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Abstract Keywords

Graph neural networks, as well as attention mechanisms, have
gained widespread popularity for traffic flow forecasting due to their
capacity to incorporate the complicated interactions behind flow dy-
namics. However, existing solutions either formulate a graph-based
skeleton with narrow (e.g., static) interaction capture or build the
spatiotemporal (e.g., dynamic) attention without proper comprehen-
sion of diverse risks, which inevitably burdens the generalization
of high-accuracy traffic trends. In this study, we introduce Gboot
(Graph bootstrap) enhancement framework for traffic flow fore-
casting. Gboot takes the traffic flow forecasting problem from a
dependency dynamic learning perspective by treating each traffic
sensor as the graph node while regarding the observed flows at
each sensor as the node feature. In addition to exposing the ex-
plicit spatial connectivity behind traffic flows, we hierarchically
devise temporal-aware and factual-aware graph learning blocks
to consider temporal interactive dynamics and factual interactive
dynamics. The former shows the trend dependencies behind flow
signals and the latter uncovers different views of traffic situations
(e.g., current observation vs. historical observation). More impor-
tantly, we present a Dual-view Bootstrap (DvBoot) mechanism in
Gboot, which includes both risk-free and risk-aware stands. DvBoot
attempts to flexibly align these two views in the latent space to en-
hance the generalization capability of capturing dynamic dependen-
cies. Experiments on several real-world traffic datasets demonstrate
the superiority of our Gboot over representative approaches.
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1 Introduction

Traffic management is one of the critical aspects of intelligent trans-
portation systems (ITS) [19, 21, 40]. The ubiquity of sensor networks
in urban areas provides an unprecedented opportunity to gather
traffic-related data in specific locations at any time, offering insight
into historical traffic regularities that enable prediction of future
tendencies. Traffic flow forecasting also plays a significant role in
urban management, as it can help improve regulatory capacities,
risk assessment, improved trip experience, etc. [18, 19, 32, 45].

(c)

(i) short-term
(ii) current

(iii) long-term

(iiii)

Figure 1: Recent solutions ((a) and (b)) and ours (c).

Typically, raw traffic data can be modeled as spatial and/or tem-
poral graphs, where the actual sensors along the road network
correspond to nodes; and dependencies (or proximities) create con-
nectivity (i.e., edges) between different nodes (cf. Fig. 1). Based on
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this, graph neural network (GNN)-based solutions have been pro-
posed in the field of traffic forecasting [2, 10, 17, 22, 46]. The domi-
nant paradigm in traffic flow data modeling using GNNs (usually
called spatial-temporal GNNs) involves the building of a spatial-
aware graph to delineate the nature of connectivity (i.e., geospatial
correlations) within the road network and explore the temporal
dependencies through widely used Convolutional Neural Networks
(CNNss) [8, 12], Recurrent Neural Networks (RNNs) [2, 24] or self-
attention networks [45, 46]. For example, Fig. 1(a) illustrates the po-
tential correlations of traffic conditions over time, where the purple
dashed line denotes the temporal correlation while the black dashed
line indicates the spatial correlation. In this context, the ST-GDN
framework builds a spatial-aware graph to expose the connective
relations of spatial regions and employs the self-attention network
to encode the temporal dynamics presented in [45]. STGODE [38]
extends multi-layer Graph Convolutional Networks (GCNs) with
tensor-based ordinary differential equations, owning the capacity
to capture long-range spatial correlations. In a nutshell, they ini-
tially investigate the impact of spatially adjacent sensors or nodes
within the same time step and, subsequently, focus on capturing the
temporal correlations associated with each node across different
time steps.

In addition to separately modeling the spatial and temporal de-
pendencies, another line of recent works attempts to explore more
complex spatial-temporal interactions (e.g., the red dashed line in
Fig. 1(b)) due to the existence of synchronous spatial-temporal cor-
relations [30]. That is, each node could share a positive signal with
its spatially adjacent nodes at the next time step(s), i.e., localized
spatial-temporal correlations. To this end, [30] introduced Spatial-
Temporal Synchronous Graph Convolutional Networks (STSGCN)
to synchronously capture the localized spatial-temporal correla-
tions directly and [22] introduced a CNN-based spatial-temporal fu-
sion GNN, called STFGNN, to extract confidential spatial-temporal
dependencies. Gated convolution on graph-aware dynamics was
devised to expose the long-range spatial-temporal correlations —
DSTAGNN [21] structures a spatial-temporal attention module
to explore the spatial-temporal interactions in a road network by
extending the GCNs. The above solutions demonstrated that consid-
eration of the dynamics of spatial-temporal interactions enhances
the ability to predict the future trends of different traffic signals.

Despite the significant breakthroughs achieved in various GNN-
based efforts for traffic flow forecasting, we argue that present
solutions grapple with two predominant challenges.

C1: In addition to spatial-temporal interaction, the current observed
flow volume for each sensor is not only influenced by the local (e.g.,
adjacent time step) or global (e.g., non-Euclidean distance) spatial-
temporal structure but also depends on historical observations. For
example, a sensor at the adjacent instants in the past will generally
have comparable or interactive patterns, exhibiting different prior
views of traffic states. This inspiration is drawn from the fact that
historical traffic records exhibit a high degree of continuity owing
to factors like urban commuting and daily life patterns. Thus, sensor
observations at any given instant are potentially significant in rela-
tion to their historical counterparts. We conjecture that exposing
the factual interaction between different flow situations (current
observation vs. historical observation) on the basis of spatial con-
nectivity could boost the perception of future trends. In addition,
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traffic flows are typically multivariate time-series data. While exist-
ing solutions pay attention to capturing adjacent dependencies (e.g.,
using RNNs) or global dependencies (i.e., using attentions) - they
rarely consider different ranges of dependency learning, yielding a
narrow receptive field for handling flow dynamics.

C2: Due to urban congestion, commuting preferences, sensor fluctu-
ations, and other uncertain irregularities, current solutions heavily
depend on stable (i.e., risk-free) pattern data while lacking attention
to complex traffic risks. This inevitably burdens the generalization
of high-accuracy traffic trends and raises the representation gaps
between accuracy and robustness. Recent advances in data augmen-
tation techniques such as contrasting augmentation (i.e., producing
multiple uncertain views to the actual instance) [15, 23, 44] can
alleviate the mentioned representation gap problem (to an extent).
However, they rely on the tremendous negative pairs by compar-
ing each instance (e.g., traffic flow observation) with many other
examples (e.g., augmented observations) to work well in the latent
(representation) space [5]. For instance, recent contrastive learning
solutions handcraft hundreds or even thousands of negative pairs
and then employ Noise Contrastive Estimation (NCE) to make sim-
ilar instances closer in the representation space while dissimilar
instances are (relatively) further away [23]. But this could confront
either collapsed representations or unstable representations due to
the uncertain augmentations on original data. Recent experimental
study [41] demonstrated that these augmentations with negative
pairs in representation learning are trivial. In sum, the challenge of
effectively using risk-aware views to enhance model generalization
capabilities still persists.

To address the above challenges, we introduce Gboot — a novel
Graph bootstrap enhancement framework rooted in a dependency
dynamic learning paradigm. It first builds a traffic graph derived
from the road network, treats each traffic sensor as the graph node
and the observed flows at each sensor as the node feature. To ex-
pose multiple dependency dynamics, we devise a Traffic Dependency
Learner (TDL) to consider two interactive dependencies over the
spatial connectivity behind the traffic flow records. Specifically, we
hierarchically manage temporal and factual-aware graph learning
blocks in TDL to capture temporal and factual interactive dynam-
ics. In particular, we combine multi-scaled historical observations
of each sensor with the current one as the prior views of traffic
situations, primarily seeking to fully augment the factual interac-
tion between different flow situations (cf. Fig. 1(c), where each part
describes different graph-aware flow situations and green dashed
lines indicate the factual interactions). To enhance risk-aware com-
patibility, we introduce a Dual-view Bootstrap (DvBoot) mechanism
in Gboot, which includes both risk-free and risk-aware stands. Dv-
Boot attempts to flexibly align these two views in the latent space
to enhance the generalization ability of flow dynamics learning.
Finally, our main contributions can be summarized as follows:

e Our TDL in Gboot primarily contains two blocks, i.e., Temporal-
aware Graph Learning (TGL) and Factual-aware Graph Learning
(FGL). Specifically, TGL attempts to capture temporal interactive
dynamics over spatial connectivity learning, while FGL aims to
expose factual interactive dynamics over spatial connectivity
learning, i.e., current observation vs. (short/long-term) historical
observation. More importantly, in each block, we involve latent
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capture with a multi-scaled gated convolution network to handle
different ranges of temporal dynamics or factual dynamics.

e Motivated by recent exponential moving average (EMA) theory,
our DvBoot treats the TDL handling the raw flow data as a de-
terministic (risk-free) view while using the TDL with different
parameter settings to handle the risk-aware view, motivating a
variety of risk conditions, including missing facts, missing spatial
connectivity, and flow noise. The dual-view design does not need
to involve tremendous negative instances, enhancing the model’s
robustness by directly immigrating the predictive representation
gaps between risk-free and risk-aware views.

e Experiments on several real-world traffic datasets demonstrate
the superiority of our Gboot over representative approaches.

2 Related Work

We now overview recent solutions for addressing the traffic flow
forecasting problem-and we position our results in that context.

Conventional methods for traffic flow forecasting mainly fo-
cus on employing the auto-regressive integrated moving average
model (ARIMA) [20] and its variants, which cannot handle spatial-
temporal dependencies such as sensors’ location and seasonal fac-
tors. During the past decade, by virtue of deep learning, researchers
have developed various methods to combat this limitation. Initially,
many approaches utilize Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) to model temporal correla-
tions [28] and spatial dependencies [43], respectively.

Despite their promising results, they still faced limitations in fully
exploring the complex spatial patterns inherent in unstructured
road networks. Recently, motivated by the successful application
of Graph Neural Networks (GNNs) in addressing non-Euclidean
spatial correlations, researchers have begun to incorporate GNNs
into their model development [18]. DCRNN [24] as the first GNN-
based model for traffic flow prediction, which melds GRU with
graph diffusion convolution networks to simultaneously capture
spatial-temporal dependencies. STGCN [40] uses spatial-graph con-
volution and temporal-gated convolution to capture the spatial and
temporal dependencies, respectively. Following this, to enhance
model performance, certain studies have either integrated atten-
tion mechanisms [34] from the fields of Computer Vision (CV) and
Natural Language Processing (NLP) into spatiotemporal graph mod-
eling [10, 12, 27, 35, 47] or constructed diverse spatial graphs via
considering various types of connections, such as semantic connec-
tion [1, 8], and edge interaction patterns [6]. Moreover, some studies
focus on integrating new paradigms into GNNs to improve model
performance. For instance, STGODE [8] incorporated Ordinary
Differential Equations (ODE) into GCNs, based on the combina-
tion of both semantic and road graphs. And ST-SSL [15] employs
self-supervised learning paradigms to enhance traffic pattern repre-
sentations, ensuring they reflect the inherent spatial and temporal
heterogeneity. However, the spatial dependencies captured by these
models do not adequately reflect the inherent dynamics. To address
this, DSTAGNN [21] designs a spatial-temporal attention module
and a multi-receptive field-gated convolution to effectively learn
the dynamic associations between nodes within the road network.

What separates our work from the existing literature is that: (1)
We take the traffic flow forecasting problem from a dependency
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dynamic learning perspective by treating the observed flows at each
sensor as the node feature while exposing both temporal and factual
dynamics over the basis of spatial connectivity; (2) We build a dual-
view (risk-free vs. risk-aware) bootstrap mechanism to handle the
risks that could be raised in the flow data, primarily seeking to
enhance the generalization ability of flow dynamic learning.

3 Methodology

We now provide basic definitions (e.g., road network and traffic
flow observations) and a high-level overview of the Gboot structure,
followed by a detailed discussion of the respective main modules.

3.1 Preliminaries and Architecture Overview

DEFINITION 1 (RoAD NETWORK). Let traffic graph G = (V, E)
denote a road network in a city/region, where V represents a set of
n = |V| nodes (e.g., observation stations/sensors) within the road
network, and & is a set of edges that display the spatial connectivity
between different observation sensors. Besides, let A € [0, 1]"*" refer
to the adjacency matrix exposing spatial connectivity between nodes.

DEFINITION 2 (TRAFFIC FLow OBSERVATIONS). Let three-way
tensor X!~ @it ¢ RMXCX® represent traffic flow data with the obser-
vation window w, where any X, € R™ ¢ is a graph signal depicting
the traffic observations of n sensors with c situations at time step .
Herein, c refers to the types of traffic situations/conditions, e.g., current
traffic volume, short/long-term historical average traffic volume, etc.

Since traffic flow is characterized by typical periodicity, an exces-
sive focus on long-history dynamics (denoted as extra situations)
can cause modeling complexity problems in addition to additional
unstable training risks. Hence, in addition to the current traffic vol-
ume (that is, ¢ = 1), this study considers the average volumes of the
preceding half hour and the preceding hour relative to the current
flow as short- and long-term situations. For instance, we assume
that [X7—g+1, Xr—w+2, * - - » Xt ] refers to the current situation (traffic
volume) of a sensor. The short-term situation can be defined as:

@1 @1 @1
al 3 (tmoni-dbal Y. (rmara-dl- el D (-]
i=0 i=0 i=0

(1)
Herein, a refers to the average function. In this way, we can also
obtain a long-term situation (the preceding hour) of this sensor. In
the end, the core problem addressed in this work can be defined as:

DEFINITION 3 (TRAFFIC FLOW FORECASTING). Given historical
traffic flow records X! =@t € RPXCX® "wwe qim to learn a forecasting
model M with parameters © to predict the traffic observations (i.e.,

St+l:t+
traffic volumes) of next w time steps Y “ e RP%@ op graph G:

7T < Me(X!TH ). 2)

Note that for simplicity, the superscript of X*~“*+1# will be omit-

ted in the following sections. Fig. 2 illustrates the network skeleton
of Gboot, which contains two modules: Traffic Dependency Learner
(TDL) and Traffic Flow Predictor (TFP). TDL comprises two blocks
where Temporal-aware Graph Learning (TGL) attempts to capture
temporal interactive dynamics over spatial connectivity learning
while Factual-aware Graph Learning (FGL) explores factual inter-
actions in the latent space. In Fig. 2, details of Temporal/Factual
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— ﬁ Traffic Depend\ency Learner 3 Gated Convolution 1 g
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i [ i [ : -
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| Embedding : | : B -
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g T _ I | ) Sirltro, Softmax e
I l 1 Y™.G) =
] t =
Inout: Temporal Temporal Latent 1 ( Factual Factual Traffic Flow =

(X”I:Bll: N o | Embedding Capture | | Attention Aggregation Predictor a
Figure 2: The network skeleton of our proposed Gboot.
(or T/F) Latent Capture and Attention are shown in the upper and concatenate these head outputs into a unified representation:
lower right corners, respectively. Besides, we will employ our Dual-
Wi g p vely. we wi ploy ou u Ot — [Of,l;ot,z;'_‘ ,Ot’H]. (5)

view Bootstrap (DvBoot) mechanism to produce the Siamese of the
TDL, which can be treated as a risk-aware view (detailed next).

3.2 Traffic Dependency Learner (TDL)

We aim to explore two interactive dependencies over the spatial
connectivity behind the traffic flow records. Specifically, TDL con-
tains two blocks, including Temporal-aware Graph Learning (TGL)
to capture temporal interactive dynamics, Factual-aware Graph
Learning (FGL) to explore factual interactive dynamics.

We note that in our context, when it comes to traffic flow embed-
ding, we treat the historical flow observations of a node at different
time steps as the node feature which would, in a sense, blur the
time attribute of each node. For that, we employ a positional em-
bedding [30] to specify the different time step signals, aiming at
enhancing the ability to model the temporal correlations. We select
the simple embedding method with absolute positions [9] to tackle
the input X € R™*“*® which can be represented as follows:

X = X +broad(X,T), (3)

where X € R"™*¢X® T € R°*% ig a trainable temporal embedding
with random initialization, and broad() is the Broadcast operation.

3.2.1 Temporal-aware Graph Learning (TGL). TGL is responsible
for capturing temporal interactive dynamics on the basis of spa-
tial connectivity. Specifically, it is stacked with multiple layers to
conduct different roles of knowledge distillation, as detailed below.
Temporal Attention: We employ the popular self-attention mech-
anism [34] with temporal view to tackle the interactive contribu-
tions behind traffic flow representations X € R"**_ In detail, we
first shift the view to the temporal aspect, i.e., X’ = r(X), where
X' € RE¥9XM and r() refers to the Reshape operation. Next, we
operate a standard multi-head self-attention layer to produce the
latent states. For ahead h € [1,2, -+, H], it can be denoted as:

Qt,h (Kt,h)T
t

where Q[’h = (\’tWtQ’h, Kbh = thgl, and Vi = XtW€}h refer to
the query, key, and value in hA-th head of the self-attention network,

0" = Softmax( yWwhh, (4)

respectively. Any Wit € RnXdr g 4 trainable matrix. Then, we

Now we shift the results of O to the original view and align it to
X € R"™¢X® with a simple fully connected network (denoted as
‘Linear’). To this end, we employ a widely used residual operation
and layer normalization (denoted as ‘LayerNorm’) to obtain the
final output O! € R"*¢*® wwhich can be summarized as follows:

O'! = LayerNorm(r(Linear(0%)) + X). (6)

Temporal Aggregation: For observed n nodes in the road network,
we now turn to aggregate the temporal semantics into these nodes.
Specifically, we operate a convolutional layer with filter I; (the
kernel size is 1 X ¢, the input channel is w, and the output channel
is ds) to tackle the output Of € R™*® summarized as follows:

st=0! 1", (7)

where §! € R"™9s and = represents the convolution operation.
Temporal-Spatial Aggregation: To capture the topological (i.e.,
spatial) structure with temporal perception, we naturally select
GNN s to aggregate the node information. We also equip the posi-
tional embedding operation to the input S to specify the spatial
attribute on graph G:

S' = 5! + broad(S',TY), ®)

where T € RY is a learnable spatial embedding regarding S.
Next, we employ the graph attention network (GAT) [3] to specify
the different contributions between different nodes. For instance,
given anode i € V and a node j € V, GAT attempts to explore
the attentive correlation between their node representations, i.e.,
sf e 8! and s§ e 8!, which can be summarized as follows:

e(st, s}) = atTLeakyReLU (Wf . [slt I sﬁ]), 9)

exp(e(sf,sj))
Sy exple(slsh)’
si% = LeakyReLU( Z ﬁfj Wfsjt , (11)
JeEA;
where a! is a learnable vector with random initialization. Wi e

R®*%2ds and W3 e R“Xds are trainable matrices. A; indicates the
actual spatial neighbors of node i according to the adjacent matrix

(10)

fj = Softmax(e(sf,sj)) =
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A. In practice, we use multi-head GAT to generalize the learning
capability of the model and align the output with the original input
traffic flow tensor scale for the purpose of conducting the following
residual operation, i.e., the head number is c. As such, the final
output of this layer can be denoted as S'S € RX¢*®,

Temporal Latent Capture: Motivated by [7, 21], we operate the
multi-scaled gated convolution network to tackle the output of the
above layer, primarily seeking to expose the temporal dynamics in
the latent space with different ranges. Specifically, it contains three
gated convolution operators with different scales (i.e., receptive
fields/filters), uncovering different ranges of temporal dynamics.
For instance, each gated convolution operator can be denoted as:

Z' =y (r(8") xU") ® a(r(S") « Uy), (12)

where ® is the element-wise product, ¥ is an activation function
(herein it is a Tanh function for the purpose of retaining the non-
linearity), r(SS) € RE"*® and ¢ is the gated function, i.e., Sig-
moid. U' with kernel size 1 X z and U; with kernel size 1 X z are
convolution filters. Likewise, we concatenate the outputs of differ-
ent scaled convolutions with residual operation, denoted as:

zt, =[z" 242713, (13)
Z' = LayerNorm(r(Linear(Z.,,,)) + S**). (14)

We will employ Z! € R?XX® a5 the input of the following FGL.

3.2.2  Factual-aware Graph Learning (FGL). Our devised FGL at-
tempts to explore the situational dependencies behind the flow
dynamics in the latent space, uncovering the factual interaction
between different flow situations (flow views) over the basis of
spatial connectivity. Similar to TGL, it also contains multiple layers
for handling different types of interactive knowledge.

Factual Attention: Similar to the Temporal Attention mechanism
in the TGL block, we also employ a multi-head attention network to
explore the interactive contributions between different facts. Hence,
we first shift the sight to the factual view, i.e., Zf =r(Z ’), where
Zf e poxexn, Subsequently, we operate a standard multi-head
self-attention neural network to produce the latent representations.
It is worth noting that we do not engage in positional embedding
here, as we treat these latent facts equally as different views of
the traffic situation, which contrasts with the temporal semantic
refinement. For a head h € [1,2,-- -, H], it can be denoted as:

QI (KT

0/ = Softmax( NZES (15)

dy
where Qf’h = wag’h, K/ = ZfWJ;(’h, and VFh = ZfWJ‘;’h

refer to the query, key, and value in the h-head of the self-attention

layer, respectively. Any W{ h ¢ RPXdr 5 4 trainable matrix. We
also concatenate these head outputs into a unified representation:

of =[0of;07%;... ;0 ). (16)

Then, we align it to Z* with a fully connected network. And we
also employ a residual operator and layer normalization to obtain
the final output Of € RP%¢X0 summarized as follows:

of = LayerNorm(r(Linear(Of)) +Zh. (17)
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Factual Aggregation: Herein, we operate another convolutional
layer with filter size 1 X ¢, input channel w, and output channel dp
to tackle the above aggregate the factual semantics into different
nodes of graph G, which can be summarized as follows:

Pl =0/, (18)

where P/ € R"™*4 and IS is the filter in the convolution operator.
Factual-Spatial Aggregation: We select GAT to aggregate the
node information with factual perception. First, we employ posi-
tional embedding with residual connection to tackle P/ as:

Pf = P 4 broad(P/, V), (19)

where I'/ € R is another learnable spatial embedding regarding
P/ Next, given anode i € V and a node j € V in graph G, we
attempt to explore the attentive correlation between their node

representations, i.e., p{ e Pf and p{ e pf, expressed as follows:
T
e(p{, p{) =af LeakyReLU (W]ec . [p{ [ pﬂ) , (20)

exp(e(p].p]))

ﬁ{; = Softmax(e(p{, pjf.)) = (21)

e exple(pl.p))

pl* =LeakyReLU( " f/, .W}p{ ), (22)
JEA;
where af is a learnable vector with random initialization. W¢. €

f

ROX2dp and WS, € R¥%4P are trainable matrices. We also use the

multi-head GAT to align the output with the original input scale. As
such, the final output of this layer can be denoted as PS5 € R"X¢X@
Factual Latent Capture: Similarly, we operate the multi-scaled
gated convolution network to expose the factual correlations in
the latent space. Specifically, it also contains three gated convolu-
tion operators with different receptive fields, uncovering different
ranges of factual dynamics. For instance, each gated convolution
operator can be denoted as follows:

zl = y(r(PF) « Uy @ o(r(PI) « US). (23)

Herein, ¢ is an empirical SwiGLU activation [29] and r(Pf 5) e
Re*mX@ Uf with kernel size 1 X z and Ug with kernel size 1 z are
convolution filters. We then concatenate the outputs of different
scaled convolutions with a residual operation, denoted as:

7z =12 202 703, (24)
zf = LayerNorm(r(Linear(Z{ut)) +Pfs), (25)

Unified Traffic Projector (UTP): It is to formulate the universal
representation by combining the outputs of TGL and FGL. Specifi-
cally, we first concatenate them by:

Z — [Zf’zt] e RHXCXZ(/.). (26)

Then, we employ a convolutional layer with filter I (the kernel size
is 1 X ¢, input channel 2w, and output channel d¢), summarized as:

C=2Z+LI 27)

The above output C € R4 will be put into the Task Predictor
for future flow forecasting.
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3.3 Traffic Flow Predictor (TFP)
Givenanodei € V and anode j € V in graph G, we attempt to ex-

plore the attentive correlation between their node representations,

ie,c; € Candcj € C, expressed as follows:
e(ci,cj) = a° " LeakyReLU (W¢ - [ci [l ¢j]), (28)

exp(e(ci, cj))
Yjrea, exple(ci,cjr))’
C?ut = LeakyReLU( Z ﬁ::j -Weej), (30)
JEA;

where a® is a learnable vector with random initialization. W¢ €

icj = Softmax(e(c;, ¢j)) = (29)

R%X2de and WS € R%* are trainable matrices. Herein, we use
multi-head GAT in the TFP, where the head number is set to 3. As
such, the output can be denoted as C°%! € R"*34_Then we obtain
the final results with the linear projection, denoted as:

X = Linear(C°%) e R™®. (31)

Temporal-aware Graph Factual-aware Graph
- Learning Learning

¥
l [ Projector }

Stop-Gradient|
] i Temporal-aware Graph Factual-aware Graph
Learning Learning

Figure 3: DvBoot mechanism.

3.4 Dual-view Bootstrap (DvBoot)

Technical Bound Investigation: DvBoot treats the above TDL
handling the raw traffic data as the deterministic (risk-free) view,
denoted as Fy(0 c ©), while building a Siamese of TDL which
uses different parameter settings to handle multiple potential risks,
denoted as the risk-aware view . As shown in Fig. 3, we align
these two views by optimizing the mean squared error in the latent
space. For instance, given a real (risk-free) flow observations X and
its augmented (risk-aware) version X’, we have:

Lo = IH(Fo(X)) = Fu (XI5, (32)

where H is a two-layered projection. H should be nonlinear and
contain batch normalization(BN). The BN used in H could implicitly
introduce a negative term [33] which acts as a crucial component
to stabilize training. We denote it as:

H (-) > Linear(ReLU(BatchNorm(Linear(-)))). (33)

Intuitively, we can begin with the optimization by randomly ini-
tializing the above parameters 0 and k, respectively. However, this
straightforward strategy inevitably leads to a collapse of repre-
sentations, even useless ones [4, 11, 13]. Besides, maintaining the
gradients regarding parameters x brings additional memory and
computation costs. Fortunately, recent exponential moving average
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(EMA) theory [4, 11, 14, 25, 31] successfully applied in computer
vision (CV) suggests that we can establish a conditional gradient
update rule between 6 and x (more technical details about EMA are
introduced in Appendix A). That is, the update of k in each training
step is stop-gradient, which, instead, can be obtained by:

0 —0-nV, Ly, (34)

K — Ak + (1 —2)0, (35)
where the optimization of F begins with x = 6 and A € [0, 1] is
a decay rate, 7 is the learning rate. The gradient of dual-view loss
can be obtained by:

VoE [I1H" (z9) = zill3] = VoE [IIE[zxc|z0] — 2L 113]

= VyE

D Var(z;’i|z6;)} . (36)
i
where zg = Fy(X) and z,. = F(X"). Hence, the optimal objective
can be defined as follows:

H* £ argmqi{n]E [1H (zg) — 2 N13] - (37)

Because of the stop-gradient, we can ignore the gradient update of
Kk, and the gradient of 6 can be written in the following form:

* *

20 oH 90 oH o9zg 90

It can be hypothesized from the above gradient formula that too
slow updating of the parameters of { during the training will
affect the normal gradient propagation process of the model, which
requires adjusting the learning rate of H inconsistent with Fy or
adjusting the dimension d. to control the complexity of H [11].
Risk Setting: Now we turn to explain how to produce multiple
risk-aware versions of an actual (risk-free) view. In our context,
we mainly dig into three frequently present risks, including the
missing facts, the missing spatial connectivity, and the flow noise,
which have been widely posed recently [15, 23, 39, 41]. Specifically,
we choose the following strategies: (R1) Situation Mask: As each
X € R™“ (X € X) describes one type of situation records (e.g.,
the current flow volumes) of n nodes during the time step t — w + 1
to time step ¢, we thus mask part of the observed situations condi-
tional on a masking threshold. (R2) Edge Mask: we manipulate the
spatial connectivity by edge removing, Given the graph G(V, &),
we obtain an augmented version &’ by randomly removing some
of the edges present. (R3) Flow Noise: To further stimulate the un-
certainty of flow records, we add Gaussian noise to some of the
actual flow observations by setting the noise ratio.
Risk Swapping: Inspired by recent bootstrap learning [4, 11, 42],
we employ a swapping method to enhance the learning ability of
TDL. That is, in the training process, we iteratively swap the risk-
free and risk-aware views to TDL ¥y and its Siamese ¥, thus the
goal of Eq. (32) can be rewritten as follows:

Lys = S IHF(X)) = FeXE +IH(Fo (X)) = T OI].
(39)

3.5 Task Learning

In the end, we summarize the task learning details. In each train-
ing epoch, given traffic flow observations X and traffic graph G,
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Algorithm 1: The training process of Gboot.

Input: Traffic graph G, the training set of traffic flow Dx.
1 Initialize ® in Gboot;
2 for sample a batch {Xi}f‘:l € Dx do
3 fori € Bdo

// Risk setting for input graph and traffic flow
: (6. X)) < (6. X0
// Use TDL for each of the two views
5 Z.Z' = Fo(Xi), Fic(X})s
// Swap the input and extract features again
6 Zs, Zi = Fo(X)), Fr (Xi);
// Use TFP module for flow prediction
7 Y=9(2);

8 end
// Calculate Bootstrap loss between two views
9 Lis = 3[I1H(Z) = Z' 12+ 1H(Zs) - ZLE T
// Calculate Huber loss
10 ta = HuberLoss(Y, }A’);
11 L=01-a)Lia+aLlps;
12 update Fg (), H(-) and P(-) to minimize L;
// Updating parameters with EMA
13 Ke—Ak+(1-21)0;
14 end
Output: Obtain the optimal ©*.

we treat X as the deterministic (risk-free) view and generate an
augmented version X’ that contains different risk conditions (i.e.,
the risk-aware view). Then, we employ TDL and its Siamese to
produce the predictive representations regarding these two views,
respectively. After that, the output of TDL will be fed into the TFP
for flow forecasting. We follow previous studies [21, 30] and employ
the Huber loss as the task loss function, which is less sensitive to
outliers than the squared error loss, denoted as follows:

{%(y-?)z for [Y - Y] <6,

Lia= =
ta 5(|Y—Y|—%5 otherwise.

(40)
Herein, ¢ is a threshold used to control the transition point between
square loss and absolute loss. Meanwhile, we produce the bootstrap
objective (cf. Eq. (39)). We treat this objective as a weak signal to
enhance task learning. In sum, our final objective is denoted as:

L=01-a)Lia+aLys (41)

where « is a hyperparameter for the trade-off between two losses.
Algorithm 1 summarizes the workflow of Gboot. In each epoch,
given traffic flow observations X (e.g., X;) and traffic graph G, we
treat X as the risk-free view and generate an augmented version
X’ that contains the uncertain risks (line 4). Then, we employ TDL
and its Siamese to respectively produce predictive representations
regarding the risk-free view and the risk-aware view (lines 5 and 6)
with a swapping strategy. After that, the TDL output will be fed into
the TFP for flow forecasting (line 7). Meanwhile, we produce the
bootstrap objective (line 9) and the Huber loss (line 10). We treat this
objective as a weak signal to enhance task learning (line 11). After
model convergence, we employ the optimal Gboot for inference.
Notably, TDL employs multiple attention mechanisms (e.g., self-
attention and GAT), which can operate in parallel and contribute
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to efficiency. Moreover, even if we build a Siamese version of TDL,
its initial parameters stem from TDL’s. Moreover, its optimization
is totally dependent on TDL. Therefore, we do not need additional
memory to preserve massive gradients relative to this Siamese.

4 Experiments
4.1 Experimental Setup

Datasets: We choose several real-world traffic flow datasets, includ-
ing four graph-based highway datasets PEMS03, PEMS04, PEMS07,
PEMSO08 from California [30], and two grid-based datasets, i.e.,
NYCTaxi [26] and NYCBike [43]. For the four highway datasets,
the original traffic flow data has been aggregated into 5-minute
intervals and normalized to zero mean, yielding 12 time steps for
each hour. We use traffic flow data from the past hour to forecast
the flow for the next hour, i.e., @ = 12 in alignment with previ-
ous studies [21, 23, 30]. For the taxi dataset dataset, the original
traffic flow data has been aggregated into 30-minute intervals and
normalized to zero mean. For the bike dataset dataset, the original
traffic flow data has been aggregated into 60-minute intervals and
normalized to zero mean. We use traffic flow data from the past 12
time steps to forecast the flow for the next 12 time steps. Statistics
of all datasets is summarized in Table 1. In addition, we follow the
standard dataset split manner by dividing the original traffic data
into training, validation and testing sets with ratio 6:2:2.

Table 1: The statistics of used datasets.

Dataset | #Node | #Edge | #Time step | Time Span

PEMS03 358 547 26208 9/1/2018-11/30/2018
PEMS04 307 340 16992 1/1/2018-2/28/2018
PEMS07 883 866 28224 5/1/2017-8/31/2017
PEMS08 170 295 17856 7/1/2016-8/31/2016
NYCTaxi 200 / 17520 1/1/2014-12/31/2014
NYCBike 128 / 4392 4/1/2014-9/30/2014

Baselines: We compare with the following 12 representative base-
lines: DCRNN [24] uses diffusion graph convolutional networks
and seq2seq to explore spatial and temporal dynamics, respectively.
ASTGCN (r) [12] is an attention-based spatiotemporal GCN that con-
tains a spatial attention network and a temporal attention network.
STGCN [40] uses spatial-graph convolution and temporal-gated
convolution to capture spatial and temporal dependencies, respec-
tively. STSGCN [30] utilizes local spatial-temporal subgraph mod-
ules to explore spatial and temporal dependencies synchronously.
STFGNN [22] develops a spatial-temporal fusion graph to compen-
sate for existing spatial correlations. AGCRN [2] advances GCNs
with node embeddings to enhance node-specific spatial and tem-
poral correlations in traffic series. STGODE [8] extends multiple
GCNs with a tensor-based ODE and utilizes a convolution layer to
capture temporal dependencies. DSTAGNN [21] operates attention-
based methods to explore spatial and temporal dependencies while
employing gated convolutions to explore different ranges of tem-
poral dependencies. We select its variants DSTAGNN-G relying on
real-world spatial connectivity for fairness. SPGCL [23] involves
contrastive learning with three graph-based augmentations to en-
hance informative relations. FourierGNN [38] introduces the Fourier
Graph Operator to perform matrix multiplications in Fourier space
and make multivariate time series forecasting from a pure graph
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Table 2: Performance comparison of Gboot and baselines on PEMS03, PEMS04, PEMS07, PEMS08.

Model PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
DCRNN 18.18 30.31 18.91% 24.70 38.12 17.12% 25.30 38.58 11.66% 17.86 27.83 11.45%
ASTGCN(r) 17.69 29.66 19.40% 22.93 35.22 16.56% 28.05 42.57 13.92% 18.61 28.16 13.08%
STGCN 17.49 30.12 17.15% 22.70 35.55 14.59% 25.38 38.78 11.08% 18.02 27.83 11.40%
STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%
DSTAGNN-G 15.61 27.23 14.79% 19.41 31.63 12.84% 21.67 35.04 9.06% 15.90 25.24 9.97%
SPGCL 23.31 37.37 21.88% 24.75 40.12 16.34% 31.35 46.34 18.32% 19.92 33.68 15.77%
FourierGNN 17.27 27.20 15.88% 22.98 36.23 15.14% 25.47 39.69 10.76% 18.14 28.39 11.35%
GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
PDFormer 21.82 36.75 21.47% 25.75 42.09 17.55% 23.92 36.76 11.62% 20.30 33.26 12.54%
Gboot 15.43 26.42 14.51% 19.28 31.02 12.58% 21.35 34.43 9.02% 15.54 24.53 9.76%

Table 3: Performance comparison of Gboot and baselines on NYCTaxi, NYCBike.

Model NYCTaxi Inflow NYCTaxi Outflow NYCBike Inflow NYCBike Outflow

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
DCRNN 4.77 6.61 27.17% 9.40 13.36 37.70% 12.53 18.07 39.76% 11.96 16.89 41.54%
ASTGCN(r) 4.67 6.26 28.06% 9.76 13.74 37.35% 6.02 11.15 18.31% 5.72 10.96 16.93%
STGCN 5.48 7.45 31.35% 11.83 16.41 43.25% 7.44 12.13 23.48% 5.53 10.56 17.44%
STSGCN 5.01 6.31 32.83% 9.67 13.24 39.58% 5.63 11.04 16.75% 5.51 10.51 17.39%
STFGNN 4.85 6.29 31.13% 9.65 13.11 42.27% 6.06 10.93 18.29% 6.42 10.97 21.42%
AGCRN 11.14 14.31 62.77% 18.05 22.47 69.82% 7.37 11.92 24.60% 6.19 10.87 20.36%
STGODE 5.89 7.53 40.50% 9.71 13.15 50.41% 5.93 10.99 17.88% 5.44 10.25 17.53%
DSTAGNN-G 5.69 7.94 28.80% 9.60 12.73 44.06% 6.05 10.89 19.09% 7.06 11.86 22.64%
SPGCL 4.76 6.56 26.92% 10.58 14.29 41.59% 11.44 17.12 33.21% 11.02 16.21 34.59%
FourierGNN 6.08 8.33 34.32% 10.85 14.55 44.72% 6.59 11.88 19.97% 6.22 11.94 18.68%
GraphWaveNet 4.69 6.28 29.55% 10.45 14.08 43.26% 7.93 13.63 25.40% 7.05 12.44 22.31%
PDFormer 4.55 6.35 25.39% 9.99 12.88 44.51% 6.42 11.31 20.08% 6.89 11.96 21.58%
Gboot 4.44 6.18 24.84% 9.27 12.63 37.03% 5.33 10.51 15.61% 5.21 10.08 16.50%

perspective. Graph WaveNet [36] develops a novel adaptive depen-
dency matrix and a stacked dilated 1D convolution component
to capture the hidden spatial-temporal dependency in the data.
PDFormer [16] proposes a novel propagation delay-aware dynamic
long-range transformer for accurate traffic flow prediction.
Implementations: Gboot is implemented with PyTorch and uses
one NVIDIA RTX 4090 GPU. In Gboot, the head number H is set to 3.
The dimensions d; and d are set to 32. The filter sizes for Temporal
Latent Capture and Factual Latent Capture are set to {1x3,1x5,1X
7}. dc in TDL is 128, dg in Temporal-Spatial Aggregation and dp
in Factual-Spatial Aggregation are both 256. We optimize with the
Adam optimizer for a maximum of 50 epochs. The batch size is 32
and the initial learning rate is 0.003. For reproducibility, the source
codes are available at https://github.com/wangzz-yyzz/Gboot.
Metrics: We follow existing studies [23, 24, 30] and evaluate per-
formance by three common metrics, including mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percent-
age error (MAPE). We filter the samples with flow values below 10
when evaluating the NYCTaxi and NYCBike, consistent with [37].

4.2 Main Results

Performance Comparison. Table 2 reports the performance re-
sults of our proposed Gboot and the baselines on four graph-based
datasets. Additionally, Table 3 reports the performance results on
two grid-based datasets. We can observe that our Gboot consistently
outperforms the baselines, demonstrating the effectiveness of the
proposed solution. Among the baselines, solutions such as DCRNN

and STGCN that explore spatial and temporal dependencies, respec-
tively, perform poorly, suggesting that insufficient dependencies
may hinder the capture of implicit patterns behind flow dynamics.
Methods such as STSGCN that take into account spatio-temporal
correlations exhibit better performance, implying that incorporat-
ing spatio-temporal interactions can indeed facilitate the accurate
capture of flow patterns. STGODE and DSTAGNN-G operated tem-
poral convolution to explore long-range temporal dependencies
with promising results, which indicates that using convolutional
operations for temporal dependency learning is a useful alternative
because it can flexibly tackle different ranges of temporal dynamics
with filter settings. SPGCL is a contrastive learning solution for
handling uncertain risks, akin to the risk settings used in our prac-
tice — but, surprisingly, we find that it performs poorly. We consider
the reason for this to be that it crafts massive negative instances
to enhance the disentanglement of graph node representations,
resulting in instability in graph learning. In short, Gboot performs
the best, and we conjecture that the reason is two-fold. First, it
considers both temporal and factual interactive dynamics over spa-
tial dependency learning, providing us with more prior knowledge
about flow trends. Second, it provides a simple dual-view bootstrap
mechanism to boost dependency dynamic learning, enhancing its
robustness by handling different potential uncertain risks.
Efficiency Comparison. Table 4 reports the efficiency compari-
son on PEMS04 and shows that Gboot does not introduce much
computational time in the inference phase as multiple attention
mechanisms can operate in parallel. The main computational over-
head comes from the dual-view design in the training phase.
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Table 4: Efficiency evaluation on PEMS04.

Model Train(s/epoch) Inference(s)
AGCRN 40.9 3.8
DSTAGNN-G 84.9 6.1
FourierGNN 20.1 2.3
GraphWaveNet 2315 26.5
PDFormer 73.8 9.1
Gboot (ours) 31.8 24

4.3 Ablation Study

We conduct two groups of ablation studies, including:

Block Design. To evaluate the effectiveness of the modules de-
sign, we tested multiple variants of Gboot: w/o Proj (removes the
UTP), w/o GAT (removes the GAT in the TFP), w/o DV (removes
the DvBoot), w/o HF (removes the situations regarding historical
flow, i.e., ¢ = 1), w/o TGL (removes the TGL block) and w/o FGL
(removes the FGL block). Fig. 4 shows that removing each block
results in performance degradation, indicating the effectiveness
of each designed block. Moreover, we observe that removing the
TGL block that explores temporal dependencies over spatial con-
nectivity learning has the most significant impact on the model
performance, uncovering the fact that most of the studies have
verified that considering temporal dependencies is indeed crucial
for perceiving future flow trends. The results of w/o TGL and w/o
HF demonstrate that considering the factual interaction between
different situations can boost the ability of model forecasting. Fi-
nally, w/o DV performance suggests that considering the uncertain
risks can enhance the generalization of high-accuracy traffic trends.

EEE Gboot EEE wio Proj wio GAT ~ EEEl w/o DV wio HF wio TGL wio FGL
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Figure 4: The impact of module design in Gboot.

Risk Setting. We investigate the impacts of different risks by re-
moving each of the risk settings (i.e., w/o R1, w/o R2, and w/o R3)
and using each of the risk settings (i.e., only R1, only R2 and only
R3). As shown in Fig. 5, among the ‘w/o’ series, we can observe that
removing the Edge Mask shows the worst results (cf. w/o R2), which
indicates that incorporating the uncertainty of graph topology can
enhance the model performance. Urban areas often have road clo-
sures and the like, and it becomes very practical to consider this
risk condition. Among the ‘only’ series, we can observe that only
using one of them does not promote the model’s ability well. We
consider the plausible reason is that inadequate insight into risk
setting would hinder the learning of dual-view bootstrap.
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Figure 5: The impact of risk settings.
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4.4 Forecasting Investigation

Long-range Forecasting. To show the model performance in long-
range forecasting, we compute the error (i.e., MAE or RMSE) for
each of the predicted 12 time steps individually. Fig. 6 displays the
measurements of MAE and RMSE on PEMS04 and PEMS08. We
can find that as the forecasting step increases, the tendency for
our Gboot to have lower errors on both metrics becomes more
prominent than other recently representative baselines. Moreover,
we present visualizations comparing the longer-term forecasting
results against the ground truth using the testing data from PEMS04
and PEMSO08, respectively. Fig. 7 shows a snapshot of the testing
data - we mark representative methods and ours with different
colors. We note that, due to space limits, an enlarged version of
Fig. 7 is provided in Appendix B (cf. Fig. 13). We find that the
ground truth is highly volatile. However, Gboot is remarkably more
proximate to the ground truth (cf. zoomed parts) while the other
baselines deviate more significantly. This suggests that Gboot can
learn better traffic flow regularities to predict longer-term trends.

Noise Immunity Test. As we claimed, Gboot has the comprehen-
sion ability to tackle uncertainty or noise. We conduct a noise immu-
nity test by respectively noising a station’s traffic flow. Specifically,
we make comparative experiments in which one group utilized raw
historical flow observations and the other group utilized violently
noisy observations, i.e., Gaussian noise was introduced into each
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observation. We have this hypothesis: If the model exhibits strong
noise immunity, the disparities between the two groups of comparative
forecasts are expected to converge. To confirm this hypothesis, we
adopt the MAE metric to calculate the difference between the two
groups. As shown in Fig. 8, the x-axis refers to the different stations
while the y-axis shows the MAE gap between the two groups. We
can find that Gboot consistently owns the lowest MAE on each
station, suggesting it has the most robust noise immunity.
Spatial Connectivity Analysis. We investigate station (sensor)-
aspect forecasting errors to uncover the impact of spatial connec-
tivity. In Fig 9, we calculate MAE values for all forecasting time
steps at all stations with the different number of neighbors and plot
the frequency distribution of occurrences, where less refers to the
station only has one neighbor while the more means the station has
more than 5 spatial neighbors. We find that the peaks of Gbootmore
are distributed in the small error region or its peaks are lower than
those of Gboot.gs, suggesting that exposing the spatial connectivity
do affect the forecasting performance. In fact, aggregating informa-
tive knowledge from the spatial neighbors could bring uncertain
noise. Gboot can tackle this issue well, which shows its robustness
in handling information aggregation behind spatial connectivity.
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Figure 9: The investigation on spatial connectivity.

Sensitivity Analysis. We present a case investigation here due to
space limitations. Fig. 10 shows that a large masking ratio in situa-
tion masking (risk setting R1) degrades the model’s performance.
However, if the masking ratio is set too low, it fails to effectively in-
troduce the desired uncertain risks. Notably, a more comprehensive
sensitivity analysis is provided in Appendix B (cf. Fig. 12).

PEMS04 ratio of R1
12.74

31.30
19.45

12 72

w w 31.25
< " — 2 - £1270 "
&
19.40 ES
31.20 = 1268
12.
19.35 8115 260
0.01 0.02 0.03 0.04 0.05 0.06 001 0.02 0.03 0.04 0.05 0.06 001 0.02 0.03 0.04 0.05 0.06
PEMSO08 ratio of R1
16.0 25.1 10.0
159 250 /"\\' _
w T 4 T g9
E4 L9 g
15.8 2
248
157 24.7 o8

0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06

Figure 10: Sensitivity analysis on risk R1.

5 Conclusion

In this study, we identified two challenges that have never been
addressed before, i.e., factual interaction and robustness risk. Corre-
spondingly, we introduced a novel solution called Gboot to handle
traffic flow forecasting by considering the above challenges. Specif-
ically, Gboot containing a TDL module can capture temporal and
factual interactive dynamics on spatial connectivity learning. More-
over, multi-scale gated convolution was applied to each of them
in order to explore different ranges of dynamic dependencies. To
account for multiple uncertainty risks, we propose a dual-view
bootstrap mechanism to improve the generalization of the model,
which does not need to involve huge negative instances for compar-
isons. Finally, our experiments conducted on several representative
traffic datasets demonstrate the superiority of the Gboot against
the baselines. As part of our future work, we plan to investigate
more background context, e.g., point-of-interest distribution, re-
mote sensing semantics, etc., and develop a multimodal solution.
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Appendix

We now present additional details regarding the derivation of EMA
and extended sensitivity analysis.

A The Derivation of EMA

EMA is a widely used practice in recent deep semi-supervised
learning and self-supervised learning by following the teacher-
student manner. For instance, in our context, we have:

Lo = [IH(F(X)) = Fu (XI5, (42)
where the parameter optimization is followed by the rule:

0—0-nVLp, (43)
K «— Ak +(1-21)6. (44)
Herein, 7y can be treated as a student network and F as a teacher

network with the same network architecture. According [4, 11, 31],
in common sense, we expect to enforce the outputs of C = F(X)

65 —® R20.1

- R202
R2:0.3
6.0 R2:0 %
Wg5 /
<

1 2 3 4 5 6 7 8 9 10 1 12
time step

y —e— R2:0.1
9 / - R20.2
R2:0.3

R2:0

L 4
1 2 3 4 5 6 7 8 9 10 1 12
time step
—o— R2:0.1
19 e R202
18 R2:0.3
R2:0 /‘\/\
w17 )
o \
<
=16
15
14
13

1 2 3 4 5 6 7 8 9 10 1 12
time step
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and C’ = F(X’) to be closer in the latent space with the goal of:

exp < C,C' >
2jlexp < C.C" > +exp < C.C'; >)

=E[-<CC >] +E[log2(exp <C.C7 > (46)
J

E|-log

(45)

The first objective is usually referred to as alignment, which is
actually Eq. (42). For the second term, it is the uniformity objective
to enlarge the latent space distance between C and C’]T. Typically,
a group of C’/ ; in self-supervised learning refers to a set of negative
samples regarding C. Without the second term, 7y and 7 will be
homogenized, resulting in collapse of the latent representations.
Hence, in the optimization process, ¥ should have a different but
similar representational capacity compared to Fy. Recall Eq. (44),
the EMA theory provides a view that « is conditioned on 6 but
using a decayed optimization manner to maintain the ability of
optimization difference, i.e., latency optimization. Hence, recent
studies of the teacher-student framework remove the second term
while using EMA to maintain the disentanglement ability of teacher
network, which does not need to involve unstable negative samples.

B Additional Sensitivity Analysis

In addition to the short version of the sensitivity analysis in the
main text (cf. Sec. 4.4), we provide a more comprehensive analysis
of significant hyperparameters that could be sensitive to the model.
Architecture Sensitivity. We first investigate the hyperparameter
settings of network architecture, which typically affect the model
scale and could affect the model performance. Specifically, we vary
the key hyperparameters in the Gboot architecture on PEMS04
dataset, yielding different groups of results. As shown in Table 5,
we in general find that they are not extremely sensitive to the
model performance, which was also uncovered by previous studies.
Considering the trade-off between model scale and performance,
our default configuration of Gboot in this study is [32,3,256,128].
Environmental Sensitivity. In this part, we investigate the impact
of factor settings, including trade-off factor « in the final objective
cf. Eq. (41) and the ratios in risk settings (R1, R2, and R3). The results
are reported in Fig. 11 and Fig. 12. We have following observations:
(1) The impact of a. « is to adjust the contribution between task
learning and bootstrap learning. We observe that using either a too
large (affecting the model convergence) or a too small (affecting the
distillation about uncertain risks) & value will degrade the forecast
performance. Hence, this study empirically set a to 0.3.

Table 5: The sensitivity analysis on network architecture.

dy/dy, H, ds/dp, de MAE RMSE MAPE
[32,3,256,128] 19.28 31.02 12.58%
[64,3, 256, 128] 19.49 31.37 12.68%
(16,3, 256, 128] 19.57 31.38 12.82%
[32, 1,256, 128] 19.58 31.40 12.82%
(32, 5,256, 128] 19.38 31.18 12.71%
[32,3,128, 128] 19.51 31.30 12.78%
[32,3,512,128] 19.35 31.12 12.69%
[32, 3,256, 64] 19.45 31.21 12.83%

[32,3,256,256] 19.48 31.19 12.75%
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Figure 13: Comparison of forecasting curves.

(2) Risk ratio in R1. This ratio will affect the capture of situational dy-
namics behind the traffic flows. We observe that too much masking
generally leads to poor performance and unstable training. Hence,
in this study, we set the mask ratio of R1 to 0.04.

(3) Risk ratio in R2. This ratio will affect the connectivity of the
build graph. Obviously, a small value provides a better trade-off
between node-useful connectivity and relationship redundancy. In
addition, we also find that increasing the proportion of R2 improves

the prediction accuracy of the model over long time steps, which
can be demonstrated by Fig. 11.

(4) Risk ratio in R3. This factor is to control the noise level of actual
flow volumes. We find that adding noise to the actual flows indeed
enhances the forecast performance and model robustness. In prac-
tice, however, using too many noises will affect model convergence.
Note. We re-iterate here that Fig. 13 is an enlarged version of Fig. 7,
as mentioned in the main text.



