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Summary 

The fundamental properties of computed flow fields using particle imaging 
velocimetry (PIV) have been investigated, viewing PIV processing as a black box 
without going in detail into algorithmic details. PIV processing can be analyzed 
using a linear filter model, i.e. assuming that the computed displacement field is 
the result of some spatial filtering of the underlying true flow field given a 
particular shape of the filter function. From such a mathematical framework, 
relationships are derived between the underlying filter function, wavelength 
response function (MTF) and response to a step function, power spectral density, 
and spatial autocorrelation of filter function and noise.  

A definition of a spatial resolution is provided independent of some arbitrary 
threshold e.g of the wavelength response function and provides the user with a 
single number to appropriately set the parameters of the PIV algorithm required 
for detecting small velocity fluctuations.  

The most important error sources in PIV are discussed and an uncertainty 
quantification method based on correlation statistics is derived, which has been 
compared to other available UQ-methods in two recent publications (Sciacchitano 
et al. 2015; Boomsma et al. 2016) showing good sensitivity to a variety of error 
sources. Instantaneous local velocity uncertainties are propagated for derived 
instantaneous and statistical quantities like vorticity, averages, Reynolds stresses 
and others. For Stereo-PIV the uncertainties of the 2C-velocity fields of the two 
cameras are propagated into uncertainties of the computed final 3C-velocity field.  

A new anisotropic denoising scheme as a post-processing step is presented 
which uses the uncertainties comparing to the local flow gradients in order to 
devise an optimal filter kernel for reducing the noise without suppressing true 
small-scale flow fluctuations. 

For Stereo-PIV and volumetric PIV/PTV, an accurate perspective calibration 
is mandatory. A Stereo-PIV self-calibration technique is described to correct 
misalignment between the actual position of the light sheet and where it is 
supposed to be according to the initial calibration procedure.  For volumetric 
PIV/PTV, a volumetric self-calibration (VSC) procedure is presented to correct 
local calibration errors everywhere in the measurement volume. 

Finally, an iterative method for reconstructing particles (IPR) in a volume is 
developed, which is the basis for the recently introduced Shake-the-Box (STB) 
technique (Schanz et al. 2016).  

 

  



 

Sammenvatting 

De fundamentele eigenschappen van stromingsvelden berekend met 
particle imaging velocimetry (PIV) zijn onderzocht, waar de PIV-verwerking 
gezien is als een black box zonder in detail op algoritmische details in te gaan. 
PIV-verwerking kan geanalyseerd worden met een lineair model, d.i. 
aannemende dat het berekende verplaatsingsveld het resultaat is van enige 
ruimtelijke filtering van het onderliggende echte stromingsveld, gegeven een 
bepaalde vorm van de filterfunctie. Vanuit zo een wiskundig raamwerk zijn 
verbanden afgeleid tussen de onderliggende filterfunctie, de golflengte respons 
functie (MTF), en de respons op een stapfunctie, de spectrale 
vermogensdichtheid en de ruimtelijke autocorrelatie van de filterfunctie en de 
ruis. 

Een definitie van ruimtelijke resolutie is gegeven, onafhankelijk van een 
arbitraire drempel van bijvoorbeeld de golflengte respons functie, wat de 
gebruiker een enkel getal geeft om op gepaste wijze de parameters van het PIV-
algoritme in te stellen voor het detecteren van kleine snelheidsfluctuaties. 

De belangrijke bronnen voor fouten in PIV zijn bediscussieerd en een 
onzekerheidskwantificatie (UQ) methode gebaseerd op correlatie statistieken is 
afgeleid, welke vergeleken is met andere beschikbare UQ-methoden in twee 
recente publicaties (Sciacchitano et al. 2015; Boomsma et al. 2016) en een goede 
gevoeligheid laat zien voor een variëteit aan foutbronnen. Instantane lokale 
onzekerheden in snelheid zijn gepropageerd voor afgeleide instantane en 
statistische grootheden als vorticiteit, gemiddelden, Reynolds spanningen en 
andere. Voor Stereo-PIV zijn de onzekerheden van de 2C-snelheidsvelden van de 
twee camera’s gepropageerd in de onzekerheden van het uiteindelijke berekende 
3C-snelheidsveld. 

Een nieuw anisotroop ruis verminderingsschema als naverwerkingsstap is 
gepresenteerd, dat gebruik maakt van de onzekerheden vergeleken met de lokale 
snelheidsgradienten om een optimale filter kernel te creëren voor het 
verminderen van ruis zonder echte kleine-schaal snelheidsfluctuaties te 
onderdrukken. 

Voor Stereo-PIV en volumetrische PIV/PTV is nauwkeurige 
perspectiefkalibratie een vereiste. Een Stereo-PIV zelf-kalibratie techniek om 
foutieve uitlijning te corrigeren tussen de echte positie van het lichtvlak en waar 
het zou moeten zijn volgens de initiële kalibratie procedure is beschreven. Voor 
volumetrische PIV/PTV is een volumetrische zelf-kalibratie (VSC) methode 
gepresenteerd om lokale kalibratie fouten overal in het meetvolume te 
corrigeren. 

Tot slot is er een iteratieve methode voor deeltjes reconstructie (IPR) in een 
volume ontwikkeld die de basis vormt voor de recent geïntroduceerde Shake-the-
Box (STB) techniek (Schanz et al. 2016). 
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Particle Image Velocimetry (PIV) is nowadays a wide-spread measurement 
technique of planar and recently volumetric flow fields. Advances in optics, cameras 
and laser performance together with available well-integrated commercial PIV 
systems have established PIV as the preferred technique for many flow 
measurement tasks. While point-wise measurement techniques like hot-wire 
anemometry and laser Doppler velocimetry often provide higher accuracy and 
temporal resolution ideal for the measurement of certain statistical quantities, 
instantaneous 2D- or 3D-flow fields from PIV enable direct insight into spatially 
coherent structures. Following flow patterns over time with high-speed cameras 
with up to 5-20 kHz frame rate in combination with powerful high-repetition rate 
lasers have opened the possibility of in-depth analysis of transient phenomena, fluid-
structure interaction and turbulence analysis for fast water and air flows. 

Applications range in size from a field-of-view of less than 1 mm in micro 
channels or blood vessels (µPIV) to meter scales even observing natural phenomena 
like river flows, ocean currents or cloud dynamics. Most experiments are conducted 
in the lab under controlled conditions with a field-of-view between 5 and 50 cm. 
Typically, small seeding particles are added to the fluid observing particle motion 
around objects, for example, in water channels, towing tanks, wind tunnels, inside 
pumps, turbine machinery, flames and other combustion environments, to name just 
a few of the many different application fields. About 70% of all PIV systems are used 
as a tool for fundamental and applied research at universities and research 
institutions, and 30% by industry, mainly by large energy, automotive, aerospace, 
chemical and medical companies with dedicated research departments. 

 

1.1 History of PIV and particle / feature tracking 

In PIV, the basic underlying image processing technology is the tracking of 
particles or group of particles, which is not a task unique to fluid dynamics research. 
In many scientific fields, there has been a need to track features in images recorded 
in time or e.g. matching features in images taken by two cameras from different 
perspectives for 3D vision. In the large field of computer vision, this is named image 
registration, i.e. finding the spatial correspondences of individual features or small 
image regions in at least two images. First applications included aerial 
photogrammetry (Webber 1973) on real photographs which have been scanned and 
digitally processed, measuring landscapes or, for example, changing tidal lands 
(Wrobel and Ehlers 1980; Ackermann 1984).  

At about the same time, image registration has been applied to the field of fluid 
dynamics measuring planar flow fields using a laser light sheet and tracers in gases 
and liquids, at the beginning called speckle velocimetry, but soon after particle image 
velocimetry (PIV) (Meynart 1982; Pickering and Halliwell 1984; Adrian 1984). At the 
beginning, only film cameras were available with tedious scanning and time-
consuming processing. The wide-spread use of PIV started in the 90’s with the 
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availability of digital cameras capable of fast recording of two images together with 
inexpensive, but powerful personal computers for fast processing. 

Similarly, in the experimental mechanics field, image registration has been used 
for measuring deformation of solid surfaces, named digital image correlation (DIC) 
(Peters and Ranson 1982; Sutton et al. 1983; Sutton et al. 1986), relating locally 
measured surface strain tensors to material properties like Young’s module. 

Interestingly, the development of image registration techniques proceeded 
quite independently in these three fields with different names for similar algorithms. 
Only recently there has been more exchange with special techniques or algorithms 
from one field applied to another. 

Image registration of two images consists of finding a displacement field 
(disparity map) which provides for a point in image 1 the displacement vector to the 
same feature or local patch in image 2. Natural scenes are often dominated by 
features, i.e. points, edges or objects with specific shapes. Therefore, most work in 
computer vision has focused on detection and tracking of available features, but 
cross-correlation of image patches is well known, too, as block matching. 

 

Figure 1.1. Block-matching cross-correlation technique typically used in PIV. The position of 
the highest peak in the correlation plane indicates the most likely displacement vector. 

In fluid or solid mechanics (PIV and DIC), on the other hand, recorded images 
usually consist of random speckle pattern of solid particles, oil or water droplets, 
(helium-filled) air bubbles, fibers or granular materials in PIV, and fine spray paint 
blobs or natural features/scratches on solid surfaces in DIC. Observed displacement 
fields are mostly continuous with small displacements between recorded images 
usually in the range of at most 5-20 pixels. Tracking is typically done on local patches 
(named subsets, interrogation windows, or blocks) of the image containing sufficient 
number and contrast of speckle pattern elements or particles.  
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1.2 PIV development from light sheet to volume 

The basic experimental setup for a 2D-PIV system consists of a laser formed 
into a thin light sheet, adding tracer particles to the fluid, which are small enough to 
faithfully follow the flow, and recording two images shortly after each other with a 

time separation t using a digital camera. The particles move by some distance, 
typically up to 5-10 pixels, and the local velocity is given by the measured distance 

divided by the time interval t.  

 

Figure 1.2. Experimental setup for single-camera 2D-PIV, dual-camera Stereo-PIV, and 
volumetric tomographic PIV. 

Single-camera 2D-PIV is limited to the measurement of the two in-plane 
velocity components (2C). The natural extension into Stereo-PIV is facilitated by the 
addition of a second camera observing the true velocity vector from another viewing 
angle (Prasad and Adrian 1993; among others). The corresponding two 2C-
displacement vectors from each camera are combined into the true 3C-velocities by a 
geometrical reconstruction step. 

Another useful extension has been the introduction of time-resolved PIV, not 
just recording two images but continuously recording images at a sufficiently high 
frame rate to observe the dynamical evolution of the flow pattern. At the beginning, 
the best digital high-speed cameras could record e.g. 500 frames-per-second (fps) 
with 256x256 pixels mostly useful for water applications, while modern CMOS-
cameras are now capable of frame rates above 20 kHz with a one megapixel sensor. 
Similarly, the power of high-repetition-rate lasers has significantly increased in the 
last decades enabling time-resolved PIV also in air flows. 

Measurement in a full volume instead of just a light sheet has been done for a 
long time by tracking individual particles by photogrammetry (3D-particle tracking 
velocimetry (3D-PTV); Maas et al. 1993; among others). The principle is based on 
simultaneously recording the light scattered by illuminated particles from typically 
three to four cameras with different viewing directions. Particle image positions are 
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first obtained in the 2D image-plane, e.g. by a 2D-Gaussian intensity peak fit. A 
triangulation procedure matches the particle images from the different cameras onto 
possible 3D-particle locations. Finally, the 3D-locations are tracked in time and space 
computing particle velocities and Lagrangian trajectories. Problems with 
overlapping particles and ghost particles have limited the classical 3D-PTV approach 
to rather low seeding densities of 500 to 5000 particles per megapixel sensor 
(0.0005 to 0.005 particles per pixel (ppp)). 

For acquiring dense volumetric flow fields on a regular grid, the tomographic 
PIV technique has been developed by Elsinga et al. (2006), enabling much higher 
seeding density by using an iterative reconstruction technique (MART; Herman and 
Lent 1976) to compute the intensities of all voxel in the measurement volume. This is 
followed by a 3D-cross-correlation procedure on local interrogation volumes to 
compute the 3D3C-flow field. 

 

 

Figure 1.3. Instantaneous vortex pattern using time-resolved tomographic PIV behind a locust 
(from Bomphrey et al. 2012). 

Many good reviews and books are available about image registration (e.g. 
Zitova and Flusser 2003), for DIC (Hild and Roux 2006; Sutton et al. 2009; Sutton and 
Hild 2015) and for PIV (Willert and Gharib 1991; Adrian 2005; Raffel et al. 2007; 
Schröder and Willert 2008; Adrian and Westerweel 2011; Scarano 2013) addressing 
many aspects of suitable experimental setups, processing steps and error sources. 
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1.3 Organization and Outline 

Chapter 2 reviews the basic information content of planar PIV flow fields. PIV 
will be viewed from as a kind of black box without going into details of PIV 
processing schemes. Besides the actual velocity data, knowledge of the associated 
uncertainties and spatial resolution is relevant for a full understanding of the quality 
and accuracy of the flow field. PIV can be viewed as a linear spatial filter averaging 
the displacement content of the seeding particles inside some local interrogation 
window. A useful definition of the spatial resolution and its inverse, the 
corresponding filter length, is provided together different ways of measuring it from 
the wavelength response function of PIV, from the response to a step function in 
displacement, or from the spatial auto-correlation coefficients of the noise. 

Despite the major progress in planar, volumetric and time-resolved PIV 
techniques, there has been a lack of specifying the uncertainties of the computed 
flow velocities in actual experiments. While substantial work has been done 
analyzing the error of synthetically generated images, only in recently uncertainty 
quantification (UQ) methods have been developed to quantify the uncertainty of 
each computed velocity vector. Chapter 3 reviews the major error sources in PIV and 
provides an UQ-method based on correlation statistics. Uncertainty propagation 
techniques are derived in chapter 4 attaching uncertainty bounds to derived 
statistical and instantaneous quantities like Reynolds stresses or vorticity. Chapter 5 
presents an optimal spatial filter reducing the noise using the measured uncertainty 
values while preserving true small-scale flow fluctuations. 

Chapter 6 reviews the errors of perspective calibration required for Stereo-PIV 
and volumetric PIV/PTV. For planar Stereo-PIV, possible misalignment of the actual 
light sheet position and where one assumes it to be according to the initial 
calibration are corrected by a self-calibration procedure using actual recordings 
(section 6.2). Similarly, remaining calibration errors for volumetric PIV/PTV can be 
corrected by a volumetric self-calibration procedure described in section 6.4. 

Finally, chapter 7 presents the volumetric iterative particle reconstruction 
(IPR) method as an improvement to standard 3D-PTV enabling high seeding 
densities comparable to tomographic PIV. IPR is part of the recently developed time-
resolved Shake-the-Box technique (Schanz et al. 2016), which performed extremely 
well in the most recent PIV Challenge (Kähler et al. 2016).  

The work presented here is concluded with a summary and outlook of current 
developments in PIV/PTV, in particular incorporating data assimilation techniques 
and computation of instantaneous and averaged pressure fields from PIV/PTV-data. 
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Figure 1.4. Large-Scale 4D-velocimetry in a convective air flow seeded with helium-filled soap 
bubbles processed by the Shake-the-Box (STB) particle tracking algorithm. Courtesy A. 
Schröder and D. Schanz, DLR Göttingen. 
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2Fundamentals of PIV 
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2.1 Motivation 

The processing scheme for PIV is in principle straightforward. Given various 
experimental parameters (timing, perspective calibration, geometrical setup …), the 
recorded camera images are processed by the PIV algorithm with user supplied 
processing parameters computing the best-fit displacement field between the 
images, which, divided by the time separation between the images, yields the planar 
or volumetric velocity field (Figure 2.1).  

In this chapter, PIV processing is viewed mostly as a black box without going 
into the details of the processing algorithm. The focus will be on quantifying the 
quality and intrinsic properties of the computed velocity field in a general way. The 
discussion is restricted here to planar 2D-PIV and Stereo-PIV, but can be easily 
extended to volumetric PIV/PTV.  

 

 

 

 

 

 

 

 

Figure 2.1. Flow chart of PIV processing. 

The velocity field (u,v(,w)) of planar PIV is specified at spatial positions (x,y) 
inside a measurement field-of-view, which is usually defined as the z=0 plane. 
Traditionally, PIV computes a single displacement vector for each interrogation 
windows of e.g. 32x32 pixels, with an overlap between neighboring interrogation 
windows of 50 or 75%, thus providing velocity information on a regular grid with 
spacing of typically 8 to 16 pixels. 

The simplest 2D2C-PIV (two-dimensional (i.e. planar), two-component) 
processing scheme would consist of a single pass computation of displacement 
vectors by cross-correlation (Figure 1.1). It has been improved considerable in the 
last decades to address issues of stability, precision and accuracy in conditions of low 
image quality, large displacements and strong gradients (see e.g. Adrian and 
Westerweel 2011; Raffel et al. 2007). 

Nowadays, most state-of-the-art PIV processing schemes employ an iterative 
predictor-corrector method (Huang et al. 1993 (Particle Image Distortion Technique 
PID); Scarano and Riethmuller 1999, 2000; Astarita and Cardone 2005 (Image 
Deformation Method IDM), Astarita 2006, 2007, 2008; Schrijer and Scarano 2008).  

Experimental setup 
Perspective calibration 
Timing, … 

Recorded images  

Processing parameter 

 

PIV 
Processing 

 

Properties 
Quality 
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Once an initial displacement field is calculated, subsequent iterations consist of 
dewarping the two images (usually symmetrically) using the calculated predictor 
displacement field (Figure 2.2). If the predictor field would be the perfect solution, 
the two dewarped images would perfectly overlap. A new (non-zero) corrector 
displacement field computed between the two dewarped images is then added to the 
predictor. Typically, some vector validation and predictor/corrector filter is included 
to remove erroneous vectors (outliers) and to ensure numerical stability field (Figure 
2.3). Convergence is reached after a few (e.g. 3-5) passes with a sufficiently small 
remaining corrector field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Simplified block diagram of the iterative predictor-corrector scheme. 

Discrete versus continuous velocity field 

Ideally the computed velocity field is provided in a continuous form, i.e. for all 
spatial locations, not just on grid points spaced apart e.g. by 4-32 pixels. in the 
predictor-corrector scheme, image dewarping uses the displacement field at every 
(sub-)pixel location, so whatever vector interpolation scheme is used here (usually 

t1 t0 cross-correlation 

dewarp    with -v 

initial 
displacement 

field 

predictor 

+ 

cross-correlation 

corrector 
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bilinear, bicubic, or B-splines) defines also the way, the final vectors on the grid 
locations should be interpolated to achieve a continuous velocity field.  

Therefore, while most PIV processing schemes only compute displacement 
vectors on a regular grid, they (should) provide implicitly a recipe for computing a 
continuous velocity field if necessary. The difference between bilinear and bicubic 
interpolation becomes small for larger overlap factors. Some algorithms like FOLKI 
even compute vectors at every pixel locations (Champagnat et al. 2011).  

 

 

Figure 2.3. Adding predictor/corrector filter to the predictor-corrector scheme (from Schrijer 
and Scarano 2008). 

Figure 2.4 shows a portion of a typical vector field with vectors computed on a 
regular grid. The associated u-component and vorticity field are shown here 
represented as one square per vector, with bilinear and with bicubic interpolation 
(from top to bottom). The smooth bicubic version is closest to what one would 
expect physically. Bilinear interpolation clearly shows visible artefacts. 

In the following, especially for computing spatial correlation functions, always a 
continuous representation of the displacement field will be used. Computations are 
not restricted to vector locations on a grid. 

Properties of a PIV flow field 

Returning to the black box viewpoint, the PIV output information not only 
contains the (continuous) velocity field, but also some additional intrinsic properties, 
which are not readily visible. They are essential for a deeper understanding of the 
quality of PIV vector fields. Three main properties can be identified: 

 Local uncertainty of the velocity field components 

 Autocorrelation coefficients of noise: spatial, inter-component and temporal 
(for time-resolved PIV) 

 Response function to velocity fluctuations of different spatial wavelengths 
(and temporal for time-resolved PIV) 
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Figure 2.4. Vector field (top) below with u-component (left) and vorticity (right) and one 
square per vector, bilinear and bicubic interpolation (from top to bottom). 

These points are relevant for uncertainty quantification (chapter 3) and 
propagation (chapter 4) and relate to the spatial resolution of a PIV measurement 
system as investigated further in this chapter.  

For this purpose, PIV will be analyzed using a linear filter model, i.e. assuming 
that the computed displacement field is the result of some spatial filtering of the 
underlying true flow field using a particular shape of the filter function. The validity 
of the linear filter model is accessed and a general definition of a single-number 
spatial resolution is provided. 
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2.2 Linear Filter Model of PIV 

PIV cross-correlation is a statistical process of averaging the displacement 
information inside an interrogation window. This can be approximated quite well by 
a linear filter function as noticed among others by Scarano and Riethmuller (2000). 
PIV can then be viewed as averaging the local displacement information u(x,y) over 
some local neighborhood IW (‘interrogation window’) into an averaged filtered 
displacement uF(x,y) using a 2D filter function with weighting coefficients F(x,y): 

0 0

F 0 0

x,y IW

x,y IW

F(x, y) u(x x, y y)

u (x , y )
F(x, y)





 






  (2.1) 

For simplicity, the following equations are reduced to the 1D-case (x-direction), 
and sometimes provided in a more elegant integral notation. The transition to 2D 
and 3D is straightforward. Here, the filter function F is always normalized by: 

x,y

F(x, y) 1





   (2.2) 

It is also assumed that the 2D filter function is separable in x and y, i.e. F(x,y) = 
Fx(x) Fy(y), with the same function in x and y and symmetrical around the origin:  
Fx(x) = Fx(-x). 

The following quantities are associated with F and are derived in the following 
sections: 

 Flow field uF 

 Autocorrelation AFF(Δx) of F 

 Autocorrelation of the random noise AFδu(Δx) 

 Spatial resolution, respectively filter length Lsr 

 Response to spatial wavelengths RA() (or as a function of frequency f=1/) 

 Power spectra density PSD(f) 

 Response to step function in displacement 

For illustration, three types of normalized filter functions are considered as 
reference for the comparison with actual PIV algorithms (Table 2.1 and Figure 2.5): 

 Top-hat function of width LTH corresponding to single-pass PIV processing 
with a square interrogation window 

 Gauss curve with standard deviation G 

 Mixture between Mexican-hat function (Marr-Hildreth, Laplacian-of-Gaussian) 
and Gauss (‘MHG’) 

The MHG-function reduces to the Gaussian curve for b=0. A pure Mexican-hat 
function corresponds to b=1. Plotted in Figure 2.5 are sample curves for a ‘filter 
length’ Lsr of 22 pixel (‚sr‘ = spatial resolution). Lsr is defined later in section 2.3 as 1 / 

 F(x)2 dx. 
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Table 2.1. Typical filter functions. 

Filter 
function 

F(x)  Filter length Lsr 

Top-Hat 
TH TH

TH

1 / L        for x L / 2
F (x) =

0             otherwise





 THsrL = L  

Gauss 2

2
G

G

G

x

21
F (x) =

2
e




 
 

srL = σ 4πG  

Mexican-
Hat-Gauss 
(MHG) 

2

2

2
2

G G

MHG

G

x

2

x
1 b

F (x) =
(1 b) 2

e







  

 
 
   

 
2

2

sr
3

4

1 b

1 b + b

L = σ 4π
G





 

 

The normalized autocorrelation of the filter function F is given by: 

x

F

2

x

F(x) F(x x)

AF ( x)

F(x)









 

 




 (2.3) 

An important relationship is the fact that this AFF-function is the same as the 
normalized autocorrelation AFδu(Δx) of the random noise δu of neighboring vectors 
separated by Δx (see proof in appendix A, δu here always in units of pixel): 

F u
AF ( x) AF ( x)


     (2.4) 

with 

x

x

u u

u(x) u(x x)
u(x) u(x x) dx

AF ( x) AF ( x)
u(x) u(x) dx

u(x) u(x)

or









 

   
   

   
 

 

 


  (2.5) 

Function AFδu(Δx) can be determined easily with synthetic images. This 
provides one possibility to deduce the underlying filter function F(x) as shown later. 
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2.3 PIV Spatial Resolution 

The spatial resolution of PIV quantifies the ability to resolve small-scale 
velocity fluctuations. Historically, in optics, the spatial resolution has often been 
defined, for example, when two dark or bright lines are still distinguishable by some 
contrast level, specifying e.g. 50 lines-pairs per mm for the resolution of a photo-
cathode tube or an image intensifier, where the two dark lines still have a contrast 
level of 10% or 20% relative to the bright intermediate line. This is a common 
specification, for example, by manufacturer of image intensifiers. Such tests are often 
performed using the USAF resolution test chart conforming to the MIL-STD-150A 
standard. 

 

Figure 2.5.  Filter functions with LTH = 22 px, G = 22 / sqrt(4π), MHG = 12.4 px and bMHG = 0.4. 

Reference to some spatial resolution is often vague and unprecise. For example, 
a common quote in the PIV literature is ‘with an interrogation window size of 32x32 
pixel the spatial resolution of a PIV algorithm is 32 pixels’. First, the spatial 
resolution more accurately has the dimension of the inverse of the spatial dimension 
(1/pixel or 1/mm), and secondly, as we see later for state-of-the-art PIV algorithms, 
the actual spatial resolution may differ substantially from the interrogation window 
size. In any case, there is a need for a precise definition. 

There are many possible definitions of such a spatial resolution. A common 
procedure is to use the cutoff-frequency in the frequency response curve (‘MTF’, see 
section 2.5) at some – rather arbitrary – threshold like 50%, 71% (-3dB) or 80/90% 
(3rd PIV Challenge, Stanislas et al. 2005). Another option is the width of the response 
to a step function in velocity (Elsinga and Westerweel 2011; step response width: 
Kähler et al. 2012). 
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In the following, we will not specify values for the spatial resolution itself, but 
for its inverse ‘filter length’ Lsr in the context of a linear filter model of PIV. A 
higher/lower spatial resolution will then correspond to a smaller/larger value of Lsr. 

In a linear filter model, the complete performance of PIV processing is 
determined by the width and shape of the filter function. Reducing this functional 
form to a single number ‘spatial resolution’ will always disregard the complete, 
possibly non-linear, behavior of the PIV algorithm. But, as shown later, it serves as a 
good indicator for the wavelength response of PIV and can help to simplify, for 
example, the computation of PIV uncertainties allowing easy uncertainty 
propagation (see chapter 3 and 4). 

A good choice is to base a definition of a spatial resolution directly on the filter 
function. The definition introduced first is more general based on the sum of the 
autocorrelation function of the error statistics without any reference to a filter 
function, but such a definition is easily linked to the filter function: 

Definition: The (1D-)spatial resolution represented by its spatial length Lsr is given 
by the sum of the autocorrelation coefficients of the error between neighboring 
vectors: 

+

-

δxsr AF ( x)L = d( x)





    (2.6) 

Equivalent to: A PIV algorithm based on a linear spatial filter function F(x) has a 
spatial resolution with a filter length of: 

+

i

2 2

i

-

srL =1/ dx =1/F(x) F(x )





   (2.7) 

The proof is given in appendix B. Such a definition of the spatial resolution has 
some favorable properties: 

First of all, as shown in Table 2.1, for a top-hat filter of length L, it can be easily 
verified that Lsr = L as one would expect. For a Gaussian curve, the equivalent filter 

length or filter kernel size is given by 
sr

L = 4  . 

Secondly, such a definition describes the basic error propagation when 
averaging the displacement information within an interrogation window: 

Property: A PIV algorithm based on a linear spatial filter has a 2D spatial resolution 
of Lsr x Lsr if it reduces the random noise of pixel-wise contribution of displacement 
information by a factor of Lsr. 

The proof is given in appendix C. The random noise  of noisy values ui, i=1-n, is 

in the following always defined as the standard deviation  = ((ui-ui_true)2/n)1/2. 

Such a definition of a spatial resolution in eqn. (2.7) has been used before to 
enable a fair comparison between different interrogation window sizes and 
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weighting functions (e.g. square or Gaussian shaped, see also Nogueira et al. 1999, 
2001) by Astarita (2007, eqn. 7) named equivalent noise bandwidth, “the spatial 
frequency bandwidth of a rectangle filter with the same peak power gain that would 
accumulate the same noise power” (Harris 1978). As shown later, the actual effective 
filter function of some PIV processing scheme may deviate substantially from the 
weighting function of the interrogation window used for cross-correlation. 

For uncertainty propagation involving spatial neighborhood functions – e.g. 
vorticity or divergence – it is required to know the functional form of the 
autocorrelation function AFδu (see chapter 4). For vorticity, the knowledge of a few 
values of AFδu at discrete neighbor vector locations is sufficient. For more 
complicated uncertainty propagation, e.g. for spatial averaging, a full explicit 
derivation becomes unpractical and using a single-number spatial resolution enables 
the computation of uncertainties of derived quantities more easily and with 
sufficient accuracy. 

The above definition of a spatial resolution is similar, apart from a factor of two, 
to the integral length scale and integral time scale (Hinze 1975, Swamy and Gowda 
1979, O’Neill et al. 2004), which operate not on error fluctuations but on the flow 
field fluctuations itself. These quantities have been found useful for turbulent 
characterization, providing e.g. the time passing of the largest vortex. 

When integrating the autocorrelation factors in eqn. (2.6), one needs to decide 
where to stop the integration, for example, at the first zero-crossing, which may cut-
off longer range correlation fluctuations, or at the first minimum encountered. For 
unrestricted integration, the spatial resolution can become more noisy than 
necessary by collecting noisy correlation coefficients in the tail of the function. For 
the case considered here and for most PIV settings, the autocorrelation of the noise 
decays quite quickly and behaves well in comparison to turbulent flow fluctuations 
correlating over longer ranges, where it is not easy to decide the integration length 
(O’Neill et al. 2004).  In the following, the integration is stopped at the first zero-
crossing. 

2.4 Spatial Resolution and Noise 

The autocorrelation function AFδu(Δx) can be determined easily for any PIV 
processing scheme for a specific set of user selected processing parameters by 
generating synthetic images with a constant known displacement and analyzing the 
computed errors (Table 2.2). The PIV-software Davis 8 (LaVision GmbH) is used in 
the following for processing. As shown in Figure 2.6 the error map for IW=32x32 px 
processing has larger spatial wavelengths than for 16x16 processing, and lower 
absolute errors as expected. Systematic errors are below 0.002 pixel. 

From the combination of u/v-component in x/y-direction, four values of Lsr 
could be computed. Here Lsr is computed from the error of the u-component in x- and 
y-direction and then averaged. The autocorrelation function of the u-error computed 
from the entire error field is shown in Figure 2.7 for 32x32 and 75% overlap 
together with a MHG-function of the same filter length with best-fit parameter 
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b=0.31 accommodating the undershoots at about ±35 pixel. Clearly, a triangle-
shaped autocorrelation function of a top-hat filter or a Gaussian function would not 
fit as well. 

Table 2.2: Random error levels and the derived spatial resolution (eqn. (2.6)) as the sum of the 
normalized spatial autocorrelation AFδu(Δx). 4 passes, Gaussian weighted IWs. 

PIV parameter Random 
noise 
 [px]  

Spatial 
resolution 

Lsr [px] 

Product 
 

 x Lsr   
IW-size Overlap  

16x16 75% 0.146 15.8 2.30 

24x24 75% 0.098 22.9 2.25 

32x32 0% 0.050 47.1 2.35 

 25% 0.052 41.6 2.16 

 50% 0.060 38.4 2.30 

 75% 0.076 29.7 2.26 

 87% 0.084 25.8 2.17 

48x48 75% 0.050 42.6 2.13 

64x64 75% 0.038 57.3 2.18 

  

Figure 2.6. Synthetic image with constant (u,v) = (0.6,0.3) px, 10% out-of-plane motion, Nppp = 
0.1, dp = 2.5 px, no extra noise added, Gaussian weighted windows, 4 passes, 75% overlap, 
showing u-displacement for IW=16x16 px (left) and 32x32 (right). 

There is some variation in the functional form of the 2D-autocorrelation 
function, for example, as a function of fractional displacement as shown in Figure 2.8 
as little squares for discrete neighbor vector locations with a grid spacing of 8 pixels. 
Derived spatial resolutions may vary by 1-2 pixels, but overall the functional form 
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with undershoots remains. Note that small correlation values further out have little 
impact on the accuracy of uncertainty quantification and propagation. 

As shown in Table 2.2 and Figure 2.9, the product of the random noise and filter 
length remains almost constant for all interrogation window sizes and overlaps.  

 

Figure 2.7. Spatial autocorrelation function of random noise u for IW=32x32, 75% overlap, 4 

passes, averaged in x- and y-direction and compared to AFF from Mexican-Hat-Gauss-function 

(G=12.4, b=0.31) with same spatial resolution. 

 

Figure 2.8. 2D-AF with (u,v)=(0.2,0.8) px (left) and (u,v)=(0.2,1.0) px (right). 

Universal rule: On a specific data set, varying PIV processing parameters, the 

product of PIV filter length as computed from AFδu(Δx) and random noise  stays 
constant: 



2.5.  Spectral Response (MTF)                                                                                                                                                  

21 

  
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

2 

Lsr(u)    const (2.8) 

Obviously, this is because e.g. doubling the interrogation window size with 4x 
more pixel and information content reduces the random noise by √4=2. The same 
argument applies to spatial smoothing of vector fields. Applying a smoothing filter, 
which doubles the filter length in both directions, reduces the random noise by a 
factor of 2. On the other hand, systematic errors due to amplitude reduction of small-
scale flow fluctuations (truncation errors) may increase. 

PIV is always a compromise between resolving small-scale flow structures 
requiring small interrogation windows and reducing the random noise using large 
interrogation windows. In chapter 5 a non-isotropic adaptive filtering technique is 
presented which locally optimizes the filter kernel size and shape according to the 
local noise (uncertainty) taking local flow gradients into account. 

 

 

Figure 2.9.  Double logarithmic plot of random noise versus spatial resolution from Table 2.2 
with a fitted grey line of slope -1. 

In Davis, an extensive table of spatial autocorrelation coefficients of the noise 
has been stored for all combinations of PIV parameters. Some simplifications have 
been made, e.g. assuming that the PIV algorithm has sufficiently converged, i.e. not 
taking single-pass processing into account. This internal table consists of 
autocorrelation coefficient for the close vector neighborhood together with the 
parameters of an approximated functional form (usually Gaussian or MHG) and the 
reduction to a single-number spatial resolution (filter length). This is needed for 
proper uncertainty propagation as described in chapter 4. 

2.5 Spectral Response (MTF) 
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2.5.1 Response to displacement sine waves 

Extensive work has been done to evaluate the response and stability of PIV 
algorithms to different spatial displacement wavelengths (Nogueira et al. 1999, 
2001, 2005a, 2005b; Lecordier and Trinité 2003; Scarano 2004a; Astarita 2006; 
Schrijer and Scarano 2008; among others).  

Almost in every PIV Challenge (Stanislas et al. 2003, 2005, 2008; Kähler et al. 
2016) synthetic images have been provided with sine-waves of different amplitude 
and wavelengths or images with a particular spectral content. In all cases, the goal 
has been to verify the ability to resolve small-scale fluctuations relative to the size of 
the interrogation window – i.e. the effective spatial resolution – in conjunction with 
error estimates and stability. Advanced iterative predictor-corrector schemes may 
become unstable e.g. for wavelengths equal to 2/3rd of the interrogation window size 
(e.g. Nogueira et al. 1999; Scarano 2004a).  

State-of-the art PIV algorithms use special weighting functions (e.g. Nogueira et 
al. 1999, 2001) or appropriate vector field filtering of the predictor/corrector field in 
iterative multi-pass processing (e.g. Astarita 2007; Schrijer and Scarano 2008) to 
suppress instabilities while ideally resolving as much as possible small-scale features 
equal or smaller than the interrogation window size. At the same time the random 
error should be minimized, too, according to the general linear relationship between 
spatial resolution and precision. 

In the following, the response to sine-waves of different wavelengths either as 
shear v(x)=A0sin(2πx/λ) or compression u(x)=A0sin(2πx/λ) is investigated by 
generating synthetic images with small amplitude A0 of e.g. 1 pixel. Measured is the 
amplitude reduction RA(λ) as a function of wavelength (or frequency f=1/λ): 

A

meas

0

A
R ( )

A
    (2.9) 

Assuming that PIV is a linear spatial filter according to eqn. (2.1), the amplitude 
reduction RA(λ) is, of course, given by the Fourier transform of filter function F: 

i 2 fx

A
R (f ) F(x)e dx F(x) cos(2 fx)dx

 

 

 

      (2.10) 

Since all functions are real and even, the Fourier transform reduces to the 
discrete cosine transform (DCT). 

Another useful quantity is the power spectral density, which is defined by  

   2

A
PSD f = R f   (2.11) 

The loop between F(x)→AFF(Δx) and F(x)→RA(λ)→PSD(f) (see Figure 2.10) can 
be closed by invoking the Wiener–Khinchin theorem (Wiener 1930; Khinchin 1934), 
which states that the power spectral density is the Fourier transform of the 
unnormalized autocorrelation function: 
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    FFT AF x PSD f    (2.12) 

A simplified proof is given in appendix D. 

2.5.2 Response to displacement step function 

Finally, the response of the PIV algorithm to a step function in the displacement 
is investigated, along the lines of Elsinga and Westerweel (2011) and Kähler et al. 
(2012).  

Let’s denote u(x) as the displacement response. According to the basic filter 
eqn. (2.1), the response u(x) is given by: 

x

u(x) F(x )dx



     (2.13) 

equivalent to 

u(x)
F(x) F( ) F(x)

x


   


  (2.14) 

Therefore the derivative of u(x) provides directly the filter function F(x) 
(named point-spread-function (PSF) by Elsinga and Westerweel 2011), requiring 
accurate data with sufficient noise suppression. 

 

Figure 2.10. Relationship between filter function, spatial resolution, autocorrelation and 
response functions. 
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The complete picture is shown in Figure 2.10 pointing to different ways of 
calculating the underlying filter function F(x) and a corresponding single-number 
spatial resolution or filter length.  

2.6 Results 

The above derivations have been tested using Davis 8 PIV software. First, using 
synthetic images with sine-waves the wavelength response function RA(λ) and 
autocorrelation function AFδu(Δx) has been determined, from which the filter 
function F(x) is calculated. Finally, the response to a step function in displacement is 
investigated. 

2.6.1 Response to displacement sine waves 

For determining the wavelength response function RA(λ), synthetic images with 

a shear flow sin (2 / )u y   have been generated (seeding density 0.2 ppp, particle 

diameter 2.5 px, intensity 200 counts, sine wave amplitude 1.0 px) for wavelengths 
up to 200 px in increments of 1.37 px to avoid aliasing effects.  

To start with, the simplest kind of PIV processing has been tested with a single-
pass and square interrogation window of 32x32 pixel and 75% overlap (e.g. Figure 
2.11 with λ=64 px).  

 

 

Figure 2.11. Example of measured shear flow for u = sin(2πy/64). 

The measured sine wave amplitude ratio RA(λ) = Ameas / 1px (Figure 2.12 top) 

shows the typical form of a sinc-function as the Fourier transform of a top-hat filter 
function. The negative response at about 2/3rd of the IW-size has been noticed before 
(Nogueira et al. 1999, Scarano 2004a) together with remedies how to avoid 
numerical instabilities in multi-pass PIV processing (e.g. Schrijer and Scarano 2008). 
One should note that even at λ=200 px the amplitude is still reduced by 10%. 
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Figure 2.12. Amplitude ratio, derived filter function, and autocorrelation function as a function 
of displacement wavelengths. Result from single-pass square IW. 
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Figure 2.13. Same as Figure 2.12 for single-pass Gaussian IW. 
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Figure 2.14. Wavelength response functions for 1-6 passes (top) and corresponding filter 
functions (bottom) using Gaussian IW. 

Transforming RA(λ) back to F(x) yields roughly the initial top-hat function 
(square interrogation window) slightly smoothed by border effects and extended 
particle image sizes (Figure 2.12 middle). At the bottom of Figure 2.12 is shown the 
autocorrelation function as computed from RA(λ) via PSD(λ) together with the auto-
correlation function of the noise (eqn. (2.5)). Both functions agree quite well and 
with a triangle-shaped autocorrelation function of a top-hat filter with L=32 px.  
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Next, a single-pass PIV processing has been done with a Gaussian weighted 
window (Figure 2.13). Internally in Davis, the interrogation windows are weighted 
with a Gaussian function equivalent to a filter length of 38 pixel (for historical 
reasons to make it similar to square IWs in multi-pass processing). The deduced 

filter function is close to a Gaussian function with Lsr=36 px. The noise 

autocorrelation function is also Gaussian shaped with a derived filter length of 37 px. 

The situation becomes more complicated for iterative multi-pass processing. 
The wavelength response function gets steeper adjusting better to smaller 
wavelengths with correspondingly higher spatial resolution (Figure 2.14 top). 

The corresponding filter function evolves into a mixture of Gaussian and 
Mexican-hat function with Lsr decreasing from 36 for single-pass to 22 pixel for 6 
passes (Figure 2.14 bottom). Actually, for an infinite steep RA-curve, the filter 
function would not be exactly a Mexican-hat function, but would exhibit multiple 
ringing of a sinc-function which is the Fourier transform of a step function. 
Nevertheless, the approximation as a MHG-function captures the functional shape of 
the filter function for our cases very well. 

Increasing the number of iterations, the spatial resolution as computed from 
the noise autocorrelation is decreasing from 37 pixel to only 30 pixel and then 
deviates from the spatial resolution derived from RA (Table 2.3). While the product 

of noise and Lsr derived from noise u stays constant at about 2.1-2.2, the product of 
noise and Lsr derived from RA decreases down to 1.7, which is an improvement of 
20%. Through multi-pass processing, the PIV algorithm is able to resolve smaller 
scales while keeping the noise level lower than expected from the increase in spatial 
resolution. 

Table 2.3. Noise and spatial resolution for 1-6 passes. 

PIV parameter Random 
Noise 

 

 [px] 

Noise u 
spatial 

resolution 
Lsr  [px] 

Product 

 

 x Lsr (u)   

RA-spatial 
resolution 
  

Lsr  [px] 

Product 

 
 x Lsr (RA)  

IW-size 
Overlap 

Passes 

32x32 

75% 

1 0.057 37.0 2.10 36.1 2.06 

2 0.064 32.2 2.06 27.5 1.76 

3 0.070 30.7 2.15 24.2 1.69 

4 0.076 29.7 2.26 22.9 1.74 

6 0.077 29.5 2.27 21.7 1.67 

 

Unfortunately, PIV processing in Davis can no longer be quantified by a single 
filter function, but needs two functions, one for the spatial autocorrelation of the 
noise between neighboring vectors (needed for uncertainty propagation), and one 
for the wavelength response. Both functions are of MHG-type with around b=0.3-0.4 
(30-40%) Mexican-hat contribution. Table 2-4 shows all values for 4-pass PIV for a 
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range of interrogation window sizes and overlap. Clearly, 0% or 25% overlap is not 
recommended as the spatial resolution from RA is worse, not being able to sample 
small-scale fluctuations sufficiently. In general, 3-4 passes, 75% overlap and 
Gaussian weighted windows provide an optimum between processing time and 
achievable spatial resolution while keeping the random noise floor low. 

Table 2.4. Table 2.2 complete with added columns for the spatial resolution derived from RA 
and the product with the noise.  

PIV parameter 

4 passes 

Random 
noise 

 

 [px] 

Noise u 
spatial 

resolution 
Lsr  [px] 

Product 

 

 x Lsr (u) 

RA-spatial 
resolution 
 

Lsr  [px] 

Product 

 

 x Lsr (RA) IW-size Overlap 

16x16 75% 0.146 15.8 2.30 12.2 1.78 

24x24 75% 0.098 22.9 2.25 17.5 1.67 

32x32 0% 0.050 47.1 2.35 59.3 2.97 

 25% 0.052 41.6 2.16 44.5 2.31 

 50% 0.060 38.4 2.30 29.8 1.76 

 75% 0.076 29.7 2.26 22.9 1.74 

 87% 0.084 25.8 2.17 20.8 1.75 

48x48 75% 0.050 42.6 2.13 33.9 1.65 

64x64 75% 0.038 57.3 2.18 44.6 1.69 

 

 

Figure 2.15.  Slightly oblique step function in v-component, v=0 (left) and v=1 px (right). 
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2.6.2 Response to displacement step function  

A single synthetic image has been generated with v=0 pixel on the left, and 1 
pixel on the right (Figure 2.15). It is slightly tilted to avoid aliasing effects, i.e. one is 
measuring the displacements for all positions of the edge within the interrogation 
window. In a similar way, Elsinga and Westerweel (2011) used a series of synthetic 
images with the step position shifted in x-position and then adding the displacement 
profiles of all images. Processing is done in the following way:  

1. Extract v-component as a scalar field, same size as original image (with 
bicubic interpolation between vector positions) 

2. Rotate the scalar field back so that the edge is vertical again 

3. Take a vertically-averaged x-profile of v 

4. Compute filter function as the derivative of the displacement function 

This is shown in Figure 2.16 together with the derived filter function in Figure 
2.17. For comparison, the displacement function from a top-hat, Gaussian and MHG-
function of the same spatial resolution is displayed as well. The MHG-curve fits best 
with the same spatial resolution of about 22.7 px as in the previous section using RA. 

 

Figure 2.16.  Step function response, measured displacement function together with top-hat, 
Gaussian and MHG-function (b=0.385) of same spatial resolution. MHG follows closely the 
measured data.  

The under- and overshoots in the displacement curve has also been noticed by 
Elsinga and Westerweel using a different PIV software from TU-Delft. The authors 
propose a definition of a spatial resolution when two features are no longer 
separable, in this context by two step functions. They conclude that the spatial 
resolution defined this way is the same as the interrogation window size plus 1 pixel, 
probably owing to the particular processing details of their predictor-corrector 
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scheme and using square interrogation windows. With Gaussian weighted windows 
such a condition of features being separable is not so clear, rather a smooth 
transition of detectability is expected, again with the question where to set a rather 
arbitrary threshold.  

 

Figure 2.17. Corresponding filter function together with filter function derived from RA and 
MHG-function (b=0.385) of same spatial resolution. 

Kähler et al. (2012) did not observe overshoots, only a straight line in the 
displacement, probably using only a single pass correlation with square 
interrogation windows as is visible in the filter function (‘velocity gradient’) in their 
Figure 4 bottom. They define a step response width (SRW) as the width needed for 
the displacement to go from one displacement level to the other.  

This agrees with our definition of Lsr when using top-hat filter functions, but, 
again, becomes fuzzy when quantifying smoother curves. They also observe the 
rounding-off of the top-hat filter function, respectively step function response for 
single-pixel ensemble correlation, due to the finite particle image size (our Figure 
2.12 middle). 

2.7 Summary 

PIV processing is viewed as a black box without going into the details of 
processing parameters and algorithms. The input is given by the experimental setup, 
a wide range of error sources as discussed in the next chapter, PIV processing 
parameter and the actual recorded images. The PIV processing scheme produces an 
output vector field with some intrinsic properties. In most cases, it can be viewed as 
a continuous smooth velocity field with an appropriate recipe for vector 
interpolation, in case the data is given as discrete vectors on a regular grid. 
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Together with the actual velocity data, the vector field has some important 
associated properties, which are not readily visible: 

 Local uncertainty of the velocity field components 

 Autocorrelation coefficients of noise: spatial, inter-component and temporal 
(for time-resolved PIV) 

 Response function to velocity fluctuations of different spatial wavelengths 
(and temporal for time-resolved PIV) 

The first two points are relevant for PIV uncertainty quantification (chapter 3) 
and uncertainty propagation (chapter 4). 

The performance of most PIV algorithms can be closely approximated by a 
linear spatial filtering model.  The shape and width of the spatial filter function 
determines the wavelength response function and the response to a step function in 
displacement. The corresponding mathematical relationships are derived and a 
statistically motivated definition of a spatial resolution is provided which can easily 
be derived using synthetic images.  The filter function itself can be deduced as well. It 
is shown that state-of-the-art PIV algorithms like Davis behave closely according to a 
Gaussian filter function with some Mexican-hat contributions, one function for the 
noise autocorrelation and another one with higher spatial resolution for the 
wavelength response function. 

For a given PIV interrogation window size, shape and overlap, the resulting 
functional shape of the filter function or wavelength response function can vary 
significantly depending on algorithmic details, number of iterations and convergence 
behavior. For PIV publications, it is recommended to quote the (possible locally 
varying) effective spatial resolution together with the uncertainty bands of velocity 
and derived quantities. 
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Section 3.3 has been published in Wieneke (2015) PIV uncertainty quantification 
from correlation statistics, Meas Sci Technol 26(7).   



3.1.  PIV Error Sources                                                                                                                                                  

34 

  
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

3 

PIV as a measurement technique has been used for more than 30 years and 
extensive work has been undertaken to quantify different error sources. A large part 
of the attention has been given to the basic cross-correlation algorithm itself to 
extract the displacement information in a most accurate and precise way. For this 
purpose, often synthetic images have been generated simulating known error 
sources. The known ground truth is then compared to the computed displacement 
field. Unfortunately, such studies usually underestimate the error level present in 
real experiments. Another possibility is the comparison of experimental PIV data 
with velocity data from another measurement system like hot-wire or LDA 
hopefully closer to ground truth, as recently done, for example, by Neal et al. (2015) 
in the context of validating uncertainty quantification methods. 

Previously, it has been stated that for typical experimental conditions the 
displacement errors are about 0.05 to 0.2 pixel, recent effort in the last three years 
has been undertaken to specify the uncertainty of each computed displacement 
vector in a more quantitative way. Such uncertainties may vary locally depending on 
seeding density, out-of-plane motion, flow gradients and other factors. 

Section 3.1 covers briefly the main error sources of PIV with the focus on how 
to avoid them experimentally and on the possibility to quantify them by some 
uncertainty quantification (UQ) method. In section 3.2, some simple, but quite 
useful, practical ways of estimating PIV errors are described together with more 
advanced methods quantifying errors under special conditions, methods to optimize 
experimental and processing parameters and, finally, full UQ-methods trying to 
quantify the uncertainty of every computed vector. An uncertainty quantification 
(UQ) method based on correlation statistics is described in section 3.3. Meanwhile, 
two studies exist comparing some of the available uncertainty methods 
(Sciacchitano et al. 2015; Boomsma et al. 2016). 

3.1 PIV Error Sources 

There is a wide range of possible error sources in PIV measurements (see 
Figure 3.1) as investigated by many researchers together with recommendations for 
optimal experimental setups (e.g. Adrian and Westerweel 2011; Raffel et al. 2007; 
among others). Avoiding errors in the first place should be the primary goal for any 
experimenter.  

A selection of error sources is investigated here divided into two groups based 
on the possibility of quantifying the error by some UQ-method. While all error 
sources are somehow encoded in the recorded images as erroneous particle 
positions, optical distortions and other types of image noise, some mostly 
systematic errors like timing and synchronization offsets and jitters of the involved 
hardware components (cameras, laser, etc.) are hidden and can not be extracted and 
quantified by analyzing the recorded images. Here it is even more important to 
check and optimize the experimental setup and conditions beforehand. 

Other error sources are factors visible in the recorded images like particle 
image size, seeding density, camera noise, laser speckle effects together with 
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properties of the computed velocity field, which, ideally, can be quantified by UQ-
methods. 

Accurate perspective calibration is an essential prerequisite for Stereo-PIV and 
incorporates a few distinct possible error sources. The misalignment between actual 
light sheet plane and the supposed position of the light sheet as deduced from the 
initial calibration can be corrected by a method termed ‘Stereo-PIV Self-Calibration’ 
(section 6.2), while, for example, inaccurately manufactured calibration plates and 
unaccounted-for optical distortions remain invisible in the images, introducing 
mostly systematic bias errors. 

 

Figure 3.1. Overwiew of PIV error sources (courtesy of A. Sciacchitano, TU-Delft). 

Errors are split into random (precision) and systematic bias (accuracy) parts, 
where systematic errors are usually harder to quantify. Following the suggestion of 
Coleman and Steele (2009), known systematic errors should be corrected right 
away as an integral part of the processing scheme and not unnecessarily be kept and 
propagated into uncertainty estimations. Therefore, in general, UQ-methods mostly 
quantify the random error components.  

There are even systematic error sources with unknown bias for a particular 
experiment, but known standard deviation of the bias magnitude. For example, it 
may be known that the calibration plates provided by the manufacturer have a 
certain tolerance of global magnification scale (average distance between marks) 
leading to an unknown systematic scaling error in a particular experiment. In 
principle, such errors can be propagated by appropriate, quite complicated, UQ-
procedures (Wilson and Smith 2013a, 2013b). Instead, if possible, it is 
recommended to increase the accuracy on the experimental side and to verify that 
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the remaining systematic (and random) errors are insignificant compared to typical 
levels from other PIV error sources. 

The following list shows some important sources of PIV errors for planar 2D-
PIV and Stereo-PIV with suggestions for optimization and reduction of error levels. 
Hidden factors not readily visible in the images are listed first: 

 Timing and synchronization errors 

 2D-PIV perspective errors 

 Stereo-PIV: 
o Inaccurate calibration targets 
o Insufficient calibration model 
o Errors due to right/left camera viewing different 

interrogation volumes 
o Llight sheet misalignment 

 Particle response and lag  

Some error sources can ideally be estimated from the recorded images and 
used in UQ-methods: 

 Particle image size and shape, laser speckle effects 

 Camera noise 

 Seeding density and inhomogeneity 

 Illumination intensity variations 

 Spatial velocity gradients 

 Brownian particle motion 

 Particle out-of-plane motion 

 PIV processing scheme 

3.1.1 Timing and synchronization errors 

Typically, synchronization electronics used for PIV experiments has very low 
jitter and offset of the order of less than 1 ns, small in comparison to typical time 
delays between two light pulses. Note also, that the shortest laser pulses of Nd:YAG-
lasers have durations of 5-10 ns. For the most demanding double-pulse experiments 
with e.g. 100-300 ns between laser pulses (either in µPIV or for supersonic flows) 
the expected error is still less than 1% and less than typical other PIV errors in such 
experiments.  

More critical is the time delay between the trigger to the laser and the time of 
the actual light output. Especially for long-pulse (100-300 ns) high-repetition-rate 
Nd:YLF-lasers, there can be quite some variation in the delay of up to 0.5 to 1 µs 
depending on repetition rate and power setting (Bardet et al. 2013). For double-
pulse single- or double-cavity lasers, this problem can be solved by continuously 
measuring the time of the light output with a photodiode for both light pulses and 
delaying the trigger signal of one laser electronically for the next pulses (Bardet et 
al. 2013). 
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Camera electronics is usually quite reliable and predictable. Activating the 
exposure of the camera(s) can be done beforehand. Critical is only the time instant 
and duration of switching between the first and second exposure in the double-
frame mode of PIV cameras to make sure that the first and second light pulses are 
recorded in the first and second exposure. There is some small jitter and duration in 
this transition of 0.1 to 4 µs depending on the camera model, which limits the 
shortest possible time between the laser pulses. Activating only one laser pulse, it 
can be checked easily if the recorded light is fully in the correct frame or e.g. visible 
partly of fully in the wrong one, requiring some timing adjustments. 

3.1.2 2D-PIV perspective errors 

When viewing a planar light sheet with a single camera, the 2C- displacement 
components are always measured perpendicular to the viewing direction possibly 
deviating substantially from the true in-plane components toward the corners of the 
field-of-view. A larger working distance or using (expensive) telecentric lenses 
helps. In general, if this poses a problem, it is recommended to apply Stereo-PIV 
using a second camera with the added advantage of measuring the out-of-plane 
component as well.  

For lenses with strong optical distortions, e.g. fish-eye lenses, xy-positions for 
the computed vectors can be corrected by a calibration with a single view of a flat 
calibration plate with known marker positions at the position of the light sheet. 

3.1.3 Stereo-PIV errors 

As mentioned before, manufacturing tolerances of the calibration plate can 
lead to deviations in the magnification scale or coordinate system twisting. Given 
e.g. 10 µm tolerance relative to a plate size of 100 mm leads to an insignificant error 
in the in-plane scale. But for the out-of-plane scale and using a two-level plate with 
10 µm tolerance relative to e.g. 3 mm, this amounts to 0.3% (0.03 px for 10 px out-
of-plane motion) already close but in most cases still smaller than other error 
sources. The remedy is higher manufacturing quality or measuring actual marker 
position accurately in 3D beforehand and feeding this information into the 
calibration procedure. Another possibility is using a full camera pinhole calibration 
with a single-level plate and multiple (5-10) views at shifted and rotated position – 
the common procedure in computer vision – instead of a more convenient single-
view calibration with a two-level plate, which is typically used together with 
polynomial calibration function.  

Another aspect is whether the chosen calibration model (e.g. polynomial, 
pinhole, with/without Scheimpflug correction, …) is able to account for all optical 
distortions. For most experiments even a simple pinhole model with e.g. 6-10 
parameters per camera is usually sufficient, as small deviations (e.g. <1-3 pixel) in 
the vector positions in one camera relative to the supposedly same position in the 
second camera lead only to small errors in the 3C-reconstruction of the final (u,v,w)-
vector. But larger deviations e.g. due to misalignment of light sheet and calibration 
plane become relevant (Giordano and Astarita 2009). 
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When viewing through multiple possibly curved interfaces (air – glass – 
water), even a multi-level polynomial model with dozens of parameters per camera 
may reach its limit, warranting even higher-order, e.g. piece-wise spline models. See 
also the extensive work by Belden (2013) incorporating a physical model for the 
case of changing index of refraction.  

 

Figure 3.2. Flow with gradient of v in x-direction (left), flow with gradient of u in xz-direction 
(right). Stereo-PIV: measured non-zero u1 and u2≈0 leads to small amplitude u- and 
erroneous w-components (from Wieneke and Taylor 2006). 

One rarely mentioned error source in Stereo-PIV is due to both cameras not 
viewing the same interrogation volume due to the finite thickness of the light sheet 
(Wieneke and Taylor 2006). Any out-of-plane gradient of the in-plane or out-of-
plane velocity components leads to possibly substantial systematic errors in the 
computed 3C-velocity components, which remain unnoticed in the recorded images 
(Figure 3.2). One can try to reduce the light sheet thickness in case the out-of-plane 
velocity component is small enough, or use Tomographic PIV with a slightly thicker 
light sheet with the added advantage of measuring the full 3x3 strain tensor derived 
from at least two planes of velocity fields.  

 

Figure 3.3. Stereo-PIV self-calibration procedure correcting misalignment of laser sheet. 



3.1.  PIV Error Sources                                                                                                                                                  

39 

  
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

3 

 

As mentioned before, misalignment of actual light sheet position and where 
the initial calibration locates the light sheet, leads to deviations in the vector 
positions in one camera relative to the supposedly same position in the second 
camera. Thus systematic errors occur when the two 2C-displacements are combined 
into a 3C-vector (3C-reconstruction). Giordano and Astarita (2009) report possible 
significantly dephased and modulated wavelengths. 

An efficient procedure to correct such a misalignment (Figure 3.3) is described 
in section 6.2. It is recommended for every Stereo-PIV measurement, at least to 
check for any misalignment. Standard UQ-methods usually assume that a 
misalignment has been corrected without the need of uncertainty propagation of 
possible (unknown and difficult to estimate) calibration errors. The assessment of 
errors in calibration mapping functions remains an open question so far. 

3.1.4 Particle response and lag 

Seeding particles should follow faithfully the flow and fluid element 
acceleration. For air flow with solid or liquid seeding particles heavier than air, 
seeding particles must be small enough with a short response time, requiring e.g. 
diameters of less than 1 µm for high accelerations like shock fronts (see e.g. Melling 
1997). The scattering intensity reduces about quadratically with the particle size, so 
one needs to find some optimal size as large as possible, but small enough for the 
expected accelerations.  

Recently, generators for sub-millimeter-sized Helium-filled soap bubbles 
(HFSB) have been developed in particular for large-scale volumetric PIV in closed 
compartments (Kühn et al. 2011) and wind tunnels (Scarano et al. 2015). These 
neutrally buoyant bubbles follow the flow accurately and scatter orders-of-
magnitude more light than micrometer oil droplets. Another problem of vortex 
cores being devoid of oil droplets due to centrifugal forces can also be avoided with 
HFSBs with bubbles slightly lighter than air. 

For water and other liquids a wide range of neutrally buoyant (plastic) seeding 
particles with similar density are available.  

In general, the topic of appropriate seeding particles should be addressed 
experimentally, not related to any special issue of PIV processing or uncertainty 
quantification. Heavy particles may not follow the flow accurately when subjected to 
strong accelerations, but it is not recommended to try to correct particle paths a-
posteriori given the complexity and limitations, in particular, when the particles are 
not mono-dispersive. 

3.1.5 Particle image size and shape, laser speckle effects 

In most experiments the particle image size as visible in the recorded images is 
diffraction limited largely independent of the real particle size, with a size of about 

two times the F-stop number in µm (d=2.44F#(1+m), see e.g. Raffel et al. 2007). 
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The optimal particle image size is about 2 pixel as noticed by many researchers 
utilizing synthetic image data (e.g. Prasad et al. 1992, Adrian and Westerweel 2011). 
Larger particle image sizes lead to additional random errors, while smaller particle 
image sizes lead to strong systematic bias errors (‘peak locking’) favoring integer 
pixel displacements as well as strong random errors. For 2D-PIV this is easily visible 
in the histogram of the displacements, while for Stereo-PIV or Tomographic PIV it is 
more hidden. It will show up as aliasing bands when averaging almost laminar and 
slowly varying flow fields with a turbulence level below about 0.3 pixel. 

Errors associated with peak-locking adversely affect the estimation of 
turbulent statistics (Christensen 2004) and have therefore motivated a number of 
investigations. Some methods for reducing these effects a posteriori through data 
processing algorithms have been proposed. These methods include the use of a 
correlation mapping method (Chen and Katz 2005), alternative sub-pixel 
displacement algorithms (Roesgen 2003; Roth and Katz 2001), modifications to the 
particle displacement histogram (Roth and Katz 2001; Hearst and 
Ganapathisubramani 2015), spectral domain image shifting techniques (Liao and 
Cowen 2005), the use of simplified (1-D) modeling and correction (Cholemari 2007) 
and processing using phase correlations (Eckstein et al. 2008). Most approaches 
reduce the bias error but not the equally strong random errors. 

It is recommended to experimentally avoid such a condition beforehand by, as 
one option, closing the aperture with the disadvantage of less light. This approach is 
not practical for high-speed cameras with large pixels of ≥20 µm. Rather, it is 
recommended to either manually defocus the lens slightly (Overmars et al. 2010) 
with possible difficulties achieving equal defocusing everywhere in the image for 
Scheimpflug-mounted objectives, or to mount extra diffusor(s) between camera and 
lens with just the right defocusing (Michaelis et al. 2016). One should note, that 
defocussing does not work for volumes (Tomo-PIV), since it only shifts the focused 
plane. 

The theoretical Airy particle shape function can usually be approximated quite 
well by a circular Gaussian function. In case of astigmatism, it will change into 
ellipses, equivalent to larger particle image size in some direction. This or any other 
deformed particle image shape from other optical effects will not add to the error in 
any special way – in particular for correlation-based PIV – because the particle 
shape at the second time instance will look the same. In general, extended particle 
shapes lower the contrast and increase the random error.  

Worse are e.g. potato-shaped tumbling seeding particles changing intensity 
rapidly (blinking), leading to strong random errors as described below for the effect 
of out-of-plane motion. Laser speckle also adds to the random noise but is difficult 
to quantify. Improvement in image quality would be possible with incoherent light 
sources (e.g. LEDs) but they are difficult to form into a thin light sheet of sufficient 
intensity. For large-scale volumetric PIV the use of mono-disperse helium-filled-
soap bubbles illuminated by an array of strong LEDs offers the potential of excellent 
image quality (e.g. Scarano et al. 2015). 
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3.1.6 Camera noise 

Cameras have mainly three types of noise sources. First the average 
background dark image has a characteristic fixed pattern which tends to bias the 
correlation toward the (0,0)-peak location. Especially for CMOS-cameras with 
stronger fixed pattern it is recommended to subtract a pixel-wise average or 
minimum of all recorded images before processing. This also removes constant 
background illumination (e.g. reflections). 

Secondly, each pixel exhibits a characteristic random dark noise in the order of 
typically 3-20 e- (photo-electrons). High-speed CMOS-cameras are noisier (>15 e-) 
while sensitive (cooled) CCD-cameras can have noise levels below 5 e-. Recently a 
major breakthrough has been achieved with scientific CMOS sensors (sCMOS) 
developed together by Fairchild, PCO and Andor with noise levels below 1-3 e-, high 
full-well capacity and relatively fast 50-100 Hz frame rate. Sony recently introduced 
global shutter CMOS-chips with similar specifications and will actually discontinue 
its line of CCD chips in a few years, because the newly CMOS-sensors are better in 
almost all specification: dark noise, full-well capacity and speed. Unfortunately, the 
Sony chips do not support the fast-shutter double-frame mode. 

Finally, given any illumination of a pixel with some number of photo-electrons 
N, the unavoidable Poisson-distributed random photon shot noise is simply the 
square-root of N. As soon as the illumination increases above some rather low level, 
the photon shot noise will be the dominant source of camera noise. A high full-well 
capacity helps to increase the image contrast provided enough light is available. 

3.1.7 Particle out-of-plane motion 

Particles change intensity when moving through the light sheet with, for 
example, a Gaussian intensity profile. Unmatched particles leaving or entering the 
light sheet will add to the general noise background in the correlation maps. Even 
more critical are two partially overlapping particles at different z-position being 
brighter-darker at the first laser pulse, changing to darker-brighter at a later time 
instance due to the out-of-plane motion. The result is a significant asymmetry of the 
correlation peak leading to strong virtual displacements of up to half the particle 
image size. For typical out-of-plane motions the averaged random error can reach 
0.1 px quite independent of the seeding density (Nobach and Bodenschatz 2009, 
Nobach 2011). This is often the dominant error source in PIV. For a more top-hat 
shaped intensity profile the effect may be slightly smaller, but a combination of 
bright-bright to bright-gone has the same effect. 

A thicker light sheet helps with the previously mentioned advantages and 
disadvantages, but a significant improvement is only possible with volumetric 
measurement techniques, for example, processing a slightly thicker light sheet with 
Tomographic PIV using at least 3 cameras. 



3.1.  PIV Error Sources                                                                                                                                                  

42 

  
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

3 

3.1.8 Illumination intensity variations 

Slowly varying in-plane light sheet intensity variations or difference in global 
intensity from first to second laser pulse do not add any special systematic or 
random error component, as cross-correlation is insensitive to absolute intensity 
variations. Common practice is to subtract the local mean intensity of the 
interrogation window before correlation leading to noise reduction. Again, the 
random noise is always proportional to the particle intensity and contrast, in 
general to the available information content. 

More critical is the case of the two laser pulses not being perfectly aligned or 
with different intensity profiles. This has the same effect as particle out-of-plane 
motion. Grayson et al. (2016) propose to use an extra camera for measuring the 
laser profile. A simple check of laser misalignment consists of setting the time 
between the two laser pulses as short as possible. The PIV cross-correlation 
coefficient should then be close to 1. A value of 0.5 would indicate only 50% overlap 
between the two lasers. 

Laser adjustments, good light sheet forming optics and appropriate checks 
before recording the actual data are part of the experimental expertise 
recommended for successful PIV experiments. 

3.1.9 Spatial velocity gradients 

A mostly unrecognized source of error is related to out-of-plane velocity 
gradients. Particles within the light sheet will have different depth positions not 

averaging out to zero due to the random positions. A standard deviation  of the 
random position of n particles leads to a mean z-position with a standard deviation 

/n and subsequently to an averaged velocity different than the velocity at the 
center of the light sheet due to the out-of-plane gradient of the velocity. 

For example, let’s assume a light sheet with 10 pixel standard deviation 
(‘width‘ of 20 pixel) in the Gaussian intensity profile. An ensemble of 20 particles 
within the interrogation window/volume has a standard deviation in the center-of-

mass z-position of 10/20=2.2 pixel. Together with a possible out-of-plane gradient 
of typically up to 5-10% (i.e. 5-10 px change in displacement over a distance of 100 
px), this can lead to a random error of up to 0.11 to 0.22 px, which is significant 
compared to the other error sources.  

A synthetic image has been generated with some camera noise, seeding density 
of 0.02 ppp (20 per 32x32 IW), and constant (u,v)-velocity with a z-gradient 
simulated by half the particles at v=+0.25 pixel, and half with -0.25 pixel (equivalent 
to 2.5% gradient in a light sheet of 20 pixel width). This yields 0.078 px random 
error in the v-component (0.010 px without z-gradient), compared to the theoretical 

0.25/20=0.056 px. The measured error is probably slightly larger due to 
overlapping particles of different velocities disturbing the correlation peak and 
increasing the random error. 
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For 2D-PIV only the out-of-plane gradients of the in-plane velocity components 
are relevant, while for Stereo-PIV also the out-of-plane component will contribute to 
the error magnitude. In principle, one can reduce the effect by decreasing the time 
between laser pulses or by reducing the light sheet thickness. But in the presence of 
out-of-plane gradients one also expects significant out-of-plane velocity itself 
requiring thicker light sheets to prevent too large fractions of unmatched particles. 
Again, some improvement can be expected from Tomographic PIV or 3D-PTV/STB. 

Random motion of particles also leads to a broader and less well-defined 
correlation peak and thus to even more random errors. The particle disparity UQ-
method (Sciacchitano et al. 2013) and the correlation statistics UQ-method (section 
3.3) are well suited to quantify the estimated error level. 

This effect needs to be distinguished from in-plane gradients together with 
random particle positions which lead to an average in-plane particle ensemble 
position not at the middle of the interrogation window. Some vector relocation 
scheme has been proposed to correct for it (Lindken et al. 2003). For state-of-the-art 
PIV algorithms, this is no longer necessary, since the predictor-corrector scheme 
iteratively adjusts to in-plane gradients independently of the exact location of the 
seeding particles. Seeding inhomogeneity determines the amount of information 
and thus indirectly the random error level, but introduces per se no systematic shift 
in mean vector position. 

As mentioned in the previous chapter, small wavelengths will be truncated 
(truncation errors) due to the limited spatial resolution of any PIV algorithm. This is 
visible again – just like for the out-of-plane gradient case – as random motion of the 
particles within the interrogation window – systematic on smaller scales than the 
interrogation window size – and should be again detectable by sensitive UQ-
methods. 

A similar random particle motion occurs directly on micro-scales due to 
Brownian particle motion. It becomes visible in high-magnification µPIV as a 
random in-plane jitter of particle positions as a function of temperature. The 
random particle motions never cancel out completely to zero. 

3.1.10 PIV processing scheme 

Finally, any PIV algorithm has its strength and weaknesses. While state-of-the-
art PIV processing schemes are already highly optimized, they never extract 100% 
of the available information in an optimal way. For example, ongoing research tries 
to optimize processing parameters to locally changing image conditions (adaptive 
PIV, see chapter 5). 

PIV processing may also lead to false vectors (outliers) far off the true value 
due e.g. to random correlation peaks. A good algorithm should recognize during 
processing or as a post-processing step if a computed vector is valid or should be 
disregarded due to insufficient local information content or incompatibility to the 
neighborhood (e.g. Westerweel and Scarano 2005). An unrecognized outlier can 
spoil statistical quantities significantly further down the processing chain. 
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Without going into the details of possible error sources related to imperfect 
processing schemes, it should be noted that UQ-methods partly require knowledge 
of some processing details. The image matching/particle disparity method 
(Sciacchitano et al. 2013) and the correlation statistics method (section 3.3) need the 
effective spatial resolution of the PIV algorithm and the shape of the filter function 
(in most cases assuming a Gaussian function is sufficient) but otherwise would work 
with any PIV algorithm. The uncertainty surface method (Timmins et al. 2012), the 
peak ratio method (Charonko and Vlachos 2013) and the similar mutual information 
method (Xue et al. 2014; Boomsma et al. 2016) require previous calibration of the 
actual PIV software under various image conditions. 

To summarize, from a pure image processing point of view, the accuracy of PIV 
is determined first of all by the total amount of information content (seeding 
density, number of matched particles, image contrast, light intensity, etc.) and 
additional random error sources visible in the image and potentially quantifiable by 
UQ-methods. They can be combined into three categories: 

 Random pixel noise due to: 
o Camera background noise, evenly distributed 
o Camera photon shot noise, highest at particle positions 

 Jitter in particle position due to: 
o Out-of-plane gradient of in-plane particle motion (Stereo-PIV: 

also out-of-plane motion) 
o Unresolved in-plane particle motion for small wavelengths 
o Brownian motion for tiny particles in µPIV 

 Changing intensity pattern for overlapping particles due to: 
o Out-of-plane motion together with changing light intensity 

(e.g. Gaussian laser profile) 
o Misalignment of lasers or differently shaped light sheet 

profiles  
o Temporally changing light sheet profile for a single-cavity 

laser in time-resolved PIV 
o Tumbling motion of non-spherical particles 

The sensitivity of any UQ-method should be validated regarding these 
categories of image noise. For example, the particle disparity method (Sciacchitano 
et al. 2013) partly neglects the (usually smaller) contribution of random pixel noise, 
while it is unclear how the correlation peak ratio method (Charonko and Vlachos 
2013) can be sensitive to errors due to overlapping particles, where the second 
random correlation peak might be effected in the same way as the highest true 
correlation peak. 

3.2 Ways to estimate PIV Uncertainties 

A few easy indicators of PIV uncertainties are widely used. First of all, often in 
some part of the flow field the flow is rather constant and the visible fluctuations are 
most likely due to the random noise. When decreasing the size of the interrogation 
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window, the random fluctuations will increase proportionally. This is, of course, 
very rough and constitutes only a lower bound as the error increases, for example, 
in regions of larger flow gradients. 

For time-resolved PIV, one can compare instantaneous flow fields with time-
filtered ones (e.g. with a polynomial regression of second- or third-order over some 
kernel length) or processed by advanced multi-frame correlation techniques (Hain 
and Kähler 2007; Sciacchitano et al. 2012; among others) requiring that the length 
of the temporal filter kernel is short enough not to smooth over temporal 
fluctuations but long enough to decrease the noise sufficiently. When viewing 
unsmoothed TR-PIV data as a movie, the noise is easily visible as a flickering from 
vector field to vector field. 

For Stereo-PIV the 3C-reconstruction of the two vectors (u1,v1) and (u2,v2) into 
a (u,v,w)-vector provides a residual related to the error of the two vectors in the 
direction perpendicular to the epipolar line. For example, for both cameras aligned 
along the x-axis, any vector error in u1 and u2 are swallowed up by the computed u 
and w-component, but comparing v1,v2 to the average v=(v1+v2)/2 provides an 
estimate of the uncertainty of v, which using isotropy and the angle between the two 
cameras can be extended to u- and w-uncertainties. So, on average for many vectors 
or vector fields, one can derive uncertainties but not an uncertainty for every vector 
as done by the full UQ-methods described below. 

Some methods are tailored toward quantifying specific error sources. As 
mentioned before, one can record a few images with a very short Δt between laser 
pulses to measure the overlap between the two laser sheets. A normalized cross-
correlation coefficient of 0.5 indicates, for example, a 50% overlap between the two 
pulses. 

Recording a few data sets with different Δts (multiple-Δt strategy) can be used 
to increase the dynamic range of the PIV algorithm but also quantifying the peak-
locking bias and random error and camera noise as well as potentially correcting for 
them (Legrand et al. 2012, Persoons 2014). 

There are other parameters that can be extracted to assess at least 
qualitatively the PIV accuracy and to provide a guideline for the user to improve 
experimental and processing parameters. A higher cross-correlation peak height or 
ratio to the second random correlation peak indicates higher matching accuracy and 
in most cases higher accuracy. A quantitative deduction is more complicated as done 
for the peak-ratio UQ-method by Charonko and Vlachos (2013) (see below). 

Comparing the volume of the autocorrelation peak with the volume of the 
cross-correlation peak (Scharnowski and Kähler 2016a) or the height of the two 
correlation peaks (Scharnowski and Kähler 2016b) provides a useful indicator for 
the out-of-plane motion and image noise together with a good definition of a signal-
to-noise (SNR) ratio.  

Recently, full UQ-methods have been developed with the intention of 
accurately quantifying the uncertainty of every computed PIV vector (Figure 3.4). 
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In the uncertainty surface (US) method developed by Timmins et al. (2012) 
recorded images are analyzed for parameters that influence the error. Presently, 
four parameters are examined: particle image size, particle density, displacements 
and shear. Initially, the PIV algorithm has to be tested with synthetic images varying 
these parameters, i.e. generating an uncertainty surface for a particular algorithm 
and selected processing options. By comparison with the measured parameters 
(particle size, etc.) inside each interrogation window, an uncertainty measure can be 
assigned to each vector.  

 

Figure 3.4. Overview uncertainty quantification methods for 2D2C- and 2D3C-PIV. 

The peak ratio (PR) method (Charonko and Vlachos 2013) assumes that the 
ratio between the highest correlation peak and the second highest correlation peak 
is a good measure of the uncertainty. An empirical relationship has been derived 
between the peak ratio and the most likely uncertainty of the displacement. As a 
drawback, only a single uncertainty value or band is available for all velocity 
components. 

The peak ratio has also been used by Persoons (2014) in conjunction with local 
displacement fluctuations over a spatial 5x5 and temporal 9-point kernel in time-
resolved PIV. These fluctuations are a combination of physical turbulent fluctuations 
and measurement uncertainty and were shown to successfully guide the settings 
and processing of a variable pulse separation scheme in order to enhance the 
dynamic range of the PIV measurement. In the same way, advanced multi-pulse or 
multi-frame techniques (see e.g. PIV Challenge 2015, Kähler et al. 2016) would 
benefit from accurate uncertainty estimation for guiding the filter kernel size and 
other processing parameters.  

In the image matching / particle disparity (PD) method (Sciacchitano et al. 
2013), the measured displacement field is used to dewarp back the second image 
(or both by half) to overlay on the first one. The position of the particles for both 
frames is computed in each interrogation window and the residual disparity in the 
position of matching particles leads to an estimate of the uncertainty of the 
displacement vector components.  
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The correlation statistics (CS) method is described in the next section. It is 
similar to the IM-method, but uses the information of all pixels, not just particles, 
affecting the shape and possible asymmetry of the correlation peak from which the 
uncertainty for all velocity components is derived.  

Recently the mutual information (MI) method (Xue et al. 2014; Boomsma et al. 
2016) has been introduced, which is an extension of the PR-method. 

PD, CS, US, and PR-methods have been compared by Sciacchitano et al. (2015) 
using dedicated experimental data (Neal et al. 2015) with two PIV systems, a 
measurement PIV system and a high-dynamic-range PIV system with less errors 
closer to the ground truth. 

CS and slightly less PD performed quite well with high sensitivity to changing 
experimental conditions (e.g. seeding density, velocity gradients, out-of-plane 
motion), while PR and US showed less sensitivity to some conditions. For example, 
US could not account for out-of-plane motion, simply because this has not yet been 
one of the parameters of the initial training of US. Of course, this information is also 
difficult to extract from local image data. It is only possible for Stereo-PIV 
knowledge the w-component, but in addition also the exact shape of the laser 
profiles is required. 

PD, CS, PR, and MI have been compared in a similar way by Boomsma et al. 
(2016), showing also higher sensitivity for the CS-method, but also an 
underestimation of the true error by 20-30%. 

3.3 PIV uncertainty quantification using correlation 

statistics 

3.3.1 Introduction 

In general, planar PIV relies on matching two images and to compute a 
displacement field dx(x,y) as the best fit between the intensities in images 𝐼1(x,y) 
and 𝐼2 (x+dx(x,y),y+dy(x,y)) = 𝐼2

∗ (x,y). Usually this involves maximizing the 
correlation given by the sum of (𝐼1𝐼2

∗). Alternatively, one can minimize the sum of the 
L2-norm or mean squared error (𝐼1-𝐼2

∗)2, sometimes called minimum quadratic 
difference (MQD), least squares matching (LSM) or sum of squared differences 
method (SSD). It can be shown that the two methods are mathematically identical 

provided the intensity I is normalized by (I-Iavg)/((I-Iavg)2)1/2 (Medan et al. 1991).  

These image matching algorithms can be further differentiated into local or 
global regularization schemes. Global methods like different types of optical flow 
(Horn and Schunck 1981; Lukas and Kanade 1981) iteratively optimize the whole 
displacement field at once while local methods more common in PIV select a small 
interrogation window to be matched to the corresponding window in the second 
image and repeating the procedure for all windows in the image. Typically, an 
iterative multi-pass predictor-corrector scheme is used (e.g. Schrijer and Scarano 
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2008). Due to the intermediate vector field regularization including outlier removal, 
this can then be considered an intermediate local-global approach. 

The focus here is not on a particular PIV algorithm, but to provide a generic 
uncertainty estimation method for any algorithm as a post-processing step once the 
displacement field has been calculated. It is an extension of the particle disparity 
method (Sciacchitano et al. 2013) but instead of taking individual particle 
displacements it analyzes individual pixel contributions to the correlation peak. 

a)  

b)  

c)  

Figure 3.5. Principle of uncertainty estimation by a) splitting into sub-windows, b) particle 
disparity and c) correlation statistics method. 
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3.3.2 Uncertainty estimation from correlation statistics 

The general concept is presented in Figure 3.5 . For computing the uncertainty 
of a single vector inside an interrogation window one could in principle divide the 
interrogation window into smaller parts (Figure 3.5a) where each sub-window 
corresponds to a displacement vector with higher noise level due to fewer pixels 
and fewer particles. So the standard deviation of these nxn vectors divided by 
sqrt(nxn) is a rough estimate of the uncertainty of the vector computed from the 
complete interrogation window, given idealized circumstances with no outliers, no 
small-scale flow gradients, etc. 

The particle disparity method goes to smaller scales analyzing individual 
particles and their spread in displacements (Figure 3.5b) and provides better 
statistics for the uncertainty estimation. The correlation statistics method presented 
here zooms in even further to individual pixels and their fluctuating contributions to 
the shape of the correlation peak from which an uncertainty estimate is derived 
(Figure 3.5c). As shown later, despite analyzing single pixels and their neighbours, 
the effective local spatial scale is determined by the width of a spatial covariance 
matrix, which is again related to the average particle image size.  

The correlation statistics method takes as input the two images to be matched 
and the displacement field computed by PIV. First image 2 is dewarped back onto 
image 1 using the displacement field u(x), i.e. 

𝐼2
∗(x) = 𝐼2(𝑥 + 𝑢) (3.1) 

requiring a sufficiently accurate high-order sub-pixel interpolation scheme (see 
Astarita and Cardone 2005; Astarita 2006). For simplifying the following equations, 
this asymmetric dewarping scheme is used here keeping 𝐼1  constant. This is 
sometimes used for time-resolved PIV processing with subsequent Lagrangian 
analysis of fluid element trajectories. For standard double-frame PIV the symmetric 
dewarping of both frames with ±u/2 is preferred, applied here to process the data in 
section 3.3.3. Both methods have been implemented in the DaVis-software and no 
difference in performance has been detected. 

The following equations are given only for the u-component in x-direction, but 
apply equally to the v-component. The sums are evaluated over all 𝑁 =  𝑛2 pixels of 
an interrogation window of linear dimension n, in general over a region related to 
the effective spatial resolution 𝐿𝑠𝑟 . This needs to be determined for every PIV 

algorithm and set of parameters, discussed in section 3.2. Depending on window 
overlap factor and details of the multi-pass scheme with intermediate vector 
regression filter, the effective spatial resolution can be quite different from n. 

Instead of a square window the sums can be evaluated over a somewhat larger 
Gaussian weighted interrogation window, where the diameter of the 2D-Gaussian 
weighted curve is close to 𝐿𝑠𝑟 . In general, computing the uncertainty one should use 

the same square, round or elliptical interrogation window, weighting function and 
sub-pixel interpolation function as in the underlying PIV algorithm. 
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It is assumed that the PIV algorithm has converged sufficiently such that for 
the computed displacement u the correlation function 

𝐶(u) = ∑(𝐼1(𝑥, 𝑦)𝐼2(𝑥 + 𝑢, 𝑦)) = ∑(𝐼1(𝑥, 𝑦)𝐼2
∗(𝑥, 𝑦))  (3.2) 

is at a maximum with zero slope 𝑑𝐶/du. A small distance ±∆x away from u the 
correlation function 𝐶+ = 𝐶(𝑢 + ∆𝑥) should therefore be equal to 𝐶− = 𝐶(𝑢 − ∆𝑥): 

∆𝐶 = 𝐶+ − 𝐶− =  ∑(𝐼1(𝑥, 𝑦)𝐼2
∗(𝑥 + ∆𝑥, 𝑦) − 𝐼1(𝑥, 𝑦)𝐼2

∗(𝑥 − ∆𝑥, 𝑦)) ≅ 0.  (3.3) 

 

Figure 3.6. Correlation function C(u). 

Typically ∆𝑥 will be 1 pixel as discussed later. Non-zero ∆𝐶 indicates that the 

algorithm has not yet converged or was not able to converge due to some reason, 
and taking the three points 𝐶0 = 𝐶(𝑢),  𝐶− and 𝐶+ one could calculate an improved 

optimal displacement u+u which would be equivalent to an extra iteration step of 
the PIV algorithm. Note that in the usual predictor-corrector scheme with filtering of 
the predictor, there is always some correction in each iteration. As shown in Figure 
3.6, for non-zero ∆𝐶 fitting a Gaussian curve through the 3 points leads to the 

residual displacement u given by: 

u  =   
∆𝑥

2
 

log(𝐶+)−log ( 𝐶−)

 2log(𝐶0) − log(𝐶+) −log(𝐶−) 
  

            = 𝑓(𝐶0,  𝐶−, 𝐶+) =  𝑓(𝐶0,  𝐶± − ∆𝐶/2,  𝐶± + ∆𝐶/2)  (3.4) 

with  𝐶± = (𝐶+ + 𝐶−)/2.  

Eqn. (3.3) can be rewritten as: 

 ∆𝐶 = ∑ ∆𝐶𝑖  =  ∑(𝐼1(𝑥, 𝑦)𝐼2
∗(𝑥 + ∆𝑥, 𝑦) − 𝐼1(𝑥 + ∆𝑥, 𝑦)𝐼2

∗(𝑥, 𝑦))   (3.5) 

ignoring small differences at the window border when shifting the second term by 
∆x . Now every term  ∆Ci  represents the elemental contribution to the total 
correlation difference ∆C. It is evident that all terms ∆Ci (and the sum ∆C) would be 

 

 

 

 

u 
u 
u x 

C 

C 

 𝐶+ 

 𝐶− 

u-x u+x 
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zero for perfect image matching, i.e. if I1 = const ∙ I2
∗ . All pixel-wise contributions to 

the side lobes of the correlation peak are equal (Figure 3.7 left).  

Due to various error sources 𝐼1 and 𝐼2
∗ will not match perfectly even for the true 

displacement 𝑢𝑡𝑟𝑢𝑒. Assuming one would dewarp 𝐼2 by the true displacement 𝑢𝑡𝑟𝑢𝑒, 

the pixel-wise contributions to the side lobes of the correlation peak are unequal 
and the individual ∆𝐶𝑖 add up in a random walk fashion to a non-zero ∆𝐶 (Figure 3.7 
middle). This difference will be optimized away by the PIV predictor-corrector 
scheme such that ∆𝐶 is zero again, leading to an erroneous measured displacement 

𝑢𝑚𝑒𝑎𝑠  = 𝑢𝑡𝑟𝑢𝑒 + u (Figure 3.7 right). Thus from the given known variability in ∆𝐶𝑖  an 
estimate of the standard deviation 𝜎∆𝐶  of ∆𝐶 can be derived (as described below) 
which is then propagated by eqn. (3.4) to an uncertainty estimate of the 
displacement field.  

 

 

Figure 3.7. Correlation function between I1and I2
∗  for ideal noise-free image (left). With added 

noise this would lead to correlation peak asymmetry (middle). PIV predictor-corrector 
scheme is shifting the correlation peak back to 0 thus introducing a measurement error 
(right). 

In general, the standard deviation of ∆𝐶 = ∑ ∆𝐶𝑖 is related to the sum of the 

covariance matrix of ∆𝐶𝑖: 

𝜎∆𝐶
2 ≡ var (∑ ∆𝐶𝑖

𝑁

𝑖=1

) ≡ var ( ∑ ∆𝐶𝑥𝑦

𝑛

𝑥,𝑦=1

) 

        =  ∑ cov(∆𝐶𝑖, ∆𝐶𝑗)𝑁
𝑖,𝑗=1 =  ∑ cov(∆𝐶𝑥1,𝑦1

, ∆𝐶𝑥2,𝑦2
)𝑛

𝑥1,𝑦1,𝑥2,𝑦2=1   (3.6) 

with the requirement that the ∆𝐶𝑖  have a zero mean (∑ ∆𝐶𝑖 = 0) . The auto-
covariance terms are non-zero inside a neighborhood (𝑥1, 𝑦1 close to 𝑥2, 𝑦2) given by 

the particle image diameter. Outside the pixel intensities become uncorrelated and 
the auto-correlation drops to zero. Thus, the right-hand side with a 4D-sum can be 
rewritten as a 2D-sum over distances ∆𝑥, ∆𝑦: 
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𝜎∆𝐶
2 =  𝑛2 ∑ cov(∆𝐶𝑥,𝑦 , ∆𝐶𝑥+∆𝑥,𝑦+∆𝑦)

∆𝑥,∆𝑦

 

        = ∑ ∑ (∆𝐶𝑥,𝑦 ∙ ∆𝐶𝑥+∆𝑥,𝑦+∆𝑦)n
x,y=1 = ∆𝑥,∆𝑦 ∑ S∆𝑥,∆𝑦 ∆𝑥,∆𝑦 .  (3.7) 

In case of complete independence between ∆𝐶𝑖  and ∆𝐶𝑗  – i.e. with only a single 

non-zero covariance term S0,0 for ∆𝑥 = ∆𝑦 = 0 – this reduces to the random walk 

eqn.: 

𝜎∆𝐶
2 = 𝑁𝜎∆𝐶𝑖

2 = ∑ ∆𝐶𝑖
2 .   (3.8) 

Unfortunately, ∆𝐶𝑖 and ∆𝐶𝑗  are not completely uncorrelated for i≠j. So the 

covariance sums S∆𝑥,∆𝑦  need to be evaluated over a sufficiently large 

neighborhood ±∆𝑥, ±∆𝑦 given roughly by the particle image size.  

 

Figure 3.8. First and second image frame (left and middle) and correlation difference ∆Ci 
(right) for Brownian type of particle jitter (top), camera pixel noise (middle) and out-of-plane 
motion (bottom). Bluish color indicates negative values, green to red positive values of ∆Ci. 
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Finally, using eqn. (3.4) the uncertainty estimation of the displacement field 
can be computed by: 

𝜎𝑢 = 𝑓(𝐶0,  𝐶± − 𝜎∆𝐶/2 ,  𝐶± + 𝜎∆𝐶/2)  (3.9) 

since the right-hand-side is first-order linear in 𝜎∆𝐶/ 𝐶− provided 𝜎∆𝐶  is sufficiently 
smaller than 𝐶0 −  𝐶±, i.e. it is accurate for 𝜎𝑢 ≲ 0.3 px. This has been validated by 

Monte-Carlo simulations. 

For illustration, the field of ∆𝐶𝑖 has been plotted in Figure 3.8 for different 

types of noise. At the top, the particles have a positional jitter, similar to Brownian 
motion in µPIV, of up to 0.1 px which is barely visible. The correlation differences 
∆𝐶𝑖 in x-direction clearly show positive and negative shifts at the particle locations. 

This is also the basis for the particle disparity method of Sciacchitano et al. (2013). 
In the middle, only camera pixel noise has been added, a background level of noise 
together with photon shot noise proportional to the sqrt of the intensities. The 
correlation difference field has a grainy appearance with higher noise at the particle 
positions. 

 Finally, at the bottom the particles have a 10% out-of-plane motion within a 
light sheet with Gaussian intensity profile. Where particles overlap the change of a 
combination of weak and bright particle to bright and weak due to movement 
within the light sheet introduces a strong error, e.g. clearly visible in the circled area 
with a virtual displacement in negative x-direction. Weaker pattern of horizontally 
aligned blue-green or green-blue stripes indicate single particles changing in 
intensity, but the overall noise is dominated by overlapping particles. 

3.3.2.1  Implementation details 

First of all, the choice of ∆𝑥 in eqn. (3.5) and following is guided by the 

requirement that it should capture well the form of the correlation function to be 
maximized, where the width is related to the particle image size. Therefore ∆𝑥 must 
be smaller than the particle image size, but well larger than the computed 𝜎𝑢 . So a 
natural choice is ∆𝑥 = 1 pixel which also requires only a single dewarped function 
𝐼2

∗(x) instead of three in eqn. (3.5) and following.  

 

Figure 3.9. Typical auto-correlation matrix  S∆x,∆y / S0,0 for pure pixel noise and particle image 

size of 2.5 px without (a) and with (b) smoothing of ∆Ci, and for size of 1.0 (c), 2.5 (d) and 4.0 
px (e) with out-of-plane motion of 5% and with ∆Ci smoothed. 
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For very large particle image sizes it might be advantageous to use larger ∆x 
(e.g. 2) – also for the PIV algorithm itself for a more accurate 3-point Gaussian fit of 
the correlation peak – but this has not been investigated. 

For particle related error sources – in particular for out-of-plane motion or 
random particle motion due to e.g. Brownian motion in µPIV – the auto-covariance 
matrix S∆𝑥,∆𝑦 is about a positive 2D-Gaussian curve with a diameter roughly given by 

the average particle image size as shown  in Figure 3.9c-e. Here S∆𝑥,∆𝑦 is first 

evaluated for all ∆𝑥, ∆y < 5 px, but only the inner values are summed up until S/S0,0 

drops below 0.05 to avoid adding outer random and possibly negative covariance 
terms.  

In the case of pure camera noise independent for each pixel, due to the inverse 
coupling between I(x) and  I(x + 1) in eqn. (3.5), the covariance for ∆x = ±1, ∆y = 0 

is negative but relevant (similar for the y-component in y-direction) as shown in 
Figure 3.9a, which makes it difficult to find a suitable criterion for limiting the 
summing of S. To simplify processing, first all ∆Ci are smoothed in x-direction by a 
simple filter ∆Ci

′(x) = (∆Ci(x − 1) + 2∆Ci(x) + ∆Ci(x + 1))/4 (same in y-direction 

for the y-component) which eliminates the negative covariance terms (Figure 3.9b). 
This does not change any other property of the statistical analysis. For particle 
related noise, it only makes the S-matrix slightly wider in one direction. 

The relevant values of 𝐶0, 𝐶+, 𝐶−, and S∆𝑥,∆𝑦 (∆x, ∆y = 0-4) need to be evaluated 

as sums over the interrogation window, in the case of Gaussian weighted windows 
as weighted sums over an area at least twice as large as the nominal interrogation 
window size. In particular, for 75% overlap this can lead to processing times 
equivalent to 2-3 PIV iterations. A faster implementation consists of computing the 
𝐶𝑠 and S∆𝑥,∆𝑦 first as fields of the whole image for each pixel. These fields are 

spatially smoothed – equivalent to the weighted summing process – by a fast 
recursive 2D-Gaussian filter (Lukin 2007) with a filter length equal to the effective 
interrogation window size followed by multiplication with the filter length squared 
(difference between smoothing and summing). Then at each vector location the 
local values of  𝐶0, 𝐶+, 𝐶−, and S∆𝑥,∆𝑦 are taken to compute 𝜎𝑢. This reduces the 

processing time to less than one PIV iteration. Further implementation on a GPU has 
reduced the processing time another order of magnitude. This scheme has also been 
successfully tested for PIV processing with square non-weighted windows, where 
due to the multi-pass PIV predictor-corrector scheme the effective filter shape is 
also closer to a Gaussian curve than to a top-hat function (see chapter 2). 

The above one-dimensional derivation is done independently for the x- and y-
component of the displacement field. Dependencies between x- and y-directions 
have not been observed yet for real PIV data, although e.g. for strong astigmatism in 
oblique directions one could expect some cross-terms. The discussion here is 
restricted to 2D displacements under various error sources. 
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3.3.3 Synthetic data 

The procedure has been tested with synthetically generated images varying 
parameters such as noise level, particle image size, seeding density and out-of-plane 
motion. The image size is 1kx1k pixel. Default settings are particle image size of 2.5 
px, seeding density of 0.1 particles per pixel (ppp), peak particle intensity of 1000 
counts, particles distributed in a Gaussian laser intensity profile, and a constant 
displacement of 0.6 pixel in x, 0.3 pixel in y-direction and no out-of-plane motion. 
The particle image size is defined as 2𝜎 with an intensity profile proportional to 

exp(−(x2 + 𝑦2)/2σ2). 

Processing is done with LaVision DaVis 8.2 using 4-passes, 75% overlap, 
interrogation windows with a Gaussian weighting function and nominal window 
sizes of 16x16 up to 64x64 pixel. Due to the intermediate vector regularization 
adjusting to shorter displacement wavelengths, for 32x32 windows the effective 
window size is e.g. 32/28/22 pixel for an overlap of 0/50/75%. The method used 
here to measure the effective spatial resolution is similar to Elsinga and Westerweel 
(2011). 

 

 

Figure 3.10. Error as a function of Gaussian pixel noise. 

Assuming a typical camera with a conversion rate of 4 e-/count, Gaussian 
background pixel noise of 16e- (sigma of ±4 counts and adding 12 counts offset to 
keep intensities positive) has been added to the images. In addition, there is photon 
shot noise proportional to the sqrt of the number of photo-electrons leading to up to 
e.g. 16 counts noise for pixels with 1000 counts intensity. 
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In the following figures, the total uncertainty 𝜎 = √𝜎𝑢
2 + 𝜎𝑣

2 is combined to an 

average value by computing the root-mean-square of the uncertainties of all vectors 
(see appendix in Sciacchitano et al. 2015). The total true error is computed as the 
rms of the differences of all vectors relative to the known displacement. It is usually 
dominated by the random part, significant bias is only encountered for small 
particle image sizes ≤ 1 px (‘peak locking’). For the range of tested parameter no 
outliers have been observed and no post-processing has been done.                                

First, varying only the background pixel noise, it is shown that the uncertainty 
can be accurately estimated for window sizes of 16x16 to 64x64 for a wide range of 
noise levels given in percent relative to the particle peak intensity of 1000 counts 
(Figure 3.10). Only for very large noise amplitudes the uncertainties level off at 
about 0.3-0.4 px as expected from the limitation of eqn. (3.9). The relevant error 
levels in PIV to be considered are typically 0.02 px to 0.2-0.3 px, rarely less due to all 
error sources combined and, if larger, the correlation peak is less well defined with 
possibly many outliers and one should consider improving the experimental setup 
or using larger interrogation windows.  

The results for varying the out-of-plane motion from 0 to 30% of the light 
sheet thickness are shown in Figure 3.11 for particle image sizes of 1.5 px (top) and 
2.5 px (bottom). The uncertainties are correctly calculated for window sizes of 
32x32 and 64x64, but again slightly underestimated for 24x24 and by 20% for 
16x16 windows for a particle size of 2.5 px.  

The error in case of out-of-plane motion is dominated by (possibly very few) 
overlapping particles which change their intensity from e.g. bright-weak to weak-
bright as they move together through the light sheet as mentioned before. Thus a 
strong virtual in-plane displacement is introduced.  The error is smaller for a 
particle size of 1.5 px because the probability of overlapping particles is significantly 
smaller. 

As noted by Nobach and Bodenschatz (2009) this error level is quite 
independent of the seeding density. For low seeding densities there are fewer 
particles overlapping, but they contribute significantly to the error level since there 
are few particles in total. Conversely, for high seeding densities, almost all particles 
overlap and produce errors, but the information content is much higher which 
reduces the error correspondingly.   

This is confirmed in Figure 3.12 for an out-of-plane motion of 10%, where the 
seeding density is varied from very low to very dense with almost constant error 
level. The uncertainty quantification works reasonably well with slight 
overestimation for 64x64 windows and underestimation for 16x16. 

In general, out-of-plane motion is often the dominant error source in PIV 
processing (Nobach and Bodenschatz 2009). The same effect is also introduced by a 
misalignment of the profile of the first and second laser pulse or unstable laser 
intensity profiles from shot to shot. 
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Figure 3.11. Error as a function of out-of-plane motion, left: particle image size = 1.5 px, right: 
2.5 px. 

Another particle size related error source is given by e.g. the random Brownian 
motion of each particle in µPIV. Here the error and estimated uncertainty becomes 
lower with higher seeding density due to the averaging effect of more particles 
(Figure 3.13). Again, the agreement between true error and uncertainty is good 
except for 16x16 windows, where the uncertainty is about 20-30% too low.  
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Figure 3.12. Error as a function of seeding density for out-of-plane motion. 

 

 

Figure 3.13. Error as a function of seeding density for random Brownian particle motion of 
±0.1px.  

Varying the particle image size for constant out-of-plane motion of 10% shows 
again a reasonable agreement between the average true error and the uncertainty 
(Figure 3.14). For sizes of <1 pixel the random and bias errors increase drastically 
(‘pixel or peak locking’) due to unrecoverable loss of information. Closer inspection 
reveals that the error by the uncertainty quantification for sizes of <1 pixel is close 
to the expected random part of the error, while the systematic peak locking bias 
remains undetected. Errors for larger particles are slightly underestimated 
especially for 16x16 windows.  
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Figure 3.14. Error as a function of particle image size for out-of-plane motion of 10%. 

Finally, the effect of in-plane gradients is investigated generating synthetic 
images with a width of 400 and height of 1000 pixel and varying the in-plane shear 
from 0 to 30%, i.e. up to -60/+60 px displacement in y on the left and right of the 
image, respectively. This amounts to up to 10 px change inside a 32x32 
interrogation window which can only be handled by PIV algorithms using image 
deformation techniques.  As shown in Figure 3.15, the true error for a particle image 
size of 2 px and no out-of-plane motion stays below 0.01 px, which validates the 
accuracy of the synthetic image generator, the PIV algorithm and the dewarping 
function under such extreme conditions. Even an inaccuracy in a vector position by 
only 0.1 px would lead to a bias error of already 0.03 px.  

The computed uncertainty is overestimated as 0.03 px for 30% shear, even 
more for a particle image size of 4 px. This is probably due to image dewarping 
shearing round particles into ellipses rotated in different directions in the first and 
second frame. While the PIV algorithm correlating two rotated ellipses still 
computes an accurate mean displacement, the uncertainty method assumes that 
these intensity differences lead to additional noise, not knowing that in the end the 
symmetrical contributions still cancel out to an accurate displacement vector. 

Often such strong velocity gradients are accompanied by additional larger 
error sources like out-of-plane motion as shown in Figure 3.15 for 10% out-of-plane 
motion. Again, a good agreement between true error and uncertainties is achieved.  

More complicated is the subject of second-order gradients, i.e. velocity 
fluctuations of small-scale wavelengths, where the amplitude is reduced by the PIV 
algorithm due to the finite spatial resolution (e.g. Schrijer and Scarano 2008). A 
detailed analysis of the response function of the PIV algorithm and the computed 
uncertainties is beyond the scope of this work, including the basic question if such 
truncation errors should be really considered ‘errors’ with the – unrealistic – 
expectation that uncertainty quantification methods should be able to estimate 
them, or if the uncertainty should rather be quoted relative to the known spatial and 
temporal response function of the PIV measurement system. 
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Figure 3.15. Error as a function of shear rate for different particle image size and out-of-plane 
motion, window size of 32x32. 

3.3.3.1 Limitation of the uncertainty quantification 

First of all, it should be noted that this uncertainty quantification method is not 
able to detect outliers. It is always assumed that outliers have been removed 
beforehand by some e.g. median filter and that the investigated correlation peak is 
the true one. The uncertainty method has no indication if the correlation peak found 
by the PIV processing routine is the correct one. In general, outliers will have larger 
uncertainties. This can help to detect them e.g. by a weighted median filter with a 
weight inversely proportional to the uncertainty. 

It is also important to notice that the uncertainty estimation field will show 
quite some variability in the order of e.g. 5 to 25% even with perfect synthetic data 
with constant displacement field and same parameters everywhere as shown in 
Figure 3.16. This is partly due to the variability of the random pattern with more or 
less particles or overlapping particles in each interrogation window. But 
additionally, there is the intrinsic random character of the uncertainty estimation 
due to the random walk process (eqn. (3.6)-(3.8)). This standard deviation of the 

standard deviation (‘SoS’) has a relative variability of about ±1/√2𝑁 given N 

independent events, which is e.g. for 10 particles per interrogation window already 

22%.  

Another limitation of the above uncertainty quantification method is the case 
of insufficient independent events contributing to the statistical analysis, for 
example, in case of too few or too large particles in 16x16 windows. So far 
correction terms have not yet been calculated for such small-number statistics. It 
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may require again counting particles as in the ‘image matching’ method 
(Sciacchitano et al. 2013), but it is difficult counting e.g. overlapping particles as it 
would be required for errors dominated by out-of-plane motion. 

 

 

Figure 3.16. Typical uncertainty field with an average of 0.142 px and stdev of 0.018 px. 

Finally, the method mainly estimates the random part of the uncertainty. Bias 
errors can in principle be quantified by eqn. (3.4), but it is assumed that the PIV 
algorithm is converged sufficiently so that the correlation peak is symmetrical and 
there should be no bias per se. Unknown biases as in strong peak locking stay 
undetected and may be better quantified by the uncertainty surface method 
(Timmins et al. 2012). The magnitude of the bias error is usually smaller than the 
random error/uncertainty even for strong peak locking, but may become dominant 
in derived statistical quantities. 

3.3.3.2 Preparation for uncertainty propagation 

Subsequent uncertainty propagation into derived quantities like vorticity, 
divergence, turbulent kinetic energy or Reynolds-stresses requires the knowledge of 
the spatial and/or temporal auto-correlation coefficients of the true errors as well 
as the correlation between u and v error terms, and w for Stereo-PIV (see chapter 
4). These terms are stored in Davis together with the velocity and uncertainty 
components. 

For the synthetic data used in section 3.3.3, there has been no significant 
coupling observed between the true errors δ𝑢 and δ𝑣,  |C(δ𝑢, δ𝑣)| ≤ 0.05. The 
exception are data points with almost ideal image quality and errors below 0.01 px 
(e.g. Figure 3.10, low noise), where correlation values of the order of -0.1 to -0.3 
have been measured. Since such low errors are typically not encountered in real 
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experiments, this has not been investigated further. It may relate to some floor noise 
level of the PIV algorithm together with intricacies in the processing scheme. 

For Stereo-PIV, on the other hand, due to the 3C-reconstruction of (u,v,w) from 
(u1,v1,u2,v2) there is always a coupling in particular between u and w when e.g. the 
cameras are aligned along the x-axis, since both u and w depend on u1 and u2. These 
coupling terms, which can be calculated directly from the calibration function or 
measured using synthetic data, need to be taken into account in particular for the 
Reynolds stress Ruw and other quantities (see section 4.5).  

3.3.4 Summary 

The local measurement uncertainty of a PIV displacement field is estimated 
based on a post-processing of the differences between the two images to be 
matched. The standard deviation of the pixel-wise contributions of intensity 
differences to the shape of the correlation function is computed in a statistical way. 
This is then related to the random uncertainty of the displacement vectors.  

This uncertainty quantification method has been tested with synthetic data 
varying e.g. random Gaussian noise, particle image size and density, in-plane and 
out-of-plane motion, and shows good agreement with the true random error in most 
cases, slightly underestimating the true error for 16x16 window sizes. The method 
is not able to estimate bias errors e.g. from peak-locking or other systematic error 
source. 

The accuracy of this approach is furthermore investigated in designated 
experiments discussed elsewhere (Neal et al. 2015, Sciacchitano et al. 2015) as part 
of an international collaborative effort that includes comparisons to other PIV 
uncertainty quantification methods. It confirms the validity of the uncertainty 
method presented here. 
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4.1 Introduction 

Several a-posteriori PIV uncertainty quantification methods have been 
recently proposed (see section 3.2) to estimate the unknown error for every velocity 
vector in the flow field. All these methods allow the a-posteriori quantification of the 
instantaneous measurement uncertainty. A thorough comparison of their 
performances in different imaging and flow conditions is reported in Sciacchitano et 
al. (2015), where the dedicated experimental data from Neal et al. (2015) has been 
used. 

In many applications, PIV measurements are conducted to investigate flow 
properties derived from the velocity field, which can be instantaneous (e.g. vorticity, 
velocity divergence, acceleration, turbulence dissipation rate, pressure) or statistical 
quantities (e.g. time average and Reynolds stresses). Therefore, once the 
uncertainties of the instantaneous velocity components are estimated, they need to 
be propagated into the derived quantities of interest. The quantification of the 
uncertainty of derived quantities relies upon the following considerations: 

i. the uncertainty of the velocity components propagates to that of the derived 

quantity of interest; 

ii. the correlation (in space, time and/or inter-component) of velocity components 

affects the uncertainty of derived quantities; 

iii. for statistical quantities, additional uncertainty is due to the finite number of 

samples N, which yields lack of statistical convergence. 

The works of Wilson and Smith (2013a, 2013b) provide upper and lower 
uncertainty bounds for a number of statistical quantities, such as average, variance 
and covariance. In their analysis, the authors considered the contributions of 
random errors, mainly due to the finite sample size, and unknown time-dependent 
systematic errors. For velocity variance and covariance, the lower uncertainty 
bound was found to be larger than the upper uncertainty bound because spurious 
fluctuations tend to elevate the time-averaged measured fluctuations, yielding an 
error in the negative direction.  

Recently, uncertainty estimation has been done for the dissipation rate 
(Charonko and Prestridge 2016), which is difficult to measure accurately since the 
available spatial resolution of PIV is not sufficient to resolve important small-scale 
fluctuations. Tokgoz et al. (2012) report that at least a spatial resolution better than 
twice the Kolmogorov-scale is required for accurate dissipation rates measured 
with Tomographic PIV. 

In the work presented here, uncertainty quantification is provided for many 
commonly used derived quantities in PIV processing, both statistical and 
instantaneous. Following Coleman and Steele (2009), we assume that each 
systematic error whose sign and magnitude are known has been removed by 
appropriate correction. Thus this work focuses on random errors and uncertainties. 
The work discusses the basic concepts of uncertainty propagation and its 
applications for flow properties of interest in typical PIV measurements, such as 
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vorticity, mean velocity and Reynolds stresses. A correction of the Reynolds stresses 
based on the magnitude of the noisy fluctuations is proposed. Finally, the 
uncertainty propagation for Stereo-PIV 3C-reconstruction is provided. 

4.2 Uncertainty propagation methodology 

4.2.1 Basic concepts 

Let us consider a derived quantity of interest y, which is a general function F of 
N measured variables xi, with i = 1, 2, …, N.  

 1 2 Ny F x ,x , ,x
 

(4.1) 

Assuming that each variable xi has a standard deviation 
ix , and given 

sufficient linearity of F, the variance of y can be approximated by the variance-
covariance matrix of F (Bendat and Piersol 2010): 

   
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  
 

(4.2) 

or in another notation: 
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 (4.3) 

where (xi, xj) is the cross-correlation coefficient between xi and xj, defined by: 

   , cov , /i j i j i jx xx x x x   
 

(4.4) 

Notice that when xi and xj are independent, then (xi, xj) = 0 and eqn. (4.3) 
reduces to: 

2 2

2

1

N

y

i i
ix

F

x

 
 





 
 

(4.5) 

Eqn. (4.3) can be interpreted in two ways. First, assuming that the set of input 
variables xi is measured many times, each time yielding an output variable yj, the 

standard deviation y provides a measure of the fluctuation of the derived yj’s. 

Secondly, y provides a measure of the uncertainty Uy of y for a single measurement 
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given the standard uncertainties 
ixU of each input variable xi (Coleman and Steele 

2009): 

 
1

2

2 2

1 1 1

2 ,
N N N

i j

i i j ii i j
i i jy x x x

F F F

x
U U

x x
U x x U



   

   
     

   
 

 

(4.6) 

where (xi, xj) is now the cross-correlation coefficient between the errors of xi and 

xj, which are indicated with xi and xj, respectively. This eqn. will be used 
extensively in the following. 

In the present work, the uncertainty of instantaneous velocity components is 
quantified with the correlation statistics method (section 3.3). Eqn. (4.6) shows that 
the evaluation of the uncertainty of y requires the knowledge of the cross-
correlation between velocity vectors separated in time or space or inter-component. 
Most PIV-UQ methods are unable to compute such values from single interrogation 

windows. The values of  are usually determined beforehand for a particular set of 
PIV processing parameter e.g. by Monte-Carlo simulation with synthetic data, 
similar to the uncertainty surface method by Timmins et al. (2013), which analyses 
the local imaging and flow conditions and looks up the corresponding potentially 
skewed and biased error distribution. Further details on the computation of the 
error spatial/temporal correlation are given in next sections. 

4.2.2 Time-averaged statistical quantities 

Given a set of samples x = {x1, x2, …, xN} recorded over time, the temporal mean 
value, standard deviation and variance of x are defined as, respectively: 

1

1
i

N

iN
xx



 
 

(4.7) 
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(4.9) 

Given two sets of samples x and y, the covariance cov(x,y) or 
2

xy  between them 

is defined as: 

  2

1

1

1
i

N

xy i

i

x y
N

x y


  



 
(4.10) 

Notice that eqns. (4.7) to (4.10) provide the mean, standard deviation and 
variance for the sample population. These values are estimates of the corresponding 
values for the parent population, which comprises the totality of all samples (not 
only those acquired during the measurement). The accuracy of the estimate 
increases for increasing N; the estimates are exact for N→∞.  
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Assuming that the samples are independent and follow a normal distribution 

of standard deviation x, the standard uncertainty of the above quantities is 
(Benedict and Gould 1996): 

Uncertainty of mean: x
xU

N


  (4.11) 

Uncertainty of standard deviation: 
 2 1

x

x
U

N






 (4.12) 

Uncertainty of variance: 2

2 2

1x
xU

N
 


 (4.13) 

Finally, the uncertainty of the covariance is 
(Bendat and Piersol 2010):   2

21

1xy

xy

x yU
N


  


 

(4.14) 

 

where xy is the cross-correlation coefficient between x and y. 

These equations are valid for sufficiently large N. Ahn and Fessler (2003) 
report that for N≥30 these formulae are accurate within 1%. For a smaller number 
of samples, the formulae typically underestimate the actual standard uncertainty by 
up to 10%, and correction factors should be used for the mean, standard deviation 
and variance to make them unbiased (Coleman and Steele 2009). The results of 
eqns. (4.11) to (4.14) will be used in the following for determining the uncertainty 
of statistical quantities of interest in turbulent flows. 

4.2.2.1 Uncertainty of the mean velocity 

Consider the generic velocity component u. Based on eqns. (4.7) and (4.11), the 
uncertainty of the mean velocity u  is: 

u
uU

N




 
(4.15) 

Analogous equations are obtained for the v and w velocity components. In eqn. 
(4.15), systematic uncertainties due to spatial modulation errors or peak locking are 

not taken into account. The standard deviation u contains both the true velocity 

fluctuations (u, fluct) and the measurement errors (u, err): 

 

2 2 2 2 2

, , ,u u fluct u err u fluct uU      
 

(4.16) 

where Uu is the uncertainty of the instantaneous velocity component and 
2

u
U  is the 

mean-square of Uu. The right-hand-side of eqn. (4.16) is obtained by considering 

that the error variance 
2

,u err  is approximately equal to the uncertainty mean-square 
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2

u
U   for accurate uncertainty quantification methods (see appendix of Sciacchitano et 

al. 2015).  

When the samples are not independent, the parameter N of eqn. (4.15) must be 
substituted with the effective number of independent samples Neff, as discussed 
below.  

4.2.2.2 Uncertainty of Reynolds stress 

The Reynolds stress plays a crucial role in turbulent flows because it 
represents the rate of mean momentum transfer by turbulent fluctuations. In this 
section, the expression of the uncertainty is derived for the Reynolds normal stress 
and for the Reynolds shear stress. 

Reynolds normal stress 

The Reynolds normal stress for the x-velocity component u is defined as the 
variance of u: 

 
22 2

1

1
'

1

N

uu u i

i

R u u u
N 

    



 
(4.17) 

where 'u  is the fluctuating part of u: 'u u u  . Due to its definition, the uncertainty 

of Ruu is computed with eqn. (4.13): 

2 22 2 2

1
u u uuuuRU R

N N N
    

  
(4.18) 

It is assumed that the samples are statistically independent. If not, N must 
again be substituted with the effective number of independent samples Neff (section 

4.2.2.3). As discussed in section 4.2.2.1, u contains both the effects of true velocity 
fluctuations and spurious fluctuations due to noise. The latter yield an over-estimate 
for Ruu with respect to the true value Ruu, true: 

2 2

, , ,uu uu true u err uu true uR R R U     (4.19) 

When the uncertainty of the measured velocity is known, a corrected (more 
accurate) estimate of Ruu can be retrieved by subtracting the spurious fluctuations 

mean square 
2

uU from the measured Reynolds stress:  

2

,uu corr uu uR R U   (4.20) 

Thus, according to eqn. (4.6), the uncertainty of the corrected normal Reynolds 

stress estimate Ruu, corr, indicated with 
,uu corrRU , is given by: 

2

2 2

, uu
u

R Uuu corrRU U U   (4.21) 
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The latter is composed by two components: a) the uncertainty of the measured 
Reynolds stress, which is given by eqn. (4.18); b) the uncertainty of the spurious 

fluctuations mean square 
2

uU . Notice that 2

uU  can only assume positive values, 

therefore its distribution is better approximated by a log-normal distribution rather 
than by a Gaussian distribution. At least when approximating the distribution with a 
Gaussian distribution with positive mean, an analytical expression of the 

uncertainty of 
2

uU can be derived using eqn. (4.6): 

2

2

2

2
1

2

u

u
u

U

U uU

u

U U
N U


     (4.22) 

The accuracy of eqn. (4.22) is assessed in section 4.3.1. Combining both eqns. 
(4.18) and (4.22), the uncertainty of Ruu, corr is: 

2
2

2

2,

2
2 1

2

u

u

U

uu U u

u

uu corrRU R U
NU

 
      
 
 

 (4.23) 

In many applications, the measurement error is small with respect to the 
actual velocity fluctuations, therefore the term within brackets is negligible and eqn. 
(4.23) reduces to: 

,

2
uuuu corrRU R

N
   (4.24) 

In practice, the uncertainty of the Reynolds normal stress according to (4.23) 
and (4.24) is often strongly underestimated for two reasons. First, the subtraction of 
eqn. (4.20) is subject to the accuracy of the uncertainty quantification method itself. 
As shown by Sciacchitano et al. (2015), the uncertainty estimations of state-of-the-
art UQ methods may deviate from the true errors by as much as a factor two for 
different flow and imaging conditions. Secondly, the finite spatial resolution of the 
PIV processing algorithm does not allow resolving fluctuations of length scale 
smaller than about the interrogation window. This may lead to a substantial 
underestimation of Ruu depending on Reynolds number, turbulent level and imaging 
magnification. 

It is important to remark here that the computation of the uncertainty of Ruu 
according to eqn. (4.18) does not require the knowledge of the uncertainty of the 
instantaneous velocity. On the other hand, in order to compute the corrected value 
Ruu, corr, the uncertainty of the instantaneous velocity must be known.  

Turbulent kinetic energy 

The turbulent kinetic energy TKE is defined as half of the sum of the Reynolds 
normal stresses: 
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 
1 1

2 2
i i uu vv wwTKE u ' u ' R R R   

 
(4.25) 

Based on the error propagation formula (4.6), the uncertainty of the TKE is 
equal to: 

2 2 21

2 uu vv wwTKE R R RU U U U    (4.26) 

Assuming N>>1 and that the instantaneous measurement uncertainty is 
negligible with respect to the velocity fluctuations, the result of eqn. (4.24) can be 
used and the expression of UTKE reduces to:  

2 2 2 1

2
TKE uu vv wwU R R R

N
     (4.27) 

When Rww is unknown (e.g. in planar 2D2C-PIV, which only provides two 

velocity components), its value can be estimated as   2ww uu vvR R R   under the 

assumption of isotropic turbulence. 

Reynolds shear stress 

The Reynolds shear stress Ruv is defined as the covariance of the u and v 
velocity components: 

  
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N N

uv i i i i uv u v
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R u' v' u ' v ' u u v v
N N 
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 
   (4.28) 

The quantity uv is the cross-correlation coefficient between the velocity 

components u and v. Assuming that the velocity fluctuations are affected by error u 

and v, respectively, and that the error of the time-averaged velocity is negligible, 
eqn. (4.28) becomes: 
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(4.29) 

In eqn. (4.29), uv is the cross-correlation coefficient between the errors of 
the two velocity components. The true velocity fluctuations are assumed to be 
independent of the measurement errors, thus cancelling the cross-terms 

 
1

N

i ,true

i

u' v


  and  
1

N

i ,true

i

v' u


 . As a consequence, the Reynolds shear stress Ruv 
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exhibits a systematic error (equal to 2 2

u v u vU U  ) only if u and v are correlated 

(uv ≠ 0); however, this is typically not the case for planar 2C-PIV. Conversely, for 
stereo-PIV there may be non-zero inter-component correlations dependent on the 
experimental setup of the two cameras relative to the x- and y-axis.  

The uncertainty of Ruv is obtained by applying the covariance uncertainty eqn. 
(4.14): 

21

1uv

uv

R u vU
N


   


 (4.30) 

The uncertainty of the Reynolds shear stress has a minimum value of 

1u v N   when u and v are uncorrelated and increases with higher correlation 

between the two velocity components. 

4.2.2.3 Effective number of independent samples 

Consider a generic statistical quantity, as the mean 𝑥̅. In this section we will 
show that if the N samples from which 𝑥̅ is computed are not independent, a larger 
uncertainty of 𝑥̅ is expected. In fact, from eqn. (4.6) it is obtained: 

 2 2

2
1 1

1N N

x i j x

i j

U x ,x
N 

    (4.31) 

having assumed a constant underlying fluctuation distribution xi = xj = x. The 

auto-correlation coefficient (xi, xj) can be written as: 

     i j i i nx ,x x ,x n t     (4.32) 

with t the inverse of the sampling frequency. The auto-correlation coefficient  is a 

function of the time separation nt between samples xi and xj=xi+n. As a result, eqn. 
(4.31) can be written as:  

   
2 2

2

2 2
1 1 1 1

N N i N N i
x x

x i i n

i n i i n i

U x ,x n t
N N

 



     

 
       (4.33) 

The quantity (nt) is equal to one for n = 0 and decays to zero for increasing 

n. Furthermore, nt is an even function: (nt) = (–nt). Assuming N  and 

neglecting the edge effects in the summation, eqn. (4.33) becomes: 
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 2 2

2 2

2 2
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x x

i n n
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N N N
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
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 
 

       
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   
(4.34) 

Defining the effective number of independent samples as: 
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 
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n

N
N

n t





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(4.35) 

leads to: 

2
2 x
x

eff

U
N


 or  x

x

eff

U
N


  (4.36) 

Typically, the summation of eqn. (4.35) is stopped when the correlation value 
reaches zero for the first time. Notice that when the samples are uncorrelated, then 

(nt) is 1 for n = 0 and zero otherwise, so in this case Neff = N. Conversely, when the 

samples are correlated then   1
n

n t




   ; therefore, Neff is smaller than N, thus the 

uncertainty of the mean value is larger. 

The integral time scale Tint is defined as the integral of the auto-correlation 

function (t) of the time series x(t) (George et al. 1978): 

 
0

intT t dt



   (4.37) 

Tint is a measure of the time interval over which x(t) is dependent on itself. For 
time intervals large compared to Tint, x(t) becomes statistically independent of itself. 
Then, the effective number of independent samples can be written as a function of 
the observation time T and the integral time scale Tint: 

   

   
0

2
2

eff

n n

int

N N t
N

n t n t t

T T T

T
dt dt dt dt

 

 

 




 

    

  

 

 

 

 (4.38) 

The relevance of eqns. (4.36) and (4.38) for experimental measurements in 
turbulent flows is discussed by Tennekes and Lumley (1972) among others. The 

equations illustrate the fact that, when t<Tint and the total observation time T is 
fixed, increasing the sampling frequency and therefore the number of samples does 
not improve the accuracy of the derived statistical quantities (Taylor 1997), because 
the effective number of independent samples stays constant. Instead, it is 
advantageous to limit the sampling frequency to 1/(2Tint) and increase the 
recording time T.  
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4.2.3 Instantaneous quantities 

4.2.3.1 Uncertainty of vorticity 

Let us consider a planar-PIV measurement where the velocity components (u, 
v) are measured in a 2D domain. The out-of-plane vorticity component is defined as: 

z

v u

x y

 
  

 
 (4.39) 

For sake of brevity, we will drop the subscript z in the reminder and we will 

indicate the out-of-pane vorticity component simply with . The velocity 
components u and v are discrete functions, defined at grid points with uniform 
spacing d (both in x- and y-direction). As an example, the vorticity can be computed 
by the central-difference scheme by: 

         
1

2
x, y v x d , y v x d , y u x, y d u x, y d

d
            (4.40) 

Other methods using larger kernel sizes are available at the expense of lower 
spatial resolution of the vorticity field. Using the error propagation eqn. (4.6), the 
uncertainty of the vorticity at grid point (x, y) is (apart from truncation errors): 

   

   

2

2 2 2 2 2 2 2

2

2 2

1
2 2 2 2

2

1
2 1 2

2

v v u u v u

u v

U U U U U d U d U
d

d U U
d



 
            

 

 
      

 

 (4.41) 

where the following assumptions have been made: 

i. The errors of u and v at the same or neighboring spatial locations are 

uncorrelated (2C-PIV). 

ii. The errors of u(x,y+d) and u(x,y-d) are spatially correlated (and similarly 

the errors of v(x+d,y) and v(x-d,y)). The corresponding cross-correlation 

coefficient, indicated with (2d), is assumed to be the same for the two 

velocity components. It represents the normalized cross-correlation of the 

measurement error at two grid points at spatial separation 2d.  

iii. The uncertainty of u(x,y+d) is assumed to be equal to the uncertainty of 

u(x,y-d) and is indicated with Uu. Likewise, the uncertainty of v(x+d,y) is 

assumed to be equal to the uncertainty of v(x-d,y) and is indicated with Uv. 

In practice, an appropriate local average of uncertainties can be taken. 

If we further assume that the two velocity components have the same 
uncertainty (Uu = Uv = U), the expression of the uncertainty of the vorticity simplifies 
to: 
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 1 2
U

U d
d

    (4.42) 

Eqn. (4.42) shows the proportionality between the uncertainties of vorticity 

and velocity. The grid spacing d has a twofold effect on U: on the one hand, U is 

inversely proportional to d, which would cause a reduction of U when d is 
increased. On the other hand, increasing d yields a reduction of the spatial cross-
correlation coefficient and in turn an increase of the square-root term. When the 

interrogation window overlap is increased, d tends to zero faster than  1 2d : 

as a consequence, the uncertainty of the vorticity increases (see figure 4.1). 
However, two things should be kept in mind: a) eqn. (4.42) accounts only for the 
random errors of the vorticity and not for the truncation errors, which are 
systematic and decrease when increasing the interrogation window overlap; b) the 
uncertainty of the vorticity can be reduced by computing the spatial derivatives 
using a larger spacing in the finite differences (e.g. using 

   2 2 4v x d ,y v x d ,y d     instead of     2v x d ,y v x d ,y d     ).  

For noisy data, Vollmers (2001) reports that lower uncertainty can be achieved 
by computing the vorticity from the flow circulation, rather than via eqns. (4.39) and 
(4.40). Linear error propagation can be used to evaluate the uncertainty of the 
vorticity calculated with advanced algorithms; the determination and analysis of 
that uncertainty goes beyond the scope of the present chapter. 

 

Figure 4.1. Uncertainty of the vorticity as a function of the interrogation window overlap. 
Results for interrogation window of size 32×32 px2. 
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It can be shown that eqn. (4.42) also corresponds to the uncertainty of the 2D 
divergence of the velocity. Conversely, for 3D divergence in tomographic PIV, the 
following expression of the uncertainty is derived: 

 
3

1 2
2

div

U
U d

d
   

 
(4.43) 

The above derivations can be modified accordingly when the central-
difference scheme is replaced by more elaborate functions, e.g. fitting flow 
derivatives by a Levenberg-Marquardt algorithm on a 3×3 or 5×5 vector kernel size. 
For stereo-PIV with non-zero correlations between u and v, additional terms must 
be taken into account in the above equations. Stereo-PIV requires the uncertainty 
propagation of the two 2D2C-vector components into the 2D3C-vector which is 
covered in section 4.5. 

4.2.4 Spatially averaged quantities 

When a velocity component is spatially averaged over a profile, region or 
volume, the uncertainty of the average could be computed either by eqn. (4.11) 
using the fluctuations of the velocity vectors, or, alternatively, by considering the 
mean as a simple function and propagating the individual velocity uncertainties 
according to eqn. (4.6). Usually, the second option is preferred, since the mean 
should be considered here as an instantaneous quantity and not as a statistically 
converged value. Most often, the underlying mean and standard deviation will be 
anyway different at different spatial locations. Only in the case of averaging over 
isotropic homogeneous turbulence with sufficient data points one could try to 
measure turbulent statistical values; even in this case, it would be more accurate to 
record a large number of images over time for unbiased statistics. 

The derivation of the uncertainty of the mean is done in the same way as in 
eqn. (4.31) to (4.36), replacing standard deviations with uncertainties, and 
replacing temporal correlation of velocity components with the spatial correlation 
of the velocity errors, which are closely related to the spatial resolution of the PIV 
processing scheme. 

Consider the 1D-case with N values of the u velocity component averaged 
along a profile in x-direction: 

1

1
i

N

iN
uu



   (4.44) 

According to eqn. (4.6), the uncertainty of the mean is:  

   2 2

2 2
1 1 1 1

1 1
i j

N N N N

u i j u u i j u

i j i j

U u , u U U u , u U
N N   

          (4.45) 
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where, for simplification, the product of individual uncertainties 
i ju uU U is 

substituted by the mean square uncertainty  
2

uU . The spatial auto-correlation 

coefficients (ui, uj) can be written as a function of the vector grid spacing d: 

     i ju , u j i d nd       (4.46) 

where n is the number of grid points between locations i and j. Neglecting edge 
effects, i.e. requiring large N, eqn. (4.45) leads to:  

     
2 2 2

2

2 2
1

N
u u u

u

i n n n

U U U
U nd N nd nd

N N N

  

   

         (4.47) 

Again, an effective number of independent samples can be defined as: 

 
eff

n

N
N

nd







 

(4.48) 

thus: 

rms

u
u

eff

U
U

N
  (4.49) 

having defined the root-mean-square averaged uncertainty 2rms

u uU U .  

The integral of the auto-correlation coefficients can be defined as the spatial 
resolution Lsr of the PIV algorithm (see chapter 2), which in pixel units is:  

 srL x dx





   (4.50) 

The spatial resolution can also be written relative to the vector spacing d: 

 
 *

sr

n

x dx

L nd
d










  


  
(4.51) 

In the 2D-case, when the average is conducted over a region of Nx × Ny vectors, 
eqn. (4.48) becomes:  

2

x y

eff *

sr

N N
N

L
  (4.52) 

with *

srL again in units of vector spacing and assuming the same spatial resolution in 

x and y. This is, for example, not the case for advanced locally adaptive PIV schemes 
with elongated windows e.g. adjusting to boundaries. For a single-pass PIV 
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processing scheme with a square interrogation window of npix×npix pixel, the 

correlation function (x) is the triangle function 1
pix

x

n

 
  

 

for |x|≤npix, and 0 

otherwise. Hence, the spatial resolution is simply Lsr = npix. For a Gaussian weighted 

interrogation window with a standard deviation of , it can be shown that the 

spatial resolution is equal to 4srL   . For state-of-the-art PIV algorithms using 

multi-pass window deformation (like DaVis 8), it has been found that the correlation 
function – when approximating the PIV algorithm as a linear spatial filter function  – 
is Gaussian with some Mexican-hat contribution leading to slight overshooting for 
steep velocity step functions as observed by Elsinga and Westerweel (2011). More 
details are provided in chapter 2. 

In practice, the correlation coefficients and spatial resolution need to be 
specified for a particular set of PIV processing parameters. When the averaging 
process is conducted with a small number of vectors over a region comparable to 
the spatial resolution, the simplifying assumptions that led to eqn. (4.49) are not 
valid anymore. In this case, the uncertainty of the spatial mean must be computed 
via eqn. (4.6), where all individual correlation coefficients must be taken into 
account. 

4.2.4.1 Spatial correlation of the measurement error 

The errors of neighboring vectors are spatially correlated due to the 
interrogation window overlap. To investigate the spatial correlation of the error, a 
Monte Carlo simulation is 
conducted considering a null 
displacement field. The images 
have a resolution of 
5,000×400 pixels, with a 
seeding concentration of 0.05 
ppp. The particle images have 
a Gaussian intensity profile 
with peak intensity of 1024 
counts; their diameter is set to 
2 pixels. Noise is added to the 
recordings (white background 
noise with 5 counts standard 
deviation and photon shot 
noise, assuming a conversion 
factor of 4 electrons per 
count) to cause errors in the 
measured velocity. The images 
are processed with the 

commercial software DaVis 8.2 from LaVision. The auto-correlation function  of the 
measurement error is computed to investigate the spatial correlation among 

 

Figure 4.2. Spatial auto-correlation of the measurement 
error for interrogation window of 32×32 pixels and 
75% overlap (see also Figure 2.7, Figure 2.12, and 
Figure 2.13). 
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neighboring vectors. The results of figure 4.2, which refer to the case of Gaussian-
weighted interrogation window size of 32×32 pixels with 75% overlap, show that a 
significant correlation is present up to sample spacing of 3d. Notice that in this case 

(2d) ≅ 0.45; hence, the spatial correlation of the error is relevant and cannot be 
neglected for the computation of the uncertainty of the vorticity via eqn. (4.42). Note 
that the above mentioned mixture of Gaussian and Mexican-hat filter function of PIV 
leads here to the slight undershooting of the correlation values below zero. 

4.3 Numerical assessment via Monte Carlo simulations 

4.3.1 Uncertainty of statistical quantities 

The uncertainty of mean, standard deviation, variance and mean square is 
verified by Monte Carlo simulations. For each sample size N, normally distributed 

random data are generated with 1x   and x = 0.3, and the statistical quantities of 

interest are computed. The procedure is repeated 1,000 times to evaluate the 
standard deviation of the mean, standard deviation, variance and mean square. The 
results of the Monte Carlo simulations are compared with the theoretical 
predictions of eqns. (4.11), (4.12), (4.13) and (4.22). Figure 4.3-left shows the 
uncertainty as a function of the sample size N: as predicted by the theoretical 

uncertainty propagation equations, the uncertainty decreases with 1/√𝑁. The 
agreement between theoretical values and Monte Carlo simulation is excellent.  

 

 

 

Figure 4.3. Comparison between the results of Monte Carlo simulations (MC) and uncertainty 
propagation (UP) for the uncertainty of mean, standard deviation (Std), variance (Var) and 
mean square. Left: uncertainty as a function of the sample size. Right: uncertainty as a 
function of the sample standard deviation. For mean and standard deviation, the relative 

uncertainty is computed dividing the absolute uncertainty by x; for variance and mean 

square, it is computed dividing the absolute uncertainty by x2. The symbol keys apply to both 

plots. 

The simulation is repeated with constant sample size N = 10,000 and varying 

the sample standard deviation x (figure 4.3-right). The uncertainty of mean, 
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standard deviation and mean square increases linearly with
x x in the range [0, 1]. 

Conversely, the uncertainty of the variance features a quadratic increase according 
to eqn. (4.13). 

4.3.2 Uncertainty of vorticity 

A Monte Carlo simulation using synthetic vector fields is conducted to assess 
the accuracy of the uncertainty estimate given by eqn. (4.42). A null velocity field (u 
= 0, v = 0) is considered on a two-dimensional domain composed by 1,000×100 grid 

points, yielding a null exact vorticity field  = 0; thus any measured vorticity directly 
provides the true error. The grid spacing is set to d = 8 px, which is the typical value 
obtained with 32×32 px interrogation windows with 75% overlap. Gaussian noise is 
added to the velocity field to simulate the error encountered in PIV measurements. 
The noise is spatially correlated to simulate the effect of interrogation window 
overlap in PIV. The standard deviation of the noise, which coincides with the 
measurement uncertainty U, is varied between 0.02 px and 0.3 px. Three values of 

the cross-correlation coefficient (2d) are considered, namely 0, 0.11, 0.45. These 
values are representative of the cross-correlation coefficient encountered in PIV for 
overlap factors of 0%, 50% and 75%. The results are averaged (via root-mean-
square) in the entire measurement domain and for a total number of 1,000 velocity 

fields for each value of . An example of instantaneous horizontal velocity field and 
vorticity field is shown in figure 4.4. 

 

 

 

Figure 4.4. Instantaneous horizontal velocity (left) and vorticity fields (right) for the case U = 

0.1 px and  = 0.45. 

The results of figure 4.5 show the excellent agreement between the 
uncertainty obtained with Monte Carlo simulations and with the theoretical 
uncertainty propagation (eqn. (4.42)). As predicted, the uncertainty of the vorticity 
increases linearly with the uncertainty of the velocity. It is also noticed that the 

spatial correlation of the measurement error ( = 0.45) yields a reduction by factor 

5 of U with respect to the case where the error is uncorrelated ( = 0). 
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Figure 4.5. Uncertainty of the vorticity as a function of the uncertainty of the velocity. 
Comparison between Monte Carlo simulation results (MC) and uncertainty propagation (UP).  

4.3.3 Effective number of independent samples 

The influence of the effective number of independent samples on the accuracy 
of the statistical results in investigated by Monte Carlo simulations. Three signals 
are considered, each composed by N = 10,000 samples and having actual mean and 
standard deviation equal to 1.0 and 0.3, respectively. Signal x1 is composed by 
statistically independent samples, whereas the samples of signals x2 and x3 are 
statistically dependent. The integral time scale of the signals is evaluated from the 

auto-correlation function (1, 2 and 3, respectively) via eqn. (4.37) (see Figure 
4.6). The effective number of independent samples is then computed via eqn. (4.38) 
and reported in table 4.1.  

Table 4.1. Integral time scale and effective number of independent samples for the three 
signals. 

Signal Total number of 
samples N 

Integral time 
scale Tint 

Effective number of 
samples Neff 

x1 10,000 0.50 10,000 

x2 10,000 1.69 2950 

x3 10,000 6.74 742 

 

For each signal, the mean value is computed. The simulation is repeated 1,000 
times to compute the standard deviation of the estimated mean. The latter is 
compared with the theoretical prediction of eqn. (4.15). The results of Figure 4.7 
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show the excellent agreement between Monte Carlo simulation and theoretical 

prediction: the uncertainty of the mean decreases with 1 effN , even if the total 

number of samples N is the same for the three signals. 

 

 

Figure 4.6. Auto-correlation functions of the three signals. Mean values out of 1,000 
simulations. 

 

Figure 4.7. Uncertainty of the mean value (relative to the standard deviation) as a function of 
the effective number of samples Neff. Comparison between Monte Carlo simulation results 
(MC) and theoretical uncertainty propagation (UP). 
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4.4 Experimental assessment 

4.4.1 Turntable experiment 

The first experimental validation has been conducted using a turntable with a 
diameter of 30 cm rotating at constant speed. A printed pattern with small particles 

(size of about 200 m) is applied onto the turn table to simulate flow tracer 
particles. Images were acquired with a PCO Dimax S4 camera (CMOS sensor, 

2016×2016 pixel resolution, 11 m pixel pitch, 12 bit, maximum 1279 frames per 
second at full resolution), see figure 4.8-a. The camera mounted a Nikkor lens with 
28 mm focal length and the f-number was set to 4.0. The camera was placed at about 
1 m distance from the turntable, resulting in a magnification factor of 0.027. A 
diffusor was mounted between camera and lens to blur the image in order to 
suppress peak locking errors (Michaelis et al. 2016). The acquisition frequency is 1 
kHz with an area of interest of 980×1080 pixels. The illumination was provided by 
an LED light source. The rotational speed of the turntable was set to 37 rpm (0.61 

Hz), yielding a uniform vorticity 0 = 0.00758 px/px. Since the exact vorticity is 
known, the difference between measured and exact value yields the error of the 
vorticity. The latter quantity is compared with the uncertainty estimated by the 
linear propagation (eqn. (4.42)). 

The images were processed with the LaVision DaVis 8.2 software, using 32×32 
pixels interrogation window and 75% overlap factor. An instantaneous vorticity 
field with the velocity vectors is shown in figure 4.8-b. The root-mean-square of the 
error of the x-displacement and the standard deviation of the error of the vorticity 
are shown in figure 4.8-c and -e, respectively: both errors are lower in the bottom 
part of the field of view and increase in the top part due to a reduction of the 
illumination intensity. The uncertainty of the measured displacement was 
quantified via the correlation statistics approach (section 3.3). It is verified that the 
uncertainty Uv of the vertical displacement component (not shown here) is 
comparable with Uu. The uncertainty of the vorticity is retrieved from the 

displacement uncertainty via eqn. (4.42), using U = (Uu + Uv)/2 and (2d) = 0.45 
Figure 4.8-d and -f show the root-mean-square of the uncertainty of displacement 
and vorticity, respectively: both results agree very well with the statistical true error 
(figure 4.8-c and -e) and reproduce the increase of uncertainty from bottom to top of 
the field of view. 

The measurements were repeated for different overlap factors (0%, 25%, 50% 
and 75%) and interrogation window sizes of 16×16 and 32×32 px. The uncertainty 
of the vorticity computed via eqn. (4.42) was averaged in space and time over the 
entire set of 200 fields and compared with the root-mean-square of the vorticity 
error. The results of the comparison are illustrated in figure 4.9. The agreement 
between uncertainty propagation from eqn. (4.42) and true uncertainty (stemming 
from the actual error of the vorticity) is very good.  
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Figure 4.8. a) Raw image of the turntable; b) Measured instantaneous vorticity field with 
velocity vectors. For sake of clarity, one of 4 vectors is displayed both in x- and y-direction; c) 
Root-mean-square of the actual error of the x-displacement; d) Root-mean-square of the 
uncertainty of the x-displacement computed with the correlation statistics method; e) Standard 
deviation of the actual error of the vorticity; f) Root-mean-square of the uncertainty of the 
vorticity, estimated with eqn. (4.42). 

Figure 4.9 shows that the uncertainty of the vorticity increases with reducing 
the interrogation window size, because less information carriers are contained in a 

a) b) 

c) d) 

f) e) 
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smaller window. Furthermore, the uncertainty increases with the overlap factor, 
because a smaller grid spacing d results in larger uncertainty of the vorticity 
according to eqn. (4.42). However, it is important to notice that high overlap factors 
lead to higher spatial resolution of the vorticity field (smaller d), thus in general to 
less truncation errors and higher peak vorticity levels at the expense of higher noise. 

 

 

Figure 4.9. Comparison between true vorticity error and uncertainty propagation (UP) result. 
Root-mean-square in time over 200 velocity fields and space in the rectangular region 
x∈[291; 594] px, y∈[732; 941] px. 

4.4.2 Turbulent flow 

The uncertainty propagation methodology is applied to two PIV measurements 
of a turbulent flow. The first one is the rectangular jet flow described in Neal et al. 
(2015). The peculiarity of the database is that two PIV measurement systems were 
used, namely the measurement system (MS) and the high-dynamic range system 
(HDR). The latter is composed by two cameras in stereoscopic configuration and 
features a magnification factor larger by factor 3. Via comparison with hot-wire 
measurements, Neal et al. (2015) showed that the HDR system yields more accurate 
results by about factor 4 with respect to the measurement system. As a 
consequence, the HDR velocity can be used as a reference to retrieve the error of the 
MS data. The parameters of the experiment are reported in table 4.2. The 
measurements were conducted at x/h = 20, being x the streamwise direction and h 
the jet height, where the turbulent flow is in the turbulent regime. 

The MS images were processed with LaVision DaVis 8.2 with 16×16 pixels 
interrogation window with Gaussian window weighting and 75% overlap factor. For 
the HDR images, 48×48 pixels interrogation windows with Gaussian weighting and 
75% overlap factor were selected. Notice that, due to the difference in optical 
magnification factor, the different interrogation windows yielded approximately the 
same spatial resolution for the two systems. The HDR velocity fields were finally 
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mapped onto the MS coordinate system. The time-average velocity field and the 

turbulence intensity, defined as  2 2 2u vTI    , are shown in figure 4.10: the 

turbulence intensity is about 12% of the time-average velocity. 

 

Table 4.2. Parameters of the rectangular jet experiment. 

Seeding Glycol-water droplets, 1 µm diameter 

Illumination Photonics Industries DM40-527 laser 

Recording device MS: LaVision HighSpeedStar 5 CMOS camera 

HDR: 2× LaVision HighSpeedStar 6 CMOS camera 

Imaging MS: Nikon objective, f  = 105 mm, f# = 4 

HDR: Nikon objectives, f  = 105 mm, f# = 5.6 

Field of view MS: 69.3×69.3 mm2 

HDR: 22.8×22.8 mm2 

Acquisition frequency 10,000 Hz 

Magnification factor MS: 0.126; HDR: 0.449 

Number of images MS: 8,000; HDR: 20,000 

 

  

Figure 4.10. Left: time-average velocity field. For sake of clarity, one every eight vectors is 
shown in the horizontal direction, one every two in the vertical direction. Right: turbulence 
intensity. 
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The second experiment is a PIV measurement over a cavity flow. The 
experiment is conducted in the M-tunnel, a low-speed open-jet open-return wind 
tunnel of the Aerodynamics Laboratories of TU Delft. The wind tunnel has a squared 
test section of 40×40 cm2. The cavity model is made out of wood and has height H = 
2 cm and spanwise dimension W = 40 cm. The length of the cavity is L = 24 cm. The 
free-stream velocity is set to 5 m/s, yielding a Reynolds number ReH = 6,500 based 
on the cavity height. A series of 2,000 uncorrelated image pairs are acquired at 
acquisition frequency facq = 8.3 Hz. The field of view, which is 70×55 mm2, is 
positioned 3H downstream of the beginning of the cavity. The resulting 
magnification factor is 0.093. The parameters of the cavity flow experiment are 
reported in table 4.3. A sketch of the cavity flow experiment is shown in figure 4.11. 
Further details of the experiment are reported in Iannetta et al. (2016). 

 

Table 4.3. Parameters of the cavity flow experiment. 

Seeding Glycol-water droplets, 1 µm diameter 

Illumination Quantel Evergreen Nd:YAG Laser (200 mJ @ 15Hz)  

Recording device LaVision Imager LX 2MPx 

Imaging f  = 75 mm, f# = 3.9 

Field of view 70×55 mm2 

Acquisition frequency 8.33 Hz 

Magnification factor 0.093 

Number of images 2,000 

 

 

Figure 4.11. Sketch of the cavity flow experiment. 

 
Uncertainty of the vorticity 

To assess the uncertainty of the vorticity, the rectangular jet data are used. The 
velocity time series is extracted at a point P = (398, 246) as shown in Figure 4.12. 
Figure 4.13 shows a portion of the vorticity time series for a time interval of 10 ms. 
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The comparison between MS and HDR data on the entire time series yields the error 

for the MS reported in table 4.4. It is noticed that: a) the two error components u 

and v have comparable magnitude; b) the random component of the error (error 
standard deviation) is significantly larger than the mean bias component.  

 

Table 4.4. Actual error and estimated uncertainty at P. 

 Mean 
error 

Error 
standard 
deviation 

Error root-
mean-square 

(rms) 

Uncertainty 
rms 

u-component [px] –0.005 0.060 0.060 0.063 

v-component [px] –0.021 0.060 0.063 0.064 

vorticity [px/px] 0.0008 0.0104 0.0104 0.0116 

 

The vorticity is computed with the central-difference scheme of eqn. (4.40), 
with grid spacing d = 4 px. The vorticity time series for the first 10 ms is shown in 

figure 4.13. Both HDR and MS yield the same peak vorticity (max = – 0.15 px/px at 
t = 2.2 ms), which confirms that the two systems have the same spatial resolution. 

The vorticity error  is computed as the difference between MS and HDR vorticity. 
The results of table 4.4 show that the random error dominates over the mean bias 
error.  

The uncertainty at P is again evaluated with the correlation statistics method. 
Uncertainty propagation is done according to eqn. (4.42) using d = 4 px, U = (Uu + 

Uv)/2 and (2d) = 0.45. The root-mean-square of the uncertainty is equal to Uu,rms = 
0.063 px and Uv,rms = 0.064 px, which agrees very well with the error root-mean-
square of 0.060 and 0.063, respectively. The calculation is repeated in the entire 
measurement domain in common between HDR and MS. The contours of figure 4.14 
illustrate the comparison between the rms of the error and the uncertainty of the 
vorticity. Both uncertainty and error exhibit small variations within the considered 
domain, with values between 0.010 and 0.016 px/px. Again, the agreement between 
estimated uncertainty and error is very good.  
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Figure 4.12. Longitudinal (left) and transverse (right) velocity time series at point P. 

 

Figure 4.13. Comparison between MS and HDR vorticity time series at P. 

 

Figure 4.14.  Comparison between root-mean-square of the vorticity error (left) and root-
mean-square of the estimated vorticity uncertainty (right). 



4.4.  Experimental assessment                                                                                                                                                  

89 

  
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

4 

4.4.2.1 Uncertainty of statistical quantities 

The time-resolved jet data are not suited for statistical analysis because the 
low effective number of independent samples (Neff =243, despite the total number of 
samples is N = 8,000) does not guarantee the statistical convergence of the results. 
Hence, to assess the uncertainty of statistical flow properties, the cavity flow data 
are used, where 2,000 statistically independent velocity field are available.  

Velocity data are extracted at a point P located close to the reattachment point; 
the turbulence intensity in P is equal to 22.0% of the free-stream velocity. The entire 
set of 2,000 samples is divided into 100 independent subsets composed by 20 
samples each. The statistical flow properties, namely time averages and Reynolds 
stresses, are computed from the subsets and compared with the value obtained with 
the entire set. Figure 4.15-left shows the comparison between the time-averaged 
vertical velocity computed with the subsets of 20 samples and that evaluated from 
the entire set of 2,000 samples. The uncertainty bars are evaluated with eqn. (4.15) 
and correspond to a theoretical confidence level of 68%. In most of the cases the 
results agree within the uncertainty of the measured mean velocity. To assess the 
accuracy of the uncertainty propagation formulae, the uncertainty coverage for 
different statistical quantities is computed and displayed in figure 4.15-right. The 
uncertainty coverage is defined as the number of samples for which the error is 
smaller than or equal to the estimated uncertainty.  

 

Figure 4.15. Left: comparison between time-averaged vertical velocity obtained with the 
subsets of 20 samples and that computed with the entire set of 2,000 samples. For sake of 
clarity, only the first 20 subsets (out of 100) are shown. The uncertainty bars are evaluated at 
68% confidence level with the corresponding uncertainty propagation formula. The 
uncertainty of the reference value is displayed with a dashed black line. Right: uncertainty 
coverage for different statistical quantities. The theoretical uncertainty coverage for Gaussian 
error distribution is 68%. 

In case of Gaussian error distribution, the theoretical uncertainty coverage is 
about 68%. The results of figure 4.15-right show the accuracy of the uncertainty 
propagation methodology: the uncertainty of the time-averaged quantities ( u  and 
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v ) is accurate within 5%, whereas that of the Reynolds stresses is accurate within 

10%. 

The effect of the number of samples on the accuracy of the statistical results is 
shown in Figure 4.16. It is evident that the random uncertainty of the mean (Figure 
4.16-a) is initially large and decreases with increasing sample size. In the entire 
range of sample sizes considered, the reference mean velocity is within the 
uncertainty bounds estimated with eqn. (4.15). Similarly, the normal Reynolds 

stress Rvv converges to the reference value with rate 1 N  (Figure 4.16-b). For low 

sample size (N < 250), the measured Rvv overestimates the reference value due to 
the effect of spurious fluctuations by about 10%.  

 

 

Figure 4.16. a) Convergence of the mean vertical velocity as a function of the sample size. b) 
Convergence of the Reynolds normal stress as a function of the sample size. c) Convergence of 
the Reynolds shear stress as a function of the sample size. In all plots, the uncertainty bars are 
evaluated at 68% confidence level with the corresponding uncertainty propagation formula. 
The uncertainty of the reference value is displayed with a dashed black line. 
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A corrected value of Rvv is computed by subtracting the mean-square 
fluctuation: Rvv, corr = Rvv – Urms

2. The uncertainty of uncorrected and corrected Rvv is 
computed via eqn. (4.18) and (4.23), respectively. The two uncertainties are the 
same within 1%, meaning that the uncertainty of Rvv is mainly due to statistical 
convergence rather than to the measurement uncertainty of u and v. For a 
correction of less than 1%, one would need at least 20,000 independent samples 
according to eqn. (24) before the uncertainty of the Reynolds stress decreases to the 
same level as the correction term Urms

2. Generally, a correction remains useful for 
low levels of Reynolds stress comparable to the uncertainties.  

The Reynolds shear stress Ruv is illustrated in Figure 4.16-c. To compute the 

uncertainty URuv, the cross-correlation coefficient between u and v is calculated: uv 

=0.41. The measured Ruv converges to the reference value with rate 1 N . As the 

estimated uncertainty, also the measurement error (difference between measured 
and reference value) decreases with increasing the sample size.   

4.5 Stereo-PIV Uncertainty 

The main task is to propagate the uncertainties of the two 2C-vectors 
computed from the two cameras into the final 3C-vector. Let’s assume that, like in 
Davis, the 2C-vectors (u1,v1) and (u2,v2) for the two cameras are already computed 
in the dewarped images at the same correct (X,Y,Z=0)-position. They are converted 
by the 3C-reconstruction step into world displacements (u,v,w) by some 
reconstruction function F, typically implemented by the ‘normal’ equation (see also 
Arroyo and Greated 1991; Prasad and Adrian 1993; Willert 1997; Soloff et al. 1997; 
Prasad 2000; Giordano and Astarita 2009): 

 

 

 

1 1 2 2

1 1 2 2

1 1 2 2

, , , ,

, , , ,

, , , ,

u
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v F u v u v M
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   

  (4.53) 

where M stands for the set of mapping function parameters. By uncertainty 
propagation, the uncertainties Uu1, etc. determine the uncertainties of (u,v,w), e.g. 
here shown for u: 

1 1 2

2

2

2 2 2

2 2 2 2 2

1 1 2 2

u u u

u

u

u v u v

F F F F
U U U U U

u v u v

   

   
   
       
       
       

  (4.54) 

assuming that the error of components (u1,v1,u2,v2) are independent with zero 
covariance terms and ignoring any systematic and random uncertainties of the 
calibration mapping function.  

The function derivatives are easily computed by numerical differentiation, e.g.: 
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  (4.55) 

Calibration errors are difficult to quantify. They are mostly systematic in 
nature but of unknown magnitude. In this respect, some work has been done by 
Bhattacharya et al. (2016) analyzing the effect of calibration misalignments which, 
hopefully, can be fully corrected by the Stereo-PIV self-calibration procedure (see 
section 6.2). 

Finally, one needs to compute the inter-component correlation coefficients: 

 
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  (4.56) 

again, using the independence of the errors of (u1,v1,u2,v2). This is in the same way 

computed for (u,w) and (v,w). Unfortunately, these correlation coefficients 
are in general non-zero and locally changing, adding an extra level of complexity and 
storage requirement in the PIV software for subsequent uncertainty propagation. 

Let’s look at two simplified cases (Figure 4.17) of camera setup to investigate 
the magnitude and significance of these inter-component correlation coefficients. 

 

 

 

 

 

 

Figure 4.17. Case A (left) and case B (right) setup. 

Case A: Typical setup: cameras aligned along the x-axis at ±45 degree viewing angle 

At least in the middle of the image, 3C-reconstruction function F (standard 
‘normal eqn.’) is given by: 

     
1 2 1 2 1 2

/ 2, / 2, / 2u u u v v v w u u        (4.57) 

with correlation coefficients: 

1 2 2 
1 
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Usually, the uncertainties Uu1 and Uu2 are similar in magnitude leading to small 
correlation values between the coupled u and w-component. Thus, derived 
statistical quantities like Reynolds shear stress (see eqn. (4.29)), where this 
correlation enters as an average, will be very little influenced.   

Case B: Asymmetric setup: camera 1 looking perpendicular, camera 2 at +45 
degrees 

Function F is given by: 

 
1 1 2 1 2
, / 2,u u v v v w u u       (4.59) 

with correlation coefficients: 

     1

1 2

2 2
, , , , 0

u

u u

u w u v v
U

w
U

U
           


  (4.60) 

Clearly, the uw-correlation is non-zero. Since camera 2 is viewing the light 
sheet from 45° angle, it has √2 less pixels of the original image available for each 
interrogation window compared to camera 1. On average, one expects therefore 

2 1

4
2u uU U  and an average  , 0.64u w     with an elevated Ruw in eqn. (4.29).  

In Davis, the locally changing non-zero inter-component correlation 
coefficients are stored together with each velocity vector. For correct uncertainty 
propagation, modifications to a number of derived instantaneous (e.g. vorticity) or 
statistical quantities have been made. 

4.6 Summary 

The present study proposes a mathematical framework for the propagation of 
the instantaneous measurement uncertainty to derived quantities of interest, either 
instantaneous (e.g. velocity derivatives, vorticity, divergence) or statistical (mean, 
Reynolds stresses, turbulent kinetic energy). The framework relies upon the use of 
linear error propagation. 

For statistical quantities, the uncertainty is typically dominated by random 

errors due to the finite sample size. The uncertainty decreases with 1 effN , being 

Neff the effective number of independent samples. It is noticed that, in many time-
resolved PIV experiments, Neff may be significantly lower than the total number of 
samples N, thus yielding an uncertainty of statistical quantities larger than that 
obtained when the samples are statistically independent. The quantification of the 
uncertainty of statistical quantities does not require the knowledge of the 
uncertainty of the instantaneous velocity fields. Nevertheless, the instantaneous 
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uncertainty allows correcting the normal Reynolds stress for the spurious 
fluctuations due to random errors. In fact, in absence of systematic errors due to 
peak locking or spatial modulation, the random errors have the effect to increase the 
measured normal Reynolds stress with respect to the actual one. The uncertainty of 
velocity spatial derivatives (e.g. vorticity and divergence) depends upon the spatial 
correlation of the measurement error along x- and y-directions. The latter is related 
to the measurement spatial resolution, which can be evaluated from the sum of the 
error spatial auto-correlation values. Although the error correlation is typically 
unknown in an experiment, it can be estimated a-priori by Monte Carlo simulations 
for a given set of PIV processing parameters. 

The proposed uncertainty propagation methodology is assessed via both 
Monte Carlo simulations and experiments. The Monte Carlo simulations showed the 
accuracy of the estimated uncertainty for varying testing conditions (sample size, 
signal variance, error correlation) under the assumption of Gaussian error 
distribution of the velocity. In the experimental assessment, the reference velocity is 
either known (turntable experiment) or estimated with an auxiliary PIV system 
featuring a higher dynamic range (turbulent flow experiment), as done in Neal et al. 
(2015), or evaluated with a much larger sample size for statistical convergence. 
From the experimental assessment, three main conclusions can be drawn:  

i. When the spatial correlation of the error is correctly taken into account, the 

uncertainty of the vorticity is estimated typically within 5-10% accuracy.  

ii. When the actual flow fluctuations are larger than the instantaneous 

uncertainties, the uncertainty of statistical quantities is dominated by the 

finite sample size rather than the random instantaneous uncertainties.  

iii. the uncertainty of the time-averaged quantities ( u  and v ) is accurate 

within 5%, whereas that of the Reynolds stresses is accurate within 10%. 

PIV uncertainty quantification for derived flow quantities is an ongoing subject 
of research assessing currently available derivations and to identify possible 
improvements.  
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5.1 Introduction 

The fundamental challenge to any PIV processing scheme is to select the 
optimal spatial resolution - mainly determined by interrogation window size and 
overlap factor - for a given image quality and information density or signal-to-noise 
ratio. In many cases this is not uniform across the image or varying from image to 
image. Typically, one tries to find some compromise in interrogation window size 
and other processing parameters which work reasonably well everywhere. Instead, 
it would be advantageous to locally adapt the spatial resolution. 

For this purpose, several adaptive PIV techniques have been developed taking 
into consideration local seeding densities, flow gradients or physical constraints like 
walls, locally adjusting the interrogation window position, size and shape (Scarano 
2004b; Theunissen et al. 2007, 2008, 2010; Wieneke and Pfeiffer 2010; Astarita 
2009). These techniques have shown to reduce the systematic and random noise 
level significantly, in particular close to object surfaces. 

For time-resolved PIV (TR-PIV), one can (additionally) use the temporal 
information for noise reduction applying various multi-frame correlation 
techniques (Hain and Kähler 2007; Sciacchitano et al. 2012; Jeon et al. 2014; see also 
recent PIV Challenge: Kähler et al. 2016). 

Once a velocity field has been obtained, various post-processing noise-
reduction schemes can be applied, among them standard spatial top-hat or Gaussian 
smoothing filters, polynomial regression fits or POD analysis (Raiola et al. 2014). 
For TR-PIV, more options are available since the noise is usually less correlated in 
time than in space. For example, Oxlade et al. (2012) apply a spectral white noise 
subtraction recovering the true velocity spectra. Vétel et al. (2011) use an optimal 
temporal Wiener filter with better results than convolution- or wavelet-based 
filters. 

Other denoising approaches utilize physical constraints. In particular, for 
volumetric data and divergence-free incompressible flows one can use the criterion 
of non-zero divergence for uncertainty quantification (Sciacchitano and Lynch 
2015) as well as reducing the noise by making the flow field divergence-free (de 
Silva et al. 2013; Schiavazzi et al. 2014; Azijli and Dwight 2015; Wang et al. 2016). 
Atkinson et al. (2014) estimate the noise of volumetric velocity data directly from 
the velocity fields and apply an appropriate spatial filter to achieve more accurate 
turbulent power spectra. For time-resolved volumetric data one can apply Navier-
Stokes or some simplified version as a regularizer. For example, Schneiders et al. 
(2015) apply a time-marching vortex-in-cell procedure to average multiple flow 
fields with more accurate results than retrieved with spatial/temporal moving 
average and polynomial regression filters. 

The main issue for any denoising scheme is to select the appropriate spatial or 
temporal filter kernel size, which should be as large as possible to average out the 
random noise and short enough not to reduce the amplitude of true flow 
fluctuations (truncation errors). With recent work on PIV uncertainty quantification 
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(Charonko and Vlachos 2013; Timmins et al. 2012; Sciacchitano et al. 2013; Wieneke 
2015; Sciacchitano and Lynch 2015) it is now possible to estimate the uncertainty of 
each computed vector. This can help to guide any denoising scheme for optimal 
noise reduction while preserving the true flow fluctuations. 

The anisotropic denoising filter described here is based on local polynomial 
approximation (LPA) with locally adaptive kernel size well known in the digital 
signal processing community (e.g. Katkovnik 2005; Browne et al. 2007) for 1D- and 
2D-data (images). While adaptive LPA estimates the local noise level from the 
residual between the fitted and the original data, direct knowledge of the PIV 
uncertainties is employed here to guide the size and shape of the final 2D filter 
kernel size. This anisotropic denoising scheme is finally validated using synthetic 
and experimental vector field data. 

5.2 Method 

The denoising scheme described here is restricted to planar velocity fields 
with u, v, and possibly w-components together with uncertainty values Uu, Uv, Uw on 

a 1-sigma-level, i.e. the true velocity value utrue is expected to lie within u  Uu with a 
probability of 68%. Denoising is done independently for each vector of the flow 
field.  

 

Figure 5.1. Adding a new shell to the filter kernel. 
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At the beginning, for each vector component (u,v,w) a second-order 2D-
polynomial function is fitted to a 5x5 vector neighborhood around the center vector. 
The uncertainty of the vectors in the 5x5 neighborhood is averaged and taken as a 
reference in the following. Vectors just outside the center 5x5 region (white squares 
in Figure 5.1) are tested if they should be added to the filter kernel. Vector a and at 
the same time vector d on the opposite will be added if both adjacent inner vectors b 
and c are part of the filter kernel, and if all components (u,v,w) of vectors a and d are 
within an uncertainty band around the fitted polynomial function as shown in 
Figure 5.2. 

 

Figure 5.2. Polynomial function computed around the center vector at x=0 with data between 

-3 and +3 and extrapolated to 4. Red vector at +4 is rejected since it lies outside the grey 
uncertainty band. 

 If any of the conditions fails, then both vectors, a and d, will be discarded, and 
subsequently all vectors further out in this direction are prevented to become part 
of the smoothing kernel. With such a symmetrical vector addition, the center of 
mass of the filter kernel remains at the center vector location for all kernel shapes. 
The resulting 2D-array of valid vectors is then made more compact and regular by 

deleting vectors if they have  2 neighbors and adding vectors if they have  5 
neighbors, even if they would be rejected otherwise.  

The uncertainty band (Figure 5.2) is given by  S times the uncertainty 
(provided on a 1-sigma level), where S is a user-selected filter strength, as shown 

later typically set to around 2.5 - 3.5. A narrow band of  1-sigma would be too tight, 
since with a probability of 32% a vector falls outside this range preventing the 
growth of the filter kernel. The procedure stops when no more vectors are added or 
when a user-selected maximum kernel size is reached. At the end, the often quite 
irregular shape of the filter kernel is converted to a closest ellipse (Figure 5.3). The 
difference in performance with and without ellipse fitting is only minor. 

Then LPA is executed on the vector field inside the filter kernel, and the center 
vector is replaced by the value of the polynomial function at the center location. 
Since the spatial derivatives of the flow field are readily available from the fitted 
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polynomial function, they are stored, e.g. for subsequent vorticity or divergence 
computation.  

 

Figure 5.3. Final filter kernel (blue) is converted to an ellipse (gray) shown for every 13th 
vector. 

Finally, the procedure computes a new uncertainty for each vector component 
using the uncertainty propagation rules outlined in Sciacchitano and Wieneke 
(2016). A simplified version is used here by taking the reference uncertainty divided 
by sqrt(Neff - 6), where Neff is the number of independent vectors in the final filter 
kernel and 6 is the number of parameters (degrees of freedom) of the second-order 
2D-polynomial function. Roughly, Neff is the total number of vectors in the filter 
kernel divided by the number of vectors within the size of the interrogation window 
(more details in chapter 2). For example, with an interrogation window size of 
32x32 pixel and 75% overlap, there will be 16 vectors within the window. If one 
would smooth over these 16 vectors, there will be effectively very little reduction of 
the uncertainty and noise, since the errors of all vectors are closely correlated.  

It is also necessary to update the spatial resolution of the vector field, which is 
related to the spatial auto-correlation coefficients between neighboring vectors. Due 
to variable filter size and shape, this is different for each vector in magnitude and 
direction, similar to the adaptive PIV techniques with varying interrogation window 
sizes and shapes. A fully correct treatment is complicated and would require the 
storage of many additional correlation values for each vector for subsequent 
uncertainty propagation. Again, a simplified version is adopted here setting the 
spatial resolution to the average linear dimension of the filter kernel. It needs to be 
shown, if this is sufficient for accurate uncertainty quantification when the 
directional dependency of the effective spatial resolution becomes important, e.g. 
for the vorticity field. 
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The proposed denoising scheme takes typically a few seconds of processing 
time on a standard PC. It can easily be extended to volumetric data and to the time 
domain.  

5.3 Synthetic data validation 

The denoising scheme is first tested on a synthetic vector field with a wide 
range of spatial wavelengths L and signal-to-noise ratios (velocity dynamic range). 
The vector field contains 200 x 75 vectors with a grid spacing d of 4 pixel. The (true) 
flow field contains vortices of various sizes with spatial wavelengths of 512 pixel on 
the left and 32 pixel on the right of the image with a constant (true) amplitude of 1 
pixel (Figure 5.4 top). Vortices constitute a more challenging case than simple shear 
flows, where the filter kernel shape can be strongly elongated along the shear. 

 

Figure 5.4. Synthetic vector field with constant fluctuation amplitude (top) and after taking 
the finite spatial resolution of a PIV algorithm into account showing u-component (middle) 
and vorticity (bottom). 
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Any PIV algorithm has a finite spatial resolution equivalent to a characteristic 
filter length Lsr reducing small-scale fluctuations. Here it is assumed that Lsr is 16 
pixel, equivalent to 4 vectors, which is similar to using 16x16 pixel interrogation 
windows with 75% overlap. The filter length Lsr as the inverse of the spatial 
resolution is defined here as the sum of the auto-correlation coefficients between 
the errors of neighboring vectors (section 2.3). If PIV would be a simple single-pass 
linear top-hat filter averaging the displacement information within an interrogation 
window of L x L pixel, then Lsr would be equal to L, as can be easily verified. The 

vector field is filtered here with a Gaussian filter function ( exp(-x2/22)) of 

equivalent filter length Lsr =  sqrt(4π). This leads to a significant reduction in 
amplitude for small wavelengths, e.g. about 50% for L/Lsr = 2 (Figure 5.4 middle and 
bottom). The exact spatial frequency response depends on details of e.g. the 
predictor-corrector scheme of a multi-pass PIV algorithm. This smoothing is 
included to put the noise level and its reduction by the anisotropic denoising 
scheme in perspective to the unavoidable amplitude reduction of small wavelengths 
due to the limited spatial resolution of the PIV algorithm itself. 

Noise levels of 0 to 100% are added to each vector component, again subject to 
the PIV spatial filtering, which leads to locally correlated noise components between 
neighboring vectors. This becomes important when applying locally confined 
averaging, where the noise is very little reduced since it is locally correlated. Viewed 
another way, local averaging/denoising must be done over a kernel size larger than 
Lsr to become effective. The maximum filter kernel size is set to 41x41 vectors. Final 
computed kernel sizes are typically in the range of 5-15 vectors in each direction.  

Figure 5.5 shows the u-component with increasing noise level from top to 
bottom of the original vector field and after denoising with strength S of 1, 2, 2.5, 3, 
and 4 (from left to right). For zero noise level (top) the denoising scheme does not 
change the vector field apart of slightly decreasing the spatial resolution, i.e. 
increasing Lsr from 16 to 19, due to the initial 5x5 polynomial regression, which is 
always done. This is barely visible on the top right, where the amplitude of small-
scale fluctuations is decreased slightly.  

For low noise levels, the procedure accurately recovers the round shape of 
vortices for almost all wavelengths. Large-scale vortices with larger possible kernel 
sizes are recovered even at 100% noise level. For smaller wavelengths further to the 
right the denoising procedure is able to reduce the noise as long as the true 
fluctuations are larger than the errors. Beyond that, the algorithm cannot 
distinguish between true and noisy fluctuations anymore. Here, given a strong 
enough filter, the vector field is simply averaged over large regions. The algorithm 
assumes that everything is noise (see bottom right of the noise plot in Figure 5.6). 
The optimal filter strength seems to be between 2.5 and 3.0, strong enough to 
eliminate noise over potentially large regions for larger wavelength while not 
smoothing over true fluctuations.  
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Figure 5.5. Original vector field and after denoising with strength S = 1, 2, 2.5, 3, and 4 from 
left to right. Noise level 0-100% from top to bottom. Color = u-component.  

 

Figure 5.6. Original noise and after denoising (equal to Figure 5.5 minus Figure 5.4 middle) 
with strength S = 1, 2, 2.5, 3, and 4 from left to right. Noise level 0-100% from top to bottom. 
Color = u-component of noise.   
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The performance of the denoising scheme is quantified in Figure 5.7 plotting 
the local rms of the noise for a filter strength of S=3 as a function of wavelength for 
the different noise levels of 0-100% (0-1 px). For larger wavelength L/Lsr > 10 the 

noise is reduced by a factor of 2, up to a factor of 4 in some cases and larger wavelengths. 

For large noise levels >50% only wavelengths L/Lsr > 15 are recovered, which is not 
surprising, since even visually it is difficult to detect smaller vortices in the noisy 
vector field. Smaller wavelengths are simply smoothed-over as the algorithm is 
unable to distinguish between true vortices and noise. The overall noise level is 
decreased but hidden flow structures are also removed.  

For the noise-free vector field the error increases for small wavelengths (L/Lsr 
= 1-3) by about 5% of the true amplitude due to the 5x5 polynomial regression, 
which, as mentioned before, leads to 15% lower spatial resolution. Still, one has to 
keep in mind that for these wavelengths the amplitude reduction due to the spatial 
filtering effect of PIV (truncation error) is anyway above 50%. 

 

Figure 5.7. Remaining noise level after denoising as a function of spatial 
wavelengths for different original noise levels of 0-1 px. 

The denoising scheme has been compared to a standard 2nd-order polynomial 
regression filter with a fixed kernel size of 5x5 to 11x11 vectors and a top-hat 
smoothing filter over 9x9 vectors for the case of 20% (0.2 px) noise level (Figure 
5.8). For large wavelengths, the polynomial regression filter reduces the noise level 
with successively larger filter kernels. The top-hat 9x9 filter performs better than 
polynomial fit of 11x11, since it is roughly equivalent to a polynomial filter of 20x20 
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vectors. For the intermediate range of L/Lsr between 2 and 7, the polynomial 
regression filter even increases the noise level, since the reduction of random noise 
is less than the extra noise added due to increased truncation errors, i.e. smoothing 
the true flow fluctuations. Clearly, the anisotropic denoising filter outperforms all 
other schemes due to locally adapting the kernel size to the wavelength of the true 
flow fluctuations. 

 

 

Figure 5.8. Comparison of anisottropic denoising with 2nd-order polynomial regression filter 
with 5x5 to 11x11 vector kernel and 9x9 top-hat smoothing filter. Original noise level = 0.2 
pixel. 

5.4 Experimental verification 

The denoising scheme is first tested on image 50 of PIV challenge 2003 case A 
(Stanislas et al. 2005). Standard PIV processing with 16x16 px window size reveals 
small-scale vortices inside the jet with a few remaining outliers even after vector 
validation and leaves a high noise level outside the jet (Figure 5.9). It is not clear if 
some of the small-scale vortices are actually real or noise. Increasing the 
interrogation window size reduces the noise level but at the same time smears out 
small-scale vortices leading to lower peak vorticity levels. The user has to choose 
some compromise, e.g. selecting 24x24 or 32x32 pixel windows.  

Figure 5.10 shows the result of the denoising scheme with a filter strength S of 
3.5 and a maximum kernel size of 15x15 vectors. Compared to 32x32 windows 
without denoising, when using 24x24 with denoising one arrives at higher peak 
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vorticity levels and smaller resolved flow features. At the same time, the noise levels 
in regions of low flow gradients outside the jet are strongly reduced, which would 
be otherwise only achievable with e.g. 48x48 or larger windows. 

 

 

Figure 5.9. PIV Challenge 2003, case A, image 50 processed with interrogation window sizes 
of 16x16, 24x24, 32x32, and 48x48 pixel (from top-left to bottom-right) with 75% overlap. 
Color = vorticity (a.u.). 

Another experimental example is a cut through a ring vortex in air (Figure 
5.11) with 24x24 interrogation windows and 75% overlap. Since the jet is mostly 
laminar, the small-scale granular structure of the vorticity pattern is purely noise 
related. Denoising clearly reduces the noise level while preserving and highlighting 
the true flow structures. 
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Figure 5.10. Denoising applied on vector fields with IW=16x16 (left) and 24x24 (right). S=3.5.  

 

Figure 5.11. Ring vortex processed with 24x24 windows and 75% overlap without (left) and 
with denoising (right, S=3.5). Seeding and PIV processing is only applied inside the vortex. 
Color = vorticity (a.u.). 

Finally, time-resolved PIV data from a turbulent pipe flow (van Doorne and 
Westerweel 2007) is analyzed using the new spatial denoising technique and/or 
applying at each location a temporal polynomial regression filter of second order 
over 11 time steps. As shown in Figure 5.12 and better visible in the associated 
movie (https://youtu.be/ZckKc1I-tfQ), with an interrogation window size of 32x32 
pixel the vector fields at each time step (top-left) are clearly quite noisy in space and 
flickering also over time. This qualitative judgement is based on the knowledge that 
here small-scale spatial variations lack physical justification. Within the 2 ms 
between time-steps and corresponding 3-5 pixel displacement of particles the 
temporal flickering is mostly due to noise. 

https://youtu.be/ZckKc1I-tfQ
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Figure 5.12. Turbulent pipe flow (van Doorne and Westerweel 2007), raw vector field (top-
left) after anisotropic denoising (top-right, S=3.5), and for both with polynomial regression 
filter of 2nd-order over 11 time steps (bottom). Color = vorticity (a.u.). See movie in 
supplementary data (https://youtu.be/ZckKc1I-tfQ). 

After applying the anisotropic denoising scheme the flow field is much 
smoother spatially (top-right), but still flickering significantly over time. When 
applying the temporal filter on the raw vector fields, the result is now temporally 
smooth over time at each spatial location, but still spatially noisy (bottom-left). 
Applying both schemes (here first spatial denoising, then temporal filter, bottom-
right), the result is finally spatially and temporally smooth with only small reduction 
in spatial and temporal resolution compared to the raw vector fields. This indicates 
a significant reduction of the noise level, about equally by the temporal and spatial 
denoising scheme. 

5.5 Summary 

A rather simple denoising scheme is presented as a post-processing step on 
vector fields using the uncertainty value for each vector as a reference. Vectors will 

https://youtu.be/ZckKc1I-tfQ
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be progressively added in all directions to the filter kernel if the velocity value is 
inside the uncertainty band around the locally fitted function. This is repeated until 
the true flow field can no longer be approximated by the second-order polynomial 
function. The final shape and size of the filter kernel automatically adjusts to local 
flow gradients in an optimal way preserving true velocity fluctuations above the 
noise level. 

This anisotropic denoising scheme is validated on synthetic vector fields with 
varying spatial wavelengths and noise levels showing a significant increase of the 
velocity dynamic range for wavelengths about 4 times larger than the spatial 
resolution. For noise levels above 50%, the procedure is no longer able to 
distinguish between true flow fluctuations and noise except for large wavelengths of 
L/Lsr > 10. The procedure has been shown to work well for typical experimental 
flow fields. It can be easily extended to volumetric data and to the time domain.  
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Estimation and Correction 
 

 

 

 

Formel-Kapitel 6 Abschnitt 6 

 

 

 

_______________________________________________________________________________________ 

Section 6.2 has been published in Wieneke (2005) Stereo-PIV using self-calibration 
on particle images. Exp Fluids 39:267 

Section 6.4 has been published in Wieneke (2008) Volume self-calibration for 3D 
particle image velocimetry. Exp Fluids 45:549  
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6.1 Introduction 

For multi-camera Stereo-PIV and volumetric PIV/PTV an accurate perspective 
calibration between cameras and measurement volume is an important prerequisite 
for further processing. The calibration procedure computes mapping functions 
between world points (X,Y,Z) and camera pixel locations (x1,y1), (x2,y2), … . Many 
functional forms for the mapping function have been proposed, including 
polynomials (Soloff et al. 1997; Prasad 2000), DLT and full camera pinhole with 
distortion parameter (Tsai 1987; Zhang 2000; Willert 2006), with Scheimpflug 
corrections (Fournel et al. 2004; Louhichi et al. 2007; Astarita 2012; Cornic et al. 
2016) or accounting for multi-media models with changing index of refraction 
(Belden 2013) among others. All mapping functions are equally valid as long as they 
accurately accommodate the optical setup including all optical distortions. 

Error sources include manufacturing accuracy of the calibration plate, 
inaccurate calibration procedure e.g. during translation of the calibration plate, 
measurement errors in the position of the detected calibration marks, or inadequate 
functional form of the mapping function with e.g. insufficient number of free 
parameters. 

The reader is referred to the PIV books of Raffel et al. (2007) and Adrian and 
Westerweel (2011) for more information on PIV calibration. The focus here is on 
quantifying the accuracy of the calibration mapping function together with 
correction techniques. 

For Stereo-PIV, besides accurate mapping functions, the relative position of the 
calibration plate (reference Z=0-plane) with respect to the light sheet is very 
important. During the initial calibration, one usually tries to place the (first view of 
the) calibration plate exactly at the location of the light sheet. Misalignments are 
unavoidable and can be corrected by a Stereo-PIV self-calibration technique (SPIV-
SC) as discribed in section 6.2, motivated by earlier work by Willert (1997) and 
Coudert and Schon (2001). The term self-calibration is known from computer vision 
for perspective calibration of cameras based on detecting corresponding features in 
the two images. It has been used here to emphasize that the technique works on 
recordings with the actual tracer particle images.  

Initial misalignments are often of the order of 5-20 pixel and remaining 
disparities after self-calibration are typically below 1-3 pixels. For some special 
procedures with e.g. initial calibration outside in air and then self-calibration into a 
water channel it can be initially up to 200 pixel. In comparison to the spatial 
resolution of PIV (related to the size of an interrogation window, see section 2.5) of 
e.g. 15-30 pixels, small remaining disparities below e.g. 3-5 pixel still ensure that 
both cameras use almost the same vector locations for 3C-reconstruction. It should 
be noted that the intrinsic limitation of Stereo-PIV due to both cameras viewing 
different interrogation volumes of the light sheet (Wieneke and Taylor 2006) leads 
to much higher differences in overlap of up to 10-30%. 
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SPIV-SC measures the disparity by cross-correlation between the two cameras, 
usually summing many images or correlation maps and correcting the initial 
calibration function with an appropriate coordinate translation and rotation. 

Table 6.1. Comparison of Stereo-PIV self-calibration and volume self-calibration. 

 Stereo-PIV self-calibration Volume self-calibration 

Purpose correction of laser sheet 
misalignment relative to z=0 
calibration plane 

correction of (small) 
calibration errors and 
optical distortions 

Basic method correlation between images 
of the two cameras 

particle detection and 
disparity computation 

Typ. number of 
cameras 

2 3+ 

Measurement 
volume 

planar sheet / thin volume volume 

Useful for  Stereo-PIV and thin volume 
PIV/PTV 

volumetric PIV/PTV 

Correction of laser 
sheet 
misalignment  

yes 

initial misalignment up to 
≈200 pixel 

remaining misalignment  ≤ 
1-5 pixel 

 

no,  

only visual indication of 
illuminated volume 

Correction of 
calibration errors/ 
optical distortions 

partially: (rough) 2D-refit of 
mapping function based on 
remaining disparities 
perpendicular to epipolar 
line 

yes 

works for initial errors ≤ 20 
pixel 

remaining errors ≤ 0.1-0.3 
pixel 

Correction of 
single-image 
vibrations  

___ yes, ≤ 5-10 pixels, one global 
translational correction 

Transformation 3D-translation and rotation 
of coordinate system 

local correction of mapping 
function 

 

Apart from laser sheet misalignment, the main source of error is the accuracy 
of the mapping function itself. Even if the initial calibration is ok, at the time of 
image recording cameras might have sagged due to weak mounting or somebody 
has hit the mechanical setup, or, even worse, the recording is subject to vibration of 
cameras, light source, wind tunnel, ground floor or all together.  
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The volume self-calibration (VSC) as a correction technique for inaccurate 
mapping functions, described in section 6.4, was motivated by the advent of 
Tomographic PIV, where an accuracy of the mapping function of less than 0.3 pixel 
everywhere in the volume is required for accurate (S)MART reconstruction (Elsinga 
et al. 2006).  

VSC works by finding possible 3D particle positions in the measurement 
volume by triangulation from 2D particle positions in the recorded images. Back-
projection of the 3D-particle position might deviate from the original 2D-position 
(disparity) which can be used to correct the calibration mapping function. 

VSC is needed for iterative particle reconstruction (IPR, chapter 7) which is the 
basis for the newly developed Shake-the-Box method (Schanz et al. 2016).  

SPIV-SC and VSC are complementary techniques. For thin-volume 
Tomographic-PIV an initial misalignment correction can be useful to align the 
measurement volume with the z-axis by simultaneous coordinate transformation 
and rotation of the mapping function of all cameras.  The two techniques are 
compared in Table 6.1.  

6.2 Stereo-PIV Self-Calibration 

6.2.1 Introduction 

For Stereo-PIV a correct calibration is an essential prerequisite for measuring 
accurately the three velocity components. Most often an empirical approach is used 
by placing a planar calibration target with a regularly spaced grid of marks at 
exactly the position of the light sheet and moving the target by a specified amount in 
the out-of-plane direction to two or more z-positions (Soloff et al. 1997). At each Z-
position (light sheet plane defined by Z = 0) a calibration function with sufficient 
degrees of freedom maps the world xy-plane to the camera planes, while the 
difference between Z-planes provides the Z-derivatives of the mapping function 
necessary for reconstructing the three velocity components. This empirical 
approach has the advantage that all image distortions arising from imperfect lenses 
or light path irregularities (e.g. from air/glass/water interfaces) are compensated 
automatically in one step.  

Alternatively, one can use a 3D calibration plate with marks on two z-levels 
avoiding the need for rigid mechanical setups with accurate translation stages. 
Different mapping functions have been used from a second-order or third-order 
polynomial in X, Y, and Z (Soloff et al. 1997) to functions derived from the 
perspective equations (camera pinhole model) (Willert 1997). A major drawback of 
this empirical method is the need to position the calibration plate exactly at the 
same position as the light sheet which is oftentimes very difficult to accomplish. A 
correction scheme based on a cross-correlation between the image of camera 1 and 
2 has been proposed (Willert 1997, Coudert and Schon 2001) which is also the basis 
for the calibration correction method proposed in this section. 
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In parallel, especially with the advent of inexpensive digital cameras extensive 
work has been done in the field of computer vision and photogrammetry to compute 
accurate camera calibrations. While only a 2D mapping function with additional z-
derivatives is required for Stereo-PIV with thin light sheets, computer vision, in 
general, requires a volume mapping function to map all XYZ-world-points to the 
recorded xy-pixel-locations on one or more cameras. Usually this is done with a 
camera pinhole model with added parameters for lens distortions (Tsai 1986).  

There are 6 external projective parameters mapping the calibration plate by a 
rotation and translation to the world camera plane perpendicular to the optical axis 
and internal camera parameters like the focal length, the principal point which is the 
foot point of the optical axis onto the CCD, the pixel size and radial lens distortion 
terms. The optical axis is defined as the line perpendicular to the CCD-chip passing 
through the pinhole. 

A variety of 2D and 3D calibration targets have been used successfully. A 
common calibration method consists of recording a known planar calibration target 
at a few (4-8) shifted and rotated positions. This is either done by moving a single 
camera or a stereo-rig setup with two cameras around a fixed target (‚walk-around 
problem‘), or having the cameras fixed and moving the target. All fixed parameters 
(internal camera parameters and the relative position and orientation of the two 
cameras) together with all parameters unique for the particular view are fitted by a 
non-linear least-square fit (bundle adjustment). Due to a very sparsely populated 
Hessian matrix, since the external parameters unique for each view are independent 
of each other, special provisions are incorporated in the fit algorithm for better 
numerical convergence, less computing time and higher accuracy. A good overview 
of self-calibration methods and bundle adjustment fits is given by Hartley and 
Zissermann (2000).  

In the present work a Stereo-PIV calibration method has been implemented 
and tested using the camera pinhole model. Instead of requiring a perfect alignment 
between the calibration plate and the light sheet, a correction scheme has been 
developed which provides accurate mapping functions even when the calibration 
plate is quite far away or tilted relative to the light sheet. This makes the Stereo-PIV 
calibration easier and more accurate. Similar work has been done before on a setup 
with telecentric lenses (Fournel et al. 2003) and with standard lenses and 
Scheimpflug adapter (Fournel et al. 2004). 

An important application of self-calibration is the case where it is difficult or 
even impossible to place a calibration plate inside a closed measurement volume. In 
these cases one would ideally like to calibrate the cameras outside the flow aparatus 
and self-calibrate onto the light sheet inside. For these cases, different strategies are 
presented in section 6.2.4 with experimental validation. 
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6.2.2 Self-calibration method  

6.2.2.1 Camera pinhole model 

For Stereo-PIV two mapping functions need to be determined, M1 for camera 1 
and M2 for camera 2 relating a world coordinate Xw = (Xw,Yw,Zw)  to pixel locations 
x1 = (x1,y1)  and x2 = (x2,y2) in the recorded images of camera 1 and 2 (Figure 6.1): 

x1 = M1( Xw )  and   x2 = M2( Xw )  (6.1) 

In the empirical approach with a calibration plate at 2 or more Z-positions 

(Soloff et.al. 1997) it is sufficient to know M(Xw,Yw,Zw=0) and the z-derivatives xi / 

Zw and yi / Zw, i=1,2 of the mapping function at (Xw,Yw,Zw=0) which do not change 
significantly across the thickness of the light sheet. 

 

 

Figure 6.1. Camera pinhole model. 

 

In contrast the camera pinhole model provides a complete mapping of the 
volume as given by eqn. 6.1. The camera pinhole model used here is based on Tsai’s 
11 parameter model (Tsai 1986). The 6 external camera parameters are given by 
the rotation R and translation T of the world coordinates Xw to the camera 
coordinates Xc = (Xc,Yc,Zc): 

Xc = R  Xw + T (6.2) 
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The undistorted and distorted camera position xu = (xu,yu) and xd = (xd,yd) are 
computed by: 

xu = f  Xc / Zc    and    yu = f  Yc / Zc   (6.3) 

with 

xd = xu   (1 + k1  r + k2  r2)   and   yd = yu   (1 + k1  r + k2  r2)  (6.4) 

and   

r2 = xd  xd + yd  yd.  (6.5) 

where k1 and k2 are the first and second order radial distortion term. Usually for 
good quality lenses k1 is sufficient, for wide-angle lenses or consumer cameras 
additional radial terms and even tangential distortion terms may be required. f is 
the distance between the principal point and the camera pinhole. This is close to but 
not exactly the focal length of the lens flens. Provided that the calibration plate is in-
focus at distance Tz, f is theoretically related to flens by: 

f = flens     ( 1  + flens / (Tz + flens) )  (6.6) 

but, in practice, lenses specified with a fixed focal length do not obey exactly 
this equation. For good lenses the deviations are in the order of 2-5%. Finally the 
true pixel location x = (x,y) on the CCD-chip is given by: 

x = Sx * xd / Spixel + x0    and   y = yd / Spixel + y0 (6.7) 

Sx is an optional skew factor, which is 1 for square pixel. Otherwise Sx can be 
used as an additional distortion term. Spixel is the (known) pixel size. Only the ratio of 
f / Spixel is relevant. (x0,y0) is the principal point, which is usually close to the middle 
of the CCD-chip unless a Scheimpflug adapter is used. The set of parameters 
(f,Sx,k1,x0,y0) constitute the 5 internal camera parameter of the Tsai-model.  

While a possible Scheimpflug angle is included in the pinhole model, it might 
lead to radial distortion parameter which are no longer rotationally symmetric since 
the optical axis of the pinhole model does not coincide anymore with the optical axis 
of the camera lens. Fournel et al. (2004) therefore proposed a special Scheimpflug 
rotation into the pinhole model. 

The world coordinates Xw are given in some physical units (e.g. mm). For 
dewarping images and the actual Stereo-PIV computation it is necessary to convert 
the world coordinates to pixel units. This can be done in an arbitrary way. In the 
following, computations of the conversion scale of mm to pixel is set in such a way 
that in both directions the size of a dewarped pixel is equal or smaller than in the 
raw image in order not to lose any information by pixel binning. The size of the 
dewarped image is chosen such that it corresponds to the part of the field-of-view 
visible by both cameras. The coordinate origin is initially defined by the position of 
one of the marks on the calibration plate. 

For two cameras about 22 parameters are needed to specify the pinhole model. 
This compares to 80 parameters for the 3rd-order 2D polynomial defined on two z-
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planes. With only a few correction terms the pinhole function has proven to be 
highly accurate in the field of computer vision. Therefore it is obvious that not all 80 
parameters of the 3rd-order polynom are statistically significant. In general it is 
better to start with an appropriate physical model and then add a few significant 
correction terms. Otherwise one might fit noise e.g. in the detected position of the 
marks on the calibration plate. The 3rd-order polynomial is more appropriate in 
cases of strong non-perspective global or local distortions (e.g. viewing through 
cylinders where it is more difficult to design appropriate correction terms for the 
pinhole model).  

6.2.2.2 Correction of mapping function 

Whether or not the alignment of laser sheet and calibration plate is perfect can 
be checked by dewarping the camera images with M-1 at Zw = 0 and comparing the 
two images. Ideally the two images should match perfectly. Any deviation d (Figure 
6.2) (‘disparity map’) is an indication of some misalignment leading to different 
error sources. If the calibration plate has a z-offset relative to the measurement 
plane, the reconstruction of the three-component(3C)-vector (u,v,w) from the two 
two-component(2C)-vectors (ui,vi) uses vectors computed at different locations in 
the measurement plane. For example, an offset of 20 pixels and a velocity gradient of 
5% (in units of pixel displacement per pixel distance) the displacement would 
change by 1 pixel over a distance of 20 pixel, which leads to considerable errors in 
the reconstructed 3C-vector. Also slightly wrong derivatives of the mapping 
functions would be used. Finally, the coordinate system itself remains warped. That 
is, a tilt of the calibration plate by 1 degree means that the calculated 3C-vectors are 
rotated by 1 degree. 

This disparity map has been used by Willert (1997) for correcting the position 
at which the corresponding 2C-vectors are calculated for camera 1 and 2. A more 
advanced approach has been done for the case of telecentric lenses recomputing a 
new mapping function from the disparity map (Fournel et al. 2003) and more 
recently for normal lenses with Scheimpflug adapters (Fournel et al. 2004). A 
similar general approach is done here in a series of different steps. 

First, the computation of the disparity vector map of the two dewarped images 
is computed by a standard cross-correlation PIV-technique. The particle pattern 
inside an interrogation window looks quite different when viewed from the two 
camera viewpoints since the particles are dispersed throughout the light sheet. 
Therefore, it is usually insufficient to simply correlate a single image pair. Instead an 
ensemble averaging algorithm is used by summing the correlation planes of many 
image pairs (Meinhart et al. 1999). Depending on the particle density and the 
thickness of the light sheet about 5 to 50 images are needed typically to compute an 
accurate disparity map from a well-shaped correlation peak. For large fields of view 
(e.g. in wind tunnels) a single view might be sufficient which offers the potential to 
correct vibrational displacements of the laser sheet or the cameras (Willert 1997). 
Multi-pass algorithms with deformed interrogation windows can be applied to 
further enhance the accuracy of the vector map. This means that all n images are 
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processed first to arrive at an initial guess of the disparity vector map, which is then 
used as a reference vector field to shift and deform the interrogation windows in the 
next pass and so on. 

Willert (1997) is using these disparity vectors to correct the position where 
the vectors are computed. For small misalignments, this effectively removes the 
main error source of computing the vectors of camera 1 and 2 at different positions. 
In case of larger misalignments between plate and light sheet a more advanced 
volume correction scheme must be used to compute a correct coordinate system of 
the light sheet plane with accurate spatial derivatives of the mapping function as 
explained below.  

Once the disparity map has been computed, a corresponding world point in the 
measurement plane is computed by a standard triangulation method for each vector 
(Figure 6.2). Errors in the disparity vectors means that the two reprojected lines 
from each camera do not exactly intersect in a single world point. It is optimal to 
find a point in space whose projections onto the two camera images is closest to the 
measured positions (Hartley and Sturm 1994). These criteria can be used to 
eliminate false disparity vectors using a sensible threshold (e.g. 0.5 pixel).  Instead 
of working with dewarped images one can also compute the disparities between the 
original images and use them in the triangulation step to arrive at the same world 
points. The advantage of using dewarped images is that the PIV user can check for 
remaining disparities (non-zero vectors) more easily. Triangulation is only possible 
when one has a volume mapping function, but it must not necessarily be a pinhole 
mapping function. It can also be an accurate empirical 3rd-order 2D-polynomial 
function calculated for a number of parallel z-planes which cover enough of the 
volume to incorporate the laser light sheet to be fitted. 

 
 

Figure 6.2. The world points of the light sheet can be computed by triangulation using the 
disparity vectors. 
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A plane is then fitted through the world points in 3D-space and the mapping 
functions of camera 1 and 2 are corrected by a corresponding transformation such 
that the fitted measurement plane becomes the z=0 plane. This is done by replacing 
in eqn. (6.2) R by R*dR and T by T + R*dT, where dR is the rotation of the fitted 
plane relative to the calibration plate and dT is the distance of the plane to the 
calibration plate. The freedom of choosing the new coordinate system due to in-
plane rotation and choice of origin is reduced by setting the new origin as the point 
projected from the previous origin in camera 1 onto the measurement plane and the 
previous x-axis of camera 1 coincides with the x-axis of the measurement plane. This 
can be changed later by the user to set a new origin and x- or y-axis in a dewarped 
particle image. The complete correction scheme is shown in Figure 6.3. 

 

  
Figure 6.3. Flow chart of self-calibration procedure. 

The whole procedure can be repeated again to arrive at better fits. Usually the 
process has converged and the disparity map does not get smaller after two or three 
passes. Good results have been achieved by using only a single-pass cross-
correlation and repeating the complete correction process two or three times.   



6. PIV Calibration Error Estimation and Correction 

119 

 

6   
Fe
hle
r! 
Ve
rw
en
de
n 
Sie 
die 
Re
gis
ter
ka
rte 
'St
art
', 
u
m 
He
adi
ng 

6 

 

 

The triangulation error and the error fitting a plane through the world points 
provide information about the quality of the fit. Both errors are affected by 
inaccuracies in the disparity vectors, which are mostly random errors due to 
insufficient number of particles and the well-known bias errors of the correlation 
function, together with systematic calibration errors in case the computed mapping 
function becomes inaccurate when projected in space toward the light sheet plane. 
Calibration errors often lead to high triangulation errors, while the plane fit error 
might remain small. As shown later with a good setup it is possible to compute the 
position of the light sheet within 0.1 pixel of the center of the sheet with a thickness 
of typically 10-20 pixels, something hardly possible by simple visual inspection and 
manual placement of the plate. 

The correction scheme above assumes that the internal camera parameters as 
well as the position and orientation of camera 2 relative to camera 1 do not change.  
In the 22 parameters of the stereo Tsai model one can substitute the external 
parameter R2 and T2 of camera 2 by the relative transformation R12 and T12 of 
camera 2 relative to camera 1. Then the self-calibration procedure above is 
equivalent of newly fitting R1 and T1 while keeping R12 and T12 fixed. Since the 
coordinate origin and the x-axis are free to choose, this leaves three parameters of 
R1 and T1 to be fitted, which are the three parameters of the position and 
orientation of a plane in space. Therefore, the procedure of triangulation, plane fit 
and transformation can be replaced by a single non-linear fit of the three free 
parameter of R1 and T1 using the relationship between the disparity and the 
mapping function parameter given by the well known fundamental equation 
(Hartley and Zissermann 2000): 

x1   F  x2 = 0 (6.8) 

where F is the fundamental 3x3 matrix of rank 2 with 8 degrees of freedom and x1 = 
(x1,y1,1) and x2 = (x2,y2,1) are the camera coordinates. It is nevertheless quite 
instructive to perform the three steps separately to identify the different error 
sources and to check the flatness of the light sheet.  

Advanced self-calibration methods can be devised to fit more than the three 
plane parameters since the fundamental equation has 8 degrees of freedom. One 
might fit user-adjusted focal lengths or Scheimpflug positions or even the relative 
position between camera 1 and 2 with some restrictions. This is subject of further 
research. 

6.2.2.3 Stereo-PIV processing and 3C-reconstruction 

Different approaches for stereo vector computation have been proposed as 
summarised e.g. by Prasad (2000) or Calluaud and David (2004). In all cases a 
2D2C-vector field is computed for each camera from which by stereoscopic 
reconstruction a 2D3C-vector field is computed.  
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Figure 6.4. Flow chart of Stereo-PIV vector field computation. 
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One has the choice of: 

1.  computing the 2D2C-field on a regular grid in the raw images and using the two 
interpolated vectors to compute a 3C-vector at regular world grid positions, 

2.  computing the 2D2C-vectors in the raw image at a position corresponding to the 
correct world position or 

3.  dewarping the images first and computing the 2D2C-vectors at the correct world 
grid position. 

Method 1 has the disadvantage that the vectors are not computed at the 
correct world position and due to vector interpolation false or inaccurate vectors 
affect four final 3C-vectors. Method 2 has the disadvantage that the size and shape of 
the interrogation windows differ between the two cameras due to the perspective 
viewing. For method 3 the computed 2D2C-vectors are already computed at the 
world correct position and originate from the same interrogation window of equal 
size and shape, but a sub-pixel interpolation is required during the dewarping, 
which together with the sub-pixel interpolation necessary for the multi-pass 
window deformation scheme leads to added image degradation. Therefore a 
modified method 3 approach is used here where the dewarping and image 
deformation is done at once before each step in the multi-pass iterative scheme. 

For the first computational pass the two frames (t0, t0+dt) of each camera are 
dewarped and evaluated. This already provides vectors at the correct position in the 
world coordinate system. Also the size and shape of the interrogation windows for 
both cameras are the same, which means that the correlation is done on the same 
particles apart from effects due to the non-zero thickness of the light sheet. Then a 
preliminary 3C-reconstruction is done to remove corresponding vectors in the 2C-
vector fields for which the reconstruction error is too large (e.g. larger than 0.5 or 1 
pixel). This method very effectively removes spurious vectors since two false 
vectors with random directions are rarely correlated. At the end of the first pass 
missing vectors are interpolated and the vector field is smoothed slightly for 
numerical stability. 

The resulting vector field is used as a reference for deforming the interrogation 
windows in the next pass. Actually, not each interrogation window is deformed 
individually, but the complete image is deformed at once with half the displacement 
in backward direction assigned to the first image at t0 and the other half in a 
forward direction to the second image at t0+dt. Image deformation requires less 
floating point operations, since e.g. for an overlap of 75% the same region would be 
deformed 16 times using window deformation. Image deformation is combined with 
the dewarping of the original image in one step. Usually after 3 or 4 passes at the 
final interrogation window size the 2D2C-vector fields have converged sufficiently. 
Then the 3C-reconstruction is done which consists of solving a system of 4 linear 
equations with three unknowns (u,v,w). This is done by using the normal equation 
which distributes the error evenly over all three components. Computing from 
(u,v,w) again (u1,v1)- and (u2,v2)-components the deviation from the measured 
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(u1,v1) and (u2,v2) can be calculated (‘reconstruction error’). Usually with a good 
calibration and 2C-vector errors of less than 0.1 pixel, the reconstruction error is 
well below 0.5 pixel. This can be used as an efficient rejection of false random 
vectors which usually produce large reconstruction errors. The complete flow chart 
is shown in Figure 6.4.  The 2D2C-vector fields are separately computed for camera 
1 and 2. A typical multi-pass scheme consists, for example, of one or two passes with 
interrogation window size of 64x64 pixel and 50% overlap followed by 4 passes 
with 32x32 and 75% overlap. After each pass a 2D3C-reconstruction is done for the 
purpose of eliminating 2D2C-vectors with reconstruction errors above some 
threshold (e.g. 1 pixel), but the 2D3C-vector field is not used further. Only at the end 
the reconstructed 2D3C field is taken and validated e.g. by a median filter. 

6.2.3 Experiments 

In section 6.2.3.1 16 different calibrations have been taken and self-calibrated 
on a recording of a flat random pattern plate. A bundle adjustment of the closest 8 
calibrations serves as a reference. The corrected calibrations are compared in 
different ways to assess the different residual errors after self-calibration. In section 
6.2.3.2 a flat random pattern plate has been moved by a translation stage and the 
measured Stereo-PIV displacements are compared to the true displacement. This is 
for calibration and self-calibration done in air as well as in water to verify the 
accuracy of the pinhole model when used with intermediate index of refraction 
changes. In section 6.2.3.3 a real experiment in air has been performed and the 
vector fields before and after correction are computed and analysed.  

6.2.3.1 Experimental results with synthetic images 

16 views of a 3D calibration plate with a size of about 100 x 100 mm are 
recorded at different positions and orientations. The image size is 1280 x 1024 
pixel, and a small aperture with an f-stop of 20 has been used to ensure a large 
depth-of-focus. From each view a camera pinhole mapping function is calculated 
with fixed sx = 1 and k2 = 0. Table 6.2 shows some of the pinhole parameters for 
camera 1.  

A flat plate with a random dot pattern is recorded defining a light sheet 
position. This image is used later for self-calibration. A reference mapping function 
is computed by a bundle adjustment of the 8 calibration views closest to the random 
pattern plate.  Note that the parameter for calibration 1 are almost the same as for 
the reference, since the first of the 8 views for the bundle adjustment is taken as the 
reference coordinate system z=0. 

Table 6.2 shows the average length of the disparity vectors computed by cross-
correlation between the random dot image of camera 1 and camera 2 for all 
calibrations. Even extreme disparities of up to 500 pixel are present, which means 
that only half the calibration plate was visible to both cameras simultaneously.  
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The self-calibration procedure of section 6.2.2. has been applied to the 
reference mapping function. In the following, the other mapping functions are 
compared to the corrected reference function in different ways. 

Table 6.2. Mapping function parameter before correction. 

Calibration f1 

[mm] 

Tz1 

[mm] 

R x1 

[°] 

R y1 

[°] 

R z1 

[°] 

Disparity 

[px] 

Synthetic  

Error in V 
[px] 

image 

False 
vectors 

Reference 60.66 449.4 6.2 29.2 13.5 1.0 0.07 0.0 % 

1 60.03 444.8 6.0 29.8 13.4 1.0 0.07 0.0 % 
2 60.29 443.4 2.1 29.6 6.2 8.2 0.39 6.7 % 
3 60.36 442.9 1.2 29.7 4.2 9.0 0.44 7.1 % 
4 61.23 447.3 2.7 33.6 -0.6 38 2.2 60 % 
5 61.23 446.8 2.1 32.1 -0.6 41 2.2 70 % 
6 60.89 446.6 5.7 29.7 -0.3 49 2.8 74 % 
7 61.57 451.3 4.5 30.5 -0.5 87 3.4 95 % 
8 60.32 435.4 -1,2 30.2 0.0 126 - 100 % 

9 60.88 448.9 21.7 46.2 -1.9 144 - 100 % 

10 60.28 456.3 25.9 32.4 7.8 166 - 100 % 
11 61.44 458.3 16.3 34.7 6.9 178 - 100 % 
12 62.68 465.2 12.6 8.6 0.1 182 - 100 % 
13 61.23 433.0 3.8 33.9 -8.2 263 - 100 % 
14 62.82 447.9 -13.6 30.6 -1.6 298 - 100 % 
15 63.51 444.6 3.0 32.3 -13.6 351 - 100 % 
16 62.11 482.1 7.6 26.0 -2.8 502 - 100 % 

 

A synthetic double-frame random pattern image has been generated based on 
a 2D2C-velocity field of regular vortices with an average gradient of about 10% and 
±5 pixel displacement. Seeding density is high, particle diameter around 2 pixels, 
and no noise is included. The two frames are warped to z=0 using the corrected 
reference mapping function, leading to a 4-frame reference Stereo-PIV image, two 
frames warped with camera 1 mapping function, two with camera 2 function. Since 
all particles are located at z=0, errors due to particles spaced throughout a light 
sheet are avoided. Evaluating this image with the Stereo-PIV procedure using the 
corrected reference mapping function gives back the original 2D3C-vector field with 
a zero out-of-plane w-component.  

The still uncorrected 16 mapping functions are used to compute a Stereo-PIV 
2D3C-vector field from the synthetic 4-frame image in the usual way including final 
vector validation. Final interrogation window size is 32x32 pixels with an overlap of 
75%.  For a disparity of only a few pixels the errors are still quite small and only few 
false vectors occur. Calibration 3 with 9 pixel disparity shows an error of 0.44 pixel 
which is roughly expected from disparity times the velocity gradient. For all larger 
disparities, a meaningful velocity field can not be calculated any more. All vectors 
are eliminated either by the reconstruction error filter, which throws out all vectors 
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with a reconstruction error above 1 pixel, or by the final vector validation using a 
regional median filter.  

 

Table 6.3. Errors after self-calibration. 

Calibration Residual 
disparity 

[px] 

Position 
error    
[px] 

Synthetic image 

error in V 
[px] 

reconstr. 
error [px] 

Reference 0.004 0 0.023 0.008 
1 0.040 0.073 0.024 0.008 
2 0.017 0.076 0.023 0.008 
3 0.036 0.107 0.024 0.008 
4 0.050 0.181 0.025 0.008 
5 0.048 0.153 0.024 0.008 
6 0.043 0.024 0.027 0.008 
7 0.047 0.195 0.026 0.008 
8 0.055 0.406 0.035 0.008 
9 0.074 0.312 0.030 0.009 

10 0.095 0.189 0.031 0.010 
11 0.051 0.544 0.046 0.008 
12 0.101 0.561 0.030 0.010 
13 0.038 1.335 0.087 0.008 
14 0.286 3.275 0.212 0.018 
15 0.103 1.480 0.100 0.010 
16 0.073 0.771 0.052 0.009 

 

In the next step, the mapping functions 1 to 16 are corrected using the self-
calibration procedure on the recorded random pattern image. For the corrected 
mapping functions the average residual disparity is computed again (Table 6.3).  It 
is usually well below 0.1 pixel even for very high initial misalignments. Most of the 
remaining errors are due to standard correlation errors. Only calibrations 10, 12, 
14, and 15 have a higher residual misalignment relative to the reference calibration. 

The corrected mapping functions are compared to the corrected reference 
mapping function first with a direct comparison of the functional form of the 
mapping functions. Using a grid of 10 x 10 image points in the z=0 plane the values 
of the mapping functions are computed and compared to the values of the corrected 
reference mapping function after equalizing the still different coordinate origins, in-
plane rotations and conversion scales from mm to pixel. This positional deviation to 
the reference mapping function is shown in the third column of Table 6.3. For higher 
initial disparities, the final positional errors are also larger, but in most cases still 
acceptable. While the disparity tells if the vectors for camera 1 and camera 2 are 
computed at the same position, which is most important for the errors of the final 
velocity field in regions of strong gradients, the positional errors relate to general 
residual warping of the coordinate system. The vectors are then computed at wrong 
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x/y-position (typ. < 2 pixel) and with wrong spatial derivatives (typ. < 1-3%). Given 
a typical distance between vectors of 8 to 16 pixel a sub-pixel positional error in the 
coordinate system is still acceptable. 

Finally using the corrected mapping functions the 2D3C-Stereo-PIV vector 
fields are computed and compared to the true displacement field. Table 6.3 shows 
the deviation from the true result as well as the average reconstruction error. The 
reconstruction error originates partly from normal correlation errors, secondly due 
to vectors from camera 1 and 2 computed at different positions and lastly due to 
slightly wrong spatial derivatives of the mapping function, as might be the case for 
calibration 14.  

For most cases the reconstruction error is well below 0.02 pixel. The 
differences relative to the true velocity field are therefore mainly due to a residual 
disparity and warping of the in-plane x-y-world coordinate system. The results for 
calibrations 13, 14, and 15 show the limit of the self-calibration procedure for large 
disparities (1/3 of image size). Interestingly calibration 16 is more accurate again. 
Looking at the projection angles it might be due to the fact that this view is far off 
but still almost parallel to the light sheet, while calibrations 13-15 are more tilted 
and covering more depth in the observation volume.  

For all other calibrations, the errors in V are less than 0.04 pixel, usually much 
smaller than what can be expected for real experiments with all other known error 
sources. The value of 0.023 pixel for the reference calibration is mostly due to the 
effect of image degradation due to warping and dewarping of the original synthetic 
particle image. At the same time the results validate the accuracy of the basic Stereo-
PIV correlation and reconstruction algorithms. The multi-pass algorithm with 
simultaneously dewarped and deformed interrogation windows proves to be highly 
accurate. 

The results show the potential of the self-calibration procedure to correct even 
large misalignments between calibration plate and light sheet. A small aperture has 
been used for a large depth-of-focus, and for the calibrations with the largest 
disparities some part of the images is already slightly out-of-focus. This suggests 
that the camera pinhole model is sufficiently accurate as long as images are 
recorded within the depth-of-focus.  

6.2.3.2 Experimental results with translated plate 

A flat target of size 5 x 7 cm with a random dot pattern has been translated in 
the z-direction using a translation stage with an accuracy of about 5 µm. The plate 
has been moved in z-direction by 1 - 5 mm. The calibration has been done using a 
3D-calibration plate recorded at 8 views at arbitrary position which have been 
evaluated by bundle adjustment.  

The experiment has been performed in air as well as in water where the z = 0 
mm plane was about 45 mm deep in water behind a 3 mm glass plate. In Table 6.4 
are shown the main camera pinhole parameter after self-calibration onto the 
random pattern target. In both air and water the small average residual disparity 
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after self-calibration is mainly due to uncertainties in the peak detection of the 
correlation peak. The angle between the cameras is about 45 degrees.  

 

Table 6.4. Mapping function parameter for air and water, both with 8 views and bundle 
adjustment. 

 
initial / 
residual 
disparity 

[pixel] 

x0 / y0 
[pixel] 

cam 1 
cam 2 

sx f 

[mm] 

Tx 

[mm] 

Ty 

[mm] 

Tz 

[mm] 

Rx 

[°] 

Ry 

[°] 

Rz 

[°] 

Air 

 

65 / 0.07     586/552 

  706/548 

0.998 

0.998 

60.8 

60.9 

16.1 

9.2 

1.3 

0.2 

411.7 

435.2 

1.4 

-0.2 

20.3 

-24.3 

2.7 

2.2 

Water 

 

7.9 / 0.16 -1882/560 

4074/491 

0.957 

0.924 

81.0 

83.4 

113.9 

-162.0 

-10.3 

-8.3 

537.6 

570.5 

2.7 

-1.7 

27.0 

-34.1 

4.4 

4.2 

 

For water, the calculated pinhole parameters are quite different. The principal 
point lies way outside the chip and the skew-factor is much less than 1 as would be 
expected for square pixels. This is due to the distortions of the air-glass-water 
interface which can only be fitted by the camera pinhole model by unphysical values 
for sx, f and the principal point. Nevertheless, the calibration as a whole seems to be 
very accurate which is indicated by the fact that for the bundle adjustment in water 
all calibration points in space were fitted with an accuracy better than 0.1 pixel. 

 

Table 6.5. Comparison of measured displacements with true ones. 

Translation 
stage moved by: 

dz = 1 mm dz = 2 mm dz = 3 mm dz = 4 mm dz = 5 mm 

Air 

triangulation 

0.999 mm 2.002 mm 2.996 mm 4.002 mm 5.001 mm 

Air 

Stereo-PIV 

0.995 ± 0.001 mm 

20.22 ± 0.03 pixel 

1.992 ± 0.003 mm 

40.46 ± 0.06 pixel 

2.973 ± 0.003 mm 

60.38 ± 0.05 pixel 

3.962 ± 0.004 mm 

80.47 ± 0.08 pixel 

4.941 ± 0.006 mm 

100.35 ± 0.12 pixel 

Water 

triangulation 

1.001 mm 2.005 mm 2.995 mm 3.998 mm 4.992 mm 

Water 

Stereo-PIV 

0.997 ± 0.004 mm 

20.59 ± 0.06 pixel 

1.995 ± 0.006 mm 

41.18 ± 0.13 pixel 

2.977 ± 0.007 mm 

61.45 ± 0.15 pixel 

3.969 ± 0.007 mm 

81.92 ± 0.15 pixel 

4.949 ± 0.009 mm 

102.15 ± 0.19 pixel 

 

In Table 6.5 are shown the results of the measured displacements. The second 
row shows for air the displacements using a triangulation and plane-fit method as in 
the standard self-calibration procedure. First the disparities of the images recorded 
at e.g. position z=1 mm are computed relative to the corrected mapping function at 
z=0, and using triangulation the position of points on the z=1 mm plane are 
determined, and a plane is fitted through those points. The measured position of the 
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z=1-5 mm planes agree with the translation stage movement within 4 µm which 
proves a high accuracy of the mapping function throughout the volume. This agrees 
well with the measurement errors of 2-4 µm reported by Fournel et.al. (2004) for 
the same type of experiment. 

The next row shows the Stereo-PIV evaluation in air using the corrected 8-
view bundle calibration. The vector computation was performed with multi-pass 
iterations and deformed interrogation windows of size 64x64 pixels. The measured 
displacements in air agree within the uncertainties of the translation stage for 1 and 
2 mm displacements. For larger displacements, there seems to be a systematic bias. 
Given the good agreement of the triangulation and plane fit method using the same 
mapping function this error is probably due to the fact that the 3C-reconstruction 
uses mapping function derivatives calculated only at the z=0 plane. These 
derivatives change over the quite large distance of 5 mm (equal to 100 pixels). A 
better way would be to compute the 3C-reconstruction using the more accurate 
triangulation method. Further investigations are needed to look at this effect in 
detail. For practical purposes, a bias of 0.06 mm = 1.2 pixel at dz = 5 mm = 100 pixel 
would lead to a bias of 0.06 pixel for typical displacements of 5 pixel which is 
commonly less than due to all other error sources. 

The rms in the other u- and v-components remain always around 0.03 pixel. 
While the average v-displacement is zero everywhere, the u-components show a 
bias of 0.36 pixel at dz = 1 mm, increasing linearly with larger displacements. Closer 
inspection revealed that the axis of the translation stage was not exactly 
perpendicular to the random pattern plate resulting in a slight x-movement.  

The experiment has also been repeated with a translation in x-direction. Again, 
the measured displacements agree well with the settings from the translation stage 
within the uncertainties of the translation stage. 

The results are similar in water. For up to 2 mm (40 pixel) the accuracy is high 
with some bias effect for larger displacements. The rms-values are larger than in air 
due to a residual incorrect warping of the coordinate system which e.g. for dz = 
1mm shows up as a gradient across the image in the displacement of the order of 
0.03 pixel. The triangulation and plane fit recovers accurately the movement of the 
plate by the translation stage. This proves that the camera pinhole model and the 
self-calibration method remains sufficiently accurate even with strong distortions 
from refractive index changes. 

6.2.3.3 Experimental results with particle images 

An experiment has been performed in air with water droplets of a few micron 
size. Two jets of air are passing upward with higher speed between two cylinders of 
10 mm diameter generating high shear regions. The field-of-view is about 85 x 70 
mm at a distance of 500 mm. The camera CCD array is 1280 x 1024 pixels. The angle 
between the cameras is about 50 degrees. Three calibrations 1-3 are taken using a 
3D calibration plate. The average disparity relative to the recorded particle images 
is 44, 82, and 252 pixels, respectively. The disparity map for calibration 2 is shown 
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in Figure 6.5c which corresponds to a rotational misalignment around the y-axis of 
about 13 degrees together with a z-displacement of around 5 mm. 

 
Figure 6.5. Particle image viewed by camera 1(a) and 2(b) dewarped with calibration 2. The 
white rectangle defines the high shear area evaluated. Bottom (c): corresponding disparity 
map typical of a rotation around the y-axis. 

Vector fields are computed for the high shear region (Figure 6.5a). The final 
interrogation window size is 32x32 pixel with 75% overlap. The average velocity 
gradient is 3% with maximum values around 20% close to the jets. Without self-
calibration correction, large displacement errors are visible and many vectors are 
removed due to reconstruction errors larger than 1 pixel as shown in Figure 6.6a for 
calibration 1. For calibration 2 and 3 no meaningful vector fields can be calculated.  
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a  b   

c   d   

e  
 

Figure 6.6. Vector field for uncorrected calibration (a), b-d: velocity fields after self-
calibration for calibration 1 to 3. e: difference between vector field of calibration 1 and 3. The 
vectors in e are enlarged 50x. Field-of-view of about 600x500 pixel. Background color = 
vorticity. 

Self-calibration has been performed using interrogation window sizes of 128 x 
128 pixel with an overlap of 50% and a summation of 16 correlation maps, which 
provided correlation peak positions with an accuracy better than 0.1 pixel as can be 
deduced from the laser plane fit error which is less than 0.1 pixel for all three 
mapping functions. After equalizing the coordinate origin, the direction of the x-axis, 
and the global scale from pixel to mm between the three corrected mapping 
functions, the average difference in the mapped x/y-position between the three 
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corrected mappings is less than 0.4 pixel as calculated directly from the functional 
form of the mapping functions. 

With self-calibration correction, the vector fields of the three calibrations are 
almost identical (Figure 6.6b-d with background color = vorticity). The rms vector 
difference between calibration 1 and 3 in the high shear region is only 0.055 pixel 
(Figure 6.6e). Note that the displayed vectors are enlarged by a factor of 50.  

6.2.4 Self-calibration into closed measurement volumes 

In many applications, it is difficult if not impossible to perform an accurate 
calibration inside the measurement volume. Here it is necessary to calibrate outside 
and somehow compute a corrected mapping function for the measurement plane 
inside the volume using the disparity map and an appropriate correction scheme. 
Different strategies are investigated in section 6.2.4.1 and 6.2.4.2 together with 
experimental verification. 

6.2.4.1 Calibration outside with similar optical setup 

It is shown in section 6.2.3.2 that the camera pinhole model without 
modifications can handle the refractive index change with sufficient accuracy. A 
straight forward strategy is then to perform the calibration outside under 
conditions as similar to the real measurement condition as possible. As shown in 
Figure 6.7 (left, middle) this can be done by first focussing the cameras onto the 
light sheet plane, then sufficiently retracting both cameras with a translation stage 
such that a small water basin can be placed in front of the water channel, and 
performing a calibration inside the water basin in the standard way with a single or 
multiple views of a 2D- or 3D-calibration plate. It is important that the distance 
between the cameras and the front side of the water basin is the same as it is 
relative to the front side of the water channel in the real measurement position (L in 
Figure 6.7). Finally, the cameras are moved back to the original position and the real 
experiment is performed and the standard self-calibration procedure can be applied 
to correct the mapping function onto the light sheet. With an accurate mechanical 
setup the accuracy of this approach is the same as if both the calibration and the 
recording were done inside the measurement volume. 

A scan in z-direction through the measurement volume can be done by moving 
the laser light sheet to a new z-position and computing the self-calibration 
separately for each z-position. If the travel distance is larger than the depth-of-focus 
it is necessary to move the cameras and the light sheet simultaneously. In this case it 
is required to perform a calibration outside in the water basin for each z-scan 
position separately by adjusting the distance between cameras and front side of the 
water basin accordingly. 
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Figure 6.7. Left: recording position. Middle: calibration procedure outside in similar optical 
setup. Right: calibration outside in air and self-calibration onto recording using 3-media 
model.  

Table 6.6. Measured displacements for calibration in air and self-calibration to recording in 
water. Displacements given in mm, 1mm = 21.1 pixel. Distance between glass plate and light 
sheet dZg-l is 40 mm. 

Translation stage moved by: dz = 1 mm dz = 2 mm dz = 3 mm dz = 4 mm dz = 5 mm 

Standard  Triangulation 0.737 1.491 2.228 2.978 3.720 

Model Stereo-PIV 0.743 ± 
0.004 

1.486 ± 
0.003 

2.217 ± 
0.006  

2.957 ± 
0.007  

3.688 ± 
0.006  

3-Media 
Model 

Triangulation 

dZg-l = 40 

0.996 2.005 3.003 4.014 5.016 

 Stereo-PIV 

dZg-l = 40 

1.006 ± 
0.004  

2.012 ± 
0.004  

3.001 ± 
0.006  

4.001 ± 
0.006  

4.989 ± 
0.015  

 Stereo-PIV 

dZg-l = 30 

1.006 ± 
0.003  

2.009 ± 
0.004  

2.996 ± 
0.005  

3.994 ± 
0.006  

4.981 ± 
0.007  

 Stereo-PIV 

dZg-l = 20 

1.003 ± 
0.003  

2.007 ± 
0.004  

2.994 ± 
0.005  

3.991 ± 
0.006  

4.976 ± 
0.007  

 Stereo-PIV 

dZg-l = 0 

0.972 ± 
0.003  

1.944 ± 
0.005  

2.899 ± 
0.006  

3.865 ± 
0.007  

4.819 ± 
0.009  

 Stereo-PIV 

dZg-l = 40, 

 x = 10° 

1.021 ± 
0.007 

 

2.041 ± 
0.013  

3.045 ± 
0.018  

4.059 ± 
0.025  

5.061 ± 
0.032  

 Stereo-PIV 

dZg-l = 40,  

y = 10° 

1.000 ± 
0.001 

 

2.001 ± 
0.003  

2.995 ± 
0.005  

3.978 ± 
0.006  

4.960 ± 
0.008  
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6.2.4.2 Calibration outside in air 

Of course, it would easier to perform the calibration outside in air without a 
water basin and to self-calibrate onto the recorded light sheet in water (Figure 6.7 
right). The results are shown in Table 6.6. 

 This approach leads to large errors for the standard pinhole model. The z-
displacement is shortened by about the index-of-refraction of water. During self-
calibration it is not possible to refit all parameters of the pinhole model to the 
distorted water case. Especially the internal camera parameter, like sx and f, are not 
changed during the standard self-calibration procedure. In principle, the disparity 
map, as defined by the 3x3 fundamental matrix equation, has 8 degrees of freedom 
and only the three plane parameter need to be refitted by the standard self-
calibration method. Hence one has the extra degrees of freedom to fit parameters 
like sx or the relative camera orientation. But there are too many parameters to be 
fitted, so one must be restricted to a subset given by the particular experimental 
setup.  

A better approach is to modify the camera pinhole model to accommodate the 
air-glass-water interface. This method allows an accurate physically motivated 
model. A three media model (e.g. air-glass-water) has been implemented according 
to Maas (1992). Using Snell’s law and an iterative approach the bending of light rays 
through glass and water is calculated. The thickness and refractive index of each 
medium can be specified. The thickness dZg-l  of the last medium (water) is defined 
by the distance between the light sheet plane and the previous medium (glass). 
Currently, this value must still be measured together with the two angles between 
the light sheet and the glass plate. The distance between light sheet and glass plate 
can be measured, for example, by focussing on the light sheet with large aperture 
(small depth of focus) and then traversing the cameras backwards until a target 
mounted on the front side of the water channel is in focus.  

The initial calibration in air is done without the 3-media model which is 
switched on for self-calibration (triangulation step) and the subsequent Stereo-PIV 
vector computation.  

The results are shown in Table 6.6. With the 3-media model the movement of 
the random pattern plate is accurately computed both by the triangulation method 
and the Stereo-PIV evaluation. For larger displacements, again some deviations are 
visible showing the limits for the 3-media model, both for the triangulation and the 
Stereo-PIV method. This is not relevant for typical PIV experiments since dz=5 mm 
corresponds to an extremely large displacement of 100 pixel. The only drawback is 
that one has to know the distance dZg-l between the light sheet and the glass plate. In 
the current experiment dZg-l is 40 mm which was measured conventionally. Ideally 
one could also fit this from the disparity map, but initial tests indicate that the fit 
algorithm then becomes unstable and is not able to fit the particle plane and the 
glass plate at the same time. Further work is needed to explore this possibility. 

In Table 6.6 are also shown the results of the self-calibration procedure with 
assumed wrong distances dZg-l to determine the sensitivity of inaccurate 
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measurements of the position of the laser sheet with respect to the glass plate. The 
computed Stereo-PIV displacements remain accurate within 1% for offsets of dZg-l 
up to 20 mm. The important feature of the 3-media model is that the z-derivatives of 
the mapping functions which are off by a factor given by the index-of-refraction of 
water are again accurately calculated. Any remaining in-plane x-disparities are 
compensated by the self-calibration procedure. Larger errors are visible for wrongly 
measured tilts of the light sheet. For an assumed tilt around the y-axis of 10 degrees 
dz and dy (=0) are accurate within 2% but there is a systematic error in dx of 3%. 
For a tilt around the x-axis there is a systematic error in dy of 8% and a residual y-
disparities of a few pixel, which can not be compensated by self-calibration. Of 
course, the 3-media model is also of advantage when calibrating in-situ in water. It 
has been verified that the camera pinhole parameter return to physically 
meaningful values in comparison to the strange ones as in Table 6.4. 

6.2.5 Laser Light Sheet Thickness and Relative Position 

 
As an added benefit of the correction scheme the thickness and relative 

position of the two laser sheets of the double-pulse PIV laser can be deduced from 
the correlation maps. The correlation peaks are smeared out due to particles 
contributing throughout the light sheet as shown in Figure 6.8. Consequently, the 
light sheet thickness can be computed by simple geometric considerations from the 
correlation peak width. When the cross-correlation is done on dewarped images the 
correlation peak width is given by: 

wc = d  ( 1/tan(1) + 1/tan(2) ) (6.9) 

with d = light sheet thickness and 1 and 2 are the viewing angle of camera 1 
and 2 relative to the x-axis in the case when the cameras are placed horizontally 
along the x-axis. This is assuming point particles. For real particles the correlation 
peak is folded with the particle point spread function which could be calculated by 
auto-correlation. The width of the correlation peak in units of pixel is a function of 
the ratio of the thickness of the light sheet in relation to the distance between 
camera and light sheet. For a typical Stereo-PIV experiment with measured xy-
displacements of 5 to 10 pixel one needs a light sheet thickness at least twice as 
thick to measure z-components of the same order. Therefore, typical correlation 
peak widths are of the order of 10-20 pixels. 

If this analysis is done for both laser light sheets separately, the relative 
position of the two planes can be calculated by comparing the position of the two 
correlation peaks/streaks to determine the overlap of the two light sheets and the 
flatness of each sheet. Another method often used for determining the overlap of the 
two laser sheet – besides visual inspection - is by setting the dt between the two 
laser shots as short as possible. Then the two images of each camera show almost 
the same particle pattern (if the light sheets are well aligned) and a cross correlation 
gives a high correlation coefficient indicative of good light sheet overlap, decreasing 
strongly for reduced overlap between the two light sheets. The above method based 
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on cross correlation of camera 1 and 2 is computationally more intensive, but offers 
the advantage of showing the real position in space of each laser beam with a clear 
indication which screw in the laser head to be adjusted. 

 

 
 

Figure 6.8. Particles throughout the light sheet contribute to the correlation peak. From the 
peak width the light sheet thickness can be computed. 

6.2.6 Summary 

A self-calibration correction scheme has been developed to compensate for 
misalignment between the calibration plate and the light sheet. After fitting a 
camera pinhole model to a 3D calibration plate a disparity vector map is calculated 
by cross-correlating the dewarped particle images of camera 1 and 2 taken at the 
same time. For higher stability and accuracy, the correlation maps of e.g. 5-50 image 

pairs are summed up. The disparity vectors are used to calculate world points on the real 

measurement plane by triangulation. A plane is fitted through these points.  

Finally, the mapping functions are transformed to the new plane. It is shown that 

this calibration scheme provides highly accurate mapping functions with final 

displacement errors smaller than is expected from the other error sources like the basic 

PIV correlation algorithm for real images. This has been confirmed for different 

experimental setups. It has been shown that with such a correction the z=0 plane of the 

mapping function lies within 0.1 pixel of the middle of the light sheet. 

The self-calibration scheme is advisable in any case to check the calibration and to 

improve the accuracy. Since it works well even for very large misalignments, it 

eliminates the need for an alignment of the calibration plate with the light sheet which is 

often difficult and time-consuming. 

A modified 3-media camera pinhole model has been implemented to account for 

index-of-refraction changes along the optical path. It is then possible to calibrate outside 

e.g. a closed water channel and self-calibrate onto the recordings inside the channel. This 
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method allows Stereo-PIV measurements inside closed measurement volumes not 

previously possible. 

As a side benefit the correlation maps can be analysed to yield the position and 

thickness of the two laser sheets and therefore the degree of overlap and flatness of each 

sheet. 

6.3 Current Status of Stereo-PIV Self-Calibration 

The Stereo-PIV self-calibration procedure has been successfully and widely 
used for more than a decade, in particular due to its inclusion (with slight 
modifications) in popular commercial PIV software packages like Davis. It is based 
on correcting the mapping function itself by coordinate transformation once before 
starting PIV processing. No further modification of the Stereo-PIV vector 
computation and 3C-reconstruction procedure is needed. This is considered easier 
and more elegant than implementing rather complicated modifications to correct 
for vector location differences, size of interrogation window / magnification and 
tilted vectors (Willert 1997; Coudert and Schon 2001; Scarano et al. 2005).  

The need for Stereo-PIV misalignment correction has been confirmed by 
Giordano and Astarita (2008) observing strong modulation and dephasing of 
displacement wavelengths without such a correction. 

For self-calibration within the Davis-software, an extension to more than two 
cameras has been included to facilitate the alignment of thick-sheets / thin-volumes 
processed by multi-camera Tomographic PIV/PTV. Also, while disparities along the 
epipolar line (which is e.g. the x-axis when both cameras are aligned along the x-
axis) indicate the 3D-position of the light sheet, remaining disparities perpendicular 
to the epipolar line relate to calibration mapping function errors, which can easily 
be removed by changing the mapping function parameter. Errors in the mapping 
function along the epipolar line are swallowed by virtual z-displacements of the 
light sheet. Light sheet misalignment correction together with correction of 
disparities perpendicular to the epipolar line ensure that Stereo-PIV can process 
vectors at the correct locations. 

Stereo-PIV self-calibration works less well, when the light sheet becomes 
thicker, because the correlation peaks to be detected are actually extended streaks 
with a length proportional to the thickness of the light sheet. At the same time, the 
background correlation level increases as well. A larger number of images is needed 
for summation into sufficiently smooth correlation maps, and even after that, 
depending on laser profile quality, the light sheet might exhibit two distinct peaks 
along the correlation streak. Or the position of or the highest correlation value 
changes from front to back of the streak e.g. along the x-axis introducing a tilt in the 
coordinate system. A possible improvement could be the measurement of the 
center-of-mass of the correlation streak instead of the peak, which is somewhat 
more complicated. 

Furthermore, when applying Stereo-PIV self-calibration, a spatial offset in the 
coordinate system might occur (Beresh and Smith 2014) since the newly computed 
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coordinate origin and in-plane rotation around the z-axis is subject to free choice. A 
xy-coordinate system defined in the original calibration is independent from the 
light sheet plane located in space at a different location. The new coordinate origin 
can be defined in different ways relative to the old one: nearest point on plane, along 
z-axis, or e.g. along viewing direction of one camera. The same applies to the x- and 
y-axis direction. A sensible choice would be e.g. to keep the direction of the x-axis 
similar. Nevertheless, if an accurate coordinate system is required, it either requires 
placing the calibration plate initially exactly along the light sheet plane and at the 
correct xy-position, or, if possible, realigning the coordinate system after self-
calibration using visible markers in the recorded images. 

Recently, Beresh et al. (2016) investigated the performance of Stereo-PIV self-
calibration in more detail. While generally confirming the usefulness of the 
technique, they noticed complications with thicker light sheets as well as larger 
camera angles, small particle image sizes and high seeding density to gain a readily 
detectable smooth correlation streak/peak. Especially in crossflow setups requiring 
thicker light sheets, the self-calibration might converge to different final mapping 
functions depending on the self-calibration settings. The authors found that image 
preprocessing with background subtraction and intensity normalization provided 
the best results. 

Some work has been done to eliminate the need of (self-)calibration for special 
setups. Fouras et al. (2008) propose to use a third camera looking perpendicular to 
the light sheet defining an accurate coordinate system and at the same time 
improving the Stereo-PIV accuracy. Grizzi et al. (2010) utilize a uniform reference 
flow to correct for misalignments and possible calibration plate dot position errors, 
which is particularly useful for underwater towing tank applications. Schosser et al. 
(2016) use a cw-laser and record the reflections at different locations to eliminate 
the need for a calibration plate all together, in particular, for cases where it is 
difficult to place a calibration plate inside the measurement volume. 

6.4 Volume Self-Calibration 

6.4.1 Introduction 

Volume calibration provides a mapping function M(X,Y,Z) from space to 
camera pixel coordinates (x,y): 

(xi,yi) = Mi(X,Y,Z)  (6.10) 

for all cameras i.  

For 3D-PTV and especially for tomographic PIV with extended volumes errors 
relating to inaccurate mapping functions are highly relevant. The tomographic 
reconstruction step requires that each voxel position in space is mapped to a camera 
pixel position with an error less than about 0.3-0.4 pixel (Elsinga et al. 2006), 
preferably less than 0.1 pixel.   
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Back in 2004/05, when Tomographic PIV was developed, it soon became 
obvious that something has to be done about the calibration accuracy. Luckily, the 
first experiments by Elsinga et al. to confirm the validity of the Tomographic PIV 
technique were done with a very sturdy mechanical setup with high calibration 
accuracy. Processing data from subsequent experiments turned out to be less 
accurate, where particle images from the 4 cameras dewarped to a certain z-plane 
showed that the line of sights of the four cameras did not intersect in one point, 
deviating by 1 pixel and more. Such a check was quite tedious as one has to find first 
some prominent particle (maybe in sparsely seeded flows) and guess some rough z-
position, and to produce a movie of the sum of dewarped images over a range of z-
positions. With a perfect calibration, the 3 or 4 particle images would overlap 
perfectly at the true z-position, and move apart for higher or lower z-positions. 
Calibration errors become visible by the particle images (at least one) just missing 
each other at the best z location. 

 

 

Figure 6.9. Residual triangulation disparities di(X,Y,Z) = (xi,yi) – (xi’,yi’) due to calibration 
errors. 

At that time, a far from optimal remedy to such calibration errors was to 
smooth the images by some 3x3 or 5x5 Gaussian filter so that at least part of the 
particle image of one camera would overlap in the volume with the particle images 
from the other cameras, so that reconstruction would provide at least some correct 
voxel intensities for the subsequent 3D-cross-correlation to work. Obviously, it only 
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worked for small calibration errors, the degree of ghost particles/intensities was 
very high and the velocity field was quite noisy. 

Therefore, a volumetric self-calibration technique was urgently needed, which 
is capable of correcting the mapping function throughout the volume. Such a 
technique is described in next section, followed by an experimental verification 
using tomographic PIV showing significant improvement of the vector field quality. 

6.4.2 Method  

The basic principle of correcting mapping function errors in a volume using the 
actual recorded particle images is summarized first, followed by a detailed 
explanation of each step.  

The first step is localizing 2D-particle positions in the image of each camera 
and finding corresponding 3D particle positions by matching and triangulation 
which is essentially the first part of the 3D-PTV algorithm as shown in Figure 6.9 for 
3 cameras. The procedure is illustrated in the following for 4 cameras, but can be 
easily extended to other number of cameras, even including 2 (with less accuracy). 

The 2D-particle positions (xi,yi) of camera i of a single particle in space are 
triangulated into a best fit world position (X,Y,Z). The optimization criterion is 
usually done by minimizing the sum of the distances |(xi’,yi’) - (xi,yi)| where (xi’,yi’) is 
the projection of (X,Y,Z) back to image of camera i (Hartley and Sturm 1994). For a 
perfect mapping function the line of sights of all cameras intersect in a single world 
point resulting in a zero disparity di of 

di = (dix, diy) =  (xi’,yi’) - (xi,yi)  (6.11) 

Collecting disparities di for all particles throughout the volume is then used to 
correct the mapping functions M to M’: 

Mi
’(X,Y,Z) = Mi(X,Y,Z) – di(X,Y,Z) (6.12) 

with an appropriate validation and interpolation of the sparse disparities di for 
each particle into a continuous field or a similar method described below in more 
detail. 

This basic principle works well with sparsely seeded 3D-PTV images with e.g. 
1000 to 5000 particles in each image, where the matching of corresponding particle 
images is done with a high confidence level (>95%) (Maas 1996). But it does not 
work without further refinement for densely seeded images from tomographic PIV. 
Here the particle seeding density is much higher with typically >50,000 particles in 
each image equivalent to particle densities per pixel in the images of up to 0.1 ppp 
similar to standard planar PIV. Ideally one would record first a number of images 
with less seeding density, but this is often inconvenient or impossible. 

Figure 6.10 shows the procedure to match particle images corresponding to 
the same particle in space. For each particle in the image of camera 1 one finds 

particles located within a stripe defined by the uncertainty max along the length Lz 

which is the projection of the line of sight of camera 1 through the illuminated 
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volume from z1 to z2 viewed by camera 2 (‘epipolar line’). For the combination of 
particle images for camera 1 and 2 a 3D particle position (X,Y,Z) is computed by 
triangulation. Then for each particle in the stripe it is checked if in the image of 

camera 3 and 4 there is a corresponding particle within ±max around the projection 
of (X,Y,Z) onto camera 3 and 4 image.  

The allowed uncertainty max must be larger than the largest expected 
calibration error. For 3D-PTV with low seeding density and 4 cameras one rarely 
detects any incorrect ghost particles. The ratio R of ghost particles to true particles 

is a strong function of the seeding density nppp and allowed error max: 

R = 32 • Lz • max
5 • nppp

3  (6.13)  

 

Figure 6.10. Particle triangulation procedure. 

Typical conditions with e.g. Lz = 200 pixel, nppp = 0.05 ppp and allowed error 

max = 4 pixel lead to R = 819 times more ghost particles than true ones. Obviously, it 
is then very difficult to identify the true particles and their disparity to be used for 
the mapping function correction. In addition, given such high densities the 
probability of overlapping particles is high which leads to erroneous 2D and 3D 
particle positions and noisy disparities.  

The solution is to apply an appropriate clustering technique and using not all 
particles but only the brightest e.g. 10%.  Immediately the number of ghost particles 
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is reduced by nearly several orders of magnitude with the added advantage that 
even in case of overlapping particles the bright particles are much less influenced by 
another overlapping weak particle. Usually image preprocessing including global 
and local intensity renormalization is applied to the 4 camera images to subtract 
background intensities and to correct particle intensity differences due to e.g. 
forward-backward laser scattering differences. A single threshold for all camera 
images can then be used so that the group of particles above a certain threshold is 
about the same in all camera images. 

The complete self-calibration procedure can be divided into the following steps: 

 
a. Measuring 2D particle positions in all camera images. 
b. Determining possible 3D particle positions by triangulation. 
c. Subdividing the complete illuminated volume into nx  ny  nz sub-volumes. 
d. Plotting the disparities of all particles in a sub-volume as a 2D disparity map. 
e. For each sub-volume and all cameras, summing of disparity maps over many 

recordings to get better statistics. 
f. For each disparity map detecting highest disparity peak which is the most 

probable disparity vector di(X,Y,Z). 
g. Validating and optionally smoothing of the 3D2C disparity vector field di. 
h. Correcting mapping functions Mi according to eqn. (6.12) for all cameras i. 
i. Repeating the complete procedure as a check and for further improvement. 

 
Step a: As described above a suitable threshold is selected to only use the brightest 
e.g. 10% of all 2D particle images. Particle fitting itself is done in a standard way 
with a 5x5 2D Gauss fit, reduced to a 3x3 Gauss fit, if neighboring particles gets too 
close, i.e. if an outer rim pixel is brighter than the inner 3x3 core, falling back to a 
dual x- and y-1D-Gauss fit which always work. For isolated particles, the position 
accuracy is typically below 0.1 pixel depending on optical conditions and particle 
size etc. 

Step b: The triangulation procedure computes all possible particles in space with a 

triangulation uncertainty di (eqn. (6.11)) smaller than max as shown in Figure 6.10. 

Step c: The complete illuminated volume is subdivided into nx  ny  nz sub-volumes 
(e.g. 5x5x5) in order to collect sufficient 3D-particles in each sub-volume.  

Step d: For each sub-volume and all 3D particles within the sub-volume a small 2D 
Gauss blob is plotted at the disparity position (dix, diy) in a square of e.g. 50x50 

pixels corresponding to the allowed maximum error ±max. For each camera i a 
separate disparity map is generated.  

The computation of the disparity di can be done in slightly different ways. The 
first step is always to use the particle positions (xi,yi) in the images of camera i to 
compute a best-fit world position (X,Y,Z) by triangulation (Hartley and Sturm 1994) 
as in step b together with the residual triangulation error di as the difference 
between (xi’,yi’) = Mi(X,Y,Z) and (xi,yi) (eqn. (6.11)). One has an extra degree of 
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freedom which allows one to use one camera as a reference assuming that the 
mapping function for this camera is perfect thus correcting only the other mapping 
functions. This is done by taking Z from the original triangulation and computing an 
Xref and Yref by inverting the mapping function for the reference camera: 

(Xref,Yref) = Mref
-1(xref,yref,Z)  (6.14) 

and using Xref and Yref for computing (xi’,yi’) for the other cameras: 

(xi
‘,yi

‘)  = Mi(Xref,Yref,Z)  (6.15) 

which is then used in eqn. (6.12). Of course, for the reference camera the disparity is 
zero. Whether one should use a reference camera deserves further investigation. 
Tomographic experiments so far have been mostly indifferent, with a few working 
better with one or the other method. 

 

 

Figure 6.11. Disparity map for a single sub-volume. 

Having collected possible 3D particles in space, one now needs to separate 
disparities of true accurate 2D/3D particle positions from ghost particles and 
inaccurate ones due to overlapping particles. There are many suitable clustering 
techniques available. The one used here is based on displaying the disparities for 
each sub-volume in a 2D disparity map as a histogram with each measurement point 
plotted as a small 2D Gauss blob. For example, the disparity map might be of size of 

e.g. ±30 pixel corresponding to a maximum allowed disparity max of ±3 pixel,  and 
each disparity di is plotted at position (dix, diy)  as a 2D Gauss blob with a constant 
width of 2 pixel (0.2 pixel in units of disparity error).  

The width of the Gauss curves provides sub-pixel accuracy for the position of 
the highest disparity peak (step f) similar to correlation peaks in standard PIV. It 
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should be made larger in case of few detected particles. The height of the Gauss 
curve is set to 1 for all particles. Alternatively, one could use the particle intensity of 
the 2D-peak finder to account for the light intensity variations across the volume. 
Such a display of the disparity allows a good visual inspection of the data quality. 
This is shown in Figure 6.11 for a real tomographic PIV experiment. One can guess 
that the true disparity peak is at the top-right, but there are not yet enough particles 
for good statistics. 

Step e: Disparity maps from multiple recordings are summed for better statistics. 
Most often a single image does not contain sufficient particles to add-up to a sharp 
unfragmented disparity peak, especially when choosing a large number of sub-
volumes. Figure 6.12 shows the emerging disparity peak when adding disparity 
maps from up to 16 images. The final outcome is one disparity map for each sub-
volume in each z-plane for all cameras. Figure 6.13 shows the disparity maps for a 
single camera for a series of four z-planes on one side of the illuminated volume 
spaced 1 mm apart. The off-center disparity peaks in the fully illuminated bottom z-
plane correspond to a calibration error of up to 2 pixel. 

 

   

 
Figure 6.12. Summing disparity maps over 1 to 16 recordings. Color scaling is always from 
minimum to maximum intensity. 

Step f: The sub-pixel disparity peak location is determined e.g. by a 2D or dual 1D-
Gauss fit and corresponds to the most likely disparity vector di. The disparity peak 
width is a good indication of the accuracy of the 2D peak finder. For the experiment 
in Figure 6.12 it is only slightly larger than the selected Gauss width of 0.2 pixel, 
suggesting that the 2D peak finder accuracy is around 0.1 pixel. In rare cases it has 
been observed that the disparity peak is smeared due to error gradients within a 
single (large) sub-volume. Usually the calibration errors are highly uniform across 
the complete volume. 
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Step g: The outcome is a 3D2C-disparity vector field for each camera, one vector for 
each sub-volume. This vector field is validated using a three-dimensional universal 
outlier median filter (Westerweel and Scarano 2005) over a region of e.g. 3x3x3 or 
5x5x5 vectors. One can store secondary disparity peaks in step f for possible 
selection by the median filter in case the highest peak is eliminated. If the selected 
volume is larger e.g. in z-direction than the actual illumination, then complete z-
planes of sub-volumes might show random outlier vectors. 

The median filter with a kernel of 5x5x5 is robust enough to throw out even 
complete z-planes of random vectors. Note that a 3D median filter is considerably 
more robust than a 2D filter due to the increased number of neighbour vectors 
within some spatial domain. Most often it is indicated to apply some additional 
3x3x3 vector smoothing to reduce the error inherent in the whole process (Figure 
6.14). The true disparity field usually varies little across the image, so it is possible 
to smooth the estimated disparity field heavily to prevent errors propagating into 
an erroneous new mapping function. 

Choosing an initial volume larger than the illuminated volume is a good method to 
actually measure the size of the illuminated volume or, respectively, the common 
area viewed by all cameras. Figure 6.13 shows the disparity maps for consecutive z-
planes on one side of the volume indicating at what z-plane the illumination starts. 
The volume is also slightly tilted with respect to the coordinate system as evidence 
by the left to right decrease in the disparity peak visibility.   

Step h: The mapping functions Mi are corrected for each camera separately 
according to eqn. (6.12). Since the disparity vector fields are given only on grid 
positions defined by the center of possibly very few sub-volumes one needs to 
interpolate the vector field to intermediate positions. We choose to calculate new 
mapping functions M’ on the z-planes defined by the sub-volumes. For each z-plane 
an array of 20x20 points is taken for which the difference between the original 
mapping function and the disparity field is computed and a new M’ is fitted using 
third-order polynomial functions in x and y (similar to Soloff et al. 1997).  

Step i: The sequence of steps a to h can be repeated after the first self-calibration to 
check whether the disparity peaks are finally positioned at the center position (0,0). 

One can choose in subsequent iterations a smaller maximum allowed disparity max 
and a lower threshold for more true particles and at the same time less ghost 
particles. Usually two or three iterations are sufficient to reduce the mapping 
function errors down to below 0.1 pixel.  
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Figure 6.13. Disparity maps for decreasing depth z from top (not illuminated) to bottom (fully 
illuminated). Sub-volume size in xyz is about 8x8x1 mm. 
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At the same time the number of sub-volumes and the selected volume can be 
adjusted. Often it is advantageous to start with e.g. 2x2x2 sub-volumes to first 
correct roughly the mapping functions and use finer divisions (e.g. 10x10x10) later 
for a detailed local analysis of the 3D calibration errors. 

6.4.3 Application to Tomographic PIV Experiments 

This procedure is tested for a tomographic PIV experiment in water observing a 

transitional wake behind a finite length, circular cylinder with three-dimensional 
instabilities at Re = 540 (Michaelis et al. 2006) with a volume of 73 x 46 x 16 mm and 

a final 3D3C vector field with 141 x 89 x 29 vectors. It turns out that the initial mapping 

function had errors of up to 2-3 pixels close to the cylinder. After self-calibration, 
the errors are reduced to below 0.1 to 0.2 pixel. 

The volume self-calibration procedure improves significantly the contrast of 
the reconstructed volume and the quality of the vector field in terms of higher 
correlation values and improved S/N ratios. Shown in Figure 6.15 is the raw vector 
field without any vector validation (top). Self-calibration eliminates most outliers 
(bottom). The signal-to-noise ratio of the (3D) vector correlation maps is almost twice 

as large as before. Figure 6.16 shows the complete volume vector field before and after 

the calibration procedure after vector post-processing.  

   

Figure 6.14. Original disparity vector field (left) and after vector validation and smoothing 
(right). 

An important aspect is that without such a volumetric self-calibration 
procedure one is not even aware of how large the calibration errors actually are. As 
it turned out, even with great care during the calibration procedure there was 
hardly any experiment where the calibration errors did not exceed 1 or 2 pixels in 
some corner of the volume.  

In an experiment viewing with cameras from opposite side of the volume it 
was possible to correct calibration errors in the range of 7 pixels arising due to a 
double-sided calibration plate tilted slightly relative to the z-direction in which it 
was moved. This resulted in the two cameras on the back side being shifted relative 
to the front side cameras.  
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Not knowing how large the error actually was, one started out with max = 3 
pixel, not finding any peaks in the disparity maps. Then one had to gradually 

increase max and carefully adjusts the particle detection threshold to minimize the 

ghost particles and processing time. With max = 10 (400 times as many ghost 

particles as for max = 3) and only using 2x2x2 sub-volumes it was finally possible to 
see a faint disparity peak among the vast amount of ghost particles. Once this large 
error had been corrected in a first step, it was then easy to further reduce the 
calibration errors down to 0.1 pixels with fine local resolution possible due to 
otherwise high-contrast, low-noise images with particle densities less than 0.05 ppp. 

 

Table 6.7. Relevance of calibration errors for different techniques (+ strong, - weak). 

Technique Inaccurate 

Mapping Function 

Misalignment between 

Calibration Plate and Light Sheet 

Stereo PIV - ++ 

Thick-Sheet Tomographic PIV ++ ++ 

Full-Volume Tomographic PIV ++ - 

3D-PTV + - 

6.4.4 Relevance for Other PIV Techniques 

For standard Stereo-PIV and scanning light-sheet Stereo-PIV (Brücker 1996, 
Hori and Sakakibara 2004) the planar stereo PIV self-calibration method is usually 
sufficient to measure and correct the position and rotation of the light sheets which 
typically lead to disparities of 5-20 pixel. Remaining calibration errors of the order 
of a few pixels are only relevant in case of very strong local velocity gradients. But 
especially for thick light sheets required e.g. for cross-flow measurements the 
volumetric self-calibration technique is recommended. Here standard planar self-
calibration often fails if the light sheet profile is not nicely Gaussian, but e.g. shows 
multiple intensity peaks within the long correlation streak. 

Thick light sheet PIV images can be processed with the tomographic PIV 
algorithm usually adding a third or fourth camera (Wieneke and Taylor 2006). 
Volumetric self-calibration is then required to reduce the calibration errors to 
acceptable levels. 
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Figure 6.15. Z-plane of volume vector field without (top) and with (bottom) volume self-
calibration. Shown is the raw vector field without vector validation with the 3D-vorticity 
magnitude as background color and every 4th vector in x-direction. 

Finally, volumetric self-calibration is also recommended for standard 3D-PTV. 
For low seeding densities and unique conversion of 2D particle positions into a 3D 
particle position, a high systematic triangulation error is not critical. But for higher 
seeding densities the correction of calibration errors by volumetric self-calibration 
makes it possible to choose a very small threshold for the maximum allowed 
triangulation error. This significantly reduces the number of ghost particles and can 
provide some rejection criteria for overlapping particles which otherwise lead to 
inaccurate 3D particle positions. 
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Table 6.7 summarizes the importance of the two self-calibration algorithms for 
correcting laser sheet misalignments and mapping function errors, respectively, for 
the different planar and volumetric particle image velocimetry techniques. 

 

 

Figure 6.16. Complete 3D flow field without (top) and after self-calibration (bottom) with 3D-
vorticity magnitude colored according to dominant sense of rotation (Michaelis et al. 2006).  

6.4.5 Summary 

A volumetric self-calibration technique (VSC) has been developed to correct 
mapping function errors using the actual recordings of the particle images. This is 
especially relevant for tomographic PIV where the mapping errors should be below 
0.3 pixel. The method is based on detection of 2D-particle images and triangulation 
of the 3D-particle position in space. Particle images are usually intensity-normalized 
across the image and between cameras to account for Mie-scattering differences, 
and a threshold is used to select only the e.g. 10% brightest particles. Back-
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projecting the 3D position toward the camera images and comparing to the original 
position provides a disparity error for each particle.  

In collecting disparities for all particles throughout the volume and a suitable 
clustering method to eliminate false 3D-particles, one obtains a 3D2C disparity 
vector field for each camera. Sufficient statistics is obtained by summing the 
disparities from many recordings. After vector field validation and smoothing this 
disparity field is then used to correct the original mapping function. It is also 
possible to measure the actual extent and rotation of the illuminated volume from 
the disparity maps. 

The technique has been applied successfully to a number of tomographic PIV 
experiments improving significantly the quality of the volumetric vector field. It was 
found that in most experiments even with a careful calibration procedure 
calibration errors of 1 – 2 pixel were found somewhere in the volume. After self-
calibration this has been reduced to 0.1 – 0.2 pixel. The method is also useful for 
stereo PIV especially with thicker light sheets since here the standard planar self-
calibration technique often fails due to multiple intensity peaks within the light 
sheet. For 3D-PTV the method can reduce the number of ghost particles allowing 
higher seeding densities.  

6.5 Current Status of Volume Self-Calibration 

Since VSC has been efficiently implemented around 2007, this has provided a 
major improvement for Tomographic PIV processing. Not only was it then possible 
to correct calibration errors, but even more important, one could measure and 
visualize the calibration errors by looking at and analyzing the disparity maps. 
Indeed, a successful VSC analysis and correction is usually taken as a prerequisite 
for Tomographic PIV to work at all. When one does not see clear disparity peaks (as 
shown in Figure 6.4), it is most often useless to try (S)MART-reconstruction and 3D-
cross-correlation. 

VSC is to our knowledge the only volumetric self-calibration procedure for 
Tomographic PIV and recently for volumetric particle tracking methods like the 
newly developed time-resolved Shake-the-Box method (STB, Schanz et al. 2016) 
based on iterative particle reconstruction (IPR, see chapter 7).  

Other research groups, concentrating on possible margins of improvement in 
the reconstruction method itself and on other processing details of Tomographic 
PIV, implemented the existing VSC method in a similar way. VSC has established 
itself as the de-facto standard for correcting calibration errors in Tomographic PIV 
and recently STB as is evident by the large number of researchers using it 
successfully.  

Below are shown the reported performance of VSC which is in agreement with 
in-house experience. In 79% of all experiments the initial calibrations had 
disparities above 0.3 pixel, above the limit for accurate (S)MART-reconstruction. 
Interestingly, quite a few experiments had to cope with calibration errors above 5 
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pixel. After applying VSC, except in one case, where initial disparities above 10 pixel 
were reduced to ‚less than 1-2 pixel‘, all disparities were reduced to acceptable 
levels, on average even below 0.1 pixel. Of course, the histogram is somewhat 
biased, since only successful Tomographic PIV/PTV experiments were reported. 
There were probably a few experiments with very large calibration errors, too high 
seeding densities, or other problems, which could not be processed at all.  

Some work has been done validating the performance of VSC. While more 
cameras are beneficial for the MART-reconstruction, Discetti and Astarita (2014) 
report on the detrimental effect on VSC when increasing the number of cameras. 
With more cameras and given a required large search area for possible 
misalignments (e.g. > 3-5 pixel), the number of erroneous possible particle 
triangulations increases dramatically so that in some cases it becomes difficult or 
even impossible to find the barely visible true disparity peak.  

On the other hand, Lynch and Scarano (2014) reported successful VSC 
correction on a 12-camera Tomographic PIV experiment. Obviously, VSC gets more 
complicated and time-consuming for more cameras. For all experiments, it is 
recommended to redo the calibration after the experiment to accomodate cases of 
cameras having drifted substantially e.g. due to weak mechanical mounting or 
somebody bumping into a camera just before or during recording. Even better, after 
recording a few images, a quick check with VSC to confirm the calibration accuracy 
might be advantageous. 

 

Figure 6.17: Histogram of disparities reported for the initial calibration (62 samples) and 
after applying VSC (83 samples), data collected by Joke Henne, LaVision GmbH. 
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One circumstance, where VSC has proven very useful, is in the case of 
vibrations of wind tunnel, model, cameras or all together. Vibrations can easily 
amount to disparities of up to 5-10 pixels changing from image to image. Michaelis 
and Wolf (2011) implemented a single-image VSC. First the complete volume is used 
for particle triangulation with a search area larger than the expected maximum 
disparity, possibly only using the brightest few percent of particles, to compute 
some initial rough translation for all cameras. This is followed by more detailed 
passes with multiple sub-volumes to correct remaining locally changing calibration 
errors, once the large shift has been corrected. Michaelis and Wolf (2011) report 
initial disparities as large as 12 pixel being reduced to remaining 0.02 pixel after 
several passes of VSC. Luckily, vibrations usually consist of a global translation, 
while rotations would be more difficult to detect requiring again dissection into sub-
volumes. It is certainly tedious and time-consuming to compute a new calibration 
function for every image processed, but under such conditions this is the only way 
to process data using Tomographic PIV. 

Earl et al. (2015) also investigated the effect of vibrations on tomographic 
reconstruction, which are especially noticeable in derived turbulent statistics 
quantities. The authors suggest checking for vibrations using single-image VSC even 
in case where the apparent reconstruction quality seems to be good. Small-scale 
vibrations smaller than the diameter of the particle images may be hidden by a 
global volume self-calibration using many images of the data set, while single-image 
corrections can potentially improve the vector field accuracy considerably.  

Recently, Cornic et al. (2016) investigated VSC in more detail and proposed 
some improvements. They implemented a volumetric pinhole calibration model 
with Scheimpflug angles which is more appropriate to the standard setup in 
Tomographic PIV with Scheimpflug adapters between camera and lens so that all 
cameras view the same tilted volume in focus. While the basic VSC technique works 
with all calibration models, the choice of mapping function is mostly a matter of 
enough free parameter to accommodate all optical distortions. In air a pinhole 
model preferably with Scheimpflug angles (up to 16 parameters per camera) is 
often sufficient, but it may not be appropriate e.g. in water or looking through 
curved optical surfaces or changing index of refraction e.g. in flames. On the other 
hand, Weinkauff et al. (2013) report only 0.2 pixel remaining disparity for a 
turbulent lifted jet flame with strongly changing index of refraction.  

Higher order (polynomial) models (e.g. 50-100 parameters per camera) may 
be required to achieve necessary accuracies for Tomographic PIV in difficult optical 
setups. Cornic et al. (2016) point to the possibility of easily refitting only the 
external pinhole parameters in case of camera drifts. They also mention the often 
overlooked fact that VSC actually changes the origin of the coordinate system when 
disparities are corrected. In practice, small shifts in the coordinate origin of e.g. 1-2 
voxel are rarely critical. It is anyway difficult to accurately place the calibration plate 
at a specific location and orientation within a few pixel during the initial calibration.  
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Ideally some reference marks should be visible in the recorded images to 
(re)set the coordinate system. Zunino et al. (2015) fixed a transparent dual-plane 
calibration target just outside the test section for calibration and to account for 
possible relative motion between the imaging system and the experiment. This is 
especially useful when access to the measurement volume is difficult.  
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This chapter has been published in Wieneke (2013) Iterative reconstruction of 
volumetric particle distribution, Meas Sci Technol 24:024008. The introduction has 
been updated to reflect the current status on IPR and STB. 
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Both Tomographic PIV and standard particle tracking velocimetry (3D-PTV; 
Maas et al. 1993; among others) measure a flow field in a full volume. Particle 
tracking methods usually first detect 2D-particle positions in the images recorded 
by 3-4 cameras, followed by a triangulation procedure to locate the 3D-particle 
positions and subsequent tracking of particle positions using some nearest neighbor 
approach or more advanced schemes requiring smoothness of the velocities field 
among neighbor particles. 3D-PTV can only be applied to rather low seeding 
densities below about 0.01 ppp (typically up to 3-10k particles per megapixel 
sensor), because high seeding densities and resulting overlapping particles decrease 
the accuracy of 3D-particle positions and produce too many ghost particles. 

Tomographic PIV, on the other hand, based on (S)MART as the most popular 
reconstruction method, tries to iteratively fit an intensity distribution of voxels in 
the volume such that the re-projected images of this volume fit the recorded images 
as closely as possible. It is able to reconstruct higher seeding densities up to about 
0.05 ppp (more when using the time information e.g. using SMTE, Lynch and 
Scarano 2015) still producing some ghost intensities/particles. But the subsequent 
3D-cross-correlation computing vectors on a regular grid is quite robust. Obviously, 
the (S)MART reconstruction has to cope with an under-defined system of equations 
trying to reconstruct O(109) voxels from O(106) pixels of the images. This only 
works by applying the sparseness constraint of relatively low seeding density with 
sufficient number of zero-intensity pixels in the images forcing most voxels in the 
volume to zero intensity. 

The idea now is to combine the sparseness constraint of a rather small number 
of particles in a stricter sense together with an iterative approach reconstructing the 
particle distribution in the volume such that the re-projected images of this particle 
distribution fit the recorded images as close as possible. Instead of a huge number of 
voxel intensities, only a rather small number of discrete 3D-particle positions need 
to be determined. This is then again followed by a tracking step like in standard 3D-
PTV. 

This volumetric iterative particle reconstruction (IPR) method, described in 
detail in the next section, was initially developed to improve Tomographic PIV 
regarding possibly higher seeding density increasing the final spatial resolution as 
well as improving on the accuracy. As it turned out, this goal was not really achieved 
for standard double-frame Tomographic PIV with a seeding density for IPR still 
limited to about 0.05 ppp. At least, for lower seeding densities, IPR is not only much 
faster than Tomographic PIV, but also more accurate than both Tomographic PIV 
and 3D-PTV, because due to the iterative process it correctly assigns overlapping 
particles to the right z-locations and eliminates ghost particles. Beyond 0.05 ppp, the 
process does not converge any more to a unique solution. Different possible particle 
distributions can produce re-projected images similar to the recorded images. 

Luckily, Schanz et al. (2016) put IPR into practical use developing the so called 
Shake-the-Box (STB) method for time-resolved volumetric measurements, where 
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the additional time information provides an extra dimension of constraint to 
remove ghost particles. STB provides highly accurate volumetric particle track data 
for seeding densities up to 0.1-0.2 ppp. In the recent PIV-Challenge (Kähler et al. 
2016) synthetic volumetric images have been provided and STB immediately 
outperformed all other Tomographic PIV contributors, who had optimized their 
algorithms for many years.  

Shake-the-Box works by providing a close predictor particle field from the 
previous time-step translated by the previously computed velocities. This particle 
distribution is already very close to the true one and is ‘shaken’ by the some IPR-
iterations to true particle locations. New particles entering the volume are detected 
from the residual images, ghost particles with false particle tracks should die out 
after a few time steps. The process converges quickly after 5-20 time-steps to the 
true solution with almost no ghost particles at all. It still needs to be verified how 
the method works for noisy experimental data, where 3D-cross-correlation of 
Tomographic PIV (e.g. together with SMTE) might be more robust. But already a 
number of experiments have been done successfully, in particular on large scales 
with Helium-filled soap bubbles. In principle, STB offers the most complete 
approach to compute time-resolved 3D flow fields recovering all possible 
information provided by the seeding particles as the ultimate information carriers. 

Meanwhile, as part of the NIOPLEX EU-research project, it has been shown that 
the particle tracks from STB provide better pressure fields than derived from 
Tomographic PIV vector fields due to the higher possible spatial resolution and 
using accurate acceleration data at the correct location not averaged over some 
interrogation volume (Blinde et al. 2016). 

Recently, Cornic et al. (2015; based on their earlier work in Champagnat et al. 
2014) developed a similar iterative sparse particle reconstruction algorithm named 
LocM-CoSaMP computing particles distributions on a regular volumetric grid with a 
voxel-to-pixel ratio of 0.5 – i.e. the particle location is still inaccurate up to ±0.25 
pixel – to be followed by a subsequent, not yet specified sub-voxel refinement step, 
which actually could be IPR again. The authors report possible seeding densities up 
to 0.12 ppp for non-time-resolved double-frame images with a higher Q-ratio 
quality factor than standard MLOS-SMART (Atkinson and Soria 2009). 

Some work has been done to improve Tomographic PIV by enforcing the 
intensity distribution of voxels to fit closer to the expected Gaussian blob shape of 
particles (Castrillo et al. 2016; Discetti et al. 2013). Significant improvement in 
reconstruction accuracy has been reported compared to standard (S)MART, thus 
enabling higher seeding densities. 

Clearly, using the information of a finite number of particles improves 
Tomographic PIV by reducing the degrees of freedom. With the additional use of the 
time information as in Shake-the-Box or voxel-based fluid-trajectory-correlation 
(FTC, Lynch and Scarano 2013; FTEE, Jeon et al. 2014; SMTE, Lynch and Scarano 
2015) these methods enable the measurement of time-resolved volumetric flow 
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fields with low noise and high spatial resolution and with the possibility to extract 
instantaneous pressure fields (van Oudheusden 2013; Blinde et al. 2016).  

7.1 Iterative Particle Reconstruction Method 

3D particle tracking involves the measurement of the 2D particle image 
positions in the recording images, followed by a triangulation process to determine 
3D particle locations, which are then tracked in time. Various tracking algorithms 
have been proposed (e.g. neural network, fuzzy, string force) using either the spatial 
coherence of neighboring particles having similar displacements and/or the even 
more stringent time coherence over 3 or more time steps requiring that individual 
particles do not exhibit an abrupt change of their velocity, but stay within an upper 
limit given by some acceleration threshold.  

An accurate positioning of the particle images relies on the small probability of 
overlapping particle images. Moreover, the robustness of the triangulation requires 
a modest seeding density because the number of possible matches among particle 
images grows strongly with the seeding density as shown later. As a result, most 
experiments performed with 3D-PTV report rather low seeding densities of less 
than 0.001 particles per pixel (ppp) in the recorded images corresponding to a few 
100 to 1000 particles with 1 megapixel format sensors. For higher seeding densities 
the overlapping particles lead to inaccurate 2D- and 3D-particle positions, and the 
matching ambiguity in the triangulation procedure will produce more and more 
ghost particles. For this reason, 3D-PTV has been mostly employed to produce 
detailed studies of rather sparse Lagrangian particle statistics over relatively long 
trajectories. 

The evaluation of a dense velocity field that enables to compute the local 
velocity gradient tensor components requires a dense 3D3C-measurement 
preferably on a regular grid. This can only be obtained increasing the seeding 
density above e.g. 0.01 ppp and in turn achieve the quantitative visualization of 
vortical structures by detection criteria such as Q, based on the local properties of 
the velocity gradient tensor (Hunt et al. 1988) For this purpose Holographic PIV 
(Herrmann and Hinsch 2004), scanning 2D- or Stereo-PIV (Brücker 1997, Hori and 
Sakakibara 2004), and more recently Tomographic PIV (Elsinga et al. 2006) have 
been applied.  

Tomographic PIV (‘Tomo-PIV’) using the same experimental setup and 
hardware as 3D-PTV reconstruct the 3D volume with particles discretized into 
voxels using a tomographic reconstruction algorithm. Tomographic reconstruction 
methods update the intensity of each voxel in the measurement volume by 
comparing the original recorded images with the projected images from the 
intensity distribution in the volume. Voxel intensities are updated using the 
difference (ART) or ratio (MART) between recorded images and the reprojected 
images. In simple terms this corresponds to the way how the cameras would see a 
specific voxel intensity distribution. Typically, 4-10 iterations are needed for 
convergence, somewhat more for SMART. 
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A fast one-pass multiplication along the line of sight (Multiplicative First Guess 
(MFG), Worth and Nickels 2008; MLOS, Atkinson and Soria 2009) has been 
proposed to compute an initial intensity distribution followed by further (x)ART. 
Essentially MLOS with slight implementation differences is almost identical to a 
single pass of SMART operating on a volume with a constant value. In the same way 
one can take the minimum along the line of sight (MinLOS) which has been shown to 
perform better than MLOS as long as the camera images have the same intensity 
(Michaelis et al. 2010). A comparison between stand-alone MLOS, MinLOS and fully 
iterative Tomo-PIV shows that any single pass analysis such as M(in)LOS returns a 
less accurate result than iterative MART analysis. Reconstruction of acceptable 
accuracy is limited to seeding density of about 0.01-0.03 ppp (Michaelis et al. 2010). 
The processing time of the MART reconstruction can be decreased up to a factor of 
5-10 by updating only non-zero voxels e.g. identified by an initial MLOS step (Worth 
and Nickels 2008, Atkinson and Soria 2009). Recently, other approaches to speed-
up the reconstruction process have been investigated by Discetti and Astarita 
(2011). 

Tomo-PIV employs a weighting function between voxels and pixels describing 
how e.g. a voxel sphere is imaged onto the relevant camera pixels or, conversely, 
how a pixel represented e.g. by a cylinder intersects with a voxel along the line of 
sight.  In real experiments there are a number of imaging artifacts like defocusing, 
astigmatism or intensity differences between cameras in forward-/backward-
configuration, which demand a more accurate and locally varying description of the 
optical transfer function (OTF) between volume points and pixels. Schanz et al. 
(2010) implemented a locally varying OTF in the MART formalism and 
demonstrated the high potential of this approach to improve the accuracy of the 
tomographic reconstruction in case of non-uniform OTF.  

In general, MART tries to solve an underdetermined system with e.g. 109 
parameters corresponding to the intensity of each voxel. Given only O(106) pixels in 
the recorded images, a unique solution relying strongly on the positive-definiteness 
of volume intensities can only be calculated for sufficiently low seeding densities of 
typically less than 0.05 ppp corresponding to a ‘source density’ (number of particle 
times particle image area) of less than 1 with typically less than 1-10% of all voxels 
with non-zero intensities. Each particle is then represented by a blob of e.g. 3x3x3 
non-zero voxels, e.g. for 100k particles this leads to about 3 Mio non-zero voxels. 
This reduces the number of free parameters drastically provided one knows already 
the possible particle positions e.g. by an initial MLOS-pass identifying zero voxels to 
be excluded in further sparse MART-iterations. 

The particle blobs created by MART are in fact somehow artificial because in 
most experiments with diffraction limited optics the true particle size is much 
smaller than a single voxel. The spread over a few voxel – determined by the pixel-
voxel weighting coefficients and the arbitrary pixel-to-voxel size ratio (usually 1) – 
is, however, beneficial, in that it allows to accurately evaluate the sub-pixel position 
of a particle avoiding ‘peak locking’ effects in the subsequent correlation-based 
displacement calculation. 
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Obviously representing particles as points in the volume with a position XYZ, 
intensity I and a radius R takes only 5 parameter (4 in diffraction limited optics 
without R) compared to e.g. 33=27 voxel parameter, leading to e.g. only 500k free 
parameter to be fitted for 100k particles.  

The idea presented here is to use a similar iterative reconstruction algorithm 
like MART, but not to represent particles as blobs of non-zero voxels, rather to 
represent particles as points with position X, Y, Z, intensity I and radius R where this 
set of parameter is iteratively updated by comparing the reprojections of the 
particle distribution with the original images.  

Basically, all the methods calculating volumetric particle distributions can be 
characterized by the final representation of the volume as voxel intensities (MLOS, 
MART, …) or as a list of 3D-particle positions (3D-PTV). In addition, a method is 
either a direct computation method computing the result in a non-iterative straight 
way (MLOS, 3D-PTV) or using an iterative reconstruction approach comparing the 
volume representation with the originally recorded images (MART) trying to find 
the exact solution to the inverse propagation problem (Table 7.1). 

 

Table 7.1. Particle and voxel reconstruction methods. 

 Particle Representation Voxel Representation 

Direct computation 2D-peak detection + 
triangulation (3D-PTV) 

MFG, MLOS, MinLOS 

Iterative 
reconstruction 

Iterative particle 
reconstruction 

xMART, SPG, L1, … 
(Tomographic PIV) 

 
3D-PTV computes 2D-particle location and possible 3D-locations by 

photogrammetric triangulation, but does not compare the projection of the final 
particle distribution to the original images. MLOS and MinLOS directly compute the 
voxel intensities in the volume, again without a comparison. Tomo-PIV iteratively 
adjusts the reconstructed voxel intensities to match the recorded images as close as 
possible. The method proposed here corresponds to the remaining category of 
iterative particle reconstruction (‘IPR’). 

Once the particle distribution in the volume has been computed for 2 or more 
time steps, voxel-based volumes are further processed by 3D-cross-correlation to 
compute dense regular-grid 3D3C-flow fields, while sparse Lagrangian particle 
trajectories are derived from the 3D-particle locations. It is also possible to switch 
representations by converting 3D-particle locations to artificial voxel blobs and 
continue with cross-correlation (Schimpf et al. 2003), or by detecting 3D-particle 
locations in the voxel-based volume (Schröder et al. 2008) to be able to do high 
density particle tracking and statistics. 
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For both MART and IPR an accurate spatial calibration is mandatory with 
remaining calibration errors preferable below 0.1 px. This can be achieved with a 
volumetric self-calibration procedure using the actual recorded particle images 
(section 6.4).  

The new iterative particle reconstruction method (IPR) is described in the next 
section and compared in section 7.3 to MART, MLOS and standard 3D-particle 
triangulation from 3D-PTV (same as single-pass IPR, referred to as ‘3D-PTV’ in the 
following) using synthetic data with constant and varying OTF. The focus will be on 
the quality of the reconstructed volume, not on subsequent tracking or correlation 
methods. Finally, the method is tested with experimental data in section 7.4. 

7.2 Algorithm  

IPR starts out with an initial particle distribution computed by 2D-particle 
detection and 3D-triangulation to find possible 3D-particle location (Figure 7.1). 
Then in every iteration the method computes from the 3D particle distribution the 
projected images and compares them to the original camera images in order to 
correct the particle parameter as specified in more detail later. While MART updates 
only voxel intensities, IPR requires an adjustment in the (X,Y,Z)-particle position as 
well as the particle intensity I.  

In the following, it is assumed that the optics is diffraction limited without the 
need to fit particle sizes which are supposed to be much smaller than a voxel. The 
optical transfer function is represented as a Gaussian ellipse, which covers most 
experimental optical distortion effects like blurring and astigmatism. A particle p 
with coordinates Xp, Yp, Zp and intensity Ip is projected into the image of camera i=1-
n as: 

𝐼𝑝𝑎𝑟𝑡
𝑖 (xi, yi, p) = Ip a 𝑒− (𝑏 𝑥’2 + 𝑐 𝑦’2) (7.1) 

with rotation 

  x’ = (xi – xip) cos  + (yi – yip) sin , 
y’ = -(xi – xip) sin  + (yi – yip) cos  (7.2) 

and particle image center 

(xip, yip) = Mi (Xp, Yp, Zp)  (7.3)  

mapped from world coordinates to pixel position by the spatial mapping functions 

Mi. The OTF-parameter a, b, c,  may be different for each camera and locally 
varying in space (X,Y,Z).  
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Figure 7.1. Flow chart of iterative particle reconstruction method. 

Given a certain particle distribution in the measurement volume the reprojected 

images 𝐼𝑝𝑟𝑜𝑗
𝑖  of camera i are calculated by  

𝐼𝑝𝑟𝑜𝑗
𝑖 (𝑥𝑖 , 𝑦𝑖) = ∑  𝐼𝑝𝑎𝑟𝑡

𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑝)𝑝 . (7.4) 

The residual image 𝐼𝑟𝑒𝑠
𝑖  is given by the original image 𝐼𝑜𝑟𝑖𝑔

𝑖  subtracting the 

reprojected image 𝐼𝑝𝑟𝑜𝑗
𝑖 : 

𝐼𝑟𝑒𝑠
𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝐼𝑜𝑟𝑖𝑔

𝑖 (𝑥𝑖 , 𝑦𝑖) - 𝐼𝑝𝑟𝑜𝑗
𝑖 (𝑥𝑖 , 𝑦𝑖)  (7.5)     

The method for updating of coordinates Xp, Yp, Zp and intensity Ip parameter of 
a single particle p, done for all particles consecutively, is based on analysing the 
particle-augmented residual image: 

𝐼𝑟𝑒𝑠+𝑝
𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝐼𝑟𝑒𝑠

𝑖 (𝑥𝑖 , 𝑦𝑖) + 𝐼𝑝𝑎𝑟𝑡
𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑝) (7.6) 

Non-zero residuals added to the current particle shape will provide 
information of a better position and intensity of particle p. The task at hand is to find 
a new parameter set (𝑋𝑝

′ , 𝑌𝑝
′, 𝑍𝑝

′ , 𝐼𝑝
′ ) minimizing the residual R: 

R = ∑ (𝐼𝑟𝑒𝑠+𝑝
𝑖 (𝑥𝑖 , 𝑦𝑖) − 𝐼𝑝𝑎𝑟𝑡

𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑋𝑝
′ , 𝑌𝑝

′, 𝑍𝑝
′ , 𝐼𝑝

′ ))𝑖,𝑥𝑖,𝑦𝑖
2 (7.7) 

summing over all cameras and a neighbourhood of e.g. twice the particle radius 
around (xip, yip) covering the complete particle shape. This is shown schematically in 
Figure 7.2 where adding the particle to the residual lead to a new location in camera 
pixel position xi and hence in world position X. Note that a particle shift dX,dY,dZ in 
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the volume leads to interdependent shifts dxi,dyi in the camera images depending on 
the geometric arrangement of the cameras. The simultaneous fit of XYZI can be done 
by a Powell minimizer of the residual (Powell 1964) which turned out to be quite 
accurate but very time consuming. Within a few Powell iterations the fit converges 

but this typically requires about 80-120 calculations of particle shapes 𝐼𝑝𝑎𝑟𝑡
𝑖  with 

different parameter sets.  

 

 
Figure 7.2. Adding particle image shape to residual image and fitting a new particle position. 

Therefore a simpler method (‘Pos’) has been used which as well computes for 

each particle the particle-supplemented image 𝐼𝑟𝑒𝑠+𝑝
𝑖  but then only varies the 

particle world position 𝑋𝑝
′  by -0.1,0,+0.1 voxel and computes a new 𝑋𝑝

′  location by 

taking the position with the minimum residual R fitting a quadratic polynomial 
function on the 3 residual values. This is repeated for the particle Y and Z position. 
The particle shape needs to be computed only 7 times in total (times n cameras) 
allowing displacement corrections of up to ±0.1 voxel for each pass. 

The particle intensity correction (method ‘Int’) is done in two steps. First the 

intensity of each particle is adjusted requiring that 𝐼𝑟𝑒𝑠+𝑝
𝑖  stays strictly just below 

the recorded image intensity 𝐼𝑜𝑟𝑖𝑔
𝑖 : 

𝐼𝑝
′  = 𝐼𝑝  min𝑖,𝑥𝑖,𝑦𝑖

(
𝐼𝑜𝑟𝑖𝑔

𝑖 (𝑥𝑖,𝑦𝑖)

𝐼𝑝𝑎𝑟𝑡
𝑖 (𝑥𝑖,𝑦𝑖,𝑝)

) (7.8) 

using all pixels within center peak location ± particle image radius. A larger area 

could lead to instabilities due to low values of 𝐼𝑝𝑎𝑟𝑡
𝑖  in the tail of the Gaussian curve. 

This is followed by a fast MART-like correction multiplying the particle intensity 

with the ratio of the summed intensity of 𝐼𝑟𝑒𝑠+𝑝
𝑖  relative to the sum of intensity of the 

computed particle shape 𝐼𝑝𝑎𝑟𝑡
𝑖 :  

𝐼𝑝
′  = 𝐼𝑝  ∑  𝐼𝑟𝑒𝑠+𝑝

𝑖 (𝑥𝑖 , 𝑦𝑖)𝑖,𝑥𝑖,𝑦𝑖
 / ∑  𝐼𝑝𝑎𝑟𝑡

𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑝)𝑖,𝑥𝑖,𝑦𝑖
 (7.9) 

again, summing over center peak location ± particle image radius. 
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A particle is removed (method ‘R’) when its intensity after correction falls 
below a specified threshold, e.g. 1/10th of the average particle intensity. In addition 
a particle is removed when its position is within 1 pixel of another particle. 
Otherwise a true particle might be reconstructed as a sum of a few particles within a 
small region which should be avoided. The probability that two real particles lie 
within 1 voxel distance in the volume is very low for the levels of seeding density 
discussed here. 

The standard 3D-PTV triangulation algorithm to locate 3D-particle positions is 
executed to compute the initial particle distribution using the original recordings as 
well as later using the residual images. The most important parameter determining 

the number of detected 3D-particles is the allowed triangulation error . After 2D-
particle detection, the triangulation procedure tries to find all possible 3D-particle 
locations where the sum of the differences of the projected 2D-particle locations in 
the images with the measured 2D-particle location stays below the specified 
triangulation error (Hartley and Sturm 1994). For overlapping particles, the fitted 
2D-particle locations deviate from the true position, so the allowed triangulation 

error  when set to small values (e.g. <0.5-1.0 px) effectively eliminates noisy 3D-

particles originating from overlapping particles. In addition, small  greatly reduce 

the possibility of detecting ghost particles which number scales with 5 for 4 

cameras. Conversely, larger  (e.g. >2 px) allow most overlapping particles to appear 
in the volume but with the disadvantage of much higher ghost particle level 
especially at higher seeding density scaling with Nppp

3. 

In the standard triangulation procedure all 4 images must have particle peaks 
which are then triangulated to a 3D-position. This has been extended to allow only 3 
cameras to have a peak, from which a 3D-position is calculated, while the fourth 
camera is only required to have sufficient intensity at the corresponding 2D-
position but the intensity peak may be strongly shifted due overlapping particles. 
This is a more tolerant way to find possible particles in the volume. The two 3D-PTV 
methods relating to 3 and 4 peaks are named ‘P3’ and ‘P4’ in the following. 

The above building blocks can be assembled in many different ways. For the 
analysis of the synthetic images in the next section the following scheme has been 
selected which converges well even for higher seeding densities: 

n1 ( P4 + R + m ( Pos + Int + R + Proj  ) ) + n2 ( P3 + R + m ( Pos + Int + R + Proj  ) ) 

where n1 and n2 are the number of outer loops with adding particles by 4/3-peak 
triangulation followed by m times adjustment of particle position and intensity, each 
time computing new projected and residual images (‘Proj’). At the beginning P4 is 
quite conservative to detect only safe particles. After a few iterations the computed 
particle distribution is close enough to the true solution to allow more possible 
particles to enter using P3 in order to resolve complicated combinations of 
overlapping particles. The synthetic images in the next section have been analysed 

with n1 = n2 = 8, m = 6, and  = 1.0 for all seeding densities.  
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7.3 Results using synthetic data  

A range of synthetic images have been generated with particles within a 
volume size of 1000 x 1000 x 300 voxel. Particles have a constant image diameter of 
2 pixels and the imaged seeding density varies from 0.0004 to 0.2 ppp.  The 4 
cameras have been positioned at a square at angles of ±30 degrees. The camera 
images have size 1300 x 1300 pixel to record the full volume by all cameras. The 

data has been processed using 3D-PTV with =0.5/1.0/2.0, MLOS, MART and IPR 
with the DaVis 8 software (LaVision GmbH). Particle positions in voxel-based MLOS 
and MART volumes have been computed by a Gaussian 3D-particle fit to allow 
statistical comparison to true particle locations.  

A particle in 3D space is considered ‘true’ if it is within 1 voxel distance of a 
true particle location, while ghosts have no true particles within 1 px distance. The 
number and fraction of detected true particles as well as the fraction of ghost 
particles relative to the number of true particles is shown in Figure 7.3 to Figure 7.7 
together with the average positional error of true particles and the summed 
intensity of the ghost particles relative to the total sum of true intensities. Defining 
true and ghost particles with 2 px distance instead of 1 px threshold does not change 
the curves significantly. 

 
Figure 7.3. Number of detected true particles. 
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Figure 7.4. Fraction of detected true particles. 

 

 
Figure 7.5. Positional error of detected true particles. 
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Figure 7.6. Fraction of ghost particles. 

 
Figure 7.7. Relative intensity of ghost particles. 

As expected the number of detected true particles for 3D-PTV depends 

strongly on the allowed triangulation error . For  = 0.5 already at N = 0.01 ppp the 

number of detected particles becomes less than 50%. This is shifted for  = 1.0/2.0, 

but for  = 2.0 at N = 0.025 ppp the high level of ghosts prevents a reliable tracking 
of 3D-particles. Even before at N = 0.01 ppp the error in the position of particles 
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reaching 0.4 px is significant. This agrees with reported maximum seeding densities 
for 3D-PTV of about 5k particles @ 1kx1k (0.005 ppp). At low seeding densities the 
error is only due to overlapping particles. Well imaged non-overlapping particles 
may be detected within a positional error smaller than 0.01px. 

MLOS on the other hand already starts with high particle position errors of 0.3 
px at low seeding densities, detecting most true particles even for higher seeding 
densities, but produces a significant number of ghost particles above 0.005 ppp, 
which will add to displacement errors. Michaelis et al. (2010) quote for MLOS the 
lowest errors (0.2-0.4 px) in the displacement field for seeding density of 0.01-0.03 
ppp. 

Tomo-PIV with 5-pass iterative MART produces reliable results up to 0.05 ppp 
with almost 100% detection of true particles and still low level of ghost intensities. 
The positional error for a single particle never gets below 0.1 px, but, of course, 
averaging over a number of particles in the interrogation volume can reduce the 
error in the velocity field e.g. down to 0.05 px for 323 volumes. MART starts to fail 
above 0.05 ppp, unless more than 4 cameras or advanced multi-frame 
reconstruction techniques like MTE (Novara and Scarano 2011) or even better 
SMTE (Lynch and Scarano 2015) are used. 

IPR performs similar to MART up to N = 0.05 ppp concerning the number of 
detected particles and ghost level, but with a significantly smaller positional error 
for lower seeding densities. This is attributed to the ability of IPR to detect single 
particles in the volume as points with known OTF-properties, requiring only 4-5 
parameter (XYZIR) to specify a particle instead of e.g. 3x3x3 voxels in the case of 
MART. At Nppp = 0.05 IPR has 200k free parameters compared to 1kx1kx300 = 3x108 
for non-sparse MART. The transition to the unreliable operating range is much 
steeper for IPR above 0.05 ppp. MART appears to maintain some more robustness in 
the range between 0.05 and 0.2 ppp (see section 7.3.1). 

Comparing the original images with the images projected back from the 
computed particle / voxel distribution in the reconstructed volume at N = 0.0064 
and 0.05 ppp (Figure 7.8), one can see that MART and IPR accurately model the 
recorded images. 3D-PTV at N = 0.0064 ppp can detect all non-overlapping particles, 

slightly more for  = 2.0, but at 0.05 ppp hardly any particles are detected ( = 0.5) 

or the distribution of detected particles contains too many ghost particles ( = 2.0). 
MLOS calculates similar images as MART and IPR but more smeared out with larger 
position errors. 

7.3.1 Convergence 

For seeding densities below 0.01 ppp the algorithm converges quickly and in a 
robust way to the true solution within 5-20 iterations quite independently of the 
parameter settings, e.g. controlling how restrictive particles are added or deleted 
and the type of particle position and intensity correction. Only when the fraction of 
overlapping particle images becomes significant and the triangulation procedure 
creates ghost particles on levels higher than 10-30% one has to optimize the 
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strategy to achieve an acceptable convergence rate. At the beginning, it is 
advantageous to be very restrictive in adding particles, only adding reliable ones 
with low triangulation errors in order to keep the number of ghost particles low, e.g. 
less than 20-50% of the true ones. Later one can relax on the restrictions in order to 
find remaining true particles and successively reducing the intensity of the ghost 
particles which do not fit perfectly. Eventually most ghost particles will be deleted 

when their intensity falls below the specified removal threshold. 

 

 

Figure 7.8. Original and reprojected images, top: N = 0.0064 ppp, bottom: N = 0.0512 ppp. 

 

Figure 7.9. Left: fraction of true and ghost particles, right: error of true particles. 

Above is shown the convergence behaviour for Nppp = 0.05 where the ghost 
level intensity stays sufficiently low to allow the true particles to emerge.  

Convergence starts to fail above 0.05 ppp when the solution is no longer 
unique, i.e. many possible particle distributions in the volume lead to projected 
images close enough to the recorded images. More accurately the true solution 
might still be unique, but the procedure may be trapped in a superposition of many 
local minima which account well for a specific group of particles. 
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Figure 7.10. N = 0.1 ppp, top: orginal image / projected image, bottom: part of volume adding 
planes z = 150-200.  

As shown in Figure 7.10 for Nppp = 0.1 the projected images almost perfectly 
agree with the recorded images (top), but looking at the particle distribution in the 
volume (bottom) it is clear that IPR deviates strongly from the true particle 
distribution, while MART seems to be closer to the true solution but with more low 
intensity ghosts. Apparently, there exist many solutions to the reconstruction 
problem, where IPR seems to pick out a single solution with fewer particles and 
higher intensity due to its discrete particle nature, while MART seems to converge 
more to some weighted superposition of all possible solutions. When the projected 
images agree so well with the recordings, there is no information available for 
finding the true solution. One expects this to be even more pronounced for real 
experimental data with higher noise level where slight intensity differences 
potentially distinguishing between true and ghost particles are drowned in noise. It 
is also evident that non-iterative procedures like standard 3D-PTV or MLOS, which 
are not using the information gained from comparing projections and recordings, 
are much less able to deal with high seeding densities failing at much lower seeding 
densities compared to MART and IPR. 

7.3.2 Synthetic data with non-uniform imaging conditions  

The potential of the current approach is better described when dealing with 
tomographic systems that operate under conditions where astigmatism or 
defocusing effects are present. This circumstance should not be regarded as an 
experimental imperfection, since often experiments are performed at the limits of 
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the illumination intensity budget and the imaging system is set to collect as much 
light as possible, compromising the particle image sharpness in some regions of the 
domain.  

In view of the above, synthetic data has been generated with strongly non-
uniform OTFs incorporating locally varying astigmatism and defocusing (Figure 
7.11). The results (Figure 7.12 to Figure 7.14) confirm the ability of IPR to deal with 
such cases with a stable convergence provided one is able to determine the OTF 
experimentally. The curves are similar to Figure 7.4 to Figure 7.6 but shifted to the 
left toward lower seeding densities, mainly due to the particle sizes being a factor of 
2-4 larger so that the limiting level of unity source density is reached at lower 
seeding density around 0.025 ppp. IPR performs much better than MART (and 3D-
PTV), but for a fair comparison the varying OTF should also be incorporated into 
MART as done by Schanz et al. (2010). 

 

 
 

Figure 7.11. Left to right camera 1-4: constant particle size of 2 px, elongated, sharp – 
defocused, astigmatism. 

 

 
Figure 7.12. Fraction of detected true particles. 
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Figure 7.13. Fraction of ghost particles. 

 

 
Figure 7.14. Error of detected true particles. 

7.3.3 Requirements for Dense Flow Fields 

Analyzing small scale flow structures and computing spatial derivatives 
requires dense 3D3C flow fields with sufficient spatial resolution. Also for sparse 
3D-PTV vector fields high seeding densities are advantageous for analyzing 
turbulent transport and multi-particle statistics in detail (Lüthi et al. 2007). 
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Nevertheless, it is quite challenging to compute very dense vector fields. For 1k x 1k 
x 300 voxel volumes, a seeding density of 0.01 ppp yields only 1 particle in a 323 
voxels sub-volume. Therefore, the data is typically processed by 483 or 643 voxels 
boxes and 50/75% overlap with 3 to 8 particles per sub-volume. With a depth of 
1000 voxel the seeding density must be even 3x higher with even higher ghost level. 
This leaves quite a narrow range of allowed seeding densities for full-field dense 
measurements of 0.01 to 0.05 ppp narrowed further if particle images are larger 
than 2-3 pixel in diameter. 

Several directions can be envisaged that could achieve higher particle densities 
in the measurement volume. One is to make the aspect ratio of depth to width 
smaller down e.g. to 1:10 which still provides enough z-vector planes for computing 
the complete 3x3 strain tensor but limiting the visualization of extended 3D flow 
features (fat-sheet or thin-volume Tomo PIV). Note that the relative amount of ghost 
intensity reduces for thin volumes improving the vector quality further. 

Another approach is to use higher resolution cameras. With four 4k x 4k 
cameras one can increase the number of computed vectors above 1 Mio observing 
very small flow structures (Schröder et al. 2011). Also increasing the number of 
cameras to e.g. 6-8 one can cope with higher seeding densities probably beyond 0.1 
ppp as it is being recently investigated. Belden et al. (2010) used 8-12 cameras with 
additive-LOS-type processing. The above IPR method has also been tested with only 
3 or 2 cameras and as expected the maximum possible seeding density drops 
rapidly by a factor of 2-4, which excludes any utilization of such method for dense 
vector calculation. 

Finally, when time-resolved data is available from high-speed cameras with 
sufficient temporal oversampling the time-coherence constraint can be used very 
efficiently to remove ghost particles and to enhance the signal from the true 
particles. An example has been given with the motion tracking enhancement method 
(MTE-MART) introduced by Novara and Scarano (2011) further improved by SMTE 
(Lynch and Scarano 2015). Of course, time-series particle tracking has been used 
extensively for 3D-PTV data, but especially for IPR with already higher possible 
seeding densities it offers to improve the reconstruction quality even further 
suitable for computation of dense vector fields with high spatial resolution (as 
meanwhile shown by STB). 

7.4 Experimental results 

High-quality experimental data of a jet in water produced by Violato and 
Scarano (2011) has been processed by IPR, MART, 3D-PTV and MLOS. Images of 1k 
x1k @ 1 kHz from 4 cameras at f#=32 are used to reconstruct volumes of 600 x 600 
x 1000 voxel. For IPR-reconstruction, still lacking a procedure to determine the OTF 
experimentally, a constant particle diameter of 1.8 px is assumed, which is optimal 
in minimizing the difference between the original recordings and the reprojected 
images. The seeding density is on average 0.03 ppp with denser regions in the 
middle of the image since the jet is illuminated cylindrically.  
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Figure 7.15. Top-left: IPR, right: MART, bottom-left: 3D-PTV, right: MLOS. 

IPR and 3D-PTV particle data is converted to volume voxels and cross-
correlated (Schimpf et al. 2003) in order to compare with the dense vector fields 
from MART and MLOS. 3D cross-correlation analysis is performed with 483 sub-
volumes and 75% overlap. One could apply particle tracking on IPR/3D-PTV data 
and subsequently convert the sparse vector field to a regular grid, but at least within 
a single pair of objects the resulting vector field without using time-regression 
filters turns out to be less accurate.  
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The resulting flow fields from IPR and MART are quite similar (Figure 7.15), 
with IPR visually slightly noisier. Single-pass 3D-PTV exhibit distorted flow features 
and seems to be even noisier especially at the top. The MLOS analysis exhibit a clear 
spatial modulation in agreement with the findings of Elsinga et al. (2009). As a result 
most fine-scale details are absent.  

7.5 Summary 

An iterative particle reconstruction technique (IPR) has been developed which 
computes the distribution of particles in a measurement volume recorded by e.g. 3-4 
cameras. Instead of single-pass 2D-particle detection and 3D-triangulation (3D-PTV) 
the method compares iteratively original and reprojected images to update and 
correct the particle distribution in the volume.  

The method is compared to MART, MLOS, and single-pass triangulation (3D-
PTV). IPR shows much better results for all seeding densities compared to 3D-PTV 
and MLOS and similar to MART for seeding densities up to 0.05 ppp, but with lower 
particle position error. With 4 cameras the convergence of IPR as well as MART 
starts to fail above 0.05 ppp when multiple possible 3D-distributions of particles are 
consistent with the recorded images.  

For locally varying particle shapes due to e.g. defocusing or astigmatism IPR 
can incorporate non-uniform optical transfer functions (OTF) improving the result 
considerably compared to IPR or MART without OTF. 

For low seeding densities the results can be computed within seconds, for 0.05 
ppp and about 100 iterations it takes about 14 min per volume compared to 
optimized non-sparse 5x MART with 10-20 min.  

A particle representation instead of voxel intensities is more favourable for 
advanced time-series analysis with Lagrangian particle tracking, where it is possible 
to use the time-coherence of particle tracks to feed back for improved particle 
reconstruction, similar to MTE for MART (Novara and Scarano 2011). 
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Particle Image Velocimetry (PIV) is a powerful flow measurement technique to 
gain insight into fluid dynamics. The availability of well-integrated commercial 
systems and advances in optics, camera and laser performance have established PIV 
as the preferred technique for instantaneous planar and volumetric flow 
measurements. Compared to point-wise techniques, PIV enables direct visual insight 
into the distribution and evolution of spatially coherent structures. High-repetition 
rate lasers and high-speed cameras with above 1-20 kHz frame rate provide time-
resolved data with further insight into transient phenomena, fluid-structure 
interaction or turbulent analysis. PIV has been applied to a wide range of 
applications from micro-scales to large meter-sized experiments and even larger 
natural flow phenomena. 

Despite the significant advances in hardware and PIV processing schemes, only 
in the last few years a quantitative analysis of the associated uncertainties of 
experimental velocity fields has become a prominent subject of attention. The work 
here addresses a few aspects related to this.  

In chapter 2, the fundamental properties of computed velocity fields have been 
investigated, viewing PIV processing as a kind of black box without going into 
algorithmic details. The discussion is limited to planar fields in double-frame 2D-PIV 
and Stereo-PIV, but can be easily extended to time-resolved and volumetric data. 

First of all, the computed velocity field should be viewed as a continuous 
displacement field. For data provided as vectors on a regular grid, a recipe should be 
provided to interpolate the velocity to any position in space e.g. by spline 
interpolation. A sparse representation on a grid provides practical advantages of 
reduced storage requirement and facilitating binary neighborhood vector validation 
schemes more easily. Most PIV processing schemes assume – at least implicitely – a 
smooth velocity transition e.g. using advanced iterative predictor-corrector schemes 
with image deformation. The spacing between vectors as a function of overlap factor 
and size of interrogation window should not be confused with the actual effective 
spatial resolution to be determined quantitatively as discussed further in chapter 2. 

The basic velocity field information u(x,y), v(x,y) and w(x,y) is augmented by 
additional properties, which are important to judge the quality and accuracy of the 
data: 

 Local uncertainty of the velocity field components 

 Autocorrelation coefficients of noise: spatial, inter-component and 
temporal (for time-resolved PIV) 

 Response function to displacement wavelengths 

The uncertainty of each velocity vector and associated spatial (temporal) 
autocorrelation values are required for uncertainty quantification and propagation. 
The wavelength response function (MTF) indicates the ability of a PIV processing 
scheme to detect small displacement wavelengths, which is related to the effective 
spatial resolution.  
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PIV processing can be analyzed using a linear filter model, i.e. assuming that 
the computed displacement field is the result of some spatial filtering of the 
underlying true flow field given a particular shape of the filter function. Using this 
mathematical framework, relationships are derived between the underlying filter 
function, wavelength response function and response to a step function, power 
spectral density, and spatial autocorrelation of the filter function and noise.  

A definition of a spatial resolution is provided as the sum of the autocorrelation 
coefficients, similar to the integral length/time scale used for turbulence 
characterization. For example, a simple single-pass processing with a square 
interrogation window of nxn pixel leads to a filter length – as the inverse of the 
spatial resolution – of n pixel as expected. Such a definition of a spatial resolution is 
independent of some arbitrary threshold e.g of the wavelength response function 
(MTF) and provides the user with a single number to appropriately set the 
parameters of the PIV algorithm required for detecting small velocity fluctuations. 
Still, assessing the complete performance of the PIV algorithm requires the 
knowledge of the full functional form of the autocorrelation and wavelength 
response function. 

PIV processing in the DaVis software is taken as an example for computing the 
above functions and spatial resolution as a function of interrogation window size, 
overlap and other parameters. It is shown that PIV in Davis can indeed be well 
approximated by a linear filter model with some Gaussian/Mexican-hat shape, but 
there is one function and value for the spatial resolution for the wavelength 
response and another one for the noise autocorrelation. The reason for this has not 
been investigated further. It is probably due to the non-linear effect of the predictor-
corrector scheme. 

In chapter 3, following an overview of the most important error sources in PIV, 
the current status of work related to the estimation of uncertainty bounds of 
computed velocity components is reviewed. An uncertainty quantification (UQ) 
method based on correlation statistics is presented, which has been compared to 
other available UQ-methods in two recent publications (Sciacchitano et al. 2015; 
Boomsma et al. 2016) showing good sensitivity to a variety of error sources, at least 
the ones visible in the image.  

Uncertainty quantification of mostly systematic error sources due to 
experimental deficiencies is difficult to quantify, which remains an active area of 
research. Additionally, work is in progress for accurate UQ-methods for volumetric 
Tomographic PIV as well as for 3D-PTV/STB data (Sciacchitano and Lynch 2015). 
Also, more advanced PIV processing schemes like multi-frame time-resolved PIV 
(e.g. pyramid correlation, Sciacchitano et al. 2012), FTC and others still require 
appropriate UQ-schemes. 

Chapter 4 discusses the topic of uncertainty propagation for derived 
instantaneous and statistical quantities like vorticity, averages, Reynolds stresses 
and others. Stereo-PIV requires propagating the uncertainties of the 2C-velocity 
fields of the two cameras into uncertainties of the computed final 3C-velocity field.  
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A new denoising scheme is presented which uses the uncertainties comparing 
to the local flow gradients in order to devise an optimal filter kernel for reducing the 
noise but keeping the true flow fluctuations (chapter 5).  This is an alternative to 
adaptive PIV approaches locally varying the interrogation window size and shape 
according to e.g. image quality and flow gradients (e.g. Theunissen et al. 2007, 2008, 
and 2010). 

For Stereo-PIV and volumetric PIV/PTV, an accurate perspective calibration is 
mandatory. One of the main error sources for Stereo-PIV is the misalignment 
between the actual position of the light sheet and where it is supposed to be 
according to the initial calibration procedure. The Stereo-PIV self-calibration 
technique is reviewed in section 6.2 together with the current status on this topic.  
For volumetric PIV/PTV, a volumetric self-calibration (VSC) procedure is presented 
in section 6.4 again reviewing of the current status on this subject.  

Nowadays, both techniques are applied routinely. In particular, for MART 
reconstruction in Tomographic PIV it is required to achieve calibration accuracies 
better than 0.3 pixel. Volume self-calibration is considered a necessary initial check 
and pre-requisite for Tomographic PIV. If the procedure doesn’t provide clearly 
visible disparity peaks close to the origin, then Tomographic PIV will also most 
likely fail. VSC has meanwhile been adapted to the challenging case of large 
vibrations requiring single-image self-calibration. 

Finally, in chapter 7 an iterative method for reconstructing particles (IPR) in a 
volume is presented. This is the basis for the recently introduced Shake-the-Box 
(STB) technique (Schanz et al. 2016), which performed very well compared to 
contributors using Tomographic PIV in the recent PIV Challenge (Kähler et al. 2016). 
IPR/STB allows for an order of magnitude higher seeding densities compared to 
traditional 3D particle tracking velocimetry (Maas et al. 1993) suffering from 
problems with overlapping particles.  

Shake-the-Box has recently been applied to large-scale volumes seeded with 
Helium-filled soap bubbles (HSFB) with a size of about 0.3 mm (Figure 8-1). Such 
neutrally buoyant bubbles scatter more than 1000 times more light than 1 µm oil 
droplets (Kühn et al. 2011; Caridi et al. 2015; Scarano et al. 2015; Schanz et al. 
2016). As a light source, even pulsed LED-illumination is sufficient, possibly 
replacing expensive high-repetition rate lasers at least for lower flow velocities.  

The combination of HSFB and STB or Tomographic PIV/PTV opens up the 
possibility of large-scale time-resolved volumetric flow measurements in air with 
volumes even larger than one m3. In comparison, the largest air volume so far 
measured using Tomographic PIV and oil droplets has been orders of magnitude 
smaller in the range of around 100 cm3. 
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Figure 8.1. Thermal plume (image rotated), seeding: HSFB, field-of-view: 0.8 x 0.5 x 0.5 m, iso-
surfaces of Q-value together with particles tracks, courtesy of Schröder and Schanz, DLR 
Göttingen. 

Another promising development concerns the use of data assimilation 
techniques to improve the accuracy of the flow measurements or to extract pressure 
data (see review about pressure from PIV by van Oudheusden 2013).  A full Navier-
Stokes formulation or a simplified vortex-in-cell (VIC) description based on the 
vorticity transport equation can be applied as a regularization to volumetric, 
typically time-resolved, velocity field data. 

 Schneiders et al. (2014, 2016b, 2016c, Figure 8-2) have applied VIC/VIC+ in 
various ways increasing the temporal or spatial resolution of regular-grid 
Tomographic PIV and sparse particle tracking data, in particular converting sparse 
data to a regular grid. A similar technique named flow fit has been developed by 
Gesemann et al. (2016).  

At the same time, the associated pressure field can be extracted even from a 
single snap-shot (Schneiders et al. 2016a) but more accurately from time-resolved 
particle tracking or Tomographic PIV data including acceleration data. In a recent 
comparison, it has been shown that pressure computation methods using particle 
tracks from STB-data worked better than from Tomographic-PIV data on a regular 
grid (Blinde et al. 2016),  
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Figure 8.2. Pressure computation from Tomographic PTV data using HSFB. Particle tracks, 
vorticity and pressure (top) and comparison of surface pressure to pressure transducer 
values (bottom). From Schneiders et al. (2016c). 

This reinforces the renewed interest in volumetric particle tracking, which as a 
technique has been developed already about 30 years ago. But only recently, with 
more advanced processing (IPR/STB) and data assimilation techniques like 
VIC+/flow-fit in combination with high performance hardware and novel seeding 
particles (HSFB), this method has come closer to its full potential extracting velocity, 
acceleration and even pressure for every seeding particle. This is the most complete 
information to be extracted from PIV/PTV using seeding tracers as indicator of local 
fluid element trajectories. 
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Appendix A 

Assumption: 

The autocorrelation function AFF(Δx) of filter F(x) is the same as the autocorrelation 
AFδu(Δx) of the random noise δu(x) of neighboring vectors separated by Δx: 

 
F u

AF ( x) AF ( x)


     

with 

 
u

u(x) u(x x) dx
AF ( x)

u(x) u(x) dx


   
 

 




 

Proof: 

Let’s for simplification assume that each pixel carries displacement information

true
u(x) = u (x) + δu(x) with error δu(x) independent for each pixel with constant 

standard deviation σu_px. The measured displacement is given by eqn. (2.1): 

 

 
F

x x

x

true

F_ true

u (x) F(x )u(x x ) F(x ) u (x x ) u(x x )

u (x) F(x ) u(x x )

 



          

    

 


  

where the last term is the expected random error δuF of uF. The covariance between 
the random errors of two computed vectors separated by Δx is given by: 

      

 

F F F F F F

F F

x x

x x

cov( u (x), u (x x)) E u (x) E u (x) u (x x) E u (x x)

E u (x) u (x x)

E F(x ) u(x x ) F(x ) u(x x x )

E F(x )F(x ) u(x x ) u(x x x )

 

 

               

     

         

         

 
  

 
  

 



  

using  FE u (x) 0.   The errors are assumed to be pixel-wise independent with the 

expectation function  
1 2

2

1 2x ,x u_pxE u(x ) u(x )       with 
i, j 1   for i=j and zero 

otherwise. Therefore: 
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2

F F

x x

2

x

x , x x u _ px

u _ px

cov( u (x), u (x x)) F(x )F(x )

F(x )F(x x)

 



  
       

    




  

Thus, the normalized autocorrelation coefficient AFδu(Δx) given by: 

 
u x

F2

u

x

u

F(x)F(x x)
cov ( x)

AF ( x) AF ( x)
cov (0) F(x)







 


    




         q.e.d. 

This is also valid when switching back to particles as displacement carriers – 
effectively replacing pixel positions and pixel errors with particles and particle 
position errors – provided there is sufficient statistics with enough particles in each 
interrogation window. One should note that knowledge of the actual value of the 
pixel or particle displacement errors is not needed. 
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Appendix B 

Assumption: 

The sum of the autocorrelation coefficients given by 

 
+

-

xsr AF ( x)L = d( x)







    

is equal to the inverse of the sum of the filter coefficients squared: 

 2

+

-

sr F(x)L =1/ dx





   

Proof: 

x F

+ +

- -

srL = d( xAF ( x) AF ( x)) = d( x)

 

 

       

since 
Fu

AF AF


  (eqn. (2.4)). Thus, according to eqn. (2.3): 

 

+

-

+

+

-

+

-

-

+

2 ±

-

+

+

2 -

-

+

+ +

2 2-

- -

sr

=1

 q.e.d.

F(x)F(x+ )dx

L = d( )

F(x)F(x)dx

1
= F(x)F(x+ )dx d( )

F(x) dx

1
= F(x) dx

F(x) dx

1 1
= F(x) dx =      

x

x

x x

     

F(x) dx F(x) dx

F(x+ ) dx )x(
































 



 





 

 













 

 
 
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Appendix C 

Assumption:  

If a PIV algorithm based on a linear spatial filter has a 2D spatial resolution of Lsr x 
Lsr it reduces the noise of pixel-wise contribution of displacement information by a 

factor of Lsr with: 

 
i

i

2

sr F(L x/ )=1    

Proof: 

Again, let’s for simplification assume that each pixel carries displacement 

information true
u(x) = u (x) + δu(x) with error δu(x) independent for each pixel with 

constant standard deviation σu_px. The measured displacement is given by eqn. (2.1)

. Simple error propagation leads to the standard deviation 
Fu of: 

 

2

2 2 2

2

2F

ii
F

u _px
u u _px u _px

sr

u
(x)

L
F

x x





 
 
 

         

So the random error is reduced by a factor of Lsr in 1D and by Lsr in 2D. Here, as in 
appendix A, one ignores that the information and error of neighboring pixels is not 
independent. Typically, it is correlated over the particle image size, but this can be 
neglected provided the correlation length is sufficiently smaller than Lsr.  
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Appendix D 

Assumption: 

Wiener–Khinchin theorem (1930/1934): 

   FFT AF x PSD(f )    

Simplified proof: 

The Fourier transform of the unnormalized autocorrelation function is given by: 

 

i2 fx

i2 fx

i2 fx

FFT(AF) F(x )F(x x)dx e dx

F(x )F(x x)e dx dx

F(x ) F(x x)e dx dx

 

 

 

 

 

 

 

 

 

 
    

 

   

 
    
 

 

 

 

  

Substituting x x x   : 

 

A

A

2

A

i2 fx i2 fx

R

i2 fxi2 fx

i2 fx

    q.e.d.

FFT(AF) F(x ) F(x )e e dx dx

F(x )e dx

R (f ) F(x )e dx

R (f ) = PSD(f )         

F(x )e dx

 

 

 

 





    



   

  

 
     
 

 

 



 

 

 
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


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