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Abstract—The detection and localization of multiple targets
is a fundamental research area for multiple input multiple
output (MIMO) radar. In many civilian applications of MIMO
technology, for example, automotive radar, high resolution di-
rection of arrival (DOA) estimation is required. In this paper, a
novel DOA estimation algorithm based on tensor decomposition
is proposed for collocated transmit beamspace MIMO radar.
First, we introduce the flipped-conjugate version of the transmit
beamspace matrix, which focuses the transmit energy into fixed
region. This can increase the signal to noise ratio (SNR) of
targets. Then we reshape the received data into a tensor form,
the structure of which provides the estimations of the transmit
and receive steering matrices. The alternating least squares
(ALS) algorithm is applied to find the tensor components. The
DOA estimation is conducted in transmitters via the rotational
invariance property achieved by beamspace matrix. It is proved
that at most M−2 grating lobes exist during the process of DOA
estimation, where M is the number of the transmitters. These
grating lobes can be eliminated by finite trials of spectrum search.
The performance of our proposed DOA estimation method
surpasses several conventional algorithms in terms of accuracy
and resolution.

Index Terms—Collocated MIMO radar, DOA estimation, Grat-
ing lobes, Localization, Tensor decomposition

I. INTRODUCTION

Multiple input multiple output (MIMO) radar has been the
focus of intensive research [1]–[3], and has found increasingly
many applications in civilian radar technology [4], [5]. Among
these applications, direction of arrival (DOA) estimation is
one of the most fundamental research topics [6]–[9]. Much
of the literature has generalized classic DOA estimation algo-
rithms, such as multiple signal classification (MUSIC) [10]–
[12] and estimation of signal parameters via rotational in-
variance technique (ESPRIT) [7], [13]–[15] from conventional
phased array radar to MIMO radar. However, the problem of
achieving higher resolution and improved estimation accuracy
still remains. In some scenarios like automotive radar, it is
even necessary to relax the requirement of using regular array
geometries [16], but still be able to achieve multiple targets
detection and localization with high resolution and accuracy.

In collocated MIMO radar, it has been shown that by using
less number of waveforms than the number of transmitters
the transmitting energy can be focused in fixed region [11],
[16]. Specifically, at some number of waveforms, the gain
from using more waveforms begins to degrade estimation

performance. This trade-off between waveform diversity and
spatial diversity implies that the performance of DOA esti-
mation in MIMO radar can be further improved. Meanwhile,
the multi-linear structure of received echoes in MIMO radar
has been studied [12], [17]–[19]. Methods like parallel factor
(PARAFAC) analysis [12] have been applied to find each
component of received signal tensor and thus perform DOA
estimation for multiple targets simultaneously. It has been
shown that the performance of tensor decomposition methods
is better than covariance matrix-based algorithms [12], [19].

In this paper, a DOA estimation method for collocated
MIMO radar with special transmit beamspace matrix is pro-
posed. First, we introduce the flipped-conjugate version of
the transmit beamspace matrix, which focuses the transmit
energy into fixed region in order to achieve better spatial
diversity [11], [16]. Then we reshape the received signal into
a 3-order tensor form, whose structure distinctly provides
estimations of steering matrices. The transmit steering matrix
takes the advantage of rotational invariance property (RIP)
achieved due to the beamspace matrix, and DOA estimation
can be then conducted using the phase rotations. Owing to
the conjugate symmetry property enforced by the transmit
beamspace matrix, at most M − 2 grating lobes exist for
each target. These grating lobes can be mitigated by MUSIC
algorithm with finite trails. It is worth noting that the receive
array geometry can be arbitrary since DOA estimation is
performed thanks to the processing in the transmit side.
Simulations verify the DOA estimation performance of our
proposed method in terms of accuracy and resolution.

II. SIGNAL MODEL

We start by presenting the following result that will be
useful for understanding the findings of this paper. For ma-
trices A ∈ CM×N , C ∈ CN×P , and diagonal matrix
B = diag(b) ∈ CN×N , the following Lemma holds.

Lemma 1: vec {ABC} =
(
CH �A

)
b

Proof 1:

vec {ABC} =

N∑
n=1

B(n, n)
(
cHn ⊗ an

)
=
(
CH �A

)
b

(1)

where B(n, n) is the (n, n)-th element of B, an is the nth
column of matrix A, ⊗ is the Kronecker product, and �
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is the Khatri-Rao product (column-wise Kronecker product).
Note that the Khatri-Rao product and Kronecker product are
identical for vectors.

Consider a collocated MIMO radar system with M
transmitters organized in an uniform linear array (ULA)
and N receivers with arbitrary array geometry within a
fixed aperture. The distance between transmitters is denot-
ed by dt. The M × 1 transmit steering vector is giv-
en by α(θ) , [1, e−j

2π
λ dt sin θ, · · · , e−j 2π

λ (M−1)dt sin θ]T ,
where (·)T denotes the transpose, θ represents the tar-
get direction. Similarly, the N × 1 receive steering vec-
tor of N receivers with arbitrary geometry is given
by β(θ) , [1, e−j

2π
λ xn sin θ, · · · , e−j 2π

λ xN sin θ]T , where
{xn| 0 ≤ xn ≤ Dr, n = 1, · · · , N} are the coordinates of the
receivers and Dr is the aperture of the receive array.

Let S(t) , [S1(t), S2(t), · · · , SM (t)]T be the M×1 vector
of pre-designed waveforms. It needs to satisfy the orthogonal-
ity property, i.e.,

∫
T

S(t)SH(t)dt = IM , where T denotes the
radar pulse duration, (·)H represents the Hermitian transpose,
and IM is the M ×M identity matrix. The matrix of transmit
waveforms is denoted by X(t) = αH(θ)S(t). Assuming
the presence of L targets at angles θl, l = 1, 2, · · · , L,
the received signal of all reflections from the targets can be
represented as

y(t) =

L∑
l=1

σ2
l β(θl)α

H(θl)S(t) + n(t) (2)

where σ2
l is the radar cross section (RCS) and n(t) is the

zero-mean white Gaussian noise. After right multiplication of
(2) by SH(t), the matched-filter output is

Y = BΣAH + N (3)

where Σ = diag(c) is a diagonal matrix formed from
c , [σ2

1 , · · · , σ2
L]T , B , [β(θ1), · · · ,β(θL)]N×L, A ,

[α(θ1), · · · ,α(θL)]M×L, and N is the noise residue. The
operator diag(·) here returns a square diagonal matrix with
diagonal elements equal to its vector argument.

III. PROPOSED TENSOR DECOMPOSITION BASED DOA
ESTIMATION METHOD

In many cases, the omnidirectional transmit beampattern
of MIMO radar leads to the deterioration of signal to noise
ratio (SNR) of targets. This can be improved by applying
beamspace matrix at the transmitters to focus energy on several
directions or special sectors of particular interest. It is a trade-
off between waveform diversity and spatial diversity [11], [16].

Let W be the transmit beamspace matrix of dimension M×
2K, K is the number of waveforms used at the transmitters
(we refer to [16] for design details). Define W as follows

W , [W1,W2]M×2K

W1 , [w1,w2, · · · ,wK ]M×K

W2 , [w̄1, w̄2, · · · , w̄K ]M×K

(4)

where w̄k(m) , w∗k(M − m + 1), m = 1, 2, · · · ,M, k =
1, 2, · · · ,K, i.e., w̄ is the flipped-conjugate version of w. The

inner products of wHα(θ) and w̄Hα(θ) are related through
the RIP and share identical transmit beampattern, denoted by

w̄Hα(θ) =

M∑
m=1

w(M −m+ 1)e−j
2π
λ (m−1)dt sin θ

= κ
(
wHα(θ)

)∗ (5)

where κ , e−j
2π
λ (M−1)dt sin θ. This relationship can be gen-

eralized to L targets, given by

WH
2 A =

(
WH

1 A
)∗

T (6)

where T = diag(Φ) is a L×L diagonal matrix. Each element
of Φ contains the angle information of one target, where

Φ , [e−j
2π
λ (M−1)dt sin θ1 , · · · , e−j 2π

λ (M−1)dt sin θL ]T (7)

Substituting this result into (3), we obtain

Y = BΣ(WHA)H + N. (8)

Using Lemma 1 and vectorizing (3) into a 2KN×1 vector,
we can write

yw =
[(

WHA
)
�B

]
cT + ñ. (9)

Assuming that Q pulses are utilized in a single coherent
processing interval (CPI), the overall echoes can be denoted
by Yw , [yw1,yw2, · · · ,ywQ], or equivalently, by

Yw =
[(

WHA
)
�B

]
CT + Ñ (10)

where C , [c1, · · · , cQ]T , Ñ , [ñ1, · · · , ñq]. This is the
matrix form of a 3-order tensor Y(k, n, q) unfolded across the
third dimension. Alternating least square (ALS) algorithm [18]
can be directly used to estimate each component of this tensor
simultaneously. This process is given as follows

min
X̂

∥∥∥[Y](1) −
[
(C�B)X̂T

]∥∥∥2
F

min
B̂

∥∥∥[Y](2) −
[
(C�X)B̂T

]∥∥∥2
F

min
Ĉ

∥∥∥[Y](3) −
[
(B�X)ĈT

]∥∥∥2
F

(11)

where X , WHA, [Y](i), i = 1, 2, 3 denotes the mode-i
unfolding of Y(k, n, q), and X̂ denotes the estimation of X.

Substitute (4) into (10), we have

Ỹ =

[(
X1

X2

)
�B

]
CT + Ñ (12)

where X , (XH
1 ,X

H
2 )H , X1 , WH

1 A, and X2 , WH
2 A.

Using (6), (12) can be reformulated as

Ỹ =

{[
WH

1 A(
WH

1 A
)∗

T

]
�B

}
CT + Ñ. (13)

It can be seen from (13) that the special structure of the
beamspace matrix is maintained in the first component. The
ALS algorithm can estimate X, and the estimation of T can be
found by least-squares method, i.e., T̂ = (X∗1)

†
X2, knowing

that T is full rank. Here (·)† is the pseudoinverse of a matrix.
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TABLE I
GRATING LOBES ELIMINATION

θ̂l = CancelGratingLobes(Φ̂,Rỹ)
• For each column l = {1, 2, .., L}

1) Set Φ̂(l) , e−j
2π
λ

(M−1)dt sin θl

2) Let θ̂lk, k = 1, ...,M − 1 be the possible estimations, with

sin θ̂lk=
jIn(Φ̂(l))

2πdt(M−1)
− k′λ
dt(M−1)

, k′ = k −
⌈
M−1

2

⌉
3) Compute the MUSIC spectrum of θ̂lk by (14)
4) Keep the one with highest peak as the estimation of θ̂l

Then the eigenvalues of T̂ are computed as the estimation of
Φ via singular value decomposition (SVD).

Note that each element in Φ is equivalent with one element
in the steering vector of a virtual array whose spacing between
elements is (M − 1)dt. The target DOAs are very likely to
be mixed because of other M − 2 grating lobes (assume dt =
λ/2). However, the energy is actually distributed in only one
direction. This true direction can be resolved by comparing
the spectrum of each possible direction

P (θ̂l) =
1(

α(θ̂l)⊗ β(θ̂l)
)H

R−1ỹ

(
α(θ̂l)⊗ β(θ̂l)

) (14)

where Rỹ = ỸỸH . Table I describes the process of elimi-
nating the grating lobes.

By introducing the transmit beamspace matrix W and
applying the tensor decomposition method, we get two ad-
vantages. First, the focused energy in transmit beampattern in-
creases the targets SNR and thus improves the performance of
DOA estimation. Second, tensor decomposition method (like
ALS here) exploits the multi-linear structure of the received
signal. This structure directly shows that the associated rank-1
factors of the decomposition are the estimations of the transmit
and receive steering matrices. This relationship provides better
DOA estimation, especially for detection and localization of
multiple targets.

It is worth noting that our proposed method requires unique-
ness of tensor decomposition, which is given by [17], [18]

I∑
i=1

ki ≥ 2L+ (I − 1) (15)

where ki is the Kruskal-rank of each factor matrix, I is the
number of tensor dimension and L is the rank. In our case,
I = 3 and each factor matrix is column full rank. Thus, (15)
can be achieved easily. Given that each component of tensor
corresponding to (13) cannot keep the Vandermonde structure
in our model, (15) is almost surely the optimal boundary
condition of uniqueness. We refer to [19] for more discussions
about uniqueness of tensor decomposition.

Finally, the proposed DOA estimation algorithm can be
conducted without knowing the receiver coordinates xn, n =
1, · · · , N , Thus, the receive array configuration is flexible.
However, this property indicates that it is quite difficult to
withdraw the angle information merely in factor matrix B.

TABLE II
COMPUTATIONAL COMPLEXITY FOR SEVERAL ALGORITHMS

Method Complexity
MUSIC* O((MN)3 +M2N2QZ)
ESPRIT O((MN)3 +M2N2Q)

[12] O(2(I + 1)LMNQP )
[16] O((2KN)3 + (2K)2N2Q)

Proposed O(4(I + 1)LKNQP +K3 +K2L)

* Z is the number of grids for spectrum search

A. Computational Complexity Analysis

The proposed tensor decomposition based DOA estimation
algorithm mainly contains two steps. The first is the ALS
algorithm to estimate factor matrices. During each iteration,
the number of flops isO(4(I+1)LKNQ) [20]. The estimation
of T in second step requires Q(K3 + K2L) flops. In total,
the number flops needed by our algorithm is approximately
O(4(I + 1)LKNQP +K3 +K2L), where P is the number
of iterations. Table II gives the computational complexity
overview for our algorithm as well as for other popular
algorithms used in the next section.

IV. SIMULATION RESULTS

In this section, we evaluate the DOA estimation perfor-
mance of the proposed method in terms of the root mean
square error (RSME) and probability of resolution. MUSIC
algorithm, ESPRIT algorithm [13], method of [12], method
of [16], and the Cramer-Rao lower bound (CRLB) [21] are
also shown for comparison. Throughout the simulations, a
MIMO radar with M = 10 transmit, and N = 11 receive
elements is used. The spacing of the transmitters is dt = λ/2.
The receivers in transmit beamspace MIMO case are randomly
spaced in an array with aperture of 5λ, while its counterparts in
conventional MIMO case is a ULA with dr = λ/2. Two targets
with different angles are assumed. The RCS of the targets are
chosen randomly from Gaussian distribution, and they obey
Swerling II model. The Doppler of the targets are fixed as
zero since they have no influence on the DOA estimation.
The number of pulses is Q = 50, and the number of Monte
Carlo trials is 500. The orthogonal waveforms used here are
Sk(t) =

√
1
Tp
e
j2π k

Tp
t
, k = 1, · · · ,K.

For applying MUSIC, ESPRIT, and the method of [12]
for conventional MIMO case, the beamspace matrix is just
the identity matrix. The method of [16] and our proposed
algorithm, representing beamspace MIMO case, use the same
beamspace matrix W to focus the transmitted energy in the
region Θ : [−15◦, 15◦] (see also Fig. 5 in [16]).

In the first example, two targets are placed at θl =
[10◦,−30◦]. Fig. 1 shows the results of grating lobes elimi-
nation in a single Monte Carlo trial. Numbers nearby those
bars denote the potential M − 1 positions of the targets,
which are computed at step 2 in Table I. After finite trials
of spectrum search via (14), we can easily distinguish the true
angles from grating lobes. The highest two peaks denote the
true directions of two targets. Note that the peak value of the
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Fig. 1. Spectrum Search Results of all Gating Lobes, SNR = 5 dB, two
targets locate in θl = [10◦,−30◦].

second target is lower, which is caused by the synthesized
transmit beampattern.

In our second example, the second target is moved to
θ2 = −10◦. The RMSEs of the methods tested are shown
in Fig. 2. The RMSE decreases steadily with the rise of SNR
for all algorithms. Results of MUSIC and ESPRIT are quite
similar, whereas ESPRIT method gets better convergence and
a few improvements when SNR is large. The method of [12]
applies ALS algorithm. The corresponding RMSE declines
significantly when SNR is about -5 dB, then decreases grad-
ually. After applying beamspace matrix, the DOA estimation
performance is improved due to the increased SNR, which can
be found also for the method of [16]. Note that the method
of [16] exploits the phase rotations ensured by the beamspace
matrix to conduct angle estimation at the transmitter, which
can be regarded as a generalized ESPRIT for beamspace
MIMO. The RMSE of our proposed method is substantially
lower than other methods, since the advantages of the tensor
decomposition and beamspace matrix are combined together.
The performance is improved especially in low SNR region.

In the last example, the probability of resolution of two
closely spaced targets is investigated, where θl = [5◦, 6◦]. It
can be seen in Fig. 3 that the probability of target resolution
rises steadily from very low values (i.e., resolution fail) to
values close to one (i.e., resolution success) when the SNR
increases. Our proposed algorithm surpasses the other algo-
rithms and demonstrates the lowest threshold. Therefore, it
can be concluded that the proposed DOA estimation algorithm
achieves better accuracy and higher resolution.

V. CONCLUSION

A DOA estimation algorithm based on tensor decomposition
for collocated MIMO radar with special transmit beamspace
matrix and arbitrary receive array geometry has been proposed.
The introduction of the transmit beamspace matrix leads to
additional SNR gain for multiple targets, and thus, to improved
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DOA estimation performance. We have reshaped the received
signal into a 3-order tensor form, whose structure distinctly
provides estimations of the transmit and receive steering ma-
trices via ALS algorithm. The RIP is maintained and applied
to conduct DOA estimation. Owing to the conjugate symmetry
property enforced by the transmit beamspace matrix, at most
M − 2 grating lobes exist for each target. These grating lobes
can be mitigated by MUSIC algorithm with finite search trials.
It is worth stressing that the receive array geometry can be
arbitrary. The proposed method improves the DOA estimation
performance in terms of resolution and accuracy with a gap of
about 5 dB SNR compared to other state of the art methods.
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