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SUMMARY

Modern cellular networks are tasked to deliver guaranteed performance for a wide
array of users that increasingly demand higher throughput and reliability, lower
latency, seamless connectivity, ubiquitous coverage, energy efficiency, fairness, and
security, to name a few. To meet these demands, networks are becoming increasingly
complex, combining diverse deployments and multiple radio access technologies that
are envisioned to extend beyond 5G. At the same time, the resources (e.g., spec-
trum, energy, capacity) needed to serve all users are limited and expensive; and
control decisions, such as mobility and resource allocation, often require trading
throughput with other user-perceived performance metrics such as lower delays,
signaling /communication costs, and failure risks.

In these environments where traffic patterns change rapidly, signal qualities fluc-
tuate unpredictably and cost/availability of resources is uncertain, it becomes ap-
parent that static control rules and legacy mechanisms built on heuristics are poorly
suited. In this context, the evolution of mobile network architectures, particularly
the emergence of open Radio Access Network (RAN), represents a necessary and
enabling change. The O-RAN Alliance, for example, is a global initiative aimed at
softwarizing and standardizing RANs to improve their performance, reduce costs,
and lower the entry barrier for a broader vendor ecosystem. It enables scalable, data-
driven control loops that can be implemented centrally by intelligent controllers and
enforced at different time scales, namely, near-real-time (near-RT) and non-real-time
(non-RT). In this way, it becomes possible to embed online learning solutions in the
RAN itself, where data are collected and used for effective and robust learning.

This dissertation responds to these challenges by developing online (meta-) learn-
ing algorithms for two coupled control layers in O-RAN: (i) mobility management
(via user-cell association and traditional/conditional handovers) and (ii) resource
allocation (via threshold, non-RT policies) for virtualized base stations. Online
learning provides a principled way to make sequential decisions under uncertainty,
and online meta-learning enables the system to combine various (online) learners,
each tailored for different environments, achieving both effectiveness, which trans-
lates to high performance under all conditions, as well as robustness, which en-
sures this high performance without knowing precisely the conditions. All proposed
methods deliver operation guarantees under all conditions (from stationary to even
adversarial dynamics), as well as practical gains on country-scale operator data and
O-RAN-compatible testbeds.

ix






SAMENVATTING

Moderne mobiele netwerken hebben de taak om gegarandeerde prestaties te leveren
voor een brede groep gebruikers die in toenemende mate hogere doorvoersnelheid
en betrouwbaarheid, lagere vertraging (latency), naadloze connectiviteit, alomte-
genwoordige dekking, energie-efficiéntie, eerlijkheid en veiligheid verlangen, om er
maar enkele te noemen. Om aan deze eisen te voldoen, worden netwerken steeds
complexer, doordat ze diverse uitrolscenario’s en meerdere radio-technologieén com-
bineren. Tegelijkertijd zijn de middelen (“resources”, zoals spectrum, energie en
capaciteit) die nodig zijn om alle gebruikers te bedienen beperkt en kostbaar; en
vereisen controlebeslissingen, zoals mobiliteitsbeheer en toewijzing van middelen,
vaak een afweging tussen doorvoersnelheid en andere prestatie-indicatoren, zoals
lagere vertragingen, signalerings- en communicatiekosten en risico op uitval.

In deze omgevingen, waar verkeerspatronen snel veranderen, signaalkwaliteiten
onvoorspelbaar fluctueren en de kosten/beschikbaarheid van middelen onzeker zijn,
wordt duidelijk dat statische controle regels en traditionele mechanismen gebaseerd
op heuristieken slecht geschikt zijn. In deze context vormt de evolutie van mobiele
netwerkarchitecturen, in het bijzonder de opkomst van open Radio Access Network
(RAN), een noodzakelijke en faciliterende verandering. De O-RAN Alliance is bij-
voorbeeld een wereldwijde samenwerking die zich richt op het softwarematig maken
en standaardiseren van RANs om hun prestaties te verbeteren, kosten te verlagen en
de toetredingsdrempel voor een breder ecosysteem van leveranciers te verlagen. Het
maakt schaalbare, datagedreven controlemechanismen mogelijk die centraal kunnen
worden geimplementeerd door intelligente controllers en op verschillende tijdschalen
kunnen worden toegepast, namelijk near-real-time en non-real-time (near/non-RT).
Op deze manier wordt het mogelijk om online leermodules in de RAN zelf te inte-
greren, waar data worden verzameld en gebruikt voor effectief en robuust leren.

Dit proefschrift speelt in op deze uitdagingen door online (meta-)leer algoritmen
te ontwikkelen voor twee gekoppelde controlelagen in O-RAN: (i) mobiliteitsbeheer
(via gebruiker-celassociatie en traditionele/conditionele handovers) en (i) toewij-
zing van middelen (via drempelgebaseerde non-RT beleidsregels) voor gevirtuali-
seerde basisstations. Online leren biedt een principiéle manier om opeenvolgende
beslissingen te nemen onder onzekerheid, en online meta-leren stelt het systeem in
staat om verschillende (online) leeralgoritmen te combineren, elk afgestemd op ver-
schillende omgevingen. Dit leidt tot zowel effectiviteit, wat zich vertaalt in hoge
prestaties onder alle omstandigheden, als robuustheid, wat ervoor zorgt dat deze
hoge prestaties behaald worden zonder de omstandigheden precies te hoeven kennen.
Alle voorgestelde methoden bieden operationele garanties onder alle omstandighe-
den (van stationaire tot zelfs vijandige dynamieken), evenals praktische voordelen op
gegevens op landelijk schaalniveau van operators en op O-RAN-compatibele testom-
gevingen.
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INTRODUCTION

Cellular communication networks have become a critical part of modern society. Mo-
bile Network Operators (MNOs) install cell sites / base stations (consisting of cells)
in various locations to provide wireless service coverage through radio frequency
(RF) signals to billions of heterogeneous users and devices, such as smartphones,
tablets, vehicles, IoT devices, and other connected equipment, as well as verticals
with distinct requirements. From streaming high-definition video to sending mes-
sages and supporting industrial automation, these diverse requirements range from
high throughput, ultra-low latency, excellent reliability, and scalability; or any com-
bination of them.

Behind the scenes, this network system must continuously decide, even in a mat-
ter of a few milliseconds, how to serve all requests in this complex arena. Naturally,
if the resources of the network system were unlimited, such decisions would be simple
and would fulfill every user’s and vertical’s demand without constraint. However,
in practice, resources such as computational capacity and bandwidth are inherently
limited, and trade-offs inevitably arise.

These multifaceted conflicts emerge across the heterogeneous users, where one’s
service must be prioritized over another’s; across applications and verticals, where
the requirements of, for example, mobile broadband and mission-critical IoT diverge;
and across objectives, where maximizing performance often comes at the cost of
higher energy consumption or signaling overhead. With multiple stakeholders (users,
operators, vendors, and regulators) involved, the trade-offs are not only technical
but also economic and operational, making mobility and resource management one
of the most intricate challenges in modern and future networks.

Taking these considerations into account, it becomes apparent that the long-
standing reliance on static rules or heuristics for network control, often based solely
on expected usage patterns, cannot adequately address the complexity of today’s
networks. Modern cellular networks operate in environments (i.e., conditions) that
can be highly unpredictable: signal conditions fluctuate rapidly due to fast-moving
users and high radio frequencies, together with traffic loads from a plethora of users
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and verticals. Crucially, in the context of this thesis, environments/conditions refer
not only to the traditional radio parameters (e.g., interference, signal condition,
load) but also to factors such as resource availability, cost of resources, signaling
overheads, and, in general, any source of perturbation that introduces uncertainty in
the network’s operation. Nevertheless, the network is expected to deliver guaranteed
performance under all these conditions.

To keep pace with this complexity, the mobile infrastructure is undergoing a
major transformation. A new architecture known as the open Radio Access Net-
work (RAN), and its embodiment through O-RAN Alliance, is revolutionizing how
networks are built and managed. In O-RAN, control functions are disaggregated,
software-driven, and programmable. This shift makes it possible to embed learning
algorithms directly into the network, so that decisions about users and cell sites
can be made centrally, ensuring more unified and informed decisions, based on data
(and not just pre-defined rules) and in different time scales, ranging from a few
milliseconds in (near) real-time to a couple of seconds or hours in non-real-time.

This dissertation explores how we can design such learning algorithms to tackle
two interrelated problems that arise in the control of O-RAN systems:

1. Mobility management via user-cell associations and handovers: When
users move and have active data connections, the network must decide which
base station (or cell) should serve them at each point in time. Associating or
keeping a user to a cell with a low signal strength would lead to poor through-
put and potentially lack of connectivity, while frequent changes in association,
causing traditional handovers (THOs, or HOs in general) may lead to exces-
sive signaling and unneeded service interruptions. Selecting the “right” cell
for each user, when network conditions change (e.g., as users move), is of
paramount importance and requires balancing the effective throughput of the
users with the (sometimes prolonged) delays associated with the HOs.

Apart from the traditional HO mechanism, 3GPP recently introduced Con-
ditional HOs (CHOs) to mitigate the inherent limitation of THO that lies in
its reactive nature. The novel CHO scheme enables proactive cell reserva-
tions and user-driven execution, thus increasing the probability of HO success
and reducing delays in the procedure; especially in dense deployments and
high-frequency bands. However, they introduce new challenges, such as the
over-reservation of cells’ resources and the signaling/communication overhead
needed to materialize these reservations.

2. Resource allocation for virtualized base stations in non-real-time:
Modern O-RAN systems rely on virtualized base stations (vBSs), which offer
unprecedented flexibility due to their software-defined nature. However, this
flexibility introduces new challenges: performance can become less predictable
and energy consumption more volatile, particularly when vBSs run on general-
purpose computing platforms.

To meet these demands, it becomes essential to design intelligent resource
allocation strategies that can guide how vBSs operate under different envi-
ronments. Unlike traditional base stations, vBSs can be centrally configured
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Figure 1.1: Top: heterogeneous users connect via RAN to the CN and the internet. Bottom:
disaggregation of RAN to the non- and near-RT RIC, together with the main components of the
vBS. Left: brief placement of each chapter’s focus in (O-)RAN architecture.

via the O-RAN control architecture, which supports the use of non-real-time
(non-RT) policies that influence how real-time schedulers allocate their scarce
resources to individual users.

These two problems are tightly linked: associating each user with a cell (Problem
1) leads to allocating resources from this cell (Problem 2), affecting both users’ and
cells’ performance (e.g., throughput and energy consumption). Extensive details on
both problems are given in Section 1.4.

To solve them, this thesis proposes online (meta)-learning techniques that aim
to be (i) effective, optimizing performance under a wide range of conditions, and (i7)
robust, ensuring this performance without requiring access to accurate information
about the conditions (e.g., mobility patterns), which might range from static to dy-
namic and potentially adversarial (i.e., picked by an adversary that tries to degrade
the network operation). These two main features of our proposal fill a key gap in the
literature and pave the way for the next generation of mobility and resource man-
agement solutions. All contributions in this thesis are extensively validated using a
combination of real-world datasets and trace-driven simulations.

The following section traces the evolution of RAN, starting from rigid, hardwired
modules to a virtualized, open, programmable, and versatile ecosystem. Then,
we analyze why online (meta-)learning is essential in these systems and succinctly
describe the main question that this thesis aspires to answer. Finally, we detail the
problems addressed and the main contributions of this thesis.
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1.1. MOBILE NETWORKS: FROM LEGACY TO OPEN RAN

Architecture. Given that RF signals propagate through the air, their quality is
influenced by multiple factors, including distance, frequency band, interference, and
physical obstacles. For that reason, cell sites are typically equipped with multiple
antennas associated with radio cells (or cells) that serve users located in a bounded
geographical area and support different radio access technologies (RATS), such as
2G, 3G, 4G, 5G, and 6G! [1].

The part of the infrastructure that operates these cells and manages the RF
interface between users and the network is called RAN, illustrated in Figure 1.1(top).
Apart from playing a central role in managing the air interface, the RAN acts as the
first layer of control between the user and the core network (CN). The CN, in turn,
handles centralized functions (e.g., authentication and mobility management) and
provides the connection with external networks (e.g., the Internet or other operator
networks), enabling end-to-end communications
Evolution of Radio Access Networks and Technologies. Early generations
of RANs and their RATs were built as vertically integrated, single-vendor stacks.
In second generation (2G) cellular networks, groups of Base Transceiver Stations
(BTSs) reported over proprietary links to a central Base Station Controller (BSC),
which performed tasks such as load balancing and handover control in a closed,
vendor-specific environment [2]. The third generation (3G) upgrade preserved this
tight coupling: NodeBs provided the air interface, while a Radio Network Controller
(RNC) executed most radio resource management functions, again behind vendor-
locked interfaces that limited interoperability [3]. The fourth generation (LTE, 4G)
incorporated RNC tasks into the eNodeB, but still deployed the base station as a
monolithic appliance whose hardware and firmware were tied to a single supplier,
resulting in high costs and long innovation cycles [4].

With the advent of late-stage 4G, namely, LTE Advanced (Pro), Cloud-RAN
(C-RAN) emerged [5]. In this model, the base station was split into a baseband
unit (BBU) and a remote radio unit (RRU), where the former was deployed at a
centralized location and the latter close to the cell sites. While C-RAN relied on
proprietary hardware for BBU functionalities, the idea of virtualized RAN (vRAN)
and virtualized base station (vBS) arose, where baseband functions are virtualized
as Virtualizing Network Functions (VNFs) or containers, running on commercial off-
the-shelf platforms. This architecture introduced the idea of partial virtualization,
separating where processing occurs and enabling pooling gains.

Building on these efforts, LTE eNodeB evolved into gNodeB (¢gNB) in the 5G
New Radio (NR), which itself was decomposed into three main components: the
radio unit (RU, same as RRU), the distributed unit (DU), and the centralized unit
(CU); the latter two composed the BBU in LTE.? Each of these splits implemented
part of the protocol stack, allowing more finely-grained control, reduced latency,

1The Second, Third, Fourth, Fifth, and Sixth Generation networks, and their respective RATs, are
henceforth referred to as 2G, 3G, 4G, 5G, and 6G, respectively.

2The CU is further divided into two logical components, the control and user plane (CP and UP),
to enable the deployment of different functionalities in various parts of the networks. Another
split considers alternatives for the physical layer functionalities in RU and DU [6].
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and broader virtualization. Despite this architectural progress, implementations
remained largely vendor-specific, constraining interoperability and innovation.
RAN Openness. In response to these limitations, a flurry of industrial and aca-
demic activities has focused on the development of virtualized and open RAN. Promi-
nent initiatives include the Telecom Infra Project (TIP), which concentrates on real-
world trials of open RAN systems and deployments in different operators’ networks
[7]; the O-RAN Software Community, a collaboration between the O-RAN Alliance
and Linux Foundation, which develops open-source software for the RAN [8]; and
the Small Cell Forum (SCF), which emphasizes open interfaces for an open RAN
ecosystem with small cells [9].

Unlike these groups, the O-RAN Alliance, founded in 2018 by five major opera-
tors, has taken a leading role in formalizing open RAN specifications [6], [10]-[12].
The O-RAN Alliance has since grown rapidly to become a global community com-
prising more than 300 vendors, research and academic institutions, and operators,
with the latter serving over 4.5 billion subscribers worldwide. The goal of this ini-
tiative is to define the next generation of open,? intelligent, and fully interoperable
vRANSs/vBSs by improving their performance, reducing their costs, and lowering
the barrier for smaller vendors to enter the ecosystem, fostering innovation.

Importantly, O-RAN places intelligence at the center of its agenda, embedding
AT/ML-driven automation into every layer of the architecture. This shift is rein-
forced by parallel initiatives around Mobile Edge Computing (MEC), which recog-
nize the RAN not only as the point where wireless signals are processed, but also as
a new opportunity to serve computation-intensive and latency-sensitive applications
close to the resource-constrained mobile users [13].

O-RAN Intelligence. A key innovation for O-RAN is the introduction of flexible
and programmable Al-native RAN Intelligent Controllers (RICs), enabling the im-
plementation of custom control plane functions, regarding, for example, handovers
or resource management decisions [14]. O-RAN envisions two RICs, one for the
non real-time (RT), namely non-RT RIC, which involves large time scale operations
with execution time more than 1s, and one for the near RT (near-RT RIC), where
operations range from 10ms to 1s.

This architecture enables exactly the capabilities needed by the algorithms de-
veloped in this thesis: hosting various intelligent mechanisms that continuously
“learn” by acting, observing, and adapting; and all these in different time scales,
depending on the concerned task. For instance, handover decisions are taken in
millisecond-level granularity, and therefore, are implemented as zApps in near-RT
RIC. On the other hand, longer-term policies, acting as thresholds for the actual,
real-time resource allocation decisions (to avoid intervening with the proprietary RT
schedulers), can be made in second-level granularity; and thus are deployed as rApps
in the non-RT RIC. These actions, enabled through the RICs, provide an intelligent
centralized control over multiple vBSs and users, making unified, and thus, more
informed decisions, as shown in Figure 1.1.

3 As shown in Figure 1.1, the gNB’s RU, DU, and CU are termed in O-RAN terminology as O-RU,
O-DU, and O-CU, respectively.




6 1. INTRODUCTION

Meta-Learner

2. Select a (combination of) 4a. Calculate
. N 5a. Update
action(s), based on meta-learner's "rust”

"trust" to each Learner loss

Tt

'
3. Environment revealed
:

Learners :
]

A\

At each time slot:

= 4bl'e (ajl:a[}::iate 5b. Update

loss

Figure 1.2: The protocol of online meta-learning at each time slot. In online learning (i.e., without
a meta-learner), steps 2, 4a, and Ha are skipped.

1.2. LEARNING FRAMEWORKS

Online Learning. Ouline Learning is a Machine Learning (ML) paradigm that
enables learning (i.e., updates predictions) while a stream of data becomes available
sequentially. Allowing the model to dynamically adapt its decisions as new data
arrive is necessary in situations where data patterns change over time, such as in
volatile/adversarial network conditions where mobility patterns are unknown. This
approach contrasts with the data-hungry batch (offline) learning, which requires the
entire dataset (or a batch) for training to identify the best predictor(s); and changes
in distribution or new data would necessitate retraining, a procedure that requires
a significant amount of time. More specifically, this thesis leverages the theory and
practicality of Online Convex Optimization (OCO), a powerful and mathematically
structured subset of online learning. OCO was first introduced in [15] and has since
been the workhorse of sequential decision-making in a wide range of problems [16].

In this setting, illustrated in the lower part of Figure 1.2, the following iter-
ative (i.e., over time slots) process occurs: a learner (i.e., player, agent, or algo-
rithm) repeatedly selects actions (i.e., decisions) under possibly different condi-
tions/environment (e.g., signal qualities resource availability, signaling costs). At
each time slot, the action must be chosen before the outcomes (i.e., how good or bad
this action is) and conditions are revealed. Once the action (e.g., associating a user
to a base station or allocating base station resources) is chosen, the actual condi-
tions are observed and the learner incurs a loss from this outcome. The algorithm
then uses the loss, conditions, and actions taken as feedback to improve its future
decisions in a way that minimizes its average loss over time. These losses are not
only unknown to the learner beforehand, but can even be chosen by an adversary,
rendering the solution of this problem challenging.

While it may seem that the learner could observe the conditions before making a
decision, in practice, there is a non-negligible delay between observing the conditions
and processing them to devise and implement the decision. And in highly volatile
conditions, this delay will yield outdated information, as the conditions may have
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changed drastically. This means that an online learning approach is needed, where
decisions are made based on historical and previous observations, without presuming
knowledge of their future values.

Online Meta-Learning. This thesis also leverages the idea of online meta-learning
(henceforth, sometimes referred to as simply “meta-learning”), which boosts perfor-
mance whenever possible: a pool of specialized learners tuned for different condi-
tions (e.g., mobility patterns) is used, and the meta-learner assesses in real-time and
“trusts” the one(s) that perform the best; see Figure 1.2. For instance, algorithms
that are designed to perform well in adversarial conditions might be too conservative
when the conditions are static/stationary, or when the network has access to context
information [17]. In these latter cases, different data-centric learners can leverage the
available information to identify optimal solutions faster. Hence, the question that
arises naturally is how to combine the required robustness of some algorithms that
might work optimally under adversarial conditions, without compromising learning
performance (in terms of convergence speed) whenever the conditions are known;
therefore, obtaining the best-of-both-worlds.

To address this, we adopt ideas from the expert-learning paradigm [18] where
meta-learners intelligently select among actions proposed by different algorithms,
which, in turn, rely on and perform better under different assumptions. A key
challenge is that learning occurs on two levels: the meta-learner must learn which
algorithm(s) are the best-performing, and each algorithm must learn which action(s)
are the best ones. In the full-feedback setting, the meta-learner can observe and
potentially combine the actions chosen by all learners. In contrast, in the bandit-
feedback setting, the meta-learner chooses a single algorithm; and the action of only
this algorithm is observed, rendering the learning even more demanding.

Meta-learning is finding increasing applications in online learning [19] and com-
munication systems [20] due to its robustness to distribution shifts and fast adap-
tation. The power of this framework lies in the generic nature of the deployed
learners, as it is not limited to online learning algorithms, but can also encompass
forecasters trained offline [21], [22]. As shown later in this thesis, if these forecasters
are superior to the other learners because, for instance, there is an abundance of
training data, then the overall performance improves; and when the forecaster is
found to be inaccurate, our meta-learners maintain the robust performance of the
online learners. This design enables robust adaptation to all environments without
prior statistics and ensures that the achieved performance quickly approaches that
of a powerful oracle with full knowledge of the future.

Performance Assessment. The goal of an online (meta-)learning algorithm is to
minimize its cumulative loss. One of the primary metrics to assess how well the
algorithm does so is through regret: the difference between the cumulative loss of
the algorithm and that of an ideal (but unknown) benchmark (i.e., oracle), which
has full information about the future. In other words, it measures how much the
(meta-)learner “regrets”, in hindsight, not having followed the oracle [23]. For an
algorithm to “learn”, the regret, on average, should diminish (i.e., approach zero) as
the number of time slots increases; or similarly, the gap between the (meta-)learner
and the oracle should decrease as time passes and the algorithm learns.
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The notion of regret takes many forms in the literature, depending on the defini-
tion of the oracle. In the simplest but most studied scenario known as static regret
[15], [16], [24], the oracle chooses the best fized action in hindsight. Nevertheless, if
the best action changes over time, choosing the single best action (e.g., single cell
to serve a moving user) may not be a suitable-to-compare benchmark. For that,
the notion of dynamic regret was introduced that measures the algorithm’s actions
w.r.t. any sequence of actions; that is, an oracle that can change its decision at
each time slot. Clearly, it is impossible to compete with an arbitrarily changing
oracle [16]. However, a diminishing dynamic regret can be achieved when the or-
acle’s actions do not change too often [15], [25], a concept known as path length.
The algorithms in this thesis provide robust theoretical guarantees using both the
static and dynamic flavors of regret, and are assessed even in scenarios where the
best actions are changing adversarially.

1.3. PROBLEM STATEMENT
Encompassing the key aspects and challenges mentioned above, this thesis addresses
the following question:

What are the key mobility and resource management challenges in the emerging
O-RAN-enabled next-generation mobile networks, and how can these be addressed
towards enabling efficient and robust operation?

To answer the question, this thesis collects multiple countrywide datasets from
a top-tier MNO and develops principled online meta-learning algorithms that of-
fer performance guarantees. The following sections describe the key mobility and
resource management challenges addressed and summarize the main contributions.

1.4. PROBLEM DESCRIPTION

To address the question posed in Section 1.3, this thesis focuses on two tightly
connected problems at the core of mobile network operation: mobility management
through effective handovers, and allocation of vBS resources.

1.4.1. PROBLEM 1: MOBILITY MANAGEMENT VIA USER-CELL AS-
SOCIATIONS AND HANDOVERS

Traditional Handovers. Mobility management has been a primary consideration
for every generation of mobile networks and occupies a prominent position in the
agendas of both industry and academia [26], [27]. At its core lies the problem
of user-cell associations/assignments, namely, which cell should serve each user at
each point in time (i.e., time slot). Since each radio cell can only cover a limited
geographic area, these associations inevitably change as users move; thus causing
handovers, referred to also as traditional handovers (THOs).

The THO mechanism is illustrated in Figure 1.3a, where a user moves away from
its serving cell C7. At the intersection of the three cells, the user may either return
to Cy or continue toward Cy (or C3). In the latter case, a THO is triggered, but only
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Figure 1.3: Decision-making in (a) traditional and (b) conditional handovers, after and before
signal has degraded, respectively.

after the user’s signal from C; has already degraded; meaning the user is already
well within the coverage region of Cy (or Cs).

As becomes apparent, HOs are the fundamental elements for enabling seamless
connectivity for mobile users.* Optimizing this procedure is crucial, as inefficient
or suboptimal HOs can have a dire twofold impact: on the network’s side, they
might lead to increased resource consumption and signaling overhead [29]; and on
the user’s side, they may cause service interruptions and battery depletion [30], [31].
With the advent of 5G and 6G, HO management has become more intricate due to
the coexistence and integration of multiple generations of mobile technologies [32].

Thus, the latest proposals depart from conventional signal-to-noise ratio (SNR)

or signal-to-interference-plus-noise ratio (SINR) based association rules, towards
solutions where user-cell associations are based on network-wide criteria, e.g., ag-
gregate throughput or fairness/load-balancing metrics, while also aiming to reduce
HOs, and their (sometimes prolonged) delays whenever possible [33]-[36]. The re-
cent O-RAN paradigm [12] facilitates such holistic approaches and enables central
controllers to coordinate network operations dynamically [37], [38], including the
implementation of user-cell associations. The contributions of the thesis to this
problem are analyzed in Section 1.5.
Conditional Handovers. Even though THOs have long served as the backbone
of mobile connectivity, they remain inherently reactive, triggered only after signal
conditions have degraded significantly; see Figure 1.3a. This results in increased
failures and delays in environments with dense deployments or high frequency bands,
where signal conditions change more abruptly.

To mitigate these limitations, 3GPP introduced CHOs [39], [40]. The main idea
is to proactively reserve resources in multiple candidate cells while signal conditions
are favorable, and delegate the final HO decision to the user. This novel approach
of network-configured, user-decided HOs, instead of the network-configured, user-
assisted THOs, has been shown to reduce HO delays and failures [41], [42]. At

4The HO procedure is different from cell (re-)selection, which happens when users do not maintain
an active data connection but still need to change cells to ensure the reception of signaling
messages [28].
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the same time, CHOs introduce new challenges: selecting the optimal set of cells
to prepare is highly context-sensitive; preparing too many cells leads to resource
overutilization, while preparing too few risks service interruption due to fallback to
traditional HOs [43]-[46]. Nevertheless, for a user that moves slowly, it might still
be beneficial to execute THOs, as signal conditions tend to remain more stable.

Figure 1.3b illustrates these challenges: if, at the intersection of the three cells,
we prepare only Cs (C3) but the user moves towards Cs (C2), then Cs (Cs) resources
will be wasted; also, at the next time slot, extra signaling/communication will be
needed to release these resources and a traditional HO will occur. Preparing both
C5 and Cj, if they have enough capacity, is beneficial to the user, and soon after
the trajectory becomes clear and a CHO is executed, the resources allocated to the
unneeded cell can be released, creating, however, some signaling cost. Ideally, if only
Cy (C3) is prepared at the intersection of the three cells and the user indeed moves
towards Cy (C3), the CHO can be executed efficiently, ensuring optimal resource
allocation with minimal signaling overhead. In case no candidate cells are prepared,
the user executes THO, as in Figure 1.3a.

Although the 5G architecture introduced flexibility to support such capabilities
[47], [48], the fundamental approach to HO has remained largely unchanged. In
contrast, the 6G vision, expressed in various 3GPP workshops and white papers
[49]-[53], paints a different picture, where mobility should be intelligent, proactive,
and relying on native Artificial Intelligence (AI). To support highly demanding 6G
use cases, the network must adapt in real-time to user requirements and the cur-
rent signal conditions [54]. Specifically, seamless mobility across different service
domains, ultra-reliable low-latency HO and resource efficiency are identified as crit-
ical enablers for 6G [51], [52]. Static or predefined HO strategies cannot meet these
requirements. We thus call for a paradigm shift in mobility management that can
jointly optimize CHO and THO strategies, underpinned by (near) real-time data-
driven control. More details on the contributions of the thesis to this problem are
given in Section 1.5.

1.4.2. PROBLEM 2: RESOURCE ALLOCATION FOR VIRTUALIZED BASE
STATIONS IN NON-REAL-TIME

At the core of virtualized and open RAN architectures [12] lie vBSs, such as srsLTE
[55] and OpenAirInterface (OAI) [56], which offer OPEX/CAPEX savings and per-
formance gains, since their operational parameters can be adjusted with high granu-
larity at runtime [57]. Alas, these benefits come at a cost. Softwarized base stations
are found to have less predictable performance and more volatile energy consump-
tion [58]-[60], an issue that is amplified when instantiating them in general-purpose
computing infrastructure. This induces operation and cost uncertainties at times
when there is an increased need for robustness and performance guarantees in mo-
bile networks. Therefore, it becomes imperative to understand how to configure or
schedule these vBSs (i.e., how to allocate their resources) without relying on strong
assumptions or compromising network performance, in order to unblock their de-
ployment and maintain energy costs at sustainable levels.

As mentioned before, the O-RAN architecture offers new opportunities to achieve
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Figure 1.4: The proposed policy operates in the non-RT RIC and decides MCS, Power, and PRB
thresholds that are sent to each vBS’s scheduler.

this goal. Namely, the emerging O-RAN standards [10], [11] have provisions for
multi-tier control solutions for resource management that can be implemented cen-
trally, i.e., by the RIC, and enforced at different time scales. In particular, our focus
here is on non-RT policies that determine the operation envelope (or resource allo-
cation thresholds) of the vBSs over time intervals (rounds) of a few seconds. These
policies are fed to, and enforced by, the real-time radio scheduler of each vBS, which
devises their assignments subject to global rules about, e.g., the maximum transmis-
sion power and the eligible modulation and coding schemes (MCS); as can be seen in
Figure 1.4. Such centralized threshold policies have been recently introduced, e.g.,
see [60]-[62], and have several practical advantages. First, O-RAN includes hetero-
geneous base stations that are challenging, if not impossible, to configure directly
by intervening with their real-time schedulers. The global non-RT policies, on the
other hand, offer an easy path to shape the operation of each vBS. Secondly, using
such central policies, the O-RAN controllers can coordinate the operation of their
vBSs in a unified fashion, managing jointly their resources, and also use AI/ML
mechanisms that can benefit from this centralized view.

Nevertheless, the effective design of such policies is a new and particularly intri-
cate problem. Due to their coarse time scale (seconds) and unlike the typical Radio
Resource Management (RRM) decisions (updated in ms), these policies do not have
access to the network conditions and user traffic that will be realized during the
interval they will be applied. And, further, these parameters can change arbitrarily
during such large time windows, not necessarily following a stationary distribution.
Moreover, due to the heterogeneity and volatile operation of the vBSs, the effect of
such policies on the KPIs of interest is challenging, if not impossible, to predict or
quantify with analytical expressions. Coupled with the typically large number of
possible policies, this compounds finding the optimal policy for each vBS. In light
of these observations, it is not surprising that the first works in this area focused
on O-RAN operations under static network conditions and demands, [60], [62]. The
following section details the contributions of the thesis to this problem.

1.5. CONTRIBUTIONS AND OUTLINE

This section presents the contributions, problems addressed, and proposed solutions
for each individual chapter, as illustrated in Figure 1.5. The focus of each chapter




12 1. INTRODUCTION

Urban Rural
Z 1 ((( ))) D Chapter 2
h m /é Research Question: How can we comprehensively characterize the
—_— ﬁ i % 88 @ heterogeneity of modern cellular networks at a countrywide scale
Ea 4G((( ))) L across diverse users, radio access technologies, and
5G : ﬁ 88l % {EIJ\ geodemographic factors, and what implications do these dimensions
ook have for mobility management and handover performance?
n 0@ i )36
- T el @ A
0 :
Chapter 3

Research Question: How can user and cell characteristics be used
to design smooth traditional handover mechanisms that are O-RAN
compatible, and remain robust under all environments?

Chapter 4
Research Question: How can we design a robust and principled AI-
driven framework for jointly optimizing traditional and conditional
handovers in next-generation O-RAN architectures?

traditional handover: reactive, after user ©
conditional handover: proactive, before user (<)

Resources

Chapter 5
Research Question: How to design robust vBS non-RT policies
that offer performance/cost guarantees without relying on
strong assumptions and avoid sub-optimal operations?

Figure 1.5: Schematic focus and research questions of each chapter of the thesis.

with respect to the O-RAN architecture is shown in Figure 1.1 (left).
Heterogeneity and Mobility Management of Cellular Networks — Chap-
ter 2. This chapter examines the heterogeneity of modern cellular networks and
their mobility management through a countrywide analysis of a top-tier MNO in
Europe. Unlike the vast majority of studies that employ data from measurement
campaigns within confined areas and with limited devices, thereby providing only
a partial view of these aspects, we collect traffic for four weeks from approximately
40M users. By analyzing these datasets, we capture the heterogeneity of RATs,
varying deployments based on population, and a broad spectrum of user types (e.g.,
smartphones, M2M/IoT devices), with different characteristics, such as manufac-
turers (e.g., Samsung, Apple, Google).

Subsequently, we delve into HOs, the fundamental element for seamless connec-
tivity of mobile users. We characterize the geo-temporal dynamics of horizontal
(intra-RAT) and vertical (inter-RAT) HOs at the district level and at millisecond
granularity, leveraging open datasets from the country’s official census office to as-
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sociate our findings with the population. Additionally, we investigate the frequency,
duration, and causes of HO failures, and model them using statistical tools.

These insights provide the empirical basis for the next chapter, where we shift

from characterization to improvement and develop mechanisms that enhance HO
performance in line with the ambitions of 5G and beyond.
Mobility Management through Smooth Handovers — Chapter 3. In this
chapter, we shift our focus to HO optimization. To ensure that our proposed
methodologies align with reality, we begin by building on the datasets analyzed
in the previous chapter and enriching them with targeted measurements and crowd-
sourced signal data. Our findings quantify the impact of HOs on network and user
key performance indicators (KPIs), such as packet loss and throughput, and high-
light a correlation between HO failures/delays and the characteristics of cells and
users. Leveraging these new mobility insights, we subsequently model for the first
time, to the best of our knowledge, UE—cell associations as dynamic decisions under
the framework of Smoothed Online Learning (SOL), which enriches the online con-
vex optimization (OCO) toolbox, accounting for costs induced by decision changes
(and thus, HOs).

We propose a realistic system model for smooth and accurate HOs that extends
existing approaches by (i) incorporating device and cell features in HO optimiza-
tion, and (i) eliminating (prior) strong assumptions about requiring future signal
measurements and knowledge of users’ mobility. Our proposed online meta-learning
algorithm, aligned with the O-RAN paradigm, offers robust dynamic regret guar-
antees even in challenging environments and demonstrates superior performance in
multiple scenarios with real-world crowdsourced and synthetic data.

Yet, these traditional HOs, the backbone of mobility management, remain reac-

tive by design, as they are triggered only after conditions have already deteriorated.
This raises the natural question of whether networks and users can act proactively,
when needed, by preparing cells before a disruption occurs. To answer this ques-
tion, the next chapter turns to CHOs and investigates how to design a robust and
Al-driven framework for jointly optimizing THOs and CHOs in 5G, 6G, and next
generation (NextG) O-RAN architectures.
From Reactive to Proactive Handovers — Chapter 4. This chapter advances
our study of mobility management by moving beyond THOs alone and incorpo-
rating CHOs into a unified optimization framework. To capture these dynamics,
we extend the MNO datasets with both source and target cell features (not only
the former, as in the chapters before), allowing us to capture the unique dynam-
ics of CHOs, where multiple target cells could be allocated in advance. Building
on these insights, we introduce online meta-learning algorithms that adapt to run-
time observations and guarantee performance comparable to a theoretical oracle
with perfect future information, without access to system conditions. Addition-
ally, they are designed for near-real-time deployment as xApps within the O-RAN
architecture, aligning with 6G and NextG goals of flexible and intelligent control.
Extensive evaluations leveraging our real-world countrywide dataset demonstrate
that they improve user throughput and reduce signaling overhead, outperforming
3GPP-compliant baselines.
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Once traditional and conditional handovers are optimized, the focus must shift
to the other side of the link, namely, how (v)BS and their cells adapt their available
resources to serve connected users efficiently. Apart from proportional-fair / round-
robin schedulers used up to this section, can resources be assigned in a more effective
and robust way?

Resource Allocation for Virtualized Base Stations in Non-Real-Time —
Chapter 5. This chapter focuses on optimizing the allocation of vBS’s radio re-
sources in the O-RAN ecosystem. Although such systems offer increased flexibility,
reduced costs, vendor diversity, and improved interoperability, optimizing the allo-
cation of their radio resources raises new challenges due to the volatile operation of
vBSs and the dynamic network conditions and user demands they must support.
Using the novel multi-tier control architecture of O-RAN, we propose a new set of
resource allocation non-real-time (i.e., threshold) policies, designed to balance the
performance and energy consumption of vBS in a robust and provably optimal way.

To that end, we introduce an online learning algorithm that operates under
minimal assumptions and without requiring knowledge of the environment, hence
being suitable even for “challenging” environments with non-stationary or adversar-
ial demands and conditions. We also develop an online meta-learning solution that
leverages other available algorithmic schemes, e.g., tailored for more “easy” envi-
ronments, by choosing dynamically the best-performing algorithm; thus enhancing
the system’s effectiveness. We prove that the proposed solutions achieve sub-linear
regret (zero optimality gap) and characterize their dependence on the main system
parameters. The performance of the algorithms is evaluated using real-world data
from a testbed, under both stationary and adversarial conditions, yielding energy
savings of up to 64.5% compared to several state-of-the-art benchmarks.



HETEROGENEITY AND
MOBILITY MANAGEMENT OF
CELLULAR NETWORKS

In this chapter, we take the first step in understanding the heterogeneity of modern
cellular networks and their mobility management from the perspective of a top-tier
mobile network operator (MNO), offering a realistic view of what deployed networks
look like today. Unlike the vast majority of studies, which employ data from mea-
surement campaigns within confined areas and with limited devices [30], [32], [63]-
[78], we collect traffic from approzimately 40M users for four weeks and study the
heterogeneity of users (e.g., different manufacturers and types) and the coexistence
of multiple radio access technologies (RATs) from different generations (2G-5G),
as well as the geodemographic segmentation. Special attention is paid to mobility
and handover (HO), the primary mechanism through which seamless connectivity is
achieved as users move across the network. We quantify the geo-temporal dynamics
of both horizontal and vertical HOs, and associate them with data sourced from the
country’s national census. Finally, we analyze the patterns, causes, and durations
of HO failures (HOFs) and model them using statistical tools.

The content of this chapter has been published in:

M. Kalntis, J. Sudrez-Varela, J. O. Iglesias, A. K. Bhattacharjee, G. Iosifidis, F. A. Kuipers, and
A. Lutu, “Through the Telco Lens: A Countrywide Empirical Study of Cellular Handovers,” in
Proc. of ACM Internet Measurement Conference (IMC), 2024.
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2.1. CHALLENGES AND CONTRIBUTIONS

As highlighted in Chapter 1, the advent of 5G, and soon, its successors, 6G and
next generation (NextG), marks a shift in the telecommunications landscape, offer-
ing unprecedented speed, ultra-low latency, exceptional reliability, and, importantly,
ubiquitous connectivity to a wide array of devices [74]. However, like any emerging
technology, the pace of real-world deployments does not match instantly the pace
of innovation [75], [76], resulting in multiple generations of technology operating si-
multaneously. This coexistence of multiple RATs induces economic and deployment
trade-offs, highlighting the importance of understanding the ensuing heterogeneity
under real-world conditions.

Motivated by this unique transitional phase, we begin the chapter by capturing
novel, large-scale datasets from a top-tier MNO in Europe'; enabling, in this way, the
analysis of network dynamics at a crucial moment when —at the time of capturing the
datasets— all digital RATs developed during the last three decades are concurrently
operational within the same network. Specifically, we analyze three main aspects
that affect the complexity of modern cellular networks: the heterogeneity of (i) RATs
and (4i) UEs, as well as the (4#i7) geodemographic diversity.

A central element that cuts across these three axes is mobility management,
which has become increasingly intricate, yet crucial for maintaining seamless con-
nectivity. Thus, we continue our analysis by presenting the first, to our knowledge,
countrywide analysis of mobility management from the perspective of a top-tier MNO
in FEurope. As can be seen in Table 2.1, we have recorded all mobility events, and
more precisely, the induced HOs and HOFs for four weeks at millisecond granularity.

We merge this data with: () information from the MNQO’s deployment, to study
HO performance across its topology and supported RATs, (i7) device-specific in-
formation, to associate HOs and HOFs with specific UE types and manufacturers,
and (ii¢) data from the country’s official census office, to account for the geode-
mographic distribution of HOs across 300+ districts with various population densi-
ties. At the time of capturing the datasets, the MNO was initiating its commercial
5G-Standalone (SA) deployment; thus, we measured only the 5G-Non-Standalone
(NSA) deployment to avoid any early-stage issues with SA [77].

We analyze the spatio-temporal dynamics of horizontal (intra-RAT), and verti-
cal (inter-RAT) HOs, at the district-level and with ms granularity, and characterize
their pattern across the country to identify regional trends. Furthermore, we dissect
the impact of UE types (smartphones, M2M/IoT devices, low-tier feature phones)
and manufacturers on HOs, HOFs, and mobility /performance metrics. We also
analyze the causes behind HOFs, using 3GPP-based and vendor-specific failure de-
scriptions. Lastly, we leverage statistical methods to model how the coexistence of
multiple RATs affects HO performance, especially when UE connections are down-
graded to older technologies (e.g., 2G, 3G).

Below, we present the key findings and contributions of this chapter.

e Heterogeneity & Complexity of Networks / Mobility (Section 2.3). In
the MNO’s deployment, 5G cells make up 8.4% while 4G accounts for 55%, with 2G

1To maintain the confidentiality of the operator, we are only able to disclose general location.
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Table 2.1: Dataset statistics.

Feature Value

Area covered Country in Europe (300+ districts)
# of cell sites 24k+

# of radio cells 350k+

# of UEs measured ~ 40M

# of handovers (daily) 1.7B+
Measurement period 29-Jan-2024 to 25-Feb-2024 (4 weeks, 28 days)
Trace size (daily) ~ 8TB

and 3G cells covering the remaining ~36% and handling 18% of user connectivity
time. Despite this, older RATs carry only 5.23% of the uplink (UL) and 2.07%
of the downlink (DL) data flowing through the network. Among all UEs, 59.1%
are smartphones, primarily from Apple (54.8%) and Samsung (30.2%), from which
51.5% do not support 5G, relying instead on 4G. Additionally, over 32% of the UEs,
mainly M2M/IoT devices and feature phones, support only up to 3G. This blend
of technologies highlights the challenges of phasing out older RATS, particularly
in an environment where IoT manufacturers still rely on 3G/2G for devices with
limited connectivity needs. Our geodemographic analysis points to a large disparity
between the density of HOs in urban centers with larger population density (2.1M
HOs per sq. km), and less populated rural areas (60 HOs per sq. km); in a network
deployment that registers on average 13.1k HOs per sq. km.

¢ HO Analysis (Section 2.4). Taking as a reference the HOs registered in the 4G
EPC, approximately 94% of HOs are horizontal (between 4G/5G-NSA radio cells),
complete within 90ms (median of 43 ms), and correspond to smartphone activity.
M2M/IoT UEs and low-tier feature phones —accounting for >40% of the device
population— share the remaining 6% of HOs. By investigating the top-5 smartphone
manufacturers (Apple, Samsung, Motorola, Google, Huawei), we discover similar
patterns in terms of HOs (+£10% of variation between them) and low HOF rates
(Google exhibits -27% of HOFs w.r.t. other UEs, but with higher variability).
Moreover, we find some smartphone manufacturers outside the top-5 (e.g., KVD)
that exhibit higher HOF rates (up to +600% w.r.t. other UEs) and HO signaling
(up to +293%).

e HOF Analysis & Modeling (Section 2.5). Rural areas (with sparser de-
ployments) experience 32.4% more HOFs during peak hours [7:00-8:00) than urban
areas. Moreover, HOF rate is close to zero for the majority of the UEs; for the ones
with high mobility metrics (>100 visited cells, >100km radius of gyration), which
are mostly smartphones (85%), HOF rate rises up to 0.4% (pct-75).

Furthermore, we dissect the reasons why HOs fail by using 1k+ 3GPP and
vendor-specific descriptions that explain the causes. Interestingly, we find that 92%
of the HOs in the entire country fail with solely 8 causes; and from the studied
failures, 75% (0.03%) occur in HOs to 3G (2G), and 25% of them are due to an
excessive load in the target cell (Cause #4). Moreover, we measure the duration of
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Figure 2.1: High-level description of HO procedure [78].

these 8 causes and highlight that the ones related to specific cancellations (Cause #1)
and timeouts (Cause #8) require on average >2s to complete, reaching up to 10s
in the latter case.

In addition to the previous analysis, we aim to identify which network-related
features correlate with HOFs. Specifically, we test whether the HO type (intra/inter-
RAT) is a good predictor for the HOF rate. Statistical analysis verifies that, al-
though they occur infrequently (only 6% of all HOs are to 2G/3G), HOs to 3G (2G)
increase the HOF rate by 166% (915%) compared to HOs between the newer RATs
(intra 4G/5G-NSA).

2.2. METHODOLOGY AND DATASETS

In this section, we briefly present the HO mechanism and demonstrate our measure-
ment infrastructure in a large countrywide MNO. We describe the three datasets
built for this study and introduce the official census dataset we used to complement
our analysis. Finally, we detail the performance and mobility metrics employed.

2.2.1. HANDOVER MECHANISM

Every UE relies on its primary cell (i.e., the cell it is connected to), serving as the
pivotal link for control-plane signaling and HO management. Figure 2.1 depicts
the HO process from a source (i.e., primary) to a target radio cell [79]. When
a UE attaches to a new cell, it receives a set of mobility management configura-
tions, including parameters for the triggering of HO events (e.g., hysteresis, offsets,
etc.). Based on these configurations, the UE performs signal strength/quality mea-
surements — e.g., Reference Signal Received Quality (RSRQ) — of the source and
neighboring cells, and sends a Measurement Report (MR) to the source periodi-
cally, or if any of the mobility management criteria is met. For instance, in 4G and
5G NR, a HO triggering event typically occurs when either the serving cell’s signal
falls below a threshold (A2 event) or when the signal of a neighboring cell becomes
offset better than the serving cell (A3 event) [80], [81].

Based on the MR, the source identifies the best target cell and initiates the HO.
After the target cell accepts the request, the source transmits a HO command to the
UE. For example, in 4G/5G NR, the source sends a Radio Resource Control (RRC)
Connection Reconfiguration message to the UE to begin its cell synchronization with
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Figure 2.2: Network architecture & measurement points.

the target cell and the Random Access Channel (RACH) procedure. After the UE
reports successful access to the target cell, the source releases its resources. More
details are available in [78], [82].

2.2.2. NETWORK DATA COLLECTION

Measurement Infrastructure. We collect passive measurements using commer-
cial tools integrated into the MNOQO’s infrastructure, see Figure 2.2. In a nutshell,
the cellular network architecture can be divided into three primary components:
(i) the devices accessing the network, (i7) the Radio Access Network (RAN), re-
sponsible for managing wireless communication, and (i) the Core Network (CN),
which provides the required services and functions for the network operation (e.g.,
user authentication and mobility management). This is consistent for all the dif-
ferent radio technology generations that coexist in the network. Our monitoring
locations, which we depict with red pins in Figure 2.2, focus on key components of
the core network, including the Mobile Management Entity (MME tracks and man-
ages the mobility of devices in 4G and 5G-NSA), the Mobile Switching Center (MSC
is responsible for communication switching functions), the Serving GPRS Support
Node (SGSN manages data routing for 2G/3G), the Serving Gateway (SGW routes
packages between RAN and the CN), and the cell sites in the RAN.

Data is collected in a private cloud environment for a given retention period, and
is already anonymized before processing. Particularly, we organize the collected data
into three datasets, providing various information at the radio cell and UE-level.
Mobility Management Signaling Dataset. The captured data spans from 29-
Jan-2024 to 25-Feb-2024 for the entire country (see Table 2.1). We analyzed the
activity of users in the control plane for all RATs supported by the MNO. For each
RAT, the dataset includes the (control plane) signaling messages related to events
such as service requests, HOs, attach/detach, paging, and Tracking Area Update
(TAU). We direct our attention to HOs, for which we capture six main variables that
enable an in-depth analysis: (i) timestamp, with millisecond granularity, (ii) HO re-




20 2. HETEROGENEITY AND MOBILITY MANAGEMENT OF CELLULAR NETWORKS

sult (i.e., success/failure), (iit) HO duration (msec granularity), (iv) cause codes for
HO failures based on 3GPP [79], [83], which are enriched with sub-cause descriptions
specified by the antenna vendors, (v) anonymized user ID, based on the Interna-
tional Mobile Subscriber/Equipment Identity (IMSI/IMEI),? and (vi) source and
target radio cells along with their RATs. As mentioned before, due to the early
stages of 5G-SA deployment in the studied MNO, we base our analysis on 5G-NSA,
which relies on the 4G EPC for mobility management.

Radio Network Topology. We utilize this dataset to integrate in our analysis the
upgrades in the MNO’s network deployment footprint (e.g., newly deployed sites).
We capture this dataset daily during the period of analysis; it contains information
on each deployed radio cell, such as geographic location (longitude and latitude),
the postcode of the area, and the supported technologies (i.e., 2G, 3G, 4G, 5G).
Devices Catalog. We leverage a daily commercial database, provided by the
Global System for Mobile Communications (GSM) Association (GSMA) to examine
correlations of device-specific characteristics with HOs. This catalog associates the
TAC of each device with attributes such as the supported radio bands and RATs, the
manufacturer, and the device type. We apply a heuristic to classify the devices into
three types: smartphones, M2M /IoT devices, and low-tier feature phones [84]. For
this, we rely on the observation that the Access Point Name (APN) configured for
the UEs may contain keywords associated with IoT verticals (e.g., “m2m”, “smart-
meter”), and combine the information from the APN with the device characteristics
of our daily commercial GSMA database.

2.2.3. CENSUS DATASETS

We leverage open datasets published by the official census office in the studied Euro-
pean country to enrich our mobility study with the geodemographic characteristics
of different areas. Specifically, we take as a reference the 300+ districts defined by
the census office, and collect the population density and the postcodes within each
of them. Then, based on census information we classify postcode areas into two
main categories (urban and rural), which correlate with population density (more
than 10k and less than 10k residents) and also serve as a proxy for areas with denser
and sparser RAN deployments, respectively.

2.2.4. PERFORMANCE AND MOBILITY METRICS

Performance Metrics. In line with prior works [28], [85], we focus on:

o HO count, which represents the number of HOs over a time interval. We usually
set it to either 30 minutes, 60 minutes, or one day. We use this metric to show how
users’ mobility fluctuates over time and space, and how it differs per RAT, device
type, and manufacturer.

e HO duration, which represents the time interval (in ms) to complete the HO,
see [72], [86]-[88]. Minimizing this interval is crucial for seamless connectivity and
improves the users’ Quality of Experience (QoE).

2The first 8 digits of the IMEI represent the Type Allocation Code (TAC), which we use later to
classify devices.
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e HOF rate, which refers to the number of HOFs divided by the total number
of triggered HOs.> HOFs dramatically affect the users’ experience and typically
happen due to poor signal strength, configuration and synchronization errors, or
capacity issues in the network. In Section 2.5, we uncover the reasons why these
failures occur and emphasize that a comprehensive understanding of HOFs can only
be achieved by incorporating the perspective of MNOs.

Mobility Metrics. To showcase the mobility characteristics of users, we focus on
two metrics from the MNQO’s perspective, as follows.

o Number of cells quantifies the number of distinct radio cells that a user successfully
communicates with, per day. We highlight that this metric does not necessarily
translate to the distance traveled by users in a given area, as the density of radio
cells in the area also plays a role. For instance, urban areas typically have denser
deployments and, as a result, users connect to a larger number of cells even if
they travel the same distance as in less populated areas (e.g., rural) with sparser
deployments.

e Radius of gyration complements the previous metric by capturing the traveled
distance for the UEs [89]. It is defined as the root mean squared distance between
each visited cell (weighted by the time spent there) and the center of mass. The
radius of gyration is defined as follows:

N

1
9=\ N >l — Lem)?,

Jj=1

where 1; represents the location of the Gt visited cell site, t; represents the time
spent in the j** visited cell site and l., represents the location of the user’s center
of mass, calculated as Loy, = + Z;-V:l{tj 1,}, where N is the total number of cell sites
visited by the user. A high radius of gyration indicates that the user travels far and
wide (i.e., their moves span a large geographical area). Conversely, a lower radius of
gyration points to more localized movements, relatively close to a central location.

2.3. A FIRST LOOK AT THE NETWORK

Our datasets capture the heterogeneity and complexity of HOs across the entire
MNOQO'’s deployment in the studied country, which includes diverse deployment den-
sities and RATS, as well as a broad spectrum of UEs (e.g., smartphones, M2M/IoT,
etc). In this section, we explore the heterogeneity of these datasets along three
particularly interesting axes, from the network’s perspective: (i) heterogeneity of
RATS, (i7) heterogeneity of UEs, and (iii) geodemographic complexity.

2.3.1. RADIO ACCESS TECHNOLOGIES

Figure 2.3a shows the deployment evolution in the network from 2009 to 2023.
The number of cells (solid pink line) has increased at an exponential pace in the
last 15 years, with an average growth of 59% during the last 5 years (2018-2023).

3We primarily focus on HO failures rather than explicitly detailing HO successes; however, successes
and failures are complementary to each other.
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Figure 2.3: (a) Evolution of network deployment in a commercial MNO. The left y-axis corresponds

to all bars and lines, except the pink line (right y-axis). (b) Average daily RAT use. Error bars
show the min/max daily values over 4 weeks.

Throughout these 15 years, different RATs have been coexisting with a varying
mix. The latest major network upgrade occurred in 2019 with the deployment of
5G-NR, which accounted for 8.4% of the cells by the end of 2023. At the same
time, we observe the gradual decommissioning of 2G and 3G cells (~18% each in
2023), while 4G is still the dominant RAT (x55%) in terms of infrastructure. This
heterogeneity does not come as a surprise, since decommissioning legacy RATSs is
a challenging process that needs to account for various techno-economic factors,
such as the turnover rate of customers or the radio coverage [90]. Nonetheless, it
compounds network management and affects both the number and the success of
HOs as we present in Section 2.5, and as prior studies have also identified [73], [91].

To further understand the use of the RATSs, we compute the overall time that
UEs spend on each of them by using the timestamps of mobility events in the
dataset. With the current 5G-NSA deployment, we do not distinguish from the
events captured in the core network (i.e., MME) when devices are served by a 4G or
a bG-NR cell (see Section 2.2); thus, we use the term “4G/5G-NSA”. In Figure 2.3b,
we notice that UEs rely mostly on 4G/5G-NSA (=82% of the time on average),
while 2G and 3G serve users during a non-negligible 8.9% of the time each. In
terms of aggregated data volumes, the share for 4G/5G-NSA rises up to 94.77%
and 97.93%, respectively, for UL and DL traffic, leaving marginal values for 2G and
3G. Yet, these legacy RATS still serve a noteworthy number of UEs that support
only these technologies (see Section 2.3.2).

The heterogeneity of the network appears also in terms of the antenna vendor.
Four principal vendors (V1, V2, V3, V4) employ antennas (and thus, RATS) for this
network, with their deployment distributed asymmetrically across different regions.
All vendors support 4G/5G-NSA and 3G RATs, and accommodate nearly the full
spectrum of devices. Details are provided in Appendix 2A.

Key takeaways: The cellular network we measure includes all RATs (2G-5G),
where 2G and 3G radio cells account for 36% of the total deployment. These RATs
(2G & 3G) connect users on average for 18% of their up-time, while UEs generate
only 5.23% (2.07%) of the UL (DL) data over them.
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Figure 2.4: Percentages of (a) manufacturers and device types, and (b) the RATs they support
(excluding <0.5%).

2.3.2. USER EQUIPMENT

The number of devices accessing the network over the 4-week period is ~40M. We
classify these devices into three types based on their capabilities, namely, smart-
phones, M2M /IoT devices, and low-tier feature phones, accounting for 59.1%,
39.8%, and 1.1% of UEs, respectively. Figure 2.4a shows the top-5 manufacturers
in the three types of devices. In the larger category — smartphones — we observe
that most devices are manufactured by Apple (54.8%) or Samsung (30.2%). For
M2M/IoT UEs, we find a diversified set of manufacturers; namely, over 27% of
these UEs are from manufacturers outside the top-5.

We infer the connectivity capabilities of mobile devices from the GSMA device

catalog (see Section 2.2). We find that 12.6% of all UEs support only 2G and 20.1%
up to 3G (see Figure 2.4b), which partially explains the slow pace of decommis-
sioning legacy RATs. These legacy devices are mostly M2M /ToT devices or feature
phones, where > 80% and > 50%, respectively, support at most 3G. The overall
number of devices that support 4G or 5G adds up to 67.2%. The majority of these
devices are smartphones: 51.4% of smartphones support up to 4G, and 48.5% are
5G-capable.
Key takeaways: Over 32% of all devices support only up to 8G — predominantly
M2M/IoT UEs and feature phones — and 51.5% of smartphones do not support 5G
yet (the majority relies on 4G). These factors contribute to the presence of a mizture
of old and new RATS in current deployments, stressing the challenges associated with
decommisstoning the older ones.

2.3.3. GEODEMOGRAPHIC SEGMENTATION

Population Sampling. This section demonstrates that the dataset we collect
through the commercial MNO is representative of the country’s overall population.
Figure 2.5a shows the population according to census (y-axis) and the population
we inferred from the MNO (x-axis), where each data point refers to the districts in
the country (see Section 2.2). We derive the end-user’s home location at postcode
granularity from their connectivity patterns during nighttime [92]. To achieve this,
we consider the main cell site the user connects to between 00:00 and 08:00 (i.e.,
night hours) for at least 14 days (not necessarily consecutive) during February 2024.
We then aggregate their mapped home postcode at the district level. These results
show a clear linear relationship (R? = 0.92) between the census data and the MNO
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Figure 2.5: In district-level (a) comparison between the inferred population from the MNO data
and the actual population from the census data, and (b) daily HOs per sq. km.

user base, which reinforces that our dataset accurately captures the country’s popu-
lation distribution [93]. This renders our dataset especially interesting for analyzing
mobility in the entire country, including regions with diverse population dynamics.
Mobility & Geodemographics. We investigate the distribution of mobility
events by examining the number of HOs across districts. Figure 2.5b shows the
number of daily HOs per sq. km in each district, together with the population den-
sity there (residents per sq. km). This analysis facilitates the characterization of
mobility patterns across distinct geodemographic segments (e.g., densely populated
urban areas or less populated rural areas). Overall, our findings indicate a strong
positive correlation (Pearson correlation of 0.97), between the number of HOs per
day and the residential population density in the corresponding district.

As anticipated, dense urban areas exhibit a high number of HOs per square km.

For instance, in the district that covers the urban center of the capital, we observe
approximately 2.1M HOs per square km each day. In this city the studied network’s
infrastructure itself comprises more than 500 radio cells per square km. Conversely,
in less populated areas the intensity of HOs is significantly lower (60 HOs per sq.
km in the least densely populated district). This value is more than 200x lower
compared to the district-level mean in the country (13.1k HOs per sq. km daily),
reflecting the stark contrast in mobile network activity between highly urbanized
and more remote areas.
Key takeaways: We infer the home locations of approzimately 40M UEs across the
studied country to ensure that our data accurately represents the entire population
(R? = 0.92 with census data). By analyzing HOs per square km at the district level,
we observe significant disparities — from 2.1M daily HOs per sq. km in the in the
center of the capital city to 60 HOs per sq. km in remote areas — highlighting the
complezity of managing HOs across different regions.

2.4. CHARACTERISTICS OF HANDOVERS

Analyzing mobility patterns is crucial for various purposes, including urban plan-
ning, social policy design, and optimizing network infrastructure [68], [94]. In this
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Figure 2.6: Temporal evolution of HOs (top) and active cells (bottom) in urban and rural areas
in 2024. Curves show the average HO volume in 30-minute intervals over the four weeks; shadows
show the min/max values. All values are normalized by the max HO and cell count observed.

section, we take as reference the three axes of heterogeneity from Section 2.3, and
characterize geo-temporal cellular mobility patterns through HOs. We examine the
horizontal and vertical HOs across UE types and districts, and investigate how
mobility and UE manufacturers relate to HO performance.

2.4.1. GEO-TEMPORAL ANALYSIS
First, we analyze HO patterns as a function of geodemographic factors, focusing on
the difference between urban and rural areas, classified at the postcode level.* This
broader urban/rural classification enables us to robustly capture variations in HO
dynamics across areas with different demographic characteristics.
HO Patterns. Figure 2.6 (top) shows the weekly temporal evolution (with 30-min
granularity) of HO counts over the 4 weeks (shadows show the min/max values). To
adhere to privacy and security guidelines of the MNO, we normalize the HO counts
by the max value (over 30-min intervals) of the studied period. The total number
of HOs in urban areas represents, on average, 78% of all HOs, which is consistent
with findings from other studies [31]. Namely, we discover that 80% of the cells are
installed in urban areas, which cover only 49.6% of the total country’s territory.
From the daily HO patterns, we observe that weekdays (Mo-Fr) experience higher
number of HOs compared to weekends (Sa-Su). Concretely, we find a 33% reduction
on average in the peak of HOs during Sundays compared to Fridays. Moreover, we
identify the peak HO times during weekdays at 08:00-08:30 and 15:00-15:30 for
both rural and urban areas. Also, weekday HO patterns exhibit notable fluctua-

4We drop from this analysis 3.1% of the postcodes due to the lack of reliable census information
in these areas.
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Table 2.2: Statistics per handover and device type.

Horizontal Vertical All

Intra 4G/ 4G/5G-NSA 4G/5G-Nsa 105 (%)
5G-NSA (%) to 3G (%) to 2G (%)

Smartphones 88.28 £0.77 5.84 +0.77 < 0.001 94.12+0.77

M2M/IoT 5.73 £0.52 0.02+0.01 < 0.001 5.75+£0.53

Feature phones 0.13 4+ 0.05 < 0.001 < 0.001 0.13£0.05
All devices 94.14 +£1.29 5.86£0.78 < 0.001

tions, with a sharp x3 increase in the HOs observed from 06:00 to 08:00; this is
in contrast to weekends, which have a single peak of mobility between 12:00 and
13:00. During weekdays, after the second peak at 15:00-15:30, the number of HOs
gradually decreases (on average 11% per 30 minutes), leading to the minimum at
02:00-03:30 (or 03:00-05:00 over the weekends).

Likewise, Figure 2.6 (bottom) shows the number of active cells — handling at
least one HO — over 30-min intervals. As underlined in the sequel, MNOs apply
dynamic energy-saving policies to switch off cells when they are not needed to satisfy
capacity demand. Comparing Figures 2.6 (top) and 2.6 (bottom), we see that the
portion of active cells highly correlates with the HO counts (Pearson correlation of
0.9). Weekdays and weekends present no significant differences in terms of active
cells. More precisely, after 08:00 (first peak hour) ~99% of cells remain active
until 17:00, when a decrease of ~1% per 30-min is observed, until midnight. As
mentioned earlier, we conjecture that this decrease correlates not only with the
reduced mobility of the UEs (notice the HO drop at the same hours), but also with
the reduced capacity demand (i.e., less user activity) in densely deployed areas,
which triggers energy-saving mechanisms to switch off cells that act as capacity
boosters [95], [96].

Key takeaways: HO patterns vary significantly across: (i) urban and rural areas
(urban cells account for 78% of HOs, while covering only 49.6% of the territory),
and (ii) during weekdays and weekends (33% of difference during peak hours).

2.4.2. HORIZONTAL VS VERTICAL HANDOVERS
To understand how devices interact with the different RATs in the network (see
Section 2.3), we take as a reference the behavior of devices connected to 4G/5G-
NSA (i.e., 4G and 5G-enabled devices). We differentiate three main HO types,
namely, intra 4G/5G-NSA (horizontal), 4G/5G-NSA — 3G (vertical), and 4G/5G-
NSA — 2G (vertical). Our intent is to characterize how frequently these devices
still rely on older RATs, and in which circumstances.
HO Frequencies. Table 2.2 depicts the percentage of the different HO types we
registered across UE types. The vast majority of HOs are intra 4G/5G-NSA HOs
(94.14%), while vertical HOs — from 4G/5G-NSA to 3G or 2G — correspond to 5.86%
and 0.001%, respectively.

Furthermore, smartphones primarily initiate intra-4G/5G-NSA HOs, contribut-
ing to 88.28% of the total, with a fallback to 3G occurring in 5.84% of the cases.
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Figure 2.7: HO duration (horizontal vs vertical).

M2M/ToT devices engage mostly in intra 4G/5G-NSA HOs, with a minority transi-
tioning to 3G, a pattern echoed by feature phones on a smaller scale (i.e., 0.13% intra
4G/5G-NSA HOs). This is particularly important given that ~80% of M2M/IoT
devices support only up to 3G (see Figure 2.4b). It is an artifact of the IoT vertical
applications employing massive M2M deployments (e.g., smart meter applications),
which often require only stationary devices with limited connectivity demands [84].
HO Duration. Figure 2.7 illustrates the signaling times of HOs (see definition
in Section 2.2.4), revealing that 95% of intra 4G/5G-NSA HOs complete within
~90ms (median of 43ms). These results align with previous studies [72], [86],
[88]. In contrast, HOs from 4G/5G-NSA to 3G are one order of magnitude longer,
with a median of 412 ms and their 95th percentile exceeding 1s. The latency further
increases for vertical HOs to 2G, where the median time matches the 95th percentile
for HOs to 3G (&1s), and the 95th percentile stretches beyond 3.8s. Even if these
HO types rarely occur (see Table 2.2) their large duration reveals a clear negative
impact of vertical HOs. We delve into the duration of HOFs in Section 2.5.

HOs per District. Figure 2.8 provides a comprehensive view of HO dynamics
across districts in the studied country. In this way, we are able to pinpoint the
areas that are more dependent on newer/older RATs. Notably, densely populated
urban districts — which include the districts of the capital city — exhibit a high
penetration of 4G/5G-NSA (up to 99.92% of all HOs, see Figure 2.8a), while some
less populated rural areas show more transitions to legacy RATs. For example, in
the 6% least densely populated districts, HOs to 3G account for 26.5% on average of
all HOs, and reach up to 58.1% for a specific remote district (Figure 2.8b). Likewise,
the percentage of transitions to 2G remains marginal for most of the districts, with
a maximum of ~0.5% for 4 specific districts. (Figure 2.8¢).

Key takeaways: (i) 94% of HOs are intra 4G/5G-NSA, and are triggered by smart-
phones. (i) HOs to 3G/2G take up to 3.8 seconds (pct-95) to execute and still
represent 6% of all HOs. (iii) The most densely populated urban areas rely almost
exclusively on 4G/5G-NSA for HOs (>99%); less densely populated rural areas still
use older RATs (HOs to 3G are up to 58.1% in a remote area and on average 26.5%
in the least densely populated districts). This analysis helps the MNO to identify
areas where a great volume of 4G and 5G-capable devices are frequently using legacy
RATs, thus building a realistic strategy towards their decommissioning.
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Figure 2.9: Mobility metrics (a) number of cells and (b) gyration (km), across device types.

2.4.3. MOBILITY ACROSS DEVICE TYPES

This section examines the relation between UEs’ mobility and their HO performance.
We first characterize mobility metrics across different device types. Then, we analyze
the relation between the mobility metrics of the UEs and the HOF rate that they
experience, serving as an indicator of how these UEs suffer from disruptions.

We take as a reference the two mobility metrics described in Section 2.2.4: ra-
dius of gyration and number of cells. Figure 2.9 shows the empirical cumulative
distribution function (ECDF) of both mobility metrics across device types. Over-
all, we observe that smartphones are considerably more mobile than the two other
types, exhibiting a median of 22 distinct visited cells per day, and a median radius
of gyration of 2.7km. Conversely, the majority of M2M/IoT devices and low-tier
feature phones are more static, with median values of 1 and 3 visited cells per day,
respectively, and a median gyration of 0.0km and 0.9km. This reflects that these
UEs are mostly static, and the few HOs that these devices experience are typically
between cells in the same sites.

Given the heterogeneity of M2M /IoT vertical applications, there are devices in
the 951 percentile that show high mobility, with gyrations of 20.1km for M2M/IoT
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Figure 2.10: Normalized district-level HOs (left) and HOFs (right) per UE manufacturer. Boxplots
include top-5 UE manufacturers and the top-5 UE manufacturers with greater median HOF values.

devices (see Figure 2.9b). These UEs mainly correspond to modems and routers
that are deployed in fast-moving vehicles (e.g., trains), integrated into modern cars,
embedded in industrial equipment, or wearable IoT devices carried by users who
typically travel long distances. While feature phones (green line) surpass smart-
phones (red line) at around the 80" percentile, the former comprise only about 1%
of the total UEs, while the latter makes up approximately 60% (see Figure 2.4a).
Manufacturer Impact. We assess whether higher HO counts and HOF rate corre-
late with specific UE manufacturers (e.g., due to a suboptimal mobility management
implementation). We observe that the distribution of UEs is remarkably unbalanced
across the studied country, e.g., Samsung and Apple smartphones are considerably
more common in densely populated areas. To make a fair comparison and account
for potential deviations due to the area itself (e.g., population, deployment density)
— see Figure 2.5b — we create a metric that makes a unified comparison of UE man-
ufacturers at the district level. That is, in each district we get the average HOs per
UE for a specific manufacturer and divide it by the average HOs per UE including
all manufacturers within that district (i.e., normalized district-level HO);® and sim-
ilarly for the HOF rate (i.e., Normalized district-level HOF' rate). A value greater
than 1 indicates that UEs of a specific manufacturer generate more HOs (or HOF
rate) on average than the total population of UEs in the same district.

Figure 2.10 shows the results for the top-5 manufacturers in the studied country
(see Figure 2.4a), as well as the 5 manufacturers exhibiting the highest Normal-
ized district-level HOF rate, based on the median behavior across all districts (see
boxplots). For the top-5 manufacturers ratios are close to 1, which means that de-
vices behave similarly to their peers in the same district, both in terms of HOs and
HOF rate. Specifically, we observe that Apple smartphones, the most popular ones
(=32% of all UEs), generate slightly more HOs per UE and HOF rates than other
devices (respectively +4% HOs and +8% HOF w.r.t. their peers). Likewise, Google
smartphones are the ones that experience the smallest HOF rates (-27% w.r.t. their
peers). Moreover, we find that some manufacturers show high HOF rates, such as
KVD smartphones or HMD feature phones (+600% HOF rate), as well as others
that generate higher HOs per UE, such as Simcom M2M /IoT (4293% HOs per UE).

5Some manufacturers have few devices in specific districts. We exclude district-manufacturer pairs
that account for <1k devices.
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Figure 2.11: HOF counts per hour in urban and rural areas, normalized separately with the number
of active cells in each class (i.e., urban/rural).

Key takeaways: (i) Different UE types exhibit different mobility patterns; smart-
phones are, on median, connecting to more distinct cells (22 cells per day), with a
daily median radius of gyration of 2.7km. (ii) The most popular device manufactur-
ers exhibit a consistent behavior in terms of HOs (£10% of variation between them).
While HOF rates are considerably small, some manufacturers (e.g., Google) exhibit
lower HOF rates (-27%) than other manufacturers. For some niche manufacturers,
we find high HOF rates (up to +600%) and HO counts (up to +293%). Based on
these results, we conjecture that manufacturer-specific mobility management imple-
mentations and application-specific usage correlate with HO performance.

2.5. HANDOVER FAILURE ANALYSIS

This section provides an in-depth analysis of HOFs. Initially, we examine the daily
patterns of HOFs and their correlation with key mobility metrics. Next, we explore
the causes of HOFs from the network’s perspective and present modeling techniques
that assess how network features at the radio cell level influence the HOF rate.
Our analysis puts the spotlight on the need to reduce the network’s complexity by
decommissioning legacy RATSs.

2.5.1. PATTERNS AND IMPACT

HOF Patterns. We analyze the temporal evolution of HOF rate (see Section 2.2.4)
along the day, aggregating data over the 4-week period. Figure 2.11 presents the
hourly evolution of HOFs, where boxplots aggregate data from all active radio cells
at a specific hour. To comply with the privacy policies of the MNO and account
for the different distribution of cells in rural and urban areas, we have separately
normalized the hourly HOFs for rural (urban) areas with the number of active cells
observed in rural (urban) settings (see Figure 2.6, bottom). Overall, we observe
that HOFs reach a local peak during the morning commuting time [7:00-9:00), and
a lower local peak can be observed during the afternoon commuting time [15:00—
18:00). Moreover, urban areas experience fewer HOFs compared to rural ones,
especially during peak hours; e.g., the median HOF count is 32.4% higher in rural
areas than in urban ones during [7:00-8:00). We conjecture that this pattern is
likely due to the more limited 4G/5G coverage in these areas, which makes 4G and
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Figure 2.12: HOF rate (left y-axis) and ECDF for the number of UEs (right y-axis) w.r.t. binned
device-level mobility metrics (log scale) of (a) number of cells and (b) gyration.

5G-capable devices fall back more frequently on older RATs (i.e., 2G, 3G) to keep
connectivity. We further delve into this aspect in Section 2.5.3 by modeling the
negative impact of vertical HOs on HOFs and inspecting the causes of such failures.

HOPFs & Mobility. We explore the association of radius of gyration and number
of cells with the HOF rate. In Figure 2.12, the left y-axis shows the daily average
HOF rate for the UEs according to the number of cells (Figure 2.12a), or radius
of gyration (Figure 2.12b). Meanwhile, the right y-axis displays the ECDF for the
number of UEs along the bins in the x-axis (in log scale).

Concretely, Figure 2.12a shows that the HOF rate is close to zero for 87% of the
UEs, which connect to 100 or less cells per day. For the remaining 13% of the UEs
(traveling >100 cells), the HOF rate slightly increases (up to 0.4% for pct-75), but
the median is still close to zero; except for <0.0001% of the UEs that connect to
>1k cells and have a median HOF rate of 0.1%. Similarly, from Figure 2.12b, HOFs
mainly occur in devices that move within a radius higher than 100km (which is the
case for 0.007% of the devices, see the right y-axis), with the HOF rate reaching up
to 0.4% (pct-75). Yet, the median HOF rates remain close to zero for all bins. We
observe that the devices with increased mobility (>100 visited cells, >100km radius
of gyration) are mostly smart/feature-phones (90%) and M2M devices (10%) — such
as modems, routers and IoT wearables — attached or carried in fast-moving vehicles,
like trains. It is interesting to note that UEs with <10km radius of gyration and
<50 visited cells, which show almost zero HOF rate, include a very similar share
of UE types (85% smart/feature-phones and 15% M2M); which confirms that the
increase in HOFs in UEs with higher mobility metrics cannot be explained by an
unequal distribution of UE types in this group.

Key takeaways: (i) Rural areas suffer from 32.4% more HOFs during peak hours
than wrban. (i) A small number of UEs with high mobility metrics daily (>100
visited cells, >100km radius of gyration) experience a non-negligible HOF rate (0.4%
for pct-75); the number of visited cells and the radius of gyration are good predictors
to flag UFEs that can potentially experience high HOF rates.

E
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Figure 2.13: (a) Percentage of HOF causes w.r.t. the total HOFs; (b) Distribution of HO signaling
time per cause.

2.5.2. CAUSES

We study the HO failures using cause codes delineated by the 3GPP standards
[79], [83] and the antenna vendors. In total, we collect 1k+ different causes for the
failures. Our causes analysis complements prior studies that had exclusively focused
on the user side, being mostly coarser, and solely for specific devices and failure types
[64], [73]. In Figure 2.13a, we present the HOF counts in percentage, by calculating
the HOF for each cause and dividing it by the total HOFs per day. We also plot
alongside the minimum and maximum values observed in this period (i.e., 4 weeks).
Our analysis reveals that (i) 92% of all HOFs occur because of 8 causes from the
1k+ that exist, and that (i4) 75% of all HOFs occur in transitions from 4G/5G-NSA
to 3G, with the remainder (i.e., ~25%) associated with intra 4G/5G-NSA HOs.
HOFs attributable to transitions to 2G represent 0.03% of all. This distribution
highlights the real-world implications of managing a layered cellular deployment,
where <6% of handovers are vertical handovers to 3G, and the remaining 95% are
intra 4G/5G-NSA handovers. We present next the 8 most common handover failure
causes. Additional insights for the reasons for HOFs in rural/urban areas, different
smartphone manufacturers, and UE types can be seen in Figure 2.14.

e Cause #1: “The source cell canceled the HO” relates to the cancellation of
an ongoing or prepared handover. HO Cancellation procedure [79] can occur for
several reasons, such as timeouts on the MSC, cell site, or issues with the size of the
Forward Relocation Request [83]. This cause is predominantly observed in HOs to
3G, affecting 7.3% to 11.2% of cases daily, which is significantly higher compared to
intra 4G/5G-NSA and 4G/5G-NSA to 2G HOs ( < 1% per day). We observe that
this failure cause affects evenly all UE types, but is 50% more prevalent in rural
than in urban areas (see Figure 2.14).

e Cause #2: “The signaling procedure was aborted due to interfering S1AP Initial
UE Message [79]”. This error involves the interruption of the signaling process by
an initial message to the MME, which includes critical user information and service
requests. This issue affects 2% of intra 4G/5G-NSA HOs and 3.4% of HOs to 3G,
but not HOs to 2G.

e Cause #3: “Signaling procedure was rejected due to invalid target cell ID” occurs
when the target cell ID is not recognized or if there are configuration issues with the
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MME pool area (i.e., a collection of MMEs configured to serve any common part
of a radio network). This is the main reason for failure in intra 4G/5G-NSA HOs,
accounting for an average of 17.2% of the failures, and reaching up to 41.3%. From
this cause, 59% of M2M/IoT devices fail (see Figure 2.14).
e Cause #4: “Load on target cell is too high” indicates that the target cell cannot
accommodate the HO due to resource constraints. It is the most common reason
for failure in HOs to 3G (up to 42.3% of all HOFs), affecting 25% of the failures
per day, on average. It happens mainly during peak hours in dense urban areas (see
Figure 2.6), causing 42% of the total HOFs there (see Figure 2.14).
e Cause #5: “MME detects a HO-related failure in the target MME, SGW, PGW,
cell, or system”; these types of infrastructure-related outages occur for 14-23% of
HOs to 3G, and for 0.8-1.6% of intra 4G /5G-NSA HOs. This cause does not pinpoint
precisely the reason that the HOF occurred; however, it is important to note that
this is the extent of information that is available to the MNO.

Causes #6, #7 #8 are specific to HOs from 4G/5G-NSA to 3G. We provide
more information in the sequel.
e Cause #6: “The Single Radio Voice Call Continuity (SRVCC) service is not
subscribed by the UE” affects 15.2% of HOs to 3G on average, peaking at 24.1%.
SRVCC is a scheme used with VOLTE (Voice over LTE) and ensures seamless han-
dovers of voice calls from packet-switched (PS), like 4G, to circuit-switched (CS)
networks, like 2G and 3G [97], [98]. We note that this failure occurs primarily in
rural areas and in feature phones, where the MNO still relies mostly on 3G to ensure
the support of voice services (see Figure 2.14).
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e Cause #T7: Like Cause #6, Cause #7 is associated with SRVCC HOs, and it
occurs when “the MSC responds with PS to CS Response with cause indicating
failure” during SRVCC HO preparation; it affects about 4.2% of all HOs [97]. We
note that it affects almost no M2M/IoT device and occurs twice as often in rural
than in urban areas (see Figure 2.14).

e Cause #8: “No Forward Relocation Complete or Notification was received before
the max time for waiting for the relocation completion expires”, affecting 7.1% of
HOs. Forward Relocation Complete message is sent to the source MME/SGSN to
indicate the HO has been successful. We observe this cause x3 in M2M /ToT devices
w.r.t. smartphones and feature phones (see Figure 2.14).

HOF Duration per Cause. Figure 2.13b complements the HOF analysis by
delineating the HO duration associated with the 8 causes of failure. Causes #3 and
#6 result in failures that prevent the initiation of the HO (i.e., signaling time equals
0ms), with the former attributed to an invalid target cell ID and the latter to SRVCC
service not being permitted for the UE. Cause #4, linked to insufficient resources in
the target cell, exhibits a median duration of 81 ms and a 95th percentile of 97 ms.
More prolonged delays in HO signaling are caused by Causes #1 and #2, where the
HO is halted due to cancellation by the source or interference, respectively, leading
to medians of 1-2s and 95th percentiles of 5-6s. Notably, Cause #8, associated
with timeout failures, demands the most extended signaling, with a median >10s
and 95% of cases occurring in < 10.2s. Our study aligns with existing works, such
as [64], [99], in demonstrating the increased duration involved in HOFs.

Key takeaways: (i) Despite the prevalence of 4G and 5G, 75% of all failures
concern HOs from 4G/5G-NSA to 3G, and 25% of them happen due to high load
in the target cell. (ii) 59% of M2M/IoT UEs and 42% of feature phones fail due to
Cause #3 and Cause #0, respectively. (iii) 42% of HOFs in urban areas occur due
to Cause #4, while Causes #5 and #6 account for 20% each, in rural areas. (iv)
The duration of HOs that fail due to timeouts (Cause #8) or cancellations (Cause
#1) exceeds on average 2s (for the former case it reaches 10s). These numbers
highlight the noticeable outage duration caused by HOF's in the network.

2.5.3. STATISTICAL MODELING

We aim to understand which cell-level features contribute to HOFs, by isolating and
combining the effect of various parameters and ensuring our findings in the previous
sections are robust against potential biases or unaccounted variables. We reorganize
the dataset using as dependent variable the daily HOF rate of each source cell, and
use as covariates the cell-level features in Table 2.3. This creates 6.7M observations.
Our hypothesis is that the HO type is the primary factor influencing HOF rates.
Note that while HOs to 3G amount to only 5.86% of the total HOs (Section 2.4.2),
they are responsible for 75% of all HOFs (Section 2.5.2).

A first look into the data demonstrates that HOs to 2G and 3G are associated
with substantially higher failure rates with medians of 21.42% and 5.85% respec-
tively, compared to 0.04% for HOs to 4G/5G-NSA; and this disparity persists even
when we focus on the failed HOs and filter outliers, see Appendix 2A. We further
perform an analysis of variance (ANOVA) test [100] (log-transforming the HOF
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Table 2.3: Regression covariates.

Feature Values

Number of HOs per day >0

RATs 4G/5G-NSA, 3G, 2G

District population >0

Cell Region West, South, North, Capital area
Area Type Rural / Urban

Antenna Vendor 4 vendors (V1, V2, V3, V4)

Table 2.4: Linear model coefficients for log(HOF rate).

Feature Coef. 95% CI P-value
Intra 4G/5G-NSA —2.77 -2.77, -2.76 0
4G/5G-NSA—3G 5.12 5.12, 5.13 0
4G/5G-NSA—2G 6.82 6.76, 6.88 0

rates) which verifies the significance of this effect (p < 0.001); and the same conclu-
sion is reached using the Kruskal-Wallis test [101]. We repeat these tests, with the
same findings, even when controlling for variations in the area and antenna vendor.
Accordingly, we use a generalized linear regression model (with log transforma-
tion) to quantify the effect of RAT on HOFs. We first run a univariate model to
facilitate interpretation. We find that HOs to 3G (2G) increase the HOF rate by
166% (915%, respectively) compared to HOs to 4G/5G-NSA, see Table 2.4. We re-
peat this analysis while controlling for the other covariates and filtering the outliers
(HOF rate<50%, number of HOs per day in [50, 30k]), finding the same result with
slightly smaller intensity (coefficients of 5.48 and 4.77 instead of 6.82 and 5.12), as
can be seen in Table 2.5. From the remaining covariates, the antenna vendor has
a significant but smaller effect, which we also verify with an ANOVA test. These
findings are also robust to alternative models (step-wise covariate selection and re-
moving HOs to 2G), including also a quantile linear regression model. The details
of these additional tests are deferred to Appendix 2A.
Key takeaways: By modeling HOFs and investigating different covariates (see
Table 2.3), we verify our hypothesis that the HO type is the main factor shaping
the observed HOF rates: HOs to 3G (2G) increase the HOF rate by 166% (915%,
respectively) compared to HOs to 4G/5G-NSA.

2.6. RELATED WORK

In terms of measurement approaches, the vast majority of studies rely on (mainly
rooted) UEs and collect traces from their cellular modems [30], [32], [63], [64],
[66]-[73]. For instance, [63] and [68] build their mobility analysis upon Mobile
Insight [102] with rooted phones, while [66], [71] use the G-NetTrack Pro monitoring
tool [103]. These solutions are confined to certain chipset manufacturers and have
limited data collection granularity (orders of seconds, instead of milliseconds as
in the current study). Other works study mobility patterns in one [65] or a few
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Table 2.5: Regression Summary: Linear Model, All Covariates.

Feature Coeff. Std Err  t value  Pr(> |t])
(Intercept) —3.10 0.0217 —143 0

HO type: 4G/5G-NSA—2G 5.48 0.118 46.4 0

HO type: 4G/5G-NSA—3G 4.77 0.00150 3169 0
Number of daily HOs —2.84-107° 0 —331 0
Area Type: Rural 0.260 0.00272 95.5 0
Area Type: Urban 0.190 0.00258 73.4 0
Antenna Vendor: V2 0.115 0.00173 66.7 0
Antenna Vendor: V3 0.719 0.0203 35.3 0
Antenna Vendor: V4 0.0629 0.0222 2.84 0.49
Cell Region: North —0.0728 0.0216 —3.57  4.05-107°
Cell Region: South —0.0168 0.00166  —10.1 2.28-107°¢
Cell Region: West 0.398 0.0204 195  3.89-107%
District population —1.75-107" 0 —61.6 0

N = 3857074, RMSE=1.023, R?=0.8265, AIC=11121590

cities [32], such as Minneapolis [69], [104], Chicago [69], [70], Atlanta [69], and
Rome [105]. These studies provide valuable information, yet their spatial focus
does not facilitate insights across larger scales (e.g., countrywide) and in varied
settings (e.g., urban/rural areas). The works of [64], [67], [99] conduct extensive
4G performance measurements on high-speed rails in China, and [30], [72] study
mobility management policies in 4G /5G. The collected data in these relevant works
are related to certain mobility patterns, and a subset of users, and do not contain
network-side data.

Our study, on the other hand, records all mobility events from a commercial
MNO network with ~40M UEs connected, with millisecond granularity, during 4
weeks, and for the entire territory of a European country; it is not limited to specific
routes, cities, mobility modes, or user types. To date, only a few works study HOs
from the operator’s perspective, as this involves technical challenges [63] and requires
in-network measurements (see Figure 2.2). Namely, [106] suggests an approach
to categorize and minimize undesired Ping-Pong (PP)® HOs based on a restricted
dataset with 1.7k UEs; and [31] investigates PP HOs using 13 days of data from a
network operator in a Mediterranean area. Our study differs from these works due
to the scale, coverage, and granularity of measurements (all active connections of a
top-tier MNO at the country level; see Table 2.1), and due to the fusion of different
datasets (about UEs and population) that allows drawing fresh insights, e.g., about
the impact of HOs and HOFs on different RATS, device types, and areas.

Specifically, in terms of measurement results, our findings about the HO duration
are on par with previous studies, e.g. [30], [64], [72], and provide additional insights,
e.g., about the effect of RAT, finding that inter-RAT HOs are the most impactful.
Several studies measured the volume of HOs [32], [69], [91], finding, e.g., horizontal
HOs to be more frequent in 5G-SA and 4G and vertical HOs in 5G-NSA [91]. Here,

6PP HO occurs when a UE is handovered from a source to a target cell, and then back to the
source, under a short, predefined time.
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we enrich these results by dissecting the HOs per RAT and UE manufacturer/type,
analyzing their temporal pattern over 4 weeks, and their relation to the demographic
distribution over the studied country, with district granularity (3004 districts), thus
refining the typical urban/rural categorization of prior studies [31].

Furthermore, leveraging our unique network-side dataset, we characterize HOFs
(cause and duration) using detailed antenna vendor-specific information. Prior stud-
ies, inhibited by their UE-side data, have mainly studied the effect of user speed on
HOFs [68] or used coarser categorization, e.g., 2 possible causes [64], or analyzed
general connectivity failures for specific devices [73]. Given that HOs were found
to affect significantly the user-perceived network performance, our work can inform
the design of new HO policies, such as [91], [107], [108], and guide the optimization
of network deployment and RAT upgrades.

2.7. CONCLUSION

This chapter provides a countrywide analysis of the heterogeneity of modern cellular
networks and their mobility management, leveraging data from a top-tier MNO
in a European country. By tracking ~40M users over four weeks, our findings
highlight the critical impact of spatio-temporal factors, RATs, device types, and
manufacturers on network complexity. Based on these, we study horizontal and
vertical HOs and HOFs, specifying the impact of the latter, and modeling them
using statistical methods.

These findings are crucial for understanding and developing new HO mecha-
nisms, as well as identifying groups of UEs and areas that require enhanced support.
In this way, our analysis lays the groundwork for the next chapter, which focuses
on improvements in handover performance, ensuring that the promise of 5G and
subsequent generations of cellular technologies can be fully realized.







MOBILITY MANAGEMENT
THROUGH SMOOTH HANDOVERS

The previous chapter revealed the complexity of modern cellular networks, where
heterogeneous radio access technologies (RATs), users, and regions impact mobility
management and specifically, handovers (HOs). In this chapter, we take the next
step: we model HOs and design an algorithmic framework to optimize them.

To inform our modeling, we extend the Mobile Network Operator (MNO) datasets
analyzed earlier with targeted measurements and crowdsourced signal data. This new
data allows us to (i) quantify the impact of HOs and HO failures (HOFs) on key
user and network performance indicators (KPIs), such as packet loss and through-
put, (i) identify and measure which cell- and user-specific features affect HO delays,
which we later incorporate into our modeling, and (i) evaluate the performance of
our proposed algorithm in real-world settings. Leveraging the framework of Smoothed
Online Learning (SOL) that mazimizes a performance criterion while explicitly dis-
couraging frequent decision changes, we approach the HO optimization task as a
user-cell association problem. In this setting, changes in association decisions trans-
late into HOs that may incur prolonged delays. Unlike prior works, our formulation
incorporates user- and cell-specific features on HOs and their induced delays, and
does not assume future knowledge of signal quality or user mobility/trajectories. Our
online meta-learning algorithm, aligned with the O-RAN paradigm, provides robust
dynamic regret guarantees even in challenging environments and demonstrates su-
perior performance in multiple scenarios using synthetic and real-world data.

The content of this chapter has been published in:

M. Kalntis, A. Lutu, J. O. Iglesias, F. A. Kuipers, and G. Iosifidis, “Smooth Handovers via
Smoothed Online Learning,” in Proc. of IEEE International Conference on Computer Commu-
nications (INFOCOM), 2025.
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3.1. CHALLENGES AND CONTRIBUTIONS

The goal of this chapter is to design a novel UE-cell association and smooth HO
control mechanism that is both effective and robust, overcoming key limitations of
previous works (see discussion in Section 3.7) that might rely on heuristics or strong
assumptions; thus, filling a key gap in the literature and paving the road for the
next generation of mobility management.

Building on the countrywide analysis presented in the previous chapter, we revisit
and extend the MNO’s datasets with targeted 1-week measurements (see Table 3.1)
and crowdsourced signal data for the source cells. This enriched view enables us
to (i) quantify the impact of HOs and HOFs on KPIs such as packet loss and
throughput, (i) identify which cell- and user-specific features drive HO delays, and
(#ii) evaluate the performance of our algorithm in real-world settings, with the
crowdsourced signal measurements we collect.

Leveraging these insights, we introduce a realistic system model that captures
the impact of the different HOs and mitigates them while maximizing the network
throughput. Our model aligns with recent works [33], [34], [36]—[38], [109], which
we extend substantially by accounting for the network and HO diversity, and im-
portantly, by dropping requirements for access to future signal-to-interference-plus-
noise ratios (SINRs) and UE mobility patterns. It is commonly accepted that this
is a strict condition that limits the applicability of such solutions. Additionally, we
do not assume that the relevant UE/cell parameters are stationary-perturbed since
rapid and unpredictable channel fluctuations are becoming increasingly common in
heterogeneous networks and mobile services. In fact, our perturbation model is an
adversarial one, where an attacker can even select the various random parameters,
and still, all results and guarantees remain valid.

With this in mind, we turn the problem on its head and study HOs through the
lens of online convex optimization (OCO) [16]. Namely, we model the UE-cell asso-
ciations as dynamic decisions that the network controller updates in a time-slotted
fashion, where successive (de)associations induce undesirable (sometimes necessary)
HOs, or equivalently, switching costs. A natural framework for this setting is that
of smoothed online learning (SOL) [110], which maximizes a performance criterion
while reducing the decision changes (i.e., switching cost). This enables the controller
to be oblivious to the SINRs for each UE-cell pair when deciding the associations,
and the throughput these will achieve; indeed, it is challenging to predict accurately
or know the SINRs over a time window of several ms/s [111]. Still, following a
rigorous analysis, we show that our learning algorithm ensures sublinear dynamic
regret, i.e., its gap w.r.t. an ideal oracle that has full information about the future
diminishes with time [25].

Our model is informed by, and aligned with, the O-RAN paradigm, and the
proposed algorithm can be implemented as xApp in near-real-time (running time
10ms—1s) [12]; the reader is kindly referred to [111], [112] for the involved interfaces
and detailed steps. Finally, to verify the robustness of our proposed solution, we
evaluate its performance on simple and extreme (i.e., adversarial) synthetic scenarios
in accordance with related work, as well as in real scenarios using signal measurement
from crowdsourced data (i.e., measured on the field).
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Table 3.1: Mobility Dataset Size for European Country.

# of cell sites, # of radio cells > 26k, > 370k

# of UEs measured ~ 40M
# of handovers (daily) > 1.7B
Measurement period 24-Jun-2024 to 30-Jun-2024 (1 week, 7 days)
Trace size (daily) ~ 8TB

In summary, the contributions of this chapter are:
e We present HO and network statistics by using a 1-week dataset from a tier-1
MNO. We highlight the network heterogeneity and identify key factors impacting
smooth HOs. We are the first to optimize HOs from the MNO’s perspective, which
sets the basis for realistic HO optimization models.
e We model the HO optimization as a smoothed online learning problem where the
HO delays depend on the RAT and UE type, and assume no prior information for
the channels and mobility patterns. This approach departs from related work and
its (often simplifying) modeling assumptions.
e We design a scalable (near-real-time) algorithm that achieves sublinear dynamic
regret, and we characterize its performance w.r.t. system parameters. We also
propose extensions for the case of time-varying HO delays and the case of available
(untrusted) forecasting tools.
e We create a simulator using our real, crowdsourced radio signal quality measure-
ments, as well as actual cell and UE information, and evaluate our solution against
meaningful benchmarks; e.g., we find up to x79.6 lower HO cost than previous
works, without sacrificing throughput.

3.2. DATA COLLECTION AND ANALYSIS

Datasets. To demonstrate the network’s heterogeneity and identify key factors
that affect seamless handovers (and thus are essential for our system model), we
collect passive measurements from 24-June-2024 to 30-June-2024 (Table 3.1) using
commercial tools available within the MNQO'’s infrastructure, as described in Chapter
2. Apart from collecting more recent datasets than those in the previous chapter,
we also capture new datasets that reflect the impact of HOs and HOFs on user and
network KPIs, such as packet loss and throughput, and commercial crowdsourced
data with ms granularity of radio signal measurements to assess the performance of
our algorithm. At the time all these datasets were captured, the majority of traffic
for the studied MNO used the 5G-Non-Standalone (NSA) deployment [77]. From
a mobility management perspective, 5G-NSA and 4G are identical, as the former
relies on the 4G Evolved Packet Core (EPC); thus, we use the term “4G/5G-NSA”.
Effect of HOs on KPIs. We first study how HOs and HOFs impact some key
network KPIs, which the operational team uses to assess the network’s health and
evaluate the quality of service to end-users. For confidentiality, we normalize each
KPI by its median from all days. Also, we discard the outliers, i.e., cells with daily
HOFs >140 (0.1% of data). Figure 3.1 depicts the daily HOFs per cell and their
impact on downlink (DL) packet loss and user throughput per day. We observe
a decrease in normalized average user throughput with increasing HOFs; e.g., (0,
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Figure 3.1: Median normalized DL packet loss (left, green y-axis) and normalized average UE
throughput (right, orange y-axis) vs binned daily HOFs. Triangles and bold horizontal lines show
the mean and median, respectively, in each boxplot.

20] HOFs lead to a normalized mean throughput of 1.25k (normalized value, i.e.,
does not mean Kbps or Mbps), which declines by 37.6% to 0.78k for (120, 140]
HOFs per day. Similar studies (e.g., [32], [69], [72]) have reported UE throughput
but only for specific UE types (smartphones) and manufacturers. Simultaneously,
the normalized median DL packet loss rises from a mean of around 0.002 to 0.013
when daily HOFs increase from (0, 20] to (120, 140], respectively. The higher mean
compared to the median in each boxplot indicates a few UEs with larger losses
compared to the majority.

We verified the findings of Figure 3.1 with a generalized linear regression model
using as dependent variable the DL packet loss rate and as independent variables the
number of HOs and HOFs while controlling for all key covariates; namely, the HO
type (inter/intra RAT), district population, cell type/vendor/transmission power,
and the district. This ensures the packet loss effects are indeed due to HOs and
HOFs, and not to some latent factor. We find that 1% increase of HOs in a cell,
increases by 0.02% the packet loss rate, on average, for the served users; and even
worse, 1% increase in HOFs increases by 0.6% this loss. A similar model found
that, all else being equal (including total uplink/DL volume and physical resource
blocks), a HOF increase of 1% reduces by 0.008% the average user throughput. And
this drop is more pronounced in cells with few HOFs, as Figure 3.1 shows.
Network & UE Heterogeneity. Using the GSMA devices database, we discern
the eight most crucial UFE types (dongle, IoT, feature phone, modem, smartphone,
tablet, WLAN router and wearable), and infer their connectivity capabilities (i.e.,
up to what RAT they support) from their frequency bands. Given the dominance
of 4G/5G capable models (98.5%), depicted in Figure 3.2, we study the HOs from
4G /5G-NSA to the same or older RATs. In these HO types (i.e., Intra 4G/5G-NSA,
4G /5G-NSA to 3G, 4G/5G-NSA to 2G), approximately 94% are Intra 4G/5G-NSA,
caused by a wide range of devices. HOs to 3G and 2G hold an important 6%,
mainly from smartphones, modems, and tablets, magnifying the heterogeneity in
these dimensions as well. As we show in the sequel, the HO delay in the older RATs
is x5—40 higher. Network heterogeneity is also extensively analyzed in [113].

Figure 3.3 and Figure 3.4 illustrate the histograms and probability densities of
different HOs and device types, respectively, w.r.t. the HO delay. From Figure 3.3,
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Figure 3.3: Histogram (bars) and distribution (line) of the HO delays for each HO type (all same-
colored bars sum to 1).

we observe that the median Intra 4G/5G-NSA HOs require approximately 50 ms,
while the HOs to 3G range from 400 to 950 ms and to 2G from 750 to 1100 ms;
thus, especially in the older RATs, the distribution is significantly more spread.
Moreover, from Figure 3.4, we deduce the different distributions of the HO delays
for each device type. It is interesting to observe the different means and variances of
each UE type; for instance, modems and IoT devices require, on average, 75 ms and
73 ms, respectively, but around the same number of these start from 50 ms and reach
110 ms; smartphones, on the other hand, need 50-62 ms. Consequently, accounting
for both the UE and HO type is essential when optimizing the HO delay.

3.3. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a heterogeneous cellular network comprising a set J of J cells serving
a set Z of I users (UEs) in the downlink. Each cell is characterized by an array
of features such as its operating frequency, RAT generation (2G-5G), location, etc.
Similarly, the set of UEs comprises smartphones, feature phones, IoT devices, and so
on. The network is managed centrally by a network controller, in the spirit of recent
O-RAN architecture proposals [12]. The system operation is time-slotted where we
index the time slots with ¢ and without loss of generality assume the slots have
unitary length. These slots refer to the UE association intervals, which subsume
other resource scheduling time slots (e.g., for power control). We study the system
for a set T of T slots. The key metric for the association decisions is the SINR for
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Figure 3.4: Histogram (bars) and distribution (line) of the HO delays for each UE model (all
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the signal delivered by cell j to user i:

p;di;(t)
Do kes, Pedin(t) +wjo?’

sij(t) =

where p; is the transmit power of cell j, B; the set of cells that operate in the same
frequency as j, ¢;;(t) the channel gain (including pathloss, shadowing, and antenna
gains), w; the bandwidth of cell j, and o2 the power spectral density. In line with
previous works [33], [34], [36], [109], s;;(t) is the average SINR over the slot ¢ (the
UEs report multiple SINRs during each slot [33]).

The rate that each user ¢ € Z associated with cell j € J achieves during slot ¢,
can be expressed as:

cij(t) (1—di; (1))
y;(t) ’

where y;(t) is the total number of UEs that cell j needs to serve during ¢, and
cij(t) = wjlogy (14 s;;(t)) is the maximum possible rate for ¢ if it was using cell j
exclusively. The rate 7;;(¢) is discounted by the service disruption time d;;(t), which
models any HO delay associated with the assignment of UE i to cell j. Clearly, this
delay is negligible if ¢ was already associated with cell j; is pronounced when the
target cell is of different RAT; and is even larger when there is a HO failure (see
Section 3.2). We normalize d;;(t) <1,Vi, j, to express the portion of slot the UE was
not receiving service. Equation (3.1) assumes the cell resources are allocated fairly
across the active users via, e.g., a round robin or proportional-fair scheduler [114].
As will become clear, our analysis also holds for other scheduling schemes.

We denote with x;;(t) € {0,1} the association of user i with cell j in the begin-
ning of slot ¢ and define the vector @; = (z;;(t) € {0,1},i € Z,j € J). Then, the
problem the network controller wishes to solve can be expressed as:

max Zzzzm )logr;(t)

t=1 i=1 j=1

S mit)=1, Vi€l (3.2)
jedJ

rij(t) = (3.1)
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)= wyt), Vjed, (33)
i€l
x, € {0, 1}, vteT.

The logarithmic utility function is selected to maximize the product of rates so as
to balance network sum-rate and fairness [33], [34], [115]; constraint (3.2) ensures
each UE is assigned to one cell, and (3.3) calculates the assigned UEs to each cell.

The solution to this problem at the beginning of horizon T is hindered by several
factors. First, at t = 1, the controller does not have access to all future SINR values
for each UE-cell pair. In fact, the SINRs during each slot ¢ are practically unknown
even at the beginning of that slot. Secondly, the HO delays {d;;(t)} depend on the
associations x;, but also on the previous associations x;_1, since these two vectors
determine if there is a HO or not; a HO is triggered for user ¢ if @;;(t — 1) # @;;(t).
In other words, there is a memory effect in the system, thus the problem cannot be
decomposed on per-slot basis. With these challenges in mind, our goal is to design
an online association algorithm that is oblivious to these time-varying unknown
parameters, and which nevertheless maximizes the throughput while minimizing
the HO delays, compared to a meaningful (i.e., competitive) benchmark.

3.4. LEARNING DYNAMIC ASSOCIATIONS

Reformulation & Benchmark. We approach P as a smoothed online learning
problem and tackle it via meta-learning based on the experts framework [18], [116].
The main idea is to deploy a set of parallel learning algorithms with different learning
rates, and a meta-learner that tracks their performance and discerns on-the-fly the
best-performing one. We start by reformulating the objective:

I J
ézz [x” )log c;;(t)—x;(t) log y;(t)
=1 j=1
+30m()10g(1 d;;(t) }(Q)ZZ%J )logc;;(t)
=1 5=1
—Zy] )logy,(t +ZZ$” )log (1 —d;;(t))
=1 j=1

where (o) follows from y;(t) =), 2i;(t),Vj,t. The last term corresponds to the
performance cost due to HO delays. Extending the rationale of prior works [33],
[36], [109], and based on our data analysis, we will capture this cost using:

h(we, 1) =—7 || Az — 21 || 2 =7l — @o—1 ]|

where A = diag(a, > 0,n = 1,...,I-J) is a positive definite matrix where each
element a,, n=1-j models the delay when UE i is associated (de-associated) to
(from) cell j, and || - || 4 is its induced norm, ie., ||z||% =3, an2? and ||z|?%, =

>, @2 /a, [117]. For instance, for I = 3 and J = 2, we have: |z;—x;_1|% =
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Zf’zl 23:1 a;j(zij(t)—w;;(t—1))?; if UE i=1 moves from cell j=1 to j=2, it yields
a total HO delay a1 +a12, where a11 (a12) is the delay due to the de-association
(association) from (to) j =1 (j = 2). The scalarization parameter v is used to
normalize units and prioritize one criterion (i.e., throughput) over the other (i.e.,
HO delays), based on the preferences of each operator.

This HO model departs from previous works, e.g., [33], [36] and references
therein, that merely count the association changes as if all HOs had the same impact
on performance. Clearly, the analysis in Section 3.2 showed this assumption not to
be accurate in today’s heterogeneous networks. Hence, we opt here instead to mod-
ulate the HO costs with parameters reflecting the potentially-different HO time for
each UE-cell pair, and additionally with the tunable v weight. In particular, based
on Section 3.2, we will be using in our numerical evaluations the cell RAT and UE
type as the main features for the HO delays. Finally, we define the decision set:

X = {ac e {01}/ ‘ inj =1,i€ I},

JjeET

and its convex hull X¢ = co(X) that relaxes the integrality, i.e., = € [0,1]1"/. We
will use & when referring to the discrete associations, and denote with ™ € X° the
respective relaxed vector. Putting these together, we have the next result.

Proposition 1. The throughput and HO cost function is concave on X°¢: ft(w) =
gi(x) + h(z, 21-1) =

D> mii(t)logey(t) — Y yi(t)logy; () — Al — @ ]|a-

i€ jeT JjeET

The concavity of g;(x) for € X° is proved in [33], and it follows that subtracting
the A-norm preserves the property.

The performance of the algorithm will be assessed using the Fzpected Dynamic
Regret, defined as:

Mﬂ

st

where {@;}; are the algorithm decisions, {x}}; is the benchmark, and the expecta-
tion captures any randomization in the algorithm. Our goal is to design an algorithm
that ensures this gap diminishes with time, limy_, o, E[Rr]|/T =0 for any possible
benchmark sequence {x} };. In other words, we compare our algorithm with the best
oracle that has full information at ¢ =1 for the SINR and HO delays, for all users
and cells, for the entire horizon T'. Clearly, this is a very competitive benchmark,
going beyond static and (per-slot) dynamic regret (see discussion in [118]), and thus
a sublinear-regret algorithm in this context is highly desirable.

Online Algorithm. The proposed learning mechanism is summarized in Figure
3.5. There is a meta-learner that receives suggestions for the association policy from
K agents (the experts); creates accordingly a weighted policy; and learns gradually
how much to trust each expert based on its performance. In turn, each expert learns

E { i, ] (3.4)

t=1



3.4. LEARNING DYNAMIC ASSOCIATIONS 47

Experts Meta-Learner Network

OGD: 01 x; [ Synthesize Quantize Aoply X,
: X =Y whxf x: = Qu(x{")| 7| & Measure
k

OGD: 0] x!
Feedback Update Next Slot
Vi (x:) U',’,“{ 1, Vk t=t+1

Figure 3.5: Learning mechanism.

dynamically the best association strategy, based on feedback from the meta-learner.
The experts use different learning steps @ = (0, k € K), that are selected so as to
ensure at least one of them will perform optimally w.r.t. the yet-to-be-encountered
problem conditions. The details of the mechanism are provided in Algorithm 1
(LDA). At the beginning of each slot, each expert k shares its suggestion x¥, and the
meta-learner synthesizes them:

z =y wizy, (3.5)

kel

where the weights w; = (wf, k € K), with w, 1x =1, is what the meta-learner needs
to learn. It follows that if xF € X, Vk, then x; € X°. Next, the meta-learner creates
a binary decision vector &; € X (so as to be implementable) using the quantization
routine Qx. For this operation, one can use any unbiased sampling technique, as
long as E[x,] = «}*. For instance, Madow’s sampling [119] ensures this condition
which, for the structure of X, simply picks an element from «;(t) with probabilities
! (t), for each i€Z.

At the end of the slot, the controller observes the system parameters! and cal-
culates the gradient Vg;(x;), which is sent to all experts. Then, the meta-learner
updates the weights:

wéc eﬁlt (mf)

k
Wi = %
i D kex wiePl )

(3.6)

using the surrogate (i.e., partially linearized) loss:
bi(xr) = (Vge(me), @f — ) — |2y — iy ]a.

It is interesting to observe that all experts use the same gradient and not the gradient
of their own action. This is possible due to the concavity of g;, which can be upper
bounded by the linearized loss at any information point; see also [120].

Finally, the experts perform an online gradient ascent:

why = T (2 + 0,V g0() ), (3.7)

ISince UEs report their channel gains with all reachable base stations (and not only with the one
they are associated), we have a full-information model.
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Algorithm 1: Learning Dynamic Associations (LDA)

1 Input: Horizon T; K experts with steps {0 }rex; Meta-learning step g
Initialize: set wf = 12'(5614?,Vk € K; draw x¥ € X,Vk € K; sort
01 <6y <...<0k;

for t=1,2,...,7 do

Each expert k € K shares its decision x};
The controller synthesizes }* using (3.5);
The controller implements x; = Qx (x}");
The controller sends Vg (x;) to experts;
The controller updates its weights using (3.6);
Each expert updates its decision using (3.7);

N

© w0 N O ok W

end

so as to produce their next suggestion. The number of experts, their rates, initial
weights w;, and meta-learning step [, are selected to ensure the regret convergence,
as explained next.

Performance Analysis. We first introduce some key parameters that are used
below. Defining amax = max,<s.s a, we obtain the bounds:

° ||$—(B,||2§D, ||w_w/HA§\/amamDéDA, Hw_w,”A*gD/\/amazéDA* with
D =+21I.

o IVg(2)||2< G, |Vge() ]| 4 < \/OmazGEGa, with G = \/IJ(log J + 1/In10)2.

To characterize the performance of Algorithm LDA, we proceed in two steps.
First, we bound the regret of the relaxed (continuous) performance and switching
cost, with the following lemma that we prove in the Appendix 3A:

Lemma 3.1 (Performance of LDA). Using the following parameters:

o K = [logy v1+2T| + 1.

}1/2 k=1,... K.

7 ) )

— D%
o 9]4; == 2k 1 |:T(G2+2GA)
o B=1/VTv, withv = (2GD+DA)*(Da+(1/8)).

The continuous decisions {x*};, where x* € X ensure:
T T
> i) - Y flwm <o (VI +Pr))
t=1 t=1

with the benchmark’s total HO delay PTzthzlﬂsct*— x5 q]a.

As is expected in dynamic regret, the bound depends on the variability of the
benchmark which here, interestingly, has the physical meaning of HO delays. In
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any case, the meta-learner follows the benchmark and gradually decreases the gap.
These decisions refer to a continuous-valued association strategy (x}* € X'¢) similarly
to [33], [36] and others, and can be interpreted as probabilistic associations. Unlike
these prior works, here we make an extra step to provably bound the expected
dynamic regret of the implementable discrete associations. The observation we
utilize is that 0 < x;, 7* < 1, and are related through an unbiased sampling, i.e.,
E[x:]=x}". Based on this, we obtain the following result, proved in Appendix 3A.

Theorem 3.2. Algorithm LDA ensures the following bound against any benchmark
sequence {xF 1, :

E[Re] <O (VT4 Pr)) +GyTy/T-(1/)
where ||fi(x)||2 <G,V € X, Vt.

Discussion. The theorem shows that the regret of LDA is sublinearly dependent
on the oracle’s HO delay, which marks its learning capability. There is also an
unavoidable non-diminishing error term due to discretization. In fact, this error can
be eliminated by normalizing properly the step g and using the doubling trick. Due
to lack of space we kindly refer the reader to [121, Lemma 3] for further details.
The doubling trick will also eliminate the need to know in advance the horizon T
Besides, even without the step normalization, we find the error to be only 1.1-1.3%
of the objective value, when tested on static and volatile scenarios (see Section 3.6).

Moreover, it is important to stress that Algorithm LDA is oblivious to information
such as the SINR during the slot, which, in practice, is unknown at the beginning of
each slot [111]. This is a key difference of the proposed approach compared to prior
works such as [33], [36]. Further, LDA is scalable to the number of UEs and cells and
is amenable to near-real-time execution as it has relatively lightweight operations
and thus, can be implemented in O-RAN [111], [112].

3.5. TIME-VARYING DELAYS AND FORECASTERS

Finally, we discuss two key extensions: (i) when HO delays are unknown, where
we show that LDA can adapt to them dynamically; and (%) when there is an ML
mechanism that proposes associations based on SINR/mobility forecasts [33], [38],
and prove that LDA can seamlessly benefit from them.

Time-varying HO delays. Algorithm LDA does not require knowing in advance
the elements of A, i.e., the HO delays. To see this, first, observe that the experts
do not use the HO delay when they update their decisions (only the throughput
Vgi(x¢)). And secondly, the meta-learner uses the HO delays when it calculates
ly(x¥),Vk € K to update the weights w;, which takes place after the HOs are
realized. This flexibility allows to tackle cases where the HO delays for each type
of UEs and cells, change with time. From a technical point of view, instead of the
fixed A-norm, LDA can use a time-varying norm || - || 4,, where each A; captures the
delay that was observed (a posteriori) at each slot ¢. This information is then used
to calculate the weights w;41 and association x;y;. The proofs of Lemma 3.1 and
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Theorem 3.2 follow nearly verbatim, with the modification of changing the fixed
norm to the time-varying norms, and redefining Pr :ZtT:1 les —a5_4]|a,-
Encompassing Forecasters. Unlike our approach that learns from runtime data,
several recent works [33], [38] proposed to decide the HOs leveraging forecasters
for SINRs. The output of such tools, let us denote it {x}'};, can be very close to
{zx}}; if the forecasters are accurate, but very suboptimal otherwise (e.g., if there
is a distribution shift). Our framework, on the other hand, can benefit from such
tools in a robust fashion, by assessing their accuracy in real-time. The meta-learner
can include {x}}; as the (K +1)th expert, and assess its performance in real-time
so as to discard it if proved inaccurate. And if the forecasting tool is effective, the
regret will improve significantly. This can be seen by revisiting the proof of Lemma
3.1 that utilizes the Hedge algorithm (see [120, Lem. 1]), which bounds the regret
of the meta-learner from the best expert (thus, also from the forecaster p) as:

T T
(o)
a lo(zF) — Li(x]) =
kg&fp; t( t) ; t( t)
T T
BT 1 1
y4 — li(x) < —In—
;t(mt) ;t(xt)— 3 +ﬁ w]f

where c=2GD+D 4 and («) holds when the forecaster is the best expert. Defining
its error Y, ly(x}) — (] ) =ep we get:

Tz 1. 1
E[RT]gﬁsc +Blnw7]f+€T+GfT\/[—<I/J)

which is optimized when 3=0(1/V/T) (as in Theorem 3.2). Comparing this result
with Theorem 3.2, we see that when the forecaster is successful, the overall perfor-
mance improves by dropping an entire term, and does not depend on Pr; while,
when the forecaster is found to be inaccurate, LDA maintains the previous perfor-
mance as it relies on a different expert. The idea of combining forecasters with
online learning is often referred to as optimistic learning [21], [22], and we apply it,
for the first time, in the context of SOL with dynamic regret.

3.6. PERFORMANCE EVALUATION

LDA undergoes rigorous evaluation across multiple scenarios that encompass both
real-world conditions (actual users, cells, and SINRs) and synthetic ones, verifying
that its efficacy is broadly applicable. We utilize these scenarios to investigate
the algorithm’s learning convergence, and compare its performance with different
benchmarks in terms of (i) attained dynamic regret, (i) accumulated objective
function, throughput, and HO cost, and (74) impact of incorporating A versus using
a simple L2 norm, or none at all. The employed benchmarks are (%) an LDA-based
algorithm using the Euclidean norm in the HO cost, called LDA 2-norm, aiming to
highlight the significance of the A-norm; (7i) an advanced greedy algorithm, Max
SINR, that assigns UEs to cells based on the maximum SINR from the previous slot
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Figure 3.6: Static scenario for v = 20: (a) average dynamic regret and (b) average obtained
objective function f.
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Figure 3.7: Volatile scenario for v = 20: (a) average dynamic regret and (b) average obtained
objective function f.

(the current slot’s SINR is only known post-association), disregarding HO delays;
(i%i) an optimal Oracle, used in the definition of dynamic regret in (3.4), which
has complete knowledge of future; (iv) a basic Random algorithm that makes the
associations randomly, serving as a minimal benchmark.

Synthetic scenarios. We select two synthetic scenarios that are in line with those
in prior work [60], [111], [112], and which we define as follows, for T = 5k slots:
(i) static: the SINR s;;(t) remains constant across all slots, and (i7) volatile: s;;(t)
fluctuates every 5 slots within the range of [10, 30]dB [122], encompassing poor to ex-
cellent values. In both scenarios, we randomly select bandwidths w; € {5, 10, 15,20}
MHz [123], while A takes random values within [0, 1], and v = 20 (penalizes more
HO cost, without sacrificing throughput). We choose a smaller case study with
I =100 UEs and J =10 cell to facilitate the calculation of average regret, as de-
termining the best oracle is computationally intensive. However, it is important to
note that the best oracle is not necessary for running LDA.

Figures 3.6 and 3.7 show that LDA identifies the best benchmark (diminishing
regret) just in solely T = 5k slots. This verifies our claim (see Section 3.4) that
the error due to discretization is small. Conversely, Max SINR fails to converge,
even though the SINR does not change, with the regret remaining constant at 6.5
(exploiting sub-optimal associations). This trend is also evident in the average
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Figure 3.8: Comparison of throughput (g), negative HO cost (—h), and total (f) values for the
real case, when (a) v =5, (b) v = 20.

objective function, where LDA outperforms Max SINR after ¢ = 1.4k. As anticipated,
Random algorithm performs poorly.
Real-world scenarios. To test LDA in real-world scenarios, we use crowdsourced
measurements that contain various signal metrics (e.g., SINR and SNR) along with
their precise latitude and longitude information and the concerned cell, at every
second. This dataset presents a highly competitive scenario as SINRs can vary
arbitrarily, and occasionally exhibit adversarial behavior. The crowdsourced mea-
surements are anonymized, hence we lack specific UE information (e.g., its type or
exact mobility pattern). Therefore, A is chosen from the distribution of our data, as
shown in Figures 3.2, 3.3, and 3.4, ensuring a variety of UE types and HO delays are
considered. Moreover, we adopt the Gauss-Markov mobility model [124], in line with
prior works [33], with randomness parameter a = 0.5 (a =0 being totally random
and a=1 being linear motion) and consider velocities in [1, 28] meters per second,
and velocity variances in [0, 14]; thus having from pedestrians to fast-moving UEs.
At t = 1, 1k UEs are placed randomly on the map at a different location with
recorded SINR measurements. At each subsequent slot t = 2,...,T, where T' = 10k,
each user moves in accordance with their individual parameters, to their own new
location. To incorporate the signal measurements, we map each new location to the
nearest one with available measurements and continue similarly for the next slot.
We utilize measurements from an urban district and choose 25 of the cell with the
most data. For the bandwidths of each cell, we use the real ones from our dataset.
We consider two different cases for v: (i) v = 5, and (i4) v = 20 (chosen
in accordance with throughput and HO cost values). Both cases prioritize high
throughput, but the latter penalizes HO costs more. From Figure 3.8, we observe
the cumulative g values (normalized by the maximum value) are the same for each
algorithm, in both v = 5 and v = 20 cases; ensuring no throughput is sacrificed in
turn of lower HO delays. At the same time, LDA 2-norm, which does not consider
the HO delays but solely the number of HOs, achieves x67.7 and x79.6 higher
HO cost than LDA for v = 5 and v = 20, respectively. Similarly, although Max
SINR achieves 4.4% higher throughput, it does not take into account the HO costs,
resulting in 39% (171%) lower total values for v = 5 (v = 20). Therefore, LDA
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associations that LDA chooses, for v = 5 (upper right) and v = 20 (lower right).

performs optimally in terms of HO costs, without sacrificing throughput.

To further deep-dive into how LDA responds to 7y, we show in Figure 3.9 the SINR
of two UEs for the first ¢ = 1k slots, and the UE-cell associations for v = 5 and
v = 20. In the former case, we observe that both users change cells more frequently,
e.g., for v = 5, UE-1 changes 5 times between BS/cell-3 and BS/cell-0 even though
the SINR of the latter becomes, for a few slots, slightly better than the former,
while for v = 20, UE-1 stays constantly in BS/cell-3. These results show that LDA
can be easily adjusted by changing v, to react more to SINR changes (i.e., maximize
throughput), or take more into account the HO cost. The latter is a crucial aspect
in mobile networks, where HOs may lead to the ping-pong effect [31].

3.7. RELATED WORK

Measurements. HOs have mainly been studied using traces from UEs, which are
inevitably limited to certain manufacturers [30], services [91], or user types [72],
[99]. Our findings on HO duration align with these prior works [30], [64], [72] and
offer new insights into the impact of RAT and UE type on HOs. While several
studies have measured HO volume [32], [69], [91], noting that horizontal HOs are
more frequent in 5G-Standalone (5G-SA) and 4G, and vertical HOs in 5G-NSA
[91], we enhance these findings by revealing the geographic heterogeneity of HOs
and measuring their effect on important KPIs. Importantly, our work utilizes a
large-scale dataset measuring HOs from the network-side of a top-tier operator with
40M UEs. This contrasts sharply with the few network-side studies, e.g., [31] has
less than 0.7% of our UEs. While [113] is the first countrywide study of cellular HOs,
it focuses solely on measurements, without providing a HO solution or focusing on
the effect of HO failures (HOFs) on KPIs.

Handover Optimization. In user-centric mobility schemes, UE associations (and
thus HOs) are often approached as a bandit learning problem where each UE ex-
plores which cell offers better throughput [125]-[130]. Conversely, using SINR mea-
surements from all UEs, the network can make more effective centralized decisions.
This idea is regaining momentum, but is also more challenging (due to scale, among
others) to implement. For instance, a recent thread of studies employs (Deep)
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Reinforcement Learning to decide HOs or HO rules (e.g., SINR thresholds) [34]-
[37], [131], [132]. Despite its modeling appeal, these approaches essentially rely on
heuristics. On the other hand, our method comes with performance guarantees,
even under adversarial conditions.

Similarly, the joint optimization of throughput and HO delays is considered in

[33], [34], [36], [37], [109]. Our goal is very close to these works, but we enrich their
model to capture the different delay effects of the various HO types, RATs, and
UE types. Also, we drop several of their assumptions and, in particular, their need
to have accurate SINR information. Clearly, in today’s volatile and non-stationary
network conditions, this assumption is impractical. Finally, some recent papers
leverage the ML-provisions of O-RAN, and propose forecasting-assisted HOs [33],
[37], [38], [133]. Our solution is also aligned with O-RAN, but unlike these works, it
learns on the fly the network/UE parameters and does not require offline training
nor the availability of a reliable forecaster. At the same time, when such predictions
are available, our algorithm can directly benefit from them to expedite its learning,
building on the idea of optimistic learning [22]. For additional discussion on HOs,
see [26], [27].
Smoothed Online Learning. In terms of solution, unlike the model-predictive
control of [33], the RL strategies in [34], [36], [37], [134], or the heuristics in [109],
we approach this problem, for the first time, through the lens of smoothed online
learning [25], [110], [120]. SOL enriches the online convex optimization toolbox [16],
accounting for costs induced by decision changes, and has recently found applications
in caching [135], [136], network selection [127], and service deployment [137], among
others. Here, the decisions express the UE-cell associations, and the switching cost
captures the HO delays in a natural way. Yet, unlike the above works, we leverage
the more competitive dynamic regret benchmark, as HOs are unavoidable, and the
switching cost models the delay rather than merely the HO count. In general, SOL
should not be confused with mathematical smoothing [138], nor with the stochastic
and full-information framework of decisions with reconfiguration delays [139].

3.8. CONCLUSION

This chapter addresses the problem of (traditional) HO optimization in cellular
networks using SOL. By extending the MNO’s datasets introduced in the previous
chapter with targeted measurements and crowdsourced signal data, we identify key
correlations between HO failures/delays and the characteristics of radio cells and
devices. Based on these insights, we develop a realistic dynamic model for UE-to-
cell associations that incorporates these user/cell features, and propose an online
meta-learning, O-RAN-compatible algorithm to tackle the problem. Our solution
does not require knowledge of future signal quality or user mobility/trajectories,
and demonstrates robust performance in both real-world and synthetic scenarios,
providing a solid foundation for future advancements in network performance.
Until now, all our contributions around handovers have centered on the tradi-
tional (THO) approach, which is inherently triggered reactively; or in other words,
only after signal conditions have already degraded (significantly). Even though
THOs have long served as the backbone of mobility management, their reactive na-
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ture may still pose challenges, especially in environments with dense deployments
and high-frequency bands, where signal quality might drop too quickly for reac-
tive mechanisms to respond. This naturally raises the following question: What if
the network and users could prepare before the signal has degraded considerably,
when needed? In the next chapter, we explore the proactive Conditional Handovers
(CHOs), investigating how learning-based control for both THO and CHO can un-
lock their full potential in the next generation of cellular networks.
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In the previous chapters, we focused solely on traditional handovers (THOs), the
long-standing backbone of mobility management. While we leveraged online meta-
learning for optimizing THOs, they remain fundamentally reactive, triggered after
signal conditions have deteriorated.

To mitigate these challenges, 3GPP introduced Conditional Handovers (CHOs),
which, despite promising lower delays and fewer failures than THO by proactively
reserving resources in multiple target cells and delegating the final handover decision
to the user, bring new challenges: how many and which cells to prepare, as well as
how to avoid unnecessary signaling and wasted resources. To address these chal-
lenges, we revisit the Mobile Network Operator (MNO) datasets from the previous
chapter and extend them with additional information on both source and target cells
(e.g., frequency, vendor changes). These allow us to capture the unique dynamics
of CHOs, which depend not only on the serving cell but also on the characteristics
of multiple target cells. Taking these characteristics into account, we develop online
meta-learning solutions that jointly optimize THO and CHO within the O-RAN ar-
chitecture. Our approach is oblivious to time-varying and unknown future system
conditions (e.g., user trajectories, signal strength), adapts to runtime observations,
and offers robust guarantees and comparable performance to an oracle that has per-
fect knowledge of these future conditions. Our solution surpasses 3GPP-compliant
and Reinforcement Learning (RL) baselines in dynamic and real-world scenarios.

The content of this chapter has been published in:

M. Kalntis, G. losifidis, J. Sudrez-Varela, A. Lutu, and F. A. Kuipers, “Meta-Learning-Based
Handover Management in NextG O-RAN,” in IEEE Journal on Selected Areas in Communications
(JSAC), 2026.

M. Kalntis, F. A. Kuipers, and G. Iosifidis, “CHOMET: Conditional Handovers via Meta-
Learning,” in Proc. of International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt), 2025.
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4.1. CHALLENGES AND CONTRIBUTIONS

In this chapter, we argue that next-generation (NextG) networks will benefit from
Al-based solutions that jointly optimize traditional and conditional HOs and adapt
the HO strategy to the current user requirements. In fact, 6G early releases are
expected to include both network-triggered and user-triggered HO solutions [50].
At the same time, the rise of O-RAN provides a practical vehicle for deploying
such intelligence since HO logic can now be implemented as near-real-time xApps,
enabling a flexible and programmable Al-native radio access network intelligent
controller (near-RT RIC); see Figure 4.1. This controller communicates with the
O-RAN-compliant central, distributed, and radio units (O-CU, O-DU, and O-RU,
respectively), delegating the decisions to multiple cells and users. This architectural
openness and Al-based control creates a timely opportunity to rethink mobility
management for NextG networks. In summary, in this chapter, we answer the
question: How can we design a robust and principled Al-driven framework for jointly
optimizing traditional and conditional handovers in NextG O-RAN architectures?
Methods & Contributions. To answer this question, we first analyze new coun-
trywide datasets of mobility events from a top-tier mobile network operator (MNO)
in a European country. Unlike prior studies that focus on limited end-user measure-
ment campaigns or confined regions (see Section 4.8), our dataset spans 13.5K cells
and 40M users, and provides comprehensive visibility into handover failures (HOFs),
HO delays, signal fluctuations, and cell heterogeneity. Employing a statistical anal-
ysis, we quantify the conditional effect on HOFs and HO delays as a function of cell’s
frequency band, vendor, and location/time. We observe a Pareto-like distribution in
signal fluctuation: for 20% of movements, the Signal-to-Interference-plus-Noise Ra-
tio (SINR) varies by 100% within 1 s, which makes them ideal candidates for CHOs.
These insights confirm the need for adaptive and robust HO control at user-level
granularity and motivate the solution of this work.

We next introduce a first-of-its-kind unified modeling framework that jointly
captures both traditional (explicit) and conditional (implicit) HO processes. Our
model represents the decisions of a controller [53] in an O-RAN setting and ac-
counts for user throughput, cell load, signaling overhead, and service delay due to
HOs (switching costs). We study two variants of CONTRA: one with a priori HO
type assignment per user, reflecting distinct service or user-specific requirements,
and another where the controller determines on-the-fly the HO type based on sys-
tem dynamics. The key novelty lies in treating HO type selection, candidate cell
preparation, and cell association as a single online learning problem without relying
on knowledge from underlying stochastic processes (e.g., SINR fluctuations, cost of
signaling). We model the resource trade-offs and performance dependencies between
HO types and across users, enabling per-user decision-making at the granularity of
O-RAN near-real-time control loops.

To solve this problem, we propose CONTRA, a meta-learning-based algorithm (see
Figure 4.1) that maintains a pool of learners (i.e., experts) tuned for different sig-
nal conditions and mobility patterns, and employs a meta-learner to track their
performance. This design enables adaptation to changing network environments,
types of user equipment (UE) and cells, without prior statistics, and ensures per-
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Near-RTRIC

Figure 4.1: CONTRA deployed as an xApp in the near-RT RIC of O-RAN.

formance commensurate with that of an oracle with knowledge of the future. Our
approach is based on the theory of online convex optimization (OCO) [16] and our
formulation builds on recent advances in smoothed online learning (SOL) [25]. The
proposed algorithm provides theoretical guarantees in terms of expected dynamic re-
gret, a rigorous measure of how well the algorithm performs compared to the oracle,
under a vast range of scenarios for the changing parameters. Finally, we evaluate
CONTRA using the datasets from the top-tier MNO and actual users. Benchmarking
it against 3GPP-compliant and Reinforcement Learning (RL) based THO and CHO
mechanisms, we find that it provides higher user throughput, lower signaling cost,
and improved robustness, particularly in volatile and real SINR environments. In
summary, our contributions are:

e We present and analyze countrywide mobility datasets to shed light on parameters,
such as frequencies, vendors, and location/time, that affect HO failures and delays.

e Motivated by the 6G vision and the analyzed datasets, we model HO control as
a learning problem and propose CONTRA, the first unified THO/CHO orchestration
framework for real-time and robust HO control in NextG O-RAN. We study two
variants of CONTRA: a static one with predefined HO types per user, and a dynamic
one, where the controller decides the HO type on-the-fly. Our solution relies on a
meta-learner that is oblivious to UE types, mobility, and network conditions, offering
performance guarantees (expected dynamic regret).

e We evaluate CONTRA using crowdsourced data and multiple scenarios against
3GPP-compliant and RL benchmarks. The experiments highlight CONTRA’s effi-
cacy, deployability, and alignment with 6G goals of intelligent Radio Access Network
(RAN) functions.
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Figure 4.2: A failed traditional HO, where the MR or HO command may not reach the serving
cell or UE, respectively, as the signal has dropped significantly.

4.2. TRIGGER OF HANDOVERS

Traditional & Conditional HOs. THOs are triggered when the SINR of the
serving cell degrades (A2 event) and/or another neighboring cell’s signal is higher
than the serving cell (A3 event) [78], [80], [81]. This reactive approach, where
THOs are initiated after the signal conditions deteriorate, often leads to increased
HO delay and HOF rates, particularly due to the small cell density and the rapid
signal fading of high frequency bands (> 24 GHz, FR2) [113], [140]. Specifically, as
illustrated in Figures 4.2 and 4.3(a), it is common for HOFs to occur when a user
attempts to send a measurement report (MR) under degrading signal conditions; or
even if the MR is successfully sent, the worsening signal conditions may prevent the
user from receiving the HO command from the serving cell.

CHOs, designed first as part of 3GPP Rel. 16, address these limitations by
offloading part of the HO decision-making to the user, before signal conditions de-
teriorate [39]. As can be seen in Figure 4.3(b), a CHO decision is taken while signal
quality is still adequate (step 2), and the source cell can pre-configure (i.e., prepare)
multiple candidate target cells (steps 3, 4, 5) based on the MR of the UE (step 1).
To conclude the preparation phase, the source cell provides monitoring conditions
(step 6), such as hysteresis, offset, and time-to-trigger (TTT) parameters, and the
execution phase starts: the user applies these conditions continuously (step 7) to
evaluate the signal of the source and candidate target cells.

If any of the predefined conditions are met (step 8), the UE executes the stored
HO command (as if it had just been received) without an MR or reply from the
serving cell. If more than one cell meets the execution condition, the UE decides
which to access; typically, the one with the highest SINR. CHO is finalized in the
completion phase, where resources are released from the serving cell and a new
path to the target cell is established (steps 9, 10, and beyond). Once resources are
reserved for a UE through admission control (step 4), they are not released until a
cancellation is sent (step 10b).

Conversely, the HO decision in traditional HOs dictates the one target cell the
UE should connect to; and this transition (steps 6, 7) is executed immediately after
the UE receives the command. In other words, the execution phase in THOs occurs
immediately after preparation, in contrast to CHOs, where the gap between the two
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Figure 4.3: Basic steps/procedures of UEs performing (a) traditional (green) and (b) conditional
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phases can be as large as 9-10 s [45].

An essential aspect of any intelligent mechanism is the granularity at which
THO/CHO decisions are made (step 2 of Figure 4.3). Typically, these decisions are
taken in hundreds of milliseconds (e.g., 100-640 ms), driven by the TTT parameter;
namely, the duration for which the signal of a neighboring cell should be constantly
better than that of the serving cell [36], [46], [80], [81]. This granularity aligns with
the decisions of a central controller in the near-real-time of O-RAN, which could
even handle multiple cells simultaneously [12].

CHO Key Trade-Offs & Selection Criteria. Determining which cells to prepare
is critical in CHOs for balancing resource efficiency and mobility robustness. Ideally,
the MNO, whose goal is to economize cell resources, would allow the preparation of
the single cell to which the UE will connect in the next slot (i.e., the “correct” target
cell) and whose signal strength is high, hence maximizing the UE’s throughput.
However, this cannot always be predicted and multiple candidate cells often need to
be prepared, e.g., because the user is located at the edge of a cell and its trajectory is
unknown. At the same time, a long list of prepared cells does not necessarily increase
the likelihood of including the “correct” target cell, especially if all prepared cells
exhibit low signal quality. Conversely, while preparing fewer cells may save resources,
it increases the risk of falling back on traditional HOs; thus, larger HO delays and
HOF probability (see Section 4.3).

Another aspect to consider when optimizing CHOs is the signaling cost of prepar-
ing cells. For instance, in environments such as FR2, the small cell density and rapid
signal fluctuations already result in more frequent HOs, leading to significant signal-
ing overhead. The additional burden of continuously preparing and releasing cells
due to constant signal variations further exacerbates this overhead [45], [141]. For
that reason, although initial 3GPP releases specify that UEs should release CHO
candidate cells after any successful HO completion to conserve resources [39], subse-
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Figure 4.4: (a) SINR and (b) RSRP changes per second.

quent studies suggest that this approach is not always optimal for minimizing HOFs
and signaling overhead [140].

These trade-offs emphasize that the selection process for cell preparations should
focus on finding a balance between identifying the “best” (in terms of signal quality)
potential target cells and keeping the number of prepared cells small (i.e., limited
reserved resources).

4.3. DATA COLLECTION AND ANALYSIS

To highlight the potential benefits of CHOs, we illustrate the problems of traditional
HOs, extending the datasets of the previous chapter that omit the impact of target
cell features, apart from the change in radio access technology. Our goal is to identify
the features (e.g., vendor, location) in the source and target cells (not only in the
former), as well as in the UEs, that contribute to increased HOFs and delays.
Signal Quality Metrics & Mobility. In Figure 4.4, we examine temporal signal
variations, namely SINR and RSRP, across various speeds using our crowdsourced
datasets, which offer measurements at 1-second intervals. We classify samples into
three mobility categories: static, medium (310 km/h, likely walking/running), and
high speed movements (>80 km/h, likely vehicular). In general, SINR is sensitive to
short-term effects such as fast fading, interference, and noise floor variations, while
RSRP reflects a more stable signal strength from the serving cell.

Our findings reveal that SINR exhibits considerable fluctuations, even at the
second-level granularity, with more than 20% of movements experiencing a 100%
or greater change in SINR in one second, regardless of speed. Given that our pas-
sive measurement dataset covers cell deployments in the frequency bands below
3.5 GHz, we highlight that SINR variability does not increase with mobility due
to, for instance, greater Doppler spread and more dynamic interference conditions.
Doppler effects typically become relevant at higher frequencies, such as mmWave
and above [142], and become more noticeable in very high-speed scenarios, such as
trains traveling at speeds of up to 500 km/h and Vehicle-to-Vehicle (V2V) commu-
nications [142], [143]. In contrast, our high-mobility tier mainly captures vehicular
UEs moving at speeds above 80 km/h (and rarely exceeding 130 km/h) in an urban
environment. On the other hand, RSRP is more stable, and speed plays a bigger
role; e.g., 20% medium-speed movements have their RSRP changing more than 4%.

It is worth recalling that in HO procedures, a typical threshold for initiating the
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Figure 4.5: Number of cells per sq. km in the country (district level). Each point is colored based
on the ratio of postcodes classified as urban (others are rural).

HO based on the A3 event is commonly set around 3 dB [36]. This threshold provides
a useful reference when interpreting Figure 4.4, as it highlights how frequently such
conditions can be met.

Key Takeaways: The SINR fluctuates by more than 100% for over 20% of UEs

within short time intervals of 1 s. Such rapid signal variations increase the likelihood
of suboptimal HO triggering, and thus, of HO delays and HOFs. The proactive cell
preparation approach of CHOs can mitigate the impact of such fluctuations and
improve user performance.
Spatial Heterogeneity. From the official census data of the analyzed country,
we dissect the 300+ defined districts and 2.5M+ postcodes, and combine them
with our collected cell-level datasets from the MNO to understand how cells are
placed across different environments, thus affecting the number of cells that can
be prepared in CHOs. Postcodes have been classified as urban or rural, based on
whether they are allocated to an area with a population of more or less than 10k
residents, respectively.

Figure 4.5 displays the district-level cell density (number of cells per sq. km)
compared to the population density. Each point corresponds to one of the 300+
districts in the studied country and is color-coded based on the percentage of post-
codes classified as urban within the district. As expected, there is a high correlation
between these two factors (Pearson correlation of 0.967). In districts where more
than 90% of postcodes are urban, shown mainly in yellow, we observe 10 to 100 cells
per sq. km, with areas near the capital city exceeding this range. It is interesting
to note that the urban center of the capital city (highest yellow rectangle) attracts
a substantial influx of non-resident users due to being a major administrative and
economic hub; consequently, operators deploy more than 650 cells per sq. km to
accommodate the increased demand. On the other hand, areas with less than 20%
urban postcodes exhibit as few as 0.12 cells per sq. km, which is sufficient to meet
the reduced user demand there.

In Figure 4.6, we further delve into a dense urban district to illustrate the spatial
heterogeneity of the cell deployment. We partition the district into one sq. km tiles,
revealing 2.2k+ total deployed cells. The per-tile cell count spans over two orders
of magnitude, ranging from a single cell in sparsely covered areas to more than
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Figure 4.6: Number of cells per sq. km in an urban area with >2.2k cells.

160 per sq. km in highly saturated hotspots. Notably, some adjacent tiles exhibit
substantial disparities, with cell counts increasing from as few as 3 cells in one tile
to as many as 103 in a neighboring one. In CHOs, this means that a UE traversing
these areas must dynamically account for a highly variable and often large set of
candidate cells.

Key Takeaways: Cellular network deployments are highly heterogeneous in terms
of density, which is correlated with population. In our dataset, there are 650+ cells
per sq. km in the urban center of the capital city, while in remote areas, there are
as few as 0.12 per sq. km. In urban areas, the number of candidate cells for CHO
can be very large and depends on cell density. There are even significant differences
in cell counts between adjacent tiles (1 sq. km). This means that the signaling cost
for preparing target cells is not uniform across the network, as it depends on the cell
deployment density and properties (distance, frequency, etc). Therefore, the system
model in Section 4.4 considers cell-dependent signaling costs.

HO Failures & Delays. We analyze factors that increase HOFs and delays,
thereby highlighting the scenarios in which CHOs offer clear benefits.

Figure 4.7 presents the hourly evolution of successful HO delays (in ms) and
HOF rate (in %) for 1 week in the entire country. Boxplots aggregate cell-level data
from the same hour. The two metrics exhibit a diurnal pattern, reaching a max of
0.08% HOF rate and 62 ms latencies (median values) at 15:00, which is the hour
when most HOs occur and the network is most congested [113]. Notably, from the
pre-dawn median minimum (06:00) to the max peak at 15:00, there is an increase of
252% in the HOF rate; at the same time, HO delay increases by 28%. Also, during
the night hours 00:00-06:00, even though the HOF rate decreases significantly, the
delay of successful HOs increases by approximately 3 ms. This is partially due to
the MNO applying dynamic energy-saving policies that switch off cells acting as
capacity boosters when they are not needed to meet the demand [144]. Clearly,
existing HO mechanisms offer room for improvement, especially during peak hours,
to reduce HOF rates and delays, which can be achieved by leveraging a dynamic
and robust THO/CHO algorithm.

We further analyze which features of the source and target cells mainly affect
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Figure 4.7: HOF rate (left, red y-axis) and delay of successful HOs (right, blue y-axis) per hour
for a 1-week period. Triangles in boxplots depict the mean.

the HOF rate. For that, we focus on source-target cell pairs with at least one HOF
registered per day (excluding approximately 3.4% that are outliers), and study the
effect of: (¢) vendor, (i7) frequency band, (i) model name, (iv) transmit power,
(v) cell type (macro, micro, etc.), (vi) region (north, south, etc.) and (vii) area
type (urban/rural).

We start this analysis with a non-parametric Kruskal-Wallis test, which confirms
that all examined factors affect the HOF rate (p < 0.05).> To determine the impor-
tance of each feature, we run multiple Machine Learning (ML) models. We discard
features with high multicollinearity (VIF > 3) and Pearson correlation (>0.5), and
include the number of HOs as an input feature to account for spatio-temporal varia-
tions (Figures 4.6 and 4.7). The HOF rate is log-transformed, given its heavy-tailed
distribution. Among the evaluated models (linear/lasso/ridge regression, k-nearest
neighbours, and random forest), the random-forest regressor achieved the best per-
formance, reaching an R? of 0.8 (compared to at most 0.58 for the other models)
and RMSE of 0.66 (compared to at most 0.97 for the other models). As a reference,
a naive model that always predicts, in the test set, the mean HOF rate from the
training set, achieves an RMSE of 1.47. Permutation-based importance reveals that
the number of HOs is by far the strongest predictor, followed by the cell frequency
band and the vendor; excluding these last two features drops the performance to
R?=0.6, confirming that frequency and vendor still contribute meaningfully.

Figure 4.8 shows the effect of these latter features on HOs and HOFs. The x-axis
indicates whether the HO occurred in the same (intra) or different (inter) frequency
and antenna vendor, as well as if the frequencies of the source and target cells lie
in the low (< 2GHz) or mid-high (> 2GHz) spectrum. The y-axis shows the HOF
rate in ascending order, the delay of successful HOs and the percentage of total
HO and HOF count within each category. We observe that the mean HOF rate
in inter-frequency HOs, mainly when the source and/or target cells operate in low
frequencies, is = 0.26%, i.e., x2.4 more than the 0.11% of the intra-frequency ones.
However, the HO delay for the former is no more than 1.5 ms higher. Intra-frequency

INormality and homoscedasticity assumptions are violated; hence, analysis of variance (ANOVA)
[100] was not tested.
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Figure 4.8: (left to right) HOF rate, delays of successful HOs, percentage of total HOs, and HOFs
based on the source-target frequency bands and vendors.

HOs in the same low-spectrum frequency handle the majority of HOs (i.e., 42%),
but their contribution to failures closely matches this number (38.4% of all HOFs).
Lastly, note that HO delay is mainly affected by the change in vendor: even though
88% of HOs are intra-vendor with a delay of 59-60 ms, inter-vendor HOs exhibit
a delay that is 5-6 ms higher. These inter-vendor HOs are prevalent at regional
borders (e.g., west-east border), given that a single vendor predominantly serves
each region in the studied country.

This analysis demonstrates that accounting for the previously mentioned cell-
level features is crucial for HO optimization, particularly for minimizing the impact
of increased HO delays and HOFs.

Key Takeaways: HO failures and delays are strongly influenced by: (i) time of
day, exhibiting diurnal patterns that peak at 15:00 with a 0.08% HOF rate and a 62
ms HO delay (median values); (i7) frequency changes between the source and target
cells, with inter-frequency HOs having x2.4 higher HOFs than intra-frequency HOs,
although with a slight difference in HO delay, and (iii) vendor transitions, where
inter-vendor HOs exhibit 5—6 ms higher delay than intra-vendor. This evidences
the potential benefit of accounting for the previous cell-level characteristics for HO
optimization, as we consider in the design of our algorithm.

4.4. SYSTEM MODEL AND PROBLEM STATEMENT
Modeling Components. We consider a heterogeneous cellular network comprising
a set J of J cells that serve a set Z of I UEs. We assume that a central controller
takes decisions for multiple UEs/cells [53] in a time-slotted manner for a set 7 of T'
slots [33], [111] with each slot lasting hundreds of milliseconds (see Section 4.2), as
enabled by near-RT RIC in O-RAN[12].2

These decisions concern both THOs and CHOs, and are taken on the same time-
scale. The set Z is partitioned into the set Zrgo of Itgo UEs and Zano of Icuo UEs,
who follow THOs (THO-enabled) and CHOs (CHO-enabled), respectively, where

2The modeling and optimization framework of this section can be extended and implemented by
other RAN systems, not solely O-RAN, as long as there is support for centralized decision-making
that is fed by signal measurements.
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IrioNZcuo = 0 and ZruoUZcuo =Z. This distinction can arise due to service-level
agreements (SLAs), network slicing policies [145], or vertical-specific requirements,
in which different classes of UEs are managed separately; e.g., enhanced-reliability
or low-latency UEs may be assigned to CHO. Alternatively, an MNO may apply a
rule-based classification, informed by prior data (e.g., historical patterns), to assign
UEs to either HO type.

For the THO-enabled UEs, we introduce the decisions:

wt:(zij(t)E{O,l},i S ITHO, ] S j),

where z;;(t) €{0,1} defines the explicit one-cell association decision with z;;(t)=1
if user i is assigned from the controller to cell j in slot ¢. For the CHO-enabled UEs,
we introduce:
Y= (yij(t) €{0,1},i € Zeno, J € j),

where y;;(t) €{0, 1} is the preparation decision (implicit multi-cell association deci-
sion): y;;(t)=1 means that cell j is prepared from the controller in slot ¢ for user i
and the user can decide whether to connect to this cell (as explained later). These
decisions are drawn from the sets:

X = {w € {0,1}fruo7 ‘ inj =1li€e ITHO}a
JjeT

where naturally each ¢ € Zryo is assigned to one cell, and:

y={ye {01y’ [1 <3 yyy < bisi € Tono
jeT
where no more than b; cells can be prepared for i € Zcuo.
The key metric is the SINR for the signal delivered by cell j € J to any user
1€Zinslot t € T:

_ 45935 (t)
Wjo? +3 ke, akdin(t)’

where g¢; is the transmit power of cell j, B; the set of cells that operate in the
same frequency as j, ¢;;(t) the channel gain (including pathloss, shadowing, and
antenna gains), W; is the bandwidth, and o2 the power spectral density. In line
with previous works [33], [34], [36], [109], s;;(t) is the average SINR in ¢, since UEs
report multiple values during each slot.

We distinguish two cases for the maximum throughput a UE can receive from a
cell, based on whether it is THO- or CHO-enabled: For the former [33], [34], [146],
this throughput is expressed as:

si5(t)

cij(t) = Wilog (1 + s45(t)),i € Zrro,
while for the latter, we introduce:

Wjlog(1+s;;(t)), if j= argmax s (1)
e (t)= ki i (t)=1 (4.1)
0, otherwise
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where i € Zepo. The throughput of the CHO-enabled UEs in eq. (4.1) depends
on their own decision, which, in turn, depends on the measured signals and the
list of prepared cells it receives from the network. We consider here the standard
cell-selection rule, in which the CHO-enabled UE connects to the best-SINR cell
among those prepared for it. 3

Finally, we define the load of each cell j € J:

Gty = > mt)+ D vt <G (4.2)

i€ZTHO i€ZcHo

as the total number of associated users (both THO- and CHO-enabled), which
cannot exceed the upper bound Cj, in lieu of the actual spectrum budget capacity.
Note that for the CHO-enabled users, the cell resources are reserved independently
of whether the UEs will actually select the cell, and hence CHOs are likely to induce
unnecessary resource waste. This is a key CHO issue that our model tackles.

To streamline the presentation, we define z; = (¢, y;) and the associated set:

Zz{z:(ac,y)Mngj7 Vjej,we)(,yey}.

In our framework, the network controller makes joint decisions for the THO- and
CHO-enabled users, whose performance is coupled through the load of each cell, as
can be seen in eq. (4.2). With this in mind, we introduce the wutility function the
controller needs to maximize:

C

gt<zt>=Z< S g0 1o G+ 37 o) o géf;) (1.3

J€T \i€ZrnoO J i€ZcHO

explicitly assigned UEs  implicitly assigned UEs
(can do THO) (can do CHO)
where the two terms define the throughput of the THO-enabled and CHO-enabled
UEs. 4 We assume the cell resources are allocated fairly across the users via, e.g., a
round robin or a proportional-fair scheduler [114]. The logarithmic transformation
balances throughput across users to achieve fairness [33]; however, other mappings
or schedulers can be used as easily.

Using the association decision w;;(t) for user i € Zrno, the THO is modeled
with the change x;;(t) # x;;(t —1). This way, the total number of THOs can be
captured with the norm ||z; — @;_1||, as in [33]. Nevertheless, we are interested in
the THO delay (switching) cost and not merely in the number of THOs. Following
our findings in Section 4.3, we propose using the weighted norm ||x; — ;—1|4,,
where A; = diag(a,(t) > 0) is a positive definite matrix with its diagonal weights
an(t) € [0,1], n=1,...,Itno- J, penalizing differently the THOs for each UE-cell
pair; a penalty that may even change over time.’

3To avoid often CHOs and ping-pong effects [31] when finding the highest-SINR, prepared cell, it
is possible to subtract a cell-specific offset, as happens in the A3 event [46], [80], [81].

4We consider that there is no idle cell, and in case of zero throughput, c;;(t) + 1 or c;;(t) + 1 can
be used inside the logarithm.

5E.g., 3G UEs have higher cost for changing cells as they are more prone to HO failures [146]. In
this way, the model accounts for the UE’s HO capabilities.
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On the other hand, a CHO is executed from the UE based on the prepared cells
by the controller captured through y;: the user’s decision in the CHO case is to be as-
signed to the highest-SINR, prepared cell. Clearly, frequent cell preparations and re-
leases may lead to increased signaling [44], [46], especially in dense cell deployments
(can be up to 161 cells, see Section 4.3). Hence, we introduce the CHO signaling
(switching) cost ||y: —y:—1]|| B, In this case, By =diag(b,/(t)>0,n"=1,...,Icno-J)
is a diagonal positive definite matrix with weights b,/ (t) € [0, 1], to penalize dif-
ferently the preparations and releases of cells for each UE-cell pair® in slot ¢.
Given that THOs are more prone to failures and delays than CHOs, it holds that
an(t) > by (t), VL€ T.

These THO and CHO switching costs can be combined as:

|z — Zt—1||2&t =[x — f'it—1||,24t + lye — yt—lHQB,,,

where C is the full block diagonal matrix:

[A: 0
Ct[o BJ’

and the induced norm and its dual [117], are:

Itno-J Itno-J
)%, =D an®an(®)?, @5, = Y wn(t)’/an(t),
n=1 n=1

and similarly for y;.
Putting the above together, the problem that the network controller wishes to
address is the following:

~

Py imax Y- (gi(z0) = 12—zl )
(=i

st. zz€Z, VteT,

where g:(2¢) — ||zt — zt—1]|c, is the objective function. Next, we explain in detail
why P; cannot be solved offline.

Optimization Challenges. Solving P; offline is impossible since, at t = 1, the
controller lacks knowledge of the future SINRs of UEs as it has no access to, or
influence over, their mobility. Thus, P; must be tackled in an online fashion. In fact,
in increasingly-many scenarios, the problem parameters (SINRs, loads, switching
costs, etc.) are unknown even at the beginning of each slot; they are only revealed
after the association and preparation decisions are made. For example, while it
may seem the controller could observe the current SINRs before making a decision,
in practice, there is a non-negligible delay between the time a UE measures and
reports these values and the time the network processes this information. And
for fast-moving users or highly-volatile environments, this delay will yield outdated

SE.g., the signaling cost might be more detrimental during peak-hours.
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information. This means that we need an online learning approach, where both
the explicit (for THO) and implicit (for CHO) association decisions are made based
on historical UE, network, and environment data, without presuming knowledge of
their future values.

What is more, the signaling and switching overheads depend on successive deci-
sion changes: a user that remains in acell or a cell that remains prepared does not
incur additional costs. This introduces a memory effect in the optimization, as past
decisions influence current decisions. We also stress that the A;-norm and B;-norm
imply the costs change over time; however, this cost does not depend on previous
decisions. Finally, Py is further compounded by the discreteness of the variables a;
and y; which prevents the application of off-the-shelf OCO techniques.

Despite these challenges, the goal is to design an online learning algorithm that
determines UE-cell associations and preparations and is oblivious to all time-varying
and unknown system conditions, including future SINR, load, switching costs, and
HO delays for each UE-cell pair.

4.5. TRADITIONAL-CONDITIONAL HANDOVER LEARNING
To leverage the OCO/SOL toolbox for tackling the problem at hand, the following
two main issues need to be addressed: (i) the discreteness of decision variables, and
(@) the (convex) max operator in the definition of the throughput concerning the
CHO-enabled UEs, as can be seen in eqs. (4.1) and (4.3). In a nutshell, our solution
strategy involves relaxing the discreteness of the decision variables, transforming the
resulting continuous problem into a concave one, solving the new concave problem,
and then mapping the obtained continuous solution back to the discrete domain via
careful rounding.

Relaxation & Transformation. First, we define the convex hulls X¢ = co(X),
Ye=co(Y), Z°=co(Z) that relax the integrality of the decision variables:

X© — {:E c [O, I]ITHO'J ’ Z Tij = 1’1 c ITHO}7
JjET

Vo= {y € [0, 1]feno” ‘1 < Z Yij < b1 € ICHO},
JjeT

z={z=(@y) | 4,<C; V€T, e X, yey )

Then, using the properties of logarithm, eq. (4.3) becomes:

gt ( Z Zmu ) log c;;(t —|—Z Zym ) log ci;(t)

JET i€ZTHO Jj€J i€lcuo
grHO (@) 970 (yr)
= > (1) log 4, (t
JjET

gi°* (e, ye)
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where the throughput for the THO-enabled UEs, gfH°(.), is linear in x; € X¢, and

the load penalty, —gi°®d(.), describes the entropy; thus, both are concave. On the

other hand, the throughput for the CHO-enabled UEs, gCH9(.), is not concave even
when y; € V¢, due to the influence of preparation decisions y; on ¢; j(t) through the
max operator, see eq. (4.1). To illustrate this more clearly, we can equivalently
write this part as follows:

97wy 2 Y max loge(t), (4.9)

i:yiq(t)=1
iEICHOJ vii (1)

where this transformation achieves the same/desired behavior: the CHO-enabled
UE obtains throughput from the cell with the best SINR among the prepared ones.
Given that the max operator of eq. (4.9) is nonsmooth and convex, we introduce
a linear masking mechanism that leads to a concave surrogate, inspired by the
standard LogSumExp function [147] used in deep neural networks (DNNs):

W) 2 Y ilog<2ym<t>cij<t>a>, (410)

1€ZcHO jeJ
where a > 0 controls the tightness of the approximation.

Lemma 4.1 (Approximation of CHO Throughput). For y; € Y andt € T,

lim §tCHO(yt) = gtCHO(yt)
a—r 00

Proof. Let dj(t) = max;.,, (1)=1 logc;(t) and di;(t) = logc;;(t). Then, eq. (4.10)
becomes:

Oy = Y alog(Zyij(t)e d”(t)> _

i€ZcHO jeT

1 ad? (1) Coveal(ds®-a®) ) )
> alog(e L+ > yi(t)e\ -

i€Zcno drdi (DA (1)

) <df(t) + élog <1 + > yij(t)ea(dif(t)dz(t))>>

i€ZcHo Jidig (t)F#dy (t)

Since dy;(t) < di(t) by definition, then (A O-a1®) 0 a5 o = 00, and indeed,

converges to the max, namely, df ().

O

From Lemma 4.1, eq. (4.10) approximates eq. (4.9), and the transformed utility:

Gt(20) = g7 () + 579 (ye) — 9 (e, yi) (4.11)

is concave, as desired.
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Figure 4.9: Learning mechanism. (i) Each expert uses a different learning rate and proposes a HO
policy to the meta-learner (blue box). (%) The meta-learner combines the proposals, using the
experts’ weights, and implements the result after discretizing it (green box). (%) The mechanism
observes the performance and assesses how good each expert’s proposal was (orange box). (iv)
The experts adapt their decisions and the meta-learner adapts their weights.

The Meta-Learning Approach. We approach P as a smoothed online learning
problem and solve it using a meta-learning approach based on the experts framework
[18], [116], as can be seen Figure 4.9. This is particularly well-suited to our setting
because switching costs are incorporated into the formulation, and system conditions
can vary significantly across time slots due to, e.g., unknown user mobility. As a
result, deploying a single learner with a fixed learning rate may perform well in some
regimes but poorly in others.

We deploy a set K of K learning agents, called experts, or simply learners, each
with a different learning step/rate 8 = (0x, k € K) that is applied to online gradient
ascent (OGA) [15]. An expert with a larger learning rate puts more emphasis on
the latest gradient and hence adapts more quickly to rapid changes in SINRs and
signaling costs, making it more suitable for highly volatile scenarios. In contrast,
experts with a smaller learning rate update their decisions more carefully (do not
move fast from previous decisions) and hence are less affected by parameter fluc-
tuations. This makes them better suited for relatively stationary scenarios as they
induce less handovers (decision changes).

Given that the volatility of the environment and UEs’ mobility patterns are
unknown in advance, we use a large enough set I of experts, each tuned with a
different learning rate. The rationale is that, with careful selection of the rates
(number of experts and steps), at least one expert is guaranteed to perform well for
the encountered scenario. We identify the best expert for each scenario at runtime
by using a meta-learning algorithm, which implements Hedge [148] (and not OGA
as the experts) and learns how much weight to put on each expert’s proposal. These
weights are dynamically updated based on observed expert performance.

Formally, at the beginning of each slot t = 1,...,T, each expert k € I shares
its suggestion 2zf = (xF,yF), where we initialize 2§ = 0 for all k. The meta-learner
combines these suggestions into a single decision z[* = (", y;") as follows:

Z = wizf, (4.12)
ke

where w; = (wF, k € K), with w, 1x =1, are the meta-learner’s adaptive weights for
each expert. The goal is to assign higher weights to experts that perform better.
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Algorithm 2: CONditional-TRAditional HOs (CONTRA)

[

Required: Step 7 for meta-learner and {0 }xexc for experts
Initialize: Sort 61 <6 < ... <0k and set w’f = ,jkl_ig

for t=1,2,...,T do

Each expert k € K shares its decision zF

2
3
4
5 Combine all decisions z{ into z}® using (4.12)

6 Create an implementable discrete decision z; = Qz(z;*)
7 Observe SINRs, g:(.) and switching costs Ct

8 Update the weights of experts using (4.13) and (4.14)
9 Send Vg.(z:) to each expert

10 Each expert updates its decision using (4.15)

end

Since the decision 2" of the meta-learner takes continuous values due to w;, we
apply a quantization function @z to project it back to a valid (i.e., implementable)
discrete decision z;. We require that the quantization is unbiased, i.e., E[z;] =2z,
which holds by: (i) picking a cell j to assign a THO-enabled UE ¢ € Zryo with
probabilities (), creating x; € X, and (i7) deciding whether to prepare a cell j
for a CHO-enabled UE ¢ € Zcgo through sampling from a Bernoulli distribution
with probabilities y;}(t), creating y;, € V.

Once the decision z; is implemented, the controller observes the SINR values
si;(t) for all UEs and cells, and calculates g (.) through eq. (4.11), as well as the
switching costs (by observing C;). We pad with zeros the entries s;;(t) for which
no SINR is received, because these cells are unreachable. As a next step, the meta-
learner evaluates the decision zF of each expert using the surrogate (i.e., partially
linearized) loss:

L(zf) = =(V3u(z0), 2 — z) + |20 — 2l (4.13)
and updates its weights using the step 7 (defined later) as:

w?e_nlt(zf)
k,—nli(zF) "
D rex wie (2

Lastly, it sends the gradient Vg;(z;) in the implementable decision z; to all experts,
and they update their choices via OGA:

(4.14)

k _
Wiy =

2t =1z (Zf + nggt(Zt)>- (4.15)

The projection IIz(.) ensures that the proposed decisions zfﬂ lie in the feasible
space, namely, zf_H € Z. A summary of the steps can be seen in Algorithm 2
(CONTRA).

Performance Guarantees. To assess the performance of our algorithm, we com-
pare it against a powerful benchmark (i.e., oracle) that has full a priori knowledge of
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the system conditions (i.e., SINR, load, costs etc) and can choose the best possible
sequence of decisions over the entire horizon to maximize the cumulative objective
of P;. This serves as a highly competitive benchmark, exceeding both static (single
best solution for all time slots) and dynamic ones (best solution for each time slot
independently) [16], [24].

For that, we leverage the Ezpected Dynamic Regret [25]:

E[Rr) 23 (3u(z0) - 27 - sl

1

- ET:E{gt(zt) — |zt — Zt—1||Ct}7 (4.16)

t=1

o+

where {z;:}; and {z}}; are the algorithm’s and powerful-oracle’s decisions, respec-
tively. The latter is the solution of P, and the expectation captures the random-
ization in CONTRA’s decisions due to quantization @Qz. Our goal is to design an
algorithm that ensures this gap diminishes with time, limp_, o, E[Rr]/T =0 for any
possible benchmark sequence {z}};. It is important to highlight that achieving
close-to-zero expected dynamic regret is particularly challenging.

Ideally, designing an effective algorithm in such settings requires prior knowledge
of how much optimal decisions can vary over time, commonly characterized by the
path length:

T
Pr=3 |z — 2zl
t=1

However, this information is not available in practice. To overcome this limitation,
we have relied on a meta-learning algorithm that adaptively learns from a pool
of experts with different learning rates, each tailored to perform well under differ-
ent system conditions. To bound the expected dynamic regret, we first prove the
following lemma.

Lemma 4.2 (Bound of Domain and Gradients). By considering: a,(t) < amax, bn/(t) <

bmaxs Ch(t) < cn(t) < emax and M = max {log cmax—1, logl + 1}, with t € T, it
holds that:

o ||z — 2|2 <V2Irno+/Icuo(J—1) £ D,

o ||z —2'|lc, < V21100 tmax + \/Icro (J — 1) bmax = De,

o ||Z—Z/||Ct* S \/2 ITHO/ama,x +\/ICHO (J_l)/bmax = DC*7

o Vi (2)|: < MVIJ2G,

L4 ||v§t(z)||ct < M\/(ITHO Amax + ICHO bmax) J £ GC~

Proof. We provide the full proof in the Appendix. O

The main result for the performance guarantee of CONTRA is presented in the
following lemma.
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Lemma 4.3 (Performance / Optimality Guarantee). Using the parameters:

o« K= [1og2 VI +2T] +1, (4.17)
2
Do o
T(G? +2G )
e n=1/VTv with
v 2 (Do+1/8)(GD+2D¢)?

the discrete decisions {zi}+ of our algorithm CONTRA ensure:

E[Rr] <VT (Vo (1+In(1/w})) +

o 0, =281 K, (4.18)

V(G2 +2G o) (D% + 2Dc. Pr) )+

T(G+ \/amax+bmax) VIcnod/A+ Irgo(1—1/7), (4.19)

Proof. We provide the full proof in the Appendix.

O

With Lemma 4.3, we bound the expected regret of the implementable decisions,
in contrast to previous works [33], [36]. Even though the continuous preparation
variables achieve sublinear dynamic regret, the discretization introduces an unavoid-
able non-diminishing error. As shown in Section 4.7, this error is small in practical
scenarios, and the algorithm converges towards the optimal solutions.
Computational Complexity. The primary source of complexity in our algorithm
arises from the projection step performed by each learner k € K during OGA, as
shown in eq. (4.15); all other computations are executed in constant time O(1). The
projection difficulty depends on (%) the structure of the feasible set, which essentially
depends on the constraints of our problem, and (%) the size of the problem, which
in practice corresponds to the area monitored by each controller (i.e., the number of
UEs and cells). We note that for convex sets in general, there might be no closed-
form solution, with the projection requiring O(d®), where d is the set’s dimension.

Our current implementation indeed computes the projections directly by solving
the concave subproblems, which have been found sufficient for the studied problems.
Specifically, and despite relying on a general-purpose solver rather than special-
ized projection routines and a modest hardware (default) setup of a MacBook Pro
equipped with an Apple M1 chip (8-core CPU), the per-slot inference (execution)
time remains below the near-RT threshold required in O-RAN operation when up
to 150 UEs and 25 cells are considered.

More precisely, the inference time increases from 18 ms (I = 1 user) to 62 ms
(I = 150 users) when J = 5 cells. For J = 15 (J = 25), it begins near 18 ms (18
ms) for I = 1 user and reaches up to 384 ms (1 s) for I = 150 users. It is important
to note that the exact runtime may vary depending on the specifications of different
machines. For larger search spaces, one can employ tailored projection algorithms,
such as [149], [150], and/or execute the algorithm on GPUs or high-performance
computing servers.
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4.6. DYNAMIC HANDOVER TYPE SELECTION

Problem Formulation. In contrast to the framework of Section 4.4, we now
consider a more flexible and dynamic formulation in which users are not a priori
assigned to a specific HO type. Instead, the network controller can decide on-the-
fly (i.e., at each slot ), whether a UE should be THO- or CHO-enabled, based on
current system conditions and performance trade-offs, enabling a more responsive
and efficient HO strategy, as envisioned by 6G and NextG [51]. Specifically, we
allow each UE to be in either HO mode and decide this dynamically: when a UE
moves fast, it may benefit from CHO due to the rapid signal fluctuations that lead
to higher THO failures and delays, while it might find THO suitable when it moves
slowly.
In this case, the controller problem becomes:

T
Py :maxz <gt(zt) — |z — zt—lucf,)
t=1

{zt}t —
st. Y wy(t)<1, VieLteT (4.20)
JjeT
yin(t) 1= wy(t), Vie ke T teT (4.21)
JjeT
Syit) <bi, VieIteT (4.22)
€T
Sow)+ Y yut) =1, VieTlteT (4.23)
JjeT JjeT
S aut)+Y i) < CpL Vie T VEeT (4.24)
1€L 1€l
2z = (ze, ;) € {0,137 x{0, 1}/ vt € T. (4.25)

Eq. (4.20) allows a UE i € Z to be THO-enabled (i.e., explicitly assigned to a cell
if z;;(t) = 1), or CHO-enabled (i.e., implicitly assigned through CHOs to a cell,
otherwise). Eq. (4.21) complements the previous one, ensuring that a UE can be
explicitly or implicitly assigned to a cell, but not both; eq. (4.22) prevents each
CHO-enabled UE from having more than b; prepared cells, similarly to Section
4.4. Eq. (4.23) ensures that a UE will be explicitly or implicitly assigned, pre-
venting blocking completely some UEs, and eq. (4.24) enforces each cell’s capacity
constraints using the total number of users. Lastly, eq. (4.25) defines the binary
decisions.
Performance Analysis. The analysis and proofs follow nearly verbatim those of
Section 4.4, with the modification of the sampling technique Qz. We highlight that
the analysis of Section 4.4 relies on fixed sets Zryo and Zcpo, and therefore, the
unbiased estimator defined earlier cannot be used in the case of dynamic HO type
selection, where x; and y; are coupled with the controller deciding the HO type of
each UE in every slot. For that reason, we create a new unbiased estimator.

Let 2" = (:c?l, y,‘;“) denote the continuous meta-learner output at slot ¢, where
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" € [0,1)77 and y™ € [0,1)7/. The definition of z™ resembles eq. (4.12), with
the distinction that in that earlier formulation, the users were partitioned into two
disjoint sets Ztyo and Zcpo.

For the implementable binary decision z; = (2, y:), we start by defining for
each i € Z the probability to be explicitly assigned (THO-enabled) at slot ¢:

mi(t) &> @),

JjeT

where eq. (4.20) ensures that m;(t) € [0,1]. To obtain an unbiased estimator, i.e.,
E[z:] =2, we sample:

2;(t) ~ Bernoulli(7;(t)),

and if z;(t) = 1, the UE ¢ € Z is THO-enabled at slot ¢, else CHO-enabled. Lastly,
the associations/preparations are decided with the normalized quantities: x;;(t) =
2 (1) /(1) and i (1) = y(0)/ (1 — mi(2)).

From the law of total expectation, and as z;;(t) = 0 when z;(t) = 0, we get
E[zi;(t)] =27} (t) and similarly E[y;;(t)]=y;}(¢). This concludes that E[z;]=2}".

4.7. PERFORMANCE EVALUATION

We compare CONTRA with various (%) 3GPP-compliant, threshold-based THO and
CHO algorithms, as well as (i) RL benchmarks. The former are the algorithms
currently used by MNOs and antenna vendors [39], [81], solving either solely the
THO or CHO problem (i.e., not jointly). Given that these benchmarks treat THO
and CHO as independent procedures, we adapt and extend three existing founda-
tional RL algorithms from the literature that were originally designed for other
tasks [36], [151], [152], such as only THO optimization. In this way, it becomes
possible to compare the proposed algorithm with more advanced (i.e., not relying
on pre-defined thresholds) benchmarks for precisely the problem at hand, namely,
the joint optimization of traditional and conditional handovers.

The algorithms are evaluated in two main scenarios: (4) volatile SINR scenario,
in which s;;(t) fluctuates every 10 slots within the range of [0, 30]dB [122], reflecting
a wide spectrum of signal conditions (i.e., from poor to excellent values), and (i) real
SINR scenario from crowdsourced countrywide measurements. For the latter, we
focus on an area of approximately 160 sq. kms, where 73,303 signal measurements
in a second granularity are taken for 100 cells (20 cell sites). These cell sites are
shown in Figure 4.10, marked in red, and the measurement areas are indicated
in green. This dataset presents a highly competitive scenario as SINRs can vary
arbitrarily and occasionally exhibit adversarial behavior (see Section 4.3). Given
that these measurements are anonymized, we consider 100 fast-moving UEs, with
random velocities ranging from 20 to 28 m/s and variances in [0, 5], placed at
t =1 in a random location with measurement (green). We adopt the Gauss-Markov
mobility model [124], in line with prior works [33], with 0.9 randomness parameter
to find the location of each UE in each subsequent slot t = 2,...,T, for T' = 1k.
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Figure 4.11: Real SINR scenario with I = 100 UEs. Over the last 100 slots of the T" = 1k

simulation, (a) shows the objective function values (i.e., throughput and switching costs), and (b)
the number of switches in associations (i.e., ;) and preparations (i.e., y¢), for the dynamic and
three variants of static HO type selection of CONTRA.

To incorporate the signal measurements, we map each new location to the nearest
location with available measurements.

Understanding the Proposed Algorithm. First and foremost, it is imperative
to showcase the differences between the static (Section 4.4) and dynamic (Section
4.6) HO type selection. For that reason, we compare four variants of CONTRA: (i) dy-
namic HO type selection, where the controller decides if and when each user should
operate in THO or CHO mode according to our framework, and three variants of
static HO type selection, namely, (7) a random split with half of the users predefined
as THO-enabled and the other half as CHO-enabled, as well as a configuration in
which all users are (%) THO-enabled, and (%) CHO-enabled.

In detail, Figure 4.11 compares the performance of these four CONTRA variants
over the last 100 slots of the real-SINR scenario. When all users are in THO mode,
the objective function values are the lowest (i.e., 438), primarily due to the large
number (357) and high cost of THOs. The 50-50 split between THO- and CHO-
enabled users improves performance by nearly x8 compared to the all-THO config-
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Figure 4.12: Real SINR scenario with I = 100 UEs. Over the last 250 slots of the T" = 1k simulation,
(a) shows the utility function values (i.e., g¢), and (b) the number of switches in associations (i.e.,
x¢) and preparations (i.e., y¢), for ignoring and taking into account the switching costs.

uration; yet it remains roughly x2.5 lower than both the automatic mode-selection
and all-CHO cases. The automatic mode achieves higher performance (~~ 3%) com-
pared to the all-CHO configuration, as it executes fewer CHO preparations, even
though it requires 102 THOs. From here onward, CONTRA is assessed in the dynamic
HO formulation.

Secondly, we focus on the trade-off between throughput and the two switching
cost terms to understand the importance of the latter for the studied problem.
Figure 4.12 shows the utility function and the number of association and preparation
changes when switching costs are (i) excluded, and (ii) taken into account, for
the real-SINR scenario. Focusing on the last 250 slots of T = 1k, we note that
taking into account the switching cost reduces the number of associations (and
thus, THOs) and preparation changes by approximately 77%, while achieving a 2.7%
higher throughput. Hence, solely maximizing the utility /throughput (i.e., without
considering the switches) may not be the optimal strategy, given that comparable,
or even better, performance can be achieved with fewer switches, thereby reducing
signaling overhead, resource utilization, and HO delays.

Thirdly, to show the importance of combining learners with different rates, Fig-
ure 4.13 shows the attained throughput §(.) in a case where the SINRs are station-
ary (changing only every 200 slots) and real (changing significantly between slots).
Given that T = 1k, eq. (4.17) determines that 7 experts will be used, with learn-
ing rates 0.0135, 0.0271, 0.0542, 0.1083, 0.2167, 0.4334, and 0.8668 (combining eq.
(4.18) and Lemma 4.2). In the stationary case, the OGA experts with small learn-
ing rates obtain up to 12% better throughput than the highest-learning-rate one.
On the other hand, in the real case, the highest-learning-rate expert achieves 65%
more throughput. These findings support the claims that in more stationary sce-
narios, smaller-learning-rate experts perform better as they update their decisions
more carefully, while in volatile/real cases, it is the opposite, as higher-learning-rate
experts adapt more quickly to the rapid changes of the environment.

Regret Analysis. Section 4.5 shows that the regret guarantees hold for any bench-
mark; however, computing the benchmark that has full knowledge of the future
is computationally intensive for mixed-integer programs [36], [153]. To facilitate,
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Figure 4.13: Cumulative throughput g for the last 100 of 1k slots for different learners in (a)
stationary and (b) real SINR case.

therefore, the average dynamic regret calculation, the optimal Oracle considered
solves the optimization problem in every step using CVXPY [154], and a smaller
number of I = 20 users. Apart from the CONTRA, we show the average dynamic
regret of 3GPP threshold-based benchmarks. In the sequel, we refer to the 3GPP
CHO benchmarks as (CL, TTT), where the first element denotes the number of cells
that are prepared in each slot, provided they are the highest-SINR, cells for more
than TTT consecutive slots (similar to the A3 event); while for the 3GPP THO
benchmarks, only TTT is used. For instance, the benchmark (1, 2) prepares one cell
for each user if it remains the highest-SINR for more than two slots.

Figure 4.14 shows the average dynamic regret of our proposed algorithm and
the 3GPP-compliant competitors in the volatile case. In Figures 4.14a and 4.14b,
we show the continuous, z € Z° and discrete, z € Z, decisions, respectively. In
both cases, we observe that the average dynamic regret converges towards zero for
T =5k slots; and in the latter case, where the decisions are actually implementable
in practice, CONTRA outperforms the best-performing CHO-only 3GPP benchmark
by 89.5%. The average dynamic regret of the THO-only benchmarks stays almost
constant for all slots (“stuck” in sub-optimal decisions). Lastly, we observe a rel-
atively small discretization error of 16.2% measured between the continuous and
discrete decision plots at ¢t = 5k.

From Figure 4.15, the average dynamic regret converges again towards zero for
the real SINR cases, showing that CONTRA is adaptable in all scenarios, with the
gap between the continuous and discrete decisions being solely 1.83%. On the other
hand, the best CHO-only (THO-only) 3GPP-compliant benchmark attains 74%
(28.2%) higher (lower) dynamic regret at t=>5k. Yet, the THO-only benchmark is
stuck in suboptimal (non-diminishing regret) decisions.

Comparison with Reinforcement Learning. To compare CONTRA with RL ap-
proaches, we need to adjust the definitions of RL state and RL action. We define
the RL state with the SINRs of the previous time slots, see e.g., [36], [152]. We
intentionally avoid incorporating other UE features, such as velocity or ping-pong
counters, to remain as aligned as possible with our problem formulation. We also de-
fine an RL action that determines whether each user ¢ € 7 is THO- or CHO-enabled
and how many cells to prepare in the latter case. In principle, the CHO decisiona
should be modeled as the selection of any subset of candidate cells. This formula-
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Figure 4.15: Real SINR scenario from crowdsourced data, for T'= 1k (skipping first 100 slots for
visibility), for the (a) continuous and (b) discrete decisions.

tion captures the “true” decision space of CHO, but in the case of RL, it leads to
an exponential growth in the number of possible actions; specifically, J + (27 — 1)
per user. The first term, J, corresponds to actions regarding THOs: a user can
be assigned to any of the available J cells. The second term (exponential), 2/ — 1,
corresponds to any non-empty subset of the J cells that can get prepared (minus
the empty set).

Even when viewed purely from the search-space perspective, this exponential
growth makes RL infeasible for moderate J, as exploration becomes prohibitively
expensive. In contrast, CONTRA maintains a tractable search-space, avoiding the
combinatorial explosion inherent to this RL formulation. To avoid the exponential
explosion, we adopt a more compact parameterization for the RL approaches with
only 2J actions per user. Here, the first J terms still correspond to THOs, while the
rest J to CHOs, where the user prepares up to the top-J strongest cells in terms of
SINR in the previous slots. The reward/objective remains as in CONTRA (see Section
4.4), namely, throughput minus switching costs.

The three RL benchmarks are: (i) policy-gradient methods without a critic,
through REINFORCE algorithm [151], (ii) value-based methods through Deep Q-
Network (DQN) [36], and (%) actor-critic methods with proximal updates through
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Figure 4.16: Simple deep-dive example for I = 2 UEs, J = 4 cells, and T' = 1k slots, with
two SINR modes: one with more dynamic/abrupt changes (continuous lines) and one with more
gradual changes (dotted lines).

Proximal Policy Optimization (PP0) [152].

REINFORCE is a simpler method, that tries actions, observes total rewards, and
adjusts the policy toward those that performed well. It does not estimate how
good a state is (no critic), which makes it simple but noisy and data-hungry. More
precisely, it implements a Monte Carlo policy-gradient method without a critic.
Its policy network is a two-layer multilayer perceptron (MLP) with 128 neurons
per layer and Tanh activations, followed by a softmax output layer producing a
categorical distribution over all possible actions. After each episode, the algorithm
computes discounted returns and updates the policy parameters using gradients of
the log-probabilities weighted by returns. The optimizer is Adam with a learning
rate of 3 x 1074,

DQN does not directly learn a policy; instead, it learns an action—value function
Q(state, action) that shows how good each action is. The agent then picks the action
with the highest @, allowing though a random exploration. More specifically, DQN
consists of two hidden layers with 128 neurons and ReLU activations. Exploration
follows an e-greedy strategy with egtart = 1.0, €eng = 0.05, and exponential decay
constant 200. A replay buffer of size 50k and minibatch size 64 are used, with soft
target-network updates (7 = 0.01) to improve stability. The loss is the mean-squared
temporal-difference error, optimized with Adam at a learning rate of 1073.

PPO combines both ideas. It learns an actor (policy) and a critic (value estimate),
and ensures stable updates by clipping how much the policy can change each step.
Both the actor and critic share a two-layer MLP backbone (128 neurons per layer,
Tanh activations). The actor outputs a categorical distribution over all actions,
while the critic outputs a scalar state-value estimate. Training uses generalized
advantage estimation with A = 0.95 and the clipped objective parameter ¢ = 0.2;
also, minibatches of 64 samples for 3 epochs per cycle are used. Both networks are
optimized using Adam with rate 3 x 1074,

Unlike CONTRA, which learns and adapts online with a single exposure to the
environment, these RL methods are trained over hundreds of simulated episodes,
effectively granting them repeated access to the same system dynamics. This allows
RL algorithms to asymptotically approximate the optimal policy under repeated
trials, whereas CONTRA must adapt on-the-fly.

To showcase the disadvantages of RL even in a simple setting with four cells,
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Figure 4.17: Total utility for (a) one episode and (b) multiple episodes, of CONTRA vs three RL
benchmarks for a simple deep-dive example with I = 2 UEs, J = 4 cells, and T' = 1k slots, with
the SINRs of Figure 4.16.

we consider only two users with different types of mobility/SINR dynamics as can
be seen in Figure 4.16: User 1 frequently switching between good and bad cells
(high variability), and User 2 steadily moving toward a better SINR, environment
(gradual change). More precisely, the SINR of User 1 remains constant for 100 slots,
then changes during a 50-slot transition period, and subsequently stabilizes again
for another 100 slots, and so on.

In Figure 4.17(a), we run each algorithm once (i.e., one episode), since our pro-
posed method requires only a single pass to produce its decisions and learn. As
expected, RL algorithms, and specifically REINFORCE and PPO, perform poorly (neg-
ative utility) as they require many interactions over the same conditions to learn. On
the other hand, DQN can improve its decision in the same episode, achieving, however,
53.6% lower utility than CONTRA. In Figure 4.17(b), we allow the RL benchmarks
to learn this simple scenario by running them for multiple episodes and reporting
their final utilities. Compared to our algorithm that requires a single episode/pass
to reach ~ 2.5k total utility, REINFORCE, DQN, and PPO reach until 95.2%, 88.0%, and
97.9% of its performance, by running for 1.6k, 100, and 200 episodes, respectively.

Finally, in the real SINR scenario, the performance gap becomes even more
pronounced. From Figure 4.18, and compared to our algorithm that requires a sin-
gle pass to reach ~175k total utility, REINFORCE, DQN, and PPO reach until 54.9%,
52.6%, and 76.6% of its performance, by running for 2k, 500, and 500 episodes, re-
spectively. The gap thus widens significantly in realistic network conditions, showing
that CONTRA attains substantially higher performance without the extensive training
required by RL-based approaches. Even with this simplified assumption, our ap-
proach outperforms the RL in the experiments executed with real SINR/UEs. This
poor performance of RL approaches is expected, as they do not adapt to volatile or
adversarial environments (known to converge under stationarity only), and do not
offer performance guarantees as those we provide in Lemma 4.3.

4.8. RELATED WORK

Measurements & Traditional Handovers. HOs are mainly studied with traces
from UEs, which are inevitably limited to certain manufacturers, areas and devices

Episodes to reach total utility
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Figure 4.18: Total utilities (i.e., §¢) and number of episodes required to reach these values, for the
real SINR scenario with I = 100 UEs and T' = 1k slots.

[30]. Recent large-scale, network-side studies [113] provide more visibility, but do
not propose models or solutions. Prior works have addressed the joint optimiza-
tion of throughput and HOs [33], [34], [36], [109] [152], offering important insights
into association strategies under delay constraints. Our objective aligns with these
studies, and we extend their models to capture the delay characteristics and costs
associated with THOs and CHOs, and heterogeneity across cells and UEs, by an-
alyzing countrywide datasets. Separately, recent work has addressed HOs under
minimal assumptions via online learning [146], but without considering CHOs. Our
approach builds on these works by incorporating, for the first time, THO and CHO
characteristics into a unified, adaptive learning framework.

Conditional Handovers. CHOs have been proposed as a solution for non-terrestrial
networks [42], [155], [156], 5G NR-unlicensed systems [44], fast-moving users [44],
as well as in beamforming and contention-free random access [41], [157]. Proposals
for improving the CHO mechanism include [46], [158] which tweak the CHO thresh-
olds to decrease HOFs; [159], [160] which use historical handover data to decide the
cell preparations; and [161] which employs UE trajectory prediction to optimize the
CHO decisions. Machine Learning-assisted approaches include [162], [163] which
predict ideal association strategies based on SINR data or predict the SINRs values.
These important works, however, propose heuristic solutions (no optimality guaran-
tees) and/or rely on historical data for offline training of models, which in practice
may be unavailable or non-representative of encountered conditions.

In contrast, motivated by our measurements that show this problem is dynamic
across UEs, cells, and time, we leverage an adaptive optimization framework. Unlike
other works that explicitly avoid decision changes in cell preparations [45], [141] or
propose static optimization formulations [43] which, unavoidably, rely on heavy
assumptions (static and known parameters), we propose a tunable approach to the
network’s preference switching model that can cope with time-varying and unknown
cost values. In [164], a meta-learning approach with minimal assumptions is used
but focuses only on CHOs and omits a fair scheduler for allocation; see eq. (4.3).
Meta-Learning. Meta-learning is finding increasing applications in communica-
tion systems due to its robustness to distribution shifts and fast-adaptation [20].
We refer to [165] for merging proposed actions for management and orchestration
(MANO) operations; [166] for beamforming adaptation and MIMO systems; [167]
for user-level traffic prediction over a short time horizon; [168] for unmanned aerial
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vehicle (UAV) networks; [169] for IoT devices learning together; [170] for load bal-
ancing; and [171] for handovers in vehicle-to-network communications. Here, we uti-
lize the dynamic version of this tool, combined with online learners, so that optimal
CHO and THO decisions can be learned on-the-fly, achieving rigorous theoretical
and practical performance guarantees.

4.9. CONCLUSION

This chapter is motivated by the demanding mobility support requirements in 6G,
technological advances in handover (HO) mechanisms, and the availability of Al-
based management solutions in O-RAN. Its goal is to address a challenge that is
critical as 5G deployments mature and 6G systems emerge: executing HOs rapidly
and reliably, especially in dense deployments and high-frequency bands, where (7)
traditional HO (THO) mechanisms exhibit high failure rates and thus, increased
delays, and (i) the newly introduced by 3GPP, Conditional HOs (CHOs), which
tackle these issues by enabling proactive cell reservations, raise intricate trade-offs
in signaling and resource utilization. To better understand these issues, we analyze
countrywide datasets from a major operator in Europe; and the findings under-
score the need for more adaptive and robust HO control. Motivated by this, we
propose CONTRA, a meta-learning, provably-optimal, minimal-assumption, O-RAN-
compatible algorithm that jointly optimizes THO and CHO and adapts to runtime
observations, demonstrating significant improvements in real-world and synthetic
scenarios. While our work focuses on O-RAN, the core ideas can be applied to
other 3GPP-compliant RAN architectures that support real-time measurements and
centralized decision making.

Having thoroughly addressed mobility management by optimizing both tradi-
tional and conditional handover strategies across diverse users, cells, and system
conditions, ensuring that users are connected to the “right” cells/base stations, we
now turn to the other side of the link to complete the end-to-end control vision
of next-generation O-RAN systems: how these (virtualized) base stations (vBSs)
adapt their available resources to serve connected users efficiently.
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Once traditional and conditional handovers are optimized, attention must shift to
the other side of the link: how virtualized base stations (vBSs) utilize their resources
to serve users efficiently. While proportional-fair or round-robin schedulers, used in
the previous chapters, remain a common baseline, they are not always sufficient to
meet the dynamic performance and energy requirements of modern networks.

Despite offering numerous advantages, including increased flexibility and reduced
costs, vBSs introduce new challenges due to their volatile operation and the dy-
namic network conditions they are called to support. In this chapter, we leverage
the O-RAN multi-tier control architecture to propose a class of robust and effective
non-real-time policies for vBS resource allocation. First, we introduce an online
learning algorithm that is suitable even for non-stationary or adversarial environ-
ments. However, this robustness often comes at the cost of conservatism when the
environment is static/stationary or predictable. To address this, we develop a meta-
learning framework that ensures effectiveness across a wide range of conditions by
dynamically selecting among a pool of learners, including specialized ones designed
for static/stationary or adversarial environments (as our first algorithm). We es-
tablish strong (sub-linear) regret guarantees and demonstrate, through extensive ex-
periments on real-world data collected from our testbed, that our proposed approach
achieves up to 64.5% energy savings compared to state-of-the-art baselines.

The content of this chapter has been published in:

M. Kalntis, G. Iosifidis, and F. A. Kuipers, “Adaptive Resource Allocation for Virtualized Base
Stations in O-RAN with Online Learning,” in IEEE Trans. on Communications (TCOM), vol.
73, no. 3, pp. 1787-1800, 2025.

M. Kalntis and G. Iosifidis, “Energy-Aware Scheduling of Virtualized Base Stations in O-RAN
with Online Learning,” in Proc. of IEEE Global Communications Conference (GLOBECOM),
2022.
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5.1. CHALLENGES AND CONTRIBUTIONS

This chapter focuses on O-RAN policies that determine thresholds (upper bounds)
for key vBS operation knobs, namely for the vBS transmission power, the eligible
MCS, and the Physical Resource Blocks (PRB), in the Uplink (UL) and Downlink
(DL). Each policy is updated at a non-RT scale, based on observations of past perfor-
mance, cost, and context (including conditions and demands), and is subsequently
fed to real-time schedulers that assign the vBS radio resources. The question this
chapter addresses is the following: how to design robust vBS non-RT policies that
offer performance/cost guarantees without relying on strong assumptions and avoid
sub-optimal operation points?

Our first contribution is the design and evaluation of a robust adversarial ban-
dit algorithm, cf. [112], which: (%) identifies effective policies without relying on
assumptions about the environment; (i) offers tight performance guarantees; (%ii)
is oblivious to the (unknown and possibly time-varying) vBS performance; and (iv)
has minimal and constant (in observations and time) memory requirements, as it
uses closed-form expressions that can be calculated even in real-time and in resource-
constrained platforms. The performance is quantified using a combined metric of
effective throughput modulated by the traffic demands, and energy consumption,
where the latter can be prioritized via a weight parameter. It is important to note
that no assumption (e.g., convexity) is made on the performance function (i.e., we
follow a black-box approach). For the optimality criterion, we use regret, where we
compare the time-aggregated performance of the algorithm with that of a hypothet-
ical benchmark that is designed with the help of an oracle providing access to all
future/necessary information.

The second contribution is the expansion of this learning algorithm with a meta-
learning scheme, which boosts the performance whenever possible. Namely, the
robustness of the algorithm described above means it might be conservative when
the environment is easy, e.g., when the network has access to context information,
or if the channel qualities and traffic demands are stationary or exhibit periodicity
[17]. For these cases, data-efficient solutions such as [60] can leverage the available
information to identify optimal policies faster. Hence, the question that arises nat-
urally is how to combine the required robustness without compromising learning
performance (in terms of convergence speed) whenever the environment is easy. To
address this, we introduce a meta-learner that selects intelligently among policies
proposed by different algorithms that rely on, and perform better under, different
assumptions. A key challenge is that learning occurs on two levels: the meta-learner
must learn which algorithm is the best-performing, and each algorithm must learn
which policy is the best-performing, while receiving partial (i.e., bandit) feedback
on both levels. Our approach addresses this challenge through a framework that
guarantees the network performs as well as the best-performing algorithm.

In summary, the main technical contributions of this chapter are the following:
e We study the vBS resource allocation problem in its most general form, i.e., in non-
stationary/adversarial environment and without knowledge of vBS throughput/cost
functions. Our proposed scheme achieves sub-linear regret and has minimal com-
putation and memory overhead [112]. This is the first work applying adversarial
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bandits to vBS resource allocation.

e We devise a meta-learning strategy that entails the use of algorithms tailored
to different environments and obtains sub-linear regret with respect to the best
algorithm, in each case.

o We use real-world traffic traces and testbed measurements to demonstrate the
weaknesses of prior works [60], as well as the efficacy of the proposed learning
algorithm in a battery of representative scenarios. Upon publication of this article,
we will release all the source code to foster further research on this important topic.

5.2. SYSTEM MODEL AND PROBLEM STATEMENT

O-RAN Placement. Our model follows the O-RAN architecture, and the pro-
posed algorithms can be implemented as rApps at the Non-RT RIC, aiming to
learn energy-efficient threshold radio policies [10]-[12]. These policies are essen-
tially threshold rules regarding the maximum MCS, PRB, and transmission power
that each vBS, in real-time, is allowed to use. Specifically, these rules are com-
municated to the vBSs, guiding their RRM schedulers to allocate radio resources
in real-time accordingly, as shown in Figure 1.4. This approach aligns with a re-
cent stream of papers [12], [60]-[62] proposing threshold policies and exploits the
multi-tier (multi-timescale) architecture of O-RAN to offer centralized control of
multiple vBS, without intervening in their (often proprietary /hardcoded) real-time
schedulers.

This tiered control approach can be seen in Policy Flow, Figure 5.1a and 5.1b top.
At each round, with typical duration~ 1s, the Policy Decider (i.e., algorithm) devises
the threshold policy which is communicated (via the A1 interface) to the Near-Real-
Time (Near-RT) RIC, where an xApp (termed Policy Enforcer) forwards it to the
different vBSs. This makes a two-timescale system where the policy is devised at
each round (s) and the vBSs schedulers update their typical RRM decisions every
slot (ms), based on these rules.

O-RAN’s flexibility enables the usage of O1 to receive/forward the policy directly
from/to the real-time scheduler [172]. Nevertheless, our decision to involve xApps
through the Near-RT RIC stems from providing a more general framework, where,
e.g., another xApp could take the thresholds we provide, save them to a database,
and perform additional actions to ensure that those thresholds are respected or
make any other inference. Our modular architecture is designed to be adaptable to
accommodate this, and is in accordance with recent works [12], [60].

The Policy Flow changes when including a meta-learner as another rApp (Figure
5.1b bottom), whose goal is to discern the best Policy Decider among the employed
ones. This is achieved by selecting at each round one of the available Policy Deciders,
which, in turn, chooses the threshold policy. At the end of each round, the Near-
RT RIC’s Data Monitor computes a reward by aggregating the performance and
cost measurements (for all slots) received via the E2 and feeds them to the selected
Policy Decider via the O1 interface (Reward Flow in Figure 5.1a). The terms Policy
Decider, Policy Enforcer, and Data Monitor are introduced in this work to clarify
the role of each rApp/xApp, as these last terms are generic.
vBS Policies. We optimize the system operation over a time horizonoft =1,...,T
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Figure 5.1: O-RAN-compliant architecture & policy workflow. (a) The key building block is the
Non-RT RIC, hosted by the Service Management and Orchestration (SMO) framework, and the
Near-RT RIC. The system has three control loops: (¢) Non-RT, which involves large-timescale
operations with execution time >1s, (i) Near-RT (>10ms), and (i7) RT (<10ms). (b) Policy
Flow for the Non-RT RIC with (bottom) and without (top) an rApp implementing a meta-learner.

rounds. For the DL, we define the set of the maximum allowed vBS transmission
powers, Pd= {pf, vie{l,..., Pd}}, the set of highest eligible MCS, M= {m?, Vie
{1, ...,Md}}, and the set of maximum PRB ratio, B = {bz'-j, Vi € {17...7Bd}},
where P4, M9, and BY denote the number of possible transmission power, MCS,
and PRB ratio levels in DL, respectively.! The PRB ratio corresponds to the portion
of the available PRBs the channel supplies, e.g., b? =0.2 leads to utilization of 20 %
(10 out of 50 PRBs). The DL policy for round ¢ is denoted with 2l € P4x M9 x B4,
Similarly, for the UL we introduce the sets M" = {m}, Vi € {1,...,M"}} and
B = {b;‘, Vie{l,.. .7B“}}, where M", B" are the available MCS and PRB ratio
levels in UL? and denote with z' € M" the UL policy. Putting these together, the
t-round threshold policy is:

zy = (2, 2) € X, where X = PIx MIxBIx M x B,

Rewards & Costs. The first goal of the learner is to maximize the effective DL and
UL throughputs, which depend on the aggregate transmitted data and the backlog
in each direction. In line with prior works (see [60] and references therein), we use
the wutility function:

d(,.d u(.u
i t

where df,d? >0, with U;(x;) =0 otherwise. R$(-) and RY(-) denote the DL and
UL transmitted data during round ¢; and d¢ and d}! are the respective backlogs, i.e.,

1The MCS values are predetermined, and similarly, one can quantize the power and PRB ratio
values; see, e.g. [55].

2 A maximum allowed UE transmission power is not defined since the users’ transmission power has
less impact on the vBS power than the MCS and PRBs in the UL. However, it can be included
in z}' if deemed relevant for another application.
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the traffic demands during ¢t. The logarithmic transformation balances the system
utility across each stream (i.e., DL and UL), but we note that other mappings (e.g.,
linear) might be used to capture the specifics of different applications. We have
divided the transmitted data by the actual traffic demands in the respective stream
(UL or DL), since the reward should naturally be defined w.r.t. the needs of the
system. Similarly, one can readily extend the utility function to capture various
QoS metrics, e.g., by measuring only the throughput above a certain threshold.
We refrain from making assumptions about how ', z¢ affect the transmitted data,
RY, RY; similarly, the traffic demands, d¢, d}, are also considered unknown and can
vary arbitrarily.® In this black-box approach, each threshold policy x; (i.e., bandit
arm) yields a reward, which we calculate a posteriori, and corresponds to the reward
of the respective bandit arm. The goal of our algorithms is to learn progressively
which bandit arm leads to the highest possible reward.

The second goal of the learner is to minimize the vBS energy costs. To that end,
we introduce the time-varying power cost function P;(x;), which depends on policy
x; in a possibly unknown fashion. Our decision to refrain from making assumptions
about this function is rooted in the complexities involved in characterizing the power
consumption and costs of such virtualized base stations [59]. Also, this black-box
approach allows us to capture a range of factors that might affect the consumed
energy (e.g., retransmissions due to interference or time-varying electricity prices).

Putting these together, the learner’s criterion is the reward function f;: X — R
defined as:

ft(l‘t) = Ut(l‘t) — (SPt(J?t), (52)

where parameter § > 0 is set by the network operator to tune the relative priority
of utility and energy costs. Parameter § serves as a metric transformation, enabling
a meaningful scalarization of U; and P;. Furthermore, we introduce, for technical
reasons, the scaled reward function f; : X — [0, 1], since our learning algorithms
(see Section 5.3 and 5.4) operate on that interval. An easy-to-implement mapping
that ensures this normalization is:

ft(xt) = (ft(xt) - fmin)/(fmaa: - fmzn) (53)

Parameters fmm and fmaz can be determined based on §, the min/max value of
power cost function, the min/max vBS transmission power, PRB ratio, MCS and
traffic demands.

Environment. We refer to the “external” information, i.e., {c{, ci, d, d¥}¥_,
as environment, and it is responsible for shaping the function f;. It is crucial to
note that both reward components, U; and P;, vary with time ¢, an effect that is
attributed to several factors. First, the traffic demands, i.e., d¢ in DL and dY in UL,
change, sometimes drastically, in every round ¢, e.g., in small-cell networks where
user churn is high, which affects U, see (5.1). The demands also impact the choice
of MCS and PRB, leading to different processing times and, thus, different power
costs. Second, the channel qualities (i.e., CQIs) in DL and UL, denoted as ¢ and

3Kindly refer to Section 5.5 for details on their calculation during the evaluation of the proposed
algorithms.
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¢}, respectively, might vary (in slow, fast, or mixed timescales), and this affects the
transmitted data Ry and R} (hence, U; changes even for fixed x;) and the energy
cost P, (low CQI induces more BBU processing [59]).*

Importantly, we consider the environment to be unknown at the beginning of each
scheduling round ¢. It is often challenging to predict the traffic demands, energy
availability, channel qualities, wireless interference and other performance-related
impairments that each vBS might encounter over the time window of several seconds
that these threshold policies will be enforced. This, in turn, means that when we
decide x; in each round, we do not have access to f;; and this is in notable contrast
to the typical real-time radio management solutions that require accurate context
information. Our model is hence oblivious to this information and this renders our
solution applicable to a range of practical scenarios, such as those involving highly
volatile environments and small cells where demands are non-stationary [173].

5.3. PoLICY LEARNING FOR ADVERSARIAL ENVIRONMENTS

Objectives & Approach. The goal of our rApp (see Policy Decider, Figure 5.1)
is to find a sequence of policies {x;}Z_; that induce rewards approaching the cumu-
lative reward of the single best policy (benchmark). Formally, we employ the metric
of static expected regret:

T T
Rer = max {Z ft(x)} =1 ft(act)] : (5.4)

where the first term is the aggregate performance of the benchmark (ideal) policy
that can be selected only with knowledge of all future reward functions until 77
and the second term measures the aggregate performance of the algorithm. The
expectation in the second term is induced by any possible randomization in {f;}7_,
and in the selection of {z;}]_; by the learner. Eventually, our objective is to de-
vise a rule that decides the policies in such a way that the average regret, for
any possible realization of rewards {f;}7_;, diminishes asymptotically to zero, i.e.,
limr_,oo R7/T = 0. Importantly, we wish to ensure this condition: (7) without
knowing f; when deciding z;, and (ii) by observing only f;(x;) when applying x;,
and not the complete function f;(x),Vx € X, as only one policy z; in each round ¢
can be deployed to the vBS.

The proposed scheme, named Bandit Scheduling for vBS (BSvBS), builds upon
the Frzp8 algorithm [174], and its underlying idea is to learn the correct probability
distribution yP (B refers to BSvBS) from which we can sample z; for each round ¢:

zy ~ Pz = 2') = yB(2)), V2’ € X.
The distributions {y2}7_; belong to the probability simplex:

= {r e e 1),

reX

4The operation cost of the vBS hosting platform is subject to variations in external computing
loads (e.g. when co-hosting other services or other vBS/DUs), changes in the monetary cost (or
availability) of the energy price, and so on.
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and are calculated in each round using the following explore / exploit rule:

()
S P @)’

This formula includes three components: (i) the exploration part, 1/|X| which
selects a policy randomly, (i) the exploitation part, wi(z)/>, ¢ wi ('), which
chooses a threshold policy based on its performance up until ¢t — 1, where the weight
wp (x) tracks the reward of each policy € X, and (iii) parameter v € (0, 1], which
prioritizes the former (explore) or the latter part (exploit).

yP(e) = o+ (1 -

Ve X. (5.5)
||

For the latter, we employ the weight vector w; = (wy(z):z =1,...,|X]|) that

tracks the success of each tested policy, which is updated at the end of each round:
(I)B

wg, (z) = wy (z) exp (7 |;((|x)> , Ve e X, (5.6)

which assigns a probability exponentially proportional to the cumulative reward
®B(z), that accounts for the selection of each policy, namely:

9B (z) = {ﬂ(xt)/y?(xt), it =, -
0, otherwise.

By dividing each observed reward, fi(x;) with the selection probability of the
threshold-policy, yP(z;), we ensure the conditional expectation of ®2(z) is the ac-
tual reward f;(z),Vz € X, meaning that ®P is an unbiased function estimator of
the rewards [23]. Intuitively, this compensates the reward of thresholds that are un-
likely to be chosen. The steps of the learning scheme are summarized in Algorithm
3, which takes as input v and devises the ideal selection probability for each policy
based on its expected reward.

The performance of Algorithm 3 is characterized in the following lemma, which
holds for any possible sequence of functions {f;}7_;:

Lemma 5.1. Let T > 0 be a fized time horizon. Set input parameter v =
min {1, \/|X\ In|X|/((e— 1)T)}. Then, running Algorithm 1 ensures that the ex-

pected regret is:

Rr < 2¢/(e — 1)/T|X|In|X| (5.8)

Proof. The proof follows by tailoring the main result of [174], which provides an
upper bound to (5.4), namely:

X[ In | ]
+

. (5.9)

T
Rr < (e—1)7y max {Z ft(x)}

The number of bandit arms in our case corresponds to the eligible policies; hence it
is equal to |X|. Given that: (%) the horizon T can be known in advance, and (ii) the
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Algorithm 3: Bandit Scheduling for vBS (BSvBS)

1 Parameters: v = (0, 1]

2 Initialize: at t =1, wP(z) « 1, Vz € X

3 fort=1,2,...,7 do
Define the probability y(z), Vx € X using (5.5).
Sample next policy: z; ~ yP.
Receive & scale reward fi(x¢) using (5.2) and (5.3).
Calculate weighted feedback ®F (z), Vo € X using (5.7).
Update wt (z), Vo € X using (5.6).

end

o N o«

rewards f;(x;) for each chosen policy z; at round ¢ cannot be greater than 1 (due
to the normalization described in Section 5.2), we determine an upper bound g of

maxgex {Zle ft(:zr)} equal to T, i.e., g=T. By choosing the suggested v, (5.9)
leads to (5.8). O

Discussion. As BSvBS operates with bandit feedback, it is guaranteed to achieve
the same performance as the (unknown) single best policy without imposing any
conditions on system operation, channel qualities, or traffic demands (Lemma 5.1).

Regarding the overheads of this algorithm, BSvBS depends on the number of
policies |X| and the number of rounds 7. Each round of the algorithm involves
updating the probability distribution over the policies, see equation (5.5), which re-
quires O(]X]) time. Additionally, the algorithm updates the weights for each eligible
threshold policy based on the reward, which again takes O(]X|) time, see equations
(5.6) and (5.7). Thus, for T’ rounds, the time complexity is generally O(T|X|). Also,
its space complexity is O(|X|), as it needs to store only the weights and the proba-
bilities for each policy. In other words, the algorithm is both robust and lightweight
in terms of implementation, especially compared to its main competitor, BP~vRAN
[60], which has O(T?) time complexity and O(T?) space complexity. Nevertheless,
the robustness of BSvBS is achieved via a conservative approach that prevents the
system from performing better when the conditions allow it. We tackle this issue in
the following section.

5.4. UNIVERSAL POLICY LEARNING VIA A META-LEARNER
Modeling & Challenges. The analysis in Section 5.3 demonstrates the effective-
ness of the proposed adversarial scheme in all environments, whether challenging or
easy. However, in the latter case, alternative schemes that leverage the knowledge
of the environment can achieve faster learning convergence [60]. Our goal here is
to devise a meta-learning scheme that leverages multiple algorithms, each tailored
to a specific environment, and chooses dynamically the optimal one. This idea is
leveraged in online learning [19]; however, to the best of the author’s knowledge, it
is hitherto unexplored for resource allocation in RAN.

In practice, the implementation of such a meta-learning algorithm can be realized
in the non-RT RIC, i.e., co-located with the Policy Deciders. Namely, we deploy A
rApps, i.e., algorithms a’,j € A={1,..., A}, each associated with a set of policies
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Algorithm 4: Meta-learning for vBS (MetBS)

1 Parameters: n = (0, 1]
2 Initialize: at t = 1, w}(j) < 1 and h}° < 0, Vj € A
3 fort=1,2,...,7 do
4 Define the probability yi!(4), ¥j € A using (5.10).
5 Sample algorithm a* according to: a® ~ yM.
6 Algorithm a* recommends policy zi* based on hit*S.
7 Receive & scale reward f;(z*) using (5.2) and (5.3).
8 Calculate weighted feedback ®(j), Vj € A using (5.11).
9 Update wi'(j), Vi € A using (5.12).
10 Sample &; using (5.13).
11 if & =0 then
‘ block feedback of algorithm a’, i.e., hi*'S « hitS.
else
| allow feedback of algorithm a*, i.e., hi"'® < hy"] U (', fu(z')).
end

end

X7: and another rApp for the meta-learner that observes their performances over a
time horizon of t=1,...,T rounds via the Rl interface (see Figure 5.1). At a time

t, an algorithm a’, j € A takes as input the full history hi = { (21, f;(21)) }::11
previously proposed policies and their respective rewards, and proposes a policy =] =
a’(h]). The objective of the meta-learner is to find the best performing algorithm
a’", i* € A. The challenge lies in the fact that the algorithms are learning entities
that update their proposed threshold policies based on bandit feedback, which in
turn depends on whether they are selected by the meta-learner. In other words, at
round ¢, the meta-learner chooses one algorithm i; € A, denoted as a’*, which, in
turn, proposes one policy xit € X% that is deployed in the vBS; and thus, reward
fe(zit) is returned,® cf. (5.2). Lastly, a’* updates its learning state by updating its
history hl* « hiil u (x?,ft (xi’)) All other algorithms, i.e., Vj€A: j # i, observe
no feedback and do not update their learning state at time ¢.

This downward spiral creates a challenging situation where the partial feedback
reduces the learning capability of the meta-learner, which is further compounded
by the limited chances of obtaining feedback for each policy. Without coordination
between the meta-learner and the algorithms in the bandit setting, it is proven that
the meta-learner will achieve linear regret, even if each of the algorithms obtains sub-
linear regret if it were run on its own (and thus obtain feedback in every round) [175],
[176]. To surmount this challenge, effective coordination between the algorithms
and the meta-learner becomes essential. The approach we employ, inspired by the
ideas presented in [176], aims to minimize the interaction required between the
algorithms and the meta-learner. Other existing meta-algorithms such as [175] and
[177] require feeding unbiased estimates of rewards to the algorithms, meaning that

of its

5This is a natural approach for our problem setting, as each algorithm proposes possibly different
policies at each round, but only the policy of one algorithm can be deployed to the vBS and
return a reward.
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the meta-learner has access to the rewards of the algorithms and can modify them;
an assumption that we want to drop in our setting.

In our case, the meta-learner can allow or block the chosen algorithm a® from
learning at round ¢ by sending a corresponding bit (0 or 1). This means that each

algorithm o/, j € A has access to sparse history hi"° = { (21, f,(22)) |& = 1}:_:11,
where £, is a Bernoulli random variable, i.e., & ~ B(p,), defined by the meta-
learner. More precisely, with probability p; € (0,1] at each round ¢, the meta-
learner sends bit 1, allowing the chosen algorithm a’:f to learn, i.e., update its history
RS hitS U (¥, fi(z}")); otherwise, hivS « hi*J. Obviously, it is true that if
pr=1fort=1,...,T, then h{’s = h{ Intuitively, this prevents a situation where
algorithms that initially find a good policy, but later experience a decline in perfor-
mance, are continuously selected by the meta-learner over algorithms that explore
more extensively in the early stages but achieve superior performance later. By
choosing p; accordingly in every round ¢ (see the following analysis), all algorithms
could observe feedback in an equal number of rounds (although the best-performing
algorithms will be chosen more often) and thus have equal learning steps to improve
their performance.
Approach. Following this rationale, the second proposed scheme, named Meta-
Learning for vBS (MetBS), builds upon [176]. Due to its similarity with Algorithm
3, we elaborate next only on its most crucial and distinct steps. The concept lies in
learning the sequence of distributions {yM}Z_; (M refers to MetBS), which enables
the selection of an algorithm i; € A, denoted as a® at round ¢ based on the following
explore-exploit criteria with parameter 7:
M= Ty D)y 5.10
) = (=) Vi e A (5.10)
Based on its history hi“s and its internal mechanism of using it (e.g., BSVBS
uses (5.5)), a’ outputs a policy zy* € X*. The meta-learner observes only the re-
ward fi(z}*) that a’ produced, and thus, similarly to BSvBS, calculates an unbiased
estimator for the rewards® of all the algorithms (even the unchosen ones):

() - {m?)/yym fj=in Ve (5.11)

. )
0, otherwise,

The weights, which determine the meta-learner’s choices in each ¢, are updated
according to:

M/
w1 (j) = w'(4) exp (W) , VjeA (5.12)

Before MetBS proceeds to the next round, it has the ability to block algorithm a®
from acquiring feedback (i.e., learning) at this particular round ¢. Consequently,

6We recall that no assumptions are made about the sequence of rewards { ft}z;l, which can even
be chosen from an adversary, as described analytically in Section 5.2.
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MetBS uses the following Bernoulli random variable to allow or block the feedback

of a’t:
&~B (Aﬁ()) ] = g (5.13)

More specifically, with probability p; = n/(AyM(4)), j = i; at each round ¢, the
selected algorithm a** updates its learning state, while with the remaining proba-
bility, its feedback gets blocked. The selection of this random variable ensures that
the feedback of each algorithm is allowed, on average, with constant probability
p =n/A over the whole horizon T. The analytical steps of this learning scheme are
shown in Algorithm 4.

It is crucial to stress that the regret of the meta-learner w.r.t. the best algo-
rithm, cf. (5.16), is uninformative on its own in the bandit setting. The reason can
be attributed to the indirect association between rewards at any given time ¢ and
the algorithms the meta-learner previously selected. The past selections define the
current learning state of the algorithms, which, in turn, impacts the rewards [177].
Therefore, the evaluation should contain a comparison to an ideal policy that con-
sistently selects the best algorithm, which obtains feedback in every ¢ and performs
well with respect to the single best policy. Formally, we are interested in minimizing
the regret of the meta-learner w.r.t. the single best policy, which is equal to:

T
RY = max {Z filz }E lth(a“(h?’s))] . (5.14)

zEX”

best policy meta-learner

The aggregate reward of the best algorithm a’ achieved until round ¢ is:
mas {ZE[ft (@) } =S E[pew*)]. e
t=1 t=1
We add and subtract (5.15) from (5.14), and we derive:

RY =Ry + RY?

where qu\fh corresponds to the regret of the meta-learner with respect to the best
algorithm:

T
RM = Z]E{ft (hy %)) ]Elth(a“(hi“s))], (5.16)

best algorithm meta-learner

and RI\T/IZ corresponds to the regret of the best algorithm w.r.t. to the best policy:

R = max {th } ZE[ft (ht S))}

reX "

best policy best algorithm
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If o’ had access to its full history hf, we denote as 7 € [0,1] the exponent of
the upper bound of its regret, namely”:

max {th } Z]E{ft hi )] <o)

TeX "

However, in the considered analysis, it has access to its partial history hi*’s. For
proving a non-trivial upper bound on R} in this case, the best performing algorithm
" should satisfy the following:

max {éft(x)} ZE{J@ (hi S))} <0<W), (5.17)

zeXx " p

where p = n/A, as defined beforehand. A rich class of online learning algorithms,

including Exp3 (and thus, BSvBS), satisfy (5.17), which, in turn, quantifies the

robustness of an online learning algorithm w.r.t. the sparsity of the history [176].
The performance of Algorithm 4 is captured by the following lemma:

Lemma 5.2. Let T > 0 be a fized time horizon, and assume the best algomthm al’,
satisfies (5.17) with B* . Set input parameter n = @(T =5 ATF (log A)z 3l(s= 0})
where 8 > B% . Then, running Algorithm J ensures that the expected regret is sub-
linear:

RY < O(TT7 AT (log A)115=0)) (5.18)

Proof. The proof follows by tailoring the main result of [176]; we therefore provide
a brief but sufficient explanation. By applying Lemma 5.1, (5.16) gives:

Alog A
RMY < ol + 2082 (5.19)
where ¢ > 0 is a constant. Adding (5.17) and (5.19), results in:
Alog A T7 AY-F"
RY <o(nT+ 2282 (5.20)

U nt=e"

Setting n ~ T~% and finding the z that minimizes the power of T in (5.20), leads to
(5.18). O

Discussion. When interacting with learning algorithms in the bandit setting, Al-
gorithm 4 is guaranteed to achieve the same performance as the best algorithm if it
ran on its own (and thus, acquiring feedback in every round). Hence, MetBS attains
reward as the (unknown) single best algorithm without making assumptions for the

"For instance, if BSvBS is the best algorithm ai*, then B¢ = 1/2, see Lemma 5.1.
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environment (see Lemma 5.2). This accomplishment is made possible through min-
imum coordination between the meta-learner and the algorithms, as described in
lines 10-11 of Algorithm 4.

In terms of implementation, MetBS can be implemented as another rApp, which
also facilitates its coordination with the co-located rApps implementing the different
algorithms; see also Figure 5.1b. Regarding its overheads, due to its similarity with
BSvBS, its complexity depends on the number of algorithms that it chooses from,
i.e.,, O(T|A|) for T rounds. However, as it chooses between different algorithms
(where each of them selects policies and has its own complexity), the overall time
complexity of MetBS depends on the worst-case scenario of the most time-complex
algorithm. Similarly, its space complexity is equal to O(|.A]); however, an important
factor is the complexity of the algorithms that it chooses from, and especially, the
most space-complex algorithm.

5.5. PERFORMANCE EVALUATION

Experimental Setup & Scenarios. The solutions are assessed under different
traffic and environment scenarios using our recent publicly-available dataset [60]
with power consumption and throughput measurements from an O-RAN compat-
ible testbed. This experimental setup includes a vBS and a UE®, implemented as
srseNB and srsUE from the srsRAN suite [55]. The RUs of the vBS and UE are
composed of an Ettus Research USRP B210, and their BBUs and near-RT RICs are
implemented on general-purpose computers (Intel NUC BOXNUCSI7TBEH). The
power consumption of the BBU and RU is measured with the GW-Instek GPM-
8213. A 10 MHz band is selected, supplying a maximum capacity of approximately
32 Mbps and 23 Mbps for the downlink and uplink operation, respectively. The
non-RT threshold policies are calculated in a programming language, emulating
the operation of rApps; the real-time scheduling decisions are made by the default
srsRAN scheduler that has been amended to comply with the MCS, PRB, and power
thresholds that are provided to them in each round.

The dataset contains 32 797 measurements for |X'|=1080 policies corresponding
to B4=1{0,0.2,0.6,0.8,1}, B"={0.01,0.2,0.4,0.6,0.8, 1}, M4={0, 5,11, 16,22, 27},
P4 ={3}° and M"=1{0,5,9,14,18,23}. The random perturbations, as explained
in Section 5.2, emanate due to time-varying UL and DL demands, {d},d%}L ;,
measured in Mbps, and time-varying CQIs, {c,c}Z ;) which are dimensionless.
The transmitted data, { R}, RI}L |, are calculated by multiplying the values of BY
(B") with the transport block size (TBS); the latter is determined by mapping the
M (MY with the TBS index [178]. W.lo.g., we have assumed 50 PRBs. The
power cost function is set to Pi(x¢) =V;, where V; is the total power consumed by

8The usage of one UE is not limiting for our study, since the algorithm devises each vBS’s thresholds
based on the average (across users) throughput and energy, and the average CQI and traffic, i.e.,
the UE emulates the load of multiple users.

9The DL transmission power is determined through the transmission gain of the USRP implement-
ing the BS. The RU of the testbed is equipped with a fixed power amplifier that consumes 3 W
and a variable attenuator for power calibration. To account for this limitation, the dataset power
measurements are post-processed using linear modeling [60].
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Figure 5.2: (a) Ry achieved from BSvBS in Scenario A (static) and its upper bound; (b) heatmap for
the choices of BSvBS in Scenario A, showing the probability that each policy is chosen at ¢t = 50k.

the vBS, and the utility function as stated in (5.2). We also scale both components
of the reward function to [0, 1] and choose § = 1.5 to prioritize power consumption
unless stated otherwise. We set v=0.29 for BSvBS and 17=0.04 for MetBS, and use
T =50k. All results are averaged over 10 independent experiments.

For the ensuing analysis, we assess three scenarios which represent a static en-
vironment (fixed, time-invariant parameters); a stationary stochastic environment
(i.i.d. parameters); and an adversarial scenario. The latter, clearly, is an extreme
case (e.g., can appear under high mobility conditions, heavy interference or attacks)
that we use to demonstrate the robustness of the learning algorithms. On the other
hand, the first two scenarios are in line with those typically considered by prior
benchmarks, e.g., [60], [62]. In detail:

e Scenario A (static): the demands and CQIs take the highest possible values ac-
cording to our testbed, i.e., df =32, di =23, c? =15, ¢ =15.

e Scenario B (stationary): the demands and CQIs are drawn randomly from fixed
uniform distributions in each round, i.e., d ~ 1(29,32), d ~ U(20,23), c, ' ~
U(1,3), where U(a, b) denotes the uniform distribution over the interval [a, b].

e Scenario C (adversarial): the demands and CQIs are drawn randomly in a ping-
pong way; namely, in odd rounds according to d ~ U(29,32), d ~ U(20,23),
¢l e ~ U(13,15), and in even rounds from df, d} ~ U(0.01,1), ¢!, it ~ U(1,3).
10 We note note that the learner does not have access to this information, and is
oblivious to when the switches happen.

Scenario C resembles dynamic environments, where the parameters might change
drastically every round. This corresponds to the most challenging-to-learn adver-
sarial schemes in regret analysis, cf. [179]. Clearly, an algorithm that performs well
under this case is guaranteed to perform well in all other scenarios. In the sequel, we
use these scenarios to explore the convergence of the proposed learning and meta-
learning algorithms, and compare them with selected state-of-the-art competitors
in terms of (i) regret, (i) vBS power savings, and (%ii) inference time.

10CQI 13 and 15 correspond to SNR of 25dB and 29dB, while CQI 1 and 3 to SNR of 1.95dB
and 6 dB, respectively.
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Figure 5.3: Scenario A (static) for BSvBS: a) MCS in DL (left) / UL (right); (b) PRB ratio in DL
(left) / UL (right); c) power (left) and utility (right) w.r.t. §, with 0.95-CI. In each plot, the blue
and green lines correspond to the left and right y-axis, respectively.

Static & Stationary Scenarios. Figure 5.2a shows the expected regret in Scenario
A when prioritizing the utility function (small §). The attained regret is sub-linear
and 62.2 % smaller than the upper bound (which is itself sub-linear), cf. (5.8). To
complement the analysis, Figure 5.2b shows a grid with 1080 cells, each mapping a
different policy. The cells are colored based on the probability BSvBS selects each
policy at ¢t = 50k, where darker colors indicate higher probabilities. The red squares
indicate the three best policies chosen 25 % of the rounds, where the top-performing
one is selected twice as frequently. This outcome can be attributed to the small J,
which favors the policy with the highest MCS and PRB ratio in both DL and UL,
as the demands and CQIs are high. For the second and third-best policies, the MCS
in UL and DL take the highest values, except for the PRB ratios, which are fixed
at 0.8, namely, the second-best UL and DL PRB ratios.

Figure 5.3a and 5.3b delineate the effect of § on the MCS DL/UL, and PRB
ratio DL/UL, respectively (i.e., the chosen policies), for the static scenario. The
solid lines in the plots represent the mean values averaging 100 rounds after running
BSvBS for ¢t = 50k rounds, and the shadowed areas are the 0.95-confidence intervals.
Moreover, the blue and green lines correspond to the left and right y-axis, respec-
tively. We observe that smaller ¢ leads to higher MCS and PRB ratio choices in
DL and UL. This is justified by the high CQI values considered in this scenario,
as they enable using higher MCS, which allows more data transmission and larger
decoding computational load [180]. Furthermore, larger § in Scenario A effectuates
the selection of lower MCS and PRB values in order for the vBS to save resources
by diminishing the turbo decoding iterations.

Similarly, Figure 5.3c illustrates the impact of § on the reward function, where its
two components are normalized, see (5.2). Higher 0 boosts the usage of policies that
minimize the consumed power, forcing the utility function to decrease, whereas lower
0 leads to policies that maximize the utility but increase the power consumption.
Values § > 2 have less effect on the power and utility functions, as there is a limit
in the consumed power that can be saved.

Figure 5.4 depicts the average regret over time for stationary Scenario B, which
converges towards zero as time elapses. We also plot the average regret of a typ-
ical benchmark that randomly selects policies with equal probability; we call this
benchmark Random. BSvBS explores policies with probability 29 % (since v = 0.29)
and exploits the best-performing ones with probability 71 %. Therefore, in the first
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Figure 5.4: Rp /T for BSvBS in Scenario B (stationary), together with Random, a naive algorithm
that selects policies randomly.
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Figure 5.5: BP-vRAN executed for 7' = 1000 rounds in dynamic Scenario C, in a subset of the policy
space: (a) Ry /T; (b) number of times each policy was chosen.

800 rounds, BSvBS obtains similar regret as the benchmark algorithm, but their
performance difference grows gradually, reaching 33.3 % in round ¢ = 50k, as BSvBS
opts for the best-performing policies with higher probability at latter stages.

Key takeaways: (i) The measured regret is sub-linear in static and stationary
scenarios and substantially smaller (up to 62.2 %) than the theoretical bound. (i)
The network can adjust ¢ to trade certain power consumption with commensurate
losses in utility; yet, increasing ¢ more than a specific value (§=2 in our case) does
not provide further substantial savings.

Gap in Prior Work. The primary objective is to showcase how state-of-the-art
techniques perform inadequately in challenging environments. To delineate this
effect, we focus on a smaller set of policies, i.e., |My| = [My| = |By| = |Bal = 2
and |P4|=1, yielding |X|=16 policies. The performance of the BP-vRAN algorithm
[60], which constitutes, to the best of the authors’ knowledge, the only existing
work designed to configure such threshold policies in vBS, is assessed in adversarial
Scenario C. BP-vRAN, which is based on the seminal GP-UCB algorithm [181], models
the traffic demands and CQls as context, which are observed before the policy is
decided. Given that the context directly impacts the selection of policies, it will
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Figure 5.6: Comparison of BSvBS with several competitors in adversarial Scenario C: (a) Ry /T;
(b) power saving of each algorithm with respect to the ideal-minimum energy of the benchmark.

be shown how abrupt changes in CQI values and traffic demand deteriorate the
algorithm performance. We present an example where the context differs between
its observation and application to the system. This case appears quite often in
practice, given that the rounds of reference are of several seconds. For the plots in
this section, the reward function f;(x;) is unbounded.!!

As indicated in Figure 5.5a, the average regret in the adversarial Scenario C

does not decrease (in fact, it increases) after T = 1k rounds, which is more than
33x of the advertised convergence time. This happens because the algorithm takes
decisions in each t by assuming perfect knowledge of f;, which might take arbitrary
values depending on the environment. Clearly, due to the system’s volatility, the
policy for each ¢ should be selected based on past values {f,(x,)}.Z}; yet, as Figure
5.5b corroborates, BP-vRAN selects sub-optimal policies for most rounds and fails to
explore efficiently even this small space.
Evaluation of the Bandit Algorithm. Figure 5.6a compares the average regret
over time of BSvBS for Scenario C, in relation to several competitor algorithms,
namely: the BP-vRAN, a naive algorithm that selects thresholds uniformly randomly
(Random); the classical UCB algorithm that is designed for stationary environments
[182]; and a greedy algorithm that prioritizes exploitation (Greed, selects the best
solution found until now) [183]. We consider T' = 50k rounds and use the complete
policy space (i.e., |X| = 1080), and all results are averaged over 10 independent
experiments. We observe that BSvBS is superior, acquiring 45.1% less regret w.r.t
BP-vRAN, and 22% less w.r.t Greed and UCB at ¢t = 50k. It is worth noting that
Random performs better than BP-vRAN in this case, by approximately 9%.

In Figure 5.6b, we present the vBS power gains that each algorithm achieves in
the same scenario, w.r.t. the ideal-minimum-energy of the benchmark, where the
power consumption of the idle user is subtracted. It can be seen that with BSvBS, the
network operator can save up to 64.5% of energy if the algorithm runs for ¢t = 50k
rounds in contrast to BP-vRAN. Moreover, it can be seen that UCB also chooses policies

H'When BSvBS is depicted in the same plot as BP-vRAN, the reward function of BP-vRAN is scaled
too.
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Figure 5.7: Average time needed to infer a policy in each round, for our algorithm BSvBS, and its
main competitor, BP-vRAN.

that allow for saving energy, but again, attains less energy saving than BSvBS. These
plots also showcase that the Greed algorithm, which does not explore new policies,
is not competitive and is stuck in exploiting sub-optimal policies (straight line in
the regret plot).

Another key advantage of BSvBS is its low inference time, i.e., the time to deduce
a policy in each round. Figure 5.7 exhibits the average inference time and compares
it with BP-vRAN. Using standard kernel-based methods (as BP-vRAN does) is widely
recognized to result in a high computational cost of O(t3) with respect to the number
of data points ¢t [184]. This is a significant limitation as it delays the vBS operation
to more than 10s after ¢ = 1k when tested on an Apple M1 chip with 8-core
CPU@3.2 GHz. Clearly, this hinders the vBS operation, which will then have to
rely on stale information. On the other hand, we notice that BSvBS requires no
more than 0.08 ms to decide a policy, which remains constant throughout.

Key takeaways: In challenging (i.e., non-stationary / adversarial) environments,
decisions for configuring the vBS should be taken based on past performance. Re-
quiring perfect knowledge of the environment could lead to sub-optimal policies,
increasing power costs up to 64.5% for operators. BSvBS’s performance is robust
to such adversarial scenarios and outperforms a state-of-the-art algorithm in terms
of: (i) the average regret (up to 45.1 % superiority), (i) the power gap w.r.t. the
minimum vBS energy consumption (up to 64.5% superiority), and (%) inference
time (solely 0.08 ms). We recall that BSvBS does not have access to how and when
the demands and CQI change.

Evaluation of the Meta-Learning Algorithm. We consider A =2 with BP-vRAN,
and BSvBS that select policies from X. On the one hand, if the context is not avail-
able at the beginning of each round, as happens in several real-world applications,
BSvBS is superior and BP-vRAN fails, as seen in Section 5.5. Hence, MetBS opts mainly
for BSvBS. The attained regret is by 61.7 % less than the upper bound, which implies
the desired sub-linear regret. The algorithms that MetBS chooses can be verified in
Figure 5.8b, where BSvBS is selected in approximately 47k rounds, while the sub-
optimal BP-vRAN in the remaining 3k rounds (7" = 50k). On the other hand, if the
environment is easy, BP-vRAN is expected to converge faster than BSvBS; and, as a
consequence, to be preferred by the meta-learner. Indeed, the regret of MetBS is
96 % lower than the upper bound stated in (5.8), which clearly indicates the ex-
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Figure 5.8: Meta-learning algorithm: Ry and the upper bound for dynamic (a) and stationary (c)
scenarios; number of times BSvBS and BP-vRAN were chosen in T' = 50k rounds for dynamic (b) and
stationary (d) scenarios.

pected sub-linear regret has been achieved. MetBS selects BP-vRAN in roughly 46k
rounds, while BSvBS in 4k rounds, Figure 5.8d. It is important to heed that BSvBS
converges as well to the optimal policy but slower (see Figure 5.2 and Figure 5.4), an
unavoidable side-effect of its robustness under any environment (even adversarial).

Finally, we test the meta-learner in a “mixed” environment, where, in the first
5k rounds the demands and CQIs are drawn from Scenario B (stationary), and in
the remaining 45k rounds from Scenario C (adversarial). Figure 5.9a depicts the
average rewards of MetBS, BSvBS, and BP-vRAN. It can be viewed that before the
change of the environment, the average reward of the meta-learner follows closer to
the reward of BP-vRAN; the orange dotted line is 3.8 % lower than the blue dash-
dotted line. The same can be verified from Figure 5.9b, where BP-vRAN is chosen
with higher probability, 58 %, before t = 5k. When the change occurs, MetBS does
not opt immediately for BSvBS, as the average reward of BP-vRAN is still higher, until
the change-point at roughly ¢ = 8k, which is shown with a red dot in Figure 5.9a.
After this round, BSvBS experiences larger reward values on average, and within less
than 1k rounds (i.e., 2 %), MetBS starts indeed selecting BSvBS more frequently (up
to 88.2%).
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Figure 5.9: (a) Average reward and (b) probabilities that BSvBS and BP-vRAN are chosen by the
MetBS when the environment changes (leftmost dashed line, change to adversarial) from stationary
to adversarial at ¢ = 5k. The red dot (change of best-performing algorithm) shows the change
of the best-performing algorithm (from BP-vRAN to BSvBS), and the rightmost dashed line MetBS
reacts) depicts the round after which MetBS starts choosing the best-performing algorithm, BSvBS,
more often.

Key takeaways: MetBS chooses the best-performing algorithm for each scenario.
When the demands and CQls are drawn from a stationary distribution, it prioritizes
BP-vRAN (92 % of rounds), while in adversarial scenarios, BSvBS (94 % of rounds).
In mixed scenarios, MetBS tracks and applies the changes after only 2% of rounds.

5.6. RELATED WORK

Resource management for softwarized networks can be broadly classified into mod-
els that relate policies to performance functions, model-free approaches, and Rein-
forcement Learning (RL) techniques. Model-based examples include [58] and [185],
which maximize the served traffic subject to vBS computing capacity, but do not
capture the impact that the hosting platform, the environment, or user demands
may have on the vBS’s operation [59]. Model-free approaches employ Neural Net-
works to approximate the performance functions of interest [186], yet, their efficacy
depends on the availability of representative training data. Finally, RL solutions
[187] use runtime observations and have been used, for example, in interference
management [188], vBS function splitting [189], and handover optimization [35].
The disadvantages of all these works are the curse of dimensionality and the lack of
robust convergence guarantees [190]. Following an akin approach, contextual bandit
algorithms are employed to optimize video streaming rates [191] or handover deci-
sions [192]; assign CPU time to virtualized BSs [61], and control millimeter-Wave
networks [193]. Unfortunately, these works require access to contezt information.
More recently, Bayesian learning has been used for RRM, see [194] and references
therein, but these solutions also need access to context information and converge
only under stationary conditions.

We take here a different approach, based on adversarial bandits, cf. [179], which
is robust to adversarial or non-stationary contexts (channel qualities and traffic
demands), and has low memory and computation requirements. This latter fea-
ture is in stark contrast to RL (with sizeable memory space required to store all
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space-actions combinations) and Bayesian techniques [60], [194] which involve slow
matrix inversions [195]. Such adversarial/non-stationary environments are increas-
ingly common due to highly volatile network conditions [196] and traffic demands
[173]. Furthermore, we draw ideas from the expert-learning paradigm [18] and en-
rich our policy decisions with a meta-learning scheme that combines our adversarial
learning algorithm (that can be at times conservative) with any other algorithm
(e.g., [60]) that performs better on more easy scenarios where the environment is
predictable (e.g., when stationary). This meta-algorithm obtains the best of both
approaches, and succeeds in being both fast-learning and robust; an idea that has
been used in online learning [19], but not in network management.

We employ the above method to tackle a joint performance and energy cost
optimization problem. Similar (in scope) formulations have been extensively studied
in the literature. For instance, [197] considered a joint user association, spectrum,
and power allocation model for throughput optimization; [198] focused on spectrum
and energy efficient beamforming; and [199] optimized the spectrum and power
assignment using genetic algorithms. Nevertheless, such approaches assume the
system and user-related parameters to be fixed and known. On the other hand, many
dynamic formulations rely on RL to optimize energy and performance, e.g., [200]; or
on variants of the seminal CGP-UCB algorithm [60]. The main limitation of these
works is the need to know contextual information (channels, user demands, etc.),
and the lack of optimality guarantees, mainly in non-stationary conditions. Our
approach is instead tailored to handle the inherent performance and cost volatility
of O-RAN systems without access to context and provides optimality guarantees
against competitive oracles.

Finally, a key difference between our work and the above RRM literature lies in
our emphasis on non-RT RAN policies. These policies serve as operational thresh-
olds for the real-time vBS (i.e., RRM) schedulers and are facilitated by the O-RAN
architecture, which has provisions for such tiered control loops [10], [11]. This ap-
proach enables centralized management of multiple BSs without disrupting their
RRM functionality. Recent works [172], [201] use RL for selecting the slicing and
scheduling policies in O-RAN (i.e., RRM schedulers, see Section 5.2). Nevertheless,
our policy thresholds operate on a higher timescale (i.e., Non-RT) and are fed to
these vBS schedulers, which make RRM decisions subject to our provided thresh-
olds; also, they learn in an online (not offline) manner and adapt to environment
changes, even if these changes happen drastically.

A recent stream of works has followed this path to design such non-RT operation
thresholds. Namely, [60] uses CGP-UCB to identify thresholds for the maximum
allowed transmission power and MCS to reduce the energy consumption of base
stations; [62] follows a similar approach but focuses on different performance KPIs;
and [61] decides maximum MCS and duty cycles through deep learning. Unlike these
works, our solution is the first to provide optimality guarantees for non-stationary
environments and without requiring access to context, while through the proposed
meta-learner we can combine and benefit from other algorithms (e.g., [60]) when
they perform well.
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5.7. CONCLUSION

The virtualization of base stations and the design of O-RAN systems are instrumen-
tal for the success of the next generation of mobile networks. Allocating resources
for these vBSs by choosing policies that operate on a longer time scale and do not
require intervention in (often proprietary) vBS node implementations are a new and
promising network control approach. However, in order to be practical and success-
ful, the proposed solutions should have low overhead and require no assumption
about the future channel qualities and traffic demands (i.e., the environment).

The first proposed scheme possesses exactly these properties, building on a tai-
lored adversarial learning algorithm that has minimal overhead and can run in sub-
milliseconds. In line with prior works, we focus on the important metrics of through-
put and energy consumption and explore their trade-offs in a range of scenarios with
experimental datasets. As this robustness comes at a cost for convergence speed, we
aim to increase the latter in easy scenarios, where the environment is known before-
hand (or changes slowly), through a meta-learning scheme that combines a mix of
algorithms, including our own, and delineates the best-performing one at runtime.
This creates a best-of-both-worlds solution. Our extensive data-driven experiments
demonstrate energy savings up to 64.5 % compared to state-of-the-art competitors.



CONCLUSION

6.1. LOOKING BACK

Modern cellular systems operate in dynamic conditions/environments with heteroge-
neous users and use cases, ranging from autonomous vehicles and augmented reality
to remote healthcare and massive IoT deployments. These scenarios, enabled by 5G
and envisioned under 6G and NextG roadmaps, impose diverse and often conflicting
requirements on the network, including ultra-low latency, high reliability, extreme
data rates, and support for high-mobility users. Traditional control decisions, while
stable, are brittle under changing conditions, and classical optimization techniques
often rely on static assumptions that do not hold in practice. On the other end
of the spectrum, offline-trained ML models offer performance in known/observed
conditions but fail to generalize under distribution shifts or with limited data.

The work presented in this thesis revolves around a central challenge: making
robust and effective mobility and resource management decisions within the emerg-
ing O-RAN ecosystem based on real-world insights from countrywide datasets and
testbed traces, by using online meta-learning. The emerging Open RAN archi-
tecture, embodied primarily through the O-RAN Alliance, provides a flexible and
programmable foundation by disaggregating control from hardware and enabling
Al data-driven decision-making through open interfaces and intelligent controllers.

Specifically, we focused on two core problems: (i) user-cell association, with
induced handovers, a main mobility management problem where the network, and
sometimes in cooperation with users, decides which cell should serve them over time,
and (i) resource allocation, where virtualized base stations manage and assign their
resources to connected users; and in both problems, without knowledge of future
conditions. These decisions were inherently sequential and coupled, as assigning
a user to a cell directly influences how and to which users that cell allocates its
resources, shaping performance at both the user and network level.

We proposed online learning algorithms that offer robust performance guaran-
tees under both static and dynamic regret, obtaining as good (user and network)
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performance as an oracle algorithm with full information for the future would have
achieved. Moreover, we extended these approaches via meta-learning to enable the
usage of other offline and/or online learners, which can be tailored for different
environments. Importantly, all algorithms were compatible with the principles of
O-RAN, ensuring that they were not only theoretically grounded but also practically
deployable in the next generation of cellular networks. Our methodologies were sup-
ported by empirical insights drawn from large-scale datasets, including countrywide
mobility and handover traces. These datasets revealed the structural complexity
and variability in networks nowadays, motivating the need for learning-based con-
trol. We also leveraged a novel dataset for resource allocation decisions, utilizing a
testbed to further ground our algorithms in real-world scenarios.

This thesis represents, to our knowledge, the first comprehensive integration of
countrywide empirical network analysis and O-RAN-compatible testbeds with online
meta-learning into the end-to-end control stack of O-RAN: from UE-cell associations
and handover decisions to virtualized base station resource allocation. Our results
establish that learning-based control under uncertainty is not only feasible but es-
sential for modern mobile networks and the NextGs to come. The architectural
and algorithmic abstractions introduced here extend beyond the specifics of cellular
control. They suggest a more general vision: that modern networked systems can
(and should) adapt their operation (i.e., learn) continuously and be robust.

6.2. LIMITATIONS

In this dissertation, datasets and actual, unnormalized numbers in figures related to
the real-world data could not be published openly due to privacy guidelines of the
MNO (see Appendix 2A). Moreover, at the time of capturing all datasets, the 5G-SA
deployment of the MNO was still in its early stages, with a limited range of (mostly
test) UEs actively using it. Thus, we focused on 5G-NSA, which relies on the 4G
EPC for mobility management. In other words, we could not explicitly capture
the HOs to/from 5G-SA radio cells, since the EPC only sees their corresponding
4G radio cell anchor. In addition, the studied HOs had 4G/5G-NSA as the source
RAT, and 4G/5G-NSA, 3G, or 2G as the target. In other words, apart from the
horizontal HOs in 4G/5G-NSA, we focused on the specifics of how/when/why users
downgrade to older RATSs, and not the other way around, given that users spend
more than 82% of their time and 94.5% of their traffic in 4G/5G (see Section 2.3).

Furthermore, (i) we did not have access to HO configuration parameters and
policies, which are dynamically configured by proprietary solutions from equipment
vendors, (¢) our analysis on HOFs and mobility was limited to the use of mobility
metrics (number of cells and radius of gyrations) at daily intervals, which may hide
correlations that occur at finer time scales, and (iii) CHOs were still not deployed
at the studied MNO (no logs available).

In addition, the algorithms proposed (i) assumed a centralized controller, taking
decision for multiple users and cells, (i7) were tested with real-world data, as well
as synthetic traces covering from static to even adversarial conditions, but were not
deployed in live environments.
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6.3. SUMMARY OF CONTRIBUTIONS

In this section, we synopsize the main accomplishments of this thesis.

Chapter 2: Heterogeneity and Mobility Management of Cellular Net-
works. This chapter offered the foundation for the thesis by presenting a large-
scale (countrywide) empirical study of modern cellular networks and their mobility
management through the lens of a top-tier MNO. Prior studies relied on small-scale
measurement campaigns or limited devices, resulting in a partial view of operational
networks. To overcome these limitations, we captured various 4-week datasets and
leveraged open-source census records involving millions of users and thousands of
cells, to uncover the complexity of modern deployments along three particularly
interesting axes, from the network’s perspective: the heterogeneity of (i) RATs and
(i1) UEs, as well as the (iii) geodemographic diversity. We further delved into
HOs, the cornerstone of mobility management in cellular networks. Specifically, we
investigated their frequencies, duration, and types, as well as uncovered temporal
and spatial correlations and causes of failures, which we modeled using statistical
tools. Our analysis revealed inefficiencies in HO realization, motivating the need for
learning-based control in these complex cellular systems.

Chapter 3: Mobility Management through Smooth Handovers. To ground
our HO optimization strategies in real-world scenarios, we leveraged and extended
the visions presented in the previous chapter, providing fresh insights into the ef-
fects of HOs on KPIs such as packet loss and throughput, as well as crowdsourced
signal data. In this way, we identified key correlations between HO failures/delays
and the characteristics of radio cells and devices. Subsequently, we formulated the
user-cell association problem as an instance of OCO, where changes in association
decisions between two consecutive timeslots cause handovers, inducing measurable
switching costs that depend on the users and cells themselves. We proposed a
meta-learning framework that optimizes handover decisions by balancing and pri-
oritizing, if needed, the throughput of users and the (often) increased delay cost
of frequent handovers. The algorithm integrated cell and device features into its
decision-making and eliminated the need for knowledge of future external condi-
tions, measurements, or trajectory information. Our experimental results demon-
strated that this approach improved performance in a battery of scenarios, including
real-world ones from our crowdsourced datasets, achieving robust dynamic regret
guarantees and enabling practical deployment in O-RAN. Nevertheless, THOs alone
may still pose challenges in dense deployments or high-frequency bands due to their
reactive nature. This motivated the following step: we explored how CHOs, which
delegate part of the decision-making to users before the signal has degraded, and
together with the traditional approach, can be key enablers in the next generations
of cellular networks.

From Reactive to Proactive Handovers. In this chapter, we began by explor-
ing CHOs as a new form of proactive mobility control and showed how they can
complement the (reactive) THOs that were extensively analyzed in the previous two
chapters. In contrast to previous chapters that focused on the impact of source cell
characteristics on HOs, we extended these datasets to include both source and tar-
get cell features, providing the necessary information to analyze how CHOs interact.
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Based on these fresh insights, we proposed online meta-learning solutions aligned
with O-RAN to optimize THO and CHO jointly. These models did not require prior
knowledge of the conditions and demonstrated robust performance, as well as sig-
nificant improvements in both real-world and synthetic scenarios. Having addressed
the dual challenge of optimizing reactive and proactive HOs by associating users
with cells optimally, it remained open how these cells / (virtualized) base stations
should allocate their available resources to serve the users efficiently.

Chapter 5: Resource Allocation for Virtualized Base Stations in Non-
Real-Time. With proactive and reactive mobility control in place, allocating users
to the right base stations, attention naturally turned to how these base stations can
learn to serve (i.e., allocate their resources) their users more intelligently. For that,
in this chapter, we developed a novel control framework for vBS operating under
O-RAN, where resource allocation non-real-time (i.e., threshold) policies, such as
MCS and PRB, must be set at coarse time scales without access to future network
conditions/environments. While we proved that our proposed algorithm outper-
formed the state-of-the-art in non-stationary or adversarial conditions, its learning
process was slower in static/stationary conditions, precisely because of its robust-
ness and cautiousness for the former conditions. For this purpose, we also proposed
a meta-learning scheme that leveraged other available learners (possibly tailored
for static/stationary conditions), by dynamically selecting the best-performing al-
gorithm; thus enhancing the system’s effectiveness and speed. Both of our solutions
achieved strong theoretical static regret guarantees and demonstrated substantial
energy savings under real-world conditions.

Brief Summary. This thesis provided a rigorous study of mobility and resource
management in modern cellular networks. By leveraging multiple countrywide MNO
datasets, our work focused on (traditional and conditional) handover optimization
and resource allocation non-RT policies for virtualized base stations; two tightly
linked problems. Altogether, the contributions of this thesis enhanced the robust-
ness, adaptability, and intelligence of O-RAN control in both current and next
generations of cellular networks.

6.4. FUTURE DIRECTIONS

6.4.1. JOINT HANDOVER-RESOURCE ALLOCATION OPTIMIZATION
In this thesis, handover decisions (Chapters 2-4) and resource allocation (Chapter
5) were modeled and optimized as separate layers. However, they are deeply inter-
twined: the result of a handover affects the load at the target cell, while schedul-
ing constraints may, in turn, influence the feasibility or quality of handovers, even
when they succeed. Although the proposed models for optimizing handovers con-
sidered an important aspect of the cell in the decision-making process, namely its
load, they relied on standard resource allocation schedulers, such as round-robin or
proportional-fair. This means that the resources of each cell were divided equally
among all connected users, regardless of their traffic demands or signal qualities.
A natural next step is to develop a learning-based control framework that, in
addition to maximizing users’ throughput and reducing the delays/costs associated
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with traditional or conditional handovers while considering the cells’ load, incorpo-
rates additional cell restrictions or schedulers. For instance, it could be beneficial
to replace the “typical” schedulers of Chapters 3-4 with the scheduler proposed in
Chapter 5; which, in turn, as a meta-learner, can incorporate different schedulers
(i.e., learners) to choose from, based on unknown network conditions. In this way,
we would also provide an end-to-end solution in the O-RAN architecture: from
policies in non-RT RIC to handover decisions in near-RT RIC.

6.4.2. EXTENSION TO NON-TERRESTRIAL NETWORKS

The proposed frameworks have been developed and evaluated in terrestrial cellular
settings, but the same principles are increasingly relevant for Non-Terrestrial Net-
works (NTNs), including LEO satellite constellations and hybrid terrestrial-satellite
systems. NTNs, in conjunction with terrestrial networks (TNs), provide ubiquitous
wireless access to an unprecedented number of users [202]. Nevertheless, they in-
troduce even more intricate challenges than TNs, such as long propagation delays
and changing topology due to satellite movement or cloud coverage, which result in
extremely dynamic network conditions [203].

All these create an opportunity to apply the online meta-learning tools developed
in this thesis, especially for dynamic UE-cell association and robust base station
control, to the NTN domain. For example, our HO optimization frameworks, which
make no assumptions about future dynamic network conditions, can be extended
to the case of LEO satellites, offering robustness and adaptability without relying
on stationary models or offline training. NTNs also open the door for additional
research questions: how to incorporate the unique satellite mobility models into
learning dynamics if these movements are predetermined or repeated; how to balance
power-aware HO policies for low-battery IoT devices in remote areas; and how
devices could switch between TN and NTN infrastructures for coverage and better
quality of experience.

6.4.3. JOINT SERVICE MIGRATION AND NETWORK CONTROL
As edge computing becomes a key enabler for the increasing computation demands
from the mobile users, a new dimension emerges: the co-migration of services and
users [13], [204]. Given the resource-constrained devices of the users and new, di-
versified latency-sensitive applications, such as XR/AR or vehicles in intelligent
transportation systems, it might no longer be sufficient to only hand over con-
nectivity; the computational services bound to those connections must migrate in
tandem. This introduces tightly coupled decision problems: when a user is handed
over, should the associated service be migrated as well? And under what criteria?
Extending our framework to support joint optimization of service placement and
handover /resource control is a rich and practically relevant direction. Meta-learning
could be employed to balance migration overheads with gains in quality of service,
while online control algorithms may operate over multi-timescale decisions, e.g., fast
handovers coupled with slower service migration.
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2A.1. ETHICS

The collected datasets are protected under Non-Disclosure Agreements (NDAs) that
explicitly forbid the dissemination of information to unauthorized parties and public
repositories. The procedures for data collection and storage within the network’s
infrastructure strictly follow the guidelines set forth by the MNO, and are in full
compliance with local regulations. Moreover, while some metrics are computed on
the user-level, our data-handling processes strictly focus on generating aggregated,
anonymized insights, without access to the exact locations/trajectories of the users.
No personal and/or contract information was available for this study and none
of the authors participated in the extraction and/or encryption of the raw data.
Ultimately, our datasets and research do not involve risks for the mobile subscribers,
while they provide new knowledge about the dynamics of mobility management and
handovers.

2A.2. REGRESSION ANALYSIS DETAILS

Here, we complement the main regression models presented in Section 2.5.3 with
additional models, which have comparable performance in terms of Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) with Random Forest (RF)
[205]. The results are aligned and support the reported findings. We remind the
reader that the analysis is performed on a dataset that records the daily percentage
of failed HOs (i.e., HOF rate) during the studied 4-week interval.

We start by plotting the main statistics (boxplots with mean and median values)
for the effect of HO type, antenna vendor, and cell area on the HOF rates. We also
plot the ECDFs for the first two cases in Figure 2A.1, while the summary statistics
can be seen in Table 2A.1. Performing a one-way ANOVA test we find that the
effect of HO type on HOF rate is statistically significant and large (F'(2,3857071) =
8.01-10%, p<.001; 7% = 0.81,95%CI [0.82,1.00]), and Post-hoc pairwise comparisons
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Table 2A.1: Summary Stats of Dataset.

Feature Min 1st Qu Median Mean 3rd Qu Max

Daily HOs 1 76 1989 6431 8591 953287
HOF rate 0.0 0.0 0.069 6.131 4.191 100.0
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Figure 2A.1: ECDF of HOF rates for HO type: (a) all HOF rates; (b) non-zero HOF rates, (c)
HOF rates without outliers.
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Figure 2A.2: Antenna vendor per (a) region and (b) HO type.
(Tukey’s HSD) verify that this effect is significant for all HO types. A Kruskal-Wallis
test also supports this hypothesis (p=0).

Next, we turn our attention to the vendor of the source cell (i.e., antenna vendor).
Due to confidentiality issues, we refer to the 4 vendors with the codes V1, V2, V3,
and V4, instead of using their actual names. First, we note that different vendors are
used in cells in different regions (North, South, West, Capital area), Figure 2A.2a;
while all but one vendors are involved in similar proportions in intra 4G/5G-NSA
HOs and HOs to 3G, Figure 2A.2. In Figure 2A.3a, we present the boxplots for the
effect of the antenna vendor on HOF rates. In this case, we create one plot for each
type of RAT and focus on HOF rates < 1% for 4G/5G-NSA, since the values are
concentrated in the low-end of the spectrum. ANOVA tests for each HO type and
for all HO types concurrently verify this effect is statistically significant but small
((F(3,4911927) = 30524.85,p < .001;7% = 0.02,95%C1[0.02,1.00])). Finally, Fig-
ure 2A.3b studies the effect of the area type, where this feature takes two values: ru-
ral and urban. We observe a small effect of the area type and indeed, performing an
ANOVA test, we find it statistically significant but small (F'(2,4664505) = 18559.77,
p<.001, n? = 7.90- 1073, 95%CI[7.76 - 10~3,1.00]), even when we subset per HO
type.

After this first level of analysis, we proceed with regression models that com-
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Figure 2A.3: Boxplots of HOF rates vs (a) antenna vendor and (b) urban/rural areas.

Table 2A.2: Regression Summary: Linear Model w/o 2G HOs.

Feature Coefl. Std Err ¢t value  Pr(> [t])
(Intercept) —3.64 0.0185 —196 0
HO type: 4G/5G-NSA—3G  5.23 0.00120 4348 0
Number of daily HOs —1.02-107° 0 —215 0
Area Type: Rural 0.416 0.00273 153 0
Area Type: Urban 0.365 0.00259 141 0
Antenna Vendor: V2 0.0241 0.00166 14.5 0
Antenna Vendor: V3 1.00 0.0183 54.6 0
Antenna Vendor: V4 0.227 0.0199 114 0
Cell Region: North —0.107 0.0184 —5.81  6.14-107°
Cell Region: South —0.0527 0.00160 —32.9 0
Cell Region: West 0.577 0.0184 31.5 0
District population —1.52.1077 0 —54.7 0

N = 4892154, RMSE=1.072901, R?=0.8502, AIC=14571839

plement those presented in Section 2.5.3. Table 2.5 reports the results for a linear
regression model, after log-transforming the dependent variable and excluding out-
liers (i.e., removing entries with HOF rates exceeding 50%, less than 10 HOs per
day or more than 30k HOs per day) that includes all main features of the dataset.
In line with the simpler univariate model in Section 2.5.3, we see that the HO type
remains the main contributing factor on HOF, even when accounting for all other
covariates. On the other hand, the rest of the features are significant, yet have a
much smaller, often negligible, effect. To further delineate the effect of the other co-
variates, we repeat the analysis after excluding HOs to 2G since they represent only
0.04% of dataset entries and are skewed towards much higher HOFs (see boxplots).
The results are summarized in Table 2A.2 where we see that the HO type (only
related to 3G in this case) is pronounced, the rural/urban feature is significant but
the two values have a similar effect, as well as a significant and large effect of the
vendor and the region (West). We note these latter findings (effect of Vendor V2
and West) remain significant even if we exclude the HOs to 2G and 3G, and regress
only over the intra 4G/5G-NSA HOs.

As a final robustness test and based on the (near) bimodal distribution of the log-
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Table 2A.3: Quantile Regression w/o Outliers.

Feature; Quantile Coeff. Std Err  t value  Pr(> [t])
(Intercept); 7 = 0.2 —3.59 0.00072 —5000.50 0
HO type: 4G/5G-NSA—2G  5.80  0.07401 78.37 0
HO type: 4G/5G-NSA—3G 4.86 0.00113 4297.03 0
(Intercept); 7 = 0.4 —2.99 0.00077 —3865.27 0
HO type: 4G/5G-NSA—2G  5.880 0.07951 73.95 0
HO type: 4G/5G-NSA—3G  4.79  0.00122  3935.15 0
(Intercept); 7 = 0.6 —2.56  0.00066 —3874.20 0
HO type: 4G/5G-NSA—2G  5.84  0.06822 85.74 0
HO type: 4G/5G-NSA—3G  4.83  0.00104  4632.57 0
(Intercept) 7 = 0.8 —2.09 0.00092 —2281.89 0
HO type: 4G/5G-NSA—2G  5.72  0.09450 60.57 0
HO type: 4G/5G-NSA—3G  4.97  0.00145  3437.48 0

Table 2A.4: Quantile Regression — All HOFs.

7=02 7=04 7=06 71=0.28

(Intercept) —3.62 —3.00 —2.58 —2.11
HO type: 4G/5G-NSA—2G 7.13 7.20 7.13 6.72
HO type: 4G/5G-NSA—3G 5.03 4.99 5.15 5.51

transformed HOF rate variable, we perform quantile regression on 5 intervals (7 €
{0.2,0.4,0.6,0.8}), using the HO type as the only feature. Table 2A.3 summarizes
the results for the case we filter outliers as before, and Table 2A.4 presents the
coefficients for the entire dataset of non-zero HOF rates. These results reinforce the
findings of the previous models, verifying the significant and large effect of the HO
type on HOFs across the entire spectrum of observed values.
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Proof of Lemma 3.1. The proof follows the rationale in [25, Th. 4], [120, Th. 3].
First, we bound the regret of each expert w.r.t. benchmark, and then the regret of
the meta-learner w.r.t. any expert. W.l.o.g., we set v = 1 and define:

st(x)=(Vg:(xs),x—x¢), and :i:ffH :mf—i—Qngt(zct).
Then, we can write: s;(x}) — s¢(zF) = (Vgi(xs), 2} — =F)

(2) 1 N &

< —(|lof —af |5 — |1z, — @[5 + 602G
20,

+ et — il — l2f — 254013)

® 1

= (et — =i 15— llefyy — i 5+
20,

O
+ (wf+1—5’3:+1 + xfﬂ‘“/’?f(“’? —x7y)) + ?GQ

™ 1

< 5g (et =@ 5=l —ai3) +
D 0

+ 22 lp e A+ =GP
0y, 2

() uses the identity (z,y) = (||z|3+]lyl|3—lz—y[|3)/2, the definition of &}, and
[Vge(z:)||2 < G as well as adds/subtracts ||zf,, —x},]|3; (3) uses the projection
non-expansiveness and ||z||2—||y/|2=(z—y) " (z+y); and () uses Cauchy-Schwartz,
triangle inequality, and D 4*. Telescoping to T and using ||z¥ —a}||% < Da, gives

T
Dy  Du.Pr 0, TG?
ZSt(CB:)—St(iL'f)SE—F o T

t=1

Next, we bound the switching cost of (any) expert k:
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T T—1

k k k k
Z |zt — xi_q[la = Z iy —x]la <
t=1 t=0

T-1

T-1
STl —afla=>" | - 0Vau(x)|a < 067G,
t=0 t=0

and combining with the previous result, we get:

T T
> si@p) =Y (si@h) — ot —atilla) <
t=1 t=1
D% Dy.P G?
AL AT LT & +Ca (3A.1)
20, 0y
Next, we bound the gap of the meta-learner from all experts. Following [25,
Lem. 3] and using the A-norm:

" — 2]l = sztmt Zwt 15’% 1H

ke keK

< | X ubtet o)~ X bty o)

ke keK

o DOUIEREE R S

kel kek

<Y wf et @, + el -l [Jef -2,
k

= Z wy fo - ﬂ”f—1||A + Dyllwy — wi—1||1.
keK

The relative loss of meta-learner is: Zt 1 (st(a:t) [E A ||A) —Zthl (st(a:;")—
e~ a)

T

SZ(Z“}wat i ||+ (Vge(@e), zf —a)
B

t=1

- Hmf*mf—l||A+DAH’wt*wt—1||1) =

T T
Z (Z wy by (xf) — Et(wf)> +D4 Z lw; —w; 11

t=1 k t=1

The first term is bounded noting that d < ¢;(x) < d+¢, with d = —DG — D4,
¢=2GD+ D4 and using the Hedge bound [23, Th. 2.2] (see also [120, Lem. 1]):

T
Zﬂt(wt mm (Z 0y (k) k) < ﬁ78“c
t=1
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Using the value of ¢ and the definition of x}*, we get:

z(zwm o)t >) )

t=1
1 1  BT(2GD + Dy)?
—ln— :
B wi 8

Next, we use the strong convexity of entropic FTRL [206, Lem. 7], as the basis for
Hedge, to arrive at:

lwe—w—11 <A || (61 (x})] k”oo <B(GD+Da).
Combining the above, we prove that Vk € K, it is:

D ose@h) = et~y lla—so(@)+ |y —a)yla <

1

In —2+8T [(2GD + Da)*(Da +(1/8))] (3A.2)
1

and set 8 = 1/vTv to balance the RHS (omitting In).

Finally, considering the max and min values of Pr, the expert step that minimizes
the RHS of (3A.1) lies in:

1
B

.D2 D2 + 2D D AT
(G2+2GA T(G?+2G4)

and inspecting the experts’ steps {0x}r in Lemma 3.1, we see that at least one
expert step lies in that range. Thus, we obtain:

th 2p) = fi(@l") < VT[Vo (1L+n(1/wh) +

(G? +2G 4)/2(DY + 2DA*PT)1/2} :

Proof of Theorem 3.2. It holds:

E[R1] <E[ZT: (ft x) = fi(xe) + fe(2]") — ft(ifln))]

t=1

=E[Z )~ fla) 3 (1) - )

The second term is bounded by Lemma 3.1. The first term is the discretization
error, and we bound it as follows:

E [fj(fxw;")—ft(wt))] 2 S (e mllmmar)

t=1 t=1
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I J 2
<G Y |B [ () —Elwy ) |-

In (a) we used that expectation is a linear operator and the Lipschitz constant of
f+, and in (B) Jensen’s inequality and the unbiased sampling. This is the variance
of the random binary output of @ x. Since the binary vector is subject to a simplex
per user, each sum w.r.t. j is bounded by the variance 1—(1/J), and the overall

term by u=./I—(I/J). Using (3A.2):

1
B
+ (G? 4+ 2GA)Y*(D? + 2D 4. Pr)/2.

1
1
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4A.1. PROOF OF LEMMAS 4.2 AND 4.3
Proof of Lemma 4.2. First, we observe that the diameter of the domain is
bounded, i.e., ||z—2'||2 <||lz—2'||2+]|y' Y |l2 <V2Itno + /Icuo(J — 1)=D, since
the maximum distance for the former occurs when assignments = and z’ are all
different, and for the latter, when all cells are prepared in y and one cell is prepared
per UE in ¢’ (i.e., minimum preparation). Similarly, we prove the bound for the
Ci-norm and its dual.

Finally, we compute the gradients component-wise and, for simplicity, we omit
the time ¢ index. For i € Zruo,j € J (similarly for i’ € Zcuo and the y;/;), and
since 0¢;/0x;; = 1:

99t
8(Eij

=logc;; —logl; — 1.

Using ¢, < ¢max and £; < Itao + Icuo = I, each component can be bounded as:

‘ 09:

8%‘1']'

< max {log ¢pax — 1, log I + 1} = M,

The proof is finalized, as there are I J total components in the gradient vector; and
likewise for the Cy-norm.

Proof of Lemma 4.3. The proof follows by tailoring the main results of [25], [120],
[146], which, however, solve the UE-cell association problem (i.e., THO only). Eq.
(4.16) can be rewritten as: E[Ryr] =

T
SV(@u(=) 12 —2islle) = (=) = 2 224 1c)

t=1

t=1

T
Z(Qt z") ||Z§H—Z?1||Ct)—(§t(zt)—|Zt—zt1||Ct))1»
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where we begin by bounding the expected dynamic regret of the relaxed (continu-
ous) preparation decisions {z"}; and, afterwards, the error of the (implementable)
discrete decisions {z;}; as can be seen from the first and second terms, respectively.
From the first term of the result in eq. (4.19), sublinear dynamic regret can be
achieved for the relaxed preparation decisions. It follows by bounding the regret of
each expert w.r.t. the benchmark and then the regret of the meta-learner w.r.t. any
expert. For the extra cost/error introduced due to the discretization of the decisions
through the quantization routine ),, we bound the term as follows:

T
~ m m m ~ (*)
E|Jz:<gt(zt )=z —Zt—1||Ct—gt(zt)+||zt—zt—1||ct>] <

=1

T

(04 Vi Tm) S B[ 373 o Blzy 0] | £

t=1 i=1j=1

T(G + v/t + bmax ) VIcnod /4 + Iruo(1 — 1/7),

leading to eq. (4.19). Specifically, for (x), we use Jensen’s inequality, the linearity
of expectation, and the Lipschitz continuity. For the latter, consider z1, 2z € Z€,
use the triangle inequality and the Lipschitz constant G of g; and of the Euclidean
norm, and define z;_1 =C, to get:

|(3e(z1) = 121 = Cler) = (3u(z2) = 122 = Clle,)
[90(z1) = §e(z2)| + |21 = Clle, — 122 = Clle | <

(6 + Vamax + bunax ) 121 = 22|

Lastly, we notice that (xx) calculates the variance of the binary z;. For y; €
{0,1}{eno / the maximum variance each component can obtain is 1/4 (the variance
per element is g(1 — ¢) due to the Bernoulli trial with probability ¢, and maximizes
for ¢ = 0.5); hence, we can upper bound the part for CHO-enabled UEs expression
in the square root with the constant IcpoJ/4. For x; € {0,1}/t10°/ the binary
vector is subject to a simplex per user; thus, each sum of THO-enabled users w.r.t.
J in the square root is upper bounded by variance of 1 — 1/.J, and the overall part
of the term in the square root has upper bound of Itpo(1 — 1/J).

<

4A.2. CONDITIONAL HANDOVERS WITH A GENERAL SCHED-

ULER

Here, we study CHOs in the most general case, namely, with a general scheduler
for the cell resources, and reintroduce the notation in the sequel. We denote by
x;;(t) € {0,1} the preparation decision: x;;(t) =1 means that cell j is prepared in
slot ¢ for user 4, and z;;(t) =0 otherwise. Also, we define the vector @, = (z;;(t) €
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{0,1},i€Z,j € J), with the decision set:

X = {m e {01}’ ’ inj < J,i 61}7
JjeT

and its convex hull X¢ = co(X) that relaxes the integrality, i.e., = € [0,1]"/. For
pi;(t) being the probability that cell j will be the highest-rate cell for UE ¢ during slot
¢, then this CHO will be realized with probability p;;(t)z;;(t), where p, = (pi;(t) €
{0,1},i € Z,j € J) and p;;(t) = Ij = argmax;y, (s (t) — 0x(t))}, with o0,(t) being
the cell-specific offsets that can vary in each slot ¢, resembling the offsets used in,
e.g., the A3 event [46], [80], [81]. We also note that a user can be served from only
one cell at a time, which is inferred from the definition of p.

With these in mind, we introduce the wtility function that the network controller
wishes to maximize as follows:

I J
gu(@) 2373 (i (i (1) (1) Tog c35(1)
U By (01— py(0) = () (1 (1) ) @ € X,

The first term of g; defines the rate of a user, which is non-zero only for its served
cell and is discounted by u; due to exogenous (i.e., independent of the preparation
decisions) effects; e.g., other UEs that executed traditional HO. The logarithmic
transformation balances the sum-rate across all users to achieve fairness [33]; how-
ever, we note that other mappings (e.g., linear) can be used to capture the specifics
of different applications. The second term of g; introduces a penalty if cells other
than the highest-rate ones are prepared to reduce resource waste, but it does not
assume a proportional-fair or round-robin scheduler as in Section 4.4; the third term
represents an additional cost if the highest-rate cell is not prepared. Moreover, we
introduce explicit scalarization parameters §; and ~; to normalize units and priori-
tize one criterion over the other according to the preferences of each MNO that can
even change over time or be different for each UE-cell pair due to different slices
[207]. Implicitly, these parameters are incorporated inside the matrices A;, B; and
C,; in Section 4.4.

At the same time, the goal of the network controller is to minimize the signal-
ing/switching overheads (or, similarly, maximize their negation), which are captured
using —d; ||xs — x—1||B,, with @, x;—1 € X. This presents the switching cost in-
duced by the signaling of preparing and releasing cells (see Figure 4.3) scaled by
b;;(t), as each cell j might have different costs for preparing and releasing cells for
each user in slot ¢ due to fluctuating traffic demands. More precisely, we define
with B, = diag(b,,(t) > 0) a positive definite matrix which has on its diagonal the
signaling weights b, (¢) € [0,1], n=4 - j when UE ¢ prepares and releases cell j, and
| - I, is its induced norm that can change over time ¢, ie., ||[&|3, = >, bn(t)z?
and its dual ||||%,, =, 22 /bn(t) [117]. The role of the parameter & is similar to
B and 7. Thus, the overall problem that the network controller wishes to solve is:

T
P53 : max Z (gt(wt) — O ||CBt - $t71||Bt)
t=1

{wt}t —
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st x e{0,1} vteT,

where g¢(x¢) — ¢ ||t — x1—1]| B, is the objective function. Solving the problem at the
beginning of the horizon T is challenging, as problems P; and P;. To design an algo-
rithm that is oblivious to the time-varying and unknown parameters and maximizes
the users’ rate, while keeping the signaling costs and the amount of wasted resources
to a minimum, we follow the steps of Section 4.5 nearly verbatim. The bounds of the
domain and gradients are bounded differently, namely, ||Vg:(x)||2 <G, ||z—x'||2 < D,
where D = VIJ and G = \/T(J — 1)32,,, + I1(10g cmax + Ymax)?, respectively, with
Bmax = Maxie7{Ft}, Ymax = Maxie7{Vt}, Cmax = max¢er{ct}. Therefore, defin-
iNg bmax = max,<r.7{b,(t)} for t € T, it holds that ||z —2'||5, < Dv/bmax = D3,

Haf'_leBt* SD/\/ bmaxéDB*; and Hv.gt(w>||Bt S G\/ bmaxéGB~

Lemma 4A.1 (Performance Analysis / Optimality Guarantee). Similar optimality
guarantees hold as Lemmas 4.2 and 4.3, but using the parameters:

o K = [logy V1+2T| +1,
2
.9]6:2]671\/%, k:1,...7K,
e n=1/VTv, withv = (Dg+1/8)(GD+2Dg)?,

o Pr=Y"/_i|@f—x; |5, (path length).
Then, the discrete decisions {xi}+, where xy € X ensure:

E[Rr] gﬁ(ﬁ (1+In(1/w})) + \/(G2 +2GE)(D% +2Dp. Pr) )+
T(G + Vbmax)VIJ 2.

The algorithm follows the same steps as CONTRA; but to diassociate them, we call
the CHO-only algorithm CHOMET (Conditional HOs via METa-learning).
Performance Evaluation. We assess CHOMET under different synthetic scenarios
to verify its robustness and showcase its learning convergence. For that, we com-
pare our algorithm against the baseline 3GPP-compliant HO/CHO algorithm using
the A3 event, which is the algorithm currently being used by MNOs and antenna
vendors [39], [81]. We use the tuple notation (# Best BS, TTT) to refer to these
comparators, where the first argument refers to the number of top-N best cells (i.e.,
highest SINR) that are prepared for each user in each slot, while the second is the
time-to-trigger (TTT, i.e., number of consecutive slots a cell must have been in the
top-N before is prepared), resembling the A3 event. For example, algorithm (3,
8) prepares the 3 highest-SINR cells for each user only if these cells remain the
highest ones for at least 8 slots. Moreover, we compare CHOMET with an optimal
Oracle that solves the optimization problem in every step using CVXPY [154]. We
note that the comparison with the oracle that has complete knowledge of the future
is computationally intensive for mixed-integer programs [36], [153]; however, our
dynamic regret guarantees hold, as can be verified from our previous analysis.

In line with prior works [111], [146], we select two synthetic scenarios as follows,
for T = 5k slots: (i) stationary: the SINR s;;(t),¢ € Z,j € J remains almost
constant across all slots ¢ € T, changing only once every 600 slots, and (i) volatile:
5i;(t) fluctuates every 10 slots within the range of [10, 30]dB [122], encompassing
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SINR changes every 10 slots, f = SINR changes every 10 slots, f = 0.3 SINR changes every 10 slots, f = 0.5

00700700 0:0070:0:0:0 00070020

A
VPPV VLYV

# of preparations/slot (avg. in last 100 slots)

v aaa A A
# of preparations/slot (avg. in last 100 slots)

7

RS S R RESSSTA

.
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

A A A A A A AAAAY]

v,
wvmvv.]

e
looooooo)

Ml cosossrsvsvesessvesed

B casasaaaaaaaaaaaaaaa)

-
N
Kl
N
Kl
¥
(]
[
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Kl
L1
0

0.1 0.5

~
= o
w

(a) (b) ()
Figure 4A.1: Effect of parameters S = 8,7t = 7,and d¢ = 6, for T' = 5k slots in the volatile
scenario (SINR changes ever 10 slots) when running CHOMET: (a) 8 = 0.1, (b) 8 = 0.3, and (c)
B = 0.5. Y-axis symbolizes the average number (last 100 slots) of preparations per slot.

poor to excellent values. In both scenarios, we randomly select the bandwidths
W; € {5,10,15,20} MHz [123], while B; takes random values within [0, 1], as
the offsets 0;(t),Vj € J. We select I =20 UEs and J =10 cells to facilitate the
calculation of the average regret, as determining the best oracle is computationally
intensive. However, we underline that the best oracle is not needed to run CHOMET.

First, Figure 4A.1 shows the effect of the parameters (3,7, and d; on CHOMET,
which, for simplicity, are assumed to be constant for the entire duration of the
experiments, namely 5; = §,v = 7v,0; = d,and u; = 1,Vt € T, where T = 5k
and SINR changes every 10 slots (volatile scenario). It is important to note that
due to the different values that each component of the objective function takes, we
focus on the comparison of the values within the same parameter (i.e, they act as
scalarization values too). For example, 5 = 0.5 > v = 5 does not imply that more
importance is given to 7; however, choosing 8 = 0.5 instead of 8 = 0.1 does. We
choose 8 = {0.1,0.3,0.5}, v = {0.1,0.5,1,5,10} and ¢ = {1,5,10,20,30}. The y-
axis of Figure 4A.1 shows the average number of preparations per slot, for the last
100 slots; due to considering 20 UEs and 10 cells, this number cannot exceed 200.

For a specific v, the effect of 8 and ¢ on the number of prepared cells depends on
the interplay of these parameters and should be carefully examined. If -y, the penalty
for not preparing the best cell, is small (e.g., ¥ = 0.1) and 5 is high (e.g., 8 = 0.5 so
fewer cells can be prepared), then as § increases, the switching cost becomes more
significant, making it less beneficial to prepare different cells to determine the best
one. Consequently, the number of prepared cells decreases; e.g., setting 8 = 0.5
and v = 0.5, we observe 24 and 19 preparations on average for § = 1 vs § = 30,
respectively. Conversely, if v is large, the penalty for not preparing the best cell
is substantial, and as § grows and switching becomes more costly, the algorithm
decides to keep more cells prepared for more slots. As a result, the number of
prepared cells increases even up to x2 times, as we can see for § = 0.3, v = 10, and
0=1vséd=30.

For a fixed §, the number of prepared cells increases with -y, as higher v imposes
a greater penalty for not preparing the highest-SINR cell. To mitigate this penalty,
the algorithm prepares more cells to ensure that the best is found. This trend is
consistent for all three § values considered, although a higher 8 limits the number
of cells other than the highest-SINR that can be prepared, leading to differences in
absolute values. For instance, our algorithm makes approximately 200 preparations
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Figure 4A.2: Volatile scenario (SINR changes ever 10 slots) for 8 = 0.5,y = 10,and é: = 5,Vt € T
with T' = 5k slots: (a) average dynamic regret and (b) total objective values for the last 50 slots,
of CHOMET and benchmarks.
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Figure 4A.3: Stationary scenario (SINR changes every 600 slots) for 8; = 0.5,y = 10,and &; =
5,Vt €T with T' =3k slots: (a) average dynamic regret and (b) total objective values for the last
50 slots, of CHOMET and benchmarks.

on average per slot in Figure 4A.1a, meaning that all cells for all users are prepared
in each slot, while we observe at most 29 preparations per slot (i.e., 1-2 cells per
UE) in Figure 4A.1c; for that reason, lower values than 8 = 0.1 or higher than
B8 = 0.5 are not considered in the evaluation. We underline that the interplay of
these parameters also changes significantly depending on the conditions (i.e., SINR).

In the volatile case, Figure 4A.2a shows the average dynamic regret of our pro-
posed algorithm and the 3GPP-compliant competitors, with the former surpassing
all (q, r), for ¢ = {1,3,7} and r = {8,12} (blue and green lines) by up to 375%
in slot ¢ = 5k. Even though at first glace competitors (1, 2), (3, 2) and (7, 2)
seem to have comparable performance with CHOMET, we underline that their average
dynamic regret stays almost constant for all slots (“stuck” in sub-optimal decisions).
This claim can be verified from Figure 4A.2b, where the accumulated objective in
the last 50 slots of the best comparator, namely (1, 2), is 180% less than CHOMET.
Lastly, in a stationary (almost static) case, such as this of Figure 4A.3 where SINR
changes very slowly (5 times in the total T = 3k), comparators (1, 2), (1, 8) and
(1, 12) behave similarly to CHOMET in terms of average regret and total objective
values. This is reasonable, as preparing only the single highest-SINR cell (which is
the one that the user is allocated) is the best policy to follow when conditions stay
the same. Thus, we verify that CHOMET is adaptive to both volatile and stationary
cases, approaching the behavior of an omniscient benchmark.
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