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ABSTRACT

Traditionally, archaeological investigations, especially archaeological remains detection,
mostly depend on human observation. In order to find the objects in large areas, a lot
of fieldwork has to be done and it takes a long time for archaeologists to travel around.
Nowadays, the development of LIDAR provides accurate 3D geometric information,
which can be used for computer-based detailed terrain study. The application of
deployment of computer vision methods also provides a new idea for the automatic
object detection approach.

In this study, the neural network architecture "ResNet18" was applied to airborne LiDAR
data from the Western regions of Slovakia for the automated detection of undiscovered
Neolithic Circular Enclosures (also called rondel in the thesis). NCEs are mysterious
stone hedge-like rings scattered through Central/Eastern Europe. The LiDAR data was
processed into digital rater data and realized data enhancement by the visualization
technique – Simple Local Relief Model (SLRM). Since the positive samples were limited,
expanding the training dataset was crucial and was realized by data augmentation
methods based on the positive samples of rondels. The augmented roundels were
created by cropping the real roundels and pasting them on the new empty areas after
slight modification. After that, the positive image samples and the same number of
negative image samples constructed the whole data set and it was divided into two parts
– training data and test data. After the training process of ResNet18, the performances
of deep learning models with different combinations of parameters were evaluated,
and the selected model was applied to a large area (44276 × 29984 m2), the spatial
distribution of the probabilities could be observed and 32 possible new rondel areas
were chosen for further validation.
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1
INTRODUCTION

In this chapter, the background of our archaeological object of interest, the problem
statement and the research questions are presented. This part also provides an overview
of the thesis structure.

1.1. NEOLITHIC CIRCULAR ENCLOSURES (NCES)

Neolithic Circular Enclosures (NCEs) are a kind of mysterious stone hedge-like
rings scattered in Europe, especially from the Middle and Late Neolithic period
(approximately 7000-4000 B.C.), which are also called rondels (roundels) in Czechia
and Slovakia or kreisgrabenanlagen in German [1]. In Central Europe, there are
about 120-150 known Neolithic circular enclosures. These earthworks seem to follow
a common set of building rules - they generally consisted of 1-4 circular ditches,
interrupted by causeways and at least 2 entrances [2]. An example NCE structure is
shown in the Figure 1.1.
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Figure 1.1: Reconstruction (model) of the Künzing-Unternberg rondel, Museum Quintana, Künzing, Lower
Bavaria (800 × 600 pixels)[3].

1.2. PROBLEM STATEMENT & RESEARCH QUESTIONS

1.2.1. PROBLEM STATEMENT
According to current archaeological research, although rondels have some common
structure, they have great variability in shape, size and other details. Hence their
characteristics can hardly be defined exactly. Moreover, these Neolithic Circular
enclosures have experienced different degrees of structural damage in the past
few thousands of years. Methods for automatically identifying rondels from aerial
images using machine learning could be of great value for future archeological
research. However, devising reliable methods can be difficult, since many natural and
human-made structures can look like rondels and little information is available about
how rondels appear in aerial images. In this project, the digital rater data derived from
the airborne LiDAR data is used. In order to realize feature extraction, the raster data
needs to be processed into images in several steps.

On the other hand, deep learning is showing the potential of automatic object detection
in many fields. It allows automatically features extraction from large amounts of images
instead of manually. That’s why in this project the research on the viability of the
detection of roundels was based on deep learning methods, especially Convolutional
Neural Networks (CNNs). One challenge of this approach is that deep learning methods
require a large data set for training and feature extraction [4], which is not available
in this project. Thus it is necessary to apply an augmentation method to expand the
limited amount of positive training examples.
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1.2.2. RESEARCH QUESTIONS
Main research question :
• Are CNNs suitable for detecting archaeological features through aerial height imagery
based on a limited amount of positive samples?

Sub-questions :
• What are the characteristics of rondels in images acquired by LIDAR?
• How can we train a good NCEs detector given the small size of the training data set?
• What is a good way to measure the performance of the classifier?
• How does the performance vary depending on how the network was trained?
• What’s the performance when the model applied to larger areas?
• Can new NCEs be detected using this method?

1.3. THESIS STRUCTURE
The thesis consists of six chapters. Chapter 1 is the introduction of the project objectives
– Neolithic Circular enclosures (NCEs), as well as the research problems and thesis
structure. Chapter 2 presents the published work involving the main methods used for
the approach in this research, which contains introduction of LiDAR data, methods for
data pre-processing and deep learning neural networks. Chapter 3 presents the details
about the introduction of data used in this project and the pre-processing application
prepared for following operations. Chapter 4 is the part about methodology, which
shows the workflow and more details about the main process to achieve the research
objectives. In Chapter 5, the results for each of the main steps are shown, and the results
are discussed and analyzed. In addition, several possible new rondels are selected for
further verification. Chapter 6 concludes the answers to the research questions and
gives recommendations for future work.
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LITERATURE REVIEW

In this chapter, different concepts and methods related to the research objectives are
introduced based on the previous work. In section 2.1, there are basic principles to
the LiDAR system, as well as its output – point clouds. In section 2.2, two visualization
techniques and their methods are introduced. In section 2.3, there is an introduction to
deep learning networks and their wide use in the research area in recent years.

2.1. LIDAR AND POINT CLOUD
LiDAR is the abbreviation of "Light Detection And Ranging". It is a remote sensing
technology for the acquisition of 2.5D data [5] by using a laser and recording the
reflecting time from the laser to the object. Because the speed of light is known, the
range from the sensor to the object can be measured by the product of the speed of light
propagation and the travel time. The computation is shown as equation 2.1, in which
"d" represents distance between sensor to target, "c" represents the speed of light, and
"t" represents the travel time.

d = ct

2
(2.1)

A LiDAR system including a laser, a scanner and a GPS receiver [6]. Based on different
scanner platforms, LiDAR applications can be divided into space-borne, terrestrial,
airborne types [7]. Airborne LiDAR platforms like airplanes and helicopters are the most
common LiDAR systems [6]. The output of a LiDAR system is a 3D points collection
called a "point cloud". A point cloud has the information about X,Y coordinates and the
elevation (Z), the intensity of each point and sometimes the classification of the LiDAR
data [8]. The LiDAR data is applied increasingly to archaeology, because the output
products from the LiDAR can be used for deriving high-resolution elevation models and
extracting 3D Earth surface features [9].

5



2

6 2. LITERATURE REVIEW

2.2. VISUALIZATION TECHNIQUES
In recent years, the development of high-resolution digital topographic data is becoming
more valued for automatic detection of archaeological features, instead of human
observation [10]. The original point cloud LiDAR data was processed into Digital Terrain
Model (DTM) and Digital Surface Model (DSM) raster data [11]. Elevation features of
rondels can be helpful for automated detection because of the presence of circular
features in the elevation due to the ditches.

Applying a visualization technique to LiDAR data to enhance terrain is a promising
approach for characteristics extraction of rondels. There are various visualization
techniques, such as Hill-shading, Simple local relief model, Sky-view factor etc [12].
Each one of them has its strengths and weaknesses in usability and efficiency [13].
According to an earlier study, the hill-shading is the most common visualization
technique of archaeological landscapes [14]. Simple Local Relief Model is considered
the most useful for raster elevation data [14]. Thus, we applied and compared the
performance of these two visualization techniques – hill-shading and Simple Local
Relief Model (SLRM) based on the elevation model raster dataset.

2.2.1. HILL-SHADING
Hill-shading (also known as relief shading or shaded relief) [12], is a technique for
visualizing terrain by simulating the effect of natural light on the elevation surface
according to the intensities of reflected light at the land cells, as shown in Figure 2.1.
Hill-shading creates three-dimensional surfaces from a two-dimensional display.

Figure 2.1: Formation of a hill-shade image [15].

Depending on the angle of incidence, hill-shading can be divided into two categories:
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traditional hill-shading and multi-directional hill-shading [15]. While traditional
hill-shading calculates mountain shadows from a fixed single light source direction, the
multi-directional method can calculate mountain shadows from multiple light source
directions [15]. Compared with the single light source hill-shading technique, the light
from multiple sources can be fused to enhance the visualization of the terrain, since
it overcomes the inability of representing linear objects parallel to the direction of the
light source, as well as the saturation of shadow areas[14].

2.2.2. SIMPLE LOCAL RELIEF MODEL (SLRM)
SLRM is a visualization technique used for creating "difference maps". The basic idea
of SLRM is to generalize the terrain surface by subtracting the smoothed surface and
getting a small-scale local elevation difference map [14]. The new model highlights
archaeological features and removes the influence of the natural landscape. Therefore
SLRM is considered the most efficient model to visualize elevation raster data
[16]. Moreover, since small-scale local elevation difference maps can be used for
exploring possible structures of earthworks, SLRM is one of the most useful models for
archaeological prospection [17].

The first main step of SLRM creation is to create a smoothed surface by using a low
pass filter based on a fixed circular neighborhood radius, then subtract the differences
between the original elevation model and the normalized surface. That’s how we get the
final difference map [18]. An example of such final difference map is shown in Figure 2.2

Figure 2.2: A SLRM difference map based on DTM raster data.

2.3. DEEP LEARNING
In recent years, deep learning approaches are being progressively used for the automatic
detection of archaeological objects, especially deep learning convolutional neural
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networks (CNNs).

2.3.1. INTRODUCTION TO DEEP LEARNING
Deep learning is a subdomain of the machine learning. Machine learning algorithms
are trained on examples to learn a task in a similar fashion to how humans learn. In this
way, the computer can learn to perform classification or detection tasks directly from
images, text or other kinds of samples [19]. Models are trained according to labeled
data. A neural network contains three kinds of layers – an input layer, hidden layers and
an output layer, of which the structure is shown in Figure 2.3. The number of hidden
layers can vary depending on the problems. Traditional neural networks only consist
of several hidden layers, but deep learning neural networks can contain hundreds of
hidden layers, which increases the complexity of automatically features extraction[19].
Thus, some of the models show much better results than ever before. That’s why deep
learning methods are getting more and more attention in many research fields in recent
years.

Figure 2.3: The structure of Neural Networks [20].

2.3.2. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
CNN is a specialized type of artificial neural network that uses a mathematical operation
– convolution in the layers [21]. It was first popularized by Yann LeCun, for hand-written
digits images classification [19]. As a multi-functional solution, CNNs can work well
when large amounts of data is available.

In CNNs, convolution operations are applied in the input and hidden layers. These
layers convolve the input matrix by convolution kernels and create the feature map by
sliding the convolution kernel along the input matrix, then the feature map is passed
to the next layer. Moreover, there are other layers called pooling layers (aggregate
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the characteristics of different locations by pooling operations, such as max pooling
or average pooling ), fully connected layers (turning feature map matrix into a single
column), etc [21]. The basic architecture of CNNs is shown in Figure 2.4.

Figure 2.4: The structure of Convolutional Neural Network [22].

The pattern and shape recognition ability of CNNs is valued and widely used, which
makes them the standard algorithm used for object detection tasks [23]. According to
[23], most machine learning methods can only use the shape of single-row vectors of
inputs. However CNNs are able to use the multi-dimensional shape matrices of the
inputs and extracts characteristics for landmarks in multiple directions. That’s why
CNNs show more sensitivity for pattern recognition in images.

As for the limitation of CNNs, on the one hand, the visualized quality of the
archaeological data varies which adds uncertainty to feature extraction in CNNs.
Additionally, the amount of archaeological data is generally not large enough for
effective training [10]. These caused difficulty in the effectiveness of CNNs.

There is a variety of deep learning networks based on CNNs. Recently, one of the most
famous algorithms for object detection is called YOLO (You Only Look Once) [24]. It is
popular because of its high speed and accuracy. Figure 2.5 shows an example structure
of YOLO.
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Figure 2.5: The structure of YOLOv5 [25].

For application, firstly we should draw bounding boxes for training images in software
and generate the class text file automatically [26]. After classification, the outputs of
YOLO are the new bounding boxes for images, the score of the class possibility and the
labels. YOLO can be an extremely fast and high-accuracy algorithm in some situations,
but also has limitations. In this project, We avoided drawing bounding boxes because
there was no way guarantee that they would be drawn consistently. Thus we consider
using another network – ResNet (Residual Network).

2.3.3. RESIDUAL NETWORK(RESNET )
Residual Network was created in 2016 as a method that adds the residual block into
the neural networks to allow the efficient training of deeper networks [27]. During the
general training process, the accuracy should increase with the depth of the layers.
However, it is found that the accuracy will saturate at a certain point and then begins
to decrease with the depth increase of layers [28]. That causes hard training problems.
That’s why the residual block is used.

The residual block contains two parts: the main path and the skip connection. If the
input is x, the output - desired mapping is H(x). In the residual networks, the layers fit
the residual mapping F(x)=H(x)-x instead of fitting the ideal mapping F(x) directly, and
then add the learned residual information to the original output. The residual mapping
is often easier to optimize in practice. When the residual is 0, the network is an identity
mapping from x to F(x), as shown in Figure 2.6. The output from one layer skips several
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layers in the identify block. It is easy to learn the identity mapping, which can ensure
that the performance of the original network will not be affected after being deepened.

Figure 2.6: The Residual Block (identity block)[27]

Because of the realization of identity mapping in ResNet, the increase of layers will not
reduce the network performance, which allows us to train deeper networks [28]. In our
project, I will use ResNet18 for the classification task, the example ResNet18 architecture
which has 1000 classes (1000 means the total number of scene and object categories in
photographs according to [29]) is shown in Figure 2.7.

There are 17 convolutional layers and one fully-connected layer, which generates the
"18" in ResNet18 [28]. In practice, a Softmax layer is usually added afterward to present
the probability of each class. ResNet18 has a simpler structure and is easier to be
modified without worrying about the “Vanishing Gradients” problem. More details of
the parameters of the network will be shown in chapter 4.
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Figure 2.7: An example architecture of ResNet18 [29].



3
DATASET

In this chapter, the details of the LiDAR data and the rondels are introduced, as well as
the main pre-processing operations on the data. This part is the cornerstone of Chapter
4.

3.1. INTRODUCTION TO SLOVAKIAN LIDAR DATA

The project is applied to image generated from airborne LiIDAR data from the Western
regions of Slovakia. The LiDAR data was created by the Geodesy, Cartography and
Cadastre Authority of the Slovakia Re-public (ÚGKK SR), which was collected as a point
cloud via Airborne Laser Scanning. The coverage of the data is shown in Figure 3.1.

The original point cloud LiDAR data was processed into Digital Surface Model (DSM)
raster data and Digital Terrain Model (DTM) raster data [11]. The DTM/DSM raster
data are 2.5D elevation models derived from the LiDAR point cloud. DTM is the
digital expression of topographic information with spatial position features and terrain
attribute features. DSM is an elevation model which includes the height of landmarks,
such as buildings, bridges and trees [30]. LiDAR DTM/DSM data in our project are
shown in Table 3.1. The basis for the work is from a preliminary study by Eric Prehn [11],
a master student from Leiden University. He has already worked on the pre-processing
of the LiDAR data such as visualization techniques selection and preliminary data
augmentation for the following archaeological purposes.

13
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Figure 3.1: The coverage of the Slovakia LiDAR data for this project (The green parts of the map: LOT01 to
LOT29 without LOT15, LOT16 and LOT28). Slovakia was devided into 42 parts and was numbered from LOT01

to LOT42. (source of the map: [11])

Attribute Detail
Provider and Owner Geodetic and Cartographic Institute Bratislava (GKÚ)

Source Reference ÚGKK SR
Ground Sampling Distance (GSD) 1 m/pixel

Format TIFF + TFW
Number of channels 1

Coordinate reference system ETRS89-TM34+hETRS89 -EPSG code:3046

Table 3.1: Details of LiDAR DTM/DSM data (source: [11]). The full name of ÚGKK SR is "Úrad geodézie,
kartografie a katastra Slovenskej republiky" [31], which means the Office of Geodesy, Cartography and

Cadastre of the Slovak Republic.

3.2. KNOWN RONDELS

In the research area – the Western regions of Slovakia, there are 35 known rondels, which
are numbered from "Slovakia 1" to "Slovakia 35" [11]. The rondels have a common set
of building rules - they consisted of 1-2 circular ditches interrupted by causeways and
each of the ditches is nearly 80–200m in diameter. Their existence has been verified
by archaeologists in Slovakia. Their locations were extracted through the open source
Geographic Information System software – Qgis [32]. After that, the visualization
techniques were selected to derive images for data set construction later.
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3.3. PRE-PROCESSSING

As mentioned in Section 2.2, two visualization techniques were applied – Hill-shading
and Simple Local Relief Model (SLRM). Moreover, the techniques were applied to two
types of data – Digital Terrain Model (DTM) and Digital Surface Model (DSM) raster data.
The DTM raster data is used to express topographic information. The DSM raster data
was also used because some rondels may have on-surface remains or the vegetation
around the rondels may have distinctive features through airborne data. That’s why it is
also worth visualizing these parts for rondel detection.

For hill-shading, altitude and azimuth are the most important characteristics for
building the 3D model, as shown in Figure 3.2. Altitude is the solar elevation angle above
the horizon and azimuth is the relative position of the sun along the horizon (in angular
units) [33]. In this project, the altitude is 45 degrees and azimuth is 315 degrees from the
northwest (these are standard settings according to [14]). Some hill-shading images are
shown in Figure 3.3.

Figure 3.2: Creating a hill-shading from the topographic model [34].
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A hill-shading image based on DTM data. A hill-shading image based on DSM data.

Figure 3.3: Hill-shading images of a rondel (the rondel is in the middle of the images in the bounding boxes).

For SLRM, the most important parameter is the radius for trend assessment in pixels
[35]. In this case, the value of the radius was set as 20, which means that the average cell
elevation is based on the 20 nearest pixels (20 meters). Next this the average elevation
was subtracted from the cells. Two examples of SLRM images are shown in Figure 3.4.

A SLRM image based on DTM data. A SLRM image based on DSM data.

Figure 3.4: SLRM images of the same rondel as shown in Figure 3.3 (the rondel is in the middle of the images
in the bounding boxes).

When we compare the 4 images in Figures 3.3 and 3.4, it is obvious that the SLRM
image based on the DTM raster data shows the best visualization, because the rondel
looks the clearest in the image. Therefore all 35 rondels were derived by SLRM and
hill-shading techniques based on the DTM and DSM raster data. The results showed
that the SLRM-DTM data had the best visibility. From the 35 rondels, 20 of them are
visible to the naked eyes. The 20 images and their corresponding identifiers are shown
in Figure 3.5. Based on the 20 selected rondels, we used an augmentation method to
expand the limited training data set.
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Figure 3.5: The 20 visible rondel images derived by SLRM based on the DTM raster data (all of them are 512 ×
512 pixels).





4
METHODOLOGY

This chapter presents the methodology of this project.

4.1. OVERVIEW OF WORKFLOW
The workflow of the project is shown in figure 4.1. It is divided into 5 main color coded
parts. Then more details will be provided in the following sections.

Figure 4.1: Overview of workflow.

19
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4.2. DATA AUGMENTATION
A schematic of augmentation is shown in Figure 4.2. Augmentation is divided into these
steps:

Figure 4.2: The process of creating one augmented rondel.

Step 1 First the rondel is cropped from the original area. Considering the variety of the
sizes of different rondels, the bounding boxes were set up for rondels. An example of the
original rondel and the cropped rondel is shown in Figure 4.3.

Original rondel image Cropped rondel in the bounding box

Figure 4.3: The first step.

Step 2 Secondly, the empty areas were chosen for pasting augmented rondels. An
"Empty area" means an area without rondel. In order to expand the data set, 50 empty
areas were chosen for each original rondels.

Step 3 The cropped rondels were modified slightly and the new "fake" rondels were
pasted on the empty areas. That’s how we get augmented rondels.

Step 4 During the application of the process, the last step is to select useful augmented
rondels. In step 2, "fake" rondels might be pasted on areas with channels, roads, rivers,
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or houses. For example, in Figure 4.4, there are 9 augmented rondels based on Slovakia
15, which are numbered from 15-1 to 15-9. After selection, only augmented rondel 15-4,
15-5, 15-7, 15-9 were selected to build the dataset.

Figure 4.4: The 9 augmented rondels of Slovakia 15 Among the images, the augmented rondels 15-4, 15-5,
15-7, 15-9 were approved as training data. Other "fake" rondels positioned on the channels, roads or water

areas and can not be used.

4.3. DATASET CONSTRUCTION
The construction of the data set is crucial to the performance of the network. Generally,
the data set is randomly split into "training data" and "test data" [36]. The training data
is used for training a model, the test data is used for evaluating the model performance.

However, test data should be independent of training data to avoid data leakage [36]. In
this project, the augmented rondels are the replicas of the real rondels, if one real rondel
and its augmentation exist in different file folders (training folder and test folder), the
accuracy of test data will be higher than the true value. That’s why the real rondel and
their augmented rondels were put together.

As for the negative dataset, the same number of negative samples as the positive ones
was used. This structure makes positive and negative data set have a balanced number
of samples. The negative samples are from the other areas of Slovakia which have no
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rondel. In general, the ratio of positive and negative samples should be the same as the
actual situation. However, in this project, there are only a few rondels in Slovakia, which
means the number of negative samples is far more than the positive ones. If the real
ratio in reality was used, there is a large probability that the computer ignores the rondel
and fails to extract the features from the rare objectives. If the real ratio was used, even
if there were many examples of rondels, the optimization algorithm could still decide
to minimize just by calling everything negative. According to the related work, feeding
the classifier with unbalanced data may make it biased towards the majority of classes,
because it did not have enough data to learn from the minority classes [37]. When facing
classification problems on rare objectives, similar proportions of positive and negative
samples are recommended. The experiments in [38] and [39] can also indicate that
the balanced data produces the highest balanced accuracy. Although there are some
disputed opinion on it, it is the most common setting for binary classification problem.
That’s why the positive and negative samples are balanced in quantity in this project.

Thus, the data structure was set up as figure 5.2.

Figure 4.5: The structure of the traing and test data set.
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4.4. THE RESIDUAL NETWORK STRUCTURE
The Residual network was built according to the structure shown in Figure A.1 using
Pytorch A.1, the Residual Network was built using Pytorch [40]. There are 5 blocks, one
fully connected layer, and one softmax layer in the network. The first block is a block
with convolutional layers. From block-2 to block-5, each of them consists of 2 residual
blocks, and each of the residual blocks has 2 convolutional layers. For the network, the
inputs are images with fixed size – 224 × 224 pixels. And the outputs of the softmax layer
are the probabilities of the rondel existence.

4.5. NETWORK TRAINING
After building up the deep learning network, the next step is training the network. At
the beginning of the training process, the input images were normalized in fixed size
and transformed into tensors. Then the tensors were fed to the network. To improve the
running speed of training, a GPU server was used. 300 epochs were used in the process.

There are several essential parameters controlling the training process. The values of
batch size, initial learning rate, as well as the different kinds of optimizers were modified
to observe the influence on their performance.
• Batch size: Batch size is the number of samples in one iteration [41]. If the batch size
is too small, it is hard to converge. If the batch size is too big, it is hard to learn details.
The values of batch size were 16, 32, and 64 in this project.
• Initial learning rate: The initial learning rate must have an optimal value. If it is too
small, the model will converge slowly or cannot learn. If it is too large, the model will
not converge. The initial learning rates were 0.01, 0.001, and 0.0001 in this project.
• Optimizer: 2 optimizers were applied for training – SGD (Stochastic Gradient Descent)
and Adam (Adaptive moment estimation) [42].

4.6. EVALUATION

4.6.1. CROSS-ENTROPY LOSS FUNCTION
To measure the performances of training results, the Cross-Entropy Loss Function was
used. The function calculates the difference between the model’s prediction and the
actual probabilities, as shown in Function 4.1 [43]. That’s why it is used for performance
evaluation in this research when the probabilities of rondels are given out. In the
function, "p" means the real probability(which is 1 or 0 in this project), and "q" means
the predicted probability. Lower value of loss represents better performance of model.

H(p, q) =− 1

n

n∑
i=1

p(xi ) · log q(xi ) (4.1)

For each epoch, the value of test accuracy is computed by the ratio of the right prediction
to total prediction [44]. The loss and accuracy are complementary and essentially the
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same, so they have an opposite trend. They can be used for evaluating the performance
of the network for each model, the changing values of test loss and accuracy can also be
observed in these ways.

4.6.2. RESULTS CLASSIFICATION
In order to evaluate the performance of classifier, the threshold was set to 0.5 (or 0.75)
for results testing. If the probability is larger than 0.5 (or 0.75), the test image is regarded
as containing a rondel. If the probability is smaller than 0.5 (or 0.75), a image is regarded
as the one without rondel. Thus the accuracy of the model can be calculated by the
equation 4.2 [44]. In this project, the number of rondels is small in the large area. If a
large number of empty areas are predicted as areas with rondels by the model, humans
will have to spend a lot of time checking the potential sites. That’s why the number
of true positives and false positives is essential for model performance evaluation,
especially the number of false positives, which should be as small as possible (while
keeping the ability to actually detect some of the rondels). The precision of the model
is calculated by the equation 4.3 [44]. Moreover, based on the classification results,
the number of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) can be observed and use to create the confusion matrix which is shown
as Table 4.1.

Accur ac y = T P +T N

All
(4.2)

Pr eci si on = T P

T P +F P
(4.3)

Actual
Predicted

Positive Negative

Positive TP FN
Negative FP TN

Table 4.1: The confusion matrix.

4.6.3. PROBABILITIES DISTRIBUTION
On the other hand, setting the threshold value may not be the best way to evaluate the
results. The distribution of probabilities over a large area can also be an effective way to
reflect the performance of the model. That’s why the selected model was applied on a
larger area and the spatial distribution of the probabilities was observed. As mentioned,
the research area contains 26 parts. The model was particularly applied on the area
numbered "LOT05", because here most roundels - 7 rondels are located(Figure 4.6).
According to the combination of possibilities and naked eyes, possible new rondels can
be selected for further validation.
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Figure 4.6: The DTM map and location of rondels on LOT05.

4.7. THE COMPARISON GROUP
According to the publications, generally CNNs can work well when large amounts of
data is available. That’s why the number of positive samples was expanded, considering
the limited number of real rondels in this project. However, when the original rondels
were cropped and pasted on the new areas, there was a possibility that the original
geographic characteristics lost in the process and this would result in information loss
and produce a worse model. In order to evaluate the usefulness of data augmentation,
a comparison group was created with a training data set without augmented rondels.
In this data set, all the 20 real rondels are used for training. Thus the new training data
set has 40 samples. Half of them are positive samples and the other ones are negative
samples. After the training process, the new model will be applied on the previous
selected possible new rondels. The new probabilities would come out and be used for
comparison.





5
RESULTS & DISCUSSION

In this chapter, the results are shown, and discussed. The possible new rondels are
selected for further verification.

5.1. RESULTS OF DATA AUGMENTATION

According to the methods and steps discussed in Section 4.2, 50 new empty areas were
choosen for creating augmented rondels for each original rondel. The augmentation
examples are shown in Figure 5.1. The input of the augmentation are the 20 original
rondels, 1000 new empty areas (50 for each original rondel), and the bounding boxes.
The output consists of the augmented rondels. The numbers of obtained augmented
rondels are shown in Table 5.1. Then the results are ready for training and test data
construction for CNNs.

27
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Figure 5.1: Examples of data augmentation.

Number of
augmented rondels

Slovakia 1 29
Slovakia 2 28
Slovakia 4 20
Slovakia 5 35
Slovakia 6 20
Slovakia 7 22
Slovakia 8 25
Slovakia 9 19

Slovakia 10 30
Slovakia 12 16
Slovakia 14 22
Slovakia 15 24
Slovakia 19 14
Slovakia 20 19
Slovakia 24 4
Slovakia 30 27
Slovakia 32 13
Slovakia 33 19
Slovakia 34 19
Slovakia 35 16

Total 421

Table 5.1: The numbers of augmented rondels based on 20 original rondels.

Based on the augmentation results and the method mentioned in section 4.3, the data
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set was created for the following training and test process in CNNs.

At first, the 20 rondels were divided into 2 parts. The ratio is 7:3, which means 14 rondels
for training and 6 rondels for test were used. Then the corresponding augmented
rondels were added to the positive data set. In addition, I choose 337 samples from the
negative data. In this way the negative samples and positive samples are the same in
number, and the training data set consists of 674 samples. On the other hand, the test
data set has the same construction as the training one. Thus the whole data set has 882
samples, the structure can be shown in Figure 5.2.

Figure 5.2: The structure of the dataset.

5.2. RUNNING RESULTS AND MODELS

Different combinations of characteristics result in different models and their
performances. By applying the cross-entropy loss function during the process, the
model performances on the test data set can be shown in Figures 5.3 and Table 5.2.
When comparing the test loss of three models with different batch-size, the 32 batch-size
model shows the lowest loss. For models with 0.01, 0.001 and 0.0001 initial learning rate
values, the one with 0.001 shows the best performance. Moreover, the model with SGD
optimizer has a more stable performance than the one with Adam optimizer. To sum
up, the model with 32 batch-size, 0.001 initial learning rate and SGD optimizer shows
the lowest loss, which means the best performance on the test data set.
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Batch-size Initial learning rate

Optimizer All models

Figure 5.3: The loss of models with different characteristics combinations (The x axis represents loss and the y
axis represents epochs).

5.3. BINARY CLASSIFICATION RESULTS AND DISCUSSION
In this section, it is assumed in advance that all rondels in the area have already been
detected and there are no more rondels. When the best model was applied for detecting
rondels, it returned the probability that a rondel was present in the image. Firstly, the
probability threshold was set to 0.5, which means if the probability is larger than or
equal to 0.5, the detected object is considered as rondel. Otherwise, it is regarded as an
empty area (without rondel). For the test data set, there are 208 samples. Half of them
are images with rondels, the other 104 samples are empty areas. As the model predicted,
there should be 39 positive samples and 169 negative samples, of which there are 34
true positives, 99 true negatives, 5 false positives and 70 false negatives. The confusion
matrix is shown as Table 5.3. Thus the precision is calculated by equation 4.3 as 87.17 %.
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Initial learning rate Batch size Optimizer Test Loss
0.01 16 SGD 0.0726
0.01 32 SGD 0.0411
0.01 64 SGD 0.0272

0.001 16 SGD 0.0352
0.001 32 SGD 0.0228
0.001 64 SGD 0.0883

0.0001 16 SGD 0.0509
0.0001 32 SGD 0.0269
0.0001 64 SGD 0.0407
0.0001 16 Adam 0.0895
0.0001 32 Adam 0.0519

Table 5.2: The different combinations of characteristics and their loss on test data. The model with lowest loss
(best performance) is highlighted in yellow.

Actual
Predicted

Positive Negative

Positive TP = 34 FN = 70
Negative FP = 5 TN = 99

Table 5.3: The confusion matrix (When the threshold is 0.5).

Figure 5.4: The false positives (The yellow boxes are drawn manually to emphasize the rondel-like patterns’
location, the positions of the patterns can also be changed based on different people’s judgment).

As discussed in Section 4.6, a low number of false positives is essential for the project.
The 5 false positive samples in alphabetical order from a to e are shown in Figure 5.4.
In image c,d and e, small circle patterns can be recognized. Yellow boxes were drawn
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to emphasize the patterns. These patterns look similar to the rondel patterns. That
explains why the model identified them as images with rondels. For the other 2 images –
a and b, they have no distinguished rondel-like pattern. They are regarded as "negative"
erroneous judgments of the model because it looks irrational.

On the other hand, according to the 5 samples, 0.5 might not the best threshold in this
case, because the probabilities of the 3 samples with rondel-like patterns are greater
than 0.75. If the threshold was set as 0.75, the results might be more reasonable. In these
circumstances, there should be 27 positive samples and 181 negative samples, of which
there are 24 true positives, 101 true negatives, 3 false positives and 80 false negatives.
The confusion matrix is shown as Table 5.4The precision is calculated by equation 4.3
as 88.89 %, which shows a significant precision improvement compared to the 87.17 %
when the threshold was 0.5.

Actual
Predicted

Positive Negative

Positive TP = 24 FN = 80
Negative FP = 3 TN = 101

Table 5.4: The confusion matrix (When the threshold is 0.75).

It should be emphasized that all the discussion above was based on the hypothesis that
all rondels in the area have already been detected and there were no more rondels. In
fact, however, it can’t be guaranteed according to the existing information. This leads to
unknown error because of the difference between actual condition and the assumption.

5.4. SPATIAL DISTRIBUTION OF THE PREDICTION RESULTS AND

DISCUSSION

After applying the best model on the LOT05 area, the probability map is shown in Figure
5.5. The base map of the figure is a topographical map.

According to the comparison between elevation map 4.6 and the probability distribution
map in Figure 5.5, it is obvious that the probabilities have small values in the low-lying
area and large values in the high-elevation area. This corresponds with the fact that all 7
rondels in LOT05 are located in the area with the higher elevation.

Figure 5.6 shows the probabilities distribution on a satellite map.
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Figure 5.5: The spatial distribution of the probabilities of LOT05 on a topography map.

Figure 5.6: The spatial distribution of the probabilities of LOT05 on a satellite map.

In these figures, it is obvious that the distribution is inextricably linked with geography.
Most of the low probability samples gather around the main river called Váh [45], the
gullies and the residential areas, which can also be seen in Figure 5.7 and Figure 5.8.
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Figure 5.7: The area with low probability samples.

Figure 5.8: Zoom-in map with low probability samples.

As for samples with high probabilities, most of them are located in farming areas, as
shown in Figure 5.9. According to the satellite map, it can be clearly seen that the
abandoned river traces in these areas have become farming lands now (Figure 5.10).
That’s why it is inferred that the rondels might be built along the ancient river flows.
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This hypothesis is further strengthened according to the positions of rondels in the
areas besides LOT05 (Figure 5.11). There is another possibility that the known rondels
all appear to be in rural areas or farmland because all the ones that were in more urban
areas were already destroyed by human activity. Ergo, the only ones that we see are in
relatively untouched areas such as farmlands.

Figure 5.9: The area with high-probability samples.

Figure 5.10: The zoom-in map with high-probability samples.
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Figure 5.11: The positions of known rondels in Slovakia.

5.5. POSSIBLE NEW RONDELS

According to the model application on LOT5, 3982 possibilities were given out. Each
of them represented the probability of the rondel existence on a 512 × 512 m2 area.
After that, the areas was ordered from highest probability to lowest. Then the images
with high probabilities were selected by the naked eyes according to the list. Finally,
among the application with high probabilities, 32 possible new rondel areas, which are
shown in Figure 5.12 , Figure 5.13 and Table 5.5, were chosen to be further validated by
archaeologists. Figures 5.14 and 5.15 show example images of 19th and 31st possible
new rondels on the Google Map. In the middle of the figures, there are circle-like
patterns on the ground, which are very likely to be new rondels. That’s why the results
are regarded to be useful to archaeological research in the future.
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Figure 5.12: Locations of possible new rondels.

Figure 5.13: Images of possible new rondels and their probabilities in LOT05. All of them are 512 × 512 pixels
(The yellow boxes are drawn manually to emphasize the rondel-like patterns’ location, the positions can also

be changed based on different people’s judgment).
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Figure 5.14: The 19th potential rondel shown on the Google Map.

Figure 5.15: The 31st potential rondel shown on the Google Map.
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index X coordinate Y coordinate probability
1 241498 5363106 0.950
2 243546 5363618 0.999
3 244058 5359522 0.998
4 244058 5359010 0.999
5 244058 5358498 0.920
6 244570 5380514 0.965
7 244570 5380002 0.962
8 244570 5378978 0.967
9 244570 5366178 0.999

10 244570 5357986 0.995
11 245594 5377954 0.999
12 246618 5357986 0.872
13 246618 5356962 0.999
14 249178 5373346 0.998
15 250714 5374882 0.997
16 251226 5366690 0.996
17 253274 5380002 0.833
18 254810 5357474 0.963
19 255834 5364642 0.996
20 259930 5377954 0.999
21 260442 5378466 0.961
22 261466 5363618 0.988
23 265050 5365666 0.992
24 265562 5370274 0.915
25 266074 5360546 0.976
26 266586 5371298 0.845
27 266586 5368738 0.998
28 268634 5366690 0.990
29 269658 5368738 0.873
30 272218 5363618 0.974
31 274778 5370786 0.978
32 277850 5360034 0.994

Table 5.5: The list of possible new rondels. The coordinate system is EPSG:3046 - ETRS89 (meter).

5.6. RESULTS OF THE COMPARISON GROUP (EVALUATE THE

USEFULNESS OF DATA AUGMENTATION)
The previous training steps were applied again on the comparison data set – data
set without augmented rondels. Then the new model was used for predicting the
probabilities of 32 possible rondels. The contrast of these two probabilities is shown in
Table 5.6.
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According to the results, there were 6 samples that shows distinguished probabiliteis
reduction after the new-model application (Figure5.16). The new model failed to give
higher probabilities to these 6 images. On the other hand, 5 samples were predicted
100 % as rondels. It might be concluded from this that the model based on the
data set without augmentation showed more extreme and worse results. So the data
augmentation was a necessary step.

Figure 5.16: The 6 samples which show distinguished change after the new-model application (The yellow
boxes are drawn manually to emphasize the rondel-like patterns’ location, the positions can also be changed

based on different people’s judgment).
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index probability (original) probability (without augmentation)
1 0.951 0.216
2 0.999 1
3 0.998 0.999
4 0.999 0.999
5 0.921 0.983
6 0.966 0.873
7 0.962 1
8 0.968 0.057
9 0.999 1

10 0.996 1
11 0.999 0.999
12 0.872 0.994
13 0.999 0.585
14 0.998 0.960
15 0.997 0.984
16 0.996 0.986
17 0.833 0.998
18 0.963 0.863
19 0.996 0.581
20 0.999 0.999
21 0.961 0.999
22 0.988 0.996
23 0.992 0.996
24 0.915 0.998
25 0.976 1
26 0.845 0.638
27 0.998 0.875
28 0.990 0.997
29 0.873 0.890
30 0.974 0.997
31 0.978 0.999
32 0.994 0.720

Table 5.6: The list of two probabilities of the possible rondels. The samples with significant different
possibilities are highlighted in blue.
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CONCLUSION &

RECOMMENDATION

6.1. CONCLUSION (ANSWERS TO THE RESEARCH QUESTIONS)
In the following paragraphs, the answers to the research questions are given. The
recommendations for future work are also put forward according to the conclusion of
the previous work on this research.

• What are the characteristics of rondels in images acquired by LiDAR?
Most of the rondels have the common original structure, but were damaged because of
plowing and construction activities. Nowadays they show the ring or part of the ring
patterns on the images acquired by LiDAR, which have significant height difference
because of the fences of the rondels. The size of the circle are varying from dozens of
meters to 200 meters in diameter. These characteristics can be used to discriminate
them from surface features on the images.

• How can we train a good NCEs detector given the small size of the training data set?
The training data set was expanded using augmentation. The detailed data
augmentation steps are introduced in section 3.3 and section 4.2. According to the
results comparison in section 5.6, the smaller data set without augmentation shows
extreme results.

• What is a good way to measure the performance of the classifier?
The Cross-Entropy Loss Function was used to evaluate the model performance.
Lower value of loss represents better performance of the model. On the other hand,
setting a threshold on the probabilities that were given out by the deep learning method
and using the confusion matrix can evaluate the classification results on the test data set.

• How does the performance vary depending on how the network was trained?

43
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The different combinations of the characteristics were applied during the training
process. The different performances of the models on the test data set can be seen in
Figures 5.3 and Table 5.2. According to the loss evaluation, the 32 batch-size model
shows a lower loss compared with the ones with 16 and 64 batch-size. For models
with 0.01, 0.001 and 0.0001 initial learning rate values, the model with 0.001 shows the
best performance. In the meanwhile, the model with the Stochastic Gradient Descent
(SGD) optimizer shows a more stable performance in the process rather than the Adam
optimizer. To sum up, the model with 32 batch-size, 0.001 initial learning rate and SGD
optimizer shows the lowest loss, which means the best performance on test data set
among the 11 models.

• What’s the performance when the model applies to the larger areas?
The best model was applied to the area which was numbered LOT05 in Slovakia. Most
know rondels are located on this area. On the map, the probability distribution has
an obvious link to geomorphological characteristics, especially the flow of water trace.
According to the high probabilities, several samples were selected for further validation.
If some of them can be confirmed as a newly discovered rondel, the model can be
regarded as a useful one.

• Can new NCEs be detected using this method?
It is hard to draw such a conclusion. According to the results for now, there are still
interference factors, especially the changes of the environment caused by human and
natural activities. The spatial distribution of the results can provide archaeologists and
enthusiasts with positive assistance in future archaeological detection work and the
high-probability samples are worth further validation.

6.2. RECOMMENDATION FOR FUTURE WORK
In order to provide a reference for future work, the recommendations or assumptions
are given from the following aspects:

• Type of data set The data type used in this project is the elevation raster data derived
from airborne LiDAR data. According to investigation from the archaeologists, the crop
growth situation inside the rondels is different from the ones outside. That’s why it
might be a good choice if we use multi-spectral data like Sentinel-2 data to detect the
crop growth situation. The multi-spectral data is a very efficient data type for plant
research, based on the various combinations of the spectral bands. Moreover, fusing
the height data and thermal data also has great potential. On the other hand, some
of the known rondels are not visible because of the damage to their ground structures
over the course of millennia and the low resolution of the measuring instrument. But
the foundations of them should be left on the subsurface. The data which reflects
characteristics of the subsurface is also worth trying in the future, such as the data from
Synthetic Aperture Radar (SAR data) [46]. Even different combinations of data type can
be used to get better models.
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• Size of data set During the research process, data augmentation is one of the most
essential parts. Finally, 421 augmented rondels were created based on 20 real rondels
which were selected by naked eye. In the future, more augmented rondels can be created
based on the augmentation methods. And research investigation moves forward, these
will be more known positive samples. On the other hand, 3D augmented rondels might
also be created using the point cloud data. The larger training data set for CNNs stands
a good chance of resulting in a better performance of the results.

• Visualization techniques In the study, the Simple Local Relief Model was used
for visualization. This visualization technique is a useful model for archaeological
prospection, there should be more techniques. Some of them might be more efficient
for this project, such as Multi-scale topographic position [47]. Moreover, some of them
could also be stacked to realize better visualization results.

• Improvement of the network As for the construction and parameters of convolutional
neural networks, there are lots of attempts to improve the performance of the training
results. ResNet18 was used for model training in this project. Another CNNs might also
be used to detect rondels in the area. One the other hand, the multi-channel inputs can
also be used to train better models based on different kinds of data types or visualization
techniques.
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A.1. THE ARCHITECTURE OF RESNET18

Figure A.1: The architecture of ResNet18 [28].
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Acronym Full Name
NCE Neolithic Circular Enclosures

SLRM Simple Local Relief Model
LiDAR Light Detection And Ranging
CNN Convolutional Neural Networks
DTM Digital Terrain Model
DSM Digital Surface Model
GSD Ground Sampling Distance

ResNet Residual Network
SGD Stochastic Gradient Descent

Adam Adaptive moment estimation

Table A.1: Acronym list
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