ofΦ and are known
as ODE models.

On the microscopic scale, the material properties are observed on a much smaller
scale compared to the reactor scale (see Figure 2.1(b)). Therate of change involves
all cross-sections along the space (e.g.,x1 andx2). The overall rate of change can be
expressed as an integral on the quantity and flow field in the volumeV = Lx×Ly×Lz

as
∂
∂t

Z

V
ΦdV +

Z

A
Φv ·ndA=

Z

V
SdV, (2.2)

whereΦv · ndA symbolizes the amount of flow of quantityΦ through the areandA
per unit time which is integrated over the whole observed volumeV. Equation (2.2)
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Figure 2.1: The flow ofΦ on (a) a reactor scale that results in ODE models (i.e.,
lumped parameter models) and (b) a microscopic scale that results in PDE
models (i.e., distributed parameter models).

gives the most general form of microscopic model of a chemical process written as the
following PDE

∂Φ
∂t

+vx
∂Φ
∂x

+vy
∂Φ
∂y

+vz
∂Φ
∂z

= S

(

Φ,
∂Φ
∂x

,
∂Φ
∂y

,
∂Φ
∂z

,
∂2Φ
∂x2 ,

∂2Φ
∂y2 ,

∂2Φ
∂z2

)

, (2.3)

wherex, y, andz refer to the spatial direction and the right-hand side of (2.3) is the
source term which describes the spatial redistribution ofΦ. Depending on the quantity
under consideration and the microscopic law, the source term can be a function ofΦ
only, or a function of the spatial gradients ofΦ, which depends on the quantity under
consideration. This will be discussed in the following sections for each quantityΦ
separately.

2.2.2 Models Based on Mass Balance Equations

In chemical engineering, the rate of change in mass is usually observed over a volume
element, and therefore instead ofm, it is commonly expressed as changes of densityρ
in [kg/m3] or concentrationC in [mol/m3], which is discussed in [17, 30, 64].



22 2 Modeling on the Microscopic Scale

The microscopic mass balance equation written as the changeof concentration in a
3D system can be given as

∂C
∂t

+vx
∂C
∂x

+vy
∂C
∂y

+vz
∂C
∂z

= De

(

∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)

+ r(C) (2.4)

whereDe is the effective diffusion coefficient andr(C) is the reaction rate. The right-
hand side of (2.4) represents the source term. The formulation of the microscopic mass
conservation law given as (2.4) assumes that the velocitiesvx, vy, andvz are constant

values. Usually, the velocity fieldv =
[

vx vy vz
]T

is an average estimate of the
real velocity field inside a reactor.

The fluid flow and transport mechanism of the flow in (2.4) are described through

convective transport

(

vx
∂C
∂x

+vy
∂C
∂y

+vz
∂C
∂z

)

and diffusionDe

(

∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)

.

For this reason, (2.4) is also known as theconvection-diffusion equation with reaction1.
The ratio between the convection and diffusion transportation in the dominant flow
direction is commonly defined by the Peclet number2 as

Pe=
convection
diffusion

=
vxLx

De
,

for x-direction as the dominant flow direction. The Peclet numbervaries between in-
finity (De = 0) for plug-flow, and zero (vx = vy = vz = 0) for well-mixed flow. In this
way, the back flow is modeled via the diffusion coefficient which is determined experi-
mentally. Due to the assumption that the velocity field is constant over the entire space,
the relationship between the diffusion coefficient and the velocity field can be esti-
mated using different empirical correlations for different flow regimes. Over the last
few decades a wide range of empirical correlations betweenvx andDe for two-phase
flow have been published [102]. These empirical correlations allow us to examine the
diffusion coefficient for different practical setups and operational regimes regardless of
the properties described by fluid dynamics. Clearly, these correlations give acceptable
results for a specific type of flow regime and specific reactor used in the experiments
for the estimation of the diffusion coefficient. For a more accurate representation of
the fluid flow, the velocity fieldv has to be derived on the basis of the classical hydro-
dynamic laws.

2.2.3 Models Based on Momentum Balance Equations

The momentum balance equation is the basic equation of fluid dynamics. It balances
the motion of fluid systems (i.e., phases) with respect to time and space. The equations
arise from applying Newton’s second law to fluid elements [4]. This law is applied
under the assumption that the fluid stress is a sum of a diffusing viscous term and
a pressure term of each phase in a multiphase fluid flow system [41, 47, 51]. Before
we introduce the balance equations for multiphase flow, we will present the momentum

1In multiphase flow literature, this model is also known as the1D axial dispersion model.
2Alternatively, the term Bodenstein number has been used (see [35, 64]).
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balance equations for single-phase flow which is the basis for determining a multiphase
fluid flow model.

Single-Phase Flow

The quantities under consideration for momentum balance are the velocity and pressure
fields. These two quantities fully determine the direction of the fluid flow inside the
observed space. A 3D representation of the basic momentum balance equation for a
single-phase flow, often referred to as the Navier-Stokes equations, can be written for
each velocity component ofv separately as

∂ρvx
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+vx

∂ρvx
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wherep is the pressure,µ is the fluid viscosity, andg is the gravitational acceleration.
Note that the gravitational force can act only in one spatialdirection (or under angleθ
of the given direction). Without loss of generality, we add gravitational force in all three
spatial directions, although the gravity is mainly oriented vertically, i.e.,gx = gcos(θ),
gy = 0, gz = 0. The Navier-Stokes equations govern the motion of nearly all fluid flow
systems with some additional terms required for turbulent regimes.

The complexity of the Navier-Stokes solution lies in the implicitly modeled pres-
sure effect and the nonlinearity of the convective term. Therefore, in order to solve the
pressure field, an additional equation is required [1, 4, 99]. The additional equation to
close the solution set can be obtained from the concept of mass conservation. The mass
balance equation is written as a density variation for compressible flow as

∂ρ
∂t

+
∂ρvx

∂x
+

∂ρvy

∂y
+

∂ρvz

∂z
= 0, (2.8)

and for incompressible flow as

∂vx
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+

∂vy

∂y
+

∂vz

∂z
= 0. (2.9)

Now we have two sets of PDEs which form a set of solutions forv andp in the given
domain. The first PDE is obtained from the mass balance equation (2.9), whereas the
second set of PDEs is obtained from the momentum balance (2.5)-(2.7). The hydrody-
namic models, i.e., CFD models, always involve those two sets of PDEs known as the
Navier-Stokes equations. Although the Navier-Stokes equations seem to be the same
type of PDE as the convection-diffusion equation (2.4), theimplicitly modeled pres-
sure creates an additional complexity which requires different numerical algorithms in
order to obtain a solution. This will be further discussed inChapter 3.
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Multiphase Flow

In the classical fluid flow approach, the model equations for multiphase flows are
mainly derived by “averaging” equations describing the microscopic flow problem,
i.e., the Navier-Stokes equations [41, 47]. This approach results in a set of equations
having a similar structure as the Navier-Stokes equations from which they originate.

The mass and momentum balance equations of a multiphase flow are based on the
following relations

V =
m

∑
ℓ=1

Vℓ, αℓ =
Vℓ

∑m
ℓ=1Vℓ

,
m

∑
ℓ=1

αℓ = 1,

wherem represents the number of phases,Vℓ is the volume occupied by phaseℓ, V is
the total observed volume, andαℓ is the volume fraction of phaseℓ. This means that
an observation space is partly occupied by one phase and partly by the others [41].
Based on the aforesaid assumptions, the multiphase balanceequations can be written
in a compact form as

∂αℓρℓvℓ
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+ ∇ · (αℓρℓvℓvℓ) = −αℓ∇pℓ− (pℓ,i − pℓ)∇αℓ+ (2.10)
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ℓ)+ (−1)ℓF,

for the momentum balance, and
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+ ∇ · (αℓρℓvℓ) = 0, (2.11)

for the mass balance, where∇ =

[

∂
∂x

∂
∂y

∂
∂z

]T

is an operator in the Cartesian

coordinate system,ρℓ denotes the density of phaseℓ, vℓ is the velocity of phaseℓ, pℓ is
the pressure,pℓ,i is the interfacial pressure,F is the two-way coupling term, andτℓ is
the viscous stress that can be expressed by

τℓ = µℓ(∇vℓ + ∇vT
ℓ )− 2

3
µℓ∇ ·vℓI . (2.12)

The termαℓρℓv′ℓv
′
ℓ in (2.10) is added in order to model the turbulent stress tensor,

which has to be closed by an appropriate multiphase turbulence model3. The model is
formulated in terms of sets of equations for each phaseℓ [23]. The termF explicitly
contains the interaction phenomena between the phases described by different coupling
terms. The common expression for the interfacial coupling is

F = Fd +Fa+Fl +Fh, (2.13)

whereFd is the viscous drag force,Fa is the added mass force due to inertia of the
carrier fluid (e.g., liquid phase in bubble columns),Fl is the transversal force due to the

3The prime sign is commonly used in physics to describe the flowfluctuation and should not be mistaken
with time derivatives.
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rotational strain, andFh is the collective memory effects [47, 62]. Many of the presently
used advanced models consider different interfacial coupling terms that have complete
physical background and closure equations [51]. Most of theclosure relations are of
an empirical nature, or include some heuristic elements which cannot be completely
deduced from the first principles (see Chapter 4) and, therefore, bring an additional
complexity into the multiphase flow modeling.

In the multiphase flow models, the effect of pressure is modeled via total pressure
and interfacial pressure. This is a unique aspect of multiphase flow. Multiphase flow
literature mentions several interfacial pressure correction models [41, 47, 51]. The
models that involve interfacial pressure are also known as the two-pressure models
[80]. The single pressure model is known to be ill-posed due to the assumption that
there is only one pressure present [93]. This will be furtherdiscussed in Chapter 4
using the method of characteristics to prove this statement. Although it seems rea-
sonable to require that the pressure correction term vanishes once the phase becomes
identical, there are still models treated in multiphase flowliterature that do not meet
this requirement [47].

2.2.4 Models Based on Energy Balance Equations

The formulation of the energy balance equation for a chemical system is much more
involved compared to the classical mechanical systems. Theenergy balance equations
for chemical systems involve thermal, chemical, and mechanical energy [6]. In gen-
eral, energy balance equations are defined by first thermodynamics laws (i.e., balanced
thermal and kinetic energy) and second thermodynamics laws(i.e., balanced entropy)
[84]. There have been suggestions of additional energy conservation laws [17, 58].

In many cases, thermal energy is the most dominant one, whereas kinetic and chem-
ical energy can be neglected for control design. Here, we give a model which is based
on thermal energy (i.e., heat flow) as a form of energy transfer as an illustration of the
microscopic energy conservation law
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whereDT =
κ

ρcp
is the thermal diffusion coefficient withκ being thermal conductivity

andcp being specific heat capacity. Equation (2.14) withvx = vy = vz = 0 (i.e., with-
out convective transport) is one of the most studied energy balance equations in the
literature [17, 25, 64], and it is also known as theheat equation.

2.3 Solutions to PDE Models

2.3.1 General PDEs

As presented in the previous section, the conservation lawsfor systems in motion are
mathematically described by a set of PDEs involving a function of several variables



26 2 Modeling on the Microscopic Scale

and their partial derivatives. According to their specific solution, PDEs belong to fun-
damentally different types of equations known as theparabolic, hyperbolic, andelliptic
PDEs [67] that explain diffusion processes, wave propagation, and static potential phe-
nomena, respectively (see Table 2.1). This classification is based on the discriminant of
the highest derivative coefficients in a PDE. To illustrate the concept, we give a simple
second-order PDE example

a
∂2u
∂x2 +b

∂2u
∂x∂t

+c
∂2u
∂t2 = d. (2.15)

where the discriminant can be computed from the given coefficients asD = b2−4ac. If
D = 0, (2.15) is said to be parabolic with real repeated eigenvalues. IfD > 0 then (2.15)
is said to be hyperbolic, which means that the eigenvalues ofthe hyperbolic equations
are real and distinct. The behavior of systems described by hyperbolic equations can
be characterized as a wave propagation, where the speed of the wave is specified by
the eigenvalue. This implies that the quantity under consideration propagates along a
characteristic direction with finite speed. This will be illustrated on a control-oriented
two-phase flow model in Chapter 4. The solution to the hyperbolic PDEs may also
contain shock-like discontinuities because of the non-dissipative nature of these equa-
tions [29, 92]. On the other hand, ifD < 0, (2.15) is said to be elliptic with complex
eigenvalues, where the observed quantity propagates in allspatial directions simulta-
neously with a closed solution domain [77]. The elliptic equations are characteristic of
constraint equations in spatial domain and static potential problems in material science
or mechanics (see Table 2.1).

The given classification of the PDE models is based on the coefficientsa, b, andc,
and it can also be used to analyze PDEs where the coefficients are state independent
with nonlinearity on the right-hand side of (2.15), i.e,d(u). For the nonlinear and
quasi-linear class of PDEs with the state dependent coefficientsa(u), b(u), andc(u),
such as the convective terms in the Navier-Stokes equations, the classification is more
involved.

Table 2.1: Different types of PDEs with related examples of physical phenomena, and
initial-boundary conditions required to obtain a solution.

Example of PDE Type Physical phenomena Conditions

∂Φ
∂t

= α
∂2Φ
∂x2 parabolic diffusion initial and boundary

∂2Φ
∂t2 = α

∂2Φ
∂x2 hyperbolic wave initial and boundary

∂2Φ
∂x2 +

∂2Φ
∂y2 = 0 elliptic static potential boundary
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The general categorization of solution of PDE models is based on whether the
equations are solved using analytical or numerical techniques:

1. Numerical: The numerical techniques mainly involves different discretization
techniques in order to obtain a solution. To solve the governing PDEs numeri-
cally, one has to discretize the equations with respect to space and time [42].

In spatial discretization, the following methods are commonly used:

• Finite difference. At each intersection of the lines of the finite difference
techniques, the governing equation is replaced by a finite difference ap-
proximation.

• Finite volume. The finite volume method discretizes a volumeinto a num-
ber of cells of an arbitrary shape. Subsequently, the governing equations
on these discrete control volumes are solved satisfying conditions for con-
servation of mass, momentum, and energy between the finite volumes.

• Finite element. Here, the governing PDEs are solved using a modified
mesh domain. The unknown values of the flow property inside anelement
are approximated by shape functions.

Besides the spatial discretization, time discretization can also use a wide range
of numerical methods to ensure solutions. Examples includethe explicit and
implicit Euler method, the midpoint rule, and the trapezoidrule [98]. In explicit
time integration schemes, the time step for a solver during integration is limited.
The limit is determined by the Courant number which defines a ratio between the
time and space stepc = v△t/△x, where△x is the characteristic length of the
cell defined between two spatial discretization points, and△t is the time step.
To ensure correct computations in explicit methods, the Courant numberc may
not exceed 1. This condition is often referred to as the Courant-Friedrichs-Lewy
(CFL) condition, and it represents a necessary condition for convergence while
solving certain PDEs numerically.

2. Analytical: In some cases, the governing equations can be solved analytically
following a number of simplification steps. In microscopic modeling, it is com-
mon to simplify details of the models, such as geometry of thesystem and de-
tailed phenomena, in order to obtain mathematical models which govern domi-
nant dynamics. The simplified models are usually described by example equa-
tions which are given in Table 2.1.

3. Combination of numerical and analytical:This method can be applied to models
that are solved analytically in some directions and numerically in others.

The PDE models which do not have analytical solutions require the use of exten-
sive numerical computations in order to obtain a solution. As discussed in Chapter
1, the computation in the time-space domain can be rather involved, especially in the
case of the Navier-Stokes equations where the pressure termis modeled implicitly.
The Navier-Stokes equation and the equations that describethe multiphase flow can be
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solved only numerically using different numerical schemesand approximations, such
as optimization methods for solving pressure field, iterative algorithms for solving con-
straint equations, linearization or assumptions of weak nonlinearity, small fluctuations,
and multigrid algorithms [98]. The high-resolution numerical methods play an im-
portant role in obtaining solutions for most of the models used to describe fluid flow.
Although it might seem trivial, we would like to stress here the importance of numerical
methods to solve the Navier-Stokes equations. For the CFD models based on the mi-
croscopic momentum equations, this includes the methods based on the Approximate
Riemann Solver, Flux Vector Splitting techniques, and the Split Coefficient Matrix
Method [46]. The former two belong to Godinov-type methods based on a finite vol-
ume discretization assuming a constant or linear parameterdistribution between two
discretization points in space. The split coefficient method represents a finite differ-
ence technique, where the new time steps of all spatial points are calculated by solving
the linearized characteristic form of the governing equations along the characteristic
curves. The concept of “up-winding” which combines the preservation of wave prop-
agation along the characteristic directions with the conservation of mass, momentum,
and energy for the solution of the convective term is common to all these methods
[29, 92]. A large number of publications can be found on this topic.

2.3.2 Initial and Boundary Conditions

One of the fundamental problems of PDEs is an initial-boundary value problem. It is
possible to find a general solution of a single PDE for given initial-boundary conditions
only in special cases. In most physical problems described by a set of PDEs, the main
concern is finding initial and boundary conditions that leadto a unique solution. The
initial-boundary conditions are often suggested in problem formulation, such as open
boundary conditions for the flow in pipes, no-slip boundary conditions on the side walls
of cavities. To solve the 1D flow equation as given in (2.3), wehave to define a well-
posed initial conditionΦ(0,x) and/or a well-posed boundary condition atx = 0, i.e.,
Φ(t,0) and atx= L, i.e.,Φ(t,L). Table 2.1 presents an analogy between PDEs, physics,
and initial-boundary conditions. It is obvious from the table that in addition to having
to define the boundary conditions which are functions of timeΦ(t,0) andΦ(t,L), we
also have to define the initial conditionΦ(0,x) for parabolic and hyperbolic PDEs. The
boundary conditions of hyperbolic-like PDE problems will be discussed in Chapter 4
and further justified in Chapter 5 for a microscopic two-phase flow model.

2.3.3 Well-Posed Problems

Besides the initial-boundary value problem, the well-posedness of a PDE problem is
another very important attribute to modeling any physical problem. The physical in-
tuition suggests that we have a well-posed problem if a PDE gives a unique solution
for time-dependent problems. Parabolic and hyperbolic PDEsystems are known to be
well-posed problems with a stable and unique solution, whereas elliptic PDE systems
are ill-posed with a solution that propagates in all directions which is characteristic
of time independent problems, i.e., static potential problems. In general, an ill-posed



2.4 Input/Output Structures 29

problem usually means that the PDE has to be solved backwards, which is not physi-
cally possible in the time domain, and therefore it represents ill-posed problems with
respect to time.

Here, we also use the termwell-posedinitial-boundary condition to refer to a PDE
problem defined by associated initial-boundary conditionswhich ensure a solution. A
problem involving a PDE defined in a given domain that is not well-posed is often said
to be an improperly posed or ill-posed initial-boundary condition. There are several
fundamental issues associated with the initial-boundary value problem [50, 67]:

• existence of solutions,

• uniqueness,

• continuous dependence, and

• stability.

The existence of a solution depends on the nature of the PDE and the initial-
boundary conditions. Posing too many initial and boundary conditions or conditions
that cannot be satisfied might lead to the absence of a solution, i.e., ill-posed bound-
ary conditions. On the other hand, posing fewer conditions can lead to the existence
of more than one solution, i.e., the nonuniqueness of the solution. Another require-
ment of a physical problem is stability. The stability of a solution of a PDE subject
to the initial and boundary conditions is a natural expectation when modeling physical
problems. The stability means that if the initial conditionis changed by only a small
amount, the system should behave in almost the same way. Mathematically, this is
translated into the statement that the solution should depend continuously on the initial
value. A similar statement can be made for boundary value problems. To be more
precise regarding these fundamental issues, we need to satisfy several inequalities with
regard to a stable solution, e.g., Cauchy theory and Poincare inequality [77]. There are
numerous articles published dealing with the existence anduniqueness of a single solu-
tion of a PDE, its structure, and asymptotic behavior, whichare properties that depend
on the class of PDEs used to model the microscopic behavior ofa system [19, 67].
These are just a few of the issues in the study of PDEs. The primary issues, however,
from the point of view of applied analysis of PDEs, are the methods of solution avail-
able to obtain either an exact or approximate solution, and the way the solution can be
influenced. These issues will be addressed in subsequent chapters using microscopic
momentum balance equations for the single-phase and two-phase fluid flow systems.
These control-oriented microscopic models will eventually lead to spatially distributed
control strategies that can be used to influence the fluid flow systems.

2.4 Input/Output Structures

For the model-based control strategy, a substantial difference in actuation strategies
exists between problems described by a set of ODEs and by a setof PDEs. Figure 2.2
illustrates the different input/output structures for ODEand PDE systems. As shown
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Figure 2.2: Input/output structures on (a) the reactor scale, (b) the microscopic scale
with a boundary actuation, and (c) the microscopic scale with spatially
distributed actuation.

in Figure 2.2(a), for the systems described by a set of ODEs aninput/output does not
depend on the spatial domain. The manipulated variableΦin in Figure 2.1(a) represents
the input as shown in Figure 2.2(a). In contrast to these ODE models, PDE models
allow an independent actuation access at each point in the defined spatial domain as
illustrated in Figures 2.2(b) and 2.2(c). Discretization of PDE models leads to a large
number of ODEs that can be written in a state-space form, where the states are the
properties in each grid block and the inputs are defined in each block [75, 79, 91].

In Figure 2.2(b), the choice for the input/output structureis based on the boundary
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conditions (see Figure 2.1(b)). The boundary conditionΦ(t,0) represents the input
whereasΦ(L,0) represents the output. This means that the model-based control design
with the input/output structure as shown in Figure 2.1(b) for systems described by
microscopic conservation laws is based on manipulating theboundary conditions. As
illustrated in Figure 2.2(c), the inputs may also be placed at each grid block which
creates a distributed network of inputs on the spatial domain [78]. In this way, we
can manipulate the spatial distribution of flow propertyΦ(t,x). A similar difference
exists in sensing of ODE systems and spatially distributed sensing of PDE systems.
Different actuation and sensing strategies for the microscopic two-phase flow model
will be discussed in Chapter 6 for the bubble column reactor which is described in
Chapter 1.

2.5 Control-Oriented Modeling

In order to obtain a microscopic model for practical use, we need a set of PDEs that
describe dominant dynamics of a process based on a set of simplifying assumptions.
These simplifying assumptions may involve, for example, modeling in 1D only, domi-
nance of convection transport over the diffusion, empirical correlations between some
properties, such as diffusion and velocity. However, the simplification of the micro-
scopic model should not be an end in itself. Instead, it should contain a clear strategy
of how to use the models in improving process performances inthe chemical indus-
try. For example, for the purpose of control design, the microscopic modeling of fluid
systems should ideally aim to develop a simplified model witha well-developed in-
put/output structure, whereas all the detailed phenomena should be left for redesign.
The input/output structure can be further used to design a controller which can influ-
ence the system behavior and improve the overall process performance. In this thesis,
we refer to models obtained in this way with a clear control strategy in mind for a par-
ticular example, as acontrol-oriented microscopic model, or acontrol-oriented model,
for short. The benefits of the control-oriented modeling canbe significant since it pro-
vides additional understanding as to how to influence the fluid flow inside a reactor,
instead of only getting an accurate microscopic model. While developing a control-
oriented model, we have to observe the following aspects of agiven problem:

• Model complexity.The model complexity is to be kept as low as possible. Focus-
ing on the dominant dynamics and desired process performance is the first step
in deriving a simple control-oriented model which providesthe insights needed
for control design. It is favorable to keep the computational load as small as
possible. We will study this aspect in Chapter 3 for the single-phase flow and
in Chapter 4 for the two-phase flow. For the two-phase flow, this complexity is
mainly caused by the interactive terms between the phases and turbulence effect.

• Multiscale modeling. As discussed in Section 1.2.2, the aggregation of fluid
elements can appear on different scales. However, the microscopic scale and
reactor scale are two extremes of continuous and discrete space observation. The
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molecules are usually aggregated in large formations (e.g., a large number of
bubbles in bubble columns). This scale is defined by design, and we can refer
to it as a macroscopic scale or compartmental scale. On this scale some of the
detailed phenomena can be neglected or taken as an average quantity. In Chapter
3, we will use single-phase flow to illustrate the concept of multiscale modeling
and possibilities for control designs.

• Accuracy.Although accuracy is an obvious requirement, it is still important to
state our exact objectives in this matter. We have to accurately predict the be-
havior of the fluid system, the well-posedness of the model, and initial-boundary
conditions; all other details can be left for redesign. For example, for control pur-
poses, lower accuracy is acceptable since it can be seen as a model uncertainty.
This implies that the major performance determining fluid flow should be pre-
dicted accurately with well-posed initial-boundary conditions, whereas numeri-
cal issues can be considered later in control design. Furthermore, it is preferable
to have functional relationships between inputs and outputs that do not rely on
discretization methods. These functional relationships can be used to simplify
distributed control designs (see Chapter 6).

• Multiphase modeling. The multiphase modeling can be described by the gov-
erning equations of fluid mechanics where several fluid and solid components
move at the same time. One of the simplest examples of the multiphase model-
ing involves only two phases (e.g., gas and liquid, gas and solid). The multiphase
modeling studies the flow of the fluid and solid components either separately or
as mixture flow. The main contribution of this theses is in thetwo-phase fluid
flow modeling, which is the simplest case of the multiphase modeling. Chap-
ters 4, 5, and 6 describe the use of a control-oriented two-phase flow model for
control design.

• Geometry.The geometry of a chemical reactor, where the motion of fluid takes
place, often presents an additional problem in the microscopic modeling of chem-
ical processes. It is very difficult to generate a refined meshwithout using a CFD
package, which was discussed in Section 1.2.3. Given the model requirements
and the complexity of geometry involved, the model geometrycan be simplified
retaining the main modeling framework. In Chapter 3, we study single-phase
flow in 2D on a rectangular domain, whereas in Chapter 4 we derive a 1D two-
phase flow model.

The main challenge for new developments in the field of microscopic modeling is to
study the above given aspects for a chemical process and to develop a control-oriented
strategy that can influence the microscopic system behavior. The following chapters
will give a detailed description of the control-oriented flow models and spatially dis-
tributed control designs for single-phase and two-phase flow systems.
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2.6 Discussion

This chapter outlined the available modeling tools for derivation of models on a mi-
croscopic scale and introduced notation that will be used infurther chapters. In this
chapter, we first presented the basic microscopic conservation laws used in modeling
chemical processes, after which we discussed the main issues related to problems de-
scribed by PDEs. As has been shown, the more details we try to model using the micro-
scopic conservation laws, the more the models become computationally involved. The
microscopic model becomes computationally unfeasible andrequires advanced CFD
packages to fully simulate the motion of fluid systems. Especially in case of micro-
scopic momentum equations, the two-phase flow model may leadto a CFD model that
has a limited use for on-line application due to the long computation time and model
complexity. In order to obtain a solution to a CFD model, a large number of numerical
techniques and discretization schemes have to be employed.The CFD models are tai-
lored in order to mathematically describe different interactive terms, e.g., added mass
and virtual mass, in order to establish the cause of problemsthat arise from coalescing
and bubble size distribution. The CFD complex models often aim to describe most
of the phenomena that exist on the microscopic scale rather than being constructed to
assess an overall performance. As a result, many complex CFDmodels have been be-
yond the reach of engineers in the chemical industry and havelimited practical use for
control designs.

In the following chapters of this thesis, we will derive control-oriented strategies
for different fluid flow systems that are of high relevance forthe chemical industry. In
Chapter 3, we will use a single-phase flow in a closed geometryto illustrate the concept
of multiscale modeling which is beneficial for boundary feedback control design. Com-
plementary to the single-phase flow, in Chapter 4, we will propose a control-oriented
two-phase flow model with a well-posed actuation strategy that can eventually be used
for a wide range of different control designs that will be presented in Chapter 6.





Chapter 3

Control of Macroscopic
Properties of Single-Phase Flow

After a brief overview of the microscopic modeling presented in Chapter 2, in this
chapter we will set out a numerical approach to the microscopic models that describe
single-phase flow in simple geometry. In this chapter, different modeling scales will
be used to design a boundary controller for the single-phaseflow. The main focus of
this chapter is on a boundary control design based on macroscopic observation, i.e., a
higher level of aggregation of controlled variable in the single-phase flow systems. In
order to demonstrate the applicability of the macroscopic quantitative varables for the
boundary control design, the results are illustrated usinga lid-driven cavity case, which
has a broad range of industrial applications.

3.1 Introduction

As we discussed in Chapter 1, the microscopic models that describe the motion of
fluid are usually very complex, and they can only be solved numerically using various
types of discretization methods (see Section 2.3.1). In general, the numerical approach
to a microscopic fluid flow model uses fine grids to obtain microstates which can be
manipulated and measured. However, the flow properties modeled on the microscopic
scale give a very detailed picture of the fluid flow that, in many cases, is not directly
measurable. Thus, concentrating large efforts on fine discretization schemes does not
necessarily provide a solution to the control related problems.

In Chapter 2, we discussed the most important aspects of control-oriented model-
ing and their contribution to control designs. In this chapter, we will investigate two
aspects: the input/output structures and the multiscale modeling aspects of fluid flow
using the numerical approach described asRD1 in Chapter 1. The analysis presented
in this chapter will eventually lead to a computationally efficient system with a well-
posed input/output structure (see Section 3.4.1) that can be easily used for boundary
control design (see Section 3.4.2). The concept of macroscopic control design will be
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introduced in Section 3.2, after which every derivation step of the macroscopic prop-
erties needed for the design will follow. As an illustrationexample of the single-phase
flow in simple geometry, in Section 3.3.1 we will introduce a lid-driven cavity case
[24]. The lid-driven cavity flow study is useful for improving many practical appli-
cation prototypes such as drying chambers, rotating reactors, short-dwell coaters, and
melt-spinning processes in forming continuous metal ribbons. As a result of the pro-
posed macroscopic output regulation of the fluid flow, we willestablish a macroscopic
boundary control technique for regulation of the fluid flow system. Results contained
in this chapter have been published in [38].

This chapter is structured in such a way that readers who are unfamiliar with the
complexity of the single-phase flow (i.e., the Navier-Stokes equations) and the numer-
ical approach to the problem of single-phase flow should be able to gradually build an
understanding of the complexity behind the fluid flow models.

3.2 Macroscopic Control Design

The main objective of the multiscale modeling is to explore the possibility of using
macroscopic quantities for regulating different fluid flow regimes. Despite the mod-
eling scale, the fluid flow regimes can be categorized ashomogeneous(i.e., laminar)
andheterogeneous(i.e., turbulent). The homogeneous regimes are characterized by
uniform, laminar flow with hardly any mixing, i.e., plug flow.On the other hand, the
heterogeneous regimes have good mixing properties due to the turbulent effect and cir-
culation of fluid systems with a tendency to create a chaotic behavior of fluid elements.
The main control goal in fluid flow regulation control is to bring a fluid system to a de-
sirable fluid behavior and stabilizing the flow around the desired fluid flow. According
to the desired flow regime, different control objectives canbe defined [1, 44]:

• stabilization of laminar flow,

• delaying or advancing transition from laminar to turbulentflow,

• suppressing or enhancing turbulence, and

• preventing or enhancing separation of phases in multiphaseflow systems.

Benefits that can be gained from these control objectives include drag reduction, lift en-
hancement, mixing enhancement, and flow-induced noise suppression. These aspects
are very important for increasing process productivity in the chemical industry.

As we discussed in Section 1.4, many different control methods have been pre-
sented in the control literature dealing with the flow control problem, starting from
control designs that stabilize laminar regimes [27, 28, 52,53, 55, 56], towards more
complex optimal control designs that control turbulence [15]. The most common flow
control approach is based on the linearized Navier-Stokes equation where the lami-
nar flow inside a pipe or a channel can be stabilized using different distributed control
methods [8]. A shortcoming of this method is that the proposed distributed input/output
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-

+
yk

Figure 3.1: Block diagram of a control design based on a macroscopic observation of
fluid flow obtained from the microscopic model.

structure might not be implementable in practice since it suggests a massive array of
actuators and sensors.

Recent results published in [2, 9] have shown that the spatial changes of the fluid
flow are smooth and small, which suggests that in practice a smaller number of ac-
tuators can achieve the same goal. This analysis also indicates appropriate values of
control coefficients which enhance theL2 stability of the flow, pointing out that destabi-
lization of the flow yields an excellent result for fluid mixing [1]. The results published
in [2, 9] also raise an additional question about the number of sensors needed for the
control design and accuracy of the measurement with respectto space. However, not
much attention has been given to the control requirements for the flow sensors and size
of images that describe velocity fields which should be embedded in the distributed
control design.

The work presented in this chapter deals with multiscale modeling and sensing of
fluid properties on a higher level of aggregation. In this chapter, a macroscopic output
regulation as illustrated in Figure 3.1 is introduced. The macroscopic control design
can be seen almost as a filtering of the microstates obtained by fine discretization of
the flow properties. In essence, this means that the individual fluid elements (i.e.,
microstates) are observed by an aggregation of fluid elements (i.e., macrostates) as
controlled variables. This will be discussed in detail in Section 3.4.2. In the next
section, we will present a single-phase flow in a lid-driven cavity case to illustrate the
microstates and macrostates of the single-phase flow properties.

3.3 Single-Phase Flow in Simple Geometry

3.3.1 Lid-Driven Cavity Case

The lid-driven cavity case is a simple case of fluid flow in a square domain that has three
stationary sides and one moving side [85]. The geometry of the lid-driven cavity case
is illustrated in Figure 3.2. In order to model the velocity fields of the lid-driven cavity
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Figure 3.2: Geometry of the lid-driven cavity case with a staggered grid. The spa-
tial discretization is performed on the staggered grid withthe pressure
pi+ 1

2 , j+ 1
2

in the cell midpoint (×), the velocities ui, j+ 1
2

and ui+1, j+ 1
2

placed

on the vertical cell interfaces (◦), and the velocities vi+ 1
2 , j and vi+ 1

2 , j+1

placed on the horizontal cell interfaces (•).

case, we consider a dimensionless form1 of the single-phase flow model derived from
the Navier-Stokes equations (see Section 2.2.3) and definedon a rectangular domain
Ω = [0,1]× [0,1]

∂u
∂x

+
∂v
∂y

= 0, (3.1)

∂u
∂t

= −u
∂u
∂x

−v
∂u
∂y

+
1
Re

(∂2u
∂x2 +

∂2u
∂y2

)

− ∂p
∂x

, (3.2)

∂v
∂t

= −u
∂v
∂x

−v
∂v
∂y

+
1
Re

(∂2v
∂x2 +

∂2v
∂y2

)

− ∂p
∂y

, (3.3)

where the dimensionless variablesu andv are the velocity components in thex and
y-direction,p is the pressure, andReis the Reynolds number. The gravitational effect
and viscous dissipation outside this rectangular domain are neglected. Note also that
the dimensionless form of the Navier-Stokes equation has only one parameter which is
the Reynolds number.

The initial conditions for the velocity field areu(t,x,y) = 0 andv(t,x,y) = 0 for
t = 0. According to the geometry shown in Figure 3.2, the boundary conditions are the

1Dimensionless in the sense that the variables are scaled without physical units.
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velocity component in thex-direction on the top wall (lid), and the no-slip conditions
for the velocity components at the bottom wall and the two sides walls, i.e.,

u(t,x,1) = ω, u(t,x,0) = 0,

v(t,x,1) = 0, v(t,x,0) = 0,

u(t,0,y) = 0, u(t,1,y) = 0,

v(t,0,y) = 0, v(t,1,y) = 0,

whereω is the velocity of the lid.
The momentum equations (3.2) and (3.3) describe the time evolution of the ve-

locity vector field (u,v) under inertial and viscous forces, whereas the pressurep is an
implicit variable that satisfies the incompressibility condition (3.1). This was discussed
in Section 2.2.3. As we already discussed in Section 2.2.3, the incompressibility con-
dition is not a time evolution equation but an algebraic condition instead. Therefore,
the pressure term can be solved only by projecting the momentum equations onto the
divergence-free velocity field [90]. The CFD has developed alarge number of numeri-
cal schemes and softaware packages that are able to solve these equations (see Section
1.2.3). Here, the numerical schemes based on DNS is used to spatially discretize (3.1)-
(3.3). In the remaining of this section, we will discuss the spatial discretization of the
given equations and numerical issues related to the chosen discretization method.

Spatial Discretization

In order to illustrate the concept of projection of the momentum equations onto the
divergence-free velocity field, we will first start with the discretization method as
shown in Figure 3.2. The figure emphasizes three types of markers that will be used
to explain the discretization scheme. Any point inside the cell marked as ”×” is an
interior point, while the points marked as ”◦” and ”•” are the grid points. The body
forces are positioned in the midpoints, while the surface forces are positioned at the
cell interfaces. The terms which contain the spatial derivatives are approximated using
the interior grid points to obtain the numerical solution of(3.1)-(3.3) as follows:

• Approximation of the first derivatives:
The first derivatives (i.e., convective terms and pressure gradient) in a grid point
can be approximated by a centered stencil as

∂u
∂x

≈ ui+1, j −ui−1, j

(xi+1−xi−1)
= (ux)i−1, j .

This approximation of the first derivative for the nonlineartermu
∂u
∂x

might cause

different numerical instabilities [4, 98]. This is the reason why we introduce the
staggered grids as illustrated in Figure 3.2 to overcome theproblem of numerical
instabilities. The principle behind the staggered grid is to create the data in the
midpoints by averaging the flow properties at grid pointsi +1 andi−1 for thex-
direction, andj +1 andj−1 for they-direction. This means that we approximate
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the value in the middle using data between the pointsui+1, j andui, j , which is, in
essence, a stable centered approximation ofux

(ux)i+ 1
2 , j ≈

ui+1, j −ui, j

xi+1−xi
.

In the staggered griding of (3.2)-(3.3), this position is the position of pressure
pi, j . The pressure term in the staggered griding will be discussed later in this
section.

• Approximation of the second derivatives
The second derivatives (i.e., viscous terms) are approximated by a finite differ-
ence method for the grid point at the centered stencil. Approximation of the
second derivatives at any interior point(i, j) is done by

∂2u
∂x2 +

∂2u
∂y2 ≈ ui−1, j −2ui, j +ui+1, j

(xi+1−xi−1)2 +
ui, j−1−2ui, j +ui, j+1

(y j+1−y j−1)2 = (uxx)i, j +(uyy)i, j ,

where one or two of the neighboring points (e.g.,i+1 andi−1 in thex-direction)
might be the boundary points.

• Approximation of the nonlinear terms:
The approximation of nonlinear terms on the staggered grid cannot be applied
directly. It requires an additional numerical approximation. For instance, the
productuv is not directly defined at the position(i, j), since the velocitiesui, j

andvi, j are defined at different positions. In order to update the velocity ui, j ,
we need the following terms(ux)

2
i, j and(ui, jvi, j)y.2 If the flow in each time step

is shown to be slow, we can use the same centered staggered derivatives at the

position(i +
1
2
, j

1
2
). This requires the use of different positions in space in order

to define the velocity terms, e.g.,u2
i, j has to be defined in the cell centers and

ui, jvi, j has to be defined in the cell corners

u2
i+ 1

2 , j
=

(

ui, j +ui+1, j

2

)2

,

ui, j+ 1
2

=

(

ui, j +ui, j+1

2

)

,

vi+ 1
2 , j =

(

vi, j +vi+1, j

2

)

.

The above centered differencing is appropriate if the quantities are not trans-
ported too far in each time step [4, 98]. This was discussed inSection 2.3, and
for the numerical algorithm we refer to Appendix A.

2Note thatu
∂u
∂x

=
1
2

∂u2

∂x
.
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Table 3.1: Boundary conditions.

Type of boundary conditions Mathematical expressions

Neumann
∂u
∂x

= 0

Dirichlet u = 0

• Boundary conditions:
In the lid-driven cavity case, we use the Dirichlet boundaryconditions forui, j

andvi, j , and the Neumann boundary conditions forpi, j (see Table 3.1). This
is because the points ”◦” and ”•” lie on the boundaries, whereas the point “×”
has the boundary between two neighboring “×” points. The value at the points
that lie on the boundary is directly prescribed by the given boundary conditions.
For example the velocityuN at the left boundary, often referred as the right-wall
boundary, has to satisfy the Dirichlet boundary condition given in Table 3.1. The
same analogy holds for the velocityui, j at the bottom boundary, as well as for
the velocityvi, j at the right-wall and left-wall boundary. For the pressure,the

derivatives
∂p
∂x

and
∂p
∂y

at the boundaries are defined using two points which are

placed in the middle. For instance, the Neumann boundary conditions at the
top wall give a solution of pressure at the top boundary. Thismeans that the
following condition holds for this point

pi, j+1− pi, j

y j+1−y j
= 0.

If the boundary conditions are not properly defined, or the domain is not properly
discretized, then the solution to the PDE problem does not exist. This was also
discussed in Section 2.3 in terms of ill-posed boundary conditions.

For the full numerical algorithm that is used to compute the velocity and pressure fields
in the time-space domain, we refer to Appendix A.

3.3.2 Summary of the Numerical Approach to the Single-Phase
Flow Model

In this section, we briefly summarize the outcome of the numerical approach to the
single-phase flow model in the lid-driven cavity case. First, we used the spatial dis-
cretization method based on the staggered gridding to obtain a solution to the dimen-
sionless Navier-Stoke equations written as (3.1)-(3.3). Once the staggered grid has
been defined, we proposed a finite difference approach to determine approximate ex-
pressions for the necessary derivatives of the flow variables in thex andy-direction.
Such a numerical approach to the Navier-Stokes equations resulted in a large number
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of microstates (ui, j ,vi, j , andpi, j ) in the given spatial domainΩ. Numerical results of
this approach will be given in Section 3.5.

The next step in the macroscopic control design is to define anappropriate in-
put/output structure that can capture the system behavior,i.e., flow regime, which can
be used to influence the flow regime. The flow regime, whether laminar or turbulent, is
a very important feature of any fluid system. The level of mixedness, which determines
the energy required to maintain the desired flow, depends on the level of observation
of the aggregated fluid elements and on the available measuring techniques. For the
lid-driven cavity case, the boundary conditions at the top wall (i.e., the lid velocity) are
considered as the inputs, whereas the outputs will be determine as the flow properties
on the macroscopic scale. As discussed in Section 3.2, the main control objective is
to design a controller using a higher level of aggregation ofthe fluid elements. In the
following sections, we will discuss how to use the microstates obtained in Section 3.3.1
to quantify the macroscopic properties of the fluid flow that can be used for the control
design illustrated in Figure 3.1.

3.4 Boundary Control Design

3.4.1 Interconnected Form of a Large-Scale System

In order to develop a control strategy for the previously discussed microscopic fluid
flow, an appropriate control framework is required. First, for the proposed model-
based control design shown in Figure 3.1, we start with analyzing the microscopic
variables. An interconnection between the microscopic variables for the cavity case
previously discussed is illustrated in Figure 3.3. After the spatial discretization of
(3.1)-(3.3), the Navier-Stokes equations are approximated with a large number of finite-
dimensional differential equations with algebraic constraints for the pressure correction
(see Appendix A). The discretized model is described by the following state vector

zi, j =

[

ui, j

vi, j

]

, (3.4)

wherei = 1,2, ...,n, j = 1,2, ...,n are the spatial indexes andzi, j is the state vector in

R
2n2

as illustrated in Figure 3.3. The number of grid points in thex andy-direction
is chosen to be equal. This discretization method results ina large number of nonlin-
ear equations with algebraic constraints that can be represented in a general form as
interconnection of subsystems∑i, j with the following model equations

żi, j = fi, j (zi, j ,zi−1, j ,zi+1, j ,zi, j−1,zi, j+1, pi, j) (3.5)

+gi, j(zi, j ,zi−1, j ,zi+1, j ,zi, j−1,zi, j+1, pi, j)wi, j

0 = φi, j(zi, j ,zi−1, j ,zi+1, j ,zi, j−1,zi, j+1, pi, j), (3.6)

wherewi, j is the input,fi, j andgi, j are the nonlinear functions. The indexesi−1, i +1,
j −1, and j + 1 are complementary indexes which illustrate the way subsystems are
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coupled [13, 76, 78]. The functionsfi, j andφi, j are smooth functions that approximate
the time evolution of the velocity field (3.1)-(3.3) and the constraint equation (3.1),
respectively. The velocity vector of the top wall (see Figure 3.3) is considered to be the
boundary inputwi,1

wi,1 =

[

ui,1

vi,1

]

=

[

ω
0

]

.

Equations (3.5)-(3.6) represent a system consisting ofn2 subsystems∑i, j that are
interconnected by the complementary state vectors,zi−1, j , zi+1, j , zi, j−1, andzi, j+1, to
the systems∑i−1, j , ∑i+1, j , ∑i, j−1, and∑i, j+1, respectively. In this way, the stability
of the interconnected system is reduced to the stability problem of the subsystems.
On the other hand, the controllability and observability ofthe interconnected system
are reduced to the influence of the complementary state vectors zi−1, j , zi+1, j , zi, j−1

and zi, j+1 on the state vectorzi, j . Since the flow regimes are characterized byRe,
the value ofRedetermines the stability regions. The overall flow is considered to be
stable for lowReand unstable for highRe. The unstable flows are characterized by
the growth of small fluctuations from the steady velocity profile which can, eventually,
cause instability of the velocity profile.

...

...

...

...

...

...

...

Boundary input

∑1,1 ∑2,1 ∑n,1

∑1,2 ∑2,2 ∑n,2

∑1,n ∑2,n ∑n,n

Figure 3.3: Two-dimensional interconnection of subsystems.
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3.4.2 Macroscopic Output Regulation

For the large-scale system which contains many states that can be controlled and mea-
sured, the measurable variables have to be chosen in such a way that the overall system
can be evaluated. This means that, instead of observing the microstateszi, j in the do-
mainΩi, j , we introduce macroscopic domainΩk,k over which the controlled variables
are defined, i.e.,

Ωk,k = ∆xk ·∆yk, k = 1,2, ..., r.

The indexk is a macroscopic observation index which specifies the macroscopic do-
main Ωk,k. The number of grid points in thex andy-direction for the macroscopic
space equalsr. We should emphasize that the number of discretization points in the
macroscopic space is much smaller than the microscopic one,i.e., r ≪ n. As illus-
trated in Figure 3.1, the microstates obtained from the fine numerical discretization
of the dimensionless Navier-Stokes equations serve as basis to derive the macroscopic
controlled variables

yk,k =
1

Ωk,k

k
r n

∑
i= (k−1)

r n+1

k
r n

∑
j= (k−1)

r n+1

hi, j(zi, j ), (3.7)

whereyk,k is the output inRr2
, andhi, j(zi, j ) is the output function. Here, we consider

an average function as mapping between the microstates derived in (3.5)-(3.6) and the
macrostates as the controlled variables, although other functions can be used as well.
The proposed macroscopic output regulation shown in Figure3.1 is applicable to any
system where the changes in microstates of each subsystem are small and bounded in
time. This will be discussed in detail in Section 3.5.

Following the control design presented in Section 3.2, our control objective is to
find a boundary controllerwi,1 such that the system output converges to a desired point
with an arbitrary fast exponential decay. In general, a stable system with a constant
input reaches a steady-state if the output of the system approaches a constant value
as time increases [48]. However, if the stateszi, j (t) approach constant values when
t goes to infinity, thenz∗i, j (∞) is the steady-state response of the system for the given
input, which can be considered as the desired output trajectory on the microscopic
scale. According to the macroscopic scale, the desired macroscopic trajectoryyd

k,k can
be obtained using the following expression

yd
k,k =

1

Ωk,k

k
r n

∑
i= (k−1)

r n+1

k
r n

∑
j= (k−1)

r n+1

hi, j(z
∗
i, j (∞)) = const. (3.8)

wherez∗i, j(∞) is considered as the microstate att = ∞. For the stable system,z∗i, j (∞) =
const. For example, suppose that the system governed by (3.5)-(3.6) is actuated with a
specific constant inputw∗

i,1. In that case, the system will have a certain response to the
input that can be considered as an open-loop response.

The next step in the control design is to find a controller thatmaintains the desired
outputyd

k,k produced by the model under the effect ofw∗
i,1. Note that the boundary input
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wi,1 can have only one valueω since the lid can have only one velocity component in
thex-direction (see Figure 3.2). The error between the output and the desired set can
be defined by the following equation

ek,k = yk,k−yd
k,k. (3.9)

Then, the output feedback controller that achieves the control objective can be given
by a simple PI controller that has a goal to minimize the errorek,k for the chosen
macroscopic space(k,k), i.e.,

wk,1 = KP
k,k(yk,k−yd

k,k)+KI
k,kξk,k, (3.10)

ξ̇k,k = yk,k−yd
k,k, (3.11)

whereKP
k,k andKI

k,k are the control parameters that can be tuned. In fact, if we apply
the boundary conditionsw∗

i,1 without the controllers given in (3.10), we will still obtain
the same steady-state solution, but the settling time will be longer compared to the
controlled flow. This clearly implies that, for any arbitrary wi,1 in the laminar flow
regime, there is a microscopic velocity field with unique macroscopic flow properties.
This will be discussed in Section 3.5 and illustrated on the lid-driven cavity case where
we will present the macroscopic output regulation and tuning of the control parameters
for two differentRein the laminar regime.

The procedure for tuning the control parameters in this macroscopic output control
framework can be summarized in the following steps:

1. Select the initial conditionu(0,x,y) andv(0,x,y) for the entire microscopic do-
mainΩ = [0,1]× [0,1].

2. Define well-posed boundary conditions.
For the lid-driven cavity case, the boundary conditions aredefined by the design
(see Section 3.3.1).

3. Simulate the microscopic model by using an appropriate numerical algorithm
(see Appendix A) and a spatial discretization method (see Section 3.3.1).

4. Analyze the steady-state solution that is obtained by applying an arbitrary bound-
ary inputw∗

i,1. As mentioned earlier, if the states limt→∞ h2,2(zi, j) = const, then
zi, j(∞) can be considered as a steady-state response of the system for the given
initial and boundary conditions and chosenRe for the dimensionless Navier-
Stokes equations given as (3.1)-(3.3).

5. Introduce the macroscopic domainΩk,k that will be used to obtain the macrospic
outputyk,k.
The output functionhi, j is chosen to be an energy function since it preserves the
stability of the proposed control designs illustrated in Figure 3.1.

6. Now that we have the well-posed input/output structure with a stable steady-state
solution, we can tune the control parametersKP

k,k andKI
k,k such that the system

output converges to the desired point with an arbitrary fastexponential decay.
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The above steps show the procedure that can be easily used to design the stabilizing
boundary controller for the chosen macroscopic space in thegiven geometry. The
same procedure can be used for other geometries with an additional modification of
the output functionhi, j and the macroscopic domainΩk,k.

3.4.3 Macroscopic Energy of Fluid Motion

In Section 3.4.1, we discussed the velocity field with components in thex and y-
direction and the boundary conditions for the lid-driven cavity case, where the system
is fully driven by the lid velocitywi,1. In general, the work done by the boundary input
influences the velocity and, consequently, influences the energy distribution over the
domainΩ. Since the system under consideration is an incompressiblefluid with no
heat exchange, the rate of energy changes over the rectangular domainΩ is propor-
tional to the kinetic energy of the subsystems. Using the expression for kinetic energy,
we can obtain a kinetic energy distribution that can represent the flow patterns defined
by the microscopic velocity field

yi, j = Ei, j =
1
2
(u2

i, j +v2
i, j). (3.12)

In this way, we can obtain the macroscopic variables from (3.12) using the averaging
procedure given in (3.7). The macroscopic variables in the domainΩk,k equal

yk,k = Ek,k =
1

Ωk,k

k
r n

∑
i= (k−1)

r n+1

k
r n

∑
j= (k−1)

r n+1

Ei, j . (3.13)

The fact that the energy level for the given initial and boundary conditions is bounded
in time can be used to assign the desired output for the control design. In the following
section, we will numerically demonstrate the derived macroscopic control design based
on the macroscopic output regulation of the fluid flow inside the cavity, which was
illustrated in Figure 3.1.

3.5 Numerical Example

To demonstrate the numerical approach to the fluid flow systems, we used the single-
phase flow for the lid-driven cavity case shown in Figure 3.2.The single-phase flow
model, which is based on the Navier-Stokes equations in the given geometry, is solved
in Matlab using the algorithm developed by [90]. In the givenalgorithm, (3.1)-(3.3)
are discretized on 64×64 grid points in the spatial domain. To improve the numerical
stability, the viscous term, which is a linear part of (3.2)-(3.3), is treated implicitly; and
the convective term, which is a nonlinear part of (3.2)-(3.3), is treated explicitly (see
Appendix A).
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Re=100, t=25.00
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Re=250, t=25.00
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Figure 3.4: Microscopic energy distribution Ei, j in Ωi, j and the macroscopic spaces
Ωk,k where k= 1,2 at t = 25 for (a) Re= 100and (b) Re= 250.
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Re=100, t=1.00
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Re=100, t=4.00
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Re=100, t=10.00
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Re=100, t=20.00
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Figure 3.5: Time sequences of the velocity vector field and the energy field in the lid-
driven cavity at Re= 100(a) t=1, (b) t=4, (c) t=10, and (d) t=20.

Figures 3.4(a) and 3.4(b) show the steady-state simulationresults of the velocity
field and energy distribution for two different Reynolds numbers in the steady-state for
Re= 100 andRe= 250, respectively. In Figures 3.4(a) and 3.4(b), we marked four
macroscopic spaces(k,k), wherek = 1,2, that will be used later for control design.

The time evolutions of the velocity field and energy distribution are shown in Figure
3.5 forRe= 100 and in Figure 3.7 forRe= 250. In all of these cases, the fluid flow in
the cavity is strongly dominated by the recirculating vortexes in the counter-clockwise.

As shown in Figures 3.5 and 3.7, the flow is characterized by the primary dom-
inance of a clockwise rotating subspace which are joint withtwo counterclockwise
secondary rotating subspaces at the corners of the bottom wall. The regions with the
highest energy levels are located near the top right corner at each time step and are
illustrated in Figures 3.5(a), 3.5(b), 3.5(c), and 3.5(d) for Re= 100 att = 1, t = 4,
t = 10, andt = 20, respectively. The corresponding pressure fields are shown in Figure
3.6. In the very first stage of the lid motion, the pressure follows the formation of the
rotating subspaces (see Figures 3.5(a) and 3.5(b), after which the established pressure
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Re=100, t=1.00
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Re=100, t=10.00
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Re=100, t=20.00
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Figure 3.6: Pressure fields for Re= 100 at time (a) t=1, (b) t=4, (c) t=10, and (d)
t=20.

at t = 10 (see Figure 3.5(c)) takes on a radial form that remains thesame att = 20 (see
Figure 3.5(d)). These four time sequences shown forRe= 100 indicate formation of
a small-scale circulation pressure zone located at the top right corner (see Figure 3.6),
which cooresponds to the velocity filed with the highest energy level (see Figure 3.5).

The similar observation can be made forRe= 250. The time evolutions of the
velocity field and energy distribution are given in Figure 3.7 with the corresponding
pressure field shown in Figure 3.8. The energy level decreases in the same manner
as shown forRe= 100, starting from the top wall to the bottom wall. This causes a
non-uniform distribution of the energy.

Now, following the theoretical framework presented in Section 3.4.2, the macro-
scopic spacesΩk,k are used to quantify the macroscopic properties as described in
Section 3.4.3. First, an equilibrium-like profile is evaluated from the energy levelEk,k

in each subspaceΩk,k over the time domain, which is defined by (3.13) and illustrated
in Figures 3.9(a) and 3.9(b) forRe= 100 andRe= 250, respectively. Figures 3.4(a)
and 3.4(b) show four different microscopic spaces marked as(1,1), (1,2), (2,1), and
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Re=250, t=1.00
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Re=250, t=4.00
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Re=250, t=10.00
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Re=250, t=20.00

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

(d)

Figure 3.7: Time sequences of the velocity vector field and the energy field in lid-driven
cavity at Re= 100(a) t=1, (b) t=4, (c) t=10, and (d) t=20.

(2,2), which give four different macroscopic functions evaluated in Figure 3.9. We
chooseΩ2,2 as the macroscopic space to quantify the energy levelE2,2. The energy
level in Ω2,2 is the most sensitive energy level compared to the other energy levels.

As expected, for lowRe the energy level of each subspace approaches constant
values when time increases. Furthermore, the macroscopic energy trajectories of each
subspaceΩk,k show stable responses with respect to time and the macroscopic flow
behavior under influence of the boundary input. The considerable influence of the
boundary input is noticed inΩ2,1 andΩ2,2, where the secondary vortex enlarges by
increasing the boundary input. Thus, the macroscopic energy level of Ω2,2, which
corresponds to the constant values, is considered to be the controlled variable.
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Re=250, t=1.00
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Re=100, t=4.00
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Re=250, t=10.00
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Re=250, t=20.00
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Figure 3.8: Pressure fields for Re= 250 at time (a) t=1, (b) t=4, (c) t=10, and (d)
t=20.

The desired macroscopic pointyd
2,2 for Re= 100 is 0.0081 and forRe= 250 is

0.0152, as illustrated in Figures 3.9(a) and 3.9(b), respectively. After yd
2,2 is determined,

the parametersKP
2,2 andKI

2,2 can be tuned to enhance the asymptotic output regulation

for the chosen macroscopic space, i.e., limt→∞ h2,2(zi, j) = E
d
2,2 and limt→∞ e2,2 = 0. By

tuning the control parameters theKP
2,2 andKI

2,2, the error convergences to zero, and
the desired output is reached arbitrary fast. The control parameters can be tuned until
a desired performance is obtained. The effectiveness of thecontrolled (i.e., closed-
loop) system achieved by tuning the control parameters is shown in Figure 3.10 for
Re= 100 and Figure 3.11 forRe= 250. First, it was observed that applying a high gain
leads to flow instability and transition regimes that need longer time to be stabilized
by the controller. Second, for small values ofKI

2,2, the observed macroscopic energy
level moves towards the reference level, whereas for largervalues ofKI

2,2, the error
approaches zero with a small bounded oscillation.

The satisfactory output regulation of the chosen macropic energy level inΩ2,2 for



52 3 Control of Macroscopic Properties of Single-Phase Flow

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time

M
ac

ro
sc

op
ic

 e
ne

rg
y

 

 
E

1,1

E
1,2

E
2,1

E
2,2

(a)

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time

M
ac

ro
sc

op
ic

 e
ne

rg
y

 

 
E

1,1

E
1,2

E
2,1

E
2,2

(b)

Figure 3.9: Time evolution of the macroscopic energy distributions Ek,k in Ωk,k domain
for (a) Re= 100and (b) Re= 250.
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Figure 3.10: Feedback control of the lid-driven cavity casefor Re= 100with the con-
trol parameter: (a)KP

2,2 = 100, (b) KI
2,2 = 62, and (c) KP

2,2 = 100 and
KI

2,2 = 62.
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Figure 3.11: Feedback control of the lid-driven cavity casefor Re= 250 with the
control parameter: (a)KP2,2 = 60, (b) KI

2,2 = 21, and (c) KP
2,2 = 60 and

KI
2,2 = 21.

bothReare guaranteed with the control parameters given in Table 3.5.

Table 3.2: Control parameters for macroscopic output regulation of energy level in
Ω2,2.

Re E2,2 KP
2,2 KI

2,2

100 0.0081 100 62
250 0.0152 60 21

To examine the controlled and uncontrolled flow, we compare the microscopic en-
ergy fields for the controlled and uncontrolled flow. The steady-state flow without any
control action is obtained att = 25 for bothRe, whereas the controlled flow reaches
the same energy distribution att = 4 for Re= 100, and att = 7 for Re= 250. The
simulation results show that the structural numerical approach to the fluid flow control
can be effectively used for the flow regulation in the cavity at Re= 100 andRe= 250.
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Re = 100   t = 1
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Re = 100   t = 4
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Figure 3.12: Time sequences of the controlled velocity vector field and the energy field
for Re= 100Re= 100at time (a) t=1 and (b) t=4.
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Re = 250   t = 7
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Figure 3.13: Time sequences of the controlled velocity vector field and the energy field
for Re= 250at time (a) t=1 and (b) t=7.

It is important to mention that the algorithm used in this example cannot capture
dynamics of turbulent flow regimes; however, it can capture any fluctuations from the
desired energy level. Therefore, it is highly appreciated to have a well-suited numerical
algorithm in order to obtain a solution to the microscopic fluid flow model, and it
is also crucial for a reliably quantification of the corresponding macroscopic output.
Finding a good compromise between the microstates for accurate and the macrostates
for the control design is important for stable computationsand applicability of the
macroscopic control designed presented in Section 3.4.2.
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3.6 Discussion

In this chapter, we presented the numerical approach to a microscopic model that de-
scribes fluid flow. This research direction was discussed in Chapter 1 along the research
directionRD1 illustrated in Figure 1.3. The main contribution of this chapter is in the
proposed output regulation based on a macroscopic quantityof fluid properties. In fact,
we use the microscopic scale to guarantee a solution to the PDE, and the macroscopic
scale for control design. We have shown that the complexity of the control design
in fluid flows can be considerably reduced by taking into account different modeling
scales (i.e., multiscale modeling). In contrast to the microscopic phenomenological
approach which falls under the classical domain of physics,control-oriented modeling
aims to describe the dominant dynamics of the fluid flow and understand the dynam-
ics in order to design a control strategy. Therefore, the macroscopic control design
presents a valuable contribution of theory to practice in the chemical industry.

From the simulation point of view, the macroscopic simulation approach seems
to be less attractive than the microscopic approach due to the low accuracy. How-
ever, from the control perspective, the macroscopic approach to the fluid system has
enormous potential for industrial applications since it requires only four outputs for the
given design. The macroscopic flow regulation is a simple trade-off between simplicity
and accuracy that leads to a structural control design basedon the centralized boundary
control design. The control approach to the hydrodynamics gives the closed-loop form
of the fluid system, where the control parameters can be tunedto obtain the desirable
performance determined by the production process. The mostimportant feature of the
control approach to the hydrodynamics is that it offers a wide range of possibilities to
influence the hydrodynamics otherwise unreachable by a classical physics approach to
fluid systems. In classical physics, influencing the fluid system is usually done by a
trial-and-error approach to the boundary conditions. Thistrial and error approach to
the boundary conditions can easily lead to stability problems, to problems of choosing
inappropriate numerical schemes and discretization method, etc. Since the main con-
trol objective is to control and manipulate processes in a structural and easy way, this
trial-and-error approach is unacceptable. For this reason, the multiscale modeling is a
very important aspect in fluid flow modeling that can be very advantageous for control
designs. Furthermore, the concept of a macroscopic output regulation can be tested for
a wide range of feedback and feedforward control designs available.

In the next chapter, we will derive a microscopic control-oriented two-phase flow
model that can be used for designing a similar boundary controller, and we will ver-
ify the importance of control-oriented microscopic modeling of fluid flow systems for
control design.





Chapter 4

Control-Oriented Modeling of
Two-Phase Flow

In the previous chapters, we introduced the microscopic model of single-phase flow and
a boundary control strategy based on the numerical approachto microscopic models
(seeRD1 in Chapter 1). In this chapter, we will develop a control-oriented microscopic
two-phase flow model for the flow inside bubble columns based on a set of assumptions
that can be used to reduce the model complexity of the multiphase flow discussed in
Section 2.2.3. At this stage of the development of a control-oriented two-phase flow
model, we will focus mainly on understanding the complex nature of hydrodynamics
behind the two-phase flow and on development of different input/output structures.
In this chapter, particular attention is given to the issuesrelated to well-posedness,
coupling terms, eigenvalues, steady-state solutions, andboundary actuation strategies
for the derived two-phase fluid flow system.

4.1 Introduction

In this chapter, we will derive a control-oriented microscopic two-phase flow model
which will be treated in the remaining chapters of this thesis. The derived control-
oriented microscopic two-phase flow model provides a new aspect of modeling two-
phase flow systems and control of two-phase flow systems. The key aspect in devel-
oping the control-oriented two-phase flow model is that a very strong mathematical
theory is needed to study the well-posedness of the model formulation and the well-
posedness of boundary conditions before using any numerical methods to approximate
the solution. As discussed in Chapter 1, the model-based control strategy for two-phase
fluid flow systems should not rely on the numerical methods behind the currently used
CFD models. Instead, it should provide a theoretical framework for the development
of different input/output strategies using available analytical tools. Furthermore, in this
chapter, we will introduce a list of modeling assumptions, according to the aspects
stated in Section 2.5, which eventually lead to the derivation of the final compact form

57
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of the control-oriented two-phase flow model for gas-liquidsystems. The main focus
of this chapter is on the well-posedness of the derived control-oriented two-phase flow
model and on the methods available to relate the well-posed problems to the type of
PDE models as discussed in Section 2.3.3. The method based oneigenvalue analysis
which directly links the model formulation with the well-posed boundary conditions
will be used to derive a well-posed actuation strategy. To motivate this observation,
we will introduce the linearization technique and coordinate transformations for which
a very general decomposition theorem is applicable. The coordinate transformations
will enable developments that will be presented for causal input/output relationships
between boundaries in Chapter 5, and for different spatially distributed control designs
in Chapter 6.

This chapter starts with a brief description of two-phase fluid flow systems (see Sec-
tion 4.2.1), with an overview of the literature presented inChapter 1. This overview
is intentionally not complete, and it aims only to present the important concepts and
issues related to the microscopic modeling of two-phase flow. There are many other
results in the field that can be found in the CFD and multiphaseflow literature. Section
4.2.2 contains a set of modeling assumptions used to derive a1D two-phase flow model.
The well-posedness of the model is studied in Section 4.2.4.In Section 4.3, we intro-
duce the method of characteristics for the derived PDE modelto define a well-posed
boundary actuation strategy for the given control-oriented microscopic two-phase flow
model. The problem of the well-posed boundary actuation strategy is studied on a
linearized PDE model which is obtained using a linearization technique similar to the
linearization technique presented in [1] for the single-phase flow. The linearized model
allows us to introduce the definition of decoupled systems which will be the subject
of Section 4.3.4 of this thesis and later chapters. Finally,in Section 4.5, we present
numerical results which illustrate the presented theoretical framework.

4.2 Two-Phase Flow Models

4.2.1 Introduction

Two-phase flow is of great relevance for many industrial applications ranging from the
chemical industry to oil production and nuclear engineering. It is generally understood
as a simultaneous flow of two interactive and different phases (see Chapter 1). In most
cases, the phases are simply referred to as gas/vapor, liquid, or solid state1. According
to the combinations of the phases, it is easy to classify two-phase mixtures as

• gas-liquid,

• gas-solid, and

• liquid-solid.

1Plasma is lately considered to be a distinct state of matter as well.
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For a long time, the analysis of two-phase flow processes was limited to mostly
empirical correlations, or to largely simplified engineering models [18, 36, 37]. In
recent years, due to the wide range of applications, great effort has been spent on the
analysis of fluid dynamics in two-phase systems, and on the development of related
numerical simulation methods [47, 51, 92]. The microscopicmodels for two-phase
flow in the fluid dynamics approach have been mostly derived from the fluid dynamics
of the single-phase flow with specific interactions between the phases (see Section
2.2.3). The result of this approach is a set of equations having a similar structure as the
single-phase flow (i.e., the Navier-Stokes equations) fromwhich they originated. The
currently used models rely on different interactive phenomena between the phases with
specific physical background and closure equations [51].

In this chapter, instead of using CFD two-phase flow models, we will develop a
control-oriented model which comprises the findings from the previous chapters and
multiphase flow literature. The results contained in this chapter have been published in
[39].

4.2.2 1D Two-Phase Flow Model for Gas-Liquid Systems

In order to develop a comprehensive strategy for a two-phaseflow system inside a reac-
tor column illustrated Figure 1.2, the first step is to define aproblem of our interest and
a set of assumptions needed to simplify the problem (see Section 2.5). The following
assumptions have been made in order to derive a control-oriented microscopic two-
phase flow model based on the microscopic conservation laws discussed in Chapter
2:

• The fluids (gas and liquid) are considered to be incompressible.

• The entire volume is occupied by gas and liquid and is defined by the volume
fractions of the gas phaseαg and the liquid phaseαl , and for each volume ele-
mentαg + αl = 1 holds.

• The flow over the entire cross section is uniform, i.e., the flow variations occur
only in 1D.

• The gas phase is dispersed and consists of bubbles which are spherical in shape
and uniform in size. The processes of coalescence and breakage are neglected.

• No mass transfer occurs between the two phases.

• Each phase is treated as a continuum in any size of the domain under considera-
tion.

• In each volume element, there is a sufficiently large number of bubbles that create
the continuum gas phase.

• The pressure influence is modeled by distinguishing a bulk pressure and an in-
terfacial pressure.
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• The pressure in each volume element is assumed to be shared bythe phases
proportional to the fractional area occupied by the phases.

• The interfacial tension also causes the pressure△pg for the tension from the gas
side, and△pl for the tension from the liquid side at the surface.

• The drag force is considered to be the only coupling term between the phases as
described in (2.13). All the other coupling terms are neglected.

According to the given assumptions, a 1D form of the microscopic conservation laws
can be obtained. The following set of PDEs based on the mass conservation laws (see
Section 2.2.2) and the momentum conservation laws (see Section 2.2.3) is obtained.
The mass conservation laws for both phases read as

∂αg

∂t
+

∂αg

∂x
vg + αg

∂vg

∂x
= 0, (4.1)

∂αl

∂t
+

∂αl

∂x
vl + αl

∂vl

∂x
= 0, (4.2)

and the momentum conservation laws for both phases read as

αgρg
∂vg

∂t
+ αgvgρg

∂vg

∂x
+ αg

dp
dx

+△pg
∂αg

∂x
= −αgρgg−β (vg−vl) , (4.3)

αl ρl
∂vl

∂t
+ αl vl ρl

∂vl

∂x
+ αl

dp
dx

+△pl
∂αl

∂x
= −αl ρl g+ β (vg−vl) , (4.4)

whereαg is the volume fraction of the gas phase,vg is the velocity of the gas phase,
andvl is the velocity of the liquid phase, with the drag force closed by the following
equation

β =
3Cd

4db
αgαl ρl |vg−vl |,

whereCd is the drag coefficient anddb is the diameter of a single bubble. In princi-
ple, the balance equations are derived for each phase separately and are coupled via
interactive terms given as (2.13). According to the given assumption, the drag force is
considered to be the most dominant coupling term

F = Fd = β (vg−vl) ,

which appears on the right-hand side of (4.3) and (4.4). Manyof the presently used
two-phase flow models use different interfacial coupling terms with sometimes am-
biguous physical background and empirical closure equations [51]. Thus, we consider
only the most dominant coupling term which is the drag force.

In setting the momentum balance equations, we use the interfacial pressures△pg

and△pl in (4.3) and (4.4) respectively, which can also be considered as coupling terms
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since they are functions ofvg andvl . The liquid interfacial pressure can be obtained
from the following expression

△pl = Cpαl ρl (vg−vl )
2,

whereCp is the interfacial pressure coefficient [71, 80]. The pressure difference△pg

can be neglected due to the low density of the gas phase.
As far as the total pressure is concerned, the momentum balance equations (4.3)

and (4.4) share the pressure term proportional to the gas fractions. This fact can be
used to derive a more compact representation of the two-phase flow. The pressure term
can be eliminated by dividing (4.3) and (4.4) byαg andαl , respectively, and subtracting
one from the other. Under conditions thatαg 6= 0 andαl 6= 0, we can obtain the total
momentum equation of the two-phase flow system as

ρg
∂vg

∂t
−ρl

∂vl

∂t
+ ρgvg

∂vg

∂x
−ρlvl

∂vl

∂x
+Cpρl (vg−vl)

2 ∂αg

∂x
(4.5)

= −(ρg−ρl)g− (vg−vl )

(

β
αg

+
β
αl

)

.

Equation (4.5) describes the total momentum of the mixture with no pressure varia-
tion outside the system boundaries. The signs in front of thetime derivatives can be
assigned to the direction of the velocities.

Before writing the final form of the model, we can make one moresimplification
step. Due to the assumption that the volume under consideration is occupied with gas
and liquid, i.e.,αg + αl = 1, (4.2) can be rewritten in terms of onlyαg as

∂(1−αg)

∂t
+

∂(1−αg)

∂x
vl +(1−αg)

∂vl

∂x
= 0. (4.6)

After rearranging, (4.6) reads as

∂αg

∂t
+

∂αg

∂x
vl − (1−αg)

∂vl

∂x
= 0. (4.7)

The last step includes subtracting (4.1) from (4.7). Now, the final set of PDEs can be
written as

∂αg

∂t
+

∂αg

∂x
vg + αg

∂vg

∂x
= 0,

ρg
∂vg

∂t
−ρl

∂vl

∂t
+ ρgvg

∂vg

∂x
−ρlvl

∂vl

∂x
+Cpρl (vg−vl)

2 ∂αg

∂x

= −(ρg−ρl)g− (vg−vl)

(

β
αg

+
β

1−αg

)

,

∂αg

∂x
(vg−vl)+

∂vg

∂x
αg +(1−αg)

∂vl

∂x
= 0,

which in a compact form reads as

E
∂Φ
∂t

+A(Φ)
∂Φ
∂x

= c(Φ), (4.8)



62 4 Control-Oriented Modeling of Two-Phase Flow

whereΦ =
[

αg vg vl
]T

is the vector of fluid variables. The matrices

E =









1 0 0

0 ρg −ρl

0 0 0









, (4.9)

and

A(Φ) =









vg αg 0

Cp ρl (vg−vl)
2 ρgvg −ρlvl

vg−vl αg 1−αg









, (4.10)

are the system matrices, and

c(Φ) =











0

−(ρg−ρl)g− (vg−vl)
(

β
αg

+ β
1−αg

)

0











(4.11)

is the coupling force vector. Equation (4.8) is just a simplified representation of (2.11)
and (2.10), where the variation of fluid variables is observed in 1D space direction
with additional assumptions outlined at the beginning of this section. A similar set
of simplification steps has been published in [73] where the coupling forces between
the phases were studied using a two-phase flow model for adiabatic two-phase bubble
flow. The interfacial momentum exchange includes the surface stress developed on the
interface, which is induced by the relative motion of the phases, interfacial pressure,
and the drag force. In this work, we focus on the drag force andinterfacial pressure
only for the incompressible two-phase fluid flow system.

4.2.3 Linearized Model Representation

A linear approximation of nonlinear models aims to analyze the local behavior of a
system. This is a very important aspect of the linearized model representation, which
is widely used in control theory to design controllers that can stabilize system behavior
around the chosen operational regime. In the following sections, we will utilize the
linearized model to analyze the well-posedness of the modelformulation described by
the nonlinear PDAE (4.8) and to define conditions for a well-posed boundary actuation
strategy. Even though we will study the linearized model that shows local behavior
of the two-phase flow system, the results obtained are very relevant for spatially dis-
tributed control designs that will be introduced in Chapter6 and can be extended for
the nonlinear PDAE model.

4.2.4 Well-Posedness of the Model Formulation

As we already discussed in Section 2.3.3, the first step in defining the well-posedness
of the model formulation is to classify the derived PDE modeland to suggest the well-
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Table 4.1: Well-posed regions of the two-phase flow model based on the eigenvalues
(4.15) and (4.16) for a wide range of the velocities vg and vl , whereαg = 0.1,
ρg = 1 kg/m3, andρl = 1000kg/m3.

Eigenvalues Velocity conditions Ratio between the velocities

obtained from
(4.15) and (4.16)

λ1 = λ2 −0.45vg+1.45vl = vl/vg = 1
= 0.47vg+0.53vl

λ1 > 0 vl/vg > −0.89 vl/vg > 0.3
λ2 > 0 vl/vg > 0.3

λ1 < 0 vl/vg > −0.89 −0.89< vl/vg < 0.3
λ2 > 0 vl/vg < 0.3

λ1 < 0 vl/vg < −0.89 vl/vg > −0.89
λ2 < 0 vl/vg < 0.3

posed initial-boundary conditions. The nature of possiblesolutions to (4.8) is essen-
tially characterized by coefficients of a characteristic polynomial obtained from the
system matrices of the derived model (4.9) and (4.10). For PDAE models, the degree
of the characteristic polynomial is smaller than or equal tothe number of states. This
means that the eigenvalues corresponding to the algebraic part have eigenvalues with
infinitely many solutions, and the eigenvalues with the finite solutions correspond to
the dynamical part. For the model given as (4.8), the eigenvalue analysis shows that
the system has one infinite eigenvalue and two finite eigenvalues which can be obtained
from the characteristic polynomial

det(λE−A(Φ)) = a1λ2 +a2λ +a3, (4.12)

where

a1 = −αgρl −ρg+ ρgαg,

a2 = 2ρgvg−2vgρgαg +2αgρl vl ,

a3 = −Cp ρl (vg−vl)
2 αg

2 +
(

ρgvg
2−ρlvl

2 +Cpρl (vg−vl)
2
)

αg−ρgvg
2.

The discriminant of (4.12) is then defined by

Dc = a2
2−4a1a3. (4.13)

If Dc > 0, the system (4.8) is said to be hyperbolic [50, 77]. In this case, the
eigenvalues of the hyperbolic equations are real and distinct. If Dc = 0, the system is
parabolic with real repeated eigenvalues. IfDc < 0, the system is elliptic with complex
eigenvalues. In general, elliptic system with one coordinate being time are proven to be
ill-posed, whereas parabolic and hyperbolic systems are well-posed with a stable and
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unique solution [77]. This was discussed in Section 2.3.1. This means that the well-
posedness of (4.8) is defined by the eigenvalues of the pair (A(Φ),E) and the system
parameters of the derived two-phase flow model [80]. In orderto define a critical point
between the well-posed and ill-posed solutions of the derived two-phase flow model
(4.8), we evaluate (4.13) as

Dc = D

(

1−
(

ρl αg + αlρg

ρg

)

Cp

)

, (4.14)

whereD = αgρgρl (vg−vl)
2 (−1+ αg). Sinceαg < 1, then the discriminant is nega-

tive, i.e.,D < 0 for all values of the velocitiesvg andvl . This implies that the well-
posedness of the PDAE model is determined by the interfacialpressure coefficientCp.
The criticalCp, for which the discriminantDc = 0 and the system is parabolic, can be
obtained from the system parametersρg andρl , and the volume fractionαg as

Cp =
ρg

αgρl + ρgαl
.

There have been many studies over the last two decades focusing on the interfacial
pressure coefficientCp for different fluid systems [51]. For the air-water system, which
will be treated in this thesis, the interfacial pressure coefficient Cp is reported to be
between 0.25 and 0.5 [73]. For this value ofCp, the derived two-phase flow model
(4.8) is well-posed for a wide range of gas fractions,αg (see Table 4.1).

4.2.5 Eigenvalue Analysis

After deriving the 1D two-phase flow model, we are in positionto obtain the eigenval-
ues of (4.8) from the following expressions

λ1(Φ) =
αgρl vl + αl ρgvg

αgρl + αl ρg
+
√

Dc, (4.15)

λ2(Φ) =
αgρl vl + αl ρgvg

αgρl + αl ρg
−
√

Dc. (4.16)

These eigenvalues represent the characteristic velocities of the gas/liquid phase in the
two-phase fluid flow system. Due to the fact thatρg > 0 andρl > 0, the signs of the
eigenvalues change according to the velocitiesvg andvl . The results of the eigenvalues
and the range of the velocities for which the model is well-posed are given in Table
4.1. In the range outside the given velocity ratios, the model is ill-posed. In Figures
4.1 and 4.2, we present an analysis of the eigenvalues forαg = 0.1, ρg = 1 kg/m3,
andρl = 1000 kg/m3 in order to illustrate the velocity influence on the characteristic
polynomial.

Figure 4.1(a) illustrates the influences of the velocity of the gas phase on the char-
acteristic polynomial, whereas the influence of the velocity of the liquid phase on the
characteristic polynomial is shown in Figure 4.1(b). The arrows in Figures 4.1(a) and
4.1(b) indicate the direction of the increased gas and liquid velocities, respectively. As
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Figure 4.1: Influence of the velocities vg and vl on the characteristic polynomial with
the characteristic polynomial det(λE−A(Φ)) for (a) vg = 0.2 m/s and (b)
vl = −0.02m/s.
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Figure 4.2: Hyperbolic region of the derived two-phase flow model forαg = 0.1.

can be observed from Figure 4.1(b), by increasing the gas velocity vg, the character-
istic curve is shifted upwards, and it crosses zero for a large value of the gas velocity
vg. These cross points are the eigenvalues given as (4.15) and (4.16). Depending on
the values of the velocitiesvg andvl , we can determine the well-posed region of the
derived two-phase flow model. The influence ofvl on the well-posedness of the solu-
tion is to some extent already determined byvg since there is a strong relation between
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their eigenvalues. The effect ofvg andvl on the characteristic polynomial is shown in
3D in Figure 4.2 forαg = 0.1. Whenλ1 = λ2 = 0, the model is parabolic whereas for
the rest of the region the model is elliptic. For all possiblesigns of the eigenvalues, we
refer to Table 4.1.

4.2.6 Summary of the Model Formulation

In the previous sections, we have derived a well-posed 1D two-phase flow model which
is in agreement with the discussion given in Chapter 2, whichdescribes the micro-
scopic modeling of chemical processes. The given analysis of the well-posedness of
the model formulation and influence of different terms in thederived two-phase flow
model are written in a comprehensive manner that can be further used to develop actu-
ation strategies. The derived two-phase flow model is similar to the model published
in [73]. In contrast to the CFD model presented in [73], whichaims to analyze all the
effects of bubbles on two-phase flow, we focus mainly on the dominant dynamics of
the two-phase flow system that are important for the structural development of well-
posed actuation strategies and spatially distributed control designs. Our approach to
the two-phase flow model is very different from the CFD models, as we will see in the
following sections of this chapter, and in Chapters 5 and 6.

4.3 Boundary Conditions

4.3.1 Introduction

In Chapter 3, we saw that the boundary conditions of the lid-driven cavity case of
single-phase flow can be used as inputs to control the flow in a structural way. In
this section, we will first study the well-posedness of the boundary conditions for the
derived two-phase flow model before we suggest different spatially distributed control
strategies (see Chapter 6). Here, we will use the method of characteristics to study the
boundary conditions and to define well-posed input/output structures for different flow
regimes. Once the well-posed input/output structure has been obtained for all possible
regimes, one can return to the original problem to seek the best control design. In
general, it is more desirable to have a model which can be simulated with a well-
posed input/output structure than to use large numerical algorithms which require a
considerable computation time (see Chapter 1).

After the linearization that will be discussed in Section 4.3.3, we will apply a suit-
able transformation to eliminate the algebraic part of (4.8) and reduce the model to
a PDE model (see Section 4.3.4). These two techniques allow us to consider the
well-posedness of the boundary conditions and to determinedifferent well-posed in-
put/output structures.
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Figure 4.3: Characteristic curves ofλ1(Φ) andλ2(Φ).

4.3.2 Method of Characteristics

As discussed in Chapter 2, the solution to a PDE model involves determining a well-
posed boundary condition. Posing too many or fewer boundaryconditions on a PDE
model can lead to a non-uniqueness of the solution. Therefore, it is crucial for a suc-
cessful control design to develop a control strategy that relies on a well-posed bound-
ary condition. In order to develop a well-posed boundary actuation strategy for the
derived control-oriented model of the two-phase flow, we introduce the characteristic
curve analysis of the linearized two-phase flow model based on the method of charac-
teristics. The characteristics represent lines with characteristic directions as shown in
Figure 4.3. The curves shown in Figure 4.3 represent nonlinear characteristic curves
and their linear approximations. The analysis of the characteristic curves provides sev-
eral important conclusions concerning the boundary conditions for the model written
as (4.8), which will be discussed later in this section.

Using the method of characteristics, a set of PDEs can be transformed into a set
of ODEs along the characteristic directions in the(x,t)-plane. To prove this statement,
we start with the elementary calculus for a set of nonlinear PDEs where

dΦ(t,x)
dt

=
∂Φ(t,x)

∂t
+

∂Φ(t,x)
∂x

dx
dt

. (4.17)

The left-hand side of (4.17) is a total derivative ofΦ along curves defined by the coef-
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Figure 4.4: The wave propagation along characteristic curves and boundary condi-
tions for (a)λ1(Φ) > 0 andλ2(Φ) > 0, (b) λ1(Φ) < 0 andλ2(Φ) < 0, and
(c) λ1(Φ) > 0 andλ2(Φ) < 0.

ficient in front of the time derivativedx/dt. Since (4.8) belongs to the class of PDAEs
with E being a singular matrix, (4.17) has to be multiplied byE, i.e.,

E
dΦ(t,x)

dt
= E

∂Φ(t,x)
∂t

+E
∂Φ(t,x)

∂x
dx
dt

. (4.18)

Then the time evolution of (4.8) is set as

E
dΦ
dt

= c(Φ) along the curves defined byE
dx
dt

= A(Φ).

The characteristic curves of the linearized model in(x,t)-plane are shown in Figure 4.3
as vectors with the directionsλ1(Φ) andλ2(Φ).

The directional derivatives, which correspond to the eigenvalues of the system ma-
trices(A(Φ),E) along the characteristic curves, can be defined by the following ODEs

dξ1

dt
= λ1(Φ), and

dξ2

dt
= λ2(Φ).

The quantitiesξ1 and ξ2 can be seen as the total derivatives in the(x,t)-plane,
along the nonlinear curves defined by the ODEs [26, 34]. The eigenvalues, in essence,
describe the direction of the wave propagation of the two-phase fluid flow.

According to the signs of the eigenvaluesλ1(Φ) and λ2(Φ), different boundary
actuation strategies are possible. Figure 4.4 illustratesthe direction of the wave propa-
gation according the eigenvaluesλ1(Φ) andλ2(Φ), and the boundary conditions asso-
ciated with the flow directions. For example, if the eigenvalues are negative, then the
flow along both characteristic curves propagate asξ1 = x−λ1(Φ)t andξ2 = x−λ2(Φ)t
in the (x, t) plane (see Figure 4.4(a)). This means that the boundary conditions must
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be specified at the locationx = 0 asΦ(t,0), otherwise the boundary conditions are ill-
posed (see Section 2.3.2). However, if the eigenvalues are negative, the flow along the
characteristic curves are defined asξ1 = x1 + λ1(Φ)t andξ2 = x2 + λ2(Φ)t, then the
boundary conditions must be defined at the locationx = L asΦ(t,L). This situation is
illustrated in Figure 4.4(b). It is rather common to have positive and negative eigen-
values, where for the positive eigenvalue the boundary condition has to be specified at
the locationx = 0 asΦ(t,0), whereas for the negative eigenvalue the boundary condi-
tions has to be specified at the locationx = L asΦ(t,L). This type of flow represents
counter-current flow which will be discussed in detail in Section 4.4. In Figure 4.4 next
to the(x, t)-plots, we also show the bubble columns with different actuation strategies
in order to give the physical interpretation of the given eigenvalue analysis. As can be
seen, the physical interpretation of the characteristic curves analysis is rather straight-
forward. The waves with the characteristic velocitiesλ1(Φ) andλ2(Φ) carry the gas
fraction of phases injected at the boundaries according to the signs of the characteris-
tic velocities. When we inject the gas/liquid phase at the inlet/outlet, the phases will
propagate upwards or downwards according to the signs of theeigenvaluesλ1(Φ) and
λ2(Φ).

4.3.3 Linearized Two-Phase Flow Model

In the previous section, we discussed the boundary conditions that immediately follow
from the signs of eigenvalues that can be locally obtained (see Figure 4.3). This means
that for the derived PDAE model (4.8), in each point in space,we have to determine
the eigenvalues and locally approximate the nonlinear PDAE(4.8) by a linear one.
This requires a large number of locally linearized equations. Since we are interested in
developing an input/output structure for the derived two-phase flow model that can be
used to control the fluid flow around different operational regimes, in this section we
will introduce the linearization technique that can simplify the approach of the local
linearization.

Suppose thatΦ is a steady-state solution of the derived two-phase flow model (4.8),
andΦ′ is a small perturbation around the steady-state solution, then the flow variable
Φ can be written as

Φ = Φ+ Φ′, (4.19)

and the linearized two-phase flow model can be defined as

E
∂Φ′

∂t
+A(Φ)

∂Φ′

∂x
+A(Φ′)

∂Φ
∂x

= FΦ′, (4.20)

with

A(Φ) =









vg αg 0

Cp ρl (vg−vl)
2 ρgvg −ρlvl

vg−vl αg 1−αg









,
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A(Φ′) =









vg
′ αg

′ 0

2Cp ρl (vg−vl)(vg
′−vl

′) ρgvg
′ −ρlvl

′

v′g−v′l αg
′ −αg

′









,

representing the linearized system matrices, and

F =











0 0 0

0 −3/2
Cd ρl

√

(vg−vl )
2

db 3/2
Cd ρl

√

(vg−vl )
2

db

0 0 0











,

representing the linearized force vector. Here, we presentthe concept of the local
behavior of the linearized two-phase flow, where the linearization procedure is given in
Appendix B.

In essence, (4.20) represents the linearized two-phase flowmodel with the space de-

pendent steady-state solution, according to the term
∂Φ
∂x

. The space dependent steady-

state solutions, in essence, represent the flow patterns in the observed domain. If there
is no variation of the steady-state solution with respect tospace, i.e.,Φ = const, the
linearized two-phase flow model reduces to the following equation

E
∂Φ′

∂t
+A(Φ)

∂Φ′

∂x
= FΦ′. (4.21)

In general, a system of equations written as a linear set of equations represents small
variations of properties. Here, the system matrices describe the rate of fluctuation in
the neighborhood ofΦ. If the flow is smooth in a sufficiently small neighborhood of
the steady-state solutionΦ, the fluctuationsΦ′ are essentially linear. As the fluctuation
of the two-phase flow propertiesΦ′ represents the small variation in the linear approx-
imation of the two-phase flow model (4.8), one can think of thelinear approximation
as a linear deformation described by eigenvalues and eigenvectors of the linearized
two-phase fluid flow model.

In order to demonstrate the linearization technique, simulations are carried out us-
ing a space independent steady-state solution i.e., quasi steady-state solution, while
enforcing the well-posedness of the problem statement. Thequasi steady-state solu-
tion, which is spatially uniform, can be used as an equilibrium point for the lineariza-
tion of the two-phase flow model. Section 4.4 will discuss possible quasi steady-state
solutions and their physical interpretations.

4.3.4 Coordinate Transformations

In this section, we use the linearized two-phase flow model (4.21) to reformulate the
linear PDAE problem into a linear PDE using standard coordinate transformation tech-
niques. It is important to emphasize that the coordinate transformations do not change
the system dynamics, instead with the coordinate transformation the model is repre-
sented in another coordinate system. The linearized two-phase flow model written as a
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linear PDE model is beneficial for control designs, which will be illustrated in the fol-
lowing chapters. In Chapter 5, a causality problem of different input/output structures
will be discussed, whereas a wide range of spatially distributed control designs will be
shown in Chapter 6.

In this section, we introduce two sets of coordinate transformations: one that elim-
inates the algebraic part of the linearized two-phase flow model (4.21), and one that
decouples the characteristic wave velocitiesλ1(Φ) and λ2(Φ). The first coordinate
transformation is introduced in order to simplify the computations involving the alge-
braic equation in the linear PDAE model (4.21). First, the system matrixE in (4.21) has
to be diagonalized, so that in the new coordinate system the linearized PDAE model
(4.21) can be reduced by eliminating the algebraic equation. This means that the sys-
tem can be decomposed into the dynamics part and the algebraic part by diagonalizing
E

ED = ET =





1 0 0
0 1 0
0 0 0



 , and T =









1 0 0

0 ρg
−1 ρl

0 0 ρg









with Φ′ = TΨ′,

whereT stands for the coordinate transformation matrix. Now, we can transform the
state vectorΦ′ into a new state vectorΨ′ such that according to the given fluid variables
(αg, vg, andvl ), the new states are given as

Ψ′ =













α′
g

ρgv′g−ρlv′l

v′l
ρg













.

The two-phase flow model in the new coordinatesΨ′ can be written as

ET
∂Ψ′

∂t
+A(Ψ′)T

∂Ψ′

∂x
= FTΨ′. (4.22)

Due to the simplicity, here, we use a symbolic representation of the linearized
model (4.22), and later on we will present some numerical results. We start with the
two-phase flow model (4.22) in the coordinatesΨ′









1 0 0

0 1 0

0 0 0









∂Ψ′

∂t
+

















vg
αg

ρg
αgρl

Cp ρl (vg−vl)
2 vg ρgvgρl −ρlvl ρg

vg−vl
αg

ρg
αgρl +(1−αg)ρg

















∂Ψ′

∂x
= (4.23)
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













0 0 0

0 −3
2

Cd ρl

√

(vg−vl)
2

db ρg
−3

2

Cd ρl
2
√

(vg−vl)
2

db
+

3
2

Cd ρl

√

(vg−vl )
2ρg

db

0 0 0















Ψ′.

The stateΨ′
3 can be obtained from the last equation in the diagonalized matrix form

(4.23) as

∂Ψ′
3

∂x
=

(ρgvg−ρgvl )

ρg (−αgρl −ρg+ ρgαg)

∂Ψ′
1

∂x
+

αg

ρg(−αgρl −ρg+ ρgαg)

∂Ψ′
2

∂x
. (4.24)

Equation (4.24) can be used to eliminate the stateΨ′
3 from the linearized two-phase

flow model (4.21) given inΨ′ coordinate system. After the elimination ofΨ′
3, the

system contains only PDEs. The derived PDE model reads as

∂
∂t

[

Ψ′
1

Ψ′
2

]

+Ared
∂
∂x

[

Ψ′
1

Ψ′
2

]

= Fred

[

Ψ′
1

Ψ′
2

]

, (4.25)

whereAred has the same eigenvalues as (4.8). The two-phase flow model written as
(4.25) captures the flow dynamics in theΨ′ coordinate system, which are described by
the eigenvalues ofAred.

Now, we will introduce the second coordinate transformation which is used to de-

couple the directional derivatives
∂Ψ′

∂x
, i.e., diagonalizeAred. First, we introduce the

following coordinate transformation
[

Ψ′
1

Ψ′
2

]

= V
[

W′
1

W′
2

]

,

whereV is the transformation matrix that gives

∂VW ′

∂t
+Ared

∂VW ′

∂x
= FredVW ′, (4.26)

which reads as follows in the new coordinate systemW′

∂W′

∂t
+V−1AredV

∂W′

∂x
= V−1FredVW ′. (4.27)

Equation (4.27) describes the linearized two-phase flow model written as the PDE with
the decoupled wave propagation2. The final form of the linearized two-phase flow
model with the decoupled directional derivatives can be written as

∂
∂t

[

W′
1

W′
2

]

+

[

λ1 0
0 λ2

]

∂
∂x

[

W′
1

W′
2

]

=

[

c11 c12

c21 c22

][

W′
1

W′
2

]

. (4.28)

2The notation(·)′ is used to emphasize the linear approximation of the nonlinear two-phase flow model
written in different coordinate systems.
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The solutionsW′
1(t,x) andW′

2(t,x) represent the fluid variables in the new coor-

dinate system, which are constant along the same characteristic lines
dx
dt

= λ1 and

dx
dt

= λ2 discussed in Section 4.3.2. Note thatλ1 = λ1(Φ) andλ2 = λ2(Φ).

The coordinate transformations used in this section lead tothe PDE model formu-
lation of the two-phase flow (4.28) written in the coordinatesystemW′(t,x). Due to
the model simplicity given in theW′(t,x) coordinate system, (4.28) is well-suited for
different spatially distributed control designs that willbe discussed in Chapter 6. In
essence, the applied transformations are a permutation of the PDAE, and it also in-
volves a full state transformation. In the case of full statetransformation ofΦ′(t,x),
the new statesW′(t,x) cannot be associated with physical states any more, but the
relationships between new and old states are fixed by the transformation matricesT
andV. There are different arguments to arrive at a suitable coordinate system, which
will be discussed in Section 4.5 and further extended in Chapter 5. Although the main
purpose of the coordinate transformation presented in thissection is to decouple the
directional derivatives, the decoupled model also leads tothe determination of a well-
posed boundary actuation strategy. Furthermore, the coordinate transformations sug-
gest a well-suited numerical scheme for spatial discretization of (4.28), which will be
discussed in the next section.

4.3.5 Spatially Discretized Model

Another important aspect of the PDE models discussed in Chapter 2 is the choice of
appropriate numerical schemes for the spatial discretization of the PDE models. The
PDE models are usually numerically approximated by a large number of ODEs accord-
ing to the chosen discretization schemes [76, 79]. The size of the derived ODE model
depends on the number of discretization points and the accuracy of the discretization
method used to approximate the PDE solution. In the fluid dynamics, the number of
points depends on the problem formulation and chosen geometry, and it is typically in
the range of 102 and 1015. Furthermore, for the hyperbolic-like PDE models, the choice
of the spatial discretization has to be in agreement with thedirection of wave propa-
gation. The direction of the wave propagation, which can be charactarized as positive
or negative, has to agree with forward and backward numerical schemes. The forward
and backward numerical schemes are given according to the sign of the eigenvalueλ
as

dW′
i

dt
= λ

W′
i+1−W′

i

△x
for λ > 0, (4.29)

dW′
i

dt
= λ

W′
i −W′

i−1

△x
for λ < 0, (4.30)

where△x represents the characteristic length defined between two points in space and
index i denotes the point in space. It is also important to point out the consequences
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of the discretization methods. Choosing inappropriate numerical schemes may lead to
numerical instabilities caused by discarding the direction of the wave propagation [42].

The discretized two-phase flow model can be obtained from (4.28) using either
(4.29) or (4.30) according to the signs of the eigenvaluesλ1 and λ1. For example,
suppose that the two-phase flow propagates in the vertical column as illustrated in
Figure 4.4(c), then the appropriate numerical scheme has tocontain both discretiza-
tion schemes. Forλ1 < 0, we use the forward discretization scheme (4.29) with the
well-defined boundary conditions at the locationx = L, whereas forλ2 the backward
discretization scheme (4.30) is necessary in order to obtain a numerically stable solu-
tion. After the spatial discretization, the spatially discretized two-phase flow model can
be written as a large-scale linearized ODE model

d
dt

[

W ′
1,i

W ′
2,i

]

=

[

A11 A12

A21 A22

][

W′
1,i

W′
2,i

]

+

[

B1

B2

]

Win, (4.31)

where
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corresponds to the forward spatial discretization forλ1 > 0, and

A22 =







































λ2 +c22

−λ2 λ2 +c22

. . .
. . .

−λ2 λ2 +c22

−λ2 λ2 +c22







































, B2 =







































−λ2

0

...

0

0







































,

corresponds to the backward spatial discretization forλ2 < 0. The off-diagonal matri-
cesA12 andA21 in (4.31) contain only the coupling elementsc12 andc21, respectively.
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A12 =
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The spatially discretized model (4.31) represents a microscopic interconnected form
of the two-phase flow model, which is similar to the interconnected form of the single-
phase flow presented in Section 3.4.1. Although the spatially discretized model might

be difficult to approach and influence due to the size of the system matrix

[

A11 A12

A21 A22

]

,

the discretized model have a rather deterministic structure which can be exploited to
reduce the computational complexity and design a simple spatially distributed con-
troller. The spatially distributed control designs for thetwo-phase flow systems will be
discussed in Chapter 6.

To illustrate the deterministic structure of the discretized two-phase flow model
and to visualize sparsity patterns of the system matrices, the two-phase flow model
written as (4.28) is descretized withi = 1,2, ...,10. The sparsity of the state matrix in
(4.31) for two different cases are shown in Figure 4.5. Figure 4.5(a) shows the sparsity
of the system matrix for the decoupled system wherec11 = c12 = c21 = c22 = 0, and
Figure 4.5(b) for the coupled system wherec11 6= 0, c12 6= 0, c21 6= 0, andc22 6= 0.
Both systems have rather deterministic structures which will be explored more on a
numerical example in Section 4.5. Before we present the numerical results, we will
introduce possible operational regimes that can be used as equilibrium points for the
linearization derived in Section 4.3.3.
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Figure 4.5: Sparsity of the state matrix in (4.31) for i=1,2,...,10 where the dot indicates
a non-zero entry for (a) a decoupled system where A12 = A21 = 010,10, and
(b) a coupled system were A12 6= A21 6= 010,10.
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4.4 Operational Regimes

4.4.1 Steady-State Solutions

As discussed in Section 1.3.2, there is a wide range of possible operational regimes in a
bubble column [70]. For example, the bubble column reactor in a homogeneous regime
is characterized by a more or less uniform gas volume fraction distribution within the
reactor, whereas a heterogeneous regime is characterized by a non-uniform distribution
and an internal re-circulation of the phases (see Figure 1.2). This means that a steady-
state solution is space dependent for the non-uniform flow, whereas for the uniform
flow, the gas distribution is constant in the entire spaceΦ = const. As discussed in
the previous sections, in this thesis we will only considered the space independent
operational regimes and the linearized model (4.28) which represents the perturbation

of the variables

[

W′
1

W′
2

]

around the space independent operational regime. This space

independent steady-state solution will be called the quasisteady-state solution.
In the quasi steady-state situation, the gravitational force and the drag force are

in balance, and the flow is uniform through the whole domain[0,L] as illustrated in
Figure 4.6 where the observed space is discretized according to the numerical methods
presented in Section 4.3.5. The figure also illustrates two different flow regimes that of-
ten appear in bubble columns. Figure 4.6(a) illustrates a counter-current flow, whereas
Figure 4.6(b) illustrates a co-current flow. The distinction between those flows is based
on the direction of the phase velocities. Roughly speaking,if both phases move up-
wards (i.e., from bottom to top), the flow is considered to be co-current; whereas for
fluid systems in which the phases flow in opposite directions,the flow is considered to
be counter-current. To predict the direction of the velocities in the quasi steady-state
regime, we introduce a slip velocity as a difference betweenthe velocity of the gas
phase and the velocity of the liquid phase, i.e.,vs = vg−vl . According to the definition
of the slip velocity and its relationship to the velocitiesvg andvl , we can obtain the
following expression from the momentum equations (4.3) and(4.4)

vs =

√

4
3

(ρl −ρg)gdb(1−αg)

Cdρl
.

In order to determine the gas and liquid velocitiesvg andvl in the quasi steady-state
regime, we need an additional relation that will relatevg andvl . The additional equation
can be obtained from the volumetric fluxes across the discretized volume sections.
For a bubble column with an open flow through the boundaries (see Figure 4.6), the
compensating volumetric flux across the volume in the quasi steady-state equals zero,
i.e.,

αgvg + αlvl = 0.

In this case, the velocity of each phase can be computed as

vg = αl vs,

vl = −αgvs.
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Figure 4.6: A spatially discretized model of bubble column reactor with open bound-
aries operating in two regimes: (a) counter-current and (b)co-current.

These relationships give a closing to the slip velocity and determine the quasi steady-
state regime.

In the case of real flows, a certain amount of fluid moves downwards and a cer-
tain amount moves upwards. For the 1D two-phase flow, the liquid velocity simply
represents a sum of the upwards and downwards flow:

vdown
l +vup

l = vl .

Which of the two liquid velocities is more dominant depends on the gas and liquid
injection at the boundaries. In Section 4.5, we will illustrate the use of the quasi steady-
state operational regimes in analyzing the boundary conditions, which leads to the
development of well-posed actuation strategies.

4.4.2 Pressure Recovery

In the previous section, we studied the gas and liquid velocities in the quasi steady-state
regime. Here, we will return to the momentum equations (4.3)and (4.4) to define the
pressure in the quasi steady-state regime. Due to the fact that the model is obtained
after a few simplification steps, in order to recover the pressure term in the steady-state

regime, we have to consider (4.3) and (4.4) for
∂vg

∂t
= 0 and

∂vl

∂t
= 0 which are given
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by

αgvgρg
∂vg

∂x
+ αg

dp
dx

= −αgρgg−β (vg−vl) , (4.32)

and

αl vl ρl
∂vl

∂x
+ αl

dp
dx

−Cpρl (vg−vl)
2 ∂αg

∂x
= −αl ρl g+ β (vg−vl) . (4.33)

Adding (4.32) and (4.33), the pressure gradient can be calculated directly as

dp
dx

= −αgvgρg
∂vg

∂x
−αlvl ρl

∂vl

∂x
+Cpρl (vg−vl)

2 ∂αg

∂x
− (αgρg + αl ρl )g, (4.34)

for the steady-state solution, and

dp
dx

= −(αgρg + αl ρl )g,

for the quasi steady-state whereαg = const. As expected, the pressure in the quasi
steadiness equals a hydrostatic pressure. Equation (4.34)has a form similar the Bernoulli
equation written for the two-phase flow model [47]. To prove this statement, we can
setαg = 1 in (4.34) which gives the following relation between the pressure and the
gas velocity

dp
dx

= −vgρg
∂vg

∂x
−ρgg. (4.35)

This verifies that our modeling assumptions introduced in Section 4.2.2 are well-posed.

In the following section, we will present numerical resultsof the discritized two-
phase flow model (4.31) which is obtained from the linearizedtwo phase flow model
around the quasi steady-state solution.

4.5 Numerical Example

In this section, we establish the well-posed boundary conditions for the derived lin-
earized two-phase flow model (4.31). This numerical exampleaims to get an additional
insight behind fluid dynamics of two-phase flow and to developa well-posed actuation
strategy based on the theoretical framework previously discussed. The fluid properties
and the system parameters are given in Table 4.2.

The fluid variables in the quasi steady-state are obtained from a constant gas distri-
bution in the entire space divided intoN = 10 volume elements. According to the anal-
ysis of the operational regimes given in Section 4.4, for constant gas fractionαg = 0.1,
the slip velocity isvs = 0.17 m/s, the gas velocity isvg = 0.155 m/s, and the liquid
velocityvl =−0.017 m/s. According to the signs of the velocitiesvg andvl , the phases
move in the opposite spatial direction which is illustratedin Figure 4.6(a).

For the given quasi steady-state situation, the eigenvalues areλ1 = 0.0954 and
λ2 = −0.064, and they suggest the choice of the boundary conditions.According to
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Table 4.2: Fluid properties and system parameters.

Symbol Value Unit
ρg 1 [kg/m3]
ρl 1000 [kg/m3]
Cd 0.440 [-]
db 0.001 [m]
Cp 1/4 [-]
g 9.81 [m/s2]

(4.31), the analysis given in Section 4.3.2 forλ1 the boundary condition has to be
defined at the inlet, i.e.,W′

1(t,0), and the boundary condition forλ2 has to be defined
at the outlet, i.e.,W′

2(t,L). Figures 4.7 and 4.8 illustrate the wave propagation of the
characteristic solutions from the boundaries without force term, i.e., the right-hand side
of (4.28) equals zero,

∂W′

∂t
+

[

0.064 0

0 −0.095

]

∂W′

∂x
=

[

0 0

0 0

]

W′. (4.36)
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Figure 4.7: The wave propagation of W′1(t,x) with the speedλ1 without the force term
c11W′

1 +c12W′
2.
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The simulation results clearly show the direction of the wave propagation and the
stability of the solutionsW′

1(t,x) andW′
2(t,x), respectively. As shown, for the given

boundary conditions the linearized model, which representthe perturbations around the
chosen operational regime, without force term (i.e., only directional derivatives) is sta-
ble. This verifies the well-posedness of the boundary conditions which were obtained
through the analysis of the eigenvaluesλ1 = 0.0954 andλ2 = −0.064. Furthermore,
Figures 4.7 and 4.8 show a typical behavior of the first order hyperbolic system [81].

Now, we will introduce the right-hand side of (4.28) to examine the influence of the
linearized force vector. The influence of the linearized force vector, i.e., the right-hand
side of (4.28) is calculated from

∂W′

∂t
+

[

0.064 0

0 −0.095

]

∂W′

∂x
=

[

521.26 1647.64

−521.26 −1647.64

]

W′, (4.37)

and presented in Figures 4.9 and 4.10.
For the wave that propagates from bottom to top, the effect ofdrag force is ob-

served mostly at the top boundary caused byc11W′
1(t,x) andc12W′

2(t,x) with a minor
oscillation with respect to space (Figure 4.9). The drag force has much stronger effect
on the wave that propagates from top to bottom. Although the system is still stable,
the wave velocities are rather influenced by the force coefficientsc11, c12, c21, andc22.
Sincec12 > c11 > 0 andc11 =−c21 whereasc12 =−c22, the stability of the wave which
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Figure 4.8: The wave propagation of W′2(t,x) with the speedλ2 without the force term
c21W′

1 +c22W′
2.
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Figure 4.9: The wave propagation of W′1(t,x) with the speedλ1 forced by c11W′
1 +

c12W′
2.

propagates with the velocityλ2 is largely influenced byc22.
The simulation results given in Figures 4.7, 4.8, 4.9, and 4.10 are given in theW′

coordinates, which were obtained in Section 4.3.2. As discussed in Section 4.3.4, the
original coordinate systemΦ′ can be recovered using the inverse transformation of the
coordinate transformation matrixT. To recover the original set of PDEs given as (4.8),
we can use the following expression to, first, recover the coordinate systemΨ′

V−1 ∂Ψ′′

∂t
+(V−1AredV)V−1 ∂Ψ′′

∂x
= (V−1FredV)V−1Ψ′′, (4.38)

where the inverse transformation matrixV is

V−1 =

[

44.6726 0.5

−44.6726 0.5

]

,

and, after that, to recover the original PDE model using the transformation matrixT.
The time evolution of the original linearized two-phase flowmodel (4.28) along the

characteristic directions for the given eigenvalues can beobtained from the following
equations

for λ1 = 0.064 (4.39)

+44.6726
dα′

g

dt
+0.5

d(ρgv′g−ρlv′l )

dt
= 2177.014α′

g−12.66(ρgv
′
g−ρlv

′
l ),
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Figure 4.10: The wave propagation of W′2(t,x) with the speedλ2 forced by c21W′
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and

for λ2 = −0.095 (4.40)

−44.6726
dα′

g

dt
+0.5

d(ρgv′g−ρlv′l )

dt
= −2177.014α′

g+12.66(ρgv
′
g−ρlv

′
l ).

Equations (4.39) and (4.40) represent the time evolution inthe original coordinate sys-
tem Φ′. In this coordinate system, the influence of the drag force can be observed
through the coefficients on the right-hand side of (4.39) and(4.40) for the eigenvalues
λ1 andλ2, respectively. The coefficients have a strong influence on the system dynam-
ics, which explains the system behavior illustrated in Figures 4.9 and 4.10. According
to the signs of the coefficients, we can conclude that the dragand the gravitational force
have a negative delay response regarding the impulse injection at the boundary. This
explains the oscillation in the simulation results shown inFigures 4.9 and 4.10. The
effect is much stronger on the wave that propagates from bottom to top compared to
the wave that propagates from top to bottom.
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4.6 Discussion

In this chapter, we derived a control-oriented 1D two-phasemodel that has several
unique features which make this model very attractive for control design. Advantages
of the derived two-phase flow model can be summarized as follows.

1. Physical aspects of the derived two-phase flow model:

• The system of equations (4.8) for the two-phase flow have beenobtained
using mass and momentum balance equations of a purely hydrodynamical
nature. The system is consistent in two ways. Firstly, all equations have
been obtained by macroscopic observation of a large number of bubbles in
a given volume, omitting the effects of individual bubbles.Secondly, it is
assumed that the mixture is diluted and that the changes in the velocity at
a given point is due to the motion of phases excluding the effect of the in-
dividual bubbles. These two assumptions allow us to simplify the complex
set of equations for multiphase flow given in Section 2.2.3 as(2.10)-(2.11)
to the control-oriented two-phase flow model given as (4.8).The list of
assumptions used to derive the control-oriented model is given in Section
4.2.2.

• The derived 1D two-phase model is well-posed, and it has a hyperbolic-
like nature (see Chapter 2). The well-posedness of the boundary conditions
is studied using the method of characteristics that utilizes only the system
matrix to obtain well-posed boundary conditions. We have shown that the
hyperbolic nature of the solution is a function of system matrices only, and
any coupling term that is not a function of the directional derivatives will
not influence the well-posedness of the model formulation.

• The interfacial pressure difference for the liquid phase isfound to be the
most significant in determining the behavior of wave propagation of the
two-phase flow and well-posedness of the model formulation.The interfa-
cial pressure, which is introduced in order to guarantee thewell-posedness,
is described by the interfacial coefficientCp. The interfacial coefficient re-
mains an open flow parameter that can be used to describe different flow
regimes. It can also overcome the problem of shared pressureeffect which
might be crucial for different pressure conditions [51]. The derived gas
wave speed based on the eigenvalue analysis agrees well withthe gas wave
data of bubbly air/water flow [73].

• Due to the presence of the two pressure terms (i.e., interfacial pressure
and total pressure), the derived two-phase flow model is the two-pressure
model of two-phase flow [80]. The two-pressure models are motivated by
the fact that the single-pressure models of two-phase flow donot provide
well-posed solutions. The ill-posed single-pressure model appears to result
from an unrealistic assumption, called the “hydrostatic assumption” [80].
The hydrostatic assumption gives an unrealistic flow propagation speed in



84 4 Control-Oriented Modeling of Two-Phase Flow

a dynamic flow situation. In general, models with a real and complex set
of solutions are ill-posed, and any numerical scheme used tosolve such a
system will be unstable. In our formulation of the two-phaseflow model,
the interfacial pressure is considered in order to avoid ill-posed model for-
mulation.

• The key aspect of the derived two-phase fluid flow model given as (4.8) is
the elimination of total pressure by subtracting (4.1) from(4.7). This allows
analysis related to different control aspects without using CFD algorithms
and complex gridding as presented in Chapter 3 for the single-phase flow.

2. Control perspectives of the derived two-phase flow model:

• The numerical simulations of complex two-phase flow models can be largely
simplified by the wave propagation analysis of processes described by the
hyperbolic-like PDAE/PDE models. It also allows a completealgebraic
evaluation of the solutions using an explicit formulation of the eigenvalue
and its eigenvectors.

• The decoupled model given as (4.28) in a new coordinate system has the
same eigenvalues and dynamics as the original PDAE model given as (4.8)
and can be directly used to determine the boundary conditions based on
the signs of eigenvalues. This is an important aspect of the derived two-
phase flow model since the eigenvalue analysis directly linked the system
dynamics and boundary conditions.

• Solutions to the problem of defining well-posed actuation strategies can be
divided into two parts:

(a) linearizing the model around a steady-state, i.e., quasi steady-state so-
lution that casts the problem into the form that we can handle, and

(b) applying different coordinate transformations in order to eliminate the
remaining algebraic constraint equation of the derived PDAE model
and to the decouple directional derivatives without applying any dis-
cretization scheme.

• Using the linearized representation of a flow regime and wavepropagation
analysis, the two-phase flow can be brought into a control framework which
is easy to implement on a real practical setup. Once the modelstructure is
well-posed for dominant dynamics, the model can be redesigned following
the same modeling framework.

• Due to the model simplicity in the final compact form given as (4.28),
the derived control-oriented two-phase flow model gives a new perspec-
tive from the control point of view. The spatial domain can beseen as the
actuation domain where the inputs can be placed at the boundaries or at
any point in space. This will be utilized in Chapter 6 to design different
spatially distributed control strategies.
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• The main difference between this new decomposed linearizedtwo-phase
flow model and the observation in classical fluid dynamic theory is that the
new results offer a real equivalence between the global system behavior
and the boundary conditions, not only in terms of initial-boundary value
problems, but also in terms of causal input/output structures.

• Finally, the computational load is reduced tremendously (afew seconds)
compared to the computational load of the CFD models, which makes the
derived two-phase flow model attractive for control design.

In the next two chapters, we will demonstrate the use of the derived control-oriented
two-phase flow model to build different spatially distributed designs.





Chapter 5

Causal Input/Output Structures
in Linearized PDE Models

This chapter focuses on causal input/output structures of the linearized two-phase flow
model presented in Chapter 4. The main contribution of this chapter is to interpret the
effect of the coupling termsc11, c12, c21, andc22 in (4.28) using functional relationships
that connect the properties at the boundaries. To investigate the influence of those
coefficients on the overall system behavior, the Laplace-space representation of the
linearized two-phase flow model and causal input/output structures will be introduced.
The results are illustrated using the same numerical example of the linearized two-
phase flow model as given in Chapter 4.

5.1 Causality in PDE models

5.1.1 Input/Output Structures

In the model-based control approach to spatially distributed systems, it is crucial to
have a causal input/output structure between actuators andsensors (see Section 2.4).
In ODE systems causality comes almost naturally, whereas inPDE systems causality
also involves the space, which makes the problem of defining input/output structures
in PDE models more involved. Even when a PDE is approximated with a large number
of ODEs, we may face a challenging problem which concerns thecausality of large
scale model and possible input/output strategies. The input/output structure shown in
Figure 2.2 for the discretized PDE model indicates not only the number and position of
actuators and sensors, it also indicates relationships between causes (inputs) and effects
(outputs). Therefore, the causality of an input/output structure is a very important
aspect in designing a controller for all systems. It is essential not only to develop a well-
posed actuation strategy for PDE systems, as discussed in Chapter 4, but also to define
causal input/output structures and functional relationships. Although the theoretical
frameworks presented in Chapter 4 and in this chapter are developed for two-phase
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fluid flow systems, they can be easily extended to a large classof hyperbolic-like PDE
systems.

The main focus of this chapter is to determine functional relationships that describe
the behavior of a two-phase flow system through a causal input/output structure with a
structure-preserving boundary actuation strategy. Section 5.2.1 will investigate causal-
ity of different input/output structures using the Laplace-space representation of (4.28).
For ease of reference, we repeat (4.28) here

∂
∂t

[

W′
1

W′
2

]

+

[

λ1 0
0 λ2

]

∂
∂x

[

W′
1

W′
2

]

=

[

c11 c12

c21 c22

][

W′
1

W′
2

]

. (5.1)

The Laplace-space representation of (5.1) will eventuallylead to functional rela-
tionships between the chosen inputs and outputs including the coupling termsc11, c12,
c21, andc22, i.e., the right-hand side of (5.1). As we discussed in Chapter 4, the bound-
ary actuation strategy based on the method of characteristics considers only the direc-
tional derivatives of (5.1). The main advantage of the Laplace-space representation of
the two-phase flow model compared to the spatially discretized model (4.31) is that
it relies on a causal input/output structure described by functional relationships. Fur-
thermore, the functional relationships are computationally rather attractive since they
do not require complex discretization schemes (e.g., the staggered grid as described in
Chapter 3 for the single-phase flow) and complex numerical algorithms to solve the
PDE model (see Appendix A for the Navier-Stokes equations).Several properties of
the functional relationships and the analysis presented inthis chapter can play a crucial
role in designing spatially distributed controllers, which will be discussed in Chapter
6.

5.1.2 Causality of the Two-Phase Flow Model

The boundary actuation strategies for the two-phase fluid flow described in Chapter
4 relate to the direction of the fluid flow at the boundaries. The boundary actuation
strategies are based on the method of characteristics, i.e., the eigenvalues analysis of
the linearized two-phase flow model (5.1). The concept of wave front propagation
and possible placement of actuators and sensors at the boundaries based on the re-
sults presented in Section 4.3.2 is shown in Figure 5.1. As indicated in Figure 5.1(a)
for co-current flow, two inputsW′

1(t,0) andW′
2(t,0) in (5.1) and their respective out-

putsW′
1(t,L) andW′

2(t,L) define a causal input/output structure forλ1 > 0 andλ2 > 0
according to the method of characteristics. If we impose different actuation strate-
gies on the co-current flow, the system will be non-causal. Inessence, a non-causal
input/output structure forecasts a difference in inputs before it actually occurs. There-
fore, the location of actuators and sensors should predict the system behavior at the
chosen locations as illustrated in Figure 5.1. For example,placing the actuators be-
hind sensors, i.e., at the positionx2 of the bubble column for the wave that propagates
with λ2 > 0 andλ2 > 0 (see Figure 5.1(b)) which corresponds to the locationx2 at
the characteristic curves (see Figure 5.1(a)), gives a non-causal input/output structure
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Figure 5.1: Causality of the input/output structures (a) for λ1 > 0 and λ2 > 0 using
the characteristic curves, (b) pertaining to the co-current flow in a bubble
column, (c) forλ1 > 0 andλ2 < 0 using the characteristic curves, and (d)
pertaining to the counter-current flow in a bubble column. The blue circles
in (a) and (c), and blue arrows in (b) and (d) represent inputswhile the red
circles in (a) and (c), and red arrows in (b) and (d) representthe outputs.
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that cannot be used to describe system dynamics [74]. The same observation holds for
the system with directional derivatives that are describedby λ1 > 0 andλ2 < 0, i.e.,
the counter-current flow, as illustrated in Figures 5.1(c) and 5.1(d). For the counter-
current flow, a causal input/output structure has to be defined by two inputsW′

1(t,0)
andW′

2(t,L) and two outputsW′
1(t,L) andW′

2(t,0). However, the method of charac-
teristics involves only directional derivatives, i.e., the eigenvaluesλ1 andλ2, which
is a sufficient condition in the case of small coefficientsc11, c12, c21, andc22. The
large magnitude of those coefficients can change the sign of the eigenvalues and conse-
quently influence the established causality. This severelylimits the causality analysis
of the linearized two-phase flow systems for flow regimes thathave large coefficients
on the right-hand side of (5.1). In order to establish a causal input/output structure for
a wide range of operational regimes, we will introduce the Laplace transformations of
the linearized two-phase flow model (5.1). The Laplace domain allows the decomposi-
tion of the two-phase flow model into individual components connected through their
inputs and outputs with rational transfer functions as relationships between the chosen
inputs and outputs, including the eigenvaluesλ1 andλ2 and the coefficientsc11, c12,
c21, andc22.

5.2 Functional Relationships

5.2.1 Laplace-Space Domain

In a control design, one of the first modeling concepts for causal systems is developed
in the frequency domain using the Laplace transformations.As discussed in Section
5.1.1, the Laplace representation of PDE models can also be efficiently used to choose
a causal input/output structure between quantities at the boundaries, i.e., any location
in space. The concept of the Laplace transformation is to some extent similar to the
Fourier transformation of the spatial derivatives, which is commonly used in CFD to
approximate spatial variations of an infinite dimensional space[98].

Applying the Laplace transformation to the model (5.1) yields

s

[

W′
1(s,x)

W′
2(s,x)

]

+

[

λ1 0
0 λ2

]

∂
∂x

[

W′
1(s,x)

W′
2(s,x)

]

=

[

c11 c12

c21 c22

][

W′
1(s,x)

W′
2(s,x)

]

, (5.2)

which can be reordered providing a set of ODEs parametrized by the Laplace varaible
s in the space coordinatex

d
dx

[

W′
1(s,x)

W′
2(s,x)

]

=

[

λ1 0
0 λ2

]−1([

c11 c12

c21 c22

]

−sI

)[

W′
1(s,x)

W′
2(s,x)

]

. (5.3)

The advantage of the Laplace-space representation of the two-phase flow model
given by (5.3) is that it can be solved analytically by integrating (5.3) over the spatial
domain. This means that the relationships between the inputs and outputs are given by
transfer functions. The following relationship between the inputs and outputs defined
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at the bottom boundaryx = 0 and at any locationx > 0 can be obtained
[

W′
1(s,x)

W′
2(s,x)

]

= exp(A (s)x)

[

W′
1(s,0)

W′
2(s,0)

]

, (5.4)

with A (s) being the system matrix parametrized bys

A (s) =









c11−s
λ1

c12

λ1

c21

λ2

c22−s
λ2









. (5.5)

Equation (5.4) directly connects the inputs and outputs, where the system dynamics
are described by the system matrixA (s). A causal input/output structure for the sys-
tem (5.4) can be determined by decoupling the system in the similar manner as it was
presented in Chapter 4. In contrast to the decoupling presented in Section 4.3.4, de-
coupling of (5.4) includes the directional derivativesλ1 andλ2 and the coupling coef-
ficientsc11, c12, c21, andc22. The Laplace-space representation of the two-phase flow
model allows us to examine the influence of the drag force on the boundary conditions
and to define the causal input/output structures. The advantage of the decoupled system
is that the system dynamics can be fully decoupled preserving the dynamics described
by the eigenvalues of the system matrixA (s). The coordinatesW′(s,x) can be trans-
formed into the new coordinate systemZ ′(s,x) using the following general expression

[

Z′
1(s,x)

Z′
2(s,x)

]

= Q(s)

[

W′
1(s,x)

W′
2(s,x)

]

, (5.6)

whereQ(s) represents a transformation matrix which contains the eigenvectors corre-
sponding to the eigenvalues ofA (s) in the right order, i.e.,

Q(s) =

[

q11(s) q12(s)
q21(s) q22(s)

]

,

with the following elements

q11(s) = 1, q12(s) =
1

2c21λ1

(

λ2c11−λ1c22+(λ1−λ2)s+
√

ε(s)
)

,

q21(s) = 1, q22(s) = − 1
2c21λ1

(

−λ2c11+ λ1c22− (λ1−λ2)s+
√

ε(s)
)

.

where
ε(s) = ((λ1−λ2)s+(c11λ2−λ1c22))

2 +4λ1λ2c21. (5.7)

Note that the elementsq12(s) andq22(s) are irrational functions since they are a func-
tion of

√

ε(s). This will be further discussed in Section 5.3.2.

Using the coordinate transformation (5.6), the fully decoupled system in the new
coordinate systemZ′ can be written as

[

Z′
1(s,x)

Z′
2(s,x)

]

=

[

eλ∗1(s)x 0

0 eλ∗2(s)x

]

[

Z′
1(s,0)

Z′
2(s,0)

]

. (5.8)
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Table 5.1: Wave propagation and input/output structures based on the eigenvalue anal-
ysis in the Laplace-space domain in theZ′(s,x) coordinate system.

Case Eigenvalues of the system Inputs Outputs
parametrized bys

1
λ∗

1(s) < 0
λ∗

2(s) < 0

[

Z′
1(s,0)

Z′
2(s,0)

] [

Z′
1(s,L)

Z′
2(s,L)

]

2
λ∗

1(s) > 0
λ∗

2(s) < 0

[

Z′
1(s,L)

Z′
2(s,0)

] [

Z′
1(s,0)

Z′
2(s,L)

]

3
λ∗

1(s) < 0
λ∗

2(s) > 0

[

Z′
1(s,0)

Z′
2(s,L)

] [

Z′
1(s,L)

Z′
2(s,0)

]

4
λ∗

1(s) > 0
λ∗

2(s) > 0

[

Z′
1(s,L)

Z′
2(s,L)

] [

Z′
1(s,0)

Z′
2(s,0)

]

Then, the eigenvalues ofA (s) can be obtained from the following expressions

λ∗
1(s) =

1
2
−(λ1 + λ2)s+ λ1c22+ λ2c11+

√

ε(s)
λ1λ2

, (5.9)

λ∗
2(s) =

1
2
−(λ1 + λ2)s+ λ1c22+ λ2c11−

√

ε(s)
λ1λ2

. (5.10)

The signs of the eigenvaluesλ∗
1(s) andλ∗

2(s) determine the causality of the input/output
structure for the linearized two-phase flow system. Note that λ∗

1(s) andλ∗
2(s) contain

the eigenvaluesλ1 and λ2 and the coefficientsc11, c12, c21, andc22. Different in-
put/output structures are possible according to the signs of λ∗

1(s) andλ∗
2(s). Table 5.1

outlines four different cases.
For example, suppose thatλ∗

1(s) < 0 andλ∗
2(s) < 0 (case 1 in Table 5.1), then the

inputs have to be defined atx= 0 and the outputs atx= L as illustrated in Figure 5.2(a).
Then, according to (5.8), the connections between the inputs Z′

1(s,0) andZ′
2(s,0) and

the outputsZ′
1(s,L) andZ′

2(s,L) are defined by the delay functionseλ∗1(s)L andeλ∗2(s)L,
respectively, i.e.,

[

Z′
1(s,L)

Z′
2(s,L)

]

=

[

eλ∗1(s)L 0

0 eλ∗2(s)L

]

[

Z′
1(s,0)

Z′
2(s,0)

]

. (5.11)

Suppose now thatλ∗
1(s) > 0 andλ∗

2(s) < 0 (case 2 in Table 5.1), then the first equa-
tion in (5.8) is the inverse of a time delay function which is not physically realizable.
In terms of dynamics, (5.8) represents a non-causal relationship between inputs and
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Figure 5.2: Input/output structures of the decoupled system in the Z′(s,x) coordinate
system, which has wavesλ∗

1(s) and λ∗
2(s) that propagate (a) in the same

direction and (b) in the opposite directions (also known as abilaterally
coupled system).

outputs. This means that the wave withλ∗
1(s) > 0 propagates in the spatial direction

opposite to the predicted one, i.e., from top to bottom. By reordering (5.11), the sys-
tem can be put into a causal input/output form that follows the direction of the wave
propagation, i.e.,

[

Z′
1(s,0)

Z′
2(s,L)

]

=

[

e−λ∗1(s)L 0

0 eλ∗2(s)L

]

[

Z′
1(s,L)

Z′
2(s,0)

]

. (5.12)

This inversion of the relationship between the inputZ′
1(s,L) and the outputZ′

1(s,0) ren-
ders the set of equations (5.12) into a causal form. Figure 5.2(b) illustrates the inversion
which implies that the resulting system is bilaterally coupled [74]. As illustrated in Fig-
ure 5.2, the causal input/output structures between the properties at the boundaries can
be viewed as an extension of the system boundaries to their surroundings.

5.2.2 Laplace-Space Domain and Method of Characteristics

In Section 4.3.2, we used the method of characteristics to develop the well-posed
boundary conditions based on the eigenvalue analysis of thepair (A(Φ),E). Accord-
ing to the eigenvaluesλ1 andλ2, the well-posed boundary conditions were set based
on the signs of the eigenvalues. For the numerical example given in Section 4.5, the
top boundary was required for the wave that has the positive eigenvalue, whereas the
bottom boundary was required for the wave that has the negative eigenvalue. The sign
of λ1 indicates the inversion of the boundary conditions that creates the well-posed
boundary actuation strategy for the waveW′

1(s,x). Basically, the method of character-
istics presented in Section 4.3.2 used only the coefficientsof directional derivatives,
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i.e., the eigenvaluesλ1 andλ2, to indicate the well-posed boundary conditions without
taking into account the coefficientsc11, c12, c21, andc22. The influence of these coeffi-
cients was illustrated in Figures 4.9 and 4.10 forW′

1(s,x) andW′
2(s,x), respectively.

In order to derive more general requirements for setting well-posed boundary con-
ditions, the coefficients have to be included in the analysis. These coefficientsc11, c12,
c21, andc22 are included in the model representation given as (5.4). In the Laplace-
space representation of the two-phase flow model (5.4), the coefficientsc11, c12, c21,
and c22 appear inA (s), and together with the eigenvaluesλ1 and λ2 give the in-
put/output responses of the fluid properties at the boundaries. Since both methods
are used to obtain boundary conditions to define a causal input/output structure, the
input/output strategy in the time-space and the Laplace-space domain forc11 = c12 =
c21 = c22 = 0 must agree.

Here, we will examine the causal input/output structure forcounter-current flow
defined byλ1 = 0.064 andλ2 = −0.095 given in Section 4.5. Forc11 = c12 = c21 =
c22 = 0, the eigenvalues in the Laplace-space domain read as

λ∗
1(s) = − s

λ1
, and λ∗

2(s) =
s

λ2
,

which gives
[

Z′
1(s,0)

Z′
2(s,L)

]

=





e
− s

λ1
L

0

0 e
s

λ2
L





[

Z′
1(s,L)

Z′
2(s,0)

]

. (5.13)

This means that the eigenvalueλ1 = 0.064 requires an inversion in order to define a
causal input/output structure. Equation (5.13) shows the same inversion between the
inputs and the outputs as given in Section 4.3.2. This resultverifies both theoretical
frameworks. For analyzing the influence of the coefficientsc11, c12, c21, andc22 on
input/output structures, the eigenvalues in the Laplace domainλ∗

1(s) andλ∗
2(s) change

according to the expression (5.9) and (5.10), which will be evaluated in Section 5.3.2.

5.2.3 Coordinate Transformations

As already discussed in Chapter 4, a simple coordinate transformation allows us to
transform a PDE model from one coordinate system to another by applying the inverse
of the transformation matrix (see Section 4.3.4). However,a coordinate transformation
for PDE models in the Laplace-space domain is a bit more involved. In this section,
we will present two coordinate transformations for the two-phase flow model (5.4) for:
the co-current flow illustrated in Figure 5.3(a) and the counter-current flow illustrated
in Figure 5.3(b).

The coordinate transformation can be recovered using the following relationship

[

W′
1(s,x)

W′
2(s,x)

]

= Q−1(s)

[

Z′
1(s,x)

Z′
2(s,x)

]

. (5.14)
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Figure 5.3: Input/output structures for (a) a co-current flow and (b) a counter-current
flow. The blue arrows represent inputs, whereas the red arrows represent
the outputs.

• Co-current flow

The following model representation in theW′(s,x) coordinates can be obtained
on basis of the actuation strategy shown in Figure 5.3(a)

[

W′
1(s,L)

W′
2(s,L)

]

= Gco(s)

[

W′
1(s,0)

W′
2(s,0)

]

, (5.15)

where

Gco(s) = Q−1(s)

[

eλ∗1(s)x 0

0 eλ∗2(s)x

]

Q(s).
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• Counter-current flow

Figure 5.3(b) shows the way to recover theW′(s,x) coordinates for the counter-
current flow. The bottom boundary can be recovered as

[

Z′
1(s,0)

W′
2(s,0)

]

=

[

q11(s)− q12(s)q21(s)
q22(s)

q12(s)
q22(s)

− q21(s)
q22(s)

1
q22(s)

]

[

W′
1(s,0)

Z′
2(s,0)

]

, (5.16)

whereas the top boundary can be recovered as

[

W′
1(s,L)

Z′
2(s,L)

]

=

[

1
q11(s)

− q12(s)
q11(s)

q21(s)
q11(s)

q22(s)− q12(s)q21(s)
q11(s)

]

[

Z′
1(s,L)

W′
2(s,L)

]

. (5.17)

Using the linear combination of the given boundaries (5.16)and (5.17), the orig-
inal coordinates can be fully recovered as

[

W′
1(s,0)

W′
2(s,L)

]

= Gcc(s)

[

W′
1(s,L)

W′
2(s,0)

]

, (5.18)

where

Gcc(s) =

[

q11(s) −q12(s)e−λ∗1(s)

q21(s)eλ∗2(s) −q22(s)

]−1[

q11e−λ∗1(s) −q12(s)
q21(s) −q22(s)eλ∗2(s)

]

.

Equation (5.18) represents a causal input/output structure between the properties
at the boundaries, where the system dynamics are described by the elements of
Gcc(s).

The functional relationships (5.15) and (5.18) are algebraic representations of the
two-phase flow model using the Laplace transformation. Due to the simple algebraic
expressionsGco(s) andGcc(s), the behavior of the system in the Laplace-space domain
can be easily observed with a little computational effort. In general, a rational transfer
function has many useful interpretations and features which are often associated with
important system properties and control designs. This willbe discussed in Chapter 6.
The following section presents numerical methods needed toapproximate the irrational
transfer functionsGco(s) andGcc(s) to a set of rational transfer functions.

5.3 Numerical Approximations in the Laplace-Space Do-
main

5.3.1 Numerical Methods

The numerical approximation of the Laplace-space representation of the two-phase
flow model starts with a series expansion after which the Pad´e approximation of the ir-
rational elements can be effectively used. The Padé approximations can take on many
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increasingly complicated forms, depending upon the degreeof accuracy needed. The
total approximation is based on a numerical approximation of an infinite series rep-
resentation of a transportation delay by a rational polynomial fraction in which the
coefficients and orders are defined by the required accuracy.

First, we start with the series functions computed as a truncated series expansion of
λ∗

i (s) with respect to the variablesas the series variable, i.e.,

λ∗
i (s) = hi,0 +hi,1s+hi,2s2 + · · ·+hi,nsn, (5.19)

where the indexi denotes the wave characterized by either one or the other wave
i = 1,2, with the polynomial coefficientshi,0, hi.1, hi,2, . . . , hi,n. The first three polyno-
mial coefficients for the numerical approximation ofλ∗

1(s) can be computed from the
following expressions

h1,0 =
1
2

λ1c22+ λ2c11+
√

(λ1c22−λ2c11)2 +4λ1λ2c21c12

λ1λ2
,

h1,1 = −1
2







(

1
λ2

+
1
λ1

)

+
λ2

2c11+ λ1
2c22−λ2λ1c22−λ2c11λ1

(

(λ2c11−λ1c22)
2 +4λ1λ2c21c12

)1/2






, and

h1,2 =
c21c12(λ2−λ1)

2

(

(λ2c11−λ1c22)
2 +4λ1λ2c21c12

)3/2
,

whereas forλ∗
2(s), the coefficients read as

h2,0 = −1
2
−λ1c22−λ2c11+

√

(λ1c22−λ2c11)2 +4λ1λ2c21c12

λ1λ2
,

h2,1 = −1
2







(

1
λ2

+
1
λ1

)

− λ2
2c11+ λ1

2c22−λ2λ1c22−λ2c11λ1
(

(λ2c11−λ1c22)
2 +4λ1λ2c21c12

)1/2






, and

h2,2 = − c21c12(λ2−λ1)
2

(

(λ2c11−λ1c22)
2 +4λ1λ2c21c12

)3/2
.

The given coefficients are obtained using Maple Symbolic Toolbox. Since the sym-
bolical representation is more complex for the higher ordercoefficients, we explicitly
present here only the coefficientshi,0, hi,1, andhi,2, and in Section 5.3.2, we will eval-
uate the influence of the higher order coefficients in (5.19) numerically.

Once the eigenvalues are approximated by the series (5.19),the exponential func-
tions in (5.8) can be further approximated using the Padé approximations. The expo-
nential functions, which represent the transportation delays characterized by the eigen-
valuesλ∗

1(s) andλ∗
2(s), can be approximated by rational transfer functions. One way
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to obtain an approximate model is to assume a model structureand match terms in the
power series expansion of the approximation to that of the exact solution of the model,
i.e.,

eλ∗i (s) = ehi,0+hi,1s+hi,2s2+···+hi,nsn
= ehi,0ehi,1sehi,2s2 · · ·ehi,nsn

. (5.20)

Each of the terms in (5.20) represent matching of moments, which can be analyzed
numerically using the Padé approximation [33]. The Padé approximation brings the
system (5.8) into a form of the rational transfer function matricesGco(s) andGcc(s)
for co-current flow and counter-current flow, respectively.

Applying the proposed numerical approximations brings a number of advantages
for the spatially distributed control designs that will be discussed in Chapter 6. Be-
fore we introduce different spatially distributed controlstrategies, we will evaluate the
Laplace-space representation of the two-phase flow model given in Section 5.2.1. In
the next section, the Laplace-space representation of the two-phase flow model will be
tested on the same numerical example as the one given in Section 4.5.

5.3.2 Numerical Example

The Laplace-space domain of the derived two-phase flow modelaccording to (5.8) for
the parameters given in Table 4.2 in Section 4.5 for counter-current flow reads as

[

W′
1(L)

W′
2(L)

]

= exp

[

8144.7−15.62s 25744.4

5486.9 17343.6+10.5s

]

[

W′
1(0)

W′
2(0)

]

, (5.21)

with eigenvalues

λ∗
1(s) = 12744−2.549342105s−

√

ε(s) (5.22)

λ∗
2(s) = 12744−2.549342105s+

√

ε(s), (5.23)

where
ε(s) = 0.000252(2.6 ·1015+1.9 ·1012s+2.7 ·9 s2)

The changes ofs in the expressions for the eigenvaluesλ∗
1(s) andλ∗

2(s) can have
large or small influences on the overall system behavior. Theirrational functions
(5.22) and (5.23), which are generated by the matrixA (s), are parametrized by the
Laplace varaibles that influences the magnitude of the eigenvalues. The influence of
the Laplace varaibles on the eigenvaluesλ∗

1(s) andλ∗
2(s) is shown in Figure 5.4 for

both eigenvalues in the frequency domain.
The magnitude ofλ∗

2(s) is almost the same for the whole frequency range, whereas
the magnitude ofλ∗

1(s) shows small changes for low frequencies. The phase shift be-
tween the eigenvalues is around 100 degrees, which in essence represents the dominant
dynamics. In order to understand these findings and possiblemeans of the complex
eigenvalues, we use the numerical approximations given in Section 5.3 in order to ob-
tain the rational transfer functionGcc(s) and check the causality requirement.
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Figure 5.4: Bode diagram of the Padé approximation of the eigenvaluesλ∗
1(s) and

λ∗
2(s).

First, we start with the series expansion of the eigenvaluesλ∗
i (s) wherei = 1,2.

The values of the first seven coefficients in the series expansion, i.e,hi,0, hi,1,...,hi,7, are

Table 5.2: Polynomial coefficients in the series expansion for the eigenvaluesλ∗
1(s) and

λ∗
2(s) given as 5.23 and 5.23, respectively.

λ∗
1(s) λ∗

2(s)

hi,1 0 25488.32648

hi,2 -7.268436753 2.169752

hi,3 -0.00583416 -0.005841

hi,4 0.0000021603 0.00000216035

hi,5 5.354·10−10 5.3544·10−10

hi,6 −1.18·10−12 1.187·10−12

hi,7 3.77·10−16 3.776·10−16
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Figure 5.5: Frequency responses of the exact and approximate solutions of eλ
∗
i (s) using

different (a) Pad́e approximations and (b) order of accuracy of the series
expansion.

given in Table 5.2. Figures 5.5 and 5.6 show the influence of the Padé approximation
and the higher order terms in the series expansion on the accuracy of approximate
solutions for both eigenvalues. As can be seen, the higher order terms have almost no
influence on the magnitude of approximate solution and have alarge influence on the
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Figure 5.6: Frequency responses of the exact and approximate solutions of eλ
∗
i (s) using

different (a) Pad́e approximations and (b) order of accuracy of the series
expansion.

phases for the high frequency range. Due to the fact that the waves represent pure
delays of the flow betwen the boundaries, these results are tobe expected. Using
these findings, we can limit the approximate solutions ofeλ∗i (s) for both eigenvalues
to ehi,0+hi,1. This means that the delay function in the case ofλ∗

1(s) is e−7.26s, and in
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the case ofλ∗
2(s) is e−25488−2.1s (see Table 5.2 for the coefficients). Forλ∗

2(s), the
inversion of the boundary condition is imposed on the wave that propagates withλ∗

2(s),
i.e.,e−25488−2.1s according to the theoretical framework presented in Section 5.2.1. The
inversion gives the following causal input/output structure

[

Z′
1(s,L)

Z′
2(s,0)

]

=

[

e−7.26sL 0

0 e(−25488−2.1s)L

]

[

Z′
1(s,0)

Z′
2(s,L)

]

. (5.24)

The responses of the approximate solutions shown in Figures5.5 and 5.6 are close
to the exact solution for low frequencies, whereas for high frequencies the approximate
solutions show a large error. This is to be expected since thepure delay functions are
rarely known accurately. For a control design, it is often more important to understand
the delays and system dynamics in order to choose a proper numerical approximation
than to predict the delay functions accurately. To illustrate this, we create the following
example.

Suppose that the following external dynamics are imposed atthe boundaries

G =
(s+3)

(s2 +0.3s+1)
.

The cooresponding responses in the time domain are shown in Figure 5.7. Figures
5.7(a) and 5.7(b) show the step responces with different accuracies of the approximate
solutions of the wave that propagates with speedλ∗

1(s), whereas Figures 5.7(c) and
5.7(d) show the step responses of the wave that propagates with speedλ∗

2(s). As shown,
the higher order terms have no influence on the accuracy ofeλ∗1(s) andeλ∗2(s).

Figure 5.7 shows different Padé approximations. The choice of the most appropri-
ate Padé approximation is, generally, based on the desiredaccuracy and the conver-
gence of the approximation. Here, a few Padé approximations with different accuracy
are used (see Appendix D). First, we show in Figure 5.5 [2,2] and [6,6] Padé. As a
general rule, we can say the higher the accuracy, the more exact solutions can be ob-
tained. The effect of the higher order terms in the Padé are more visible in the time
domain as illustrated in Figures 5.7(a) and 5.7(c). The approximation error of [2,2] for
eλ∗1(s) is rather large, while foreλ∗1(s) it gives already a good approximation. To get a
better approximation ofeλ∗1(s), the Padé [6,6] is introduced. The Padé [6,6] gives the
solution close to the exact solution ofeλ∗1(s).

Furthermore, the wave with the speedλ∗
1(s) represents the dominant system behav-

ior since the magnitude of its change is much higher than the magnitude of the wave
with the speedλ∗

2(s). This can be also concluded from the approximatione−25488−2.1s=
e−25488e−2.1s ≈ 0 ·e−2.1s. The reason behind the small magnitude ofλ∗

2(s) lies in the
effect of the coupling coefficientsc11, c12, c21, andc22. These coefficients represent
the effect of the drag force on the overall behavior. Basically, the drag force balances
the transportation of the two-phase fluid flow, which dissipates through the boundaries.
The dissipation of the two-phase fluid flow can have a positiveor negative effect on
the overall system behavior. As shown in Figure 5.7, the wavethat propagates from
bottom to top is slowed down by the other wave, which explainsthe small changes in
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Figure 5.7: Step responses of the exact and approximate solutions to (5.24) with the
external dynamics G of the wave that propagates with the speed (a) λ∗

1(s)
using [2,2] and [6,6] Pad́e, (b)λ∗

1(s) with O(2), O(3), and O(4), (c)λ∗
2(s)

using [2,2] and [3,3] Pad́e, and (d)λ∗
2(s) with O(2), O(3), and O(4).

the magnitude of the wave characterized by the speedλ∗
2(s).

The simulation results presented in this sections are to be taken mainly qualitatively
due to the fact that they illustrate the responses of the two-phase flow with the causal
input/output structure in the Laplace-space domain by imposing the arbitrary dynamics
G imposed on the boundaries. In the next chapter, the efficacy and benefits of the the
Laplace-space representation of the two-phase flow will be explored quantitatively for
stabilizing/destabilizing the two-phase flow system usingdifferent spatially distributed
control designs.
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5.4 Discussion

In this chapter, we introduced the concept of input/output causality for the linearized
two-phase flow model using the Laplace-space representation of the model. The de-
rived Laplace-space representation of the linearized two-phase flow model and the re-
sulting functional relationships lead to the conditions for causal input/output structures
for two-phase fluid flow.

From the numerical results presented in this chapter, the following conclusions can
be drawn:

• Putting the decoupled system into a causal input/output structure strictly deter-
mines the placement of the actuators at the boundaries and this results in only
one possible solution. This means that a well-posed actuation strategy has to be
defined on the basis of the causality between the inputs and outputs as illustrated
in Figure 5.1.

• The functional relationships between the properties at theboundaries (i.e., inputs
and outputs) are fully described by the output delay functions where the eigen-
valuesλ∗

1(s) andλ∗
2(s) determine the magnitude of the delays and the signs of

λ∗
1(s) andλ∗

2(s) determine the causal input/output structure. Such delay func-
tions do not change the values of the quantity under consideration. The delay
function, in principle, introduces a constant travel time from one boundary to the
other.

• As illustrated in Figure 5.2, the boundary conditions and the delay functions of
fluid flow are defined by a transformation fromZ ′(s,x) to W′(s,x). Although the
coordinate transformation represents the system in two different state represen-
tations, it still describes exactly the same input/output behavior as the original
model.

• Furthermore, the computational complexity associated with the CFD modeling
can be greatly simplified by making use of theory associated with the rational
transfer functions and the Padé approximations. The simulation time required
for rational transfer functions in Matlab is just a few seconds. This is a huge
advantage of the two-phase flow model in the Laplace-space domain.

The analysis presented in this chapter establishes a modeling framework of two-
phase fluid flow systems (i.e., input/output relationships of a system) and proposes a
new approach to influencing the fluid flow without using the CFDmodels. The main
advantage of this approach is that it guarantees the causality of the input/output struc-
tures for a wide range of operating regimes, and provides insights needed for control
designs. Furthermore, the Laplace-space representation of the two-phase flow systems
does not rely on the accuracy of the spatial discretization nor on complicated numeri-
cal schemes. Instead, it gives functional relationships between inputs and outputs. The
derived rational transfer functions, which describe the behavior of the two-phase fluid
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system at the boundaries, put the flow control into a new perspective for spatially dis-
tributed control designs. The spatially distributed designs will be introduced in the next
chapter.





Chapter 6

Distributed Control Designs

All the modeling perspectives of fluid flow systems introduced in the previous chapters
have served to provide the control-oriented models of fluid systems. In Chapter 3, the
macroscopic model of single-phase flow was introduced for designing a boundary feed-
back controller, whereas in Chapter 4 great attention was given to the development of
the control-oriented two-phase flow model. In this chapter,we will show how to design
spatially distributed controllers for the derived control-oriented two-phase flow model.
The numerical results for the boundary and centralized controller will be given in order
to illustrate the advantages of applying the spatially distributed control designs. The
spatially distributed control designs presented in this chapter can easily be extended to
a wide range of hyperbolic-like PDE models.

6.1 Introduction

As discussed in the previous chapters, the most important feature of the microscopic
modeling approach to the hydrodynamics is that it offers a wide range of possibilities to
influence the hydrodynamics using spatially distributed causal input/output structures
(see Section 2.4). In this chapter, we consider the problem of designing spatially dis-
tributed controllers for the two-phase flow model derived inChapter 4 with the causal
input/output structure defined in Chapter 5. Although the control laws will be given for
the Laplace-space representation of the model (5.4) for a better illustration of possible
spatially distributed control designs, in this chapter, wewill use the spatially discretized
model (4.31) as given in Figure 4.6 [91].

The aim of this chapter is to give an overview of possible spatially distributed con-
trol designs that can be used to control the two-phase flow system and to deliver a
theoretical framework accomplishing the primary objective of this thesis. The chapter
is organized as follows. In Section 6.2.3, we will present different spatially distributed
control designs that can be imposed on the bubble column (seeSection 1.3.2). The
choice of the spatially distributed control designs depends on the problem formulation
and desired process performances, which can be motivated bya particular application

107
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of the bubble columns. Different control objectives will bepresented in Section 6.2.2,
and in Section 6.2.3 mathematical descriptions of two typesof spatially distributed con-
trollers will be given. Section 6.3 will present numerical results for both controllers:
boundary and centralized.

6.2 Control of Two-Phase Flow Systems

6.2.1 Spatially Discretized Two-Phase Flow Model

As we discussed in Chapter 4, the linearized two-phase flow model was obtained
from the control-oriented two-phase flow model which was linearized around the quasi
steady-state regime. In order to define a causal input/output structure, the linearized
model was decoupled in the Laplace-space domain (5.8). The Laplace representation
of the PDE model makes the two-phase flow model very attractive for various spatially
distributed control designs due to the simplicity of the functional relationships and a
very short computation time.

The spatially discretized two-phase flow model can be obtained by dividing the
total volume of a bubble column intoN volume elements with the system boundary
around each element. These volume elements have the same volume△V, which was
illustrated in Figure 4.6. According to the theoretical framework given in Chapter 5, the
interconnection between the volume elements△V (i.e., compartments) must be causal.
The causality follows from the direction of wave propagation. Since the two-phase flow
model belongs to a class of PDAE models, we distinguish two sets of variables:explicit
system variablesand implicit system variables. The explicit system variables are the
flow rates of gas phasevg,i and the liquid phasevl ,i , as well as the volume fraction of
the gas phaseαg,i and the liquid phaseαl ,i in each compartmenti. The implicit variable
is the pressure which appears between the elements, i.e., onlocationsi − 1

2 and i + 1
2

(see Figure 4.6) and the interfacial pressure which appearsbetween the phases in each
element.

Before we introduce different spatially distributed control designs for the spatially
discretized two-phase flow model, we will give an overview ofdifferent control goals
that are relevant for the bubble column design.

6.2.2 Control Goals

There is a wide range of possible control objectives for the system described in Sec-
tion 1.3.2. The control objective mainly depends on the practical application. In this
section, we will outline some of the control objectives concerning the application of
two-phase flow as discussed in Section 1.3.2.

The main control objectives concerning the two-phase flow that appears in the bub-
ble columns are:

• stabilization of flow around an equilibrium (i.e., suppressing fluctuations caused
by disturbances or secondary flow),



6.2 Control of Two-Phase Flow Systems 109

• destabilization of flow (i.e., enhancement of turbulence and intensification of
fluid mixing), and

• endorsing of fluid separation (i.e., extraction of phases).

These control objectives cannot be achieved by a unique input/output strategy and
control design. Instead, a wide range of control designs is needed in order to achieve the
above given control objectives. For instance, enhancementof mixing of phases inside a
bubble column can be easily obtained by introducing more valves on the side wall and
using a more powerful pump/compressor equipment (see Figure 6.1(a)). On the other
hand, for a laminar flow regime which is characterized by lessdrag force between the
phases, the flow can be stabilized around the laminar flow applying a controller at the
boundaries only (see Figure 6.1(b)). Therefore, it is important to outline all possible
spatially distributed control designs.

6.2.3 Distributed Control Designs

In this section, we will investigate four different types ofspatially distributed control
designs and discuss the implementation of such controllers(see Figures 6.1(a), 6.1(b),
6.2(a), and 6.2(b)).

The design presented in Figure 6.1(a) is known as a boundary control design which
is commonly used to stabilize the flow between the boundaries[12, 34, 60]. The de-
sign is based on a feedback control of the flow from one boundary to another. The
controllersK12 andK21 in the feedback loops represent the control parameters thatcan
influence the fluid properties from one boundary to another. The controllersK11 and
K22 can be additionally added at the boundaries to improve the closed-loop process
performance, and can be regarded as a set of valves that regulates the amount of gas
phase injected to the column. This type of spatially distributed controller is common
for a system governed by hyperbolic PDEs which describes a pure wave propagation
from one boundary to another. The key point in this control design is that the fluid
properties at the boundariesx = 0 andx = L are used as control actions to regulate the
flow. This design can be effectively used to stabilize the flowaround an operational
regime as described in Section 4.4. In general, the boundarycontroller has a goal to
minimize the fluctuation of the flow inside the column and shorten the residence time
of the fluctuations. This will be further discussed in Section 6.3.

In contrast to the boundary control design, the centralizedcontrol designs illus-
trated in Figures 6.1(b) allow the actuation and sensing from the side walls at each
volume element. In practice, this means that we have to decide where to place the
valves (i.e., inputs) and where to place the flow-meter (i.e., outputs) along the side
wall. The centralized approach is the simplest spatially distributed design in terms of
its derivation and implementation. As indicated in Figure 6.1(b), the implementation
of this approach is straightforward since it requires a secondary flow that is connected
to the bubble column. This type of experimental realizationwas recommended in [27]
for the single-phase flow.

Depending on the communication between controllersKi in each volume element,
we can distinguish two different distributed designs: fully decentralized controller (see
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Figure 6.1: Control strategies for the spatially discretized two-phase flow model using
(a) boundary controller and (b) centralized controller.

Figure 6.2(a)) and distributed controller, i.e., localized (see Figure 6.2(b)). In fully
decentralized strategies, the control parameterKi uses only information from thei-th
compartment, and there is no communication between the controllers from the neigh-
boring compartmentsKi+1 andKi−1. This approach usually results in the best perfor-
mance, but it requires excessive communication [14, 76].

Another localized control strategy is the distributed controller shown in Figure
6.2(b). The aim of this spatially distributed control design is to provide a good per-
formance by using communication capability of the flow between the controllersKi+1,
Ki , andKi−1. In this way a smooth transient flow between the waves is possible. In
contrats to the decentralized control strategy, here the controllers are interconnected in
the same manner as the volume elements. For the bubble column, this means that there
is a valve for injection of a secondary flow or suction of the primary flow inside the
column in each volume element. The controllersKi−1, Ki , Ki+1 can act independently
and exchange the information between each other. This control design requires mas-
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Figure 6.2: Control strategies for the spatially discretized two-phase flow model based
on (a) a fully decentralized controller, (b) a distributed controller (i.e., a
localized controller).

sive arrays of actuators and sensors that is rather difficultto implement. This can be
considered a drawback of the distributed control design when applying the distributed
controller in practice. Thus, the designs presented in Figure 6.2 will be beyond the
scope of this thesis.

6.2.4 Control Laws in the Laplace-Space Domain

Taking advantage of the system causality and the spatially distributed control designs
presented in Section 6.2.3, we derive the following controllaws for the designs shown
in Figure 6.1:
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1. Boundary controller design
The boundary control law can be derived for the Laplace-space model represen-
tation of the two-phase flow

d
dx

[

W′
1(s,x)

W′
2(s,x)

]

= A (s)

[

W′
1(s,x)

W′
2(s,x)

]

, (6.1)

using the following conditions

W′
1(s,0) = K12W

′
1(s,L), (6.2)

W′
2(s,L) = K21W

′
2(s,0), (6.3)

where the controllersK12 andK21 are placed at locationx = 0 andx = L, re-
spectively. The controllers connect the flow between the phases at the opposite
boundaries. This design represents a boundary feedback control design. Ac-
cording to the design shown in Figure 6.1(a), a more general formulation of the
boundary control law for the two-phase flow can be given taking into account the
additional controllersK11 andK22

[

W′
1(s,0)

W′
2(s,L)

]

=

[

K11 K12

K21 K22

]

[

W′
1(s,L)

W′
2(s,0)

]

. (6.4)

Numerical results of the boundary control of the two-phase flow model are given
in Section 6.3, and final concluding remarks are made in Section 6.4.

2. Centralized controller design
The centralized controller for the system given as (5.4) andillustrated in Figure
6.1(b) can be described by the following expression

d
dx

[

W′
1(s,x)

W′
2(s,x)

]

= A (s)

[

W′
1(s,x)

W′
2(s,x)

]

+B(x)U(s), (6.5)

whereU(s) is the input vector andB(x) is the spatially distributed input matrix
given in the Laplace-space domain that satisfies the following feedback control
law

U(s) = −K(s)

[

W′
1(s,x)

W′
2(s,x)

]

. (6.6)

According to (6.5), the controller directly influences the dynamics of the uncon-
trolled flow by shaping the transfer functions defined by (5.15) for co-current
flow, i.e., (5.18) for counter-current flow.

In the next section, we will give simulation results of the presented designs using
the Laplace-space representation of the two-phase flow model. We will first present the
feedback control designs for the system without the coupling termsc11 = c12 = c21 =
c22 = 0. After that, we will introduce the coupling termsc11 6= c12 6= c21 6= c22 6= 0.
Both spatially distributed control designs presented in this section will be considered as
numerical examples using the same numerical example of the two-phase flow as given
in Chapters 4 and 5.
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6.3 Numerical Results

Example 1: Boundary controller

Following the boundary control design illustrated in Figure 6.1(a) and described by
(6.1), the simulation results for the proposed boundary control of the two-phase flow
are illustrated in Figures 6.3 for the two-phase flow withoutthe coupling terms, i.e.,
c11 = c12 = c21 = c22 = 0, and in Figure 6.5 for the two-phase flow with the coupling
termsc11 6= c12 6= c21 6= c22 6= 0. In essence, the coupling terms represent the effect of
the drag force on the two-phase flow.

Figure 6.3 shows the effect of the control coefficientK21 on stabilizing the fluid flow
in contrast to the uncontrolled flow. The control coefficientK21 from the top boundary
to the bottom boundary is tuned based on the expected performance. The values for the
proportional actionKP

21 and the integral actionKI
21 are given in Table 6.1. As can be

seen, the controllerK21 influences the internal delay of the flow between the properties
at the bottom and top boundaries. The oscillations of the flowshould be as small as
possible in order to keep the flow close to the plug flow regime.Furthermore, the plug
flow regime that is created in this way has the shortest traveltime of the two-phase
flow from one boundary to the other. This means that the control objective is to place
the eigenvaluesλ∗

1(s) andλ∗
2(s) closer to zero. The zero eigenvalues represent the flow

without the delayseλ∗1(s) ande−λ∗2(s) of the two-phase flow between the boundaries.
Figure 6.3 shows the simulation results obtained for different values of the control

coefficientKP
21 for the wave that propagates with the speedλ∗

1(s). The value of the
coefficientsKP

21 andKI
21 are tuned until there is no oscillation of the two-phase flow

close to the top boundary. The flow is almost totally damped out for the wave that
propagates with the speedλ∗

1(s). The similar results can be expected for the wave that
propagates in the opposite direction with the speedλ∗

2(s).
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Figure 6.3: Step responses of the boundary feedback controlled system illustrated in
Figure 6.1(a) (a) with the proportional gain KP = 0.8 and (b) with the
proportional gain KP = 1.8.
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Table 6.1: Control coefficients for the control design shownin Figure 6.1(a) and given
by (6.1).

Eigenvalues KP
21 KI

21
λ∗

1(s) 0.8 0.1840
λ∗

2(s) 1.8 0.012
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Figure 6.4: Step responses of the controlled system with andwithout the drag force for
the wave that propagates (a) from the bottom and (b) from the top of the
bubble column.

In order to evaluate the effectiveness of the boundary controller on the two-phase
flow, we show the simulation results of the controlled two-phase flow with and without
the drag force. Figure 6.4 illustrates the controlled two-phase flow for the both waves
with and without the drag force. When comparing the deviations of the waves in Figure
6.4, it is clear that the drag force has a shifting effect on the controlled flow and the
flow arise earlier in time, but it still follows the same dynamics as the pure flow without
the drag force. As can be seen, the proposed boundary controller minimizes the effect
of the drag force almost completely.

The results are also illustrated in the frequency domain as shown in Figure 6.5.
In some cases, the time and frequency responses of the delay functions can look odd
in the Bode diagrams. The Bode diagrams of the delay functions are not software or
numerical errors, but very often real features of such systems that can be validated
comparing the approximated and exact results.

Example 2: Centralized controller

Figure 6.6 shows the simulation results obtained by applying the centralized controller
on the two-phase flow model without the drag force. The simulations results given here
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Figure 6.5: Frequency responses of the decoupled system forthe wave that propagates
with the speedλ∗

1(s) (i.e., with the drag force) andλ1 (i.e., without the drag
force) according to (5.12).

evaluate the exact and approximated solutions of the controlled and uncontrolled flow
in the Laplace-space domain, which was also discussed in Chapter 5.
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Figure 6.6: Step responses of the boundary feedback controlled system with the cen-
tralized controller (a) with the proportional gain KP = 0.8 and (b) with the
proportional gain KP = 0.5.

The approximate solutions are obtained using the series expansion and the Padé
approximations as discussed in Chapter 5. The exact solution is in good agreement
with the approximate solution, which is illustrated in the frequency domain in Figure



116 6 Distributed Control Designs
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Figure 6.7: Frequency responses of the exact and approximated solutions of the wave
that propagates with the speedλ∗

1(s).

As expected, the controlled flow shown in Figure 6.8 oscillates around the unity
input due to the simultaneous injection of the secondary flowat each location, i.e.,
compartment. The control parameterK(s) in (6.6) is tuned in such a way to enhance
the oscillations of the flow around the unity input. Basically, the highly oscillated
controlled flow represents the highest possible mixing of the injected flow into the
primary uncontrolled flow. Note that the control parametersare added to the open-loop
dynamics as given in (6.5). Using the side-wall injection, we can influence the drag
force manipulating the two-phase flow in the entire space andenhancing the mixing in
the entire volume.

Figure 6.9 depicts the step response of the linearized two-phase flow model. For
the proportional gainK(s)P = 0.1, the controlled flow is marginally stable. For the
proportional gainK(s)P > 0.1 the closed-loop becomes unstable because the amplitude
of the oscillations increases (see Figure 6.6(a)), whereasfor the proportional gainKP <
0.1, the oscillations fade out. The discrepancies occur at thehigh frequencies and at
the small gain, which is why they are not clearly visible in the step response given in
Figure 6.8. This corresponds to the fact that a lower order Padé approximation of the
delay function influences accuracy of the approximation. The oscillations induce the
degree of the chosen polynomial given in numerator and does not provide any physical
explanations.

Although the given analysis of the two-phase flow without thedrag force does not
have a real physical meaning, it has a major contribution in understanding the two-
phase flow system. Figures 6.10 and 6.9 incorporate the design in one single figure
in the time domain and in the frequency domain, respectively. As shown, the wave
that propagates from bottom to top can oscillate largely with respect to the step input,
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Figure 6.8: Step responses of the boundary feedback controlled system with the cen-
tralized controller without the drag force.

−10

0

10

20

30

40

50

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

−540

−450

−360

−270

−180

−90

0

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (rad/sec)

Cenralized controlled exact
Centralized controlled approx without drag

Figure 6.9: Frequency responses of the decoupled system forthe wave propagation
defined byλ∗

1(s) (i.e., with the drag force) andλ1 (i.e., without the drag
force) according to (5.12).
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Figure 6.10: Time responses of the controlled system with and without the drag force
for the wave that propagates (a) from the bottom and (b) from the top of
the bubble column.

whereas the wave that propagates in the opposite direction fades out faster. The reason
for this lies in the drag force. The effect of the drag force issmaller in one direction
compared to the other direction. The centralized control design can be also supported
by scheduling the control action with respect to space and different oscillation accord-
ing to the size of the chosen compartments.
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Figure 6.11: Time responses of the controlled and uncontrolled flow with and with-
out the drag flow using the exact and approximate solutions ofthe wave
propagation of the two-phase flow.
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6.4 Discussion

In this chapter, we presented different spatially distributed control designs for the
control-oriented two-phase flow model derived in Chapter 4.All of the designs pre-
sented indicate that the spatially distributed control design for controlling the two-
phase flow is not unique. The most suitable design relies on a particular application of
the two-phase flow model and control objective. The control objective is extremely im-
portant for deriving a model-based control strategy for anypractical application of the
two-phase flow (e.g., enhancement of mixing, transportation of gas phase in mixture
of gas and liquid). To illustrate different control objectives, we derived control laws
for two different spatially distributed control designs: boundary and centralized. These
two designs are analytically given in Section 6.2.4 and tested on the same numerical ex-
ample given in Chapters 4 and 5. The results presented in thischapter close the research
directionRD3 and highlight the importance of the control-oriented modeling of fluid
systems. The following results that support the development of the control-oriented
two-phase flow model can be determined:

• The control laws of distributed control designs presented in Figure 6.1 allow
for changes in fluid properties across an entire space. The flow inside a bub-
ble column is controlled by injection and suction of fluid at the boundaries and
side wall. This network of actuators and sensors gives new column designs that
can operate the flow in a desirable manner which depends on theapplication of
bubble columns.

• The centralized and boundary control designs given in Figure 6.1 are tested on
the same numerical example given in Chapter 5. Both of the proposed designs
showed performances which satisfy different control goals. The benefits that
can be gained from these control goals include reduction of the influence of the
drag force in the fluid flow (see Section 6.3, Example 1), and enhancement of
mixing of the gas phase and the liquid phase (see Section 6.3,Example 2). These
completely different control goals can cause extremely different flow regimes,
and cannot be achieved applying a unique actuation strategy.

• The implementation of the proposed spatially distributed control designs in-
volves actuation of the flow at different locations according to the design. The ac-
tuation at the boundaries for boundary controller means suction and injection of
the fluid throughout the boundaries. The injection/suctionat the boundaries par-
ticularly affects the shape of the velocity profile near the boundaries and changes
the boundary layer shape. The proposed boundary control design can reduce
the delay of the flow between the top and bottom boundary of thecolumn and
can suppress the fluctuations at the boundaries. Applying the small gain at the
boundaries, the delay can be considerably reduced with a small fluctuation of the
fluid flow. The actuation strategy in the case of a centralizedcontroller means
suction and injection of a secondary flow at the side wall intoan already estab-
lished flow which is in the quasi-steady state regime. The centralized controller
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improves mixing of the primary flow inside the bubble column and can signifi-
cantly affect the overall fluid flow field.

• Although in this chapter the unity step responses were presented, which are un-
likely to happen in reality for the two-phase flow, they show the system dynamics
of the two-phase flow model and influence of the controllers onthe dynamics.
The input can be easily scaled in the control design in order to described the
real injections and suctions throughout the valves. In order to have more real-
istic simulations, a practical setup and measurements are needed to validate the
design.

• Finally, from a computational point of view, the control-oriented modeling based
on microscopic conservation laws is very efficient since it takes only a few sec-
onds to simulate the functional relationships of the uncontrolled and controlled
flow. This again emphasizes the need for development of the control-oriented
two-phase flow model that can be used to structurally influence the fluid flow in
real time.

These results conclude the research directionRD3, which indicates the steps from
control-oriented modeling towards the spatially distributed control designs for the two-
phase flow. The results presented in this chapter complete the research objective and
show how to structurally influence the hydrodynamics of two-phase flow using the
control-oriented model. The main conclusions and recommendations for future work
will be summarized in Chapter 7.



Chapter 7

Conclusions and
Recommendations

This thesis introduces a new control-oriented microscopicmodeling approach to fluid
flow systems that leads to different spatially distributed control designs that can be used
to structurally influence the fluid flow. In the previous chapters, different modeling and
control techniques have been provided in order to develop causal input/output struc-
tures and spatially distributed control designs for single-phase and two-phase flow.
This chapter summarizes the findings and discusses future research directions in the
control-oriented microscopic modeling of fluid flow systemsand in the distributed con-
trol designs.

7.1 Conclusions

This research project was started in order to develop a control-oriented microscopic
two-phase flow model with a causal input-output structure that is well-suited for spa-
tially distributed control designs. The control-orientedmicroscopic modeling leads to
a large number of possible control designs and provides a solution for spatially dis-
tributed actuation strategies. In many cases, the microscopic model (PDE model) is
much more computationally demanding compared to a spatially uniform model (ODE
model). Most of the currently used PDE models of fluid flow systems include the de-
tailed flow phenomena (CFD models), which increase the modelcomplexity and com-
putation time. Although model accuracy is an obvious requirement for any modeling
approach, it is still important to establish an exact requirement for a specific applica-
tion since the accuracy can tremendously increase the computation time and reduce
the applicability of a PDE model. Developing control-oriented microscopic models
can bridge the gap between the detailed PDE/CFD models of fluid flow systems and
spatially nonuniform models (ODE models). The derived control-oriented models can
fulfill the increasing expectation of improved performances of processes on the mi-
croscopic scale, which is very important in developing sustainable processes in the
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chemical industry.

In this thesis, we have proposed a theoretical framework fordeveloping a control-
oriented microscopic model of a two-phase flow system that can be used to design
different spatially distributed controllers. Three research directions were proposed in
Section 1 (see Figure 1.3). In the following paragraphs, theconclusions are grouped
along two research directions that have been considered in this thesis.

RD1 Numerical approach to microscopic models

• As shown in Chapter 2, microscopic models governed by a set ofPDEs require
a significant amount of mathematical analysis in order to prove the existence
of solutions and to compute the solutions numerically. At the same time, high
accuracy means large model complexity. It has been shown that the model com-
plexity and numerical methods are the core of the problem of modeling fluid flow
systems, which leads to the main motivation behind the macroscopic properties.
Putting a large effort into developing numerical algorithms in order to obtain a
solution is, therefore, not a solution to flow control. For a practical application, it
is more attractive to observe the problem on a higher level ofaggregation defined
on a macroscopic scale and to have real-time computation.

• In Chapter 3, the higher level of aggregation, i.e., multiscale modeling, has been
tested on single-phase flow in a simple geometry. An important advantage of the
macroscopic approach presented in Chapter 3 is that it considers only a few out-
puts which represent a large set of microstates. The macroscopic flow properties
are not only interesting from the application point of view and verification of
the mathematical equations, but they can also be consideredas output regulation
quantity of the fluid properties.

• In Chapter 3, it has been shown that a simple boundary feedback controller can
be designed on the already developed CFD model of single-phase flow based on
the macroscopic outputs. The boundary feedback controllerpresented in Chap-
ter 3 succeeded in stabilizing the flow around a desired macroscopic energy with
a considerably small control error and with a fast convergence to the desired
macroscopic energy. The major conclusion has been that the model-based con-
trol of fluid flow is more feasible for systems with a simple geometry relying on
less complex models with multiscale modeling compared to the complex CFD
models that are currently used to model fluid flow systems.

• In general, the control design presented in Chapter 3 represents a trade-off be-
tween the accuracy of discretization and the control design. The results presented
in Chapter 3 motivated the introduction of the control-oriented modeling of fluid
flow systems.
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RD3 Control-oriented modeling

• In the scope of the main research objective, we have investigated two-phase fluid
systems and the control-oriented modeling of such systems.As has been dis-
cussed in Chapter 1, the main obstacle in using CFD models is the lack of avail-
able numerical tools and understanding of dominant dynamics in two-phase flow
systems. For this reason, in Chapter 2, different modeling aspects have been
outlined, which have to be taken into account while derivinga control-oriented
model of the two-phase flow system.

• In Chapter 4, a control-oriented model has been derived under a set of assump-
tions that were made following the modeling aspects given inSection 2.5. It
has been shown that the drag force and interfacial pressure fully determine the
well-posedness of any 1D two-phase flow model. This proves tobe the key issue
in deriving the well-posed control-oriented model with a preserved input/output
structure. The derived control oriented-model is a simple mathematical repre-
sentation of the two-phase flow system in 1D, which is suitable for a wide range
of spatially distributed control designs easy to implement.

• In Chapter 4, the eigenvalue analysis and the method of characteristics have been
used to analyze the well-posedness of the derived control-oriented model. It has
been discovered that the method of characteristics and the eigenvalue analysis
can be a guide to help in the selection of the coupling terms and the boundary
actuation strategies and causal input/output structures.

• Following the findings from Chapter 4, in Chapter 5 the concept of causal in-
put/output structures of the control-oriented two-phase flow model has been in-
troduced. The causality in case of the PDE models is rather involved, and re-
quires extensive analysis. For this reason, a new representation of the two-phase
flow model has been proposed using the Laplace-space transformation of the
derived control-oriented two-phase flow model. It was also shown that the selec-
tion of inputs and outputs is uniquely determined at the boundaries for the causal
two-phase flow. The causality defined in this way gives the exact condition for
developing causal input/output structures, which are spatially distributed. The
Laplace-space representation of the two-phase flow model was also successfully
used to derive rational transfer functions that show the fluid behavior between
the boundaries. The computational load has been tremendously reduced, which
is very beneficial for on-line control.

• The control-oriented modeling derived in Chapter 4 plays animportant role in
the development of different actuation strategies which eventually lead to dif-
ferent spatially distributed control designs. This type ofmodeling represents
a trade-off between the accuracy and preservation of the causality discussed in
Chapter 5. As shown in Chapter 5, the control-oriented PDE model of two-phase
flow is easy to use in a control design where control parameters are tuned based
on desired process performances. In general, control-oriented modeling relies
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on the input/output structure which allows us to structurally influence the flow
regimes in a bubble column and to establish the corresponding control design.

• In Chapter 6, we have suggested different spatially distributed control designs.
Based on the control laws for spatially distributed controllers, different con-
trollers have been designed that can maintain different flowregimes of two-phase
flow in a bubble column. It was also shown that different control problem for-
mulations require different control strategies. Adjusting the control designs, we
have shown that the mixing can be enhanced using the spatially distribute central-
ized controller, whereas the plug flow regime can be adjustedusing the boundary
controller. Both spatially distributed designs have been tested on the two-phase
flow model represented in the Laplace-space domain. The Laplace-space rep-
resentation of the two-phase flow model is a rather attractive model representa-
tion since it does not rely on the choice of discretization methods. Instead, the
Laplace-space representation of the two-phase flow model uses rational transfer
functions to model the system behavior between the boundaries. These func-
tional relationships can simplify control designs tremendously.

Based on these observations, it can be concluded that the control-oriented modeling
of two-phase flow fulfills the main objective of this thesis and gives a new modeling
framework for the control of fluid flow systems which advocates low complexity and
high applicability of fluid flow models. We would also like to stress that while we
have considered the particular two-phase flow problem and specific spatially distributed
designs, the techniques and algorithms presented herein can be of use in many other
areas of microscopic modeling.

7.2 Recommendations

As a continuation of the results presented and open researchquestions in the field of
flow control, the following challenges can be suggested for future research:

• While a well-posed input/output structure and developmentof distributed con-
trollers are very promising steps towards automatic operation of a bubble col-
umn, there are several issues that need to be addressed before the method can be
applied in practice.

• Dissipation of fluid properties at the boundaries is very dependent on the design
of practical equipment, and it should be also considered in the design. In practice,
different macroscopic scales should be included in controldesign.

• The quasi steady-state and steady-state regimes have to be validated. This re-
quires a further investigation of the linearization technique presented in Section
4.3.3. This mainly involves different operational regimesand linearized model
representations which are not uniform in space. Further investigation in this di-
rection will build a stronger concept of stabilizing different operational regimes.
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• Two-phase flow systems can have a wide range of two-phase flow patterns. For
instance, the homogeneous two-phase flow is characterized by small-size bub-
bles which move in a very regular and deterministic way with considerably less
drag between the phases, whereas the heterogeneous flow is characterized by
small-scale fluctuations that appear to be stochastic and less deterministic in na-
ture. Studying different operational regimes and flow patterns would be an in-
teresting research direction that should aim to underline the physical phenomena
behind the two-phase fluid flow and their contribution to the overall spatially dis-
tributed control designs. Also, cross-effects have to be taken into account which
will result in 2D and 3D two-phase flow models. The analysis should involve
model robustness and parameter uncertainty (e.g., bubble diameter, interfacial
pressure coefficient, and drag coefficient).

• In the proposed distributed control designs, applying the feedback controller was
conceptually straightforward. It would be interesting to investigate other possible
spatially distributed control designs that have a feedforward structure. We also
suggested localized spatially distributed control designs in Chapter 6, which have
not been treated in this thesis, and they can also be investigated in the future.

• Finally, testing the derived two-phase flow model and the proposed spatially dis-
tributed designs in practice is required for verification and possible redesigns.
Comparing numerical results with experimental results is an essential step in
model validation. This might lead to new insights and experiences that will bring
the control-oriented modeling from the simulation environment to reality.

The main challenge for future research is to use and improve the microscopic con-
trol framework while keeping the necessary practical requirements for industrial pur-
poses. Clearly, this will be a guarantee for the structural development in intensifying
chemical processes on the microscopic scale and designing sustainable plants in the
future.





Appendix A

Numerical Algorithm for
Solving the Single-Phase Flow
Model

Assume we have the velocity fieldun
i, j andvn

i, j at then-th time step, and the condition
given by (3.1) that has to be satisfied. First, we have to find the solution at the(n+1)-th
time step (t +△t) by the following three-step approach:

1. Explicit solutions of the nonlinear terms
The nonlinear terms are treated explicitly. This circumvents the solution of the
nonlinear terms, introducing the CFL condition that limitsthe time step by the
spatial resolution△x

u∗i, j −un
i, j

△t
= −((un

i, j)
2
x − (un

i, jv
n
i, j)y,

v∗i, j −vn
i, j

△t
= −((un

i, jv
n
i, j)x− (vn

i, j)
2
y.

2. Implicit viscosity
The viscosity terms are treated implicitly. If they were treated explicitly, we
would have a time step restriction proportional to the spatial discretization squared.
This results in two linear systems that have to be solved in each time step.

u∗∗i, j −u∗i, j
△t

=
1
Re

(u∗∗i, j xx
+u∗∗i, j yy

),

v∗∗i, j −v∗i, j
△t

=
1
Re

(v∗∗i, j xx
+v∗∗i, j yy

).
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3. Pressure correction
The intermediate velocity field(ui, j ,vi, j) are corrected by the gradient of a pres-
surepn+1 to enforce the incompressibility condition (3.1)

un+1
i, j −u∗∗i, j

△t
= −(pn+1)x,

vn+1
i, j −v∗∗i, j

△t
= −(pn+1)y.

The pressure is denoted bypn+1, since it is only given implicitly. The pressure
term in each point in space is obtained by solving a linear system. In a vector
notation, the correction equation reads as

1
△t

Un+1− 1
△t

Un = −∇Pn+1,

where the capital letters denote the numerical approximation of the discretized
PDEs (3.2) and (3.3).

Applying the divergence to both sides yields the linear system

−△pn+1 = − 1
△t

∇ ·Un.

Table A.1: Algorithm which is used to correct the pressure term.

Correction steps

Step 1 ComputeJn = ∇ ·Un

Step 2 Solve the Poisson equation△Pn+1 = 1
△t J

n

Step 3 ComputeHn+1 = ∇Pn+1

Step 4 Update the velocity fieldUn+1 = Un−△tHn+1

A standard approach to the pressure correction at the boundaries is to prescribe
the homogeneous Neumann boundary conditions forP whenever the no-slip
boundary conditions are prescribed for the velocity field. For the lid-driven cav-
ity problem, this means that the homogeneous Neumann boundary conditions
are prescribed for the pressure at each boundary (i.e., the top, bottom, and side
walls). This implies that the pressureP is only defined up to a constant, since the
gradient ofP enters the momentum equations (3.2) and (3.3).



Appendix B

Linearization of the Two-Phase
Flow Model

This section gives a short overview of the linearization of the two-phase flow model
derived in Chapter 4, which is used to develop a well-posed actuation structure. The
same linearization technique is also used to derive the linearized Navier-Stokes equa-
tions [1].

First, we start with the two-phase flow model (4.1), (4.5) and(4.6), where (4.19) is
inserted for each state separately

∂(αg + α′
g)

∂t
+

∂(αg + α′
g)

∂x
(vg +v′g)+ (αg + α′

g)
∂(vg +v′g)

∂x
= 0,

ρg
∂(vg +v′g)

∂t
−ρl

∂(vl +v′l )
∂t

+ ρg(vg +v′g)
∂(vg +v′g)

∂x
−ρl(vl +v′l)

∂(vl +v′l)
∂x

+Cpρl ((vg +v′g)− (vl +v′l ))
2 ∂(αg + α′

g)

∂x

= −(ρg−ρl)g−
(

(vg +v′g)− (vl +v′l )
) 3

4
Cd

db

√

(

(vg +v′g)− (vl +v′l)
)2

,

∂(αg + α′
g)

∂x
((vg +v′g)− (vl +v′l))+

∂(vg +v′g)

∂x
(αg + α′

g)

+ (1− (αg+ α′
g))

∂(vl +v′l)

∂x
= 0.

Notice that the drag force is simplified using the following relation

αgαl

(

1
αg

+
1
αl

)

= 1,

Now, we can evaluate each equation separately in order to obtain the linearized two-
phase flow model, which can be written as

∂αg

∂t
+

∂αg

∂x
vg + αg

∂vg

∂x
= 0,
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whereα′
g

α′
g

∂x
≈ 0 for the perturbation in the vicinity of the steady-state solution, i.e.,

∂α′
g

∂t
+

∂α′
g

∂x
vg + αg

∂v′g
∂x

+
∂αg

∂x
v′g + α′

g
∂vg

∂x
= 0. (B.1)

Equation (B.1) is the linearized mass equation which accounts the variation of the

steady-state solution with respect to space
∂αg

∂x
v′g andα′

g
∂vg

∂x
. If the steady-state solu-

tion is space independent, the linearized mass equation equals

∂α′
g

∂t
+

∂α′
g

∂x
vg + αg

∂v′g
∂x

= 0.

In contrast to the linearization of the mass equation, the linearization of the momen-
tum equation is more computationally involved due to the nonlinear interfacial pressure
and the drag force.

ρg
∂(vg +v′g)

∂t
−ρl

∂(vl +v′l)
∂t

+ ρg(vg +v′g)
∂(vg +v′g)

∂x
−ρl(vl +v′l )

∂(vl +v′l)
∂x

+Cpρl ((vg +v′g)− (vl +v′l ))
2 ∂(αg + α′

g)

∂x

= −(ρg−ρl)g−
(

(vg +v′g)− (vl +v′l )
) 3

4
Cd

db

√

(

(vg +v′g)− (vl +v′l)
)2

,

which gives

ρg
∂vg

∂t
−ρl

∂vl

∂t
+ ρgvg

∂vg

∂x
−ρlvl

∂vl

∂x
+Cpρl (vg−vl)

2 ∂αg

∂x

= −(ρg−ρl)g− (vg−vl)
3
4

Cd

db

√

(vg−vl)
2.

The linearized momentum equation is given by

ρg
∂v′g
∂t

−ρl
∂v′l
∂t

+ ρgvg
∂v′g
∂x

+ ρgv
′
g

∂vg

∂x
−ρlvl

∂v′l
∂x

−ρlv
′
l
∂vl

∂x

+Cpρl (vg−vl )
2 ∂α′

g

∂x
+Cpρl

(

v′g−v′l
)2 ∂α′

g

∂x

+2Cpρl (vg−vl)
(

v′g−v′l
) ∂α′

g

∂x

+Cpρl
(

v′g−v′l
)2 ∂αg

∂x
+2Cpρl(vg−vl)

(

v′g−v′l
) ∂αg

∂x

= −3
4

Cd

db

(

v′g−v′l
)2−2

3
4

Cd

db
(vg−vl)

(

v′g−v′l
)

.

Note that the terms
(

v′g−v′l
)2 ∂α′

g

∂x
≈ 0,

(

v′g−v′l
) ∂α′

g

∂x
≈ 0, and

(

v′g−v′l
)2 ≈ 0, thus the
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final form of the linearized momentum equation is

ρg
∂v′g
∂t

−ρl
∂v′l
∂t

+ ρgvg
∂v′g
∂x

+ ρgv′g
∂vg

∂x
−ρlvl

∂v′l
∂x

−ρlv
′
l
∂vl

∂x

+Cpρl (vg−vl)
2 ∂α′

g

∂x
+2Cpρl (vg−vl)

(

v′g−v′l
) ∂αg

∂x

= −2
3
4

Cd

db

√

(vg−vl)2
(

v′g−v′l
)

.

And finally, we linearize the algebraic part of the two-phaseflow model suggested in
Chapter 4. The linearized algebraic equation can be writtenin terms of perturbations
as

∂(αg + α′
g)

∂x
((vg +v′g)− (vl +v′l))+

∂(vg +v′g)

∂x
(αg + α′

g) (B.2)

+(1− (αg+ α′
g))

∂(vl +v′l)

∂x
= 0.

The final form of the linearized algebraic equation (B.2) canbe obtained from the
following equation

∂αg

∂x
(v′g−v′l)+

∂α′
g

∂x
(vg−vl

′)+
∂vg

∂x
α′

g +
∂v′g
∂x

αg +(1−αg)
∂v′l
∂x

−α′
g

∂vl

∂x
= 0.

The linearized two-phase flow model can be written in a compact matrix form as

E
∂Φ′

∂t
+A(Φ)

∂Φ′

∂x
+A(Φ′)

∂Φ
∂x

= FΦ′, (B.3)

with

A(Φ) =









vg αg 0

Cp ρl (vg−vl)
2 ρgvg −ρlvl

vg−vl αg 1−αg









,

A(Φ′) =









vg
′ αg

′ 0

2Cp ρl (vg−vl )(vg
′−vl

′) ρgvg
′ −ρl vl

′

v′g−v′l αg
′ −αg

′









,

representing the linearized system matrices, and

F =











0 0 0

0 −3/2
Cd ρl

√

(vg−vl )
2

db 3/2
Cd ρl

√

(vg−vl )
2

db

0 0 0











representing the linearized force vector.
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Appendix C

Coordinate Transformations

The coordinate transformation presented in Chapter 4 is based on the following trans-
formation

ED = ET =





1 0 0
0 1 0
0 0 0



 , and T =









1 0 0

0 ρg
−1 ρl

0 0 ρg









with Φ′ = TΨ′,

whereT stands for the coordinate transformation matrix. Now, we can transform the
state vectorΦ′ into a new state vectorΨ′ such that according to the given fluid variables
(αg, vg, andvl ), the new states are given as

Ψ′ =













α′
g

ρgv′g−ρlv′l

v′l
ρg













.

The two-phase flow model written in theΨ′ coordinates reads as

ET
∂Ψ′

∂t
+A(Ψ)T

∂Ψ′

∂x
= FTΨ′, (C.1)

which gives









1 0 0

0 1 0

0 0 0









∂Ψ′

∂t
+











vg
αg
ρg

αgρl

Cp ρl (vg−vl )
2 vg ρgvgρl −ρlvl ρg

vg−vl
αg
ρg

αgρl +(1−αg)ρg











∂Ψ′

∂x
= (C.2)













0 0 0

0 3
2

Cdρl (vg−vl)

db
− 3

2

Cdρl (vg−vl )

db

0 0 0













Ψ′
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From (C.2), the algebraic equation reads as

∂Ψ3

∂x
=

(ρgvg−ρgvl )

ρg (−αgρl −ρg+ ρgαg)

∂Ψ1

∂x
+

αg

ρg(−αgρl −ρg+ ρgαg)

∂Ψ2

∂x
. (C.3)

By subtracting (C.3) from (C.2), the PDAE model of the two-phase flow can be
reduced to PDE model

[

1 0

0 1

]

∂Ψ′

∂t
+







−ρgvg+vgρgαg−αgρl vl
−αgρl−ρg+ρgαg

αg(−1+αg)
−αgρl−ρg+ρgαg

(vg−vl )
2ρl(−Cpρl αg+ρgαgCp+ρg−ρgCp)

−αgρl−ρg+ρgαg

−ρgvg+vgiρgαg−αgρl vl
−αgρl−ρg+ρgαg







∂Ψ′

∂x
=

(C.4)




0 0

− 3
2

Cdρl (vg−vl )(−ρl vg+ρl vl +ρgvg−ρgvl )
db(−αgρl−ρg+ρgαg)

− 3
2

Cdρl (vg−vl )
db(−αgρl−ρg+ρgαg)



Ψ′,

The directional derivatives in (C.4) can be decoupled usingthe second coordinate
transformation which gives the following equation writtenin theW′ coordinates as

∂W′

∂t
+V−1







−ρgvg+vgρgαg−αgρl vl
−αgρl−ρg+ρgαg

αg(−1+αg)
−αgρl−ρg+ρgαg

(vg−vl)
2ρl(−Cp ρl αg+ρgαgCp+ρg−ρgCp)

−αgρl−ρg+ρgαg

−ρgvg+vgiρgαg−αgρl vl
−αgρl−ρg+ρgαg






V

∂W′

∂x

(C.5)

=





0 0

− 3
2

Cdρl(vg−vl)(−ρl vg+ρl vl +ρgvg−ρgvl )
db(−αgρl−ρg+ρgαg)

− 3
2

Cdρl(vg−vl )
db(−αgρl−ρg+ρgαg)



W′,

where the transformation matrixV equals

V =

[

1/2 1/2

1/2σ −1/2σ

]

,

with σ being

σ =
ρl (vg−vl )

2 (−Cp ρl αg + ρgαgCp + ρg−ρgCp)
√

αgiρl (vg−vl)
2 (−1+ αg) (−Cp ρl αg + ρgαgCp + ρg−ρgCp)

.

Finally, the two-phase flow model written as the PDE model with the decoupled
directional derivatives can be written as

∂W ′

∂t
+

[

λ1 0
0 λ2

]

∂W′

∂x
=

[

c11 c12

c21 c22

]

W′, (C.6)
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where

λ1 =
αgρl vl + αl ρgvg

αgρl + αl ρg
+
√

Dc, (C.7)

λ2 =
αgρl vl + αl ρgvg

αgρl + αl ρg
−
√

Dc, (C.8)

with

Dc = αgρgρl (vg−vl)
2 (−1+ αg)

(

1−
(

ρl αg + αl ρg

ρg

)

Cp

)

. (C.9)
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Appendix D

Padé Approximant

The second step in the numerical approximation of the boundary conditions and the
transportation delays described in Chapter 5 is the Padé approximation. In general, the
Padé approximation uses the quotient of two polynomials toestimate a power series
which can be defined as

[L,M] =
PL(s)
RM(s)

,

wherePL(s) is a polynomial of degreeL andRM(s) is a polynomial of degreeM [7].
The explicit equation that approximate the power serieseλ∗i (s) reads from

lim
s→+∞

RM(s)h(s)−PL(s)
sL+M+1 = 0.

The more accurate approximations can be obtained using higher degree of polynomials
to replace the output delay element. To clarify this, consider a delay, of which the
Taylor expansion is given by the following series

e−h1s = 1−h1s+
1
2

h2
1s2− 1

6
h3

1s3 + ...+
1
2!

hn
1sn

The first three terms of the expansion are 1,h1s and 1
2h2

1s2. Suppose now that we
approximate the delay by the following first order system

1
1+as

= 1−as+a2s2.

Then, by choosinga = h1, the first two terms of the approximation match those of the
delay. If, instead, we approximate the delay by the following expression

1− h1
2 s

1+ h1
2 s

= 1−h1s+
1
2

h2
1s2−h3

1s3 + ...+hn
1s

n,

then, we can expect more accuracy since its first three coefficients match those of the
delaye−h1s. Usually, the more coefficients inPL(s) andRM(s) that match the delay, the
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more accurate the approximation becomes. As an illustration, we consider here a pure
delay functione−s which is approximated by the first-order [1,1], second-order [2,2],
and third-order [3,3] Padé approximations as

[1,1] =
1− 1

2s

1+ 1
2s

= 1−s+
1
2

s2− 1
4

s3 +
1
8

s4 +O(s5),

[2,2] =
1− 1

2 s+ 1
12s2

1+ 1
2 s+ 1

12s2
= 1−s+

1
2

s2− 1
6

s3 +
1
24

s4 +O(s5),

[3,3] =
1− 1

2s+ 1
10s2− 1

120s
3

1+ 1
2s+ 1

10s2 + 1
120s

3
= 1−s+

1
2

s2− 1
6

s3 +
1
24

s4 +O(s5).

As shown, the polynomial coefficients for the second and third-order approximations
are the same for the first four terms, whereas for the higher order terms, they differ
slightly from each other.
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Glossary

Lists of symbols and notations

Below follows a list of the most frequently used symbols and notations in this thesis.

Symbol Description Units

m mass kg
ρ density kg/m3

v velocity m/s
E energy J/m3

t time s
Φ state vector -
S source term -
L length m
V volume m3

x x-direction in the Cartesian coordinates -
y y-direction in the Cartesian coordinates -
A cross section area m2

n normal vector on the surfaceA m
C concentration mol/m3

De effective diffusion coefficient -
r reaction rate 1/s
Pe Peclet number -
p pressure N/m2

µ fluid viscosity kg/(sm)
g gravity acceleration m/s2

θ angle rad
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Symbol Description Units

α volumetric fraction -
m number of phases -
ℓ phase indicator -
pℓ,i interfacial pressure N/m2

F coupling term N
Fd drag force N
Fa added mass force N
Fl transversal force N
Fh force due to collective memory effects N
T temperature C
DT thermal diffusion coefficient -
cp specific heat capacity J/K
κ thermal conductivity W/(Km)
u state -
a coefficient -
b coefficient -
c coefficient -
d coefficient -
D discriminant -
c Courant number -
Ω rectangular domain -
u dimensionless velocity component inx-direction -
v dimensionless velocity component iny-direction -
Re Reynolds number -
ω dimensionless velocity of the lid -
z state vector -
w boundary input -
∑ systems -
k macroscopic observation index -
z∗i, j steady-state solution -
ei, j error -
ξ state -
β drag closer term -
CD drag coefficient -
Cp interfacial pressure coefficient -
d diameter of a single bubble -
E system matrix -
A system matrix -
c state vactor -
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Symbol Description Units

λi eigenvalues -
a1 coefficient of a characteristic polynomial -
a2 coefficient of a characteristic polynomial -
a3 coefficient of a characteristic polynomial -
Dc discriminant -
ξi states -
Ψ state vector -
T transformation matrix -
V transformation matrix -
W state vector -
A11 state matrix of spatially discretized model -
A12 state matrix of spatially discretized model -
A21 state matrix of spatially discretized model -
A22 state matrix of spatially discretized model -
B1 input matrix of spatially discretized model -
B2 input matrix of spatially discretized model -
λ∗

i (s) eigenvalues in the Laplace-space domain -
A (s) the system matrix parametrized bys -
B(x) the spatially distributed input matrix -
ε(s) function in the Laplace-space domain -
Q transformation matrix -
q11 element of matrixQ -
q12 element of matrixQ -
q21 element of matrixQ -
q22 element of matrixQ -
G rational transfer function matrix -
hi,0 coefficient of polynomial -
hi,1 coefficient of polynomial -
hi,2 coefficient of polynomial -
hi,n coefficient of polynomial -
K11 boundary controller -
K12 boundary controller -
K21 boundary controller -
K22 boundary controller -
Ki distributed controller -
H vector -
J vector -
P discretized pressure written as a vector -



150 Glossary

Operator Description

∂ partial derivatives
∇ gradient operator
∇· divergence operator
′ fluctuations
△ finite difference operator
(·) averaged quantity
fi, j state function
gi, j state function
ψi, j state function
h output function
s Laplace varable

Sub/Superscript Description

in inlet
out outlet
x x-component in the Cartesian coordinates
y y-component in the Cartesian coordinates
z z-component in the Cartesian coordinates
m number of phases
ℓ phase indicator
g gas phase
l liquid phase
i spatial index in thex-direction on microscopic scale
j spatial index in they-direction on microscopic space
n number of discretization points in microscopic space
k spatial index on macroscopic space
n number of discretization points in microscopic space
n number of discretization points in macroscopic space
d desired value
P proportional action
I integral action
D diagonalized
s slip
down downwards
up upwards
red reduced
in inlet
co co-current flow
cc counter-current flow
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Abbreviation Description

CSTR Continuous Stirred-Tank Reactor
PFR Plug Flow Reactor
PID Proportional-Integral-Derivative
MPC Model-Based Predictive Controller
CFD Computational Fluid Dynamics
RD Research Direction
DAE Differential Algebraic Equation
ODE Ordinary Differential Equation
PDAE Partial Differential Algebraic Equation
PDE Partial Differential Equation
1D One Dimensional
2D Two Dimensional
3D Three Dimensional
LQ Linear Quadratic
DNS Direct Numerical Simulations





Summary

The recent progress in the chemical industry is now forcing engineers and physicists to
get to deal with control-oriented modeling of material properties on microscopic scale
inside reactors in order to build more efficient chemical plants. The control-oriented
modeling provides a new way of thinking about the purposes ofmodels in the chemical
industry, the relationships between the material properties inside the chemical reactors,
and the level of details needed for control designs.

The main objective of this thesis is to offer the physics, chemical, and control
communities a unified set of rules and conditions for the control-oriented microscopic
modeling of fluid systems in the chemical industry. The work presented in this the-
sis includes not only the physics of fluid systems and first principle models, but also
suggests requirements for developing causal input/outputstructures and spatially dis-
tributed control designs.

The first part of this thesis concerns the problem of the microscopic modeling of
a fluid flow system and the requirements needed to obtain a control-oriented model
of the fluid flow system. The derivation of the control-oriented model can be a rather
demanding task due to the fact that the dynamics of a particular flow regime have to
be determined explicitly. In order to demonstrate the flow control, a single-phase flow
system in simple geometry, such as a lid-driven cavity case,is considered. The com-
plexity of the single-phase flow model is illustrated using the Navier-Stokes equations
and different discretization methods. The conventional approach to the microscopic
fluid flow model involves fine discretization of the microscopic model in order to ob-
tain microstates which can be manipulated and measured. However, the microstates
give a very detailed picture of the fluid flow that, in many cases, is not directly measur-
able. Therefore, different modeling scales have to be considered for designing spatially
distributed control strategies for the single-phase flow. In order to demonstrate the ap-
plicability of the different modeling scales for the fluid flow system, a macroscopic
output regulation is studied on the lid-driven cavity case,which has a broad range of
industrial applications.

The second part of this thesis deals with the problem of deriving a control-oriented
model of a two-phase fluid flow system, which is complementaryto the single-phase
flow model given in the first part of the thesis. In essence, thecontrol-oriented two-
phase flow modeling namely means deriving a simplified model that is available from
the first principles and to examine the dominant dynamics. The control-oriented model
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of the two-phase flow investigates the possibility of identifying different flow regimes
inside a bubble column reactor, where the fluid is injected atdifferent locations of the
reactor. Besides being useful for control, the control-oriented model of the two-phase
flow inside the bubble column also suggest new reactor designs based on the most
efficient actuation strategies. Following a wide range of possible actuation structures
for the two-phase fluid flow, different spatially distributed control designs for the two-
phase flow inside the bubble column reactor are suggested in this thesis. The spatially
distributed control strategies can be successfully used tostabilize or destabilize the
two-phase flow around a desired two-phase flow regime.

In general, the stabilization or destabilization of the fluid flow plays a crucial role
in designing efficient and sustainable processes that rely on the manipulation of hydro-
dynamics. The spatially distributed control designs of thesingle-phase and two-phase
flow systems presented in this thesis suggest more efficient reactor designs and new
developments in the process intensification in the chemicalindustry.



Samenvatting

De recente ontwikkelingen in de chemische industrie met alsdoel het bouwen van
efficintere chemische installaties zetten steeds meer ingenieurs en fysici aan tot de ont-
wikkeling en het gebruik van regeltechnische modellen van materiaaleigenschappen in
reactoren. Het modelleren vanuit een regeltechnisch perspectief biedt een nieuwe ma-
nier van denken over de toepassing van modellen in de chemische industrie, de relaties
tussen de eigenschappen van het materiaal in de chemische reactoren en het niveau van
de details die nodig zijn voor het ontwerpen van een regelaar.

De belangrijkste bijdrage van dit proefschrift is het ontwerp van een uniforme set
van regels en voorwaarden voor de regeltechnische modelvorming van vloeistofsyste-
men in de chemische industrie. Naast het gebruik van de fysica van vloeitstofsystemen
en de constructie van modellen op basis van fundamentele natuurkundige wetten wor-
den er eisen opgesteld die nodig zijn voor de constructie vancausale ingang-uitgang
structuren en ruimtelijk gedistribueerde regelontwerpen.

Het eerste deel van dit proefschrift heeft betrekking op de microscopische model-
vorming van een vloeistofstroomsysteem en de eisen die nodig zijn om een regeltech-
nisch model te verkrijgen. De afleiding van een regeltechnisch model kan veeleisend
zijn wanneer de dynamiek van een bepaald vloeistof regime expliciet moet worden
bepaald. De complexiteit wordt gellustreerd aan de hand vande Navier-Stokes ver-
gelijkingen en de verschillende beschikbare discretisatiemethoden voor een eenfase
stromingssysteem met een eenvoudige geometrie — het zogenaamde lid-driven cavity
systeem — waarvan het principe kan worden teruggevonden in een breed scala aan in-
dustrile toepassingen. De conventionele oplossingsmethoden van het microscopische
stromingsmodel gaan uit van een fijne discretisatie. De uit een fijne discretisatie ver-
kregen microtoestanden kunnen vervolgens worden geanalyseerd en gemanipuleerd.
Ondanks het feit dat de microtoestanden een zeer gedetailleerd beeld geven van de stro-
ming zijn deze over het algemeen niet direct te meten. Daarommoeten verschillende
modelvormingsschalen worden beschouwd voor het ontwerpenvan ruimtelijk gedistri-
bueerde regelontwerpen. De toepasbaarheid van de multischaal modelvormingsaanpak
van een stromingssysteem wordt aangetoond door middel van een macroscopische uit-
gangsregelaar van het lid-driven cavity systeem.

Het tweede deel van dit proefschrift behandelt de constructie van een regeltech-
nisch model van een tweefasen stromingssysteem. Dit model is complementair aan het
eenfase stromingsmodel zoals behandelt in het eerste deel.Vanuit de multischaal mo-
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delvormingsaanpak wordt een vereenvoudigd model op basis van fundamentele natuur-
kundige wetten opgesteld en vervolgens wordt de dominante dynamica bestudeerd. Op
basis van het verkregen regeltechnisch model worden de verschillende stroomregimes
in een bubbelkolom reactor onderzocht door vloeistof op verschillende plaatsen te in-
jecteren. Als uitkomst van deze studie worden verschillende ruimtelijk gedistribueerde
regelontwerpen voor de tweefasen stroming binnen de bubbelkolom reactor voorge-
steld. Deze gedistribueerde regelontwerpen kunnen wordengebruikt om de tweefasen
stroming te stabiliseren of te destabiliseren rond een gewenst stromingsregime. Naast
het gebruik van het regeltechnisch model van de tweefasen stroming in een bubbelko-
lom voor het ontwerpen van een regelaar kan het ook bijdragenaan nieuwe reactoront-
werpen gebaseerd op de meest efficinte actuatiestrategien.

In het algemeen spelen de stabilisatie en destabilisatie van een vloeistofstroming
een cruciale rol bij het ontwerpen van efficinte en duurzame processen die afhankelijk
zijn van de manipulatie van vloeistof-dynamica. De ruimtelijk gedistribueerde regel-
ontwerpen van de stromingssystemen zoals gepresenteerd indit proefschrift suggereren
efficinter reactor ontwerpen en nieuwe ontwikkelingen in deprocesintensivering in de
chemische industrie.
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