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Abstract

In topology optimization of transient problems, memory requirements and com-
putational costs often become prohibitively large due to the backward-in-time
adjoint equations. Common approaches such as the Checkpointing (CP) and
Local-in-Time (LT) algorithms reduce memory requirements by dividing the
temporal domain into intervals and by computing sensitivities on one interval
at a time. The CP algorithm reduces memory by recomputing state solutions
instead of storing them. This leads to a significant increase in computational
cost. The LT algorithm introduces approximations in the adjoint solution to
reduce memory requirements and leads to a minimal increase in computa-
tional effort. However, we show that convergence can be hampered using
the LT algorithm due to errors in approximate adjoints. To reduce mem-
ory and/or computational time, we present two novel algorithms. The hybrid
Checkpointing/Local-in-Time (CP/LT) algorithm improves the convergence
behavior of the LT algorithm at the cost of an increased computational time
but remains more efficient than the CP algorithm. The Parallel-Local-in-Time
(PLT) algorithm reduces the computational time through a temporal paralleliza-
tion in which state and adjoint equations are solved simultaneously on multiple
intervals. State and adjoint fields converge concurrently with the design. The
effectiveness of each approach is illustrated with two-dimensional density-based
topology optimization problems involving transient thermal or flow physics.
Compared to the other discussed algorithms, we found a significant decrease in
computational time for the PLT algorithm. Moreover, we show that under cer-
tain conditions, due to the use of approximations in the LT and PLT algorithms,
they exhibit a bias toward designs with short characteristic times. Finally,
based on the required memory reduction, computational cost, and convergence
behavior of optimization problems, guidelines are provided for selecting the
appropriate algorithms.
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adjoint sensitivity analysis, checkpointing, local-in-time, parallel-local-in-time, topology
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1 | INTRODUCTION

Topology optimization is used to find the optimal material distribution for problems involving various types of physics
such as mechanics, thermal, fluidics, magnetics, and many more. Within the vast literature on topology optimization,
much attention is given to static problems. Few work focus on solving transient optimization problems,! although there is
often a need for considering transient effects, for example, when designing thermally actuated compliant mechanisms,?
transient heat conducting devices,* or fluid pumps.*

Gradient-based algorithms such as the method of moving asymptotes® (MMA) are often used to solve optimiza-
tion problems such as topology optimization. To compute the required gradients, adjoint sensitivity calculations are
commonly used due to their computational efficiency for problems with many design variables. For static problems,
first the state equations pertaining to the optimization problems physics are solved. Secondly, the adjoint equations
are solved resulting in the adjoint variables which are combined with the state solution to compute the sensitivities. A
transient adjoint sensitivity computation follows the same procedure but has a larger computational cost and requires
more memory because the state solutions are required to compute the sensitivities. During the forward-in-time solve
of the state equations the solutions are thus stored for every discrete time step. Subsequently, the adjoint equations
are solved and the adjoint solution is combined with the state solution to compute the sensitivities. The adjoint
equations are however a terminal value problem and need to be solved backward-in-time.5 A transient adjoint sen-
sitivity analysis may lead to prohibitively large memory requirements as the state solution needs to be stored for
every time step, and to large computational cost since solving the transient adjoint equations is often as expensive
as solving the transient state equations. The described algorithm for transient adjoint sensitivity computation will be
referred to as the Global-in-Time (GT) algorithm as it solves the adjoint and state equations in the whole (global) time
domain at once. In this paper we investigate algorithms to reduce memory requirements while keeping computational
cost low.

A relatively straightforward method to reduce memory requirements for transient optimization problems is the
method of equivalent static loads (ESLs). Experienced designers are able to make heuristic approximations or create
simple computations of dynamic peak loads and consequently optimize dynamic structures using ESLs representing
these peak loads.” Advancements on these ad hoc design practices have been made by computing the ESLs of every dis-
placement field computed in a transient analysis, where the ESLs at each time step is constructed such that it results
in the exact displacement at that time step. Subsequently, these ESLs are used in a static optimization containing many
loads.® Memory requirements may become substantial computing and storing an ESL of the same size as the state
vector at each time step. Transient problems with quickly decaying transient state solutions, referred to as stiff prob-
lems, may be optimized using ESLs as the transient part of the state response may be neglected. An example of such
a problem would be the dynamic optimization of a system which is subject to high stiffness and relatively low inertia
effects. Although ESLs are useful for many simple linear design applications, transient effects are ignored and when a
complex transient system is optimized the ESL approach may become inaccurate. In these optimization problems the
transient response cannot be neglected but due to a regularity of the input and linearity of the state equations, model
order reduction techniques may be used to reduce memory and/or computational cost. Methods based on model order
reduction are able to circumvent the backward-in-time computation of the adjoint equations® or reduce the amount
of required storage.'® Frequency based modal reduction techniques have been used to reduce the amount of storage
in transient topology optimization but are limited by the computational cost of solving the eigenvalue problem,'! and
have been shown to become computationally worthwhile only when when many time steps are considered.!? How-
ever, when complex boundary conditions which change drastically over time or nonlinear systems are considered,
constructing an accurate modal or proper orthogonal decomposition may prove cumbersome. For these systems, solv-
ing the complete state and adjoint solutions as in the GT algorithm is recommended. Characterizing the system to be
optimized is crucial for the selection of the appropriate method for topology optimization of transient problems. In
this work we focus on methods for topology optimization of transient problems which are nonlinear and/or subject to
complex loads.

Several approaches tackling the large memory requirements of the GT algorithm have been proposed in literature.
A well-known method to reduce data storage is the Checkpointing (CP) algorithm!*# in which the temporal domain is
subdivided into multiple intervals. The algorithm consists of two steps. First, the forward state solution is computed but
only stored at the interfaces between the intervals, that is, the so-called checkpoints. Second, the state solution is computed
and stored only for the final interval and the adjoint equation is propagated backward on this interval. Subsequently, the
state solution on the final interval is removed from memory, the state solution on the second-to-last interval is computed
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again and stored on each time step and the adjoint variables are propagated further backward, and so on. Although the
CP algorithm reduces memory requirements, it increases computational cost as the state equations are evaluated twice:
for the computation of solutions on the checkpoints and for the backward propagation of the adjoint variables. The CP
scheme was originally introduced to find the sensitivity of iterative functions using automatic differentiation,'* where a
binomial distribution of checkpoints was proposed which was proven optimal with respect to memory requirements.'>
Further developments of the CP algorithm have focused on problems where the number of time steps is not known a
priori.t&!7

Another method to reduce memory requirements is the Local-in-Time (LT) algorithm.!8 Similar to the CP algorithm,
the LT algorithm divides the temporal domain into intervals but stores approximate adjoint solutions on the check-
points instead of exact state solutions. The LT algorithm computes the sensitivity contribution of one interval at
a time. To compute the sensitivity contribution of an interval, first the state equations on the interval are solved
forward-in-time starting with an exact initial condition. Subsequently, the adjoint equations are solved backward-in-time
starting from an approximate terminal adjoint solution for the interval. The sensitivity contribution is computed by
combining adjoint and state solutions. Starting at the exact terminal state solution for the current interval the exact
state solution can be computed in the next interval. Using an approximate terminal adjoint in the next interval, adjoint
solutions can be evaluated and combined with the state solution to compute the sensitivities. To perform the sensi-
tivity analysis, the full state solution needs to be stored for only one interval at a given time. Moreover, by updating
the approximate adjoint solutions at the checkpoints in each design iteration, the LT algorithm is able to converge to
an optimum while simultaneously converging the approximate adjoints to the exact adjoints. However, since approx-
imate solutions are used for the adjoint equations, the LT algorithm computes approximate sensitivities in contrast
to the GT and CP algorithms which compute exact sensitivities. The main advantage of the LT algorithm is its com-
putational cost. As the LT algorithm only solves the state equations once on every interval, it has a computational
cost comparable to the GT algorithm and lower than the CP algorithm. Three dimensional topology optimization
problems have been successfully tackled using the LT algorithm!®2° but further research on the effect of approx-
imate adjoint fields on the convergence behavior of the optimization process and the obtained optimal solution
is needed.

Simultaneously reducing the error on approximate adjoint variables and converging to the optimal design share simi-
larities with multiple shooting algorithms for optimal control.?! Such algorithms split the temporal domain into intervals
to which are attached both approximate terminal adjoint and approximate initial state solutions. Subsequently, con-
trol problems are optimized by simultaneously solving for the control variables, approximate state, and approximate
adjoint variables. Moreover, using approximate state and adjoint solutions, all temporal intervals can be decoupled and
parallelized in time.?? In comparison, common practice for parallel speedup in topology optimization is to parallelize
via domain decomposition.?*?* In domain decomposition, state equations are solved by splitting the spatial domain
into several subdomains and performing computations on these domains in parallel.?> A limitation in these methods
is that adjacent domains share certain degrees of freedom (DOFs) and thus need to communicate with each other. If
many subdomains and processors are used, a substantial amount of time is spent on communication.?>* However,
when parallelization via domain decomposition saturates, parallel-in-time algorithms often offer opportunities for further
parallelization.?’

In this work we focus on methods which balance memory requirements and computational cost for topology
optimization of transient problems which are nonlinear or subject to complex loads. We investigate the limitations
of the CP and LT algorithms in terms of computational cost and convergence behavior, and propose two novel
algorithms:

« the hybrid Checkpointing/Local-in-Time (CP/LT) algorithm which introduces an error measure and corrections for
the LT algorithm,

« the Parallel-Local-in-Time (PLT) algorithm which parallelizes the optimization process by decomposing the time
domain.

The new CP/LT algorithm addresses errors in the LT algorithm while keeping computational cost to a minimum. The
PLT algorithm divides the temporal domain into parallel intervals and performs the computations on all these inter-
vals at once while keeping computational overhead to a minimum by carrying out all parallel communication at once
and only communicating between adjacent intervals. The computational cost, memory requirements, and limitations of
the proposed algorithms are evaluated and compared to the state of the art on two-dimensional density-based topology
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optimization problems: a transient heat conductor and a transient fluid pump. Both are discretized using the finite volume
method.?®

The remainder of this article is organized as follows. In Section 2, the exact methods for transient sensitivity analysis
are introduced. A general approach for solving the transient state/adjoint equations and combining the solutions into the
sensitivity computations is given and the CP algorithm is introduced. In Section 3, approximate algorithms for transient
sensitivity analysis are introduced. Subsequently, in Section 3.1, we derive the LT algorithm from these general equations
and identify some issues concerning stability and convergence. In Section 3.2, the novel CP/LT algorithm is proposed to
address these stability and convergence issues. The final novel PLT algorithm which efficiently parallelizes the transient
problem is developed in Section 3.3. The theoretical memory requirements and computational cost of the GT, CP, LT,
CP/LT, and PLT algorithms are analyzed in Section 4, after which the algorithms are compared and evaluated using
actual optimization examples in Section 5. Stability and convergence of the approximate algorithms are investigated in
Section 5.1 using a thermal transient optimization problem and computational time is compared in Section 5.2 using a
transient flow optimization problem. Finally, guidelines for algorithm selection are given in Section 6 and a discussion
and conclusion on the results and algorithms for transient sensitivity analysis are provided in Section 7.

2 | EXACT METHODS FOR SENSITIVITY ANALYSIS OF TRANSIENT
PROBLEMS

In this work we focus on methods for topology optimization of transient problems which are nonlinear or subject to
complex transient loads. Optimization is performed using gradient-based algorithms which require the sensitivities of the
objective and constraints with respect to the design variables. We are thus interested in methods which aim to compute
discrete adjoint sensitivities such as the GT, CP, and LT algorithms. In this section we investigate the GT and CP algorithms
which compute exact discrete sensitivities.

2.1 | Discrete transient sensitivities and the Global-in-Time algorithm

A generic topology optimization problem for transient physics on spatial domain X € Qwith boundary " = Q \ @, where
Q is the closure of Q, is defined as:

minimize F = / a / F, ), s(x))dQdt
5(%) =0 Ja
subjectto  R(u(X, t), s(X),t) = 0, te[0,t], X € Q,
Reu(E, 1), 0u, 1)/0%, s, % 0) = 0, £ € [0,6], X €T, W
U@t = 0) = a(x), YeQ,
gi(s(X)) <0, iel, XeQ,

where t; is the terminal time, u(x, t) is the time dependent state solution with (X) as initial condition, s(X) is the design
field, R(u(X, t), s(X), t) is the Partial Differential Equation (PDE) constraint with boundary conditions Rr(u, ou/0X, s, X, t)
defined on boundary I', and g;(s(X)) is the ith inequality constraint in set I. Subsequently the continuous optimization
problem is discretized in space and time as:

N
minimize F =~ ZFn(un,s)At
S
n=0
subjectto R,(y_1,Un,S,t,) =0, ne{l,2...N}, ()
Ro(ug, s, to) =0,
gi(s) <0, iel
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where the full temporal domain ¢ € [0, ;] is divided into N time steps of length At =t,/N, u, is the column contain-
ing discretized state variables at time ¢,, all discrete design variables are gathered in column s, the continuous integral
objective is discretized at time step n using F,At, the column R, (u,_1, u,, 8) contains all discretized PDE constraints and
boundary conditions at time t,, Ro(uo, s, fo) contains the initial conditions, and g;(s) is the i inequality constraints on
s. Furthermore, the discretized time step R, (u,-1, Uy, S, t,) accounts for several discrete integration techniques such as
backward/forward Euler, Crank-Nicolson, and several of the Runge-Kutta methods. The equations derived in this work
are thus valid for these methods which can be described using R, (u,-1, Uy, 8, t,). To compute the sensitivities of the PDE
constrained objective, an augmented objective F* is constructed,

N
F* = Fy(uo, )AL + AlRo(to. . 10) + Y (Fa(ttn, )AL+ AL Ry (U1, Un, 8. 1)), 3)

n=1

where the constraints are introduced using adjoint variables 4, at time t,,. Subsequently, to construct the adjoint equations,
the sensitivities are derived as:

N-1

dF* oF, dR, oF, dR, ORp41 \ Ouy,
= At+ A — + At+ A, —+ A

ds ;( os " os <6un "ou, "™ ou, | ds

()FN ORN aFN aRN ()uN
+ —At+ A, — + | —At+ A, — | —,
os N os <6uN NauN> os

“4)

where we drop the dependencies of R, on u,_1, u,, s, and ¢, for brevity. To avoid the computation of matrix ou,/ds, we
set all sums multiplied by du,, /ds to zero, resulting in the adjoint equations:

-7 T
n=N iy =R\, (5a)
0uN duN
-T T R, .. T
ne{N-1,N-2,...0) :,1n=—aR“ OFy At+M Ans1 ). (5b)
ou, u, u,

Since the adjoint equations only have a terminal condition for Ay, they can only be solved backward-in-time starting at
tn = t; taking backward steps until £, = 0. A notable property of the backward-in-time adjoint equations is the fact that
they resemble the forward-in-time state equations. If we assume that R, is a linear equation with respect to u,—; and u,,
the forward-in-time state equations may be written as the solution of:

n=0 :uy =iy, (63.)

oR, ! OR,
nef{l,2,...N}:u,=- + U, |, 6b
{ } n dun <¢1n dun—l n-1 ( )

where i are the discretized initial conditions and g, is the part of R, independent of the state variables. Since the
backward-in-time adjoint equations mirror the forward-in-time state equations, we can assume that the same stability
and convergence criteria hold for both equations. However, for nonlinear R, (#,-1, W,, s, t,) there is an important differ-
ence between the state and adjoint equations. As the adjoint equations are a linearized version of the state equations,
solving the adjoint equations may take significantly less computational work and time than solving nonlinear state
equations. At best both the state and adjoint equations are linear and require the same amount of computational
work.

After solving the adjoint equations backward-in-time, the adjoint variables can be combined with the stored state
equations to compute the sensitivities:

N
dF oF, - R,
— = —At+ 1 . 7
ds Zﬂ( 3s T > ™

To compute the sensitivities, two types of equations need to be solved; the state equations pertaining to the physics, and
the adjoint equations. The most straightforward method to solve these equations is the GT algorithm which first solves
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the state equations forward-in-time and stores the state solution at every time step. Subsequently, the adjoint equations
are solved backward-in-time using Equation (5) while simultaneously updating the sensitivities using Equation (7). As
the sensitivities depend on dR,/ds which in turn is dependent on u, and u,_;, the state solution is thus required while
propagating the adjoint solution backward to computed the sensitivities. The full state solution is thus stored during the
forward solve and the main restriction in using the GT algorithm is the large memory requirement. For a problem with
a state solution u, of size m and involving N time steps, memory requirements M scale proportionally as M « mN. To
compare the computational cost of the following algorithms in Sections 2.2 and 3 we evaluate the cost of the GT algorithm.
We define the cost of solving one state step R, (u,—1, Uy, 8, t,) as ¢; and the cost of solving one adjoint step using Equation (5)
and consequently updating sensitivities using Equation (7) as ¢,. The cost of the adjoint step and updating sensitivities is
combined as this is a practical implementation in code. For highly nonlinear systems the cost of solving an adjoint step
is much cheaper and we define ratio r. = ¢, /c;. As the GT algorithm solves a state/adjoint step only once for all N time
steps, the computational cost C scales proportionally as C o« Neg(1 + 7).

2.2 | The Checkpointing algorithm

To reduce memory requirements the CP algorithm!>'* may be used. The algorithm subdivides the temporal domain into
K discrete intervals of length Af = 1, /K, resulting in K + 1 checkpoints 6, where each 6y is assumed to correspond to
one of the discrete times ¢, but not all ¢, have a corresponding 6. The K intervals are thus defined as ®; = [0y, 0k+1], and
contain all discrete times {n|t, € [0k, Ok+1]}, as illustrated in Figure 1. The subscript k is used to denote checkpoints and
intervals. Furthermore, we use state/adjoint variables Uy / Ak as the variables at checkpoint k where Uy = u, and A, = 4,
at 0y = t,, respectively. These variables and subscript k are introduced to clearly describe and visualize the algorithms
presented in this paper as will be shown for the CP algorithm in Figure 2. To compute sensitivities, the CP algorithm first
computes the full forward state solution and stores only Uy at checkpoints 6. The full state solution is only stored for the
last interval ®x_; and adjoint equations are subsequently solved and used to update the sensitivities, after which the state
solution on the terminal interval can be removed from memory. Next, the adjoint solution is propagated further backward
by recomputing and storing the state solution at the final to last interval ®x_, from the stored state solution Ug_, at
checkpoint 0x_,. Thus by continuously recomputing the state solution on the previous interval, and removing used state
solutions from memory, exact sensitivities can be computed while reducing the memory requirements. A schematic of
the CP algorithm can be found in Figure 2.

Depending on the number of intervals K, memory may be greatly reduced. If an initial state solution Uy of size m
is stored for each of the K intervals except the first where it is found by solving Ry(uy, s, to), this requires the storage of
m(K — 1) discrete state variables. Additionally, on each of the intervals we require the storage of the full state solution
which requires a memory of mN /K discrete state variables. Memory requirements thus scale as M « m(K — 1) + mN /K,
and are reduced with respect to the GT algorithm. To reduce the computational overhead, we recommend to use the
minimal number of intervals allowed by the memory limitations. Other approaches for optimal memory reduction such
as the binomial distribution of checkpoints are also proposed in the literature.'

1 6

—!
FIGURE 1 A temporal domain discretized using N = 24 time steps, and subdivided into K = 4 intervals ©y = [0y, 6x,1], where 6 are
the temporal checkpoints. Each interval ®; contains time steps {n|t, € [6k,0.1]}. For instance, the first interval @, is defined as ®, = [ty, ts],

and contains discrete time steps n € {0, 1,2, 3,4, 5,6}.
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FIGURE 2 A schematic of the CP algorithm. The numbers represent the order of operations. The dashed green line represents the
solving of the full forward state solution while only storing it at the checkpoints. A green arrow represents the computation and storage of
state solutions on a complete interval. A blue arrow represents the backward computation of adjoint variables and update of sensitivities
using the adjoint variables and stored state variables.

The reduced memory in the CP algorithm comes at a higher computational cost as state solutions are recomputed on
the first K — 1 intervals of length N /K. Recomputation of the state solutions is associated to an additional cost proportional
to ¢s(N/K)(K — 1) = Neg(1 — 1/K). The computational cost of the CP algorithm is thus the cost of the GT algorithm (C «
Ncg(1 + r.)) with the addition of the recomputed state solutions, that is, C « N¢s(2 + r. — 1/K).

3 | APPROXIMATE METHODS FOR SENSITIVITY ANALYSIS OF
TRANSIENT PROBLEMS

Other approaches for the reduction of memory requirements and computational time are based on approximations of
the state and/or adjoint variables. Generally, these methods rely on an iterative procedure to update approximate state
and/or adjoint variables and the design until convergence. In a standard optimization procedure, design variables §/ at
optimization iteration j are iteratively improved by computing sensitivities dF* /d¢' and using a gradient-based optimizer.
Exact solutions for all state and adjoint variables are computed. In the proposed approximate methods, state and/or
adjoint equations are not satisfied at every iteration j. Approximate states U, ~ U’ and/or adjoint variables Ak ~ A at
checkpoints 6y are updated using fixed point iterations. The idea is to let these Varlables converge to exact solutions 51mul

taneously with the convergence of the design to the optimum, with the purpose of reducing memory requirements and/or
computational time. Examples of such algorithms are the LT and multiple shooting type algorithms. In this section,
we first introduce the LT algorithm and discuss its limitations. Subsequently, we propose some modifications to the
LT algorithm to increase stability and introduce a novel multiple shooting type algorithm for topology optimization of
transient problems.

3.1 | The Local-in-Time algorithm

To reduce memory requirements, the LT!® algorithm can be used. In the LT algorithm, adjoint variables are approx-
imated and solved for iteratively. The algorithm computes the sensitivities successively on each interval ®;, moving
forward-in-time. Memory is reduced as the state solution is only stored on a single interval ® at a time. However, errors

are introduced as we approximate K]k ~ A’]'c and solve for the exact adjoint over design iterations j. Furthermore, to ini-
~j=0 ~j=0
tialize the LT algorithm approximate adjoint variables A]k are required and are set to A]k = 0 as suggested by Yamaleev

et al.!® The process to perform the complete sensitivity analysis is illustrated in Figure 3. The contribution of one interval
0y is computed following three steps:

1. Computation and storage of the state solution Firstly, the initial state solution u];l = U’,'( at time t,, = 6y is retrieved,
which is either the initial value from RO(U’ s, tp) = 0atk = Oor the terminal value U’k at time 6y on the previous interval
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O_1. Starting from this initial state solution, the complete state solution is evaluated and stored forward-in-time until
U’k+1 at time 6y, is reached.
2. Computation of approximate adjoint solution and sensitivities We retrieve an approximate terminal adjoint

variable Ijn = KJkH attimet, = 6y,1 from memory, or when the terminal interval O, is being investigated we compute
the exact terminal adjoint /IJN = A]K by solving Equation 5a. Subsequently, Equation (5b) and the stored state solution
u, are used to propagate the approximate adjoint backward as:

~j JdR
/ljn = - IRy il AL+ i | /1,14_1 ,forn € {n|0, + At < t, < Ops1}, (8)
ou, u, u,

while simultaneously updating the sensitivities using Equation 7.

3. Update and storage of approximate adjoint variables After computing the sensitivities on the interval, we solve
Equation 5b one final time to compute the approximate adjoint at the checkpoint at time t, = ) for the next design
iteration j + 1, as:

. -7

~ oR

/ljnﬂ x — Ry oFy "At+ i ! inH , for n|t, = 0. 9
u, ou, ou,

~j+l

The approximate adjoint Ajk = /1 ! from Equation 9 is stored to be used as a terminal value at tn = 6 for 1nterva1 Ok-1
j+1

in the next design iteration j + 1. We emphasize that within iteration j, adjoint vector ,l,, = Ak and not /1 = Ajk at

time ¢, = 6y is used to update the sensitivities using Equation (7).

After the evaluation of sensitivity contributions on interval @y, the state solutions on the interval are removed

from memory. Starting from the solution u’ U’k+1, the sensitivities in domain ®k+1 are computed as shown in the LT

schematic in Figure 3. In the LT algorithm, approximate adjoint variables l,, = Akﬂ are used to compute sensitivities
on interval ©. They are propagated backward-in-time and used to update Ak = G(Ak+1) using Equations (8) and (9).

Here, we define G(Ak+1) as an operator which propagates adjoint variables backward-in-time over an interval as used in
Figure 3, which we find to be a linear operator by inspecting Equations (8) and (9).
It should be noted that the adjoint variables at time ¢, = ty are always exact as they are computed using Equation 5a,

and all adjoint solutions on terminal interval ©x_, are thus exact. Consequently, when adjoint variables have stabilized
~j+1

&, = A,
variables have converged to the exact variables found in the GT algorithm (KJk = A’]-(). The idea behind the LT algorithm

= G(K],'{H)), the exact variables from the terminal interval propagate backward and the approximate adjoint

~j+1 ~j
is thus that approximate adjoint variables are improved by Ajk = G(AJkH) and converge to the exact values as the design
converges to the optimum and stabilizes.

/_\1/\ 3/\"%/\1/\_/9\/

o i 72 |
| | |
2 /\/ \—o "
+
AJ“ GA) A2 '=GAY) AN =6@n)

FIGURE 3 Aschematic of the LT algorithm. The numbers represent the order of operations. A green arrow represents the computation
and storage of state solutions on a certain interval. The blue arrow represents the computation of adjoint variables and update of sensitivities
using the stored state and computed adjoint variables. Finally, the red arrow represents the update of the approximate adjoint variable.
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Memory requirements may be significantly reduced using the LT algorithm. Since the adjoint vector Ay and state
vector Uy both have the same size m and the LT algorithm stores the approximate terminal adjoint variables on each
of the K intervals except the last, m(K — 1) discrete approximate adjoint variables need to be stored. In addition, the
complete state solution on one of the intervals at a time is stored which requires the storage of mN/K discrete state
variables. The memory requirement of the LT algorithm thus scales as M « m(K — 1) + mN /K, which is identical to the
CP algorithm.

Whereas the CP algorithm reduces memory at the cost of increased computational time compared to the GT algorithm,
the LT algorithm decreases memory requirements with no significant increase in computational time. As the state and
adjoint solutions are solved only once per interval, the computational cost of the LT algorithm is exactly the same
as the cost of the GT algorithm: C « Ncs(1 + r.). However, this does assume that the convergence of the optimization
process using the LT algorithm is not negatively affected by the use of approximate adjoint solutions and sensitivity
information.

3.1.1 | Stability and convergence of the LT algorithm

In the LT algorithm, it is assumed that as a design converges over multiple design iterations, the adjoint
field will also converge to the exact adjoint field resulting in accurate sensitivities. Using these sensitivities,
we ensure an accurate local minimum is found. The assumption is thus that upon stabilization of the design,

the adjoint field stabilizes and A’I'{zxjsz(K]kH). To allow for both the design and adjoint fields to sta-
bilize, two types of convergence are necessary: local convergence and global convergence. Local convergence
relates to the decrease in the error of the approximate adjoint field on subdomain ®;. Assuming that, by

backward-in-time propagation of 1~\Jk+1 = G(Kjkﬂ), the error in 1~\jk+1 decreases with respect to the error in /N\jk+1
on every interval ®;, we are able to deduce that upon a stable nonchanging design s/ all approximation errors
will reduce to zero. Global convergence relates to the simultaneous convergence of the design and approximate
adjoint field.

Local convergence

Using a modal analysis of the backward-in-time adjoint equations, local convergence is investigated. We assume that
the exact adjoint variables 4, at time f, can be expressed as the sum of the approximate adjoint variables and a
correction Al,:

An = An + Ady. (10)

Furthermore, we assume that the approximate adjoint variables approach the exact adjoint variables as found in the GT
algorithm in a stable optimum such that Zn ~ A, and the adjoint correction approaches zero A4, — 0. We thus inves-
tigate the evolution of the corrections by constructing a time stepping scheme for the corrections. In Equation (11a),
the exact adjoint equation is repeated from Equation (5). The improved approximation 1{1 = I]n + A/IJ;, is substituted into
Equation (11a) resulting in Equation (11b):

=T
. T .
M=o B} (g Renly ) (112)
od, ) \oud o
=T
N JR OF, .  ORu1'  ORuul,
Tn+ MM, = - 22 BAL L T+ LAY ). (11b)
ol ) \ou o o,

To form the update of the adjoint correction over one time step we subtract the update of the approximate adjoint in
Equation (8) from Equation (11b), resulting in:

-T

. T .

ad, = B} Rl (12)
ou, ou,

n
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which propagates the correction one step backward. Subsequently, the adjoint correction can be propagated over an entire
interval from time step n = ny, at terminal time ¢, = k.1 until time step n = n at initial time ¢, = :

Myey1 T T
AAw:(IT _<@Ei> _§&_>AAH1=GAmon (13)
au]n—l au]n—l

n=m;+1

for which we used AA; = A4, at 6y = t,, and we define operator G, which propagates the adjoint correction backward over
an interval as in Equation (13). Operator G, thus differs from operator G in the fact that G propagates an adjoint variable
using Equations (8) and (9), and G, propagates an adjoint correction using Equations (12) and (13). Further analysis of
local stability is performed by assuming the state equations R,(u,, #,-1, 5, t,) to be linear with respect to u,, and u,_;.
Although stability criteria can be derived for nonlinear state equations, proving local stability for nonlinear systems is
out of the scope of this work. We assume linear state equations R“", which are used to represent any linear time stepping
scheme:

RIM Wy, 1, 8, tn) = Wy — Ap($)Uy_1 — g,y (S, 1) = 0, (14)

where the state update matrix A,(s) and the external load vector q,(s, t,) are both independent of u,, and u,_,. We note
that any linear time stepping scheme (such as Forward Euler, backward Euler or Crank-Nicolson) can be transformed
into R%" by simple matrix manipulations. Consequently, the state variables are updated following the linear time stepping
scheme:

U, = AUy + q,,(8, tn). (15)

This linear time stepping scheme is only stable if all eigenvalues ¢; of matrix A, (s) are bounded as |¢;(K;,)| < 1. Returning
to the propagation of the adjoint correction we substitute derivatives:

aRlin JR!in
nl oy =4, (16)
ou, ou, |

into the correction update in Equation (13), and find:

N1
AAg = ( I A;>AAk+1. 17)

n=n;+1

Consequently, the eigenvalues with which the adjoint errors are propagated backward are also smaller than one
|; (AL) | = |¢i(An)| < 1. We may conclude that if the discrete state equations for a linear transient problem are stable then
the discrete adjoint equations will also be stable and the adjoint error AAy will decrease over an interval. Furthermore,
for a larger decrease in error, the number of steps in an interval ny,; — nx > 1 should be large or the absolute eigenvalues
|@$i(An)| < 1should be smaller. However, a fine spatial mesh and thus a large size of the state solution m may cause large
memory usage and thus require a user with limited memory to use many short intervals K > 1, which is prohibitive for
the local convergence of the LT algorithm.

Global convergence
One of the most important assumptions of the LT method is that the design stabilizes and converges, which allows for the
adjoint field to converge to the exact adjoint solution over multiple design iterations. This is caused by local convergence

and the terminal adjoint A{K = ,15\] which is exact by definition. When the design § and the approximate adjoints K]k

stabilize, the correct terminal adjoint A’% propagates backward-in-time to all other IN\jk, which must also be exact due to
local convergence. Stable design and adjoints thus lead to exact adjoints and consequently an exact optimum where the
objective is stationary dF* /ds = 0.

If the design does not stabilize, the adjoint field will not converge to the exact field resulting in erroneous sensitivities,
which in turn, can cause the design to destabilize. This type of stability is referred to as global stability in this paper.
By changing the adjoint equations, state equations and resulting state solutions, a design update changes the adjoint
solutions. The update of the design as §*! = ¢/ + ¢/ is thus associated with a change in exact adjoint variables A’;l =

Aj,'{ + 5AJ}'€. If we assume local convergence is satisfied, we expect the backward propagation of the approximate adjoint over
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. . . . ~J <+l j . ; . .
an interval to result in the exact adjoint G(Ajkﬂ) = Ajk ~ AJk, but only for the current design §. By updating the design,
we change the exact adjoint solution by §A’, which in turn, introduces an error in the approximate adjoints estimated

using the exact adjoints in the previous design iteration:

~j+l

Ae ~ A=A - 6N (18)

Conversely, as the sensitivities are dependent on the approximate adjoint variables and as we aim to use gradient-based
. ~j+1 ; . .

design updates, 5¢/*! is dependent on A],:r ~ A’kJr1 - 5Ajk and thus on 5A’k. For the optimization procedure to stabilize,

we require the effect of 5Ajz; on §s/*! and subsequently the effect of 5§/*! on cSA’,':rl to decrease the change in adjoint

variables, such that |5A’I‘€+1| < |5A’I-c|. We call instabilities due to this feedback loop of adjoint and design changes strong
global convergence issues. A formal proof of strong global convergence is out of the scope of this paper and is not further
discussed.

Beside strong global convergence, we can make some observations using the similarity between state and adjoint
equations leading to weak global convergence issues. As shown in Section 2.1, the state equations resemble the adjoint
equations and we expect features with large characteristic times in the state equations to also be associated with large
characteristic times in the adjoint equations. Large approximate characteristic times®® are associated with large eigenval-
ues and relatively large settling times*® over which state solutions stabilize. Consequently, adjoint errors decay relatively
slow in these features. Further examples of these features and the computation of characteristic times will be given in
Sections 5.1.1 and 5.2.1. Features with short characteristic times will have faster settling times and eigenvalues leading to a
stronger local convergence. Essentially, we expect that the correct sensitivities for features with short characteristic times
will be quickly found, while features with long characteristic times will have inaccurate sensitivities and may not be found
by the optimizer. This introduces a bias toward features associated with short characteristic times. The LT algorithm may
converge to inferior local optima containing features with shorter characteristic times than the local optima found by the
GT algorithm which contains features with longer characteristic times.

We thus identified two types of stability which can be enforced in the following ways. For local stability we require
the absolute eigenvalues to be smaller than one. To promote local convergence, we either require the maximum absolute
eigenvalues to be much smaller than one, or the interval lengths to be relatively long. A global stability criterion is harder
to define. In the authors experience, by enforcing local stability and using optimization methods which limit large changes
in design such as MMA,> global stability issues can be overcome. Since the MMA employs adaptive move limits, design
changes are restrained which restricts the associated changes in adjoint SAJI'(. We will illustrate this fact using the examples
in Section 5 and particularly the example in Figure 10B where we will find global stability issues which resolve themselves
after additional design iterations. Furthermore, in this section, we only discuss the characteristic time in broad terms, and
do not give strict criteria for the adjoint equations to be stable leading to consistent sensitivities. However, in Section 5, we
examine the stability requirements using practical examples. In Sections 5.1.1 and 5.2.1 we study the characteristic times
in more detail for a thermal and a flow problem. Subsequently, in Section 5.1.4 we will find a weak global convergence
criterion which is verified in Section 5.2.4.

3.2 | The hybrid Checkpointing/Local-in-Time algorithm

As the LT algorithm is faster than the CP algorithm but contains errors due to the adjoint approximations, we would like
to combine these two algorithms to attain a more accurate and computationally efficient algorithm. We call this novel
algorithm the hybrid Checkpointing/Local-in-Time (CP/LT) algorithm. In principle, the CP/LT algorithm is based on the
LT algorithm. However, when errors in the approximate adjoints become too large, corrections are performed using the
CP algorithm. In Figure 4, we illustrate that the CP/LT algorithm is based on the LT algorithms in phase A, and adaptively
performs corrections in phase B.

To measure the accuracy of the adjoint approximation in the LT algorithm in phase A, an approximate adjoint error
in design iteration j at checkpoint k is defined as:

L~ ~j
_ A = Az _ 1A

~j+1 T~
| Ak 12 | A% I2

¢

A

) (19)
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FIGURE 4 A schematic of the CP/LT algorithm. The numbers represent the order of operations. First the LT algorithm is executed in

- . i

phase A resulting in approximate sensitivities dF* /ds. Additionally, U, and AAJk are stored on the checkpoints besides Ajk+ . In phase B,

starting at the final to last interval and moving one interval backward at a time, the adjoint error is evaluated and a correction on the interval

is performed if necessary. The dashed blue arrows represent the solving of the adjoint correction using Equation (20) and update of

sensitivities using Equation (22). After propagating the adjoint correction backward from k + 1 to k, the adjoint correction and adjoint

approximation are both updated.

where we denote the L%-norm as ||(J||,. Moreover, the correction in adjoint at checkpoint k is approximated as AAk =
~j+1 ~J
Ajk - Ak ~ A Ak = AA’ , Where we assume Ak ~ A’ due to local convergence. Because the sensitivity in Equation 7

is dependent on the adjomt the error is used as a measure of accuracy of the sensitivity. If the error g’ is higher than a
user-defined threshold €7*%, the adjoint solution and sensitivity update on domain ©_; are deemed 1naccurate and need

to be corrected. It should be noted that the error eJ is dependent on Ak = G(Ak+1) which is only known after evaluating
the adjoint solution on domain ®j, in the LT algorlthm As domain O needs to be evaluated before considering correcting
domain ®_;, we do not have the state solution on domain ®;_; in memory to perform a correction. The state solution
thus needs to be recomputed on domain ®_; starting from a stored state Ui_l

Making use of the linearity of both the adjoint and sensitivity equations, the sensitivity correction may be simplified to
reduce additional computational effort. In Section 3.1.1, we found that the adjoint correction can be propagated backward
over an interval using AA; = G.(AAk41) as defined in Equations (12) and (13). This propagation can also be performed

for approximate AIJ,,, which is propagated over one time step as:

~j oR
AT, = [ PR ORnin T ATr. (20)
o, | ou

n

Moreover, a correction for the sensitivities is defined by substituting the improved approximation l’;l ~ IJ,, + AIJH into the
exact sensitivity formulation (Equation 7, for clarity repeated in Equation 21a) resulting in Equation (21b):

dF dF
/IT 2la
ds rg&( os os > (21a)
dF OF, J aR J oR,
== ;( ) (21b)

for which the first two terms have already been computed in the LT algorithm and a correction for the sensitivities can
be build as:

N .
L 3 AT ORn. (22)
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Consequently, when adjoint errors for interval ®_; are too high (e’.jk > e7'®), we propagate the approximate adjoint
correction backward using Equations (20) while simultaneously updating the sensitivities using Equation (22).

Adjoint correction AI],, is used to correct the sensitivities as it is an easier operation than updating the sensitivities
using a new and improved adjoint field. Generally, we immediately write contributions to the sensitivity vector dF /ds
to memory. To update the sensitivity using an improved adjoint field, we would have to remove the contributions added
using the old adjoint field first. Using the adjoint correction we can update the sensitivity vector when necessary. More-
over, we found that updates for the adjoint correction using Equation (20) are computationally cheaper than updates in
the full adjoint using Equation (8). Inspecting these equations, we find that propagating the adjoint involves a matrix
vector multiplication, a vector addition, and a linear system solve, while propagating the adjoint correction only requires
the matrix vector multiplication and the linear system solve. Nonetheless, the computational cost of the full process is
increased compared to the LT algorithm as we need to recompute the full state solution on a domain which is being cor-
rected to compute the sensitivity corrections in Equation (22). Furthermore, we note that after propagating the adjoint
correction backward over an interval, the propagated correction may be used to improve the approximate adjoint at the

checkpoint, that is, Ak = G(Ak+1) +G (AAk+1) Finally, whether or not to apply this correction on an interval depends on
the chosen adjoint error threshold £7**. Based on the experience of the authors, a relatively high threshold of e7'** = 0.1
can be chosen. Using this threshold we will find errors in sensitivity to remain below 10%.

Based on these developments, the CP/LT algorithm as shown in Figure 4 consists of two phases, and can be described
as follows.

(A) LT algorlthm The sensitivities are computed using the LT algorithm. However, besides the approximate adjoint

variables Ak , the adjoint correction AAk, and state solution U, are also stored at the checkpoints as shown in
Figure 4.

~ijt+1 ~j
(B) Checkpointing corrections: Starting at the second to last interval ®;, = ®x_, using the stored A]k+ 1 and AA]k 1
pointing g g + +
the error s’Ak is computed. If the error is larger than the fixed threshold £}, the state solution is recomputed
+1 .

and correction AKJ,{ +1 is propagated backwards over the interval using Equation 20, while simultaneously updating
the sensitivity using Equation (22). The backward propagatlon of the correctlon from k+1 to k is used to update

the correction and adjoint variables at k as AAk « AAk + GC(AAkH) and Ak « Ak + GC(AAkH) Subsequently, a
sensitivity correction is performed at interval ®,_; if necessary, and so on.

The CP/ LT algorithm requires more memory than the LT and CP algorithms since the state solution Uy, the adjoint

field Ak+1, and the adjoint correction AAkJrl are stored on the checkpoints. On each interval except the first, the initial
states are stored m(K — 1) discrete state variables, and on each interval except the last, the terminal adjoint and the ter-
minal adjoint correction are stored 2m(K — 1) discrete adjoint variables, resulting in the storage of 3m(K — 1) discrete
variables. Combining this with the storage of the state solution on an interval of mN /K discrete state variables, the CP/LT
algorithm has a memory requirement which scales as M « 3m(K — 1) + mN /K.

The computational cost of the CP/LT algorithm is not known a priori but a lower and upper bound can be derived. If
the adjoint errors are negligible at all checkpoints and the sensitivities are thus reliable, no corrections are performed and
the CP/LT algorithm performs as the LT algorithm in phase A. The lower bound on the computational cost is thus the
cost of the LT algorithm, that is, C « Ncs(1 + r.). However, if the adjoint errors are large at all checkpoints, a correction is
performed at the first K — 1 intervals which includes the solution of the state equations at a cost proportional to ¢;N /K.
Moreover, on each corrected domain, an adjoint correction is performed for which we estimate the computational cost
as similar to the cost of the normal adjoint propagation c;7.N /K, although in practice the adjoint correction is a cheaper
operation. The cost of the adjoint corrections is thus proportional to (K — 1)(csN/K + ¢s#.N/K) = Ncg(1 + r.)(1 — 1/K),
and an upper bound of the computational cost is derived as C x C + Nes(1 + 1)1 — 1/K) = Nes(1 + re)(2 — 1/K).

3.3 | The Parallel-Local-in-Time algorithm

Parallelization is a useful method to speed up computations. To parallelize the computations, spatial domain decompo-
sition is often used. However, this technique may suffer from communication overhead, limiting the maximum speedup.
To efficiently reduce such communication, a novel Parallel-Local-in-Time (PLT) algorithm is proposed in this work. The
PLT algorithm is an extension of the LT algorithm and is similar to the direct multiple shooting algorithm.?! For the tem-
poral parallelization, we discretize the temporal domain into intervals ®;. These intervals are however decoupled and

85UB01 T SUOWIWIOD BA1E81D) 8|qeot[dde aup Ag peusencb a1e sejollie YO ‘N J0 s9n1 1oy AkeiqTaulUO A1 U (SUONIPUOD-PUR-SLLIBI WD A8 |1 Ale.d1jBuJUO//SdnL) SUONIPUOD pue SWB L 81 88S " [7202/90/2T] Uo AkeldiTauljuo AS|IM ‘SpuejieyIeN aueiyood Ag T2 8WU/Z00T OT/I0p/W0d A8 | Ale.q1pul|uoy/sdny Wwoly papeoiumod ‘¥T ‘¥20Z ‘£020.60T



14 of 42 Wl LEY THEULINGS ET AL.

we will solve iteratively for both the approximate state and adjoint solutions. Beside the approximation of the adjoint
variables as in the LT algorithm we approximate and update the initial state variables on an interval as:

U~ =U (T, 23)

~Jj-1Y . . o ~j-1 . . .. . . .
where U (U’,H) is an operator which propagates initial state U’k_1 over interval ©,_; in design iteration j — 1 to terminal

state fflk_l. Terminal state solutions on interval k — 1 at design iteration j — 1 are thus used as initial states for interval © at
design iteration j. Starting from the approximate initial state, the state equations can be solved on each interval in parallel.
Subsequently, using approximate terminal adjoints ZJkH, the complete sensitivity computation can be done in parallel for
each interval @y, as illustrated in Figure 5. We extract the sensitivity contribution for interval ®4 from Equation (7) as all
contributions from time step n = ny + 1 at initial time £, = 6y until time step n = ny, at terminal time ¢, | = 611:

(24)

k _
ds Z as as

dF* e - ORI, T, 5, ly) . aF,,(ﬁ’;l,s)At

n b
n=n;+1

where we approximated all state variables as ﬁ’n ~ u’;l and used approximate adjoint variables Ijn. To initialize the PLT

algorithm, approximate adjoints and an acceptable guess for the state variables are required at the checkpoints. In the first

design iteration, we compute the sensitivities using the LT algorithm and store the resulting state and adjoint variables

ff;zo/ 7111;:0 at the checkpoints 6. Subsequently, the algorithm consists of the following three steps:

1. Send information to computational nodes: To initialize the design evaluation, we assume there are as much
computational nodes as there are intervals K, though this is not essential to the algorithm. Furthermore, we asso-
ciate interval ® to node k and send it an approximate 1n1t1al state condition lf (exact state solution u’ for the first

interval), an approximate terminal adjoint condition Ak+1 (exact adjoint solution )JN for the final interval), and the
design §/. .
2. Design evaluation: On each of the intervals O, the design is evaluated. Starting at approximate fJ’ the state solution

is propagated forward to A by solving the state equatlons Moreover, the state solutlon is stored for each time step

k+1
within the interval. Subsequently, adjoint variable Ak +1 1s propagated backward to Ak using Equations 8 and 9 and
used to update the interval sensitivities using Equation (24).
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FIGURE 5 A schematic of the PLT algorithm. The numbers represent the order of operations. In the first step, we distribute all
required state and adjoint fields to the intervals. In the second step, for each interval ©, we evaluate and store the state solution starting from
the distributed T, , and subsequently we evaluate the adjoint solution starting from distributed Ak +1 While simultaneously computing
domain sensitivity dF} /ds as defined in Equation (24). Solving the state solutions and the adjoint solutions are labeled steps 2.1 and 2.2,
respectively. This does not imply that all intervals wait until all state solutions are solved. Some intervals might in fact be working on the
adjoint solutions while others are working on the state solution but in general all intervals will be working on the state or adjoint solution at
the same time. Finally, in the third step, all state and adjoint updates are gathered in addition to the sensitivity contributions dF; /ds which
are combined into the total sensitivity using Equation (25).
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3. Receive information from computational nodes: From each computational node k, we receive the terminal state

1> the initial adjoint solution ij, and domain sensitivities dF; /ds. Subsequently, the global sensitivity is
computed by gathering the contributions of all intervals:

solution U7

K *
dF* dF;
i e @)

To improve approximate state and adjoint solutions, we update them using the propagated solutions on the neighboring
intervals as:

Ul:—ll ~ U(dk)’ 26)

1 e
A~ G(A,)).

where we assume that U’;ll ~ U(f]’];) decreases the error in state, similar to the decreased error in adjoint by AJI'{+1 ~

G(ij +1) as discussed in Section 3.1.1.

As was the case in the LT algorithm, we use approximate adjoint variables and therefore expect some inaccuracies
due to local and global convergence issues in the PLT algorithm. Moreover, in the PLT algorithm we have also intro-
duced approximate state solutions which may cause additional inaccuracies. However, following a similar reasoning as
in Section 3.1.1 for the stability of the approximate adjoints, the errors in approximate state solutions are expected to
reduce over an interval if local convergence is satisfied. If we describe the state solution as U,, = ffn + AU,, where AU, is
the error in state solution, we expect the error to behave the same as a disturbance of an initial state solution. For stable
transient systems, a disturbance of the initial state solution is known to dampen out over time. These disturbances can
generally be said to dampen out on a similar timescale as it takes the system to reach a stable steady-state solution. To
enforce local stability, we thus require relatively long intervals with respect to the characteristic time of the system. Conse-
quently, as discussed for the LT algorithm in Section 3.1.1, we expect weak global convergence issues. The PLT algorithm
is expected to favor convergence to local optima with features of shorter characteristic times as for these features accurate
adjoints and states, and thus sensitivities, are found much quicker. Additionally, this bias may be enhanced by the PLT
algorithm due to the approximate state solutions U.. Strong global convergence issues might also pose a problem for the
PLT algorithm. However, in the authors experience the algorithm behaves similar to the LT algorithm. By enforcing local
stability and using optimization methods which limit large changes in design, the PLT algorithm is found to avoid strong
global convergence issues, and converges to stable optima with accurate sensitivities as will be shown in Section 5.

For the PLT algorithm to converge, we thus require errors in state solution to dampen out over successive design
iterations. This may not always be the case. If the physics show chaotic behavior, small differences in initial state may
cause large differences in later states. It is clear that for these types of systems, errors in state solution do not dampen out
over successive design iterations. Moreover, under certain conditions the adjoint solutions of chaotic problems may grow
exponentially, and the adjoint sensitivities may be inaccurate.3>? For chaotic systems even the CP and GT algorithms
which compute exact sensitivities may also be inaccurate. Algorithms presented in this paper should therefore not be
applied to chaotic systems without a careful consideration.

Since the PLT algorithm performs all computations simultaneously, the full state solution at all intervals (and
thus the whole temporal domain) needs to be stored. Memory requirements thus scale as M « Nm. However, an
increase in computational nodes often comes with an increase in memory alleviating this problem. When memory
becomes a limiting factor, the parallel intervals can be subdivided once more into local subintervals where the LT or
CP algorithm is employed. On these subintervals, we thus use different approximations for initial state and terminal
adjoint equations. Another solution is to divide the domain into shorter intervals and evaluate some intervals sequen-
tially instead of in parallel, but still use approximate initial state and terminal adjoint solutions on each of these shorter
intervals. Doing so, the full state solution does not need to be stored but only the state solutions on the intervals being
evaluated.

As all state and adjoint solutions are solved once per interval, the computational cost of the PLT algorithm is the same
as for GT algorithm, C « Ncg(1 + r.). Due to the parallelization, the computational time may be reduced. We investigate a
theoretical two-dimensional (2D) optimization problem for illustration purpose, though a similar investigation holds for
three-dimensional (3D) problems. Solving a transient 2D problem we might conceptualize as solving the discrete solution
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FIGURE 6 Anexample of the two options for paralellizing a two-dimensional (2D) transient computation, where A is the

t

nonparallelized domain, B is a parallelization via spatial domain decomposition, and C is a parallelization via temporal domain decomposition.

on a 3D cuboid where two of its axis represent the spatial axis and one represents the temporal axis as can be seen in
Figure 6. Implementing a spatial domain decomposition, we cut the domain along its length and generate interface area
across which the nodes have to communicate. If a time stepping algorithm is used this communication happens every time
step leading to increased idle time. Moreover, the communication overhead might become even worse when nonlinear
systems are solved as they may require many subsolves per time step. If a temporal parallelization can be used, the cuboid
can be cut across its width generating less interface area and less communication overhead. We note that for this analysis
we used a problem with more time steps than elements in the x or y direction. A problem with more elements in x or
y direction than time steps may have less interface area and be more efficiently parallelized when using spatial domain
decomposition techniques.

4 | MEMORY AND COMPUTATIONAL COST

All presented sensitivity computation algorithms have their advantages and limitations and are suited for different kind of
optimization problems. Based on a combination of memory requirements, computational cost, and convergence, different
algorithms are recommended for different problems.

41 | Memory requirements

When memory requirements are not a limiting factor, the full state solution may be stored and the GT or PLT algorithms
can be used. Moreover, if the parallel algorithms are preferred for their speedup but memory is a limiting factor, a hier-
archical structure of the algorithms may be used. In this paper, the CP, LT, and CP/LT algorithms were used to reduce
memory requirements as summarized in Table 1. However, for local stability, we require the intervals to be as long as
possible and we thus use the least amount of intervals K as possible. Subsequently, it can be argued that for optimization
problems where N > K the differences in memory reduction between the algorithms are negligible, as the largest mem-
ory burden is spent on storing the complete state solution on an interval and not on storing the additional information at
the checkpoints.

Under this assumption all sequential algorithms thus perform similarly with respect to memory reduction. However,
if a small number of time steps is used and memory limits are reached due to m, the size of the solution at one time step,
these assumptions do not hold anymore and the CP or LT algorithms should be used for the largest memory reduction.

TABLE 1 Memory requirements M of the sequential algorithms for a problem containing K intervals, N time steps, and adjoint/state
fields of size m.

GT, PLT CP LT CP/LT
Memory requirements mN m(% +K—1) m(% +K—1) m(% +3(K—1))
N N N
K< N mN m— m— m—

Note: For problems where K < N, memory requirements are identical for all algorithms.
Abbreviations: CP, Checkpointing; GT, Global-in-Time; LT, Local-in-Time; PLT, Parallel-Local-in-Time; CP/LT, hybrid Checkpointing/Local-in-Time.
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4.2 | Computational cost

To make a comparison in terms of computational cost, an overview is given in Table 2. The CP/LT algorithm does not
have a fixed computational cost but rather a range of possible costs with a lower bound at the cost of the GT, PLT, and
LT algorithms and an upper bound above all other algorithms. However, when the state equations are highly nonlinear
and r, —» 0, we find the upper bound of the cost of the CP/LT algorithm in Table 2 to be the same as the cost of the CP
algorithm. Another simplification can be made for linear implicit state equations. When the state equations are linear,
adjoint equations are linear and have a similar computational cost. The resulting implicit adjoint equations involve a rel-
atively expensive inverse matrix problem, while the sensitivity update only involves cheap matrix/vector multiplications.
The computational cost c, consisting of the adjoint and sensitivity update can thus be assumed to be dominated by the
adjoint update which is similar to the state update: ¢, = ¢; = ¢ and r. = 1. This particular case is shown in the bottom
row of Table 2. However, when the state and consequently adjoint equations are linear explicit, both the adjoint and state
equations consist only of matrix vector multiplications. In this case adjoint, state, and sensitivity updates have a similar
computational cost. The cost of solving adjoint and updating sensitivity ¢, will thus be larger than ¢; and r. > 1. This case
is further investigated in Section 5.1.5.

Selecting an appropriate algorithm for a problem may depend on the computational cost and we further analyze the
cost of the CP and CP/LT algorithms. Firstly, we examine the relative computational cost of the CP and GT algorithms by
dividing the computational cost of the CP algorithm C? by the cost of the GT algorithm C°T:

c®® oNQR+r.—1/K) 2+r.—1/K

= = 27
CoT = T N+ 1+7. @7

As expected, we find the computational cost of the GT and CP algorithms with K =1 to be equal. Moreover, smaller
K make the ratio drop and have a diminishing effect on the increased computational cost of the CP algorithm.
We thus advise for the CP algorithm to keep K as low as possible. For K > 1, the relative computational cost
only depends on r.. The biggest increase in computational cost is found for nonlinear systems where r. — 0 and
CC?/CCT - 2. Therefore, we advise to disregard the CP algorithm for nonlinear systems based on the required
computational cost.

As corrections, even if only a few, are always performed for the CP/LT algorithm, not only the CP but also the
CP/LT algorithm turns out to be more expensive than the GT, LT, and PLT algorithms. An informed choice between
the CP/LT and CP algorithms thus depends on the number of corrections required by the CP/LT algorithm and the
resulting relative computational cost. Comparing computational cost is not straightforward as the cost of the CP/LT
algorithm is undefined a priori. We adaptively correct intervals only when errors are high and do not correct all
intervals, as shown in Figure 4. Relative computational cost thus depends on the fraction of corrected intervals, and
the relative cost of CP/LT and CP intervals. The computational cost of the terminal interval ®k_; is the same for
both the CP/LT and CP algorithms as the state and adjoint equations are evaluated only once on this interval. On
the other K — 1 intervals which contain N/K time steps each, computational costs differ. In the CP algorithm, the
state equations on these intervals are solved twice and the adjoint equations once, at a cost « c¢s(N/K)(2 +r.) per
interval. On a corrected CP/LT interval, the state equations are solved twice and both the adjoint and adjoint cor-
rection are solved once at a cost « ¢;(N/K)(2 + 2r.), and on an uncorrected interval state and adjoint are solved only

TABLE 2 Computational costs C of the sequential algorithms for problems containing K intervals and N time steps.

GT, LT, PLT CP/LT CcP
C N +r,) [N + o), e;N( + r)(2 — 1/K)) N2 +r,—1/K)
C,r,—0 N [esN, e,N(2 — 1/K)] N2 —1/K)
Cr.=1 2cN [2¢N, cN(4 — 2/K)] eN(3 - 1/K)

Notes: Solving one state step has a computational cost of ¢; while solving one adjoint step while simultaneously updating the sensitivities has a cost of ¢,
relative cost is defined as r, = ¢, /c;. Contrary to the GT, PLT, LT, and CP algorithms, the CP/LT algorithm has a lower and upper bound on its computational
cost. The lower bound is equal to the cost of the GT, PLT, and LT algorithms while the upper bound is higher than the cost of the CP algorithm as in the CP/LT
algorithm state and adjoint solutions may be recomputed whereas in the CP algorithm only state solutions are recomputed. A simplification is shown for
problems with highly nonlinear state equations where r, — 0 and for problems with linear implicit state equations where r, = 1 and ¢, = ¢; = c.
Abbreviations: CP, Checkpointing; GT, Global-in-Time; LT, Local-in-Time; PLT, Parallel-Local-in-Time; CP/LT, hybrid Checkpointing/Local-in-Time.
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once at a cost « cg(N/K)(1+r.). A corrected and uncorrected interval thus have a cost relative to a CP interval,
respectively, as:

es(N/K)2+2r) 1+, (N/K)YL+71) 1+,
c(N/K)Y2+71.)  “2+71. cs(N/K)Y2+71.)  2+71,

(28)

To compare the overall computational cost, we define the fraction of corrected intervals f.. Since the terminal interval has
the same computational cost for both CP and CP/LT, the fraction only considered the first K — 1 intervals. Subsequently, f.
is defined as the number of corrected intervals in the whole optimization process, divided by the product of K — 1 and the
number of design iterations. It is thus the fraction of corrected intervals, averaged over all design iterations. The relative
computational cost of the CP/LT algorithm to the CP algorithm can be computed as:

+A-f) (29)

+—-=—(F+1 +
2471, 2 (e )

CCP/IT g _ 1 1+r. 1
= ﬂz )
K K 2+r. K

1+r. 1 K-1 1+r.
ccP K +7c > 247,
where for the first K — 1 intervals, we have differing computational cost at (K — 1)/K% of the computations, and at the
last interval we have the same computational cost at 1/K% of the computations.

In practice we need to approximate f. to choose whether the CP/LT or the CP algorithm is cheaper. However, in
Sections 5.1.5 and 5.2.3 we find that corrections are only performed during the first part of the optimization process where
large design changes are present. Experienced designers can thus use their knowledge of the convergence behavior of the
problem to estimate f, and select the computationally most advantageous algorithm, as further discussed in the guidelines
in Section 6.

5 | RESULTS

In this section we investigate and compare the GT, CP, LT, CP/LT, and PLT algorithms. We investigate stability by opti-
mizing a transient thermal problem in Section 5.1 and computational cost by optimizing a flow problem in Section 5.2.
The thermal problem will minimize the temperature in heat generating components and the flow problem will optimize
a piston pump. Both problems are optimized using density-based topology optimization.3* In density-based topology opti-
mization, we aim to find an optimal material distribution in a given design domain. The design domain is divided into
grid cells to which design variables are attached. Subsequently, the design variables are used to interpolate continuously
between phases, solid and void for the thermal problem, solid and fluid for the flow problem. As we interpolate con-
tinuously between phases, the gradient-based MMA>® algorithm can be used. To compute the gradients in our transient
thermal and flow problems, the algorithms presented in this paper will be used.

For the gradient computation, the adjoint equations need to be solved. To solve the adjoint equations, Jacobians
OR; /ou, and 0R,/du,_, need to be constructed. We assume that u,, either contains discrete temperatures or velocities
and pressures. The Jacobians will be constructed using the same approach as in Theulings et al.3* For completeness, it
is summarized here. The finite volume method will be used to discretize the PDE equations into a column R,,. Each i?*
component R}, of the column may be associated with small subsets u!, and uil _, of the complete sets of DOFs u,, and u,,_;.
To construct the Jacobians we use the MATLAB?® symbolic toolbox and construct symbolic equations for R (u,, u;_l)
in terms of the symbolic variables in u;,, and u,_,. Subsequently, we use symbolic differentiation to compute dR;,/ou,,
0R,,/ou;,_, and use MATLAB to automatically construct a function which takes DOFs u,,, w, , and returns dR,,/ou,,
0R,,/ow, _,. This function is used to compute all derivatives after which they are assembled into dR,/ou, and oR, /ouy,_;.
Moreover, derivatives dR,,/ds are computed following a similar approach.

5.1 | Stability investigation through thermal optimization

In this section we investigate the stability of the approximate LT, PLT, and CP/LT algorithms by optimizing a thermal
problem. Weak global convergence is investigated by examining characteristic times and comparing it against the interval
lengths. As discussed in Section 3.1.1, we expect the optimizer to be biased toward features with short characteristic
times. Specifically, we expect a stronger bias for features with a long characteristic time relative to interval length A#.
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Additionally, we examine the predicted and measured computational cost of the algorithms for problems with linear
explicit state equations. The thermal problem is chosen for its simplicity as we can estimate relatively easily how fast
errors in approximate adjoint decay and thus how fast we converge to accurate solutions.

5.1.1 | Transient thermal model

Before describing the optimization problem, we introduce the thermal physic and numerical model. The characteristic
timescales related to the physics and discretization are investigated as they play an important role in the stability of
the algorithms and set up of the optimization problem. First, we discretize the transient equations in space and time.
A two-dimensional transient thermal problem is considered and is defined on temporal domain ¢ € [0, ;] and spatial
domain X € Q with boundary I' = T'; U T',. The thermal problem is governed by:

aspscpsT -V (5sVT) — a;Q = 0, on Q,
T =Tr, on Iy,

(30)
asksVT -n=qp-n, only,

A

T=T, onQatt=0,

where the subscript [J; denotes solid material properties, T(X, t) is the temperature field with time derivative T = 0T /o,
the solid density, specific heat capacity, and thermal conductivity are py, cps, and ks, respectively, Q(X, t) is an externally
applied heat load, Tr(¥, t) is the fixed temperature on boundary Iy, (X, f) is an applied heat flux on boundary I',, with
outward normal n, and T(X) is the initial temperature distribution. The solid volume fraction a,(¥) is used as design
variable. The solid domain is defined by ay(X) = 1 and the void domain by a;(X) = a  which is a lower bound on the
volume fraction for which 0 < @ < 1. The transient thermal equations are discretized on a Cartesian mesh illustrated
in Figure 7 using the finite volume techniques as described by Versteeg and Malalasekera.?® Specifically, we use the
same techniques as used by Gersborg-Hansen et al.,*® where the arithmetic average is used to interpolate discrete design
variables at the interface between mesh elements. Moreover, we discretize in time using a forward Euler scheme such
that we find discretized equations of the form:

Ri(Ty1, T, t) = M) T2 "=~ KTy = Qufs) -

A

Ro(To) =To - T,

h
(5 @ © @
h /’ﬂ(xs:]
(7 © L .
~ >a,—0
® ® ® © T,
yT ® ® ® ®
X

FIGURE 7 The equidistant uniform mesh used to discretize the thermal problem. Red dots are the temperature nodes with degrees of
freedom T;; and densities are defined per element where g = 1 is a solid element and ¢y — 0 a void element.
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where T, and Q,, are the vectors of discrete nodal temperatures and heat loads at time t,,, T is the vector of discrete initial
temperatures, and s is the vector of discrete design variables. The advantage of using the explicit forward Euler updating
scheme is the relatively small computational cost attributed to performing one time step.

To inspect stability, we approximate the characteristic times of the physics and discretization scheme. Although per-
forming a forward Euler update is inexpensive, the scheme for transient thermal equations has a relatively strict stability
constraint on the time step defined as:

hz
At < 3D’ (32)
where h is the mesh size and D = k,/(pscps) is the thermal diffusivity. Thermal diffusivity in both the solid (a; = 1) and
void domains (a; — 0) will stay the same as in Equation (30) both the conductivity x; and the density p; are multiplied with
as and D = gk /(a5 psCps) = K/ (pscps). The strict time step constraint leads to the need for many updates to be performed
which increases computational time. However, we find that this small time step may be required to accurately represent
the physics. The characteristic timescale for a thermal diffusion problem can be defined as®:
L2
=5 (33)
where L is the characteristic lengthscale of the problem. The characteristic timescale indicates a time over which a tran-
sient response settles. If we are interested in a design with a feature size of a few elements (L ~ h) we find that these
features have a characteristic timescale of 7, ~ h?/D, and thus need the relatively small time step defined in Equation 32
to accurately model such features. A disadvantage of using a small time step is that it will cause large memory require-
ments. However, the methods presented in this paper can be used to keep these memory requirements to a minimum.
Since this is a linear system, the local stability analysis in Section 3.1.1 holds. The adjoint equations are stable if the
state equations are stable when we satisfy Equation (32). Moreover, as discussed in Section 3.1.1, the adjoint equations
react and stabilize over similar timescales as the state equations. We can thus use the estimate for characteristic time in
Equation (33) to estimate over which timescales adjoint errors converge to zero.

5.1.2 | Transient thermal optimization problem
The problem in Figure 8 is designed to investigate the limitations of the approximate algorithms. The problem consists of

a plate on which three heat generating components are attached. Material and problem specific parameters are given in
Table 3, and result in a diffusivity of D = 1073. The characteristic timescale of the plate is estimated as r = 10, which is

FIGURE 8 The thermal optimization problem with parameters in Tables 3 and 4. On the gray areas, time dependent heat loads are
applied as defined in Equation (34). The heat loads are defined such that Q, delivers half as much and Q; twice as much energy to the system
as Q;. On the bottom boundary, a heat sink is applied which fixes the temperature to T = 0 and all other boundaries are isolated.
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TABLE 3 The parameters used for the thermal optimization scenario as shown in Figure 8 with results shown in Section 5.1.3.
L h t; At Ps G Ks
1072 1
0.1 o 10 oo 100 10 1

used as final time ¢, = = = 10. The bottom boundary of the plate is cooled and has fixed temperature T = 0 while all other
boundaries are isolated. Three time-dependent heat sources Q;, Q,, and Q3 are added to the plate:

3 3 . t, 3 . 2t,
=.10°, ift> < 6-10°, ift>=

Q=10°, Q=<4 3, Q= 3. (34)
0, otherwise 0, otherwise

The objective of the optimization procedure is to minimize the average temperature at the heat sources:

L
F= / / TdQ dt, (35)
0 JQ,

where Q is the gray domain in Figure 8 where heat loads are applied.

Furthermore, to prevent checkerboarding and regularize the optimization procedure, a smoothing and continuous
Heaviside projection filter are needed. First all ith design variables s; of s are smoothed using the filter as presented
by Bruns et al.’” using the design variables within a distance r to the center of s;, resulting in smoothed variables 5;.
Subsequently, the continuous Heaviside function as presented by Wang et al.® is applied to the smoothed design variables
s; which projects them to a 0/1 solution as:

~ _ tanh(Bn) + tanh(B(s; — n))
"7 tanh(Bn) + tanh(B(1 — 1))’

(36)

wheres; is the design variable after the projection filter is applied, 7 is the threshold value, and g indicates the slope
and sharpness of the projection filter. Generally, f is increased during an optimization procedure through a continuation
scheme such that in the earlier design iteration the continuous Heaviside projection does not restrict the convergence
and in the later iterations the design is pushed to a 0/1 solution. In this work we set the slope to f in the first 10 design

iterations after which we increase it with Ag each iteration until it reaches its upper bound g = 8. Subsequently, a volume
constraint is applied on the smoothed and projected design variables s. The constraint imposes an upper limit V; on the
solid volume fraction:

&) =

N, ~
XS
— — V¢ <0, 37
N S (37
where Ny is the number of discrete design variables’s; in’s. Moreover, the Solid Isotropic Material with Penalization (SIMP)
material interpolation® is used which defines a relation between design variables and material properties. We use SIMP
to interpolate the solid volume fraction as:

a@) =a +(1-a ), (38)
where a_is the lower bound on the solid volume fraction and p regulates the convexity of the interpolation function. All

optimization parameters can be found in Table 4. Finally, using the discrete thermal model in Equation (31), the discrete
optimization problem is defined as:

N-1
minimize F~ ) Fo(Ty.$)At,
s

n=0
subject to  Ry(Tp_1, Tp,5,t,) =0 ne{l1,2,... N}, (39)
Ry(Ty) =0,

2@) <0,
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TABLE 4 The optimization parameters for the thermal problem in Figure 8.
ry max
r E AB p p Vs a €]
3h 2 0.1 8 3 0.3 1073 0.1

Notes: We smooth the design over a radius of three elements (r = 3h), increase the Heaviside projection slope from g to B by Ap over iterations 10 to 70 and
apply the SIMP interpolation to the volume fraction oy using factor p. Furthermore, a maximum allowable adjoint error of £7** is set for the CP/LT algorithm.

We examine the characteristic times of the heat generating components to compare them to the interval lengths and
make predictions about the designs found in Section 5.1.4. We expect the optimal design to connect all heated domains
to the heat sink at the bottom boundary. The heat sources are defined such that Q, delivers half as much and Q; twice
as much heat to the system as Q;. Connecting the top domain directly to the heat sink might be disadvantageous as this
allows for a direct flow of thermal energy from the top domain through the center and bottom domains. As the top source
is located further away from the heat sink, we expect it to have a larger characteristic time, leading to a slower decay of
errors in adjoint. We estimate the characteristic timescales of the heat sources using their respective distances to the heat
sink: L; = iL, L, = %L, and L; = iL. Subsequently, the characteristic timescales are estimated following Equation (33):

2
3
L3 (ZL> 912 9 1 1
= — = = — = —71, TZZZT, 73 =

=22 =—r1. (40)
D D 16D 16 16

71

The characteristic timescale of the bottom source is thus almost an order of magnitude smaller than the characteristic
timescale of the top source. Moreover, the distance between the top two heat sources is L, = %L = L3, and the char-

acteristic timescale of interaction between these two sources is thus also 71, = 73 = %T. Erroneous adjoints carrying
information about the interaction between the two top domains may thus converge to the correct adjoint much quicker
than erroneous adjoints carrying information about the interaction between the top influx and heat sink. We thus expect
the approximate algorithms to experience problems around the top influx domain.

To estimate the memory requirements of this optimization problem we compute the number of DOFs in x
and y-direction, respectively, as N, =81 and N, = 121. Subsequently, by using the fact that each DOF is stored
as a double containing 8 bytes the size of one state solution is computed as m = 8NN, ~ 78 kB. Since the num-
ber of time steps is N = ;/At = 57.6 - 103, we estimate the memory requirements assuming that K < N. Following
Table 1, the GT and PLT algorithms require a memory of M = mN =~ 4.5 GB and the CP, LT, and CP/LT algo-
rithms require a memory of M ~ mN /K ~ 4.5/K GB. With these reasonable memory requirements, no large K is
needed. However, if a similar problem is solved in 3D with a resolution of N, = N, = 81 in z-direction, this would
increase the size of the state solution to m = 8N,N,N; ~ 6.4 MB. The memory requirements would thus increase
as M ~ mN ~ 368 GB for the GT and PLT algorithms. We thus argue that the relatively high number of inter-
vals K = 20 should be used to reduce the theoretical memory in 3D to M ~ mN /K = 17.8 GB for the CP, LT, and
CP/LT algorithms.

5.1.3 | Reference results

Using the problem as described in Section 5.1.2, we analyze the stability of the approximate LT, PLT, and CP/LT algo-
rithms. We expect the adjoint errors in the approximate algorithms to dampen out over multiple design iterations.
However, due to the large errors in the first few design iterations, the optimization procedure may experience weak global
convergence issues discussed in Section 3.1.1. The approximate LT, CP/LT, and PLT algorithms might take a different
convergence path than the exact GT and CP algorithms and end up in different local optima with a bias toward design
features with short characteristic times.

As a reference we optimize the problem using the GT and CP (K = 20) algorithms which both lead to the same opti-
mum shown in Figure 9. The optimal bowling pin like design connects all source domains to the bottom heat sink. We
expect to find weak global convergence issues in the designs around the top source using the approximate algorithms. To
analyze these errors we measure the characteristic time of the top influx domain in the GT and CP design in Figure 9. To
measure the characteristic time, a constant heat flux is applied only to the top interval (Q;(¢) = 103, Q,(t) = Q3(t) = 0).
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FIGURE 9 Thebowling pin like design found by the GT and CP (K = 20) algorithms characterized by an objective value f¢; = 1.0263.
The design connects all influx domains to the lower heat sink. The hat on top of the pin is an artifact of the optimization procedure.

Under these conditions, the characteristic time is defined as the time it takes for the transient response to reach a solu-
tion with 5% error compared to the steady-state solution. The characteristic time of the upper domain in the GT and CP
design is measured as 7; = 6.12.

Moreover, to measure the accuracy of the approximate sensitivities computed using the LT, CP/LT, and PLT algo-
rithms, we compare them with sensitivities obtained with the GT algorithm. For each design and sensitivity dF /ds found
by the approximate algorithms, an error is defined by comparing with exact sensitivities dF /ds computed by the GT
algorithm on the same design:

|

oF _ar
ds ds
dF
ds

z (41)

2

Furthermore, a deviation in objective value Af* from the GT optimum characterized by f, is computed as:

N 42)
Jor

where a positive Af* is a deteriorated objective and a negative Af* is an improved objective.

51.4 | Approximate algorithm designs and stability

‘We compare the baseline design to the designs found by the approximate algorithms. To investigate the influence of the
number of intervals K, we optimize for K = 2, 5, and 20. Optimal designs for the LT, CP/LT, and PLT algorithms can be
found in Table 5, objective histories in Figure 10, and sensitivity error histories in Figure 11. The most striking difference
in design is found for K = 20 using the LT and PLT algorithms in Table 5A,B. These designs contain a large island around
the upper influx domain which is disconnected from the heat sink. As can be seen by the increased objective values, this is
an inferior local optimum with Af* = 14% for both the LT and PLT algorithms. The optimizer finds this inferior optimum
due to the weak global convergence issues as discussed in Section 3.1.1. While the intervals with K = 20 have a length of
A0 = t;/K = 0.5, the characteristic time of the upper domain in the GT design was found as 7; = 6.12. The interval length
is thus an order of magnitude smaller than the characteristic time. In fact, if we assume a static unchanging design, the
adjoint error should propagate over 7; /A@ = 12 intervals. As adjoint errors can only reduce over one interval each design
iteration, it would take 12 design iterations for adjoint errors around the top influx to reduce sufficiently. Moreover, as
can be seen in the convergence plots of the objective in Figure 10, it takes around 10 iterations for the design to stabilize.
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TABLE 5 The designs, objective values f*, and relative changes in objective Af* found using the approximate sensitivity computation
algorithms.
LT PLT CP/LT
K=20 —————— ————————
(a)f* =1.1671, (b) f* =1.1727, (c) f* =1.0266,
Af* = 14%. Af* = 14%. Af* = -0.03%.
K=5
(d) f* = 1.0290, (e)f* = 1.0303, () f* = 1.0266,
Af* = 0.26%. Af* = 0.40%. Af* = —0.03%.
K=2

(&) f* =1.0299, (h) f* = 1.0247, (i) f* = 1.0250,
Af* = 0.35%. Af* = —0.16%. Af* = —0.13%.

Notes: The change in objective Af* is relative to the objective found using the GT and CP algorithms, where a positive Af* increases and a negative Af*
deteriorates the objective. Both the LT and PLT algorithms disconnect the upper heat source from the heat sink for K = 20 leading to an inferior optimized
design. These errors emerge as the adjoint errors do not converge quickly enough and the design gets stuck in an inferior local optimum. The CP/LT designs do
not suffer from this problem as they correct the largest errors in adjoint.

Abbreviations: LT, Local-in-Time; PLT, Parallel-Local-in-Time; CP/LT, hybrid Checkpointing/Local-in-Time.

The LT and PLT designs thus stabilize into an inferior local optimum before adjoint errors sufficiently reduce. These
results suggest that to prevent weak global convergence, the length of an interval should not be an order smaller than the
characteristic time:

AG=L> 1, (43)

which we defined as the weak global convergence requirement.

Other significant deviations from the reference are found in the K = 5 and K = 2 LT designs in Table 5D,G and con-
vergence in Figure 10B. Firstly, the LT K = 2 convergence plot shows some large instabilities during iterations 80 to
100. These errors are caused by global instabilities as discussed in Section 3.1.1. Small changes in design lead to large
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(C) CP/LT objective convergence. (D) PLT objective convergence.

FIGURE 10 The objective convergence for designs in Figure 9 and Table 5. Objective values are normalized using the objective in the
first design iteration computed using the GT algorithm f} .. The GT and CP algorithms both compute exact sensitivities and show the same
convergence behavior. Additionally, as the CP/LT algorithm corrects erroneous sensitivities and computes fairly accurate sensitivities as can
be seen in Figure 11, it also shows similar convergence behavior to the GT and CP algorithms. The objective convergence of the LT algorithm
using K = 2 shows large fluctuations toward the end. These fluctuations are caused by global instabilities in the design. However, the global
instabilities dampen out and the design again converges to a stable optimum. The PLT convergence plot shows that when more intervals are
used, the objective converges slower over more design iterations. This is caused by the approximations in state variables which leads to larger
changes in objective.

changes in adjoints and consequently in sensitivities. Subsequently, these sensitivity changes lead to larger changes in
design and so forth. In Figure 11A, we compare the LT sensitivities to the ones computed using the GT algorithm on
the same design. We verify the increase in sensitivity error over design iterations 80-100. Moreover, we find that sen-
sitivity errors do not reduce monotonically, and increase in parts of the convergence history. This is also the case for
the sensitivity error in the PLT and CP/LT algorithms in Figure 11. Due to the stability of MMA, the design is able to
revert back to a stable design and converges after 20 additional iterations. We can conclude that an increase in sensitiv-
ity errors leading to global instabilities is difficult to predict but may happen and is a risk inherent to the LT and PLT
algorithms.

The aim of the CP/LT algorithm is to correct the errors in the LT algorithm, and we expect it to be less prone to global
stability issues. Table 5C shows that the CP/LT algorithm is able to find the bowling pin design for K = 20 and did not
suffer from weak global stability issues. Moreover, no global convergence issues are found for the CP/LT algorithms in
Figure 10C. In Figure 11B, the sensitivity error &’ for the CP/LT algorithm is shown. During the first seven iterations,
all domains are corrected and the error in sensitivity is close to numerical accuracy. When corrections stop in the eighth
design iteration, an error in sensitivities is introduced and reduces over the subsequent iterations. Furthermore, the CP/LT
results illustrate that the approximate algorithms find optima which are slightly different but not necessarily inferior to
the ones found using exact algorithms. The designs found by the CP/LT algorithm for K = 5 and K = 2 perform slightly
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FIGURE 11 The convergence of the sensitivity error ¢ for all design iterations. In Figure 11A clear correlation can be found between
increasing sensitivity errors for LT, K = 2 and the global instabilities found in Figure 10B. Moreover, none of the figures show a
monotonously decreasing sensitivity error as they all show some error fluctuations. These fluctuations are caused by global instabilities, but
when they remain small have no noticeable effect on the objective convergence and design updates. The sensitivity errors in the CP/LT
algorithm are of numerical precision in the first few design iterations where all intervals are corrected. However, as the algorithm stops
correcting all intervals, errors shoot up to about &’ ~ 1072,

better than the GT and CP design, as can be seen by the negative Af*. To summarize, global convergence problems are
alleviated by the CP/LT algorithm, and the algorithm generally shows a more stable convergence behavior than the LT
algorithm.

Finally, we compare the designs and convergence behavior of the PLT algorithm to the other algorithms. As previously
discussed, the PLT algorithm suffers from weak global convergence issues for K = 20. Moreover, the convergence of the
objective for the PLT algorithm is much slower than for the other algorithms, see Figure 10D, even when few intervals are
used. Thisissue is caused by the errors in state variable which require more iterations to converge together with the adjoint
variables. It should be noted that the PLT algorithm only requires more time to reach a stable topology and objective value
during the start of the optimization procedure. Subsequently, the PLT algorithm only slightly adapts the topology and
improves the objective value. While other algorithms take about ten iterations, the PLT algorithm with K = 20 takes 20
to find an adequate topology. As the optimizer runs for at least 100 design iterations, this does not have a large influence
on the overall design convergence.
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5.1.5 | Computational cost of the thermal results

Although the thermal problem is specifically designed to investigate stability, we also analyze the computational wall
times found in Table 6. We show the wall time to compute sensitivities summed over all design iterations fsoly = fstate + Ladjs
which consists of the time required to solve the state solution fy, and the time to update the adjoint and sensitivity
fagj- We note that for the measured wall time we summed the times for all design iterations in the optimization pro-
cess. The serial algorithms were all run on one CPU, while the PLT algorithm was run on the same number of CPUs as
intervals K.

Among the serial algorithms, the GT and LT K = 20 and K = 5 are the fastest. However, as the LT algorithm using K =
2 required 20 additional design iterations due to the strong global stability issues, it required more computational time.
Compared to the increased computational time in the CP/LT algorithms, the LT algorithm with K = 2 performed worse
due to the additional iterations, even though computational time for the CP/LT algorithm is increased by performing the
adjoint corrections. The worst performing algorithm was the CP algorithm due to the recomputation of the state solutions.
The parallel PLT algorithm was run using the same number of CPUs as there were intervals K. Each interval was thus
attributed to one CPU. We observed a large decrease in computational time using more intervals as for K = 20 the PLT
algorithm took about one fifteenth of the time of the GT algorithm. A perfect scaling of one twentieth of the time is not
achieved here and will be further investigated in Section 5.2.

We verify the relative computational costs predicted in Section 4.2. By assuming that the measured wall times are
proportional to the computational cost (fgae o Cs, fadj & Cq), Telative computational cost r. = ¢;/¢s = fstate / agj i approxi-
mated using the computational times of GT: . = t{% /18T = 84.19/32.83 ~ 2.56. Since both state and adjoint updates are
simple matrix vector multiplications, they have the same cost. Because the sensitivity computation is also a matrix vector
multiplication, it has a similar cost. This leads to a larger ¢, which contains both adjoint solve and sensitivity computa-
tion, compared to ¢ which contains only the state solve. Subsequently, we compare the analytical relative computational
cost of the CP algorithm in Equation (27), to the measured computational cost, respectively, as:

CP
c J24r-1/K o C® Lo 1503 o (44)
&S e = T et

solv

which is in agreement with our predictions in Equation (27).

A disadvantage of the corrections performed by the CP/LT algorithm is that they increase computational cost.
In Table 6, we find that the GT algorithm takes 117.0 min to compute sensitivities, while the CP/LT algorithm
takes at least 10 min more. The more intervals are used, the more computational time is increased. The increase in
computational time for more intervals is caused by the additional time spent in adjoint corrections. This remark is
supported by the number of intervals in each design iteration for which a correction is carried out as illustrated in
Figure 12. For K = 20, 5, and 2, corrections are only performed in the first 12, 9, and 8 design iterations, respectively.
All intervals except the last are corrected the first seven iterations for each K. At the eight iteration, the design sta-
bilizes and the number of corrected intervals reduces. As the correct terminal adjoint propagates backward-in-time,
fewer intervals need to be corrected. Intervals which are not corrected start at the terminal interval and propa-
gate backward-in-time. Since the correct terminal adjoint can only propagate one interval at a time, using more
intervals leads to a slower decrease in adjoint error, a larger number of performed corrections, and an increased
computational time.

The observation that corrections are performed only in the first iterations can be used to analyze the relative compu-
tational cost of CP/LT a priori. A designer with some knowledge of their optimization problem can estimate how many
iterations are required for the design to stabilize. Subsequently, the percentage of corrected intervals f., as defined in

TABLE 6 The computational time fyly = fsae + Lagj is the sum over all design iteration and consists of the time to solve the state
equations e and the time to solve adjoint equations while simultaneously updating sensitivities f,q;-.

GT CP LT LT LT CP/LT CP/LT CP/LT PLT PLT PLT
K =20 K =20 K=5 K=2 K =20 K=5 K=2 K =20 K=5 K=2
tsory (Min) 117.0 150.3 118.9 114.6 138.0 132.8 127.3 127.0 7.698 25.66 64.99

Abbreviations: CP, Checkpointing; GT, Global-in-Time; LT, Local-in-Time; PLT, Parallel-Local-in-Time; CP/LT, hybrid Checkpointing/Local-in-Time.
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FIGURE 12 The intervals @, that require corrections for the CP/LT algorithm are flagged in red. The sensitivities are corrected only
during the first part of the procedure. when more intervals are used, we require corrections in more design iterations, leading to increased
computational times as shown in Table 6. Moreover, we find that starting from the terminal interval less and less intervals are corrected. This
is caused by the fact that the terminal adjoint value is exact and this correction slowly propagates throughout the system.

Section 4.2, can be estimated as the percentage of unstable to stable design iterations. Equation (29) is then used to com-
pare the CP/LT and CP performance. We verify Equation (29) for CP/LT K = 20. First, we compute the average percentage
of corrected intervals over all design iterations, as shown in Figure 12A, as f. = 0.112. Using Equation (29) and comparing
it to the measured relative computational cost, we find respectively:

CP/LT CP/LT
CCP/LT K-1 1+ re 1 Ccomp tsolv 132.8
=+ 1) + = = 0.875, = = =0.884, (45)
CP Cp CP
C K 2+r. K Ccomp toy 150.3
which is in agreement with our predictions in Equation (29).
5.2 | Computational cost investigation through flow optimization

In this section, we compare the computational cost and the computational wall time of the presented algorithms.
A transient flow problem is optimized as the nonlinear flow physics increase the complexity and consequently the
computational effort. Furthermore, the problem is used to emphasize the difference between adjoint updates which
are linear by nature and state updates which may be linear or nonlinear. Subsequently, the speedup of the PLT
algorithm using multiple computational nodes is investigated. Additionally, we examine local/global stability and
design convergence. In the PLT speedup investigation, we verify the weak global convergence requirement found in
Equation (43).

5.2.1 | Transient flow model

To ensure stability of the approximate algorithms, we investigate the characteristic timescale of the flow model, its dis-
cretization, and solution scheme. We discretize the transient equations in space and time. A two-dimensional transient
flow problem is examined and is defined on temporal domain t € [0, t,] and spatial domain X € Q with boundary I. The
flow problem is governed by the Navier-Stokes equations:

ke(a
v+ pfV - (W) =-Vp + ﬂfVZV — 7 f)v, on Q,
V-v=0, on Q,
V=vr, on I“Z, (46)

_ P

b =pr, on Fd,

v=0, only,

v=Y, p,=p, att=0,
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FIGURE 13 The equidistant uniform mesh used to discretize the flow problem. Green circles are the pressure nodes and densities are
defined per element where ay = 1 is a fluid element and ¢y — 0 is a solid element. Horizontal red arrows are the u-velocity degrees of
freedom (DOFs) while vertical red arrows represent the v-velocity DOFs.

where the subscript [ denotes fluid material properties, v(X, t) = [u, v]T is the velocity field with time derivative v = dv/ot
and component u in x-direction and v in y-direction, p(x, t) is the pressure field, a(X) is the design field which represents
the fluid volume fraction and is thus set to ay = 1 in the fluid domain. Furthermore, p; and y; are the fluid density and
dynamic viscosity, respectively, and ks(ay) is the Darcy impermeability used to inhibit flow in the solid domain where the
fluid volume fraction tends to zero ay — 0. Furthermore, vr(X) and pr(X) are the fixed flow and pressure on boundary
I and FZ, respectively, the flow at the solid/fluid interface Iy, is prescribed as v = 0, and ¥(X) and p(X) are the initial
flow and pressure distributions. The Navier-Stokes equations are discretized using the finite volume method as described
in Theulings et al.>* on a staggered grid as shown in Figure 13. Moreover, they are solved using the SIMPLE algorithm
as described by Versteeg and Malalasekera.?® As the SIMPLE algorithm is an implicit algorithm, the equations take the
form:

Vin — Vp—1
an(vn—l,vmpn,s’ tn) = Mt%

+ M(vp)vy, + CPp,, — Dv,, + K(5)Vy,,
R%(Vn) = C,,
Ry(vo) =vo =V,

Rg(Po) =po—D.

(47)

where R} and R}, are the discretized momentum and continuity equations, respectively, and v, p, are vectors of discrete
nodal velocities and pressures at time step f, with initial condition ¥ and p, respectively. As can be seen by the depen-
dence of the convective matrix M° on v,, the momentum equations are nonlinear and several subsolves are required to
advance one time step in the SIMPLE algorithm. Each subsolve includes the assembly of the pressure correction matrix
and subsequent solution of the pressure correction which involves a linear matrix solve. However, a backward adjoint
step only involves one matrix assembly and one solve as the adjoint equations are linear by nature. Solving a backward
adjoint step is thus cheaper than solving a forward state step.

To ensure stability of the approximate algorithms and the time stepping scheme, we estimate the characteristic
timescale of the physics and discretization scheme. For the SIMPLE algorithm to converge, the time step is constrained
by the Courant-Friedrichs-Lewy (CFL) condition as:

A<l (48)
u

where u is the maximum flow magnitude. Furthermore, the bound on the time step is related to a characteristic timescale.
If we imagine a parcel of fluid flowing over a distance L with velocity u, it travels this distance in:
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(49)

The characteristic timescale for flow can be estimated by 7#, which is in fact the characteristic timescale of inertia.?’ How-
ever, in the Navier-Stokes equations, another characteristic time is defined by the viscous dissipation?® in Equation (46):

2
S (50)
Vr

where vy = uy/py is the diffusivity of momentum, more commonly called the kinematic viscosity. While 77 is related to
the characteristics of the flow, # is related to the characteristics of the viscous energy dissipation. Although no local
stability criterion for nonlinear state equations was derived in Section 3.1.1, we generally found the adjoint equations to be
stable when the constraint in Equation (48) was applied. Furthermore, for strong/weak global stability, the characteristic
timescale in Equations (49) and (50) will be considered in the problem setup in Section 5.2.2.

For the thermal problem in Section 5.1.1, the time step constraint and characteristic times at the element scale were
similar. However, they are not necessarily directly related for the flow problem. We thus investigate the possible length
scales of features in the design, and use it to find the characteristic times of these features. In topology optimization, we
may design features of a few elements L ~ h and are interested in characteristic times of:

2
u b
h %

, (51)

where r}’; is already satisfied by the stability condition in Equation (48). However, r;: may be smaller than TZ ,and in design
components of a few elements long viscous effects may dominate. A smaller time step may thus be needed to accurately
represent the transient effects in these design features. One could think of a design with many narrow channels with low
flow speeds and low Reynolds numbers. It is left to the user to make an a priori estimation of the type of design resulting

from the optimization procedure and select the appropriate time steps.

5.2.2 | Transient flow optimization problem

The problem in Figure 14 with parameters in Table 7 is designed such that nonlinear flow effects are of importance for
the optimized designs. We design a piston pump without moving parts. A piston pumps fluid up and down at the top
boundary I'yump, Where an oscillating flow is applied as:

1—‘pump

[T o,
L
2

L L

3 2
L L
E 3
L

Fi" E out
pr=0 Pr =
L
3
L

FIGURE 14 The piston pump optimization problem. At the top inlet/outlet, a fluctuating velocity is prescribed and at the red inlet and
blue outlet only reference pressures are prescribed. The white domains are non-design areas, and in the gray domain, the material layout is
optimized.
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TABLE 7 The discretization and material parameters used for the flow optimization problem in Figure 14.
L h t; At Pr Hf v
1 1 1
1 - 5 - 1 P 1
v,(t) = vsin(4rt),

g (52)

with v the maximum inlet velocity in y-direction over time as found in Table 7. We optimize the mass flow to the right
from inlet I';, to outlet I'yy, and apply a constant pressure on both the inlet and outlet pr = 0. During the downstroke of
the piston, we expect fluid to be pushed out of the system through I'y,; while during the upstroke, we expect fluid to be
pulled into the systems through I'i,. Subsequently, we maximize the volumetric flow through the system from inlet I';, to

outlet I'yys:
2
F:/ <—/ v-ndF+/ v-ndF)dt, (53)
0 I r

in out

where n is the outward normal on the boundaries. To normalize the problem, we define a theoretical maximum of a piston
pump with moving parts which closes off the inlet during the downstroke and closes off the outlet during the upstroke.
In such a pump, the volumetric flow to the right through the in- and outlet is the same as the absolute volumetric flow
through I'pump:

L
F= / / [vsin(dzn)|drde = v2 10, (54)
0 r 3 T

pump

Subsequently, we use the theoretical optimum and minimize for the normalized objective F, = (F — F)/F = 1 — F/F. The
normalized objective can be interpreted as the decrease in efficiency of the pump without moving parts compared to a
pump with moving parts. Furthermore, using the material parameters in Table 7, the Reynolds number is estimated as:

VL
Re = gyl
Hf

60. (55)

The optimal design is expected to use the nonlinearity of moderate Reynolds flow.

To regularize the optimization procedure, filters and interpolation functions are used. Firstly, design variables s; are
smoothed®” and projected® following the approach described in Section 5.1.2 resulting in 5;. The volume constraint
8,(s) is applied using Equation (37). The interpolation of the fluid volume fraction ay, the Darcy impermeability ks(ay)

and the maximum impermeability Ef are defined following Theulings et al.** For both ay and ky, a linear interpolation
is used:
a(8) = a; + (1 - a)si,

_ (56)
kf((xf) = kf(l —ar),

such that in the fluid domain (a; = 1), no penalization (k; = 0) is imposed and in the solid domain (ay = « = 0), the

maximum penalization (Ef(l - gf) ~ Ef) is prescribed. Moreover, the maximum penalization Ef is set using parameter
H® = h™? and the elemental Reynolds number Re® = psvh/ u:

— HE®, Re® <1,
{” (57)

kf =104
UHERe®, Re® > 1.

Parameter q is used to set the magnitude of the flow penalization. All optimization parameters can be found in Table 8.
Furthermore, using the material parameters in Table 7, the elemental Reynolds number is computed as:

Ret = 2, (58)
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TABLE 8 The optimization parameters used for the flow problem in Figure 14.
r B Ap p Vi q 2 7
3h 1 0.14 8 0.6 2 107! 0.1

Notes: We smooth the design over a radius of three elements (v = 3h) and increase the Heaviside projection slope from f to B by Ap over iterations 10-60.
Furthermore, a maximum allowable adjoint error of e7** is set for the CP/LT algorithm.

resulting in a maximum penalization of:
ky = 109 H*Re® = 4200. (59)

Finally, using the discrete model in Equation 47, the discrete optimization problem is stated as:

N-1
minismize F,~ ZFn(vn,s)At

n=0
subject to  Rp'(Vp—1,Vn,P,.8) =0 ne{l,2,... N},
Ré(V,) =0 ne {12 ... N}, (60)
Ry (o),
RY(®y).
&(s) <0,

Characteristic times are inspected to investigate the weak global convergence requirement in Equation (43). First, we
compare the characteristic time of the flow and of the viscous diffusion:

L
v
v

where we estimated the maximum flow speed as the maximum flow at the inlet v, and substituted vy = uy/p; using the
values in Table 7. Since the characteristic time of the viscous diffusion is an order of magnitude higher than that of the
inertia, and we examine a problem with terminal time ¢, = 577, we expect transient effects of inertia to be dominant.
Furthermore, weak global convergence issues emerged in Section 5.1.3 when Equation (43) was not satisfied. We thus
expect that they may occur in this problem when the interval length A@ = t,;/K is an order of magnitude smaller than z”
and thus:

10¢;
> —
TP

K = 50. (62)
In Section 5.2.4, we will use PLT with K = 48 and may thus find weak global convergence issues. Strong global conver-
gence issues are harder to predict and may occur. In the authors experience, convergence is generally achieved when
sufficient design iterations are used.

Similar to the analysis at the end of Section 5.1.2, we estimate the memory requirements of the problem and select
the appropriate number of intervals K. As the CFL condition in Equation (48) defines an upper bound on the time step
dependent on h, the number of time steps and memory requirements are dependent on the spatial resolution. The number
of flow and pressure DOFs in this problem is approximately Ny ~ 7500. As each DOF is stored as a double, the size of
the state solution at a time step is m = 8Ny ~ 60 kB. Furthermore, using the parameters in Table 7, we store the state
solution at N = t,/At = 210 time steps. Assuming that K < N, memory requirements following Table 1 scale as M =
mN = 0.13 GB for the GT and PLT algorithms and as M = mN /K ~ 0.13/K GB for the CP, LT, and CP/LT algorithms.
Although for this relatively small 2D problem, there is no need for memory reducing algorithms, memory requirements
scale up quickly when 3D problems are investigated and the mesh is refined. For the analysis of the computational cost,
we will use K = 8 intervals.
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5.2.3 | Computational cost comparison

In Section 4.2, Table 2, we made a theoretical approximation of the computational cost of the algorithms. In this section,
we compare these theoretical approximations with measured computational costs. All computations of the serial algo-
rithms are carried out on the same type of CPU. Moreover, to quantify computational cost, we measure wall time. Since
the same type of CPUs with similar computational power are used, we expect wall time to be a sufficiently accurate mea-
sure of computational cost. However, for the PLT algorithm the same number of CPUs as there are intervals is used,
contrary to the serial algorithms which use only one CPU. As the PLT algorithm uses more computational power, we
expect a significant speedup.

Different designs lead to different flow solutions which require a different computational effort to solve. To compare
speedup, we would like the resulting designs to be similar. As K = 8 intervals are used and since we expect global conver-
gence issues to start at K = 50 intervals as shown in Equation (62), we expect similar designs to be found by all algorithms.
This is confirmed by the designs in Figure 15. However, as shown in Figure 16A, the different algorithms take a different
convergence path to their local optima. During the design convergence, the computational cost of solving the nonlin-
ear state equations may differ at any given design iteration. This effect is responsible for some small deviations between
expected and measured wall times.

To verify stability and convergence, we further analyze the objective and sensitivity error convergence in Figure 16.
We note that the objective is increased over iterations 55-60 for the GT and CP algorithms. This is caused by the nonlin-
earity of the flow solution leading to an increase in the objective. Moreover, as the CP/LT algorithm corrects erroneous

(A) GT and CP, (B) LT, (C) CP/LT, (D) PLT,
f* = 0.6645, f*=0.6752, f* =0.6643, f* =0.6584,
Af* = 0%. Af* =1.61%. Af* = —0.03%. Af* =—0.92%.

FIGURE 15 The optimal designs, objectives f*, and relative changes in objective Af* for the flow problem found using the GT, CP, LT,
CP/LT, PLT algorithms. For K = 8 intervals, no weak global stability problems are encountered and all designs and objective values are
similar. GT and CP.

Il AV A AV, — N GT and CP J‘
— LT ;
— CPLT 107! l ‘
0.9
V “V\‘
- W
~ 0.8 w 10 V\
PO
0.7 10-3 V"M,\J
0.6 10~
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Iteration Iteration
(A) The objective convergence (B) The sensitivity error convergence

FIGURE 16 The objective and sensitivity error convergence of the flow designs in Figure 15. The GT and CP algorithms both compute
exact sensitivities and show the same convergence behavior. After the initial fluctuations in design and objective during the first 30 iterations,
the design stabilizes and the sensitivity errors reduce.
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sensitivities and computes exact sensitivities in the first 34 iterations as can be seen in Figure 16B, it follows the same
convergence path as the GT and CP algorithms during these iterations. Furthermore, during the first 20-30 iterations, the
design is subject to significant change and sensitivity errors remain high as shown in Figure 16B. This coincides with the
relatively high and fluctuating objective values found in Figure 16A. Once the topology stabilizes and only the shape of the
design changes, the objective and sensitivity errors start to decrease. Due to the nonlinearity of the equations, the objec-
tive and sensitivity errors do not decrease monotonically and may fluctuate significantly for both exact and approximate
algorithms. However, given sufficient design iterations, the objective generally stabilizes and sensitivity errors reduce.

Subsequently, we examine and compare the computational cost of the algorithms. Firstly, the relative computational
cost of the CP algorithm in Equation (27) is investigated. In Figure 17, we show three wall times: the time to solve the state
equations fgee, the time to update the adjoint while simultaneously updating sensitivities f,gj, and fyoly = Lstate + Lagj. We
note that for £y and £,q; we summed the wall times for each of the 100 design iterations in the optimization process. Wall
times fgate & Cs OF Lagj o €, are used as measures of the computational cost of solving state or solving adjoint and computing
sensitivities, respectively. Using the measured wall time of the GT algorithm in Figure 17A, we compute the relative
computational cost as: 7, = tfd? / tg;fte = 14.81/149.0 ~ 0.10. Solving the state equations is more expensive than solving the
adjoint equations as shown in Figure 17B. We compare the derived relative cost of the CP algorithm in Equation (27) to
the measured relative cost, respectively, as:

P 241, —1/K Coomp Lo
% ~ —1C /K _ 1.80, e ;‘);V = —i’gi'g =1.88, (63)
tre Ccomp tsolv :

which shows a relatively low error of 8% between our approximation and the measure relative cost. Furthermore, tyy is
mainly increased by a growing st as shown in Figure 17B. Reducing the memory by using more intervals significantly
increases the computational time required for the CP algorithm.

Secondly, we compare the computational cost of the LT algorithm to the GT and CP algorithms. Notably, the LT
algorithm performed similarly to the GT algorithm. The LT algorithm is even slightly faster than the GT algorithm. This
may be attributed to the fact that a different convergence path is followed by the LT algorithm as shown in Figure 16A
with the objective convergence graph and in Figure 14B with the slightly different design layout. Different designs have
different flow solutions which may take more or less time to solve.

Thirdly, the computational cost of the CP/LT algorithm is analyzed. We expected the CP/LT algorithm to have a cost
between the GT and CP algorithms. Figure 18 depicts the corrected intervals during the CP/LT run. During the first 34
design iterations, all intervals except the last are corrected. Hereafter, the number of corrected intervals reduced and after
39 design iterations, no intervals were corrected. Even though for 39 of the 100 design iterations corrections are performed
and f. = 0.38, the computational cost remains lower than the cost of the CP algorithm, as the cost of computing the state

300 |- — |
g
E 200| |
GT | CP |LT |CPLT]|PLT £
toy (min) | 163.8 | 308.4 | 160.3 | 220.9 | 24.07 = 100 [ |
tqwe (Min) | 149.0 | 293.0 | 1458 | 201.1 — B
l,q (min) | 1481 | 15.37 | 14.54 | 19.77 — ol L = |
(A) The measured wall times. &\ Q‘ &\ &\ &\
O
G v C?W ¥
‘ D tstate D tadj D tso]v

(B) A visualization of the wall times.

FIGURE 17 The wall times fy, fstate a0d £ygj for the designs in Figure 15. The PLT algorithm was ran on eight CPUs instead of one and
consequently has a much lower . For the PLT algorithm some workers might still be working on the state solution while others are
already working on the adjoint and we thus measure ty,, as the time from the start until the end of the sensitivity computation.
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FIGURE 18 The intervals O, that require corrections for the CP/LT algorithm are flagged in red. Compared to the corrected intervals
for the thermal problem in Figure 12, more corrections are performed. This is caused by a slower stabilization of the design and more
significant changes in design over the first 30 iterations. After a stable topology is found, errors in adjoint reduce over design iterations 30-39.
Since more corrections are performed in the 37th and 38th designs than in the 35th and 36th designs, adaptively correcting intervals helps in
maintaining low sensitivity errors when design changes are large and disturb sensitivities.

solution is dominant and the cost of performing the adjoint corrections is relatively low (7, ~ 0.10). We verify the relative
computational cost of CP/LT to CP in Equation (29) to the measured cost, respectively, as:

CP/LT CP/LT
CCP/LT K-1 1+ T 1 Ccomp tsolv 220.9
—~ —(fc+1 + ==0.78, = = =0.72, 64
CccP Kk Vet Tk cSh T 3084 (64)

which show that our measurements are in agreement with our approximations. As expected, although the CP/LT
algorithm is more expensive than the LT algorithm, it outperforms the CP algorithm.

Finally, we compare the PLT algorithm to the other algorithms. While all other algorithms are run on one CPU, the
PLT algorithm is run on eight CPUs. Furthermore, for the PLT algorithm some workers may still be working on the state
solution while others are already working on the adjoint solution. Consequently, we do not measure fsaqe OF fagj Separately.
For the PLT algorithm we measure wall time £, starting when sending initial states and terminal adjoint to all intervals,
and ending after retrieving terminal states, initial adjoints, and partial sensitivities dF; /ds, which are combined into total
sensitivities dF* /ds. Each of the K = 8 intervals is attributed to one CPU. Since the PLT algorithm was allowed to use more
computational power, the measured wall times are not a fair comparison of computational cost. Moreover, comparing
the speedup with respect to the GT algorithm, we find it to be tgv / tfole ~ 6.8. The speedup does not scale linearly with
the computational power, which will be further examined in Section 5.2.4. However, as illustrated in Figure 17B, the

increased computational power resulted in a large decrease in computational time.

524 | PLT speedup

In the previous section, we found that the speedup of the PLT algorithm does not scale linearly with the number of
intervals and computational workers K. In this section, we will further examine the computational speedup and causes of
slowdown for the PLT algorithm. There are two main causes for computational slowdown: communication overhead and
load balancing. Communication overhead is defined as the idle time of computational workers waiting for data transfer.
Load balancing issues are caused by an unequal distribution of tasks over computational workers, resulting in idle times
on the workers with cheap computational tasks.

The speedup is examined for K = 2,4, 8, 16, 32,48 intervals. We investigate the designs and objectives to verify if the
results can be used for a fair comparison of speedup. Two designs significantly differ in shape and objective value from the
GT design. The K = 2 and K = 48 designs, as shown in Figure 19, display a more than 10% lower performance compared
to the GT design. Moreover, the different designs have different flow solutions which lead to different computational
costs. We measure the average computational time over five state solves in the optimal GT and PLT K = 2, K = 48 designs
as tyare = 86.0, fytae = 84.6, and fyae = 92.5 s, respectively. The K = 48 design requires significantly more time than the
GT design. Moreover, the K = 48 design needs 20 additional iterations to converge due to global stability issues as we
approach the predicted stability limit in Equation (62) of K = 50 intervals. Comparing the speedup between two different
designs is inherently unfair and is a limitation of our methods to measure speedup. However, since the K = 4, 8, 16, 32
designs are similar in shape and objective to the GT design, a comparison is carried out based on these results.

First, we examine the slowdown due to communication overhead. We measure i, starting when sending initial states
and terminal adjoints to the intervals and ending when the final sensitivities dF* /ds are found, and Z,, the wall time
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(A) K =2, B) K =4, € K =38,
f*=0.7461 f*=0.6782 f*=0.6584

Af* =10.94%. Af*=2.02%. Af* =-0.93%.

(D) K = 16, (E) K =32, (F) K = 48,
f*=0.6672 f* =0.6649 f*=0.7532
Af* =0.40%. Af* = 0.06%. Af* =11.78%.

FIGURE 19 The designs, optimized objectives f*, and relative changes in objective Af* computed using the PLT algorithm with
varying number of intervals K. Two different designs are found for K = 2 and K = 48 compared to the designs for K = 4, 8, 16, 32 which are
similar to the GT design in Figure 15A. Since different designs have different nonlinear flow solutions, computational times differ.

TABLE 9 The wall time f,, percentage of slowdown caused by overhead (t,,/ts1v), and load balancing (LBS) for using an increasing
number of CPUs.

K 1(GT) 2 4 8 16 32 48
tgory (min) 163.8 90.60 43.87 24.00 13.07 7.68 6.90
fov/ Lsoly — 0.162% 0.269% 0.574% 1.65% 3.48% 4.52%
LBS — 0.560% 1.95% 8.23% 11.5% 23.7% 29.2%

Notes: All CPUs are of the same type and are attributed one of the K intervals used in the PLT algorithm. Moreover, after measuring the communication
overhead as in Equation (65), we find it to have a relatively small contribution to slowdown compared to the LBS.

on the slowest worker to solve the state and adjoint equations and combine them into partial sensitivities dF;/ds. On
the slowest worker, we start the time measurement after initial states and terminal adjoint are received and end before
sending terminal states, initial adjoints, and partial sensitivities. We note that ty,, and Iy, are summations of the wall
times over all design iterations j. Subsequently, the overhead time is defined as the difference in wall times between the
complete computation and the computation on the slowest worker:

Loy = Lsolv — ,isolv~ (65)
Table 9 provides the percentage of slowdown ¢,y /t501v caused by communication overhead and shows that communication

overhead is negligible for low number of intervals and increases with the number of intervals. For K = 48, 4.52% of the
time is spent on communication. The increased communication overhead is caused by the relatively short interval lengths
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FIGURE 20 Thespeedup ISGOTV / tf 0%3 of the PLT algorithm. The theoretical best speedup does not scale linearly with the number of
intervals K due to the discrete interval lengths. Moreover, solving nonlinear equations finding the solution on some intervals requires more
computational work as shown in Figure 21, which causes the slowdown found in Table 9. We note that the additional 20 design iterations
were taken into account to compute the speedup for K = 48 by averaging the time for sensitivity computation and computing the speedup as

(120 - £T )/(100 - (PLT

solv solv’*

of only four or five time steps for K = 48. The PLT algorithm suffers from similar problems as common parallel domain
decomposition with small computational domains leading to large communication overhead.

Second, we investigate the slowdown due to load balancing. In Figure 20, we plot the relative speedup to7 /t"LT.
Additionally, we compute a theoretical best speedup which does not scale linearly due to the first load balancing issue.
Dividing the N = t,/At = 210 time steps computed using Table 7 by the K = 48 intervals, we find that the intervals either
contain four or five time steps. The theoretical best speedup we can achieve is thus 210/5 = 42 and not 48. Similar limits
on the speedup are computed for K = 4, 8, 16, 32. The first load balancing issue is caused by discrete interval lengths.

In Figure 20 we find a lower performance than the theoretical best speedup, which cannot be fully explained by com-
munication overhead. The additional decrease in speedup is caused by the nonlinear flow solution being more expensive
on some intervals than on others. To measure the cost of solving the state equations on interval ® in design iteration j,
we measure the wall time for the state computation £ locally on each CPU. Subsequently, we measure the average time

state
for solving the state equations on an interval at a given design as:

K kj

i t
k=1
t]state = Tsm . (66)

In the optimal scenario, each interval would have the same computational work and would spend the same time (f’state)
on the state solution. Figure 21 shows a map of the relative computational cost of the intervals, compared to the average
computational cost of the intervals (t:éte - f]sme) /flstate for K = 16. The more expensive intervals take 20% longer than the
cheaper ones, leading to a large decrease in speedup. We note that this measured increase may also result from the load

balancing issues due to discrete intervals beside the issues due to expensive time steps. Subsequently, we measure load
balancing slowdown (LBS) by comparing the optimal wall time ?State with the wall time spend on solving the state solution

on the slowest worker 7

state» aNd average over design iterations j as:

Zj(iitate - E]state)
2 j Egtate

LBS = (67)
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FIGURE 21 The relative cost of solving the state solution on an interval for K = 16. For each design iteration j we measure the time to
j -k . . . . .
f{é[e and compute the average g, following Equation (66). Subsequently, we normalize the time required
&
state
throughout the optimization procedure. Similar observations were made for different values of K.

solve the state equations on Oy as ¢

to solve the state equations on an interval ( - f’state) /f’state. We find that certain intervals are more expensive to solve than others

In Table 9, the LBS can be found to be relatively large compared to the communication overhead. Load balancing issues
are thus the main obstacle preventing speedup in the PLT algorithm for this example. When dealing with simulations
that show less variation between intervals, this problem is expected to vanish.

6 | GUIDELINES FOR ALGORITHM SELECTION

Five algorithms for adjoint sensitivity computation are examined in this paper and their advantages and limitations are
discussed. Using our results and experience, we formulate guidelines for the selection of an appropriate algorithm based
on the characteristics of the transient optimization problem to be solved. A topic not discussed in the main body of
this paper was implementation. All algorithms consist of sensitivity computations on intervals. The GT algorithm com-
putes the complete sensitivity on the complete time interval at once. All other algorithms compute partial sensitivities
on subintervals separately. To compute the sensitivity on any interval, an initial state, terminal adjoint, design, and (time
dependent) boundary conditions are required. A piece of code that can compute partial sensitivities on an interval can
thus be used for all algorithms. Even the adjoint correction in the CP/LT algorithm is a simplified version of the sensitiv-
ity computation on an interval. Following this approach implementing all the CP, LT, CP/LT and PLT algorithms should
not take more time than implementing the GT algorithm. Implementation time is thus not included in the guidelines for
algorithm selection.

As discussed in Section 1, only when boundary condition are complex and change drastically over time, or when non-
linear physics are considered should the algorithms in this work be used. Subsequently, algorithms should be compared
on three properties discussed in this paper: (1) memory requirements, (2) computational cost, and (3) convergence behav-
ior. A decision tree taking into account these properties is given in Figure 22 and is discussed in the remainder of this
section.

When memory requirements are not an issue and the complete state equations may be stored, we recommend to
choose between the GT and PLT algorithms and move to the left part of the decision tree in Figure 22. To select an
algorithm, the computational cost and availability of a parallel architecture are considered. When the overall computa-
tional cost is low, resulting in short computational times, the GT algorithm is the safest choice as it does not suffer from
global stability problems. If computational cost is high and a parallel computation architecture is available, we can con-
sider the PLT algorithm. However, the PLT algorithm should only be used if weak global convergence, as discussed in
Section 3.1.1, is satisfied. For this we found a weak global convergence requirement in Equation (43), the length of an inter-
val A6 = t;/K is required to be longer than one tenth of the characteristic time #,/K > 7/10. If weak global convergence
is not satisfied, we take the risk of ending up in an inferior local optimum with features of relatively short characteristic
times, as illustrated in Sections 5.1.4 and 5.2.4. It is up to the user to approximate characteristic times and to weigh the
speedup of the PLT algorithm against the possibility of inferior local optima. Moreover, if the user upgrades their com-
putational system to a parallel system for speedup when setting up the optimization problem, available memory is also
increased. Subsequently, the user should reevaluate the question of memory limitations, and the possibility of using the
PLT algorithm, which has the authors’ preference for its low computational time.

If memory limitations are constraining, the user should turn to the right part of the decision tree in Figure 22 and
choose between the CP, LT, and CP/LT algorithms. We assume the smallest number of intervals K to satisfy the memory
constraints are used. For the LT and CP/LT algorithms, we use the lowest K possible as this improves convergence behav-
ior, for the CP algorithm the lowest K reduces computational cost. Selecting the appropriate algorithm depends on both
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FIGURE 22 A decision tree for selecting the correct transient sensitivity computation algorithm. Decisions are based on memory

requirements, computational cost and algorithmic stability. To analyze stability, characteristic time z needs to be estimated. To compare
computational cost of the CP/LT and CP algorithms, an estimation of the number of corrected intervals f;, and relative computational cost r,
needs to be made.

computational cost and convergence behavior. As predicted in Section 4.2 and shown in Sections 5.1.5 and 5.2.3, the LT
algorithm is generally the fastest followed by the CP/LT or CP algorithm. The exception is the convergence of the thermal
problem using LT with K = 2 in Section 5.1.5. However, we included exactly these results as they illustrate this exception,
but did not generally find this type of behavior for the LT algorithm. If weak global convergence is satisfied (t;/K > 7/10)
we use the LT algorithm.

If memory requirements impose limitations and weak global convergence is not guaranteed, we need to choose
between the CP/LT and CP algorithms. Selecting the appropriate algorithm depends on computational cost. In
Equation 29 we show the relative computational cost of the CP/LT algorithm to the CP algorithm. The relative cost is
dependent on the number of intervals K, the relative cost of the adjoint and sensitivity computation c, to the state com-
putation cs: 1. = ¢ /cs, and an estimate for the percentage of corrected intervals f.. To compare the computational cost of
the CP/LT and CP algorithms, we thus need to compute at what percentage of corrected intervals the CP/LT algorithm
becomes more expensive than the CP algorithm. Subsequently, the choice of algorithm is based on a prediction of f.. We
use the CP/LT algorithm when the ratio C*/LT /C? from Equation (29) is lower than one, resulting in:

1

, 68
1+, (68)

fe <

which allows us to decide between the CP and CP/LT algorithm in Figure 22. Relative cost r. can be easily approximated
by running the optimization procedure for only one iteration and measuring the time spent on adjoint and state equations
as illustrated in Sections 5.1.5 and 5.2.3. However, for estimating f. some insight into the problem is required. As shown
in Figures 12 and 18, only during the first design iterations when design changes are large are corrections necessary. An
experienced designer may thus estimate the number of design iterations associated with large design changes and the

85UB01 T SUOWIWIOD BA1E81D) 8|qeot[dde aup Ag peusencb a1e sejollie YO ‘N J0 s9n1 1oy AkeiqTaulUO A1 U (SUONIPUOD-PUR-SLLIBI WD A8 |1 Ale.d1jBuJUO//SdnL) SUONIPUOD pue SWB L 81 88S " [7202/90/2T] Uo AkeldiTauljuo AS|IM ‘SpuejieyIeN aueiyood Ag T2 8WU/Z00T OT/I0p/W0d A8 | Ale.q1pul|uoy/sdny Wwoly papeoiumod ‘¥T ‘¥20Z ‘£020.60T



40 of 42 Wl LEY THEULINGS ET AL.

number of iterations required to converge. Subsequently, an estimation of f. can be made a priori, and an informed choice
between the CP/LT and CP can be made. Furthermore, we note that for highly nonlinear systems where r, — 0, we find
fe <1 and may thus always use the CP/LT algorithm.

7 | DISCUSSION AND CONCLUSION

In this work we thoroughly examined five algorithms for transient sensitivity computation in topology optimization. Two
of these algorithms are new, and proposed for the first time in this paper. This has been motivated by the fact that in
topology optimization of transient problems, memory- and time-efficient adjoint sensitivity analysis is crucial. The algo-
rithms have been compared in terms of memory requirements, computational cost, and stability. Firstly, we examined
the state-of-the-art GT, CP, and LT algorithms. The GT algorithm serves as the reference and suffers from severe mem-
ory limitations which motivates the development of new algorithms. To overcome these memory limitations, the most
common approach is the CP algorithm. Although the CP algorithm reduces memory usage, it significantly increases the
required computational time due to recomputation of the state solutions, as shown in Section 5.2.3. To avoid recomputa-
tion of the state solutions, the LT algorithm may be used. However, due to the approximations of adjoints and consequent
stability and convergence issues described in Section 3.1.1 and illustrated in Section 5.1.4, using the LT algorithm may
compromise the optimization outcome. To solve these stability issues, we introduced the hybrid CP/LT algorithm which
does not show the convergence issues of the LT algorithm at the cost of an increased computational time. However, the
hybrid algorithm showed a clear reduction in computational time compared to the CP algorithm.

We point out the importance of understanding the physics and characteristic times of the optimization problem
for selecting an appropriate optimization approach. First of all, only when the characteristic timescale is long enough
compared to the optimization time horizon or when sufficiently complex physics/load cases are examined do we ben-
efit from the algorithms examined in this work. If the characteristic timescale is short compared to the time horizon
of the optimization problem, ESL algorithms can be used, and when the physics/load cases are simple enough, model
order reduction techniques can be considered. Secondly, comparing the characteristic time to the interval lengths asso-
ciated to the LT algorithm, it can be determined whether stability and convergence issues arise and the hybrid CP/LT
algorithm is required. When interval lengths are an order of magnitude smaller than the estimated characteristic time of
the optimization problem, convergence issues can arise in the (P)LT algorithms.

To address the challenge of computational time in transient optimization, the novel PLT algorithm was proposed. In
essence, the PLT algorithm is an extension of the LT algorithm where not only adjoints, but also states are approximated
during optimization. Consequently, the PLT algorithm also suffers from similar stability and convergence problems as
the LT algorithm. However, by inspecting the characteristic time of the optimization problem, stability and convergence
issues may be identified a priori. This results in an upper limit on the number of intervals K. Although the PLT algorithm
reduces computational time, it does not reduce memory requirements. However, when computational power is scaled
up, the total available memory is also often increased.

For future research, we note the possibility to apply spatial domain decomposition techniques for further accelera-
tion when speedup using the PLT algorithm is limited by stability and convergence constraints. A comparison between
domain decomposition techniques and the PLT algorithm was not included in this work and is recommended. Similar to
domain decomposition techniques, the PLT algorithm suffers from communication overhead when the decomposition
becomes too fine. In addition, for problems with a varying cost per time step (e.g., nonlinear problems), the efficiency
of the PLT algorithm is affected by load balancing issues. This presents an opportunity for the development of algo-
rithms which address these load balancing issues by adaptively increasing the interval length of cheap intervals and
decreasing the length of expensive intervals. Furthermore, another subject for further research is the implementation
of a hierarchical approach to reduce the memory requirements of the PLT algorithm. In such an approach, the inter-
vals used by the PLT algorithm can be further divided into subintervals which are used to locally apply the LT, CP, or
CP/LT algorithm.
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