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Minimum Pearson Distance Detection Using a
Difference Operator in the Presence of Unknown

Varying Offset
Renfei Bu, Jos H. Weber, Senior Member, IEEE

Abstract—We consider noisy data transmission channels with
unknown scaling and varying offset mismatch. Minimum Pearson
distance detection is used in cooperation with a difference oper-
ator, which offers immunity to such mismatch. Pair-constrained
codes are proposed for unambiguous decoding, where in each
codeword certain adjacent symbol pairs must appear at least
once. We investigate the cardinality and redundancy of these
codes.

Index Terms—Unknown scaling and offset, minimum Pearson
distance detection, difference operator, pair-constrained code

I. INTRODUCTION

Fix two integers n ≥ 1, q ≥ 2, and denote [q] =
{0, 1, . . . , q − 1}. A codebook S is a subset of [q]n, where
[q] serves as the alphabet and n as the codeword length. We
consider transmitting a codeword x = (x1, x2, . . . , xn) from
S. The received vector r = (r1, r2, . . . , rn) is given by

r = a(x + v) + b1 + cs, (1)

where 1 = (1, 1, . . . , 1) and s = (1, 2, . . . , n). The basic
premises are that x is suffering from (i) additive Gaussian
noise v = (v1, v2, . . . , vn), where vi ∈ R are i.i.d. noise
samples with normal distribution N (0, σ2), where σ2 ∈ R
denotes the noise variance, (ii) an unknown (positive) scaling
factor a, a > 0, and (iii) an unknown varying offset, b1 + cs,
where b, c ∈ R.

There are many examples of channels with scaling and vary-
ing offset mismatch. In flash memories, physical features like
the device temperature will result in rapidly scaling and offset
variations of the retrieved signal [1]. Memory cells closer to
hotter areas on the chip may lose their charge faster than cells
closer to colder areas. For direct conversion receivers, the local
oscillator is the main source of dc-offset [2]. With fading and
multi-path reception, the received power level can vary rapidly,
which results in a time-varying or dynamic dc-offset.

Minimum Pearson distance (MPD) detection [3] has been
shown to be intrinsically resistant to the scaling a and offset
b, where a and b may change from word to word, but are
constant for all transmitted symbols within a codeword. Here,
we consider the situation in which the offset varies linearly
within a codeword, where the slope of the offset, represented
by the parameter c, is unknown. A detection scheme for
channels with scaling and such varying offset is investigated
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in [4], where, for the binary case, MPD detection is used in
conjunction with mass-centered codewords, in such a way that
the system is insensitive to both scaling and varying offset, i.e.,
it is (a, b, c)-immune. However, this scheme is very expensive
in terms of redundancy.

In this paper, we show that the combination of MPD and
a difference operator is (a, b, c)-immune as well. In addition,
pair-constrained codes, where in each codeword certain ad-
jacent symbol pairs must appear at least once, are proposed
to achieve unambiguous decoding. The redundancy of pair-
constrained codes is much lower than that of prior art mass-
centered codes, which makes the new decoding scheme an
attractive alternative for practical applications.

We start in Section II with a brief description of the prior
art. Section III presents the backbone of the paper, where it
is shown how an MPD detector can be used together with
the difference operator. In Section IV, we introduce pair-
constrained codes and we investigate their cardinality and
redundancy. In Section V, we discuss the results of the paper
and provide options for future research.

II. PRIOR ART

For u ∈ Rn, let ū = 1
n

∑n
i=1 ui and σ2

u =
∑n

i=1(ui− ū)2.
The Pearson distance between vectors u and w is defined by

Lp(u,w) = 1− ρu,w, (2)

where

ρu,w =

∑n
i=1 (ui − ū)(wi − w̄)

σuσw
(3)

is the well-known Pearson correlation coefficient. It has the
property that

Lp(u,w) = Lp(c1u + c21,w) (4)

for all c1 > 0 and c2 ∈ R. Hence, the Pearson distance
offers immunity to scaling and non-varying offset mismatch,
which has lead to the introduction of the minimum Pearson
distance (MPD) detector [3], that chooses among all candidate
codewords x̂ ∈ S the codeword xo whose Pearson distance to
the received vector r is smallest, i.e.,

xo = arg min
x̂∈S

Lp(r, x̂).

In case of varying offset, mass-centered codes in combina-
tion with the MPD detector are advocated in [4] for the binary
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case, where the codebook S∗ ⊆ [2]n is chosen such that each
codeword x ∈ S∗ satisfies

n∑
i=1

(
i− n+ 1

2

)
xi = 0.

The error performance of the MPD detector with the em-
ployment of mass-centered codes is insensitive to scaling and
varying offset mismatch, i.e., (a, b, c)-immune. However, the
redundancy is O(log n) [4]. In this paper, we will propose a
less redundant scheme that also guarantees (a, b, c)-immunity.

III. MPD DETECTION USING A DIFFERENCE OPERATOR

Define the difference operator of a vector u ∈ Rn as

∆u = u2,n − u1,n−1, (5)

where ui,j = (ui, ui+1, . . . , uj) for all 1 ≤ i ≤ j ≤ n.
For any codeword x ∈ S, we call ∆x its difference

codeword. The difference codebook, ∆S, is defined by ∆S =
{∆x |x ∈ S }. This is a set of codewords of length n−1 over
the alphabet Q′ = {−(q − 1), . . . ,−1, 0, 1, . . . , q − 1}.

We now show that the use of the difference operator will
make Pearson distance based detection (a, b, c)-immune. Upon
receipt of a vector r, we find the difference vector ∆r and then
the MPD detector chooses the member in ∆S which has the
smallest Pearson distance to ∆r, i.e.,

∆xo = arg min
∆x̂∈∆S

Lp(∆r,∆x̂), (6)

Note that applying the difference operator (5) on the received
vector gives

∆r = r2,n − r1,n−1

= a(x2,n + v2,n) + b1 + cs2,n

−(a(x1,n−1 + v1,n−1) + b1 + cs1,n−1)
= a(x2,n − x1,n−1 + v2,n − v1,n−1) + c1
= a(∆x + ∆v) + c1,

(7)

where each entry in ∆v has the normal distributionN (0, 2σ2).
Based on the discussion in the previous section, now with c
in the role of b, we can thus conclude that MPD detection
in combination with the difference operator provides (a, b, c)-
immunity.

As investigated in [3] and [5] for the case of (a, b, 0)-
immunity, the codebook should satisfy certain properties in
order to allow the use of MPD detection and to prevent am-
biguous decoding options. For the case of (a, b, c)-immunity,
a new class of codes with the required properties will be
presented in the next section.

IV. PAIR-CONSTRAINED CODES

In order to work well with an MPD detector, the codebook
should satisfy the following two requirements [3], [5]: (i) it
should not contain vectors u with σu = 0, since it follows
from (3) that the Pearson distance is undefined for such u; (ii)
the presence of a vector w in the codebook implies that all
vectors c1w + c21 with c1 > 0, c2 ∈ R, and (c1, c2) 6= (1, 0),
should not appear in the codebook because of (4). In our case,
these requirements must hold for ∆S, since the MPD detector

operates on the difference codebook. Furthermore, we have the
obvious additional requirement that (iii) the codebook should
be designed in such a way that the difference operator is a
one-to-one map from S to ∆S. In conclusion, we have the
following three properties to be satisfied.

Property 1: k1 /∈ ∆S for all k ∈ R.
Property 2: If ∆x ∈ ∆S, then c1∆x + c21 /∈ ∆S for all

c1, c2 ∈ R with (c1, c2) 6= (1, 0) and c1 > 0.
Property 3: ∆ : S → ∆S is a bijection.
We propose a code satisfying these properties. Pair-

constrained codes consist of q-ary n-length codewords, where
one or more reference adjacent symbol pairs (s, t), s, t ∈ [q],
must appear at least once, i.e., for each codeword w there is an
i, 1 ≤ i ≤ n−1 such that wi = s and wi+1 = t. In this paper,
we use a specific set of pair-constrained codes denoted by Sp.
The set Sp contains all the vectors where both the adjacent
symbol pairs (0, q−1) and (q−1, 0) appear at least once, i.e.,
for each codeword w there are i and j, 1 ≤ i, j ≤ n− 1 such
that wi = 0, wi+1 = q − 1, wj = q − 1, and wj+1 = 0. This
ensures that both the symbols ‘q−1’ and ‘−(q−1)’ appear at
least once in each vector in ∆Sp. This observation is key in
showing that the proposed code satisfies the three properties
mentioned above, which we will do next.

Proof. Property 1 follows immediately from the fact that each
word in ∆Sp contains the symbols ‘q − 1’ and ‘−(q − 1)’.

Property 2 follows by a similar argument as used in [3]
for so-called T -constrained codes, which we adapt here to
our setting for completeness. Suppose that both ∆x ∈ ∆Sp
and c1∆x + c21 ∈ ∆Sp for some c1 and c2 as indicated
in the property statement. Since c1 > 0, the fact that both
vectors contain the maximum symbol value ‘q − 1’ implies
that c1(q − 1) + c2 = q − 1, while the fact that both vectors
contain the minimum symbol value ‘−(q − 1)’ implies that
−c1(q − 1) + c2 = −q + 1. Solving these two equations, we
find c1 = 1 and c2 = 0 as the unique solution, which gives a
contradiction and thus shows the result.

Property 3 easily follows by observing that for any u,w
in any code S it holds that ∆u = ∆w ⇐⇒ u = w + k1
for some k ∈ R. In case S = Sp, the fact that w contains
the minimum symbol value ‘0’ implies that if k > 0 then
ui = wi + k > 0 ∀i, and if k < 0 then there exists a position
j such that wj = 0 and uj = wj + k < 0. These observations
contradict that u ∈ Sp, which implies k = 0 and thus shows
the bijective property for Sp.

It should be noted that not all pair-constrained codes
are suitable to cooperate with an MPD detector. For exam-
ple, when choosing the pairs (1, 2) and (2, 3) rather than
(0, q − 1) and (q − 1, 0), the resulting code does not sat-
isfy Property 3 if q ≥ 5 and n ≥ 4, since, e.g., both
(0, 1, 2, 3, 3, . . . , 3) and (1, 2, 3, 4, 4 . . . , 4) have the same dif-
ference vector (1, 1, 1, 0, 0, . . . , 0).

A. Cardinality

The cardinality of Sp is denoted by N(n). For the binary
case, q = 2, we simply find that N(n) = 2n − 2n, since
Sp consists of all sequences in {0, 1}n, except the sequences
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without or with only one transition of the 0 → 1 or 1 → 0
type, i.e., (0, . . . , 0, 1, . . . , 1), (1, . . . , 1, 0, . . . , 0), (0, . . . , 0),
and (1, . . . , 1).

In general, we can calculate the number N(n) as follows.
Consider the complement set S̄p of Sp in [q]n, and let M(n) =∣∣S̄p∣∣ denote the cardinality of this complement set. We have

M(n) = |K2|+ |K3| − |K1|,

where

K1 = {x ∈ [q]n |(xi−1, xi) /∈ {(0, q − 1), (q − 1, 0)},
∀i = 2, . . . , n},

K2 = {x ∈ [q]n |(xi−1, xi) 6= (0, q − 1),∀i = 2, . . . , n},

K3 = {x ∈ [q]n |(xi−1, xi) 6= (q − 1, 0),∀i = 2, . . . , n}.

Let an = |K1|. We consider the following partition of K1:

K1
∗ = {x ∈ K1 |xn ∈ {1, . . . , q − 2}},

K1
◦ = {x ∈ K1 |xn ∈ {0, q − 1}},

and let a∗n = |K∗1 | and a◦n = |K◦1 |. Then we have the recursive
relations a∗n = (q−2)(a∗n−1 +a◦n−1) and a◦n = 2a∗n−1 +a◦n−1,
from which it follows for all n ≥ 2 that

an = a∗n + a◦n
= (q − 2)(a∗n−1 + a◦n−1) + 2a∗n−1 + a◦n−1

= (q − 1)(a∗n−1 + a◦n−1) + (q − 2)(a∗n−2 + a◦n−2)
= (q − 1)an−1 + (q − 2)an−2

(8)
with initial conditions a0 = 1 and a1 = q.

Let bn = |K2|. Using the same method, we find for all
n ≥ 2 that

bn = qbn−1 − bn−2 (9)

with initial conditions b0 = 1 and b1 = q. The number of
sequences in K3 follows the same recurrence scheme as in
K2.

Since N(n) = qn − M(n) and M(n) = |K2| + |K3| −
|K1| = 2bn − an, we have

N(n) = qn + an − 2bn, (10)

from which we can derive the recursive relation

N(n) = (2q − 1)N(n− 1)− (q2 − 2q + 3)N(n− 2)

−(q2 − 3q + 1)N(n− 3)

+(q − 2)N(n− 4) + 2qn−4 (11)

for all n ≥ 4, with initial conditions N(0) = 0, N(1) = 0,
N(2) = 0, and N(3) = 2. Relation (11) can be shown by
replacing all N(i), n− 4 ≤ i ≤ n, by qi +ai− 2bi, according
to (10), and then (repeatedly) applying (8) and (9) on the ai
and bi, n−2 ≤ i ≤ n, until expressions containing only an−4,
an−3, bn−4, and bn−3 are left. The results for the left-hand
and right-hand sides are the same, which proves the claim.

Table I shows results of computations of N(n) for binary
and ternary codes. Also, for comparison purposes, it includes
the sizes No(n) of the binary mass-centered codes [4] men-
tioned in Section II. Since the all-zero and all-one sequences
should be excluded, actually No(n) − 2 is presented. Note

Table I
CODEBOOK SIZES No(n)− 2 AND N(n).

n No(n)− 2 N(n), q = 2 N(n), q = 3
4 2 8 12
5 6 22 54
6 6 52 214
7 18 114 790
8 16 240 2786
9 50 494 9516

10 46 1004 31746

that the remaining binary mass-centered sequences are all in
the binary pair-constrained code of the same length. However,
this code contains many other sequences as well, and therefore
N(n) considerably exceeds No(n)− 2 in the binary case.

B. Redundancy

Since the redundancy of Sp is equal to

r(n) = n− logq N(n), (12)

it would be convenient for evaluation purposes to have an
explicit expression for N(n) rather than a recursive one. Here
we will derive such an expression using generating functions,
which are described in, e.g., [6].

We start by rewriting the recurrence (8) using the Kronecker
delta symbol, such that it is valid for all n ≥ 0 (assuming
an = 0 for all n < 0):

an − (q − 1)an−1 − (q − 2)an−2 − δn0 − δn1 = 0. (13)

Let the ordinary generating function of an be denoted by
A(z) =

∑∞
n=0 anz

n. Then we derive A(z) by multiplying (13)
by zn and summing over n, which gives
∞∑

n=0

anz
n−(q−1)

∞∑
n=0

an−1z
n−(q−2)

∞∑
n=0

an−2z
n−1−z = 0.

We can rewrite the above equation as

A(z)− (q − 1)zA(z)− (q − 2)z2A(z) = 1 + z.

Hence, we have

A(z) =
1 + z

1− (q − 1)z − (q − 2)z2
. (14)

Similarly, we can rewrite (9) as

bn − qbn−1 + bn−2 − δn0 = 0, (15)

for all n ≥ 0 (assuming bn = 0 for all n < 0), which leads to
the ordinary generating function of bn being

B(z) =

∞∑
n=0

bnz
n =

1

1− qz + z2
. (16)

Next, we find the power series of A(z) and B(z) by
applying Taylor’s theorem, in which an and bn, respectively,
appear as the coefficients of zn. This results in

an =
(q + λ− 1)n(λ+ q + 1) + (q − λ− 1)n(λ− q − 1)

2n+1λ
,

where
λ =

√
q2 + 2q − 7,
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N(n) = qn − 2Un(q/2) +
(q + λ− 1)n(λ+ q + 1) + (q − λ− 1)n(λ− q − 1)

2n+1λ
(17)

r(n) ≈
[

2Un(q/2)

qn
− (q + λ− 1)n(λ+ q + 1) + (q − λ− 1)n(λ− q − 1)

2n+1qnλ

]
/ ln q (18)
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Figure 1. Redundancy versus codeword length n: (i) ro(n) for q = 2; (ii)
r(n) for q = 2, 4, 6, 8.

and
bn = Un(q/2),

where

Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

is the Chebyshev polynomial of the second kind and Un(1) =
n + 1. Hence, combining with (10) leads to the explicit
expression for N(n) given in (17). For example, we find for
q = 3 that

N(n) = 3n − (3 +
√

5)n+1 − (3−
√

5)n+1

2n
√

5

+
1

2
(1 +

√
2)n+1 +

1

2
(1−

√
2)n+1,

which confirms the values in the most right column of Table I.
From (12) and the fact that logq(1 + x) ≈ x/ ln q for small

x, we obtain the approximate expression given in (18) for
the redundancy of Sp. Figure 1 shows the redundancy of Sp
as a function of the codeword length n for q = 2, 4, 6, 8.
As we can see, r(n) approaches 0 as the codeword length
increases, and the rate of convergence to 0 decreases as q
grows. Also included in the figure is the redundancy of binary
mass-centered codes, ro(n) = n − log(No(n) − 2), where
No(n) − 2 is the number of binary mass-centered sequences
of length n without the all-‘0’ and all-‘1’ words [4]. Note the
significant difference between ro(n) and r(n) for q = 2. With
the increase of n, ro(n) = O(log n) has an upward trend,
while r(n) experiences a downward trend to 0. For example,

ro(10) ≈ 4.5 is more than 100 times larger than r(10) ≈
0.028. We conclude that the redundancy of the proposed pair-
constrained codes gives a significant improvement compared
to the corresponding mass-centered codes.

V. DISCUSSION

We have presented a scheme for channels with unknown
scaling and varying offset, where minimum Pearson distance
detection is used in conjunction with a difference operator
and pair-constrained codes. These codes have significantly
less redundancy than the previously proposed mass-centered
codes, which makes the new scheme an attractive alternative
for practical applications. However, there are still some issues
which need to be addressed, as will be discussed next.

The introduction of the difference operator is very effective
to deal with the unknown varying offset, but it follows from
the analysis in (7) that it doubles the noise power. Hence, in
the error analysis, this extra 3 dB loss should be taken into
account, and it makes the scheme less suitable for applications
in which the noise is dominant over the (varying) offset. An
interesting topic for further research is to investigate to which
extent the involvement of an error-correcting code into the
scheme can help to resolve this.

Another concern is the complexity of the proposed scheme.
The use of the difference operator demands extra subtractions,
but the major problem is that the minimization operation (6)
requires |∆S| computations, which is impractical for codes
with large cardinalities. In [3], it has been shown that the
number of computations can be significantly reduced by
considering the codebook as the union of a number of constant
composition codes, which makes, at the expense of extra
sorting operations, the number of options in the minimization
equal to only the number of such subcodes. Similar complexity
reduction could be explored for the setting under consideration
here as well.
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