
 
 

Delft University of Technology

Estimation of rotor effective wind speeds using autoregressive models on Lidar data

Giyanani, Ashim; Bierbooms, Wim; van Bussel, Gerard

DOI
10.1088/1742-6596/753/7/072018
Publication date
2016
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Giyanani, A., Bierbooms, W., & van Bussel, G. (2016). Estimation of rotor effective wind speeds using
autoregressive models on Lidar data. Journal of Physics: Conference Series, 753.
https://doi.org/10.1088/1742-6596/753/7/072018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/753/7/072018
https://doi.org/10.1088/1742-6596/753/7/072018


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.180.130.242

This content was downloaded on 03/02/2017 at 13:46

Please note that terms and conditions apply.

Estimation of rotor effective wind speeds using autoregressive models on Lidar data

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 753 072018

(http://iopscience.iop.org/1742-6596/753/7/072018)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Autoregressive modelling for rolling element bearing fault diagnosis

H Al-Bugharbee and I Trendafilova

Causal relations in molecular dynamics from  the multi-variate autoregressive model

A. Gorecki, J. Trylska and B. Lesyng

Mathematical Models for the Calculation of Power Absorbed by Absolute Radiometers

J A Cogno and M A Ezpeleta

Nanoparticle size measurement from dynamic light scattering data based on an autoregressive model

Z M Li, J Shen, X M Sun et al.

Random-Lag Singular Cross-SpectrumAnalysis

F. Varadi, R. K. Ulrich, L. Bertello et al.

Normal/independent noise in VIRGO data

F Acernese, P Amico, M Alshourbagy et al.

Autoregressive model order selection

Dennis J McFarland and Jonathan R Wolpaw

Randomly fluctuating potential-controlled multistable resonant tunneling current through a quantum

dot

Pei Wang, Gao Xianlong and Shaojun Xu

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/753/7
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/628/1/012088
http://iopscience.iop.org/article/10.1209/epl/i2006-10129-2
http://iopscience.iop.org/article/10.1088/0026-1394/21/3/008
http://iopscience.iop.org/article/10.1088/1612-2011/10/9/095701
http://iopscience.iop.org/article/10.1086/312419
http://iopscience.iop.org/article/10.1088/0264-9381/23/19/S21
http://iopscience.iop.org/article/10.1088/1741-2560/5/2/006
http://iopscience.iop.org/article/10.1209/0295-5075/105/37004
http://iopscience.iop.org/article/10.1209/0295-5075/105/37004


Estimation of rotor effective wind speeds using

autoregressive models on Lidar data

A Giyanani, W A A M Bierbooms, and G J W van Bussel

Delft University of Technology, Wind Energy Research Group, Faculty of Aerospace
Engineering
Kluyverweg 1, 2629HS Delft, The Netherlands

E-mail: a.h.giyanani@tudelft.nl

Abstract. Lidars have become increasingly useful for providing accurate wind speed
measurements in front of the wind turbine. The wind field measured at distant meteorological
masts changes its structure or was too distorted before it reaches the turbine. Thus, one cannot
simply apply Taylor’s frozen turbulence for representing this distant flow field at the rotor.
Wind turbine controllers can optimize the energy output and reduce the loads significantly,
if the wind speed estimates were known in advance with high accuracy and low uncertainty.
The current method to derive wind speed estimations from aerodynamic torque, pitch angle
and tip speed ratio after the wind field flows past the turbine and have their limitations, e.g.
in predicting gusts. Therefore, an estimation model coupled with the measuring capability of
nacelle based Lidars was necessary for detecting extreme events and for estimating accurate wind
speeds at the rotor disc. Nacelle-mounted Lidars measure the oncoming wind field from utpo
400m(5D) in front of the turbine and appropriate models could be used for deriving the rotor
effective wind speed from these measurements. This article proposes an auto-regressive model
combined with a method to include the blockage factor in order to estimate the wind speeds
accurately using Lidar measurements. An Armax model was used to determine the transfer
function that models the physical evolution of wind towards the wind turbine, incorporating
the effect of surface roughness, wind shear and wind variability at the site. The model could
incorporate local as well as global effects and was able to predict the rotor effective wind speeds
with adequate accuracy for wind turbine control actions. A high correlation of 0.86 was achieved
as the Armax modelled signal was compared to a reference signal. The model could also be
extended to estimate the damage potential during high wind speeds, gusts or abrupt change in
wind directions, allowing the controller to act appropriately under extreme conditions.

1. Introduction
Wind turbine controls employ algorithms based on aerodynamic torque, pitch angle and tip
speed ratio to estimate the rotor effective wind speeds [1]. These wind speeds are derived based
on the wind flow past the rotor and thus, the estimation can only validate the control action
already performed by the turbine. In case of extreme events, e.g. gusts, an adequate amount
of preview time and preventive control stategy was required, which was not fulfilled by these
estimation algorithms. Other methods using Lidars, extrapolate the wind speed measurements
from far-field assuming Taylor’s frozen turbulence to estimate the wind speeds at the rotor [2],
[3], [4]. However, the effects of wind turbine blockage(induction zone), the atmospheric and site
conditions were not considered in these estimations [5], [6].
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The potential of using Lidars for deriving the rotor effective wind speed has been explored
in multiple studies [7], [8], [9], [10]. Taylor’s frozen turbulence assumption was generally used
for extrapolating the wind speed from the closest measurement range of the Lidar, e.g. 50m, to
the rotor, referred to as the rotor effective wind speed. The wind flow field is generally affected
by the surface roughness, characterised as roughness length at a particular site. The higher
the roughness of the earth’s surface, the more the drag on the wind and slower the wind flow.
The number of obstacles such as trees, houses and their distances to the turbine also result in
substantial decrease in the wind speed flowing towards the wind turbine [11], [12], [13], [14].
Additional variability in the flow field was caused due to the temperature differences, diurnal
cycle and changes in the wind direction [13], [15]. While applying Taylor’s frozen turbulence
for rotor effective wind speed estimation, no consideration was made for the evolution of wind
which is affected by the site conditions, the blockage effects of the turbine and ever-changing
physical nature of the wind as shown in Fig. (1). This results in a significant mismatch between
the estimated rotor effective wind speed and the actual wind speed hitting the rotor [16], [17].
The wind turbine characteristics, the control strategies and the mean wind speed influence the
intensity of the blockage effect on the wind flow and act as a source of error in wind speed
estimation. Additionally, the total uncertainty increases as more parameters as employed into
the rotor-effective wind speed estimation model

This article proposes an auto-regressive model to estimate the rotor effective wind speed with
low uncertainty using nacelle-mounted Lidars. The flow of the wind-field from 185m away to
50m in front of the wind turbine can be modelled by using the Autoregressive Moving Average
Exogenous, Armax, model to understand its evolution and dissolution. The Armax model is an
extension of the ARX model, where a moving average was fitted to the stochastic noise model,
while the ARX contributes to the deterministic estimation of the model. The model was trained
on past measurements, which allows predicting the future wind speeds at the rotor. The change
in the turbulence structure and the evolution of the wind field were modelled as a noise input
to the Armax model. In this way, the turbulence structure could be unfrozen and modelled
using the measurements at every Lidar range. The uncertainty in the wind speed estimation
was derived from the root mean square error for the model achieved by validating the data on
future inputs and outputs. The auto-regressive model was then coupled with the blockage factor
fitted on Lidar measurements, introduced by Medici [18] for the effects of wind turbine blockage
on the upstream wind field. Finally, the wind speed estimations from the combined model
were compared for their performance against the estimations from Taylor’s frozen turbulence
assumption and ECN’s model. ECN’s model derives the wind speed using lookup tables from
aerodynamic torque, blade pitch angle and turbine properties.

a b

Blockage 

e�ects

Site Conditions dependency??

Unfrozen wind !elds

Figure 1: Understanding the physical evolution of wind using Lidars.
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Figure 2: Drawing of the pulsed Lidar system, mounted on the nacelle of a Darwind XD115-5MW wind
turbine [21].

2. Method
2.1. Measurement setup
The experimental setup consists of an Avent five beam pulsed Lidar installed on a Darwind
XD-115 wind turbine at ECN’s wind turbine test site in Wieringermeer as shown in Fig. (2).
The hub height of the turbine was 100m above the ground level with a rotor diameter of 115m.
The test site is a simple site with flat terrain and distant houses along with some rows of trees.
The Lidar has five beams measuring radial wind speeds, RWSi, upwind of the turbine, where
i = 0, 1, ...4. The central beam RWS0 was oriented in the longitudinal direction with no cone
angle, while the other beams were directed outwards at a cone angle of 15◦ from the central
beam. Each beam was sampled at 4 Hz, (Ts = 0.25sec) according to the scanning pattern shown
on the left side of Fig. (2). Thus, a complete cycle was completed in 0.8 Hz (ts = 1.25sec). The
wind speed measurements were performed at range gates from 185m up to 50m in front of the
wind turbine with a seperation distance of 15m between two ranges. The wind speed time series
were filtered for anomalies like spikes, out of range values and low availability. All these data
were interpolated using cubic spline for higher Lidar availability. The estimated rotor effective
wind speed Ūwe, is a function of the measured pitch angle βp, the aerodynamic torque Γr and
the rotor speed Ωr, achieved with the help of lookup tables implemented into ECN’s model
[19], [20]. Ūwe was sampled at 64 Hz and hence, it was downsampled to match the sampling
frequency of the Lidar measurements. The Ūwe signal is very noisy due to tower fluctuations
and other disturbances and therefore a Savitzky golay filter with a smooth factor of 151 along
with resampling the signal to 4 Hz was used was used for deriving correlations.

2.2. Prediction of rotor effective wind speeds using Armax models
The current practise of estimating rotor effective wind speeds assumes Taylor’s frozen turbulence
hypothesis to be true. This assumption holds true, if the structure of the turbulence doesn’t
change, maintaining temporal and spatial homogeneity and following the self-preservation of
eddies. The wind field then flows with the same mean wind speed and fluctuation, shifting only
in time when measured at different Lidar ranges. A minimum preview time of 2 seconds was
required by the wind turbine controllers to execute a control action as observed by some studies
[2], [22], [23]. Therefore, the nearest Lidar measurement to the wind turbine was deemed to be
applicable for online prediction in this study. A wind speed time series at ∆x = 50m in front
of the wind turbine was shifted with a time delay of τT = ∆x/Ū50, which would be a suitable
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assumption for Taylor’s frozen wind field, where Ū50 is the mean wind speed at 50m and τT is
the time delay for frozen wind fields. This frozen model was used later for comparing to the
reference model and Armax models

Since, the Taylor’s frozen turbulence method was not consistent and was applicable to large
eddies only, another method which captures the fluctuations of smaller eddies and at the same
time allows for better engineering models has to be chosen. Such a typical state space process
model can be illustrated by Fig. (3). The mean deterministic part of the wind was modelled
using the moving average component within the model, while the fluctuating stochastic part was
modelled using the Autoregressive Exogeneous component in the Armax model. The input and
output are denoted by u(k) and y(k) respectively, while the stochastic noise or disturbances are
modelled by e(k). A deterministic process, represented by a first order differential equation with
a delay of one unit is given by Eq. (1), where the coefficients of deterministic output and input
upto (k − 1)th instant were given by a1 and b1 respectively . The prediction of x(k) given the
knowledge of x and u upto the (k − 1)th instant is given by Eq. (2). The overall model for y(k)
can be constructed by assuming that the deterministic and the stochastic effects were additive
as shown in Eq. (3), where the prediction of y(k) is given by ŷ(k|k − 1).

Process
10 min data

Ts = 0.25s (4 Hz)

Wind speed (185m)

10 min data

Ts = 0.25s (4 Hz)

Wind speed (170m)

Disturbances/Noise e(t)

Input u(t) Ouput y(t)

Figure 3: A typical state space process with input, noise and output.

x(k) + a1x(k − 1) = b1u(k − 1) (1)

x̂(k|k − 1) = −a1x(k − 1) + b1u(k − 1) (2)

y(k) = u(k) + e(k) (3)

ŷ(k|k − 1) = û(k) + ê(k) (4)

The evolution of wind from a Lidar range point a to another point b was considered to be a linear
time invariant (LTI) system, satisfying the principles of homogeneity and superimposition. The
time invariance condition states that the system output y(k) does not change as a result of delay
in the input u(k + nk). Thus, the characteristics of the system i.e. wind evolution, are assumed
not to change with time. The measured response or output y(k) can be split into two components:
deterministic and stochastic. The measured mean wind speed is the deterministic component
x(k), while the turbulence, chaos and measurement errors are the stochastic component e(k),
where k represents the discrete time period. An Armax model is an extended non-linear, least
square auto-regressive estimation model, which incorportes a moving average term in the noise
model. It is given by Eq. (5), where B/A and C/A form the deterministic and stochastic
coefficients respectively. The expanded form is given by Eq. (6), where na, nb and nc are
the number of parameters in the equation signifying the order of deterministic and stochastic
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Figure 4: Evolution of deterministic B/A coefficients and stochastic C/A coefficients for first order Armax
model over the Lidar measurement distances.

components, while nk is the delay of the system. (For details, see [24], [25]).

Ay(k)︸ ︷︷ ︸
Output

=

Deterministic Input︷ ︸︸ ︷
Bu(k − nk) +

Stochastic Noise︷ ︸︸ ︷
Ce(k) (5)

y(k) + a1(k − 1) + ...+ anay(k − na)︸ ︷︷ ︸
Output

=

Deterministic Input︷ ︸︸ ︷
bnk

u(k − nk) + ...+ bnb+nk−1u(k − nb + nk − 1)

+ c1e(k − 1) + ...+ cnce(k − nc) + e(k)︸ ︷︷ ︸
Stochastic noise Input

(6)

A preliminary analysis using visualization and standard filtering was performed on the
time series for input u(k) and output y(k). This step allows to examine the time series for
outliers, peaks, trends and data acquisition problems, that were filtered before performing model
estimation. The impulse response and the step response were performed to confirm the stability
of the model, i.e. it was continuously excited and exhibits linear time invariant behaviour.
The impulse response estimates obtained by fitting finite length impulse response model, (FIR),
were found to stabilize towards zero, suggesting that the model was stable. The step response
reassured a time delay of , τp = nk = 1.25s = 5 samples, which represents the time delay
between the two measurement sample time series. A closed loop gain of 0.9 and stable step
response illustrates that the model was stationary and stable.

As the wind evolves from the Lidar measurement distance of 185m to 170m and subsequently
towards the wind turbine as shown in Fig. (2), the state variables B/A and C/A also evolve
with different polynomial orders and values. Based on this, the state space model for the current
site was determined and predictions of the rotor effective wind speed were performed by step-
ahead predictions based on the time delay. The step-ahead predictions of the rotor effective
wind speeds, ŷ(k|k − 1) were based on past Lidar wind speed measurements y(k) until (k − 1)
period, given by Eq. (4). Similarly, û(k|k − 1) is the prediction of u(k) given the knowledge of
past deterministic and stochastic components. The one-step ahead predictions were performed
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mostly to validate the training model, while the infinite-step ahead predictions were performed
with validation data in order to determine if the model accounts for global trends as well as local
trends. For this purpose, the step-ahead prediction errors are minimized by estimating the A,
B and C coefficients accurately. The deterministic and the stochastic coefficients are illustrated
in Fig. (4), where the coefficients form a transfer function of the online estimation system.
The final expression for predicting one step-ahead and infinite step ahead predictions general
equation was given by Eq. (7). Similarly, the state space model for the current experimental
configuration for estimating rotor effective wind speeds was given by Eq. (8), where q−1 is the
backward shift operator representing the time delay in the model. The backward shift operator
simply shifts the time by one unit, e.g. q−1x(k) = x(k− 1) and the predictor variable ŷ(k|k− 1)
means prediction of the output variable y(k) with the knowledge of (k − 1) past observations.

ŷ(k|k − 1) =
B

A
u(k) +

C

A
e(k) (7)

ŷ(k|k − 1) =
0.05q−3 − 0.03q−4 − 0.01q−5 + 0.13q−6 − 0.09q−7

1− 1.06q−1 − 0.5q−2 + 0.62q−3
u(k)...

+
1− 0.03q−1 − 0.53q−2

1− 1.06q−1 − 0.5q−2 + 0.62q−3
e(k) (8)
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ρ = 0.99
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(b) Testing data validation

Figure 5: Correlation plots of Armax model predictions with training data and testing data for model
quality validation.

The wind speed fluctuation prediction capability using Armax model were evaluated by
comparing the Armax model output to measurements at 50m as shown in Fig. (6). The cross-
correlation between the predicted wind speed and the observed wind speed for training data,
Fig. (5a) was about 0.99, and 0.94 for testing data, Fig. (5b). The high correlation indicates
that the model is suitable to perform accurate predictions on fresh datasets. Certain tests like
the auto-correlation function and residual error were additionally performed in order to validate
the model and reduce the model uncertainty. This model was used further for predicting the
wind speeds based on past measured data and future input, e.g. wind speed at 50m as an future
input for predicting the wind speed at the rotor plane.
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2.3. Prediction of rotor effective wind speed using blockage factor
The blockage effect from a wind turbine is a phenomenon, where the wind speed decreases
gradually from about four diameters upwind of a turbine [5], [22], [17]. Due to blade rotation,
the wind flow is accelerated outside of the rotor tip and deccelerates at the central rotor plane
[26], [16]. This influence from the rotor on the incoming wind field was modelled as a body force
in computational fluid dynamic methods like LES, RANS-CFD, etc. The study of this influence
of the wind turbine on the incoming field is relatively seldom and provides an opportunity to
understand the phenomenon using nacelle based Lidar measurements. Using the Biot-Savart
law on Johnson’s vortex sheet theory [27], Medici [5] derived an expression, Eq. (9) for velocity
upstream to the wind turbine; where Ur is the upstream wind speed at hub height, U∞ is the
undisturbed wind speed, ς = x/R is the non-dimensional distance, where x is the coordinate
along the mean wind speed towards the wind turbine and R is the rotor radius. The axial
induction factor a is defined as the fractional decrease in the wind speed, calculated from the
undisturbed free stream speed and the induced wind speed as shown in Eq. (10). The effects
of induction vary with the body forces exerted by the wind turbine on the wind flow, which
is related to the thrust force T and can be derived from the actuator disc theory to Eq. (11)
[5]. Lidar measurements up to two rotor diameters in front of the wind turbine were used to
quantify the blockage factor b and the estimated undisturbed wind speed using the relations
Eq. (9), Eq. (11).

b =
Ur

U∞
= 1− a

[
1 + ς(1 + ς2)−1/2

]
(9)
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where, a ideally refers to

a =
U∞ − Ur

U∞
(10)

T = 2ρπR2U2
∞a(1− a) (11)
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rws1 rws2

rws4 medici

zero induction

Figure 7: Comparison of the blockage effect from Medici’s theoretical model, Lidar measurements rws
0,1..5, based on 6 months data considering wind speed at 185m as U∞.

Medici found through particle image velocimetry PIV, experiments that a wind turbine has
a significant effect on the upstream flow and that the effects can extend up to three rotor
diameters, whereas the effect was insignificant considering the theoretical Eq. (9). Abdelsalam
et al. fitted the Lidar measurements together with Medici’s blockage model to find the axial
induction factor. An axial induction factor of a = 0.27 fit the fractional decrease in wind speed
curve, i.e. Ur/U∞ well for the experimental conditions given which shall vary according to the
control strategy and wind turbine characteristics. It was also observed that a was inversely
proportional to the wind speed i.e. at high wind speeds, lower a was observed and vice versa.
Simley et al. [17] investigated the error in feed-forward control due to induction zone of Lidar
measurements to that of LES models and observed slowing down of wind flow towards the wind
turbine. However, Simley could not produce concrete conclusions to justify that the induction
zone affected the wind speeds significantly. These results lay the foundation for further studies
of blockage effects and wind evolution towards the turbine. When combined with the prediction
method using Armax models and Lidar data, it allows us to make accurate predictions for the
wind speed at the rotor plane.

The Lidar data measured at consecutive ranges was used for the determination of the
blockage factor according to Eq. (9). The data was filtered for anomalies and other atmospheric
constraints, e.g. wind speed range between 1 m/s to 35 m/s. Three cases were established
in order to study the blockage effect for XD115 turbine at the Lawine test site using the
fractional decrease in wind speed, Medici’s equation employed in different ways to use Lidar
data appropriately. Case 1 is the simplest form based on the definition of axial induction factor,
Eq. (10), where two range gates, e.g. 110m and 95m were considered. Here, the wind speed at
110m was considered as U∞, while the wind speed at 95m as Ur. Each range gate combination
provides a mean blockage factor. Case 2 assumes U∞ to be the wind speed at 185m for all
the combinations, while Ur changes simultaneously towards the turbine. The blockage effect for
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all Lidar beams for Case 2 can be seen in Fig. (7). Every beam except the RWS3 follows the
fractional decrease of the wind speed. The effect of the ground accelerating the flow as a walled
boundary, similar to the effect in the wind tunnels could be observed. This is confirmed by the
LES plots made by Simley et al. [16] and PIV observations by Hong et al. [26]. For Case 3, two
consecutive Lidar range gates were considered simultaneously, where Ur1 and Ur2 are the wind
speed time series at each range gate. By solving the simultaneous equations for two range gates,
the blockage factor b and the undisturbed wind speed U∞ could be iteratively approximated.
Case 1 and Case 2 consist of one unknown parameter b, achieved by solving one equation, while
Case 3 has two unknowns, since it assumes that only the Ur value is known. The Matlab’s solve
function was effectively used to solve multivariate simultaneous equations thus created for the
whole time series. The cases are discussed as follows:

Case 1: Simplest form of speed reduction, i.e. b = Ur/U∞.

Case 2: Assuming wind speed measured at 185m as U∞, while Ur is the consecutive Lidar
measurement ranges; i.e. U∞ = 185m, Ur = 185, 170...50m.

Case 3: Using Ur1 and Ur2 from two consecutive Lidar range gates to form two simultaneous
equations to solve iteratively for a and U∞; i.e. Ur1 = 185m..., Ur2 = 170m....

The blockage factor for the above cases was determined for ten Lidar ranges from 185m to
50m in front of the wind turbine, each separated with 15m distance apart. In order to determine
the rotor effective wind speed, the blockage curves and the U∞ curves were extrapolated to the
rotor. By substituting the extrapolated b and U∞ into the Cases, the rotor effective wind speed
Ur can be calculated. The blockage factor for all three cases and their extrapolated curves for
a single 10 minute time series with 4 Hz sampling rate as shown in the Fig. (8) and the results
were comparable when other time series are used. For Case 3, the blockage factor at the turbine
was given by b = 0.78 and the undisturbed wind velocity was U∞ = 13.2m/s. Using these
inputs, the actual wind speed at the rotor blade (5m in front of the turbine) can be estimated,
which was Ur = 11.2m/s. Considering the distance between the estimated wind speed and the
last measurement point at 50m, the time delay for the wind fields to reach the turbine can be
estimated, therefore τr = ∆xf/Ur ≈ 16 lags ≈ 4 seconds, where ∆x is the distance between
50m and the wind turbine and f is the sampling frequency. This is the time available for the
controller to react after the last measurement was performed, which was less than the preview
time restriction of 2 seconds. The Ur and τr so achieved, were coupled with the fluctuations
achieved with the help of Armax model for comparison with the Ūwe from ECN’s model.

Table 1: Parameters involved in Medici’s equation for the three cases at the rotor plane.

Cases U∞ b Ur τr
Case 1 12 m/s 0.12 10.56 m/s 4.25s
Case 2 13 m/s 0.38 8.8 m/s 5s
Case 3 13.2 m/s 0.22 11.2 m/s 4s

3. Results and Discussions
By predicting the wind speed at regular intervals, a differential equation that evolved towards
the wind turbine over a distance of two rotor diameters was derived. The evolution of the Armax
model’s coefficients from 185m to 50m in front of the turbine using Lidar measurements was
studied by using carefully measured experimental data at ECN’s test site. Fig. (9) illustrates
the mean behaviour of the wind speed which corresponds to the behaviour of deterministic and
stochastic coefficients in the Armax equation. Fig. (4) shows the evolution of the deterministic
and stochastic coefficients towards the wind turbine. The gradual rise in the deterministic
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Figure 8: Comparison of blockage factors emerging from three cases defined, extrapolated to the rotor.

and stochastic coefficients suggests non-linearity in the model as the model moves towards the
turbine. The Armax prediction model estimates the wind speeds into the future well as can
be seen from the Fig. (5b). By combining this prediction of the fluctuation with the different
means as shown in Tab. (1), it was possible to derive the rotor effective wind speed as shown in
Tab. (2).

Table 2: Comparison of the mean statistics and parameters for wind turbine control.

Method Ū u′ ρ τ Uncertainty
Unit (m/s) (m/s) - sec %
ECN’s model 11.9 1.24 1.00 - 12%
Taylor’s frozen 12.3 0.73 0.87 4s 3.22%
Induction + Armax 11.2 0.65 0.86 4s 2.56%
Armax 12.3 0.65 0.86 4s 2%

Currently, no methods are available to accurately measure or derive the actual rotor effective
wind speed. However, the estimated rotor effective wind speeds using ECN’s model was used as
the most representative signal for comparing different methods. The signal was highly fluctuating
with low availability an estimation uncertainty of 12%. The uncertainties in the prediction
models are based on the standard error calculation σ/

√
N and the measurement uncertainty

(1%) involved with the Lidar itself. For the Case (Induction+Armax), an additional uncertainty
based on the iterative Matlab solver error is introduced. The high uncertainty of the ECN’s
wind speed signal prohibits to measure the time delay and correlation accurately, which leads to
a higher uncertainty in the comparisons itself. The estimated wind speeds represent the thrust
force applied on the wind turbine by the energy contained in the wind and thus, the signal was
assumed to provide adequate accuracy required for control purposes at present. Considering
the high uncertainty involved, the trends and the gust present at approximately 50 seconds
and around 490 seconds were accurately modelled by all of the estimation methods and a high
correlation, ρ > 0.85 was achieved as shown in Tab. (2), even though wind speed estimated by
the ECN model does not filter for nodding and tilting of the wind turbine.

The inclusion of the blockage effect along with the predictions of the Armax model present
a new direction for using the Lidar measurements with the numerical prediction models for
wind turbine control. The blockage effects for the three cases as explained earlier are shown
in Fig. (8). The mean wind speed at the rotor is the parameter of interest here and Case 3
provided the most reasonable estimate for further implementation as can be seen in Tab. (1).

Fig. (9) illustrates the mean statistics of the wind measured for 10 minute time series
over a period of 6 months from July 2013 to December 2013, where the effect of blockage
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and higher turbulence intensity could be seen clearly. Tab. (2) shows the time series for all
methods compared in this study, where Ūr is the mean rotor-effective wind speed, u′ is the
mean deviation, ρ is the correlation coefficient and τ is the time delay between 50m and the
rotor. Fig. (10) illustrates the comparison of rotor effective wind speeds estimated using different
models discussed i.e. ECN’s model, frozen model, the induction plus Armax model and the
Armax model. The time delay and the mean wind speeds were adjusted for the corresponding
models and for better comparison. The correlation plots for estimated wind speeds using these
models were shown in the Fig. (11) and display a high correlation coefficient. Due to the low
roughness variation at the test site and due to fluctuating reference wind speed signal, the
frozen turbulence assumption performs as good as the Armax modelling. However, there were
sufficient studies performed to prove the inapplicability or the restriction of using Taylor’s frozen
turbulence for wind energy control in all site conditions [17], [28], [29], [30]. The power spectral
densities for the different wind speed signals is shown in Fig. (12), where different signals are
comparable at low frequencies upto 0.06 Hz. At high frequencies, both the Armax based models
were similar, while the frozen turbulence model has higher spectral content suggesting higher
variance and thus contributing to a marginally higher correlation with ECN’s model. The low
variance in the Armax modelling was due to the moving average stochastic model, which filters
the signal with a low-pass filter to allow for wind turbine control.
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Figure 11: Correlation matrix for wind speed comparisons between the ECN’s model and the wind speed
predictions (left to right) from Frozen turbulence, Armax and Induction+Armax models.

4. Conclusions
Although the model is yet to be extensively validated, it shows potential for estimating wind
speeds with high certainty. Such models incorporating the effects of wind turbine blockage and
the prediction capability of the Armax models are seldom found. The Armax model predicted
the wind speeds accurately to correlate with the test data with a correlation of ρ = 0.94. The
evolution of B/A and C/A coefficients towards zero suggest increasingly non-linearity towards
the turbine and thus higher disagreement with the linear frozen model. When the individual
beams were compared, it was observed that the beams followed the general notion of fractional
decrease of wind speed. However, one beam displayed an increase in wind speed marginally,
which can be associated with the walled flow concept from wind tunnels. Case 3 performed
the best of all the cases, leading to a mean wind speed of 11.2 m/s, with a blockage factor of
b = 0.78 and a time delay of τr = 4sec, which allows enough time for a wind turbine control
action. Initially, a low correlation was observed when the prediction models were compared with
the reference ECN’s wind speed signal. The highly fluctuating wind speed signal from ECN’s
model had high frequency terms due to the wind turbine nodding and tilting action and required
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Figure 12: Comparison of power spectral densities for unfiltered (above) and filtered (below) time series
of predicted wind speeds using ECN’s model (Uwe), Armax, Induction+Armax and Taylor’s
frozen turbulence model.

low pass filtering for comparison. Before filtering, the correlations were about ρ = 0.75 and the
correlations improved to about ρ = 0.86 after filtering. It was observed with the help of long
term measurements that the blockage effect significantly affected the mean wind speed close to
the turbine and thus, Taylor’s frozen turbulence has higher uncertainty depending on weather
conditions. The different models however display high coherence until 0.06 Hz.

5. Further Work
The model needs to be extensively validated for different conditions, e.g. complex site, blockage
effect when the turbines are idle. The model needs to be checked if it can distinguish the
effects of wind turbine blockage on the fluctuating part. The sensitivity of the model to surface
roughness, wind shear and site and weather conditions shall be pursued. The model can be
represented as a transfer function using Eq. (8) to assist in wind turbine control which can be
extended to develop relationships between the rotor effective wind speeds and the wind turbine
loads. Using a less noisy wind turbine based rotor effective wind speed estimate, to correct the
correlations between the corresponding measurements.
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