
FROM THE QUANTUM HARMONIC OSCILLATOR TO
THE ORNSTEIN-UHLENBECK PROCESS AND BACK

Rutger van der Spek

February 14, 2019

Bachelor thesis
Applied Mathematics and Applied Physics

Supervisors:
Prof.dr. F.H.J. Redig

Dr. J.M. Thijssen





Abstract

In this thesis, the relation between the generator of the Ornstein-
Uhlenbeck process and the Hamiltonian of the quantum harmonic oscil-
lator is used to derive a new understanding of the evolution of certain
quantum states. More precisely, we transform the Hamiltonian with
respect to the ground state and corresponding eigenvalue to find that it
is equal to minus the generator of the Ornstein-Uhlenbeck process. Next,
we use the knowledge of the evolution of distributions in the Ornstein-
Uhlenbeck process to obtain the time evolution of corresponding quantum
states. Specifically, we derived that the evolution of normal distributions
in the Ornstein-Uhlenbeck process remain normally distributed with vary-
ing mean and variance. Furthermore, the ground state of the harmonic
oscillator is equal to the square root of the reversible distribution of
the Ornstein-Uhlenbeck process. Combining these results gives us the
evolution of quantum states with an almost Gaussian wave function. If
we confine one degree of freedom in the end result, we obtain the coherent
states of the quantum harmonic oscillator. These are Gaussian wave pack-
ets, which means that the probability density is Gaussian with constant
variance and oscillating mean. Coherent states most closely resemble
classical particles in the harmonic oscillator and minimise Heisenberg’s
uncertainty principle.
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1 Introduction

In the nineteenth century quantum theory did not yet exist. Until then Newton’s
mechanics, Maxwell’s electrodynamics and Einstein’s relativity were used to
predict and describe the world around us. Classical mechanics deterministically
describes position x and momentum p as a function of time, if the Hamiltonian
is known. This view drastically changed when quantum theory was introduced.
Quantum mechanics describes physical systems in a different way, through the
system’s wave function; Ψ(x, t). The wave function, however, cannot tell us
everything we would like to know about the state of a system. We can only use
it to calculate the probability of getting a certain outcome to a measurement.
The indeterminacy of the quantum world is also seen in the fact that certain
pairs of observables cannot be known with certainty. A well-known uncertainty
relation was introduced by Werner Heisenberg in 1927. He showed that for each
system the standard deviation of the position times the standard deviation of
the momentum is equal to or greater than ~

2 , where ~ is the reduced Planck
constant. This relation indicates that the more precise the position is known,
the less precise the momentum can be known.

In classical mechanics Newton’s laws are used to describe the motion of particles
over time. In quantum mechanics, however, the time evolution of a system’s wave
functions is found by solving the Schrödinger equation, which was introduced
by Erwin Schrödinger in 1926. We will be considering a physical system with
quadratic potential V (x) = 1

2mω
2x2, which is called the quantum harmonic

oscillator. It is a fundamental object in mechanics and approximately describes
systems close to there equilibrium state (which is a minimum of the potential
energy). We will derive that the energy of the quantum harmonic oscillator is
quantised at energies (n+ 1

2 )~ω. This means that when measuring the energy
you cannot obtain other values than (n+ 1

2 )~ω. Later on in this thesis, coherent
states will be introduced. These are special states of the quantum harmonic
oscillator that minimise Heisenberg’s uncertainty relation and that best resemble
the behaviour of classical particles in the harmonic oscillator.

The central idea in this thesis is that there exists a connection between quantum
mechanics and Markov evolutions. Calculating the evolution of a quantum state
comes down to applying an operator of the form e−itH and for the expectation
of a Markov evolution over time we apply the operator etL, where L is a Markov
generator. Therefore, by going from real to imaginary time and transforming
the Hamiltonian H in such a way that it equals a Markov generator L we
can understand the quantum mechanical system by treating it as a Markovian
evolution and vice versa. The main subject in this thesis is the relation between
the quantum harmonic oscillator and the Ornstein-Uhlenbeck process which is
an example of such a relation. We perform an alternative way of calculating
the time evolution of states of the quantum harmonic oscillator by transforming
the Hamiltonian with respect to its ground-state to find that this is equal to
minus the generator of the Ornstein-Uhlenbeck process. Such a transformation is
called a ground-state transformation. In order to understand this connection, an
introduction to Markov semigroups and Markov generators is needed. The fact
that Gaussian distributions are conserved under Ornstein-Uhlenbeck evolutions
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can then be linked to the time evolution of coherent states.

The rest of this thesis is organised in six other chapters. We start with some
mathematical preliminaries in chapter 2 (the reader familiar with Markov
process theory can skip this section). Firstly, we introduce the definition
of a Markov process together with some important properties followed by
mathematical introductions to the Paley-Wiener integral, invariant measures
and some Markov semigroup theory. In the latter, the Markov generator is
defined, which will be of particular importance later on. The stochastic process
of interest, the Ornstein-Uhlenbeck process, is introduced in chapter 3, where-
after its important properties will be derived. We calculate the evolution of
normal distributions in the Ornstein-Uhlenbeck process and finalize with a
calculation of the Markov generator.

The quantum mechanics starts in chapter 4 with an introduction to the
Schrödinger equation and wave function followed by a derivation of the Heisen-
berg uncertainty principle. The harmonic oscillator is looked at, the classical
case and the quantum case. For the quantum harmonic oscillator we find
the energy eigenfunctions together with the quantised energy levels. Then, in
chapter 5, we introduce the concept of coherent states of the quantum harmonic
oscillator and show that they behave in a way closely connected to the classical
harmonic oscillator. We use its definition to derive their wave functions explicitly
and also find that these minimise the Heisenberg uncertainty principle.

In chapter 6, we perform the ground-state transformation to the Hamiltonian of
the quantum harmonic oscillator. Then, we use our knowledge of how normal
distributions evolve according to the Ornstein-Uhlenbeck process in order to
deduce the time evolution of the corresponding quantum states in the quantum
harmonic oscillator. This is done for one and more dimensions. We finalize
with the results and observations in chapter 7.

This is a Bachelor’s thesis of the bachelor programs Applied Mathematics and
Applied Physics at the TU Delft.
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2 Preliminaries

Firstly, we give an introduction to the theory behind the connection between
the Ornstein-Uhlenbeck process and the quantum harmonic oscillator. In this
section we introduce some basic background from Markov process theory.

2.1 Random Walk

We start with the definition of a stochastic process.

Definition 1.1 Consider a probability space (Ω,F , P ). Then a stochastic
process {Xt, t ≥ 0} is a collection of random variables indexed by time.

A Markov process is a kind of stochastic process for which the probability on
future states only depends on current state values and not on how it got there
over time. This property is called the Markov Property. A time-homogeneous
process is a process whose transition probability (density) between times t and
t + s only depends on the time difference s, and not on the precise time t.
Mathematically and in discrete time, this translates as follows.

Definition 1.2 Consider a probability space (Ω,F , P ) and let {Xt, t ≥ 0} be
a stochastic process with natural filtration Ft = σ{Xs, s ≤ t} then we call it
time-homogeneous Markov if for all t, s > 0 and for all f ∈ Cb(Ω)

E[f(Xt+s)|Ft] = E[f(Xt+s)|Xt] = EXtf(Xs), (1)

where
Exf(Xs) = E[f(Xs)|X0 = x]. (2)

A simple example of a time-homogeneous Markov process is the evolution of
a particle’s position over time in the case that it can either move up or down
with equal probability at integer times. The construction of such a process can
be done by considering Z1, Z2, . . . , Zn independent random variables such that
for all i = 1, . . . , n:

Zi =

{
1 with probability 1

2 .

−1 with probability 1
2 .

Let {Xk, 0 ≤ k ≤ n} denote the particles position. Then Xk can be expressed
as:

Xk =

k∑
i=1

Zi.

It can easily be seen that the development of the particle’s position over time is
a Markov Process, since the probability distribution of future positions is only
dependent on its current position and not on the further history. This example
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is known as the (one-dimensional, discrete time) random walk. See Figure 1 for
a plot of the random walk.

Figure 1. Three realizations of the random walk with 100 steps.

We give an example of a stochastic process which is not Markov. Consider

independent and identically distributed random variables Zt
d
= N (0, 1) for

t ∈ N0. Let X0 = Z0, X1 = Z1 and for t ≥ 2

Xt = Xt−1 +Xt−2 + Zt.

Then Xt+1 is not independent of Xt−1 when conditioned on Xt. So clearly, the
process {Xt, t ∈ N0} is not Markov. Examples of more interesting stochastic
processes are the self-avoiding random walk, which avoids visiting the same
point more than once, and the reinforced random walk, where probability of
crossing an interval depends on the amount of crossings it has had in total.

2.2 Wiener Process

2.2.1 Definition

A more interesting example of a time-homogeneous Markov process is the Wiener
process. This is a fundamental object in probability theory and is defined below.

In the definition we use the notation
d
= for equal in distribution.

Definition 1.3 The Wiener process {Wt, t ≥ 0} is the stochastic process such
that it satisfies the following properties:

1. W0 = 0,
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2. Wt has independent increments, i.e. if 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 then
Wt1 −Ws1 and Wt2 −Ws2 are independent random variables,

3. Wt has Gaussian increments with mean zero and variance equal to the

time difference, i.e. for all t, u ≥ 0 : Wt+u −Wt
d
= N (0, u),

4. The map t→Wt is continuous.

Proposition 1.1 The Wiener process is a time-homogeneous Markov process.

Proof. For t, s > 0 and f ∈ Cb(R) we have

E[f(Wt+s)|Ft] = E[f(Wt +Wt+s −Wt)|Ft].

Given Ft, Wt is given and from the third property of definition 1.3, it follows
that Wt+s −Wt is independent of Ft. Hence,

E[f(Wt +Wt+s −Wt)|Ft] = E[f(Wt +N (0, s))] =

=

∫ ∞
−∞

f(Wt + x)
e−x

2/2s

√
2πs

dx = E[f(Wt+s)|Wt] =

= EWt
f(Ws).

2.2.2 Constructing the Wiener Process

The construction of the Wiener process can be done in a number of ways. The
most straightforward one is done by starting off with the random walk. We
consider a random walk with n steps evenly spaced in time that are done in a
time interval [0, T ]. Then, for the time step we have ∆t = T/n, the space step
we set to ∆x =

√
∆t. The resulting stochastic process is known as the n-step

Wiener walk and its value at time tk is expressed as:

wn(tk) =

n∑
i=1

Zi∆x.

Note that the probability density of the Wiener walk is binomial. The values in
between steps are found through linear interpolation, which allows the Wiener
walk to be in continuous time instead of discrete time. At each instance in
time the expectation of the Wiener walk is equal to zero. When calculating the
variance, we find

Var [wn(T )] = E
[
wn(T )2

]
= E

( n∑
i=1

Zi∆x

)2
 =

= E

[
n∑
i=1

(∆xZi)
2

]
= ∆x2

n∑
i=1

E
[
Z2
i

]
=

= ∆x2n = T.
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Now the claim is that by taking the limit n → ∞ the Wiener process on
the bounded interval [0, T ] is obtained [1]. It is obvious that the first and
second property of definition 1.4 are satisfied. Furthermore, because of the
central limit theorem we can conclude that the constructed process has indeed
Gaussian increments with zero mean and variance equal to the time difference [2].
Because the obtained path is a limit of continuous functions, the fourth property
seems plausible. However, sequences of continuous functions do not necessarily
converge to continuous functions. Therefore, we should have given some more
explanation to properly show that the fourth property is also satisfied. Now,
we have constructed the Wiener process on a bounded interval, the unbounded
case can be formed out of a sequence of bounded intervals. See figure 2 for a
plot of the Wiener process.

Figure 2. Three realizations of the Wiener process with a timespan of 100 seconds.

2.3 Paley-Wiener Integral

The Paley-Wiener integral is a stochastic variant of the Riemann-Stieltjes
integral. The integrand is still a deterministic function but the integrator is
now the Wiener process. Let f ∈ Cb(R), we define a new stochastic process
{Yt, t ≥ 0} by

Yt =

∫ t

0

f(s)dWs := lim
n→∞

n∑
j=1

f(tj−1)(Wtj −Wtj−1), (3)

where the limit is with respect to the L2-norm and tj = jt
n . This is called a

Paley-Wiener integral.

The third property of definition 1.3 states that increments of the Wiener process
are distributed as normal distributions with variance equal to the time difference.
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We have

lim
n→∞

n∑
j=1

f(tj−1)
(
Wtj −Wtj−1

) d
= lim
n→∞

n∑
j=1

f(tj−1)Nj
(

0,
t

n

)
where the Nj(0, tn )’s are independent normal random variables with expectation
0 and variance t

n . Therefore, it follows that

lim
n→∞

n∑
j=1

f(tj−1)Nj
(

0,
t

n

)
d
= lim
n→∞

n∑
j=1

Nj
(

0, f(tj−1)2 t

n

)
d
=

d
= lim
n→∞

N

0,

n∑
j=1

f(tj−1)2 t

n

 d
= N

0, lim
n→∞

n∑
j=1

f(tj−1)2 t

n

 d
=

d
= N

(
0,

∫ t

0

f(s)2ds

)
.

Hence, ∫ t

0

f(s)dWs
d
= N

(
0,

∫ t

0

f(s)2ds

)
. (4)

Let Wt = (W1,t,W2,t, . . . ,Wn,t) be the n-dimensional Wiener process and
f : R→ Rn bounded and measurable. We define the multivariate analogue of
the Paley-Wiener integral by

Yt =

∫ t

0

f(s)dWs, (5)

where Yt is the n-dimensional vector with i’th component equal to:

Yt,i =

n∑
j=1

∫ t

0

fij(s)dWj,s. (6)

In a similar way we can find the multivariate form of (4).∫ t

0

f(s)dWs
d
= N

(
0,

∫ t

0

f(s)f(s)T ds

)
, (7)

Here, N (µ,Σ) stands for the multivariate normal distribution with mean µ
(column vector) and covariance matrix Σ.

2.4 Markov Semigroups

Consider a Markov process {Xt, t ≥ 0}. We define {St, t ≥ 0} by

(Stf)(x) := Ex[f(Xt)] := E[f(Xt)|X0 = x] (8)

for all f ∈ Cb(Ω).

Proposition 1.2 {St, t ≥ 0} satisfies the following properties:
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1. Identity at time zero: S0f = f for all f ,

2. Normalization: St1 = 1,

3. Right continuity: The map t→ St is right continuous,

4. Semigroup property: for all t, s > 0, f : St+sf = St(Ssf) = Ss(Stf),

5. Positivity: f > 0 implies Stf > 0,

6. Contraction: maxx |Stf(x)| ≤ maxx |f(x)|.

The properties 1,2,3,5 and 6 can be derived from the definition straightforwardly.
We skip their proofs and restrict us to proving the semigroup property. We give
the proof in discrete setting, i.e. for continuous time Markov chain on a finite
set Ω.

Proof. We start by defining the transition probability function

pt(x, y) = P(Xt = y|X0 = x).

We can write

St+sf(x) = E[f(Xt+s)|X0 = x] =
∑
y∈Ω

pt+s(x, y)f(y).

Since {Xt, t ≥ 0} is Markov, we can apply the Chapman-Kolmogorov equation
[3]:

pt+s(x, y) =
∑
z∈Ω

pt(x, z)ps(z, y).

Combining these yields:

St+sf(x) =
∑
y∈Ω

pt+s(x, y)f(y)

=
∑
y∈Ω

∑
z∈Ω

pt(x, z)ps(z, y)f(y)

=
∑
z∈Ω

pt(x, z)
∑
y∈Ω

ps(z, y)f(y)

=
∑
z∈Ω

pt(x, z)Ssf(z)

= St(Ssf)(x).

Semigroups like {St, t ≥ 0} are called Markov semigroups. Each Markov semi-
group corresponds to an underlying Markov process [4]. For these semigroups
we define a so-called Markov generator L:

Lf = lim
t→0

Stf − f
t

(9)

for f ∈ D(L), i.e. all f ∈ Cb(Ω) for which this limit exists. This is called
the domain of L and is dense in Cb(Ω). In the case that Ω is infinite (e.g.
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Ω = R) L is an unbounded operator with dense domain, and the limit has to
be interpreted in sup-norm sense. These operators can also be linked back to
Markov semigroups [5] [6].

Theorem 1.1 If f ∈ D(L), then Stf ∈ D(L) and the following holds:

d

dt
Stf = StLf = LStf (10)

Moreover, Stf is the unique solution of the differential equation

dψt
dt

= Lψt (11)

with initial condition ψ0 = f .

For a proof of this theorem see [5] and [6].

2.5 Invariant Measures

Let {Xt, t ≥ 0} be a Markov process with corresponding semigroup {St, t ≥ 0}
and let µ be a probability measure on the probability space (Ω,F , P ). If we
let the process start from µ, then we denote µSt for the measure evolved after
time t. Hence, this is the unique probability measure such that:∫

Ω

Stfdµ =

∫
Ω

fdµSt (12)

for all f ∈ Cb(Ω).

Definition 1.7 Consider a Markov process on probability space (Ω,F , P ) with
corresponding semigroup St. Then a probability measure µ is called invariant
if the following relation holds for all t ≥ 0 and all f bounded and continuous:∫

Ω

Stfdµ =

∫
Ω

fdµ. (13)

Theorem 1.2 A probability measure µ is invariant if and only if∫
Ω

Lfdµ = 0 (14)

for all f ∈ D(L).

Proof. Suppose µ is invariant and let f ∈ D(L), then∫
Ω

Lfdµ = lim
t→0

1

t

∫
Ω

Stf − fdµ = lim
t→0

1

t

(∫
Ω

Stfdµ−
∫

Ω

fdµ

)
= 0.

Conversely, if (14) holds, we find for all f ∈ D(L):∫
Ω

Stf − fdµ =

∫
Ω

∫ t

0

d

ds
Ssfdsdµ =

=

∫
Ω

∫ t

0

(LSsf)dsdµ =

∫ t

0

(∫
Ω

(LSsf)dµ

)
ds =

= 0
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Hence, ∫
Ω

Stfdµ =

∫
Ω

fdµ.

Since D(L) is dense in Cb(Ω), this extends to all f ∈ Cb(Ω).

Definition 1.9 Consider a Markov process {Xt, t ≥ 0} on probability space
(Ω,F , P ) with corresponding semigroup St. Then a probability measure µ is
called reversible if ∫

(Stf)gdµ =

∫
f(Stg)dµ (15)

for all f, g ∈ Cb(Ω) .

Proposition 1.3 Consider a probability space (Ω,F , P ) and a Markov process
Xt with semigroup St and generator L.

1. A reversible measure is invariant

2. Let the process start from X0 = µ. Then, µ is reversible if and only if
{Xt, Xs} has the same distribution as its time reversal {XT−t, XT−s} for
all t, s ∈ [0, T ], T > 0.

3. A measure µ is reversible if and only if∫
gL(f)dµ =

∫
fL(g)dµ (16)

for all f, g ∈ D(L).

Proof. 1. Let µ be a reversible measure. From definition 1.9 we find that for
all f ∈ Cb(Ω) ∫

Ω

Stfdµ =

∫
Ω

f(St1)dµ =

∫
Ω

fdµ.

Hence, µ is invariant.

2. Let µ be a reversible measure and let the process start from X0 = µ.
Because a reversible measure is invariant, we have that Xt = µ for all
0 ≤ t ≤ T . Let T > 0, we denote the time reversed process by Yt = XT−t
for 0 ≤ t ≤ T . It follows that for all 0 ≤ t ≤ T and all f, g ∈ Cb(Ω):

Eµ[f(Y0)g(Yt)] = Eµ[f(XT )g(XT − t)]

Because Xt is Markov, we can conclude that

Eµ[f(XT )g(XT − t)] = Eµ[f(Xt)g(X0)] =

∫
Ω

Stf(x)g(x)dµ

We use the definition of reversibility and find:∫
Ω

Stf(x)g(x)dµ =

∫
Ω

f(x)Stg(x)dµ = Eµ[f(X0)g(Xt)].

Hence,
E[f(Y0)g(Yt)|Y0 = µ] = E[f(X0)g(Xt)|X0 = µ].

15



Because Xt is time-homogeneous Markov, we can conclude that {Xt, Xs}
has the same distribution as its time reversal {XT−t, XT−s} for all t, s ∈
[0, T ] and T > 0. Now we can simply read this proof inside out in order
to proof the converse statement.

3. Let f, g ∈ D(L) and µ be a reversible measure. We insert (9) and find:∫
Ω

gL(f)dµ =

∫
Ω

g lim
t→0

1

t
(Stf − f)dµ = lim

t→0

1

t

∫
Ω

gStf − gfdµ.

Since µ is reversible, we can interchange gStf with fStg inside the integral:

lim
t→0

1

t

∫
Ω

gStf − gfdµ = lim
t→0

1

t

∫
Ω

fStg − gfdµ =

∫
Ω

fL(g)dµ.

We have found that ∫
Ω

gL(f)dµ =

∫
Ω

fL(g)dµ.

We can use the fact that D(L) is dense in Cb(Ω) and then read this proof
inside out to prove the converse statement.

Remark. We defined reversibility for Markov processes only, but if we would
define it on a general stochastic, then the equivalent of item 2 should read:

The stochastic process {Xt, t ≥ 0} is reversible if and only if {Xt, 0 ≤ t ≤ T}
d
=

{XT−t, 0 ≤ t ≤ T} for T > 0.

For time-homogeneous Markov processes this relation will already hold when
the joint distribution of just two instances in time is distributed equally to its
time reversal.
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3 Ornstein-Uhlenbeck Process

The stochastic process of interest is the Ornstein-Uhlenbeck process. In this
section we discuss its definition and consider some of its properties. Later on,
these properties will be used to calculate the evolution of quantum states in
the harmonic oscillator.

3.1 Univariate Case

3.1.1 Definition and Explicit Solution

The Ornstein-Uhlenbeck process is another example of a Markov process. We
define it through the following stochastic differential equation

dXt = θ(µ−Xt)dt+ σdWt, (17)

where θ, µ and σ are parameters and Wt is the Wiener process. Intuitively
we can describe this as the position of a particle experiencing thermal noise
with variance σ2 which wants to return to its mean value µ with rate θ. Such
a process is called a noisy relaxation process. See figure 3 for a plot of the
Ornstein-Uhlenbeck process.

Figure 3. Plot of three realizations of the Ornstein-Uhlenbeck process with parameters
µ = 10, θ = 0.05, σ = 4 and starting from positions 8, 10 and 12.

From now on we will limit our view to the case where the mean µ is equal to
zero. For this case we want to calculate the explicit solution to (17). We start
by introducing a change of variable:

Yt = eθtXt.

18



We have:

dYt = θeθtXtdt+ eθtdXt

= θeθtXtdt+ eθt (−θXtdt+ σdWt)

= σeθtdWt

Integrating from 0 to t yields

Yt = Y0 + σ

∫ t

0

eθsdWs,

where this is a Paley-Wiener integral as introduced in section 2.3. We reverse
the change of variable to obtain the explicit solution to (17):

Xt = e−θtYt = e−θtX0 + σ

∫ t

0

e−θ(t−s)dWs. (18)

If we start from an initial point, say X0 = x, we find for its distribution after
time t:

Xt = e−θtx+ σ

∫ t

0

e−θ(t−s)dWs.

Using (4) we find∫ t

0

e−θ(t−s)dWs
d
= N

(
0,

∫ t

0

e−2θ(t−s)ds

)
d
= N

(
0,

1

2θ
(1− e−2θt)

)
.

Hence,

Xt
d
= e−θtx+N

(
0,
σ2

2θ
(1− e−2θt)

)
d
= e−θtx+

√
1− e−2θtN (0,

σ2

2θ
). (19)

We use this equation to find an expression for Stf(x):

Stf(x) = E[f(Xt)|X0 = 0] =

∫
R
f(e−θt +

√
1− e−2θty)µ̃(y)dy, (20)

where

µ̃ = N (0,
σ2

2θ
). (21)

The result of (20) is known as the Mehler formula [1].

3.1.2 Invariant and Reversible Measure

We want to calculate the time-invariant (or stationary) distribution from (19).
We can do this by taking the limit t→∞, we find:

lim
t→∞

Xt
d
= lim
t→∞

e−θtX0 +
√

1− e−2θtN (0,
σ2

2θ
)
d
= N (0,

σ2

2θ
)
d
= µ̃. (22)

19



This is the only invariant measure, since every initial distribution will converge
towards this one. We will write the variance of the stationary distribution as

σ2
∗ = σ2

2θ and the distribution of the Ornstein-Uhlenbeck process starting from

X̃0 = µ̃ as {X̃t, t > 0}. Now the claim is that {X̃t, t > 0} is reversible. In order
to proof this, we have to start by calculating the covariance between arbitrary
times t and s. We have

Cov(X̃t, X̃s) = E

[(
e−θtX̃0 + σ

∫ t

0

e−θ(t−u)dWu)(e−θsX̃0 + σ

∫ s

0

e−θ(s−u)dWu

)]
= E

[
e−θ(t+s)X̃2

0 + σe−θ(t+s)X̃0

∫ s

0

eθu)dWu

+ σe−θ(t+s)X̃0

∫ t

0

eθudWu + σ2e−θ(t+s)
∫ t

0

eθudWu

∫ s

0

eθudWu

]
.

We can calculate the first term easily by inserting the distribution of X̃0. For
both the second and third term we know that the Paley-Wiener integrals are
independent of X̃0. Hence,

E

[
X̃0

∫ r

0

eθudWu

]
= E[X̃0]E

[∫ r

0

eθudWu

]
= 0. (23)

We rewrite the last term to∫ t

0

eθudWu

∫ s

0

eθudWu =

∫ max (s,t)

min(s,t)

eθudWu

∫ min(s,t)

0

eθudWu

+

∫ min(s,t)

0

eθudWu

∫ min(s,t)

0

eθudWu.

The first part of this expression is the product of two independent random
variables which both have an expectation of zero. Just as in (23) the expectation
of their product will be equal to zero. For the expectation of the second part of
the fourth term we find

E

[∫ min(s,t)

0

eθudWu

∫ min(s,t)

0

eθudWu

]
= Var

[∫ min(s,t)

0

eθudWu

]

=

∫ min(s,t)

0

e2θudu =
1

2θ

(
emin(s,t) − 1

)
.

Combining these results yields

Cov(X̃t, X̃s) = e−θ(t+s)σ2
∗ + e−θ(t+s)σ2

∗

(
emin(s,t) − 1

)
= σ2

∗e
−θ|t−s|. (24)

Because Cov(X̃t, X̃s) is a function of |t−s|, we can conclude that the covariance
matrix of the multivariate normal distributions {X̃t, X̃s} and {X̃T−t, X̃t−s} are
equal for all 0 ≤ t, s ≤ T and T > 0. Therefore, {X̃t, X̃s} and {X̃T−t, X̃t−s}
have the same distribution for all 0 ≤ t, s ≤ T and T > 0. From proposition 1.3
it follows that {X̃t, t ≥ 0} is a reversible process.
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3.1.3 Time Evolution of Normal Distributions

Normal distributions which diffuse according to the Ornstein-Uhlenbeck process
will remain normally distributed (but with changing mean and variance). Let
us start with initial distribution X0 = N (µ, σ2

0), then for its time evolution Xt

we get

Xt = e−θtN (µ, σ2
0) + σ

∫ t

0

e−θ(t−s)dWs

d
= N (µe−θt, σ2

0e
−2θt) +N (0, σ2

∗(1− e−2θt))

d
= N (µe−θt, σ2

0e
−2θt + σ2

∗(1− e−2θt)). (25)

3.1.4 Generator

The generator of the Ornstein-Uhlenbeck process will be of particular interest.
Before we can calculate it on smooth test functions, we must look at its semigroup
first:

Stf(x) = Ex[f(Xt)] = E[f(xe−θt +N (0, σ2
∗(1− e−2θt))].

Taylor expanding f around xe−θt yields

Stf(x) = E[f(xe−θt +N (0, σ2
∗(1− e−2θt))

= E
[
f(xe−θt)

]
+ E

[
f
′
(xe−θt)N (0, σ2

∗(1− e−2θt))
]

+ E

[
f”(xe−θt)

2
N (0, σ2

∗(1− e−2θt))2 + . . .

]
= f(xe−θt) +

f”(xe−θt)

2
σ2
∗(1− e−2θt) + . . .

= f(xe−θt)− f”(xe−θt)

2
σ2
∗

∞∑
n=1

(−2θt)n

n!
+ . . .

= f(xe−θt) +
f”(xe−θt)

2
σ2t+ . . . (26)

We insert this expression in the definition (9)

Lf(x) = lim
t→0

Stf(x)− f(x)

t

= lim
t→0

f(xe−θt)− f(x)

t
+
f”(xe−θt)

2
σ2

= lim
t→0

f(x− x e
θt−1
eθt

)− f(x)

t
+
f”(xe−θt)

2
σ2.
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Lastly, we Taylor expand f(x− x e
θt−1
eθt

) around x to arrive at the final result:

Lf(x) = lim
t→0

f(x)− f ′(x)x e
θt−1
eθt

+ . . .− f(x)

t
+
f”(xe−θt)

2
σ2

= −xf ′(x) lim
t→0

eθt − 1

teθt
+
f”(x)

2
σ2

= −xf ′(x) lim
t→0

eθt − 1

teθt
+
f”(x)

2
σ2

= −xf ′(x) lim
t→0

θeθt

eθt + θteθt
+
f”(x)

2
σ2

= −θxf ′(x) +
σ2

2
f”(x). (27)

Now that the generator is known, the stationary distribution can be derived
from it too. We start by noting that the generator can be written in the
following form:

Lf = CeV (x) d

dx

(
e−V (x) df

dx

)
, (28)

with V (x) = θ
σ2x

2 and C = σ2

2 . The claim is that when a generator can be
written in this form, such that V (x)→∞ as x→ ±∞ and

∫
R e
−V dx <∞, the

stationary distribution is given by e−V

Z , where Z is a normalization constant.
We have for f ∈ C∞b :∫

R
Lfdµ =

∫ ∞
−∞

e−V

Z
Lfdx

=
C

Z

∫ ∞
−∞

d

dx

(
e−V

df

dx

)
dx

=
C

Z

[
e−V

df

dx

]∞
−∞

= 0.

Now the claim follows from theorem 1.2 and the fact that C∞b is dense in Cb.
The invariant measure is indeed equal to what we found earlier:

dµ̃ =
e−V (x)

Z
dx =

√
θ

πσ2
e
θ
σ2
x2

dx = fN (0,σ2
∗)

(x)dx.

We can also use the expression in (28) to prove that this is the reversible measure.
We have for all f, g ∈ C∞b :∫

R
gL(f)dµ̃ =

C

Z

∫ ∞
−∞

g
d

dx

(
e−V (x) df

dx

)
dx.

Integration by parts yields:∫
R
g
d

dx

(
e−V (x) df

dx

)
dx =

[
ge−V (x) df

dx

]∞
−∞
−
∫ ∞
−∞

dg

dx
e−V (x) df

dx
dx
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The first term is zero, since V (x)→∞ as x→ ±∞. The remaining expression
is symmetric in the roles of f and g. From interchanging them, we find:∫

R
gL(f)dµ̃ =

∫
R
fL(g)dµ̃.

From the third statement of proposition 1.3 we can conclude that this measure
is indeed the reversible measure.

3.2 Multivariate Case

3.2.1 Definition and Explicit Solution

The multivariate Ornstein-Uhlenbeck process is defined by the stochastic differ-
ential equation:

dXt = BXt + ΣdWt, (29)

where B and Σ are n× n matrices and Wt is the n-dimensional Wiener process.
We consider the case where B is a symmetric, invertible matrix and Σ = I.
Again, we want to calculate the explicit solution and start by introducing a
change of variable:

Yt = eBtXt.

We have:

dYt = BeBtXtdt+ eBtdXt

= BeBtXtdt+ eBt (−BXtdt+ dWt)

= eBtdWt.

Integrating from 0 to t yields

Yt = Y0 +

∫ t

0

eBsdWs,

where this is a multivariate Paley-Wiener integral as introduced in section 2.3.
We reverse the change of variable to obtain the explicit solution to (29):

Xt = e−BtYt = e−BtX0 +

∫ t

0

e−B(t−s)dWs. (30)

3.2.2 Invariant and Reversible Measure

We want to calculate the invariant and reversible distribution. So we insert the
Ornstein-Uhlenbeck process starting from X0 = 0 in the explicit solution (30)

Xt =

∫ t

0

e−B(t−s)dWs.
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By using the result for the multivariate Paley-Wiener integral, (7) we find∫ t

0

e−B(t−s)dWs
d
= N

(
0,

∫ t

0

e−B(t−s)e−B
T (t−s)ds

)
.

Since B is symmetric and invertible, we have

N
(

0,

∫ t

0

e−B(t−s)e−B
T (t−s)ds

)
= N

(
0,

∫ t

0

e−2B(t−s)ds

)
= N

(
0,

1

2
B−1

(
1− e−2Bt

))
.

Hence,

Xt
d
= N

(
0,

1

2
B−1

(
1− e−2Bt

))
. (31)

By taking the limit t→∞ we find the invariant measure

µ̃ = N
(

0,
1

2
B−1

)
. (32)

3.2.3 Time Evolution of Normal Distributions

Multivariate normal distributions also remain normally distributed while diffus-
ing according to the multivariate Ornstein-Uhlenbeck process (with changing
mean and variance). Let us start with initial distribution X0 = N (µ,Σ0), then
for its time evolution Xt we get

Xt = e−BtN (µ,Σ0) +

∫ t

0

e−B(t−s)dWs

d
= N

(
e−Btµ, e−BtΣ0e

−BT t
)

+N
(

0,

∫ t

0

e−2B(t−s)ds

)
d
= N

(
e−Btµ, e−BtΣ0e

−BT t
)

+N
(

0,
1

2
B−1(1− e−2Bt)

)
d
= N

(
e−Btµ, e−BtΣ0e

−Bt +
1

2
B−1(1− e−2Bt)

)
, (33)

where we have used that B is symmetric and invertible.

3.2.4 Generator

For the semigroup on smooth test functions we have

Stf(x) = Ex[f(Xt)] = E[f(e−Btx+N (0,
1

2
B−1(1− e−2Bt))].

We Taylor expand f around e−Btx to obtain the multivariate equivalent of (26)
[7] :

Stf(x) = f(e−Btx) +
1

2
∇2f(e−Btx)t+ . . . (34)
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We insert this expression in the definition (9)

Lf(x) = lim
t→0

Stf(x)− f(x)

t

= lim
t→0

f(e−Btx)− f(x)

t
+

1

2
∇2f(e−Btx)

= lim
t→0

f(x− e−Bt(eBt − 1)x))− f(x)

t
+

1

2
∇2f(e−Btx).

Lastly, we Taylor expand f(x− e−Bt(eBt − 1)x) around x to arrive at the final
result:

Lf(x) = lim
t→0

f(x)− (e−Bt(eBt − 1)x)T∇f(x) + . . .− f(x)

t
+

1

2
∇2f(e−Btx)

= −xT lim
t→0

(
1

t
e−Bt(eBt − 1))T∇f(x) +

1

2
∇2f(x)

= −xTBT∇f(x) +
1

2
∇2f(x)

= −xTB∇f(x) +
1

2
∇2f(x). (35)
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4 Harmonic Oscillator

Now that we have discussed the Ornstein-Uhlenbeck process, we will shift our
view to some quantum mechanics. In this section we will turn our attention
to the quantum harmonic oscillator. But before we start with the quantum
mechanics, we first consider the classical version.

4.1 Classical Harmonic Oscillator

Consider a classical particle attached to a spring. If we pull the mass from its
equilibrium position, it experiences a restoring force which is proportional to the
magnitude, but opposite to the displacement. In this case the potential energy
of the string is a quadratic function of the displacement. (Quantum) physical
systems with a potential, quadratically dependent on position, are called the
(quantum) harmonic oscillator. It is a fundamental system in mechanics and
can model every system near an equilibrium configuration.

4.1.1 One-Dimensional Case

We start by considering the problem in one dimension for a particle of mass m.
Applying Newton’s second law for a potential V (x) yields:

−dV
dx

= F = mẍ.

By inserting a harmonic potential V (x) = 1
2mω

2x2 we find:

ẍ = − 1

m

dV

dx
= −ω2x.

The general solution to this differential equation is given by

x(t) = C cos(ωt+ φ), (36)

where C and φ are constants depending on initial conditions. We have found
that the position is an oscillating motion with angular frequency ω. The relative
contributions of the kinetic and potential energy oscillate as well, with their
sum being the constant total energy:

E = V (x) +
p2

2m
=

1

2
mω2x2 +

1

2
mẋ2.
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4.1.2 Multidimensional Case

First, we consider the n-dimensional harmonic oscillator with harmonic po-
tentials along orthogonal axes. In this case the potential is of the form
V (x) = 1

2m〈x, D
2x〉, with

D2 =


ω2

1

ω2
2

. . .

ω2
n

 .
This is simply the one-dimensional case in each direction. Hence,

x(t) =


C1 cos(ω1t+ φ1)
C2 cos(ω2t+ φ2)

...
Cn cos(ωnt+ φn)

 . (37)

Now we will look at the general case where the potential is of the form V (x) =
1
2m〈x, Ax〉 with A a positive definite real matrix, i.e. for each non-zero x the
inner product 〈x, Ax〉 is strictly positive. All eigenvalues of positive definite
matrices are positive. We can rewrite V (x) to a form where A is replaced by
the symmetric matrix 1

2 (A+AT )

〈x, Ax〉 =

n∑
i=1

n∑
j=1

xiAijxj =

n∑
i=1

n∑
j=1

1

2
xi(Aij +Aji)xj = 〈x, 1

2
(A+AT )x〉.

Therefore, we can consider V (x) = 1
2m〈x, Ax〉 with a symmetric, positive

definite matrix A without loss of generality. Newton’s second law yields the
following equation of motion:

ẍ = − 1

m
∇V = −1

2
∇〈x, Ax〉 = −Ax. (38)

Since A is real, symmetric and positive definite, it can be diagonalized by some
orthogonal matrix Q such that[8]:

A = Q−1D2Q = QTD2Q. (39)

Matrix A and D2 have the same positive eigenvalues, say {ω2
1 , ω

2
2 , . . . , ω

2
n}. The

rows in Q correspond to the eigenvectors of these eigenfunctions. By substituting
this relation in (38), we find:

ẍ = −Ax = −QTD2Qx. (40)

Hence,
˜̈x = Qẍ = −D2Qx = −D2x̃ (41)
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We can see that x̃ has the same equation of motion as in the case with harmonic
potentials along orthogonal axes. Therefore, we can use the solution of the
orthogonal case (37) in order to conclude:

x(t) = QT x̃(t) = QT


C1 cos(ω1t+ φ1)
C2 cos(ω2t+ φ2)

...
C3 cos(ωnt+ φn)

 . (42)

4.2 Basics of Quantum Mechanics

4.2.1 Schrödinger Equation

In classical mechanics a particle’s state is determined by knowing the position
x(t) at any given time t. All physical observables like velocity, momentum
and kinetic energy can be derived from it. In quantum mechanics, however, a
particle’s state is described by its wave function Ψ(x, t), whose interpretation
will be discussed in the next subsection.

All quantum mechanical systems satisfy a single differential equation, the
Schrödinger equation. We can use it to calculate the time evolution of quantum
states, but solving the equation is not easy for most quantum states. In one
dimension, the Schrödinger equation is given by [9]:

i~
∂Ψ(x, t)

∂t
= HΨ(x, t), (43)

where ~ is the reduced Planck constant and the Hamiltonian operator H is
given by

H = − ~2

2m

∂2

∂x2
+ V (x, t). (44)

Here m is the particle’s mass. In quantum mechanics the bra-ket notation is
standard notation for quantum states, the ket |a〉 stands for a column vector
or eigenfunction, the bra 〈a| is its hermitian conjugate and their inner product
is denoted as 〈a|a〉. We use this notation to write down the more dimensional
variant of the Schrödinger equation:

i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 , (45)

with

H = − ~2

2m
∇2 + V (x, t). (46)

4.2.2 Interpretation of the Wave Function

In the preceding subsection, we introduced the concept of the wave function
and how it’s evolution over time can be calculated. But what does it actually
mean and how can we interpret such a wave function. First of all, if a particle’s
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wave function is known, it can (mostly) not lead to an unambiguous prediction
for the outcome of a measurement. For instance, the absolute value of the wave
function squared is the probability distribution for measuring the particle at a
certain point in space. Hence,∫ ∞

−∞
|Ψ(x, t)|2dx = 1. (47)

In quantum mechanics the value of a physical observable is (generally) not de-
terministic. Fundamentally, physical observables have a superposition of values.
The observables are represented by linear operators and we can calculate the
expectation value of such a measurement from it. For instance, the expectation
of x is given by

〈x〉 = 〈Ψ(t)|x|Ψ(t)〉 =

∫ ∞
−∞

x|Ψ(x, t)|2dx.

After measuring an observable, the wave function changes its shape since it
became an eigenfunction of that observable; the outcome of the measurement is
equal to the corresponding eigenvalue. For instance, after measuring a particle
at position x = C, |Ψ(x, t)|2 becomes a delta function at x = C and soon
spreads according to the Schrödinger equation.

We calculate the momentum operator p. Consider a wave function Ψ, from the
classical definition of momentum we have

〈p〉 = m
d 〈x〉
dt

=

∫
x
∂

∂t
(Ψ∗Ψ)dx.

We insert the Schrödinger equation:∫
x
∂

∂t
(Ψ∗Ψ)dx = −i~

∫
x
∂2

∂x2
(Ψ∗Ψ)dx = −i~

∫
x
∂

∂x

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx.

This can be simplified using integration-by-parts and the fact that the wave
function vanishes for x→ ±∞. This results in the following expression for 〈p〉:

〈p〉 = −i~
∫ (

Ψ∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx.

We perform another integration-by-parts to arrive at the final result:

〈p〉 = −i~
∫ (

Ψ∗
∂Ψ

∂x
Ψ

)
dx = 〈Ψ|~

i

∂

∂x
|Ψ〉 . (48)

Note that the momentum operator is hermitian. It turns out that all operators
of physical observables are hermitian. This is because every eigenvalue of an
operator can be an outcome of a measurement and measurements only give real
values.
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4.2.3 Heisenberg Uncertainty Principle

Some operators of observables do not commute. This results in a minimal
insecurity up to which both observables can be known simultaneously. This
principle is stated in the following theorem.

Theorem 2.1 Consider a system with wave function |Ψ〉 and two physical
observables A and B, then

σAσB ≥
1

2
|〈[A,B]〉| , (49)

where

σA =

√
〈A2〉 − 〈A〉2 (50)

σB =

√
〈B2〉 − 〈B〉2. (51)

This is called the uncertainty principle

Proof. If σB 6= 0, define the following operator for λ ∈ R:

C := A− 〈A〉+ iλ(B − 〈B〉).

We have

0 ≤ 〈CΨ|CΨ〉 = 〈Ψ|C†C|Ψ〉 = σ2
A + λ2σ2

B + iλ 〈[A,B]〉 .

This expression is real and has a minimum for the real-valued constant λ equal
to

λ = − i 〈[A,B]〉
2σ2

B

.

This minimum is given by

σ2
A −

i 〈[A,B]〉2

4σ2
B

≥ 0,

which gives us the final result after rearranging:

σAσB ≥
1

2
|〈[A,B]〉| .

If σB = 0, then we can simply interchange the roles of A and B in this derivation.
If both σA and σB are equal to zero, then we must have [A,B] = 0, which is
also in accordance with the uncertainty principle.

For the position x and momentum p we have:

[x, p] |Ψ〉 = (xp− px) |Ψ〉

= x
~
i

∂ |Ψ〉
∂x

−
(
~
i

∂

∂x

)
x |Ψ〉

= x
~
i

∂ |Ψ〉
∂x

+ i~ |Ψ〉 − x~
i

∂ |Ψ〉
∂x

.

= i~ |Ψ〉 . (52)
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Hence, [x, p] = i~, which is known as the canonical commutation relation.
Inserting this in the uncertainty principle (49) yields the following:

σxσp ≥
1

2
| 〈i~〉 | = ~

2
. (53)

This is known as Heisenberg’s uncertainty principle. It states that the momen-
tum and position of a quantum particle cannot be known simultaneously, but
up to a certain insecurity.

4.3 Quantum Harmonic Oscillator

We consider the one-dimensional quantum harmonic oscillator with potential
V (x) = 1

2mω
2x2. The Schrödinger equation reads:

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+

1

2
mω2x2Ψ(x, t). (54)

We can see that the harmonic potential is time independent and therefore we
can use separation of variables to solve the Schrödinger equation. We look for
solutions of the form

Ψ(x, t) = ψ(x)φ(t). (55)

The time dependent part is solved by

φ(t) = e−iEt/~

with E a separation constant. Now for φ(x) we have to solve the time indepen-
dent Schrödinger equation:

− ~2

2m

∂2ψ

∂x2
+

1

2
mω2x2ψ = Eψ.

Therefore the solutions we are looking for are energy eigenstates of the harmonic
oscillator. Rewriting this equation in terms of the momentum operator yields

Hψ =
1

2m
(p2 + (mωx)2)ψ = Eψ. (56)

Definition 2.1 The following operators are called ladder operators

a =
1√

2~mω
(ip+mωx) (57)

a† =
1√

2~mω
(−ip+mωx) (58)

Here a is called the annihilation operator and a† is called the creation
operator.
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Calculating the commutation relation of these ladder operators yields

[a, a†] =
1

2~mω
[mωx+ ip,mωx− ip]

=
1

2~
([x,−ip] + [ip, x])

= − i

2~
([x, p] + [x, p])

= 1. (59)

We want to express the Hamiltonian operator in terms of the ladder operators.
We use

aa† =
1

2~mω
(p2 + (mωx)2)− i

2~
[x, p] =

1

~ω
H +

1

2
,

which gives

H = ~ω(aa† − 1

2
). (60)

Hence,

[H, a] = ~ωa[a†, a] = −~ωa (61)

[H, a†] = ~ωa†[a, a†] = ~ωa†. (62)

If we apply the lowering operator on a state |Ψ〉 that satisfies the time indepen-
dent Schrödinger equation, we find:

Ha |ψ〉 = (aH − ~ωa) |ψ〉 = (E − ~ω)a |ψ〉 . (63)

Therefore, applying the lowering operator will lower the energy by ~ω. As the
name suggests, applying the raising operator will increase the energy by ~ω:

Ha† |ψ〉 = (aH + ~ωa†) |ψ〉 = (E + ~ω)a† |ψ〉 . (64)

We denote the state with lowest energy by |0〉. The ground state must satisfy
a |0〉 = 0, because otherwise a state exists with lower energy due to (63). From
this relation we can determine the ground state ψ0

ψ0(x) =
(mω
π~

)1/4

e−
mω
2~ x

2

(65)

which has energy

E0 =
1

2
~ω.

From the relations (63) and (64) it follows that the energy is quantised at
energies:

En =

(
n+

1

2

)
~ω.

The corresponding eigenstates are found after applying the raising operator and
normalizing:

|n〉 =
1√
n

(a†)n |0〉 , (66)
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with

a |n〉 =
√
n |n− 1〉 (67)

a† |n〉 =
√
n+ 1 |n+ 1〉 . (68)

It can be shown that these eigenfunctions form a complete orthonormal set of
functions. See Figure 4 for an illustration of the first five energy eigenstates.
They are plotted (at one instance in time) together with the harmonic potential
at the height of their energies.

Figure 4. Plot of the first five energy eigenstates with the harmonic potential. The
eigenstates are plotted at the height of their energies.
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5 Coherent States

Coherent states are the states in the quantum harmonic oscillator that minimise
Heisenberg’s uncertainty principle and best resemble the behaviour of classical
particles in the harmonic oscillator. In the field of quantum physics, coherent
states are widely used. In this chapter coherent states in one dimension are
considered.

5.1 Definitions and Properties

Definition 3.1 A coherent state |α〉 is defined as the eigenstate of the anni-
hilation operator a with eigenvalues α ∈ C

a |α〉 = α |α〉 . (69)

For the ground state we have a |0〉 = 0. Therefore, |0〉 is a coherent state
with eigenvalue 0. The relation in (66) shows that all energy eigenstates
can be generated by applying the creation operator a† on |0〉. The so-called
displacement operator generates coherent states from |0〉 in a similar manner.

Definition 3.2 The displacement operator D(α) is defined by

D(α) = eαa
†−α∗a (70)

where α = |α|eiφ ∈ C is a complex number.

Lemma 3.1 The displacement operator satisfies the following:

1.
D†(α) = D−1(α) = D(−α) (71)

2.
D†(α)aD(α) = a+ α (72)

Proof. 1. This follows immediately from the definition of D(α) and the fact
that (a†)† = a.

2. From item 1 it follows that

D†(α)aD(α) = eα
∗a−αa†aeαa

†−α∗a (73)

We use the result from [10] to simplify this expression:

eα
∗a−αa†aeαa

†−α∗a = a+ [α∗a− αa†, a].

This gives us the final result:

D†(α)aD(α) = eα
∗a−αa†aeαa

†−α∗a = a+ [α∗a− αa†, a]

= a+ α∗[a, a]− α[a†, a] = a+ α.
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This knowledge allows us to generate coherent states from |0〉.

Theorem 3.1 The coherent state |α〉 is generated from the vacuum |0〉 by
applying the displacement operator D(α)

|α〉 = D(α) |0〉 . (74)

Proof. By applying both equalities of lemma 4.1, we find

aD(−α) |α〉 = D(−α)D†(−α)aD(α) |α〉 = D(−α)(a− α) |α〉

From the definition of coherent states, we have

(a− α) |α〉 = 0.

Hence, we must have

D(−α) = |0〉 =⇒ D(α) |0〉 = |α〉 .

5.2 Decomposition of Coherent States

We want to decompose the coherent state |α〉 in terms of the energy eigenstates
|n〉

|α〉 =

∞∑
n=0

cn |n〉 . (75)

Inserting (67) yields

a |α〉 =

∞∑
n=0

cn
√
n |n− 1〉 .

By substituting these results in (69) we find

∞∑
n=0

cn
√
n |n− 1〉 =

∞∑
n=0

cnα |n〉 , (76)

which brings us the following relations

cn+1

√
n+ 1 = cnα

Hence,

cn =
α√
n
cn−1 =

α2√
n(n− 1)

cn−2 =
αn√
n!
c0.

We can find c0 by using the normalization condition

∞∑
n=0

∣∣∣∣ αn√n!
c0

∣∣∣∣2 = 1 =⇒ |c0|2
∞∑
n=0

α2n

n!
= 1.
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By noting that

e|α|
2

=

∞∑
n=0

|α|2n

n!

we find

c0 = e
−|α|2

2

and the decomposition of the coherent state |α〉 becomes

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (77)

5.3 Explicit Calculation of the Wave Function of a Coher-
ent State

We want to derive the explicit form of the wave function of these coherent states.
In order to do so, we start with the result we found for the time evolution of
the energy eigenstates in section 4.3:

Ψn(x, t) = ψn(x)e(n+ 1
2 )iωt.

We insert this in (77) to obtain the time evolutions of the coherent states.

Ψα(x, t) = e
−|α|2

2 e−
1
2 iωt

∞∑
n=0

(αe−iωt)n√
n!

ψn(x) = ψα(t)(x)e−
1
2 iωt, (78)

where α(t) = αe−iωt = |α|eiφe−iωt. Then, applying theorem 3.1 yields the
following expression for the time evolution

Ψα(x, t) = e−
1
2 iωtD(α(t))ψ0(x). (79)

To simplify calculations, we write the annihilation and creation operator in
terms of a new dimensionless variable ξ = x

√
mω
~ = x

x0
:

a =
1√
2

(ξ +
d

dξ
) (80)

a† =
1√
2

(ξ − d

dξ
). (81)

We insert these expressions in the exponent of the displacement operator and
find

αa† − α∗a =
α(t)√

2
(ξ − d

dξ
)− α∗(t)√

2
(ξ +

d

dξ
)

=
ξ√
2

(α(t)− α∗(t))− 1√
2

d

dξ
(α(t) + α∗(t))

=
√

2i Im(α(t))ξ −
√

2 Re(α(t))
d

dξ
. (82)
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Filling in this result in (79) yields:

Ψα(x, t) =

(
1

x2
0π

)1/4

e−
1
2 iωte

√
2i Im(α(t))ξ−

√
2 Re(α(t)) ddξ e

−ξ2
2 .

This expression is not explicit just yet, but it can be rewritten to the explicit
solution. First we state the final result:

Ψα(x, t) =

(
1

x2
0π

)1/4

e−
1
2 iωte

√
2α(t)ξ− ξ

2

2 −Re(α(t))α(t), (83)

which is derived below.

Proof. For this proof we follow the approach of [11]. We start by writing

D =
√

2i Im(α(t))ξ −
√

2 Re(α(t))
d

dξ
.

In order to calculate

eDe−
ξ2

2 = (1 +D +
1

2!
D2 + . . . )e−

−ξ2
2 , (84)

we start by considering the linear and quadratic term in the operator expansion.
For the linear term, we have

De−
ξ2

2 =

(√
2i Im(α(t))ξ −

√
2 Re(α(t))

d

dξ

)
e−

ξ2

2

=
(√

2i Im(α(t))ξ +
√

2 Re(α(t))ξ
)
e−

ξ2

2

=
√

2α(t)ξe−
ξ2

2 ,

and for the quadratic term

D2e−
ξ2

2 =
√

2α(t)Dξe−
ξ2

2

=
√

2α(t)

(√
2i Im(α)ξ −

√
2 Re(α(t))

d

dξ

)
ξe−

ξ2

2

= (2α(t)i Im(α(t))ξ2 − 2α(t) Re(α(t)) + 2α(t) Re(α(t))ξ2)e−
ξ2

2

= (2α(t)2ξ2 − 2α(t) Re(α(t)))e−
ξ2

2 .

Inserting both results into (84) yields

eDe−
ξ2

2 = (1 +
√

2α(t)ξ − Re(α(t))α(t) +
2α(t)2ξ2

2!
+ . . . )e−

ξ2

2 , (85)

which shows the linear term and the first part of the quadratic term in the end
result of the expansion. Hence, the result of (83) is obtained by rewriting this
expansion to an exponential.
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From the result of (83) we can see that coherent states have almost Gaussian
wave functions. For the probability density of coherent states over time, we
find:

|Ψα(x, t)|2 = Ψα(x, t)Ψ∗α(x, t)

=
1

x0
√
π
e
√

2(α(t)+α∗(t))ξ−ξ2−Re(α(t))(α(t)+α∗(t))

=
1

x0
√
π
e2
√

2 Re(α(t))ξ−ξ2−2 Re(α(t))2

=
1

x0
√
π
e−(ξ−

√
2 Re(α(t)))2

=
1

x0
√
π
e−(ξ−

√
2|α| cos(ωt−φ))2

=
1

x0
√
π
e
− (x−

√
2|α|x0 cos(ωt−φ))2

x20 . (86)

This is a Gaussian distribution with constant variance 1
2x

2
0 and oscillating mean√

2|α|x0 cos(ωt − φ). Wave functions of this form are called Gaussian wave
packets. The oscillating behaviour closely resembles the behaviour of classical
particles in the harmonic oscillator as in (36).

5.4 Minimum Uncertainty Relation

It was already stated that coherent states minimise Heisenberg’s uncertainty
relation. We consider a coherent state |α〉 and verify this explicitly. First, we
calculate

〈x〉 =

√
~

2mω
〈α|a+ a†|α〉 =

√
~

2mω
(α+ α∗)

〈p〉 = −i
√

~mω
2
〈α|a− a†|α〉 = −i

√
~mω

2
(α− α∗)

〈x2〉 =
~

2mω
〈α|(a+ a†)(a+ a†)|α〉 =

~
2mω

((α+ α∗)2 + 1)

〈p2〉 = −~mω
2
〈α|(a− a†)(a− a†)|α〉 = −~mω

2
((α− α∗)2 − 1).

We use this to calculate the uncertainties of x and p:

σ2
x = 〈x2〉 − 〈x〉2 =

~
2mω

(87)

σ2
p = 〈p2〉 − 〈p〉2 =

~mω
2

. (88)

Hence,

σxσp =
~
2
. (89)
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6 From the Ornstein-Uhlenbeck Process to the
Quantum Harmonic Oscillator and Back

We will now focus on the relation between the Ornstein-Uhlenbeck process and
the quantum harmonic oscillator. The main idea here is that the Hamiltonian
can be transformed, by a ground-state transformation, to the Markov generator
of a diffusion process. There are other examples of this kind for discrete quantum
spin systems and associated discrete state space Markov chains, but we will
limit ourselves to the correspondence between the quantum harmonic oscillator
and the Ornstein-Uhlenbeck process. We will use our knowledge about the time
evolution of normal distributions in the Ornstein-Uhlenbeck process as a tool
to calculate the evolution of the corresponding quantum states in the harmonic
oscillator.

6.1 Ground-State Transformation

The relation between the quantum harmonic oscillator and the Ornstein-
Uhlenbeck process is best seen when we look at the Schrödinger equation
from a different point of view. The problem of finding solutions can also be
viewed as applying an operator to the initial wave function to obtain its time
evolution. First, we consider the one-dimensional Schrödinger equation with
initial condition Ψ(x, 0) = Ψ(x):

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+

1

2
mω2x2Ψ(x, t). (90)

We rewrite this to a new form and take ~
m = 1 for simplicity:

∂Ψ(x, t)

∂t
= −i

[
−1

2

∂2

∂x2
+

1

2
ω2x2

]
Ψ(x, t) = −iHsΨ(x, t), (91)

where we define the term in brackets as the Schrödinger operator Hs. In this
form it is evident that the solution is given by:

Ψ(x, t) =
(
e−itHsΨ

)
(x). (92)

Now an easy way to switch from quantum mechanics to the field of diffusion
and Markov theory is by simply replacing it by t, i.e. going from real time to
imaginary time:

Ψ(x, t) =
(
e−tHsΨ

)
(x). (93)

We see that the resulting equation is of the same form as (11). Therefore, if Hs

would be a Markov generator, the unique solution to (93) would be given by
the corresponding semigroup and the initial Ψ. Unfortunately in our case, Hs

is not a Markov generator yet. For a Markov generator L we must have L1 = 0.
In order to satisfy this property we transform Hs in the following way:

(Hs − λ0)(ψ01) = 0.
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For proper normalization we also have to divide by ψ0. The claim is that this
so-called ground-state transformation is equal to minus the generator of the
Ornstein-Uhlenbeck process. We transform Hs into:

1

ψ0
(Hs − λ0) (ψ0f) =

1

ψ0

(
−1

2

∂2

∂x2
+

1

2
ω2x2 − 1

2
ω

)
(ψ0f)

= − 1

2ψ0

∂2(ψ0f)

∂x2
+

1

2
ω2x2f − 1

2
ωf

= −1

2

∂2f

∂x2
− 1

ψ0

∂ψ0

∂x

∂f

∂x
− 1

2ψ0

∂2ψ0

∂x2
f +

1

2
ω2x2f − 1

2
ωf

= −1

2

∂2f

∂x2
+ ωx

∂f

∂x
− 1

2
ω2x2f +

1

2
ωf +

1

2
ω2x2f − 1

2
ωf

= −
(
−ωx ∂

∂x
+

1

2

∂2

∂x2

)
f,

which is the generator L of the Ornstein-Uhlenbeck process with parameters
θ = ω and σ2 = 1. Hence,

1

ψ0
(Hs − λ0) (ψ0f) = −Lf. (94)

By using this relation we can rewrite the operator solution in (93) to:

(
e−tHsΨ

)
(x) =

(
ψ0e

t(L− 1
2ω) 1

ψ0
Ψ

)
(x). (95)

From theorem 1.1 it follows that

Stf = etLf,

where St is the semigroup of the Ornstein-Uhlenbeck process. Therefore we can
calculate the time evolution of certain quantum states by knowing the time
evolution of the corresponding distributions in the Ornstein-Uhlenbeck process.
Consider for example the time evolution of Ψ(x) = ψ0(x). We can calculate
this relatively easy since we know the time evolution of the constant function 1.
We have (

e−tHsΨ
)

(x) =

(
ψ0e

t(L− 1
2ω) 1

ψ0
ψ0

)
(x)

= ψ0(x)e−
1
2ωtSt1

= ψ0(x)e−
1
2ωt,

after which we change back to real time to obtain its time evolution

Ψ0(x, t) = ψ0(x)e−i
1
2ωt. (96)

This example is a bit cumbersome, but it shows that by knowing the time
evolution of distributions in the Ornstein-Uhlenbeck process, time evolutions
of the corresponding quantum states can be calculated. Information about
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the quantum harmonic oscillator can also be used to derive properties of the
semigroup of the Ornstein-Uhlenbeck process. For instance, consider the higher
energy eigenfunctions ψn. We know their time evolution from (66) and insert
these in equation (95) to obtain:

(
ψ0e

t(L− 1
2ω) 1

ψ0
ψn

)
(x) = ψn(x)e−(n+ 1

2 )ωt,

from which it follows that:

St

(
ψn
ψ0

)
=

(
ψn
ψ0

)
e−nωt. (97)

6.2 Invariant Distribution

The ground-state transformation described in (94) can be used to derive that
the stationary distribution is equal to ψ2

0 . We have for f ∈ D(L)∫
Lfdµ =

∫
ψ2

0Lfdx

= −
∫
ψ2

0

1

ψ0
(Hs − λ0)(fψ0)dx

= −
∫
ψ0(Hs − λ0)(fψ0)dx.

Because the Schrödinger operator Hs is self adjoint, we find∫
ψ0(Hs − λ0)(fψ0)dx =

∫
fψ0(Hs − λ0)ψ0dx.

Finally, we use the fact that Hsψ0 = λ0ψ0:∫
Lfdµ = −

∫
fψ0(Hs − λ0)ψ0dx = 0.

From theorem 1.2 we can now conclude that ψ2
0 is the invariant distribution.

Recall that

ψ0(x)2 =

√
ω

π
e−ωx

2

.

6.3 Quantum State Time Evolution

Consider a distribution µ and a function g, then∫
gdµSt =

∫
Stgdµ =

∫
Stg

dµ

dµ̃
dµ̃,

where µ̃ is the reversible distribution. Therefore we can interchange the roles of
dµ
dµ̃ and g in order to obtain:∫

gdµSt =

∫
Stg

dµ

dµ̃
dµ̃ =

∫
gSt

[
dµ

dµ̃

]
dµ̃.
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Hence,
dµSt
dµ̃

= St

[
dµ

dµ̃

]
. (98)

Recall that the behaviour of normal distributions under the Ornstein-Uhlenbeck
process is known from section 3.1.3. For dµ = fN (µ,σ2

0)(x)dx we have:

dµSt = fN (µe−ωt,σ2
0e
−2ωt+σ2

∗(1−e−2ωt))(x)dx. (99)

Combining (98) and (99) gives us the following relation:

St

[
fN (µ,σ2

0)

fN (0,σ2
∗)

]
=
fN (µe−ωt,σ2

0e
−2ωt+σ2

∗(1−e−2ωt))

fN (0,σ2
∗)

. (100)

This equation gives us enough information to be able to calculate the time

evolution for wave functions of the form Ψ(x, 0) = C
fN(µ,σ20)

ψ0
, where C is a

constant such that Ψ(x, 0) satisfies the normalization condition stated in (47).
We use this condition to calculate C:∫ ∞

−∞
|Ψ(x, 0)|2 dx =

∫ ∞
−∞
|C|2

f2
N (µ,σ2

0)

ψ2
0

dx

= |C|2 σ∗√
2πσ2

0

∫ ∞
−∞

e
− 1

σ20
(x−µ)2+ 1

2σ2∗
x2

dx

= |C|2 σ∗√
2πσ2

0

√
2π

2
σ2
0
− 1

σ2
∗

e
µ2

2σ2∗−σ
2
0

= 1.

For a converging integral we must have σ2
0 < 2σ2

∗. For C we find:

C =
4

√
2σ2

0

σ2
∗
− σ4

0

σ4
∗
e
− µ2

4σ2∗−2σ20 . (101)

Thus for a wave function

Ψ(x, 0) = C
fN (µ,σ2

0)

ψ0
= 4

√
1

πσ2
0

− 1

2πσ2
∗
e
− 1

2σ20
(x−µ)2+ 1

4σ2∗
x2− µ2

4σ2∗−2σ20 , (102)

we calculate its time evolution in imaginary time:

(
e−tHsΨ

)
(x) =

(
ψ0e

t(L− 1
2ω)C

1

ψ0

fN (µ,σ2
0)

ψ0

)
(x)

= Cψ0e
− 1

2ωtSt

[
fN (µ,σ2

0)

fN (0,σ2
∗)

]
= C

fN (µe−ωt,σ2
0e
−2ωt+σ2

∗(1−e−2ωt))

ψ0
e−

1
2ωt.
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Changing back to real time gives us the final result:

Ψ(x, t) = C
fN (µe−iωt,σ2

0e
−2iωt+σ2

∗(1−e−2iωt))

ψ0
e−

1
2 iωt. (103)

We rewrite this as

Ψ(x, t) = C
4
√

2πσ2
∗√

2πσ2
t

e
− (x−µe−iωt)2

2σ2t
+ x2

4σ2∗
− 1

2 iωt (104)

with
σ2
t = σ2

0e
−2iωt + σ2

∗(1− e−2iωt). (105)

6.4 Multidimensional Case

6.4.1 Harmonic Potentials along Orthogonal Axes

In this section, we will look at the quantum harmonic oscillator in higher
dimensions. Firstly, the case where all potentials along orthogonal axes are of
the harmonic form is considered. Then, the Schrödinger operator Hs is

Hs = −1

2
∇2 +

1

2

n∑
i=1

ω2
i x

2
i . (106)

The ground state of the time-independent Schrödinger equation is then simply
given by the product of the individual ground state functions ψxi,0 of each
coordinate xi. The corresponding energy is equal to the sum of the individual
energies.

ψ0(x) =

n∏
i=1

ψxi,0 =

n∏
i=1

(ωi
π

)1/4

e−
ωi
2 x

2
i (107)

with

E0 =
1

2
~

n∑
i=1

ωi. (108)

As in the one dimensional case the ground state ψ0(x) is the square root of a
(multivariate) normal distribution

ψ0(x) =

√
1

(2π)n/2|Σ∗|1/2
e−

1
2x

TΣ−1
∗ x, (109)

with covariance matrix

Σ∗ =


σ2
∗,1

σ2
∗,2

. . .

σ2
∗,n

 . (110)

The determinant of a matrix A is denoted by |A|.
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We perform the same transformation as in the one-dimensional case, but with
the new Schrödinger operator Hs, lowest eigenfunction ψ0 and corresponding
eigenvalue λ0. In this case we find:

1

ψ0
(Hs − λ0) (ψ0f) =

1

ψ0

(
−1

2
∇2 +

1

2

n∑
i=1

ω2
i x

2
i −

1

2

n∑
i=1

ωi

)
(ψ0f)

= − 1

2ψ0
∇2(ψ0f) +

1

2
f

n∑
i=1

ω2
i x

2
i −

1

2
f

n∑
i=1

ωi

= −1

2
∇2f − 1

ψ0

n∑
i=1

∂ψ0

∂xi

∂f

∂xi
− 1

2ψ0
f∇2ψ0

+
1

2
f

n∑
i=1

ω2
i x

2
i −

1

2
f

n∑
i=1

ωi

= −1

2
∇2f +

n∑
i=1

ωixi
∂f

∂xi
− 1

2
f

n∑
i=1

ω2
i x

2
i +

1

2
f

n∑
i=1

ωi

+
1

2
f

n∑
i=1

ω2
i x

2
i −

1

2
f

n∑
i=1

ωi

= −
n∑
i=1

(
−ωixi

∂

∂xi
+

1

2

∂2

∂x2
i

)
f.

This is equal to the generator L of the multivariate Ornstein-Uhlenbeck process.
Hence,

1

ψ0
(Hs − λ0) (ψ0f) = −

(
−xTD∇+

1

2
∇2

)
f = −Lf, (111)

where D is the diagonal matrix

D =


ω1

ω2

. . .

ωn

 . (112)

Since Σ∗ = 1
2D
−1, it follows from (32) that ψ0(x)2 is (again) the stationary and

reversible distribution. In a similar manner, we find the multivariate equivalent
to (100):

St

[
fN (µ,Σ0)

fN (0,Σ∗)

]
=
fN (e−Dtµ,e−DtΣ0e−Dt+Σ∗(1−e−2Dt))

fN (0,Σ∗)
. (113)

Therefore, we can evaluate the time evolution for a wave function of the form

Ψ(x, 0) = C
fN (µ,Σ0)

ψ0
.
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We use the normalization condition to calculate C:∫
Rn
|Ψ(x, 0)|2 dx =

∫
Rn
|C|2

f2
N (µ,Σ0)

ψ2
0

=
|C|2

√
|Σ∗|

(2π)n/2 |Σ0|

∫
Rn
e−(x−µ)TΣ−1

0 (x−µ)+ 1
2x

TΣ−1
∗ xdx

=
|C|2

√
|Σ∗|

(2π)n/2 |Σ0|
e−

1
2µ

TΣ−1
∗ µ∫

Rn
e−

1
2x

T (2Σ−1
0 −Σ−1

∗ )x−µTΣ−1
0 µ+2µTΣ−1

0 xdx

=
|C|2

|Σ0|

√
|Σ∗|∣∣2Σ−1

0 − Σ−1
∗
∣∣e−µTΣ−1

0 µ+2µTΣ−1
∗ (2Σ−1

0 −Σ−1
∗ )−1Σ−1

∗ µ

=
|C|2√∣∣2Σ0Σ−1
∗ − Σ2

0Σ−2
∗
∣∣e−µTΣ−1

0 µ+2µT (2Σ−1
0 Σ2

∗−Σ∗)
−1µ

= 1.

In order to have a converging integral, we must have that Σ−1
0 − 1

2Σ−1
∗ is positive

definite. For C we find

C =
4

√∣∣2Σ0Σ−1
∗ − Σ2

0Σ−2
∗
∣∣e 1

2µ
TΣ−1

0 µ−µT (2Σ−1
0 Σ2

∗−Σ∗)
−1µ. (114)

Then, in imaginary time we have(
e−tHsΨ

)
(x) =

(
ψ0e

t(L− 1
2 |D|)

1

ψ0
C
fN (µ,Σ0)

ψ0

)
(x)

= Cψ0e
− 1

2 |D|tSt

[
fN (µ,Σ0)

fN (0,Σ2
∗)

]
= Ce−

1
2 |D|t

fN (e−Dtµ,e−DtΣ0e−Dt+Σ∗(1−e−2Dt))

ψ0
.

Changing back to real time gives us the final result:

Ψ(x, t) = Ce−
1
2 i|D|t

fN (e−iDtµ,e−iDtΣ0e−iDt+Σ∗(1−e−2iDt))

ψ0
(115)

= Ce−
1
2 i|D|t

4
√
|Σ∗|√

(2π)n/2|Σt|
e

1
2 (x−µ(t))TΣ−1

t (x−µ)+ 1
4x

TΣ−1
∗ x, (116)

where
Σt = e−iDtΣ0e

−iDt + Σ∗(1− e−2iDt) (117)

and
µ(t) = e−iDtµ. (118)

Note that if Σ0 is a diagonal matrix, then the obtained result is the product
of n one dimensional solutions. This result is quite straightforward, since
the Hamiltonian and the initial condition are simply the product of n one-
dimensional cases.
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6.4.2 Harmonic Potentials in Arbitrary Directions

If we have harmonic potentials in arbitrary directions, then we consider the
Schrödinger operator in its general form:

Hs = −1

2
∇2 +

1

2
〈x, Ax〉, (119)

where A is a real, positive definite matrix. Note that in the preceding section
we looked at the case where A was a diagonal matrix with eigenvalues ω2

i . As
was explained in section 4.1.2, we can consider A to be symmetric without loss
of generality. Since A is symmetric and positive definite, it has strictly positive
eigenvalues, say {ω2

1 , ω
2
2 . . . , ω

2
n}. Furthermore, it can be diagonalised by some

orthogonal matrix Q:

A = Q−1D2Q = QTD2Q, (120)

with

D =


ω1

ω2

. . .

ωn

 . (121)

The rows in Q correspond to the eigenvectors of these eigenvalues. We define

B = QTDQ. (122)

Note that B is again real and symmetric with eigenvalues {ω1, ω2 . . . , ωn} and
B2 = A. By substituting (120) in 〈x,Ax〉, we find

〈x, Ax〉 = 〈x, QTD2Qx〉 = (Qx)TD2Qx = 〈Qx, D2Qx〉. (123)

Let g : Rn → Rn be the function given by g(x) = Qx, then g−1(x) = QTx. We
use

f(x) = (f ◦ g−1 ◦ g)(x) = (f ◦ g−1)(Qx), (124)

together with (123) to rewrite the Schrödinger operator in (119) to:

Hsf(x) = −1

2
∇2(f◦g−1)(Qx)+

1

2
〈Qx, D2Qx〉(f◦g−1)(Qx) = H̃sf̃(x̃), (125)

where

x̃ = Qx

f̃ = (f ◦ g−1)

H̃s = −1

2
∇2 +

1

2
〈x̃, D2x̃〉.

The Laplacian is invariant under orthogonal transformations [12]. Hence,

H̃s = −1

2
∇̃2 +

1

2
〈x̃, D2x̃〉, (126)
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where

∇̃2 =

n∑
i=1

∂

∂x̃2
i

.

The resulting operator H̃s is identical to the Hs in (106), where we took the
harmonic potentials to be along orthogonal axes. The ground state ψ0 is defined
analogously:

ψ0(x) = ψ̃0(x̃) =

√
1

(2π)n/2|Σ∗|1/2
e−

1
2 x̃

TΣ−1
∗ x̃

=

√
1

(2π)n/2| 12D−1|1/2
e−

1
2 (Px)T ( 1

2D
−1)−1(Px)

=

√
1

(2π)n/2| 12B−1|1/2
e−

1
2x

T ( 1
2B
−1)−1x

=
√
fN (0, 12B

−1)(x). (127)

We perform the same transformation to obtain:

1

ψ0(x)
(Hs − λ0) (ψ0f) (x) =

1

ψ̃0(x̃)

(
H̃s − λ0

)(
ψ̃0f̃

)
(x̃)

= −
(
−x̃TD∇̃+

1

2
∇̃2

)
f̃(x̃)

= −
(
−xTQTDQ∇+

1

2
∇2

)
f(x)

= −
(
−xTB∇+

1

2
∇2

)
f(x).

We found that the transformed operator is again equal to minus the generator
L of the multivariate Ornstein-Uhlenbeck process, but in this case L contains
the non-diagonal, symmetric matrix B:

1

ψ0(x)
(Hs − λ0) (ψ0f) (x) = −

(
−xTB∇+

1

2
∇2

)
f(x) = −Lf(x). (128)

From (127) and (32) it follows that ψ0(x) is again the reversible distribution.
Hence, we find the following equation in a similar manner as for the orthogonal
case stated in (113):

St

[
fN (µ,Σ0)

fN (0, 12B
−1)

]
=
fN (e−Btµ,e−BtΣ0e−Bt+

1
2B
−1(1−e−2Bt))

fN (0, 12B
−1)

. (129)

Therefore, we can evaluate the time evolution for a wave function of the form

Ψ(x, 0) = C
fN (µ,Σ0)

ψ0
.
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In order to have a converging integral in the normalization condition, we must
have that Σ−1

0 −B is positive definite. For C we find

C =
4

√
|4Σ0B − 4Σ2

0B
2|e 1

2µ
TΣ−1

0 µ−2µT (Σ−1
0 B−2−B−1)−1µ. (130)

Then, in imaginary time we have

(
e−tHsΨ

)
(x) =

(
ψ0e

t(L− 1
2λ0) 1

ψ0
C
fN (µ,Σ0)

ψ0

)
(x)

= Cψ0e
− 1

2 |B|tSt

[
fN (µ,Σ0)

fN (0, 12B
−1)

]

= Ce−
1
2 |B|t

fN (e−Btµ,e−BtΣ0e−Bt+
1
2B
−1(1−e−2Bt))

ψ0
.

Changing back to real time gives us the final result:

Ψ(x, t) = Ce−
1
2 i|B|t

fN (e−iBtµ,e−iBtΣ0e−iBt+
1
2B
−1(1−e−2iBt))

ψ0

= Ce−
1
2 i|B|t

4

√
| 12B−1|√

(2π)n/2|Σt|
e

1
2 (x−µ(t))TΣ−1

t (x−µ)+ 1
4x

TΣ−1
∗ x, (131)

where

Σt = e−iBtΣ0e
−iBt +

1

2
B−1(1− e−2iBt) (132)

and
µ(t) = e−iBtµ. (133)
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7 Conclusion

By performing a ground-state transformation on the Hamiltonian of the quantum
harmonic oscillator and by going from real to imaginary time, we were able to
calculate quantum state time evolutions from the evolutions of the corresponding
distributions in the Ornstein-Uhlenbeck process (and vice versa), which in our
case were Gaussian distributions.

7.1 One-Dimensional Case

In section 3.1.3 we have calculated that Gaussian distributions in the Ornstein-
Uhlenbeck process remain normally distributed over time, but with changing
mean and changing variance.

N (µ, σ0)
t→ N (µe−θt, σ2

0e
−2θt + σ2

∗(1− e−2θt)) (134)

Hence, the mean will approach zero over time and the variance will converge
to the invariant variance σ2

∗. In section 6.3 we found the time evolution of
the one-dimensional quantum states that corresponded with these Gaussian
distributions. The final result we obtained was

Ψ(x, t) = C
4
√

2πσ2
∗√

2πσ2
t

e
− (x−µe−iωt)2

2σ2t
+ x2

4σ2∗
− 1

2 iωt (135)

with
σ2
t = σ2

0e
−2iωt + σ2

∗(1− e−2iωt). (136)

The value corresponding to the mean value of the Gaussian distribution is equal
to µe−iωt. This value is now circling around zero in the complex plane instead
of converging to it. This follows from the switch made from real to imaginary
time causing the exponential to be complex. Therefore, |Ψ(x, t)|2 will show an
oscillating, periodic behaviour from side to side with period T = 2π

ω . This is
equal to the behaviour of the classical harmonic oscillator as in section 4.1.1.
Likewise, the value of σ2

t is also now circling around the value of σ2
∗ in the

complex plane. From (136) we have

σ2
t − σ2

∗ = (σ2
0 − σ2

∗)e
−2iωt. (137)

Therefore, limT→∞
1
T

∫ T
0

(σ2
t − σ2

∗)dt = 0. This type of convergence is called
Cesaro convergence.

Because of the complex value of σ2
t , evaluating the function |Ψ(x, t)|2 analytically

soon becomes really messy. In order to get a view of the function |Ψ(x, t)|2
nonetheless, Matlab was used to plot it over time. In figure 5 the function
|Ψ(x, t)|2 is depicted for times t = 0, t = T

4 and t = T
2 .
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Figure 5. Plot of |Ψ(x, t)|2 for times t = 0, t = π
2ω

and t = π
ω

. The parameters were
set to: µ = 1.2 m, ω = 3 rad s−1, σ0 = 1

2
m and σ∗ = 1 m. The harmonic potential is

plotted as well, but scaled by a factor of V ∗ = V/(10~).

7.2 Multidimensional Case

In section 3.2.3 we have calculated the multivariate analogue of 134. The matrix
B in the definition of the multivariate Ornstein-Uhlenbeck was considered
symmetric and invertible. We found

N (µ,Σ0)
t→ N

(
e−Btµ, e−BtΣ0e

−Bt +
1

2
B−1(1− e−2Bt)

)
(138)

Again, the mean converges to zero and the covariance matrix converges to the
invariant covariance matrix 1

2B
−1. For the case with harmonic potentials along

orthogonal axes, the matrix B was equal to the (real) positive definite diagonal
matrix D and for the case with harmonic potentials in arbitrary directions, B
was more general, i.e. real, positive definite, invertible and symmetric. The
final result we obtained was

Ψ(x, t) = Ce−
1
2 i|B|t

4

√
| 12B−1|√

(2π)n/2|Σt|
e

1
2 (x−µ(t))TΣ−1

t (x−µ)+ 1
4x

TΣ−1
∗ x, (139)

where

Σt = e−iBtΣ0e
−iBt +

1

2
B−1(1− e−2iBt) (140)

and
µ(t) = e−iBtµ. (141)

Note that for the diagonal case we introduced Σ∗ = 1
2D
−1. We see that Σt and

µ(t) show the same behaviour as their one-dimensional analogues.
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7.3 Coherent States

In chapter 5 we derived that coherent states are Gaussian wave packets with
oscillating mean and constant variance. If we set σ2

0 = σ2
∗, then the variance of

the Gaussian in the Ornstein-Uhlenbeck process remains constant over time.
Therefore, starting from this distribution we should expect to arrive at the time
evolution of coherent states. We have

Ψ(x, t) =
1

4
√

2πσ2
∗
e
− (x−µe−iωt)2

2σ2∗
+ x2

4σ2∗
− 1

2 iωt−
µ2

2σ2∗ . (142)

We rewrite this expression by substituting σ2
∗ = 1

2ω = x2

2ξ2 = 1
2x

2
0

Ψ(x, 0) =

(
1

x2
0π

)1/4

e−
1
2 iωte

− x
2−2µxe−iωt+µ2e−2iωt

2σ2∗
+ x2

4σ2∗
− µ2

2σ2∗

=

(
1

x2
0π

)1/4

e−
1
2 iωte

− x2

4σ2∗
+µxe−iωt

σ2∗
− µ2

2σ2∗
(1+e−2iωt)

=

(
1

x2
0π

)1/4

e−
1
2 iωte−

ξ2

2 +
√

2µe
−iωt
σ∗ ξ−Re(µe

−iωt
σ∗ )µe

−iωt
σ∗ ,

where α(t) = µe−iωt

σ∗
. The resulting expression is indeed equal to the time

evolution of the coherent state with eigenvalue α = µ
σ∗

(83). For |Ψ(x, t)|2 we
find the following expression:

|Ψ(x, t)|2 =
1√

2πσ2
∗
e
− (x−2µ cos(ωt))2

2σ2∗ . (143)

This is a Gaussian with oscillating mean 2µ cos(ωt) and constant variance σ2
∗.

Substituting Σ0 = Σ∗ and Σ0 = 1
2B
−1 in the orthogonal case and non-orthogonal

case respectively gives us the multidimensional analogue of the coherent states
defined in chapter 5. The probability densities are multivariate Gaussian
distributions with oscillating means µ(t) and QTµ(t) (and constant covariance
matrices). Here

µ(t) =


2µ1 cos(ω1t)
2µ2 cos(ω2t)

...
2µn cos(ωnt)

 . (144)
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7.4 Overview

An overview of the conclusions for the one-dimensional case is given in table
1. The same overview for the multidimensional case does not bring us new
insights.

Table 1. Overview of some corresponding concepts and corresponding properties of
the Ornstein-Uhlenbeck process and the quantum harmonic oscillator.

Ornstein-Uhlenbeck process ↔ Quantum harmonic oscillator

Generator Hamiltonian

etL e−itH

Evolution of distributions Quantum state time evolutions

N (µ, σ0)
t→ N (µe−θt, σt) General result of (135)

N (µ, σ∗)
t→ N (µe−θt, σ∗) Coherent state time evolution

µ
t→ µe−θt Oscillating behaviour of |Ψ(x, t)|2

σ2
t converges to σ2

∗ σ2
t Cesaro converges to σ2

∗
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