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1
Introduction

1.1. Motivation
In the past decade, a great deal of attention has been drawn to the vital signs detection in
various fields of modern life with the ever-increasing needs of security or health care [1, 2].
Respiratory rate and heart beat rate are two most important components of vital signs
which are the main features while detecting or monitoring the health conditions of human
beings. Traditional methods of vital signs monitoring, including electrocardiography
(ECG) analysis with straps and electrodes are applicable with intrusive or contact devices
and photoplethysmography (PPG), which has essential limitations in multiple scenarios
such as burned skin, sudden infant death syndrome (SIDS), etc. [3–5]. Besides, with
rapid development of smart houses or automotives, the desire of contactless vital signs
monitoring is dramatically growing while radar technology is considered as one of the
most promising methods.

Contactless vital signs detection or monitoring is mainly based on the periodic motion
of the chest due to the cardiopulmonary activity. The study of radar technology for vital
signs detection can be traced back to the 1970’s which utilizes the radar’s ability to detect
the motion of respiratory movement [6]. Later, more research was conducted to improve
the accuracy and reliability of vital signs detection, e.g. [7–9].

1.2. Existing approaches and goals of the thesis
Two types of radars are commonly used for vital signs monitoring: ultra wideband
(UWB) radar and continuous wave (CW) radar.

According to the definition provided by Federal Communications Commission (FCC)
and modified in 2002, a device is called UWB when its operational fractional bandwidth
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2 1. Introduction

B/fc > 0.20 or when its absolute bandwidth B > 0.5 GHz [10]. Short pulses were used
in first UWB radars and in some modern ones. The larger the bandwidth of the pulses
is, the shorter is the duration time of the pulses, minimizing multipath interference [11].
However, they suffer from the complexity of its range profile resulting from different
reflection properties at different layers of the human body and the widening effect on
frequency spectrum at high frequencies of the signal [12]. Most of modern UWB radars
transmits chirps with large duty cycle and obtain high range resolution by range com-
pression. Besides, the monitoring of heart beat rate requires downrange accuracy of 0.3

mm [13], thus much higher bandwidth is needed, resulting in higher cost of the radar
system.

Unmodulated continuous wave (CW) radar, referred to as Doppler radar, provides
good performance in measuring target motion parameters by simply evaluating the phase
change at each moment. Therefore, using the phase of one radio frequency, minor
displacement of skin on the chest of the human body caused by breathing and heart
beat can be detected [14]. This is achieved by applying interferometric theory, i.e.,
only relative movement is measured. One major disadvantage of this technique is that
Doppler radar is not able to determine the ranges of possible targets and further, not
able to know which target is measured if there is more than one target observed since
its signal is continuously transmitted and one cannot distinguish those reflected signals
from different targets within the area of measurement in the received signal.

In order to overcome these drawbacks mentioned above, frequency modulation con-
tinuous wave (FMCW) radar technique is considered by taking its advantage of being
able to estimate ranges of different targets while monitoring their vital signs. By taking
the beat frequency between the transmitted signal and received signals, range estima-
tion can be done. And by taking the phase evaluation of specific beat frequency in its
range profile, the accuracy of minor displacement measurement can be achieved up to a
few micrometers [15], much less than the typical displacements induced by respiration
(ranging from 3 mm to 11 mm [16]), and the ones caused by heartbeat (ranging from
0.3 mm to 0.8 mm [13]) so vitals signs are detectable with this technique.

In the application scenario in automotives, a multiple-input and multiple-output
(MIMO) system is considered in order to focus our estimator in a certain direction. With
antenna array, direction of arrival (DoA) can be estimated, i.e., azimuthal information
can be obtained. Together with beamforming technique for MIMO system, clutter in the
other direction can be eliminated thus increasing SCR of the signal in desired direction.
Additionally, azimuth positioning can be achieved with MIMO system to help radar
localize the position of the target in 2D plane horizontally or even in 3D space. With one
dimension array, the spatial room inside auto are divided into a 2D matrix whose pixels



1.2. Existing approaches and goals of the thesis 3

are defined by the cross- and down-range resolutions of the radar system. Vital signs
detection and monitoring algorithms are then implemented in each pixel. Therefore,
different passengers in automotive can be separated and monitored simultaneously.

Extensive research has been done in different aspects to measure the vital signs.
They often have to deal with low signal-to-noise ratio (SNR) and low signal-to-clutter
ratio (SCR) of the reflected signal and multiple targets can be present in the observed
area. The MIMO system is used in multi-person scenarios and is able to estimate their
DoAs while focusing the signals in desired directions and reducing clutter from other
directions at the meantime, as presented in [17]. J. Aho et al. [18] demonstrated that vital
signs measurement can be performed with a multi-antenna system and various adaptive
signal processing techniques to increase SNR and improve measurement accuracy. S.
Wang et al. [19] monitored vital signs using the UWB 80GHz FMCW radar and showed
the possibility to detect respiration rate from the left side of the human body with
a relatively low error rate. S. Ayhan et al. [20] demonstrated their measurements of
vital signs with a 96GHz radar with both time and frequency method. Doppler phase
history is extracted for estimating frequencies of both breathing and heart rate [21].
The statistical algorithm with wavelet decomposition is used to analyze heart beat in
term of the phase history in [22]. Independent component analysis of respiration and
heart rate with a Doppler radar designed to operate with a Phase-Locked-Loop (PLL) in
phase demodulation stage is performed to retrieve respiratory and heart rate information
from baseband signal in [23]. Random body movement can be cancelled by taking
data from both sides of human body and performing complex signal demodulation [24].
Arctangent demodulation is proposed to solve the problem of DC offsets occurring at
both in-phase and quadrature channels in [25]. Undesired clutter can be suppressed
by applying the principle component analysis (PCA) as shown in [26]. However, these
studies are mainly focusing on monitoring the vital signs either in simply scenario, or
with a long-term observation time (e.g. 10 s or above) rather than sequential tracking.
However, sequential tracking of vital signs has not been investigated yes. At the same
time, in the closely related field of tracking human activities, Kalman filter and particle
filter are widely applied e.g. [27–29].

Although many works has been done for vital signs detection, a great deal of chal-
lenges still exist. Separate measurements of vital signs in case of multiple persons and
multi-path environment is necessary considering complicated real scenarios. The ampli-
tudes of both two vital signs, respiration and heartbeat, are very weak to be detected
since their non-contact detection is based on the minor movement on the surface skin on
the chest, as explained in Chapter 2. The power of the signals from the chest is much
lower compared to the power of clutter, resulting in low SCR. Moreover, perfect models



4 1. Introduction

of vital signs does not exist, which poses additional uncertainty to their monitoring.
Together with the problems of too many unknown parameters of vital signs and extra
phase due to range, vital signs tracking is challenging.

In this thesis, a sequential estimator is proposed to track the features of vital signs,
including the frequency and amplitude of both respiration and heartbeat. The estimator
is used with a 77GHz commercial mm-wave radar. Simulations based on microwave
propagation model and radar signal models have been done to evaluate the performance
of the proposed estimator together with the real experimental verification.

1.3. Outline of the Thesis
The thesis is structured as follows. Chapter 2 introduces and describes the physiology of
the cardiopulmonary activity, breathing and heart beats. In addition, the signal model
for linear frequency modulation continuous wave (LFMCW) radar technology is pre-
sented in detail. In Chapter 3, accurate motion tracking of cardiopulmonary activity is
demonstrated by extracting phase history and estimators for frequencies and amplitudes
of vital signs are introduced. These methods are evaluated in numerical simulations and
improved with some modifications in Chapter 4. Experimental verification is then pre-
sented in Chapter 5. Finally, both results and their corresponding contributions are
summarized in Chapter 6.



2
Models for Vital Sign Monitoring

With the radar’s ability to detect vital signs, non contact monitoring become possi-
ble, which does not constrain human activity and be preformed continuously. This
great advantage of non contact monitoring is that it can be used to detect and record
householders’ vital signs activities in future smart house or the drivers’ and customers’
conditions in future automobiles.

In this chapter, the technology of linear frequency modulation continuous wave
(LFMCW) radar is first demonstrated, together with its signal model. By analyzing
the structure of the signal, the radar demonstrates itself the ability to reduce the signal-
to-clutter (SCR) ratio by range cell isolation and shows the relationship between vital
signs activity and phase shift in the particular range cell. The basic physiology behind
cardiopulmonary is then introduced with its simplified mathematical models. The radar
responses of vital signs are presented and analyzed with different mathematical models
introduced previously.

2.1. LFMCW Radar
Since range resolution of radar is usually determined by the limited operational band-
width, accurate movement of vital signs cannot be tracked. For example, a modern
commercial radar operating at center frequency of fc = 77 GHz with a bandwidth of
B = 4 GHz provides range resolution of δr = 37.5 mm, larger than ∆R = 11 mm, the
maximum possible displacement of vital signs. Therefore, the relative motion of the
chest should be measured which is exactly the aim of vital signs detection. In order
to endue radar with the ability to monitor multiple targets simultaneously, LFMCW
technology is used. This ability also contributes to the reduction of SCR by separating

5
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targets into different range cells.

In this section, the basic theory of LFMCW radar is described. And by analyzing its
signal processing and their derivations, demonstrate its ability to determine the range
and velocity of obsrved targets.

2.1.1. LFMCW Signal Model
LFM, as the term suggests, is featured by it instantaneous changing frequency within
each pulse called sweep or chirp, and can be expressed as:

f(t) = fc +
B

Tc
t = fc + βt, t ∈ [0, Tc], (2.1)

where fc is the carrier (center) frequency, B is the bandwidth, Tc is the chirp duration
and β defines the ramp rate. This LFM chirp is illustrated in frequency domain in Figure
2.1.

Chirp 1

tdwell,1 tdwell,2tsettle,1 tsettle,2treset,1 t

fchirp,stop

fchirp,start

Effective
Bandwidth

f

Bandwidth

Chirp 2

treset,2

Figure 2.1: Chirp in frequency-time plot

Accordingly, the LFM sweep to be transmitted can be expressed as:

sTx(t) = hTx · exp

(
j2π ·

(
fct+ β

t2

2

))
, (2.2)

where hTx is the amplitude of the transmitted waveform.

When the transmitted signal illuminates the target, it reflects back to the receiver
of the radar system. The received signal is a copy of the transmitted signal with certain
delay τ(t) and complex amplitude hRx, proportional to the target radar cross-section
(RCS), attenuation and pre-processing, which can be written as:
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sRx(t) = hRx · exp

(
j2π ·

(
fc(t− τ(t)) + β

(t− τ(t))2

2

))
. (2.3)

Then, a process called deramping is applied to the received signal, which consist of
mixing it with the transmitted signal and filtering out the high-frequency component,
as demonstrated in Figure 2.2. The obtained signal is called beat signal and can be
expressed as:

sb(t) = sTx(t) · s∗Rx(t)

= hb · exp

(
j2π ·

(
fcτ(t) + βτ(t)t− β τ(t)2

2

))
,

(2.4)

where (·)∗ denotes the complex conjugate operation.

Chirp 1, Ts

τ

t

fchirp,stop

fchirp,start

Instantaneous Frequency

Bandwidth

t

Beat Frequency

ƒb

ƒb

Figure 2.2: Deramping of LFM signal

The first term of the phase 2πfcτ(t) in (2.4) indicates the phase change over slow
time and is called slow-time phase history while the third term 2πβτ(t)2/2 is assumed
negligible and thus it can be ignored [30].

For any point scatterer, the beat signal become a sinusoid with a frequency as inferred
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from (2.4). This frequency is called beat frequency and is written as:

fb = βτ(t). (2.5)

Applying Fourier transform to the beat signal in (2.4) over fast-time, the equation
becomes:

Sb(f) = hbTc · exp

(
j2π · fcτ(n)

)
sinc

(
Tc (f − βτ(n))

)
, (2.6)

where sinc(x) = sin(πx)/(πx) and n indicates the slow-time.

Assuming that the target is vibrating in range around a point at a distance R0 and
no range cell migration occurs, the delay τ(n) over slow-time can be written as:

τ(n) =
2 (R0 + ∆R(n))

c
, (2.7)

where ∆R(n) denotes the minor displacement of the target.

Substitute (2.7), (2.6) becomes:

Sb(f) = hbTc · exp

(
j

4πfc
c
·
(
R0 + ∆R(n)

))
sinc

(
Tc

(
f − β 2(R0 −∆R(n))

c

))
= hbTc exp

(
4πfc
c
R0

)
exp

(
j

4πfc
c
·∆R(n)

)
sinc

(
Tc

(
f − β 2(R0 −∆R(n))

c

))
.

(2.8)

With no range cell migration assumption, (2.8) can be approximated with:

Sb(f) ≈ hbTc exp

(
4πfc
c
R0

)
exp

(
j

4πfc
c
·∆R(n)

)
sinc

(
Tc

(
f − β 2R0

c

))
. (2.9)

Then, the beat frequency becomes:

fb ≈ β
2R0

c
. (2.10)

Therefore, the range of the target can be estimated from beat frequency as:

R0 =
cfb
2β

. (2.11)

Since the width of the main beam of the sinc function in (2.6) is:

Tc
2β

c
=

c

2B
,
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the range resolution is determined as:

∆R =
c

2B
. (2.12)

2.2. Physiology of Cardiopulmonary Activity
In this section, the basic physiology of cardiopulmonary activity is briefly explained.
With our main aim to estimate the frequency and amplitude of both breathing and
heartbeat, it is common to model them as independent activities regardless of the rela-
tionship existing between them.

2.2.1. Heart Beat
Heart beat or cardiac cycle consists of two main periods. One is called diastole when
heart muscle relaxes to refill venous blood and the other one coming behind is called
systole with contraction of the heart muscle to pump blood into arteries. Traditional
methods to detect the activity of heart beat is to measure the potentials induced by the
heart electrical currents on the surface of prothorax as shown in Figure 2.3. The record
of these potentals is referred as electrocardiogram (ECG).

Figure 2.3: The electrocardiogram and changes in ventricular volume of cardiac cycles with sinusoidal
approximation in dashed line [31].

Since an electromagnetic wave of frequency 77GHz will attenuate within the layer of
skin, the measurement of heartbeat with radar is based on the physical motion caused by
heart muscles rather than those muscles themselves. As a result, detection of a heartbeat
corresponds to detecting the vibration of the left side of the prothorax exactly above the
location of the heart and its muscles.

For a healthy adult, the typical heart rate is from 60 to 100 beats per minute, or
equivalently from 1 to 1.667 Hz. The typical displacement of prothorax induced by heart
muscles is ranging from 0.3 to 0.8 mm [13].

Since the focus of the project is to estimate the frequency and amplitude of the heart
beat movement of the surface skin on chest, it is enough to estimate those parameters
from the first order of the Fourier expansion of the real motion, i.e., the sinusoid with the
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heartbeat frequency. Therefore, for simplicity, the movement of the surface of prothroax
due to heart beat can be modelled as a sinusoidal displacement:

Rh(t) ≈ αh · sin(2πfh · t+ ϕh). (2.13)

Another two alternatives to model chest movement caused by heartbeat are | sin |
and (sin)3 [32], which can be expressed as:

Rh(t) ≈ αh · sin |2πfh · t+ ϕh|,

Rh(t) ≈ αh · sin3(2πfh · t+ ϕh).
(2.14)

2.2.2. Respiration
The respiratory system is vital to human beings which provides the tissues of the hu-
man body with oxygen and clears the blood of the gaseous waste product like carbon
dioxide. In order to finish this gas exchange, a complete breathing cycle has two main
motions, inspiration and expiration. These activities are mainly completed by the re-
sponsible organ of lung located in the thorax. Lung expansion leads to inhalation and
lung contraction corresponds to exhalation. Thanks to changes of lung volume caused
by respiratory muscles, including diaphragm and certain intercostal muscles, prothorax
moves accordingly as well as the chest cavity as shown in Figure 2.4.

Figure 2.4: Changes in lung volume and pleural pressure during normal breathing [31]. (Sinusoidal
approximation in dashed line.)

The prothorax movement due to respiratory activity then leads to the phase shift of
reflected wave and can be detected by the radar.

For a healthy adult, the typical respiratory rate is from 6 to 20 breaths per minute.
That is, respiratory rate is from 0.1 to 0.33 Hz. The typical displacement of prothorax
induced by respiration is ranging from 3 to 11 mm [16].

Since the focus of the project is to estimate the frequency and amplitude of the
respiratory movement of the surface on chest, it is enough to estimate those parameters
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from the first order of the Fourier expansion of the real motion, i.e., the sinusoidal
mode with the same frequency as the real motion. Therefore, like the case of heartbeat,
the movement of the skin of prothroax due to breathing activity can be modelled as a
sinusoidal displacement as:

Rr(t) ≈ αr · sin(2πfr · t+ ϕr). (2.15)

Like the movement modelling of heartbeat, chest movement caused by respiration
can be modelled with two alternatives as | sin | and (sin)3 [32].

Vital signs Frequency (Hz) Amplitude (mm)

Respiration [0.1, 0.33] [3, 11]
Heartbeat [1, 1.667] [0.3, 0.8]

Table 2.1: Typical frequencies and amplitudes of vital signs

2.3. Radar Response of Vital Signs
With the basic physiology mentioned above, it is known that the detection for the
motions of both respiration and heartbeat is based on the movement of the surface skin
of prothroax. Therefore, considering the sin modelling for both vital signs, the position
of the the surface skin of prothroax at a distance R0 can be expressed as:

R(n) = R0 +Rr(n) +Rh(n)

= R0 + αr · sin(2πfr · n+ ϕr) + αh · sin(2πfh · n+ ϕh).
(2.16)

Since the displacement of vital signs is only several millimeters and even down to
sub-millimeters level and no range cell migration is assumed, phase history of the beat
signal is very important to monitoring vital signs. Assuming that no variation of the
human body back-scattering coefficient during the measurements, i.e., hb is constant in
time, the phase history φph(n) over slow-time as inferred from (2.9) can be written as:

φph(n) =
4πfc
c
·R(n)

=
4πfc
c

(R0 + αr · sin(2πfr · n+ ϕr) + αh · sin(2πfh · n+ ϕh)) .

(2.17)

Then, the range history over slow-time can be recovered from the phase history of
beat signal:

R(n) =
φph(n)c

4πfc
. (2.18)
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Therefore, in order to track the displacement of vital signs thus range history over
slow-time, the preservation of the phase history is required which means that coherence
maintenance of the radar system is necessary. Without coherence, only range profiles can
be obtained but not phase information which is used to extract the information of target
motion. This coherence maintenance does not only require the same waveform generation
for each chirp but also require to preserve the clock shifts between the generation and
data acquisition processes. As for the former one, the initial phase of each transmitted
chirp, as indicated by upward arrows in Figure 2.5, must be constant. As for the latter
one, the clock shifts must be constant and preserved and known such that there is no
extra unknown phase variable in (2.18).

Figure 2.5: Phase control of each chirp

It should be noticed that although coherence is well preserved, the range R0 can
not be retrieved from (2.18) due to the wrapping of phase with its periodicity of 2π.
Therefore, an extra phase φe occurs due to the wrapped phase caused by R0:

φe = wrap
[

4πfc
c
R0

]
, (2.19)

where wrap[·] denotes the wrapping process of phase into interval [0, 2π], which can be
written as:

wrap[x] = frac
( x

2π

)
× 2π. (2.20)

The phase history in (2.17) becomes:

φph(n) = φe +
4πfc
c

(αr · sin(2πfr · n+ ϕr) + αh · sin(2πfh · n+ ϕh)) . (2.21)
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The maximal velocity of the weakest respiration activity is:

vr,min = max

{
∂Rr(n)

∂t

}
= max

{
αr,min · 2πfr,min cos(2πfr,minn+ ϕr)

}
= αr,min · 2πfr,min
= 1.9× 10−3[m/s].

The maximal velocity of the weakest heart activity is:

vh,min = max

{
∂Rh(t)

∂t

}
= max

{
αh,min · 2πfh,min cos(2πfh,mint+ φ0,h)

}
= αh,min · 2πfh,min
= 1.9× 10−3[m/s].

The global maximal velocity of the weakest vital signs to be measured is:

vmin = min
{
vr,min, vh,min

}
= 1.9× 10−3[m/s].

In order to be able to measure the maximal velocity of the weakest chest movement
at fc = 77 GHz, the required observation time Td of the chirp train is:

∆v =
c

2Tdfc
≤ 10% · vmin

=⇒ Td ≥ 10× c

2fcvmin

≥ 10× 3.0× 108

2× 77× 109 × 1.9× 10−3

≥ 10× 1.0253

≥ 10.253[s].

Therefore, the required measurement time Td is at least 10.253 s and the coherent
processing interval (CPI) of 12 s is selected.

Considering only respiration activity and its sinusoidal model, the signal in the range
cell including R0 over slow-time can be written as:

s(n) = h exp (jφe) exp

(
j

4πfc
c

(αr · sin(2πfr · n+ ϕr))

)
, (2.22)

where h is the amplitude of the processed signal.
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The power spectrum of the phase history in the signal s(n) is shown in Figure 2.6,
within which only one frequency peak of 0.2 Hz is observed and corresponds to the
frequency of respiration fr = 0.2 Hz.

0 1 2 3 4
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0

P
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B
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Power Spectrum
(with Hamming window of the same length)

Figure 2.6: Doppler spectrum of the phase history in the signal s(n) (Model: sin, fr = 0.2 Hz)

Then, for a respiration movement with its amplitude αr = 5 mm, frequency fr = 0.2

Hz and initial phase ϕr = 0, its spectrogram is shown in Figure 2.7a and the correspond-
ing Doppler spectrum is shown in Figure 2.7b.
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Figure 2.7: Micro Doppler and Doppler spectrum of the signal s(n) (Model: sin, αr = 5 mm, fr = 0.2
Hz and ϕr = 0)

From Figure 2.7a, it is observed that the micro-Doppler of the measured data mon-
itoring respiration follows a sinusoidal wave. The Doppler spectrum of this signal
s(n) in Figure 2.7b shows that the signal energy spreads over the frequency interval
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of [−4πfc
c
arfr,

4πfc
c
arfr] = [−3.23, 3.23] Hz due to the constantly changing velocity of

the chest movement caused by respiration.
Ambiguity function of the breathing activity id defined as the cross correlation be-

tween the test signal and the reference signal:

C
[
(αr, fr, ϕr), (αref , fref , ϕref )

]
=

∣∣∣∣ ∫ sar,fr,ϕr(n)s∗aref ,fref ,ϕref
(n) dn

∣∣∣∣2. (2.23)

An example of such ambiguity function for αref = 5 mm, fref = 0.2 Hz and ϕref = 0 is
shown in Figure 2.8. It is found that the maximum power of the secondary maxima is
−6.727 dB lower than the main peak.

(a) Fixed initial phase

(b) Fixed frequency (c) Fixed amplitude

Figure 2.8: Ambiguity surface (Model: sin, αref = 5 mm, fref = 0.2 Hz and ϕref = 0)

The value of CPI will influence the performance of ambiguity function. For different
CPIs of 6 s, 12 s and 24 s, the cut of ambiguity function over frequency fr for fixed
amplitude αr = 5 mm and fixed initial phase ϕr = 0 is shown in Figure 2.9.
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(a) CPI=6 s

(b) CPI=12 s (c) CPI=24 s

Figure 2.9: Ambiguity function w.r.t. frequency with fixed amplitude αr = 5 mm and fixed initial
phase ϕr = 0 (Model: sin, fref = 0.2 Hz)

It is shown in 2.9 that the frequency resolution becomes better as CPI increases.
Meanwhile, the sidelobe level is lower with higher CPI.
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If respiration activity is modelled as | sin | shape, the signal in the range cell including
R0 over slow-time becomes:

s(n) = h exp (jφe) exp

(
j

4πfc
c

(αr · | sin(2πfr · n+ ϕr)|)
)
. (2.24)

The Doppler spectrum of this signal s(n) is shown in Figure 2.10.
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Figure 2.10: Doppler spectrum of the signal s(n) (Model: |sin|, fr = 0.2 Hz)

It is observed from Figure 2.10 that those local peaks in the Doppler spectrum are
corresponding to the Fourier series of | sin |.

Then, its spectrogram is shown in Figure 2.11a and the corresponding Doppler spec-
trum is shown in Figure 2.11b.
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Figure 2.11: Micro Doppler and Doppler spectrum of the signal s(n) (Model: |sin|, αr = 5 mm, fr = 0.2
Hz and ϕr = 0)
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Its corresponding ambiguity function is shown in Figure 2.12.

(a) Ambiguity with fixed initial phase

(b) Ambiguity with fixed frequency (c) Ambiguity with gixed amplitude

Figure 2.12: Ambiguity surface (Model: |sin|, αref = 5 mm, fref = 0.2 Hz and ϕref = 0)

From Figure 2.12, observation can be made that the maximum power of the secondary
maxima is −7.092 dB lower than the main peak and artifacts occurs due to the reduced
periodicity of |sin| function to be π. In addition, the curve of the spectrogram is not
continuous changing due to the sudden change of curvature of |sin| shape at zeros.
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The respiration activity can also be modelled as (sin)3 shape [32], the signal in the
range cell including R0 over slow-time becomes:

s(n) = h exp (jφe) exp

(
j

4πfc
c

(
αr · sin3(2πfr · n+ ϕr)

))
. (2.25)

The Doppler spectrum of this signal s(n) is shown in Figure 2.13.
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Figure 2.13: Doppler spectrum of the signal s(n) (Model: (sin)3, fr = 0.2 Hz)

It is observed that there are two peaks in the Doppler spectrum, 0.2 Hz and 0.6 Hz
in Figure 2.13, which is corresponding to the Fourier series of (sin)3. The spectrogram
of that model is shown in Figure 2.14a and the corresponding Doppler spectrum is
presented in Figure 2.14b.
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Figure 2.14: Micro Doppler and Doppler spectrum of the signal s(n) (Model: (sin)3, αr = 5 mm,
fr = 0.2 Hz and ϕr = 0)
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Its ambiguity are shown in Figure 2.15.

(a) Ambiguity with fixed initial phase

(b) Ambiguity with fixed frequency (c) Ambiguity with gixed amplitude

Figure 2.15: Ambiguity surface (Model: (sin)3, αref = 5 mm, fref = 0.2 Hz and ϕref = 0)

From Figure 2.15, it is observed that the maximum power of the secondary maxima
is −5.746 dB lower than the main peak due to the shape of (sin)3 function. Like the
model of sin, the curve of the spectrogram is continuous changing without any sudden
change.

2.4. MIMO/Beamforming
In the application scenario in automobiles, the MIMO system is compulsory in order to
focus focus the received power from a certain direction. In this way, clutter in the other
directioncan be eliminated thus increasing SCR. Additionally, azimuth positioning can
be achieved with a MIMO system which help radar localize the position of the target in
2D horizontally or in 3D domain. Therefore, different passengers in automotive can be
separated.
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2.5. Conclusion
In this Chapter, the basic physiology of the two vital signs – respiration and heartbeat
– has been introduced. From this information, it is known that both heartbeat and
respiration activities will lead to the change of the chest cavity, resulting in the motion
of the surface of the skin on the prothroax.

Provided that the motion amplitudes of those vital signs are extremely small, radar
technology is considered to detect and monitor the relative motion of the chest rather
than the exact position of the chest surface. In addition, the power of possibly dynamic
clutter (car vibration) has to be taken into consideration which can be relatively strong
compared to the reflected signals from vital signs. Therefore, instead of using CW radar,
LFMCW radar technology is considered. Benefiting from wider operational bandwidth,
range of the target can be obtained with a good range resolution. By doing so, not only
range information can be obtained, but also one can discriminate the desired signal from
the unwanted signals in other range cells. As a result, the SCR is increased.

From the ambiguity analysis, it is found that the there is no artifact for frequency
and amplitude estimation for different models of vital signs. The artifact occurred in
initial phase domain is due to the shape thus periodicity of the model | sin |. The sidelobe
(false peak of ambiguity function) level is within [−10,−5] dB for all models for CPI
equal to 12 s. The frequency resolution becomes worse with the decrease of CPI.

By utilizing the spatial information or the structure information of the MIMO sys-
tem, angular information of the target can be obtained. Based on the principle of the
beamforming, MIMO system can increase the power of the desired signal while rejecting
the clutter from other directions.





3
Vital Signs Parameters Estimation

The information of the vital signs is contained in the motion of the surface of the
prothroax as has been shown in the previous chapter. Therefore, proper signal processing
should be implemented to extract those information from the received signal.

The chapter starts by analyzing the variation of the received signal or its phase slow-
time signal obtained in the last chapter. To perform the estimation to the phase history,
the method of phase unwrapping is revised. Then, the dynamic model for the reflected
signal and its phase history are provided. Dynamic estimation of vital signs parameters
is addressed by applying extended Kalman filter and particle filter to the the data.

The performance of the proposed estimators is analysed in numerical simulations,
presented in the next Chapter.

3.1. Extraction of Phase History
With well preserved coherence of the system the exact phase history over slow-time can
be extracted with the algorithm presented in this section. Since the phase information
is contained in the exponential term in (2.6), the algorithm is designed to transform the
data into the desired form. Then, phase unwrapping processing is applied on extraction
of the phase history from which the range history is computed.

Assuming that beat signal sampled in each interval of each ramp are stacked in rows,
then the matrix of raw data D[n, t](n = 1, 2, ..., N ; t = 1, 2, ..., T ) (N is the number of
chirps over slow-time and T the number of samples per chirp over fast-time) is built.
The derivation of range history is divided into the following steps [33]:

Step 1: Implement a fast Fourier Transformation (FFT) over each row of the D[n, t], re-
sulting in the range-profile matrix denoted as RP[n, r].

23
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Step 2: Select the desired range bin rd within which the target is found. Denote this signal
as s[n] = RP[n, rd].

Step 3: Extract the corresponding phase of the signal s[n] and unwrap it, obtaining the
phase history φ[n] as shown in Figure 3.1.

Step 4: Calculate the estimation of the scatterer range history as R̂[n] = c·φ[n]
4πfc

.

The assumption is made that the scatterer should remain within the same range bin
during the entire measurement time or so-called coherent processing interval (CPI). It
is enough to hold this assumption since the motion of vital signs has limited magnitude
and is unlikely to migrate to another range bin.
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Figure 3.1: Phase history

It is noticeable that the phase change between any two consecutive ramps must not
be less that 2π, i.e., the range motion along the direction of light of sight (LOS) between
any two consecutive chirp intervals should not exceed half of the wavelength of the
center frequency. Otherwise the phase unwrapping will fail. The algorithm of phase
unwrapping is listed as follows.

3.2. Dynamic Model
With the purpose to monitor vital signs and to estimate the characteristics of respiration
and heartbeat, proper estimation method is considered. Instead of estimating those
parameters from a long-term observation time, sequential estimator is used to be able
to estimate and update the desired parameters from one sweep to another one. In the
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Data: Input data
td is the desired range bin;
s[n] = RP[n, td] (Range-profile matrix);
Result: Phase history φ[n] = unwrap(angle(s[n]))
begin

k = 0;
φ[n] = angle(s[n]);
for n = 1 to N − 1 do

φ[n+ 1] = φ[n+ 1] + k · 2π;
if (φ[n+ 1]− φ[n]) > π then

φ[n+ 1] = φ[n+ 1]− 2π;
k = k − 1 ;

end
if (φ[n+ 1]− φ[n]) < −π then

φ[n+ 1] = φ[n+ 1] + 2π;
k = k + 1 ;

end
end

end
Algorithm 1: Phase unwrapping with Matlab syntax

following, filter, as the term suggests, is used to extract the required information out
from the received data.

In this section, several sequential filters are described respectively, based on the
structure of the received data. By analyzing the structure of the received data and
combining (2.9) and (2.16), the received data can be written as:

y(n) = h exp
(
jφe
)
·exp

(
j

4πfc
c
·
(
αr ·sin(2πfr ·n+ϕr)+αh·sin(2πfh·n+ϕh)

))
+u, (3.1)

where h is the amplitude of the signal, φR is the extra phase related to both range and
property of scatterer and u is the assumed zero-mean, complex white Gaussian denoted
as u ∼ CN (0, σ2

u). This equation is derived from (2.9) with a proper selected range bin,
combined with the breathing model and heartbeat model in (2.16).

Nearly constant frequency (NCF) model is recalled [34] in this section and used
to track the frequency and amplitude of a single-tone signal which corresponds to the
unwrapped phase history provided that only respiration or only heartbeat of the human
is considered. Model in real value is processed first to show the application of Kalman
filter. Then, we turn to more complicated case of observing the signal in complex domain
with complex Gaussian noise.

For simplicity, the signal model to be tracked is focused only on breathing activity
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in this section. Inferred to (3.1), the signal becomes:

y(n) = h exp
(
jφe
)
· exp

(
j

4πfc
c
·
(
αr · sin(2πfr · n+ ϕr)

))
+ u. (3.2)

3.2.1. Baseband Signal

Assuming that noise for the complex signal in (3.2) is complex Gaussian noise and its
real and imaginary parts are mutually independent, both real and imaginary parts are
Gaussian. Therefore, intuitively, one option for the estimation can be based on in-phase
and quadrature parts of the complex signal.

Instead of estimating frequency wt and phase φt simultaneously, it is proposed to
estimate the angle θt = wt · t + φt. Applying Taylor series expansion to θt and its first
derivatives θ̇t = ∂θt

∂t
, the angle θt can written as:

θt ≈ θ(t− Ts) + Tsθ̇(t− Ts) +
T 2
s

2
θ̈(t− Ts),

θ̇t ≈ θ̇(t− Ts) + Tsθ̈(t− Ts),
(3.3)

where Ts is the sampling time or the pulse repetition interval. In addition, we assume
that:

θ̇t = wt

θ̈t = ẇt ∼ N (0, σ2
w)

(3.4)

where σ2
w is the variance of the change of the frequency wt. If the value of σ2

w is small
enough, then wt is slightly changed by the value of its counterpart at the previous time
instant, wt−1.

Similarly, we approximate the sinusoidal amplitude αt as:

αt ≈ α(t− Ts) + Tsα̇(t− Ts),

α̇t ∼ N (0, σ2
α).

(3.5)

In this case, the state vector of the NCF model is given by:

xt =


θt

wt

αt

ht

φe,t

 . (3.6)
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With (3.3), (3.4) and (3.5), then state dynamic model is:

xt = fm(xt−1) + Bmvt

= Fmxt−1 + Bmvt,
(3.7)

or written as:

xt =


1 Ts 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




θt−1

wt−1

αt−1

ht−1

φe,t−1

+


T 2
s /2 0 0 0

Ts 0 0 0

0 Ts 0 0

0 0 1 0

0 0 0 1

vt, (3.8)

where vt = [vw,t, vα,t, vh,t, vφe,t]
T are the driving noises.

Then, since the amplitude α, frequency ω, magnitude h and extra phase φe are
independent, their covariance matrix of their driving noises is:

Q = E
{
vtv

T
t

}
=


σ2
w 0 0 0

0 σ2
α 0 0

0 0 σ2
h 0

0 0 0 σ2
φe

 . (3.9)

With both real and imaginary parts of the signal, the observation model is:

yt = gm(xt) + ut

=

[
x4,t cos (Cx3,t sin(x1,t) + x5,t)

x4,t sin (Cx3,t sin(x1,t) + x5,t)

]
+

[
Re(ut)
Im(ut)

]
,

(3.10)

where ut = [Re(ut), Im(ut)]
T is the measurement noise for the real and imaginary part

of the measured data. The measurement noise follows complex Gaussian noise assuming
that the real and imaginary parts of the complex Gaussian noise are mutually indepen-
dent thus the both parts of the noise follows the same real-valued Gaussian distribution
with the same variance of σ2

u

2
. Then, the covariance is:

R = E
{
utu

T
t

}
=

[
σ2
u

2
0

0 σ2
u

2

]
. (3.11)

Perform linearization on the nonlinear observation function, the corresponding Jaco-
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bian matrix is:

Gm,t =
∂gm(x)

∂x
|x=x̂t|t−1

=

= x̂4,t|t−1 ·

[
−QCx̂3,t|t−1 cos(x̂1,t|t−1) 0 −QC sin(x̂1,t|t−1) I/x̂4,t|t−1 −Q
ICx̂3,t|t−1 cos(x̂1,t|t−1) 0 IC sin(x̂1,t|t−1) Q/x̂4,t|t−1 I

]
,

(3.12)

where, [
I

Q

]
=

[
cos
(
x̂3,t|t−1 sin(x̂1,t|t−1) + x̂5,t|t−1

)
sin
(
x̂3,t|t−1 sin(x̂1,t|t−1) + x̂5,t|t−1

)] . (3.13)

3.2.2. Phase History

Another option for the estimation of frequency fr and amplitude αr can be based on
the unwrapped phase history of φph(n) assuming that the noise in phase is Gaussian
since there is no sidelobes within the ambiguity function for a sinusoidal wave. Further,
there is only four unknowns under estimation in terms of phase history. From (3.2), the
measured data is the unwrapped phase history φph(n) in can be written as:

yt = C · αt sin(wtt+ ϕt) + θav + ut, (3.14)

where αt, wt and φt are the sinusoidal amplitude, frequency and phase, respectively. ut
is assumed to be an additive white Gaussian noise (AWGN) with zero mean and the
constsnt scale factor:

C =
4πfc
c
. (3.15)

The average phase id denoted by θav, which is caused by the extra phase φe, the 2π

wrapping effect of the phase history φph(n) at start point of time as well as the reflection
coefficient of the target, as shown in Figure 3.2.

It can be observed from Figure 3.2 that unwrapped phase history obtained from the
phase of the beat signal is a sinusoidal wave, corresponding to the breathing sinusoidal
model in (2.15) with a phase scaling factor constant C. An average phase is added to
this unwrapped phase history. With the influence of complex noise, the average phase of
the phase history can vary over time when the received pulses are of low SNR as shown
in Figure 3.2b with SNRpulse = 6 dB.
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(b) SNRpulse = 6 dB

Figure 3.2: Unwrapped phase history with different values of SNRpulse (αr = 5 mm, fr = 0.3 Hz and
random ϕt)

Defining the state vector as:

xt =


θt

wt

αt

θav

 . (3.16)

With (3.3), (3.4) and (3.5), then state dynamic model is:

xt = fm(xt−1) + Bmvt

= Fmxt−1 + Bmvt,
(3.17)

or written as: 
θt

wt

αt

θav,t

 =


1 Ts 0 0

0 1 0 0

0 0 1 0

0 0 0 1



θt−1

wt−1

αt−1

θav,t−1

+


T 2
s /2 0 0

Ts 0 0

0 Ts 0

0 0 1

vt, (3.18)

where vt = [vw,t, vα,t, vθav ,t]
T are the driving noises. With constant Fm over time, the

evolution function fm of state xt is linear with NCF model.

Since the amplitude and frequency are independent, the covariance matrix of their
driving noises is:

Q = E
{
vtv

T
t

}
=

σ
2
w 0 0

0 σ2
α 0

0 0 σ2
θav

 . (3.19)
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The observation model is:

y(t) = gm(xt) + ut = C · x3,t sin(x1,t) + x4,t + ut. (3.20)

Since the observation function gm is nonlinear, linearization of the function can be
approximated by take its first order of Taylor expansion. The corresponding Jacobian
matrix is:

Gm,t =
∂gm(x)

∂x
|x=x̂t|t−1

=
[
C · x̂3,t|t−1 cos(x̂1,t|t−1) 0 C · sin(x̂1,t|t−1) x̂4,t|t−1

]
. (3.21)

The covariance matrix of the observation noise is:

R = E
{
utu

T
t

}
=
[
σ2
u

]
. (3.22)

3.3. Extended Kalman Filter
Kalman filter, known as linear quadratic estimation, is an optimal minimum mean square
error (MMSE) estimator if the signal and noise are jointly Gaussian. Otherwise, it is the
optimal linear minimum mean square error (LMMSE) estimator. However, the Kalman
filter is originated for linear problems. As the motion of vital signs is nonlinear, an
approximate solution is to linearize the state and/or observation function which are
nonlinear. This results in a subsequent application of the Kalman filter for linear case,
which is called extended Kalman filter (EKF). Since it is based on the linearization
approximation of the original nonlinear model, there is no guarantee for the optimality
[35].

In the discrete domain, Kalman filter definition in terms of state space is helpful to
simplify the implementation of the filter.

Assume that we have the state evolution of the form,

xt = fm(xt−1) + Bmvt, (3.23)

where the subscript m indicates the given model and the subscript t indicates the time
instant, fm(·) is the evolution function of the state which can be linear or nonlinear and
Bm is the given matrix for the model. vt ∈ Rnv refers to the driving noise vector with
the same number of components as the state vector xt ∈ Rnx and each component is
a zero-mean, white Gaussian random variable. Q ∈ Rnv×nv is the covariance matrix of
the driving noise and Q = E

{
vtv

T
t

}
.



3.4. Particle Filter 31

Then, the observation model is:

yt = gm(xt) + ut, (3.24)

where the observation function gm(·) could be either linear or nonlinear and ut is the
measurement noise of the data vector yt at time t with its covariance matrix R ∈ Rnu×nu

known and R = E
{
utu

T
t

}
.

If either the evolution function fm(·) or the observation function gm(·) is nonlinear,
then taking the linearization form of these function by taking the first order of their
Taylor series expansion and Kalman filter is extended to the domain of nonlinear function
when the models are weakly nonlinear and non-Gaussian.

The extended Kalman filter (EKF) evaluates

State Prediction: x̂t|t−1 = fm(x̂t−1|t−1)

Covariance Prediction: Pt|t−1 = Fm,tPt−1|t−1F
T
m,t + BmQBT

m

Kalman Gain: Kt = Pt|t−1G
T
m,t(Gm,tPt|t−1G

T
m,t + R)−1

Update Estimation: x̂t|t = x̂t|t−1 + Kt

(
yt − gm(x̂t|t−1)

)
Update Covariance: Pt|t =

(
I−KtGm,t

)
Pt|t−1

(3.25)

where Fm,t and Gm,t are the corresponding Jacobian matrix of the fm and gm, respec-
tively, which are

Fm,t =
∂fm(x)

∂x
|x=x̂t−1|t−1

,

Gm,t =
∂gm(x)

∂x
|x=x̂t|t−1

.

(3.26)

3.4. Particle Filter
Although KF performs as optimal sequential estimator in linear Gaussian case, the
models of the vital signs are nonlinear and the linearization extension of KF, referred to
EKF, are also restricted the type of noise as Gaussian. However, the noise for the phase,
the second exponential term in (3.1), is not Gaussian, since the noise u is Gaussian in
complex domain but its magnitude and argument does not follow Gaussian distribution.
If the real and imaginary part of the noise are mutual independent, then the magnitude
of the complex random variable has a Rayleigh distribution and its argument will have
a uniform distribution within [−π, π].

Particle filter (PF), also as sequential Monte Carlo (SMC), is considered as a gener-
alization form of KF with its advantage in solving filtering problem for nonlinear and/or
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non-Gaussian signal-observation models as compared to KF, which is more suitable in
the application of monitoring vital signs. Based on the simulated target distribution
of each preset particle, the weight of each particle is computed and contributed as a
measure of its respective importance. Those particles propagate and with update to be
the next set of particles based on the updated importance. From a statistical point of
view, importance sampling can be computed by maximum a posteriori (MAP), minimum
mean square error (MMSE) estimation and etc.

At any time (t − 1), the posterior distribution function or importance distribution

function π(xt−1|y1:t−1) can be approximated with Np particles
{
x
(i)
t−1

}Np

i=1
and their cor-

responding weights
{
w

(i)
t−1

}Np

i=1
as:

π(xt−1|y1:t−1) ≈
Np∑
i=1

w
(i)
t−1δ(xt−1 − x

(i)
t−1), (3.27)

where the notion (·)1:t−1 indicates all the elements from time 1 to time (t− 1) and δ(·)
is the Dirac delta function. As the importance function can be written in an iterative
form via:

π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(xt|x0:t−1,y1:t)

= π(x0)
t∏

k=1

π(xk|x0:k−1,y1:k),

from which one can evaluate the importance weights recursively in time:

w
(i)
t ∝ w

(i)
t−1 ×

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

, (3.28)

where importance weights normalization should be implemented at the previous time

(t − 1) as
∑Np

i=1w
(i)
t−1 = 1. The new set of particles

{
x
(i)
t

}Np

i=1
is generated from an

properly chosen function (with notation q(·)),

x
(i)
t ∼ q(xt|x(i)

0:t−1,y1:t), (3.29)

which known as importance sampling function, minimizing the variance of the impor-
tance weights with the conditions on x

(i)
0:t−1 and y1:t [36].

If the prior distribution is assumed to be the importance distribution, then, we have,

π(x0:t|y1:t) = p(x0:t) = p(x0)
t∏

k=1

p(xk|xk−1),
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and, the importance weights becomes,

w
(i)
t ∝ w

(i)
t−1p

(
yt|x(i)

t

)
, (3.30)

which is a prevailing assumption to take in many applications of PFs.

Once the new set of particles x(i)
t and their corresponding importance weightsw(i)

t are
obtained, the estimation of the desired state can be made based on the prior knowledge
with any estimations like MAP:

x̂t = E [xt|y1:t]

=

∫
xtπ(xt|y1:t) dy1:t

≈
Np∑
i=1

w
(i)
t x

(i)
t ,

(3.31)

where the notation E stands for expectation.

An attractive way to do is that new particles will be regenerated while only updating
the importance weights recursively. This method is known as sequential importance
sampling (SIS). However, the problem existed in SIS method is that, the distribution
of the importance weights w

(i)
t is gradually skewed as sequential estimator progressing

[37]. Consequently, only few particles contribute to the final estimator with very large
importance weights while the other particles contribute nothing with their importance
weights close to zero. Thus, the performance of this algorithm leads to the problem of
degeneracy.

In order to surmount the problem of degeneracy in SIS algorithm, methods of re-
generating new set of particles at each iteration are considered. As (3.29) suggests,
regeneration for a new set of particles is possible with proper chosen importance sam-
pling function. However, the analytic form of this function is rarely found in practice.
Therefore, it was proposed to use dynamic prior as the importance sampling function:

x
(i)
t ∼ q(xt|x(i)

0:t−1,y1:t) = p
(
xk|x(i)

k−1

)
. (3.32)

This method is known as the bootstrap filter [38]. The main idea of this filter
is to duplicate the particles based on their high importance weights respectively to
replace those particles with lower importance weights. As a result, the number of the
particles with higher importance weights increases while that with lower importance
weights decreases. After this sampling, all the new particles are regarded with equal
importance weights for the next iteration. This kind of resampling are also referred as
sequential importance resampling (SIR). The algorithm of the bootstrap filter is listed
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as follows.

begin
Initialization:
t = 0;
for i = 1 to Np do

Generate particles: x
(i)
0 ∼ p(x0);

end
t = 1;
Importance sampling:
for t = 1 to N do

State evolution:
for i = 1 to Np do

x
(i)
t ∼ p(xt|xt−1);

end
Importance weights:
for i = 1 to Np do

w
(i)
t = p(yt|xit);

end

Importance weights Normalization: w
(i)
norm,t =

w
(i)
t∑Np

i=1 w
(i)
t

;

Resampling: x
(i)
t ∼ w

(i)
norm,t

end
end

Algorithm 2: Bootstrap filter with Matlab syntax



3.5. Conclusion 35

3.5. Conclusion
In this chapter, estimation of the breathing activity from measured data is presented.
With our assumption that the respiration is nearly constant during the observation time,
the corresponding NCF dynamic model is introduced.

Assuming that measurement noise is complex Gaussian, Kalmain filter is introduced
and EKF is described by linearizing the nonlinear observation model with 5 unknown
parameters based on the I/Q demodulation of the measured data. Since the real and
imaginary parts of complex Gaussian noise are assumed to be mutually independent,
The noise for both the real and imaginary parts of the observation signal is real-valued
Gaussian. For higher value of SNRpulse, the phase noise is assumed to be Gaussian. By
utilizing the unwrapped algorithm of the phase history, the observation model with 4
unknown parameters are presented. Then, the general algorithm of implementing EKF
follows.

For more complex measurement model with non-Gaussian noise, particle filter is in-
troduced which performs as the general form of KF. Basic idea of SIS and SIR algorithm
is explained and the detailed algorithm of bootstrap filter is presented.





4
Simulation

In this chapter, simulations results of applying both EKF and PF to the vital signs
are demonstrated. For simplicity, only respiration is considered to demonstrate the
challenges of the estimation. The simulation results with the two estimation methods
are shown and analyzed. After successful estimation of the respiration, simultaneous
estimation of both vital signs is described.

The radar parameters for all the simulations presented were properly selected, as
listed in Table 4.1.

Parameters Values

Center Frequency 77 GHz
Bandwidth 150 MHz

PRF 200 Hz
CPI 12 s

Chirp Time 4.5 ms
Sampling Frequency 1 MHz

Table 4.1: Radar parameters for simulation

4.1. Estimation for Respiration Only
In this section, only breathing frequency is considered. Simulation results using EKF
and PF for NCF model are presented and analyzed.

37
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4.1.1. Extended Kalman Filter Based On I/Q Demodulation
With the breathing model as expressed in (2.22), initial trial of employing EKF is to
demodulate the complex signal into real and imaginary parts. Then, with Gaussian
distribution of both real and imaginary parts of the noise, the NCF model for this EKF
estimator is shown in (3.6)-(3.13). With SNR for each pulse SNRpulse equal to 5 dB,
the real and imaginary parts of the signal are shown in Figure 4.1.
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Figure 4.1: The real and imaginary parts of the signal ( SNRpulse = 5 dB, αr = 5 mm, fr = 0.3 Hz)

Follow the instruction of EKF in (3.25), the simulation result is shown in Figure 4.2.

(a) Frequency (b) Amplitude

Figure 4.2: EKF estimators for frequency and amplitude of 100 trials( SNRpulse = 5 dB, αr = 5 mm,
fr = 0.3 Hz )

From the simulation results in Figure 4.2 with SNRpulse = 5 dB and αr = 5 mm ,
fr = 0.3 Hz for respiration model, it is shown that the estimators are unstable and not
reliable. The reason for the this phenomenon is that the linearization for nonlinear model
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is not sufficient enough since only the first order of its Taylor expansion is considered
the nonlinearity is so strong that it violates the assumption of weekly nonlinearity for
EKF. Random extra phase φe and initial phase ϕr are simulated for each trial in this
result.

The simulation result for SNRpulse increased from 5 dB to 20 dB, are shown in Figure
4.3.

(a) Frequency (b) Amplitude

Figure 4.3: EKF estimators for frequency and amplitude of 100 trials( SNRpulse = 20 dB, αr = 5 mm,
fr = 0.3Hz )

From Figure 4.3, we observe that with higher SNRpulse = 20 dB, noise is very week
compared to the power of signal but the EKF estimator does not converge in some trials
and its behavior in that trials is unstable. The reason of this unstable estimation is that
there are sidelobes in the ambiguity function shown in Figure 2.8. With higher SNRpulse,
those sidelobes are more obvious for the EKF estimator which is very likely to converge
around those sidelobes, if the initialization was not accurate enough. The estimator is
initialized with random values for extra phase φe and initial phase ϕr. The initial values
for magnitude h, amplitude αr and frequency ωr are selected from a normal distribution
around their true values, respectively, h0 ∼ N (href , (0.02 ·href )2), αr,0 ∼ N (αr, (10−4)2)

and ωr,0 ∼ N (ωr, (0.1 · 2π)2).

In order to stable the EKF estimator, more observation samples are considered for
one estimation instant. This is because the number of the observation samples k in each
iteration contributes the process gain for each iteration, which helps to converge on the
true mainlobe of the ambiguity function. Therefore, the total SNR for each iteration
can be expressed as:

SNRtotal = SNRpulse + 10 · log10(k + 1). (4.1)



40 4. Simulation

Then, the observation model of this estimator in (3.9) becomes:

yt = gm(xt) + ut

=



x4,t cos (Cx3,t sin(x1,t + 0 · Tsx2,t) + x5,t)
...

x4,t cos (Cx3,t sin(x1,t + k · Tsx2,t) + x5,t)

x4,t sin (Cx3,t sin(x1,t + 0 · Tsx2,t) + x5,t)
...

x4,t sin (Cx3,t sin(x1,t + k · Tsx2,t) + x5,t)


+



Re(ut)
...

Re(ut)
Im(ut)

...
Im(ut)


,

(4.2)

where k + 1 is the number of the observation samples in each iteration.
In order to minimize the problem of the EKF estimator converging around the side-

lobes in Figure 2.8, the variance of frequency ω should be increased. The variance of
the measured parameters are shown in Table 4.2.

Parameter frequency, ω amplitude, α Magnitude, h Extra phase, φe
Variance 100 9.00e-06 3 9.8696

Table 4.2: Variances of the measured parameters

The EKF estimator with k = 100 shows great capability of tracking the measured
data as shown in Figure 4.4.

0 2 4 6 8 10 12

Time[s]

-4

-2

0

2

4

6

M
ag

nu
tu

de

Real part of the received signal

Data
EKF

(a) Real part

4 4.5 5 5.5 6

Time[s]

-4

-2

0

2

4

M
ag

nu
tu

de

Real part of the received signal

Data
EKF

(b) Zoom in

Figure 4.4: Real part tracking ( SNRpulse = 5 dB, αr = 5 mm, fr = 0.3 Hz, k = 100)
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Performance analysis of that estimator is shown in Figure 4.5 and 4.6.

(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials

Figure 4.5: EKF estimators for frequency and amplitude of 100 trials( SNRpulse = 5 dB, αr = 5 mm,
fr = 0.3 Hz, k = 100)

Observed from Figure 4.5, the EKF estimators of both frequency and amplitude are
converging on the true values at time around t = 4s.
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Figure 4.6: EKF estimators for frequency and amplitude of 100 trials( SNRpulse = 5 dB, αr = 5 mm,
fr = 0.3 Hz, k = 100)

Relatively big fluctuations are presented as 3σ line is 0.04 Hz away from the mean for
frequency and 0.4 mm for amplitude shown in Figure 4.6. The fluctuations are caused
by the big variance of frequency σω = 100.

For k = 50 and k = 150, the simulation result is shown in Figure 4.7.
It can be observed from Figure 4.7 that when the number of samples for each iteration

k to be 50, the estimator diverges in some trials out of 100 trials thus is unstable. The
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(a) Estimated frequencies of 100 trials, k = 50 (b) Estimated amplitudes of 100 trials, k = 50

(c) Estimated frequencies of 100 trials, k = 150 (d) Estimated amplitudes of 100 trials, k = 150

Figure 4.7: EKF estimator for frequency and amplitude with different values of k of 100 trials (
SNRpulse = 5 dB, αr = 5 mm, fr = 0.3 Hz )

estimator with k = 150 is able to estimate the true value of both frequency and amplitude
of respiration. Compared to the case when k = 100, the computational complexity and
time increase and the estimator rely on more past measure data. Therefore, k = 100 is
selected for this estimator.

If the value of the SNR for each pulse is SNRpulse = 0 dB, the simulation results are
shown in Figure 4.8.

Figure 4.8 shows that with the lower value of the SNR for each pulse SNRpulse = 0

dB, the number of samples per iteration k should be increased to make the EKF estimator
able to estimate the constant frequency and amplitude. The estimator with k = 150

converges at time around 7 s. The convergence time for this estimator with SNRpulse = 0

dB is longer than that with SNRpulse = 5 dB.
The simulation results for another set of parameters, αr = 6 mm, fr = 0.4 Hz, are

shown in Figure 4.9.
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(a) Estimated frequencies of 100 trials, k = 100 (b) Estimated amplitudes of 100 trials, k = 100

(c) Estimated frequencies of 100 trials, k = 150 (d) Estimated amplitudes of 100 trials,k = 150

Figure 4.8: EKF estimators for frequency and amplitude with different values of k of 100 trials (
SNRpulse = 0 dB, αr = 5 mm, fr = 0.3 Hz )

Since the frequency and amplitude of the breathing is dynamic but not constant,
the designed EKF estimator is tested by both dynamic frequency and amplitude. The
dynamic model for frequency and amplitude of the respiration shown in Figure 4.10 is
generated by a first-order autoregression model, which can be written as:

fdynamic = fr + ∆f,t

∆f,t = q ·∆f,t−1 +
√

1− q2 · σf ,
(4.3)

and,

αdynamic = αr + ∆α,t

∆α,t = q ·∆α,t−1 +
√

1− q2 · σα,
(4.4)

where q = 0.99999999, σf = 10 and σα = 0.1 in this simulation.
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(a) Estimated frequencies of 100 trials (b) Estimated amplitude of 100 trials

Figure 4.9: EKF estimators for frequency and amplitude of 100 trials( SNRpulse = 5 dB, αr = 6 mm,
fr = 0.4 Hz, k = 100)

Both dynamic frequency and amplitude are assumed to change slowly within the
typical values for respiration as listed in Table 2.1. The dynamic frequency and ampli-
tude are reasonable if their change rate is small and their values are not exceeding their
typical range.
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Figure 4.10: Dynamic frequency and amplitude
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Then, the performance of the EKF estimator to estimate dynamic respiration model
is shown in Figure 4.11.

(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials
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Figure 4.11: EKF estimator for dynamic frequency and amplitude of 100 trials ( SNRpulse = 5 dB,
k = 100 )

It is shown in Figure 4.11 that the estimator is able to track dynamic parameters of
respiration. The fluctuation around the estimated mean value is due the fact that both
frequency and amplitude are continuously changing over time and estimated frequency
and amplitude are the average values over the sliding observation window.



46 4. Simulation

4.1.2. Extended Kalman Filter Based On Phase History
Assuming the signal with high SNR for each pulse and the noise in phase is Gaussian,
then EKF estimator can be applied to the phase history with only four parameters:
frequency, amplitude, initial phase and extra average phase θav. The measured data is
expressed as in (3.20). Then, the NCF model for this EKF estimator is expressed in
(3.16)-(3.22).

In order to avoid the problem of the EKF estimator converging around the sidelobes
in Figure 2.8, the variance of frequency ω should be increased. The variance of the
measured parameters are shown in Table 4.3.

Parameter frequency, ω amplitude, α average phase θav
Variance 10.97 2.78e-05 0.0278

Table 4.3: Variances of the measured parameters

Follow the instruction of EKF in (3.25), the simulation results are shown in Figure
4.12.
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(c) Estimated frequencies of 100 trials (d) Estimated amplitudes of 100 trials
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Figure 4.12: EKF estimator for frequency and amplitude based on phase history of 100 trials(
SNRpulse = 10 dB, αr = 5 mm, fr = 0.2 Hz )

From Figure 4.12, observation can be made that this EKF estimator based on phase
history can track the phase history but the estimated frequency and amplitude do not
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always converge on their true values, respectively. Therefore, the estimator is not reliable
all the times. This is because the average phase θav takes part of the role of frequency
and amplitude for the phase history evolution as shown in Figure 4.12e. Anther reason
for this divergence is that with the existence of the average phase θav, the estimator
sometimes attempts to estimator the zero frequency part which appears in the power
spectrum for this sinusoidal wave with DC component.

The estimator is initialized with random values for average phase θav and initial
phase ϕ. The initial values for amplitude αr and frequency ωr are selected from a
normal distribution around their true values, respectively, αr,0 ∼ N (αr, (10−3)2) and
ωr,0 ∼ N (ωr, (0.5 · 2π)2).
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Larger number of observation samples for each estimation are considered to stable
the estimator. Then, observation model becomes:

yt = gm(xt) + ut

=


Cx3,t sin(x1,t + +0 · Tsx2,t) + x4,t

...
Cx3,t sin(x1,t + +k · Tsx2,t) + x4,t

+


ut
...
ut

 , (4.5)

where k+1 is the number of the observation samples in each iteration and the covariance
matrix of the measurement noise is:

R = E
{
utu

T
t

}
=


σ2
u

. . .

σ2
u

 . (4.6)

Then, with k = 100, the performance of this EKF estimator is shown in Figure 4.13.
Observation can be made from Figure 4.13 that the EKF estimator with larger ob-

servation samples for each estimation update converges on around the true values of
frequency and amplitude at time about 6 s. And the estimated average phase θav be-
comes stable as compared to the case when k = 0. The choice of k = 100 is well
selected based on the trade-off between the performance of the estimator and computa-
tional complexity and time. Decreasing the value of k will lead to unstable estimator
and increasing k does not give a better performance but increasing the computational
complexity and time.
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(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials
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Figure 4.13: EKF estimator for frequency and amplitude based on phase history of 100 trials(
SNRpulse = 10 dB, k = 100, αr = 5 mm, fr = 0.3 Hz )

For k = 50 and k = 150, the simulation result is shown in Figure 4.14.
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(a) Estimated frequencies of 100 trials, k = 50 (b) Estimated amplitudes of 100 trials, k = 50

(c) Estimated frequencies of 100 trials, k = 150 (d) Estimated amplitudes of 100 trials, k = 150

Figure 4.14: EKF estimator for frequency and amplitude based on phase history with different values
of k of 100 trials ( SNRpulse = 10 dB, αr = 5 mm, fr = 0.3 Hz )

From Figure 4.14, it is shown that when k = 50, the estimator is not stable and
diverges for some trials while the estimator with k = 150 converges faster than the case
when k = 100. However, the computational complexity and time increases with larger
value of k. Therefore, the reasonable value of k = 100 is selected which makes the
estimator stable without relying too much on the past data.
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For a different set of frequency fr = 0.2 Hz and amplitude αr = 8 mm of respiration,
the simulation with k = 100 result is shown in Figure 4.15.

(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials
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Figure 4.15: EKF estimator for frequency and amplitude based on phase history of 100 trials (
SNRpulse = 10 dB, k = 100, αr = 8 mm, fr = 0.2 Hz )

This EKF estimator is reliable for different values of the frequency and amplitude of
respiration as observed from Figure 4.15.
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If the SNR for each transmitted pulse is lower, SNRpulse = 6 dB, then the simulation
result is shown in Figure 4.16.

(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials
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Figure 4.16: EKF estimator for frequency and amplitude based on phase history of 100 trials (
SNRpulse = 6 dB, k = 100, αr = 8 mm, fr = 0.2 Hz )

With lower SNR for each transmitted pulse, SNRpulse = 6 dB, this estimator is
fluctuating over the observation time and the variances of both frequency and amplitude
become larger as compared to the case when SNRpulse = 10 dB. This is because the
phase noise can not be assumed to be Gaussian and the average phase θav is no longer
nearly constant over the time as shown in Figure 3.2b due to the unwrapped process
with larger phase noise.

Although the problem for this estimator when SNRpulse = 6 dB, the variances of the
estimated frequencies and amplitudes of 100 trials for the same SNR, SNRpulse = 6 dB,
can be decreased by increasing the number of the observation samples in each iteration
k is increased to be k = 199 and the corresponding simulation result is shown in Figure
4.17.
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(a) Estimated frequencies of 100 trials (b) Estimated amplitudes of 100 trials
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Figure 4.17: EKF estimator for frequency and amplitude based on phase history of 100 trials (
SNRpulse = 6 dB, k = 199, αr = 8 mm, fr = 0.2 Hz )

From Figure 4.17, we can observe that the variances of the estimated frequencies
and amplitudes of 100 trials are reduced by increasing the number of the observation
samples in each iteration k = 199 as compared to the case when k = 100 with the same
SNRpulse = 6 dB. The price for this reduce variances are the increased computational
complexity and time for each iteration. In addition, the problem occurring in process of
unwrapping can not be solved by increasing the number of the observation samples in
each iteration.
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Then, the performance of this EKF estimator with SNRpulse = 10 dB and k = 100

is shown in Figure 4.18.
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Figure 4.18: EKF estimator for dynamic frequency and amplitude based on phase history of 100 trials(
SNRpulse = 10 dB, k = 100 )
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Figure 4.19: Estimated average phase θav

As we can observe from Figure 4.18, this EKF estimator is stable and converging
around the true values of both frequency and amplitude of respiration. The average time
for convergence of this estimator is about 4s. The fluctuation of this estimator around
the true is caused by the fluctuation of the estimated average phase θav. When the
amplitude and/or the frequency is changed over time, average phase θav is considered to
be changed by this estimator as well rather than being thought to be stable all the time
as shown in Figure 4.19.

In addition, there is a delay between the estimated frequency and amplitude and
their true values at each time instant due to the longer observation window for each
estimation.
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4.1.3. Particle filter
As mentioned above, KF performs the same as PF in linear Gaussian case. In nonlinear
and/or non-Gaussian case, PF is considered to have good performance.

Assumed that the magnitude h and the extra phase φe of the measured signal in
(2.22) are known, the observation model can be expressed in (4.7) and SIS estimation is
performed in follows.

y(n) = exp

(
j

4πfc
c

(αr · sin(2πfr · n+ ϕr))

)
+ u, (4.7)

where u is the complex Gaussian noise.
For a set of particles of N = 100× 100× 100 (amplitude× frequency× initialphase

and ar ∼ U(3e − 3, 8e − 3) m, fr ∼ U(0.1, 0.8) Hz and ϕr ∼ U(0, 2π) rad ), i.e., the
particle can be expressed as:

yi(k) = exp

(
j · 4πfc

c
· air · sin(2πf ir · k · PRI + ϕir)

)
. (4.8)

Their associated importance weights can be computed based on the idea of MMSE:

ωik =
1

|yi(k)− y(k)|2
, (4.9)

or based on maximum likelihood (ML):

ωik =
1√
πσ2

u

exp

(
|yi(k)− y(k)|2

σ2
u

)
. (4.10)

During the process of SIS, the associated importance weights are preserved and
updated by multiplying the newly obtained importance weights. Then, the three pa-
rameters are computed by taking the mean according to the normalized weights:

âr,k =
N∑
i=1

ωika
i
r,

f̂r,k =
N∑
i=1

ωikf
i
r,

ϕ̂r,k =
N∑
i=1

ωikϕ
i
r.

The simulation result is shown in Figure 4.20.
It is observed from Figure 4.20 that convergences have achieved for all three pa-

rameters with both MMSE and ML importance weights samplings at around 2.5s. The
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Figure 4.20: SIS estimators with different importance weights samplings: MMSE and ML (SNRpulse =
8dB, αr = 5mm, fr = 0.2Hz and random initial phase)
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possible reason why these estimators converge at this time instance of 2.5s is that there
are many harmonics for this sinusoidal wave in phase thus there are many possible com-
binations of frequencies and amplitudes can display the same phase changing within half
of the measured breathing period which is exactly the time instant 2.5s.

The simulation times for these two algorithms, MMSE and ML, are about 41.6s

and 46.2s with the same number of particles of 106. These times are much larger than
the observation time of 4s. Therefore, if the magnitude h and the extra phase φe of
the measured signal are unknown, enormous number of particles are required and the
computational time is increased correspondingly.

Initialization:

Since the computational time is strongly proportional to the number of particles, esti-
mating some unknown but constant parameters in the initial stage is considered, such
as the magnitude h and the extra phase φe of the measured signal and the initial phase
ϕr of the breathing motion.

Take the phase history expressed in (3.14) as the measured data, the magnitude h
and the extra phase φe of the measured signal is no longer necessary for estimation while
the average phase θav needs to be estimated. Since the minimal frequency of respiration
is fr,min = 0.1Hz. Therefore, in order to obtain the correct values of ϕr and θav, the
required time Tini for initialization is:

Tini = 0.75× 1

fr,min
= 7.5[s]

Dynamic tracking:

As mentioned in the previous chapter, there is a major drawback for SIS algorithm.
As process goes, the value of the importance weight of the desired particle gradually
approaches the value of 1, resulting in forcing that values of other particles almost to
be zeros. Consequently, only the importance weight of the desired particle contributes
the final estimator while other particles losing their influences. Dynamic of this SIS
estimator is lost and this property performs well only for constant parameters.

In order to have the ability to track dynamic breathing activity, SIR with bootstrap
algorithm is going to be used. However, resampling process, including searching and
copying particles with higher importance weights, requires much more time than just
multiplying importance weights in each iteration in SIS. In addition, resampling does
not guarantee to avoid the problem of weight degeneracy [37].

Therefore, some modification can be applied into the algorithm of SIS. Referred to
(3.28), an annealing factor αw is added to the importance weights before it is propagated
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to the newly obtained one:

w
(i)
t = (w

(i)
t−1)

αw ×
p(yt|x(i)

t )p(x
(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

,

where 0 < αw < 1, reducing the influence of previous importance weights [37].
With the annealing factor αw = 0.986 and the set of particles of N = 200 × 200

(amplitude× frequency, the modified estimation for dynamic frequency and amplitude
is shown in Figure 4.21. The reduced number of particles is based on the good estimation
of the initial phase ϕr and the average phase θav. The value of the annealing factor
αw = 0.986 is selected to alleviate the degeneracy problem so that the estimator is able
to track the dynamic parameters. Smaller αw lead to slow convergence and larger one
cannot alleviate the degeneracy problem.

From Figure 4.21, it is shown that this modified sequential PF estimator is able to
track dynamic parameters. The three sigma lines in both Figure 4.21a and Figure 4.21b
converges at time t = 9 s, diverges from t = 9 s to t = 13 s and is going to converge
again. This corresponds to the behavior of dynamic frequency. When frequency stays
constant, the estimator converges quickly, within 2 s in this case. And the estimator
diverges when frequency is changing.
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Figure 4.21: Frequency and amplitude estimators with modified SIS algorithm over 100 trials (MMSE),
SNRpulse = 8 dB

The computation time for each new data is only 0.007 s, very close to the sampling
time PRI = 0.005 s. Therefore, fast online tracking is available.
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4.2. Estimation for Respiration with Existence of Heart-

beat
In this section, estimation for frequency and amplitude of respiration is performed with
the existence of heartbeat, which is corresponding to the case in reality.

From Table 2.1, the frequency fh = 1.35 Hz and amplitude αh = 0.5 mm of heartbeat
are selected. With dynamic respiratory frequency and amplitude shown in Figure 4.18a
and 4.18b and sin for heartbeat considered, movement of the chest is shown in Figure
4.22.
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Figure 4.22: Chest movement with respiration and heartbeat ( Dynamic fr and αr, fh = 1.35 Hz and
αh = 0.5 mm )

With the EKF estimator for respiration based I/Q demodulation, the simulation
result, with SNRpulse = 5 dB and the number of samples for each pulse k + 1 = 101, is
shown in Figure 4.23.

It can be observed from Figure 4.23 that the estimator cannot track the real part of
the signal properly and the estimated frequency and amplitude for respiration diverged,
resulting in the deviations of their estimated mean of 100 trials, respectively, thus large
variances. This is because the additive movement of chest caused by heartbeat can
lead the estimator to converge around the sidelobes of the ambiguity function. Another
reason for this divergence is that the chest movement caused by heartbeat is absent
from both of the state model and observation model which cannot be treated as noise
perturbation.

With the EKF estimator for respiration based on phase history, the simulation result,
with SNRpulse = 10 dB and the number of samples for each pulse k+ 1 = 101, is shown
in Figure 4.24.

It is shown in Figure 4.24 that the estimator performs track the phase history and
shows convergence for both frequency and amplitude around their true values for res-
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Figure 4.23: EKF estimator for dynamic respiratory frequency and amplitude based on I/Q demodula-
tion of 100 trials ( Dynamic fr and αr, fh = 1.35 Hz and αh = 0.5 mm, SNRpulse = 5 dB )

piration. The estimated frequency and amplitude fluctuates around their true values
every 0.74 s which exactly corresponds to the period of heartbeat Th = 1/1.35 = 0.741
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Figure 4.24: EKF estimator for dynamic respiratory frequency and amplitude based on phase history
of 100 trials ( Dynamic fr and αr, fh = 1.35 Hz and αh = 0.5 mm, SNRpulse = 10 dB )

s. This is because that both of the state model and observation model of this EKF
estimator does not include the existence of heartbeat activity which is regarded as noise
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perturbation over time.
With the PF estimator for respiration based on phase history, the simulation result,

with SNRpulse = 10 dB and the annealing factor of αw = 0.986, is shown in Figure 4.25.
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Figure 4.25: PF estimator with modified SIS algorithm for dynamic respiratory frequency and amplitude
based phase history of 100 trials ( Dynamic fr and αr, fh = 1.35 Hz and αh = 0.5 mm, SNRpulse = 10
dB )

It can be observed from Figure 4.25 that, based on the phase history of the slow-time
signal, the PF estimator suffers from the same problem with the EKF estimator that the
estimated mean frequency and amplitude fluctuates around their true values according
to the period of heartbeat Th = 0.741 s. Besides, deviations of the estimated frequency
and amplitude of the PF estimator from their true values are larger since the estimated
average phase θav and the initial phase ϕr is incorrect in the initialization stage and
cannot change to compensate the dynamic amplitude of wave.

4.3. Conclusion
In this chapter, the performance of two methods described in the last chapter, namely
Extended Kalman filter and particle filter, has been evaluated in numerical simulations.

For Kalman filter, two models are considered based on the assumption of phase
noise, non-Gaussian and Gaussian. One assumption is that with lower SNR SNRpulse

for each pulse, the phase noise is non-Gaussian. The real and imaginary part of the
complex Gaussian noise are mutually independent, thus the noise of phase term does
not follow a real-valued Gaussian distribution. Therefore, the observation based on the
I/Q demodulation of the signal is considered and the noise for both real and imaginary
part of the measured signal are Gaussian. Five unknown parameters, namely frequency
ω, amplitude α, initial phase ϕ of the respiration activity and magnitude h and extra
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phase φe caused by the distance and reflection coefficients of the measured target, are
estimated simultaneously with this estimator. The simulation results show that the
EKF estimator based on I/Q demodulation are not reliable and does converge on the
true value with one data samples for each iteration. With increasing the number of the
data samples for each iteration k = 100, the EKF estimator becomes stable and is able to
track dynamic frequency and amplitude of respiration with SNRpulse = 5 dB. Increasing
the value of SNRpulse does not always help stable the estimator. This is because the
EKF estimator can converge around the sidelobes occurring in the ambiguity function
with higher value of SNRpulse. The estimator perform with lower value of SNRpulse can
perform better with the sidelobes buried below the noise level. The other assumption is
that the value of SNRpulse is considered to be above 8 dB and the noise for the unwrapped
phase history is assumed to be Gaussian. With this assumption, the unwrapped phase
history of the beat signal is the measured data and only 4 parameters are estimated,
frequency ω, amplitude α, initial phase ϕ of the respiration activity and the average
phase θav occurring in the unwrapped phase history influenced by the target distance,
initial phase of respiration and reflection coefficient of the target. Simulation results
show that the EKF estimator can track both constant and dynamic parameters with
the number of the data samples for each iteration k = 100 and SNRpulse = 10 dB. With
the lower value of SNRpulse to be 6 dB, the estimator fluctuates and the variance of the
estimated parameters can be reduced by increasing the number of the data samples for
each iteration k since the number of the data samples for each iteration contributes to
the process gain of the measured data.

With the implementation of particle filter, sequential PF with modified SIS with an
annealing factor αw = 0.986 is able to estimate the desired information on vital signs
with dynamic frequency. The drawback of the weight degeneracy problem with the SIS
algorithm is alleviated by adding the annealing factor αw on the importance weights
before its propagation.

With SNRpulse = 10 dB, successful estimation for respiratory frequency and am-
plitude can be done with the existence of heartbeat activity by implementing EKF
estimator based on phase history with k + 1 = 101. The EKF estimator based I/Q
demodulation fails to estimate the desired parameters for respiration since the existence
of sidelobes in the ambiguity function and heartbeat perturbation which cannot be re-
garded as noise. The PF estimator with modified SIS and initialization based on phase
history fails to track dynamic amplitude since only two variables are considered in this
estimator. The computational complexity and time increased dramatically with the in-
creased number of variables which are used to correct the wrong the average phase θav
and initial phase ϕr during the estimation.
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Recommended further study is to estimate both vital signs simultaneously.



5
Experimental Estimation

In this chapter, the EKF estimator based on phase history with number of samples
per iteration k + 1 = 101 is implemented on the experimental data for estimating the
respiratory frequency and amplitude.

The radar is used in this experiment is shown in Figure 5.1.

Figure 5.1: NXP Dolphin radar used

67
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The parameters for in this experiment are presented in Table 5.1. The downsample
factor of 128 is used to reduce size of the measured data and the PRF becomes 20 Hz
for the final data.

Parameters Values

Center Frequency 77 GHz
Set Bandwidth 1 GHz

PRI 65.1 µs
Coherent Bandwidth 920.4 MHz
PRI ( Downsampled ) 50 ms

Table 5.1: Radar parameters for experiment

The human under measure is sitting 2 m away from the radar as shown in Figure
5.2.

Figure 5.2: Measurement scenario

The measured range history and its power spectrum with one antenna is shown in
Figure 5.3.

From Figure 5.3, it is shown that the shape of the chest movement due to respiration
is approximately sinusoidal. The estimated frequency can be obtained by searching for
the frequency peak in its power spectrum. And, the estimated frequency is 0.135 Hz.

The estimated frequency and amplitude for the respiration activity of the human is
shown in Figure 5.4.

From Figure 5.4, it is observed that the EKF estimator with k = 100 based on
phase history is able to track and estimate the respiratory frequency and amplitude
sequentially as compared to the estimated result from Figure 5.3. The reason for the
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Figure 5.3: The measured range history and its power spectrum
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Figure 5.4: Estimated frequency and amplitude from real data

small estimated amplitude may be that the person under measure is relax and weak
breathing activity leads.





6
Conclusion and Future Work

The topic of vital signs monitoring has drawn a great deal of concern nowadays. In the
scenario of monitoring the health state of the driver and passengers in automotive, an
LFMCW MIMO radar with center frequency fc = 77 GHz is considered.

With the ability of LFMCW radar to measure the downrange distance and the ability
of MIMO radar system to provide angular information, the space within the automotive
can be meshed into 2D pixels. In this way, clutter from other pixels can be removed
out from the desired pixels where targets are located. The vital signs of human within
possible pixels are estimated and updated sequentially.

6.1. Results and Novelties
As the physiology of both vital signs presented briefly, it is known that the activities
of both respiration and heartbeat can be measured by observing the movement of a
human chest. Assuming that the RCS and the position of the desired target is constant
during the measurement time, the information of vital signs is presented in the phase
history φph(n). These activities can be recovered from the phase history φph(n) by
implementing the phase unwrapping algorithm provided that coherence of the radar
system is maintained.

The movement of both vital signs is modelled as sin, | sin | and (sin)2. The ambiguity
function of the signal for each model is investigated. For all models, sidelobes level is
[−10, −5] dB below the mainlobe with CPI equal to 12s.

Considering the movement of respiration is modelled as sin shape, NCF model is
used for the estimation. Estimations of the frequency and amplitude of the respiration
are simulated with two different methods, namely extended Kalman filter and particle
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filter. With one observation sample for each iteration, the EKF estimator based on
I/Q demodulation of the complex signal is unstable and not reliable. Increasing the
number of the observation samples for each iteration to be k + 1 = 151 thus increasing
process gain, this estimator is able to estimate the frequency and amplitude of respiration
activity with low SNR of each transmitted pulse, SNRpulse = 5 dB and SNRpulse = 0

dB. When it comes to the case of dynamic frequency and amplitude, the most of the
estimator out of 100 trials can track the dynamic parameters as well as the mean of the
100 trials. The probability that the estimation lies around the true value of the frequency
within 0.1 Hz increased as the time goes. Increasing the value of SNRpulse can cause
the estimator to be unstable or not reliable due to the existence of the sidelobes in the
ambiguity function. Therefore, initial guess for this EKF estimator is important.

With the number of the observation samples for each iteration to be k+1 = 101, the
EKF estimator performs well and stable to track both constant and dynamic frequency
and amplitude of respiration based on the unwrapped phase history under the assump-
tion that the value of SNRpulse is larger than 6 dB and phase noise can be regarded as
Gaussian. The number of unknown parameters is reduced from 5 to be 4 as compared to
the EKF estimator based on I/Q demodulation of the complex signal. Since there is not
sidelobes for sinusoidal movement, increasing the number of the observation samples for
each iteration or the SNR for each transmitted pulse can give better performance for this
estimator. However, certain mismatch occurs with the existence of longer observation
window for each iteration which averages the measured frequencies.

Simulation result for PF with SIS algorithm shows the convergence of the estimated
parameters, thus successful tracking of vital signs. However, This algorithm functions
well only when the parameters are constant over time and is modified to track dynamic
parameters with annealing factor of αw = 0.985 with the value of SNRpulse larger than
6 dB. This is because that the importance weights propagate by multiplying with newly
obtained importance weights and some values becomes extremely large while other be-
coming negligible as the estimators goes and the annealing factor can relieve the phe-
nomenon. For this particle filter considered, certain initialization has been done in this
simulation exercise, including estimating the initial phase ϕ of respiration and the aver-
age phase θav in the unwrapped phase history. Since the computational complexity and
time increased dramatically for SIR algorithm and limitation of computational memory
in the software Matlab, SIR is not tested in the thesis.

6.2. Recommendations for Future Research
Based on what has been learned in this exercise, some recommendations for future
research are proposed as follows:
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• Proper modelling for both respiration and heartbeat. Real movement of the two
vital signs is not simply sinusoidal. With more accurate model, the estimation
based on experimental data is considered to perform better.

• Exploring the relationship between respiration rate and heartbeat rate. This re-
lationship can be used to further reduce the complexity of estimating both vital
signs simultaneously and/or increase the reliability of estimation results.

• Check other possible models if sinusoidal model contained in the phase term of
complex signal is considered. NCF gives good performance for a single real-valued
sinusoidal model in [34] but it is not a perfect model for a sinusoidal wave contained
in phase of complex signal.

• Particle filter with other effective algorithms. Since there are many unknown
parameters to be estimated thus a great deal number of particles are processed
for each iteration, effective algorithm help to reduce the computational complexity
and time.





Bibliography

[1] J. Lin and C. Li, “Wireless non-contact detection of heartbeat and respiration using
low-power microwave radar sensor,” in 2007 Asia-Pacific Microwave Conference.
IEEE, 2007, pp. 1–4.

[2] J. C. Lin, “Applying telecommunication technology to health-care delivery,” IEEE
Engineering in Medicine and Biology Magazine, vol. 18, no. 4, pp. 28–31, July 1999.

[3] P. K. Capp, P. L. Pearl, and D. Lewin, “Pediatric sleep disorders,” Primary Care:
Clinics in Office Practice, vol. 32, no. 2, pp. 549–562, 2005.

[4] H. Forster, O. Ipsiroglu, R. Kerbl, and E. Paditz, “Sudden infant death and pediatric
sleep disorders,” 2003.

[5] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-
Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in 2007 29th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 2007, pp. 2300–2302.

[6] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proceedings of the
IEEE, vol. 63, no. 10, pp. 1530–1530, Oct 1975.

[7] H. Lee, B.-H. Kim, and J.-G. Yook, “Path loss compensation method for multiple
target vital sign detection with 24-GHz FMCW radar,” in 2018 IEEE Asia-Pacific
Conference on Antennas and Propagation (APCAP). IEEE, 2018, pp. 100–101.

[8] T. Sakamoto, R. Imasaka, H. Taki, T. Sato, M. Yoshioka, K. Inoue, T. Fukuda,
and H. Sakai, “Feature-based correlation and topological similarity for interbeat
interval estimation using ultrawideband radar,” IEEE Transactions on Biomedical
Engineering, vol. 63, no. 4, pp. 747–757, 2015.

[9] M. Mercuri, P. J. Soh, G. Pandey, P. Karsmakers, G. A. Vandenbosch, P. Leroux,
and D. Schreurs, “Analysis of an indoor biomedical radar-based system for health
monitoring,” IEEE Transactions on Microwave Theory and Techniques, vol. 61,
no. 5, pp. 2061–2068, 2013.

75



76 Bibliography

[10] R. F. Martin, “Ultra-wideband (uwb) rules and design compliance issues,” in 2003
IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.
03CH37446), vol. 1. IEEE, 2003, pp. 91–96.

[11] A. G. Yarovoy, J. Matuzas, B. Levitas, and L. P. Ligthart, “UWB radar for human
being detection,” in European Radar Conference, 2005. EURAD 2005., Oct 2005,
pp. 85–88.

[12] S. Jefremov and B. Levitas, “On application of a pulse method in detecting living
objects,” in 12th International Conference on Microwaves and Radar. MIKON-98.
Conference Proceedings (IEEE Cat. No.98EX195), vol. 3, May 1998, pp. 765–768
vol.3.

[13] A. Aubert, L. Welkenhuysen, J. Montald, L. De Wolf, H. Geivers, J. Minten,
H. Kesteloot, and H. Geest, “Laser method for recording displacement of the heart
and chest wall,” Journal of biomedical engineering, vol. 6, no. 2, pp. 134–140, 1984.

[14] C. Li, J. Lin, and Y. Xiao, “Robust overnight monitoring of human vital signs by a
non-contact respiration and heartbeat detector,” in 2006 International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006, pp. 2235–
2238.

[15] P. Pahl, T. Kayser, M. Pauli, and T. Zwick, “Evaluation of a high accuracy range
detection algorithm for FMCW/phase radar systems,” in The 7th European Radar
Conference, Sep. 2010, pp. 160–163.

[16] K. Konno and J. Mead, “Measurement of the separate volume changes of rib cage
and abdomen during breathing,” Journal of applied physiology, vol. 22, no. 3, pp.
407–422, 1967.

[17] T. Sakamoto, P. J. Aubry, S. Okumura, H. Taki, T. Sato, and A. G. Yarovoy,
“Noncontact measurement of the instantaneous heart rate in a multi-person sce-
nario using X-band array radar and adaptive array processing,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 2, pp. 280–293,
June 2018.

[18] J. Aho, J. Salmi, and V. Koivunen, “Adaptive processing and realistic signal propa-
gation modeling for multiantenna vital sign radar,” in 2013 IEEE Radar Conference
(RadarCon13), April 2013, pp. 1–6.

[19] S. Wang, A. Pohl, T. Jaeschke, M. Czaplik, M. Köny, S. Leonhardt, and N. Pohl,
“A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of



Bibliography 77

vital signs,” in 2015 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Aug 2015, pp. 4978–4981.

[20] S. Ayhan, S. Diebold, S. Scherr, A. Tessmann, O. Ambacher, I. Kallfass, and
T. Zwick, “A 96 GHz radar system for respiration and heart rate measurements,”
in 2012 IEEE/MTT-S International Microwave Symposium Digest, June 2012, pp.
1–3.

[21] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that mon-
itor breathing and heart rate,” in Proceedings of the 33rd annual ACM conference
on human factors in computing systems. ACM, 2015, pp. 837–846.

[22] I. V. Mikhelson, S. Bakhtiari, T. W. Elmer, and A. V. Sahakian, “Remote sensing of
patterns of cardiac activity on an ambulatory subject using millimeter-wave inter-
ferometry and statistical methods,” Medical & biological engineering & computing,
vol. 51, no. 1-2, pp. 135–142, 2013.

[23] M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, F. Wieringa, A. Bourdoux, and
C. Van Hoof, “A direct phase-tracking doppler radar using wavelet independent
component analysis for non-contact respiratory and heart rate monitoring,” IEEE
transactions on biomedical circuits and systems, vol. 12, no. 3, pp. 632–643, 2018.

[24] C. Li and J. Lin, “Random body movement cancellation in doppler radar vital
sign detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 56,
no. 12, pp. 3143–3152, 2008.

[25] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with
dc offset compensation in quadrature doppler radar receiver systems,” IEEE trans-
actions on Microwave theory and techniques, vol. 55, no. 5, pp. 1073–1079, 2007.

[26] V. Singh, S. Bhattacharyya, and P. Jain, “Through the wall human signature detec-
tion using principle component analysis (pca),” in 2018 IEEE International Sympo-
sium on Antennas and Propagation & USNC/URSI National Radio Science Meet-
ing. IEEE, 2018, pp. 1975–1976.

[27] M. Xu, A. Goldfain, J. DelloStritto, and S. Iyengar, “An adaptive kalman filter
technique for context-aware heart rate monitoring,” in 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012,
pp. 6522–6525.



78 Bibliography

[28] Y. Yu, W. Yin, L. Li, and L. Zhang, “Vital sign integrated tracking by predictive
knn and kalman filter with UWB radars,” in 2018 10th International Conference on
Wireless Communications and Signal Processing (WCSP). IEEE, 2018, pp. 1–6.

[29] S. Groot, R. Harmanny, H. Driessen, and A. Yarovoy, “Human motion classifica-
tion using a particle filter approach: multiple model particle filtering applied to the
micro-Doppler spectrum,” International Journal of Microwave and Wireless Tech-
nologies, vol. 5, no. 3, pp. 391–399, 2013.

[30] W. G. Carrara, R. S. Goodman, and R. M. Majewski, “Spotlight synthetic aperture
radar signal processing algorithms,” 1995.

[31] J. E. Hall, Guyton and Hall textbook of medical physiology. Elsevier Health Sciences,
2006.

[32] F. Weishaupt, I. Walterscheid, O. Biallawons, and J. Klare, “Vital sign localization
and measurement using an LFMCW MIMO radar,” in 2018 19th International
Radar Symposium (IRS). IEEE, 2018, pp. 1–8.

[33] G. Wang, J. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, “Linear-
frequency-modulated continuous-wave radar for vital-sign monitoring,” in 2014
IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Jan
2014, pp. 37–39.

[34] W. Ng, C. Ji, W. Ma, and H. C. So, “A study on particle filters for single-tone fre-
quency tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45,
no. 3, pp. 1111–1125, 2009.

[35] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Pren-
tice Hall PTR, 1993.

[36] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo Methods in
Practice. Springer Publishing, New York, 2001.

[37] Z. Chen et al., “Bayesian filtering: From kalman filters to particle filters, and be-
yond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[38] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” in IEEE proceedings F (radar and signal pro-
cessing), vol. 140, no. 2. IET, 1993, pp. 107–113.


	Introduction
	Motivation
	Existing approaches and goals of the thesis
	Outline of the Thesis

	Models for Vital Sign Monitoring
	LFMCW Radar
	LFMCW Signal Model

	Physiology of Cardiopulmonary Activity
	Heart Beat
	Respiration

	Radar Response of Vital Signs
	MIMO/Beamforming
	Conclusion

	Vital Signs Parameters Estimation
	Extraction of Phase History
	Dynamic Model
	Baseband Signal
	Phase History

	Extended Kalman Filter
	Particle Filter
	Conclusion

	Simulation
	Estimation for Respiration Only
	Extended Kalman Filter Based On I/Q Demodulation
	Extended Kalman Filter Based On Phase History
	Particle filter

	Estimation for Respiration with Existence of Heartbeat
	Conclusion

	Experimental Estimation
	Conclusion and Future Work
	Results and Novelties
	Recommendations for Future Research

	Bibliography

