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Abstract

Graph neural networks, as well as attention mechanisms, have

gainedwidespread popularity for traffic flow forecasting due to their

capacity to incorporate the complicated interactions behind flow dy-

namics. However, existing solutions either formulate a graph-based

skeleton with narrow (e.g., static) interaction capture or build the

spatiotemporal (e.g., dynamic) attention without proper comprehen-

sion of diverse risks, which inevitably burdens the generalization

of high-accuracy traffic trends. In this study, we introduce Gboot

(Graph bootstrap) enhancement framework for traffic flow fore-

casting. Gboot takes the traffic flow forecasting problem from a

dependency dynamic learning perspective by treating each traffic

sensor as the graph node while regarding the observed flows at

each sensor as the node feature. In addition to exposing the ex-

plicit spatial connectivity behind traffic flows, we hierarchically

devise temporal-aware and factual-aware graph learning blocks

to consider temporal interactive dynamics and factual interactive

dynamics. The former shows the trend dependencies behind flow

signals and the latter uncovers different views of traffic situations

(e.g., current observation vs. historical observation). More impor-

tantly, we present a Dual-view Bootstrap (DvBoot) mechanism in

Gboot, which includes both risk-free and risk-aware stands. DvBoot

attempts to flexibly align these two views in the latent space to en-

hance the generalization capability of capturing dynamic dependen-

cies. Experiments on several real-world traffic datasets demonstrate

the superiority of our Gboot over representative approaches.

CCS Concepts

• Information systems→ Geographic information systems;

Sensor networks.
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1 Introduction

Traffic management is one of the critical aspects of intelligent trans-

portation systems (ITS) [19, 21, 40]. The ubiquity of sensor networks

in urban areas provides an unprecedented opportunity to gather

traffic-related data in specific locations at any time, offering insight

into historical traffic regularities that enable prediction of future

tendencies. Traffic flow forecasting also plays a significant role in

urban management, as it can help improve regulatory capacities,

risk assessment, improved trip experience, etc. [18, 19, 32, 45].

Figure 1: Recent solutions ((a) and (b)) and ours (c).

Typically, raw traffic data can be modeled as spatial and/or tem-

poral graphs, where the actual sensors along the road network

correspond to nodes; and dependencies (or proximities) create con-

nectivity (i.e., edges) between different nodes (cf. Fig. 1). Based on
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this, graph neural network (GNN)-based solutions have been pro-

posed in the field of traffic forecasting [2, 10, 17, 22, 46]. The domi-

nant paradigm in traffic flow data modeling using GNNs (usually

called spatial-temporal GNNs) involves the building of a spatial-

aware graph to delineate the nature of connectivity (i.e., geospatial

correlations) within the road network and explore the temporal

dependencies through widely used Convolutional Neural Networks

(CNNs) [8, 12], Recurrent Neural Networks (RNNs) [2, 24] or self-

attention networks [45, 46]. For example, Fig. 1(a) illustrates the po-

tential correlations of traffic conditions over time, where the purple

dashed line denotes the temporal correlation while the black dashed

line indicates the spatial correlation. In this context, the ST-GDN

framework builds a spatial-aware graph to expose the connective

relations of spatial regions and employs the self-attention network

to encode the temporal dynamics presented in [45]. STGODE [8]

extends multi-layer Graph Convolutional Networks (GCNs) with

tensor-based ordinary differential equations, owning the capacity

to capture long-range spatial correlations. In a nutshell, they ini-

tially investigate the impact of spatially adjacent sensors or nodes

within the same time step and, subsequently, focus on capturing the

temporal correlations associated with each node across different

time steps.

In addition to separately modeling the spatial and temporal de-

pendencies, another line of recent works attempts to explore more

complex spatial-temporal interactions (e.g., the red dashed line in

Fig. 1(b)) due to the existence of synchronous spatial-temporal cor-

relations [30]. That is, each node could share a positive signal with

its spatially adjacent nodes at the next time step(s), i.e., localized

spatial-temporal correlations. To this end, [30] introduced Spatial-

Temporal Synchronous Graph Convolutional Networks (STSGCN)

to synchronously capture the localized spatial-temporal correla-

tions directly and [22] introduced a CNN-based spatial-temporal fu-

sion GNN, called STFGNN, to extract confidential spatial-temporal

dependencies. Gated convolution on graph-aware dynamics was

devised to expose the long-range spatial-temporal correlations –

DSTAGNN [21] structures a spatial-temporal attention module

to explore the spatial-temporal interactions in a road network by

extending the GCNs. The above solutions demonstrated that consid-

eration of the dynamics of spatial-temporal interactions enhances

the ability to predict the future trends of different traffic signals.

Despite the significant breakthroughs achieved in various GNN-

based efforts for traffic flow forecasting, we argue that present

solutions grapple with two predominant challenges.

C1: In addition to spatial-temporal interaction, the current observed

flow volume for each sensor is not only influenced by the local (e.g.,

adjacent time step) or global (e.g., non-Euclidean distance) spatial-

temporal structure but also depends on historical observations. For

example, a sensor at the adjacent instants in the past will generally

have comparable or interactive patterns, exhibiting different prior

views of traffic states. This inspiration is drawn from the fact that

historical traffic records exhibit a high degree of continuity owing

to factors like urban commuting and daily life patterns. Thus, sensor

observations at any given instant are potentially significant in rela-

tion to their historical counterparts. We conjecture that exposing

the factual interaction between different flow situations (current

observation vs. historical observation) on the basis of spatial con-

nectivity could boost the perception of future trends. In addition,

traffic flows are typically multivariate time-series data. While exist-

ing solutions pay attention to capturing adjacent dependencies (e.g.,

using RNNs) or global dependencies (i.e., using attentions) - they

rarely consider different ranges of dependency learning, yielding a

narrow receptive field for handling flow dynamics.

C2:Due to urban congestion, commuting preferences, sensor fluctu-

ations, and other uncertain irregularities, current solutions heavily

depend on stable (i.e., risk-free) pattern data while lacking attention

to complex traffic risks. This inevitably burdens the generalization

of high-accuracy traffic trends and raises the representation gaps

between accuracy and robustness. Recent advances in data augmen-

tation techniques such as contrasting augmentation (i.e., producing

multiple uncertain views to the actual instance) [15, 23, 44] can

alleviate the mentioned representation gap problem (to an extent).

However, they rely on the tremendous negative pairs by compar-

ing each instance (e.g., traffic flow observation) with many other

examples (e.g., augmented observations) to work well in the latent

(representation) space [5]. For instance, recent contrastive learning

solutions handcraft hundreds or even thousands of negative pairs

and then employ Noise Contrastive Estimation (NCE) to make sim-

ilar instances closer in the representation space while dissimilar

instances are (relatively) further away [23]. But this could confront

either collapsed representations or unstable representations due to

the uncertain augmentations on original data. Recent experimental

study [41] demonstrated that these augmentations with negative

pairs in representation learning are trivial. In sum, the challenge of

effectively using risk-aware views to enhance model generalization

capabilities still persists.

To address the above challenges, we introduce Gboot – a novel

Graph bootstrap enhancement framework rooted in a dependency

dynamic learning paradigm. It first builds a traffic graph derived

from the road network, treats each traffic sensor as the graph node

and the observed flows at each sensor as the node feature. To ex-

pose multiple dependency dynamics, we devise a Traffic Dependency

Learner (TDL) to consider two interactive dependencies over the

spatial connectivity behind the traffic flow records. Specifically, we

hierarchically manage temporal and factual-aware graph learning

blocks in TDL to capture temporal and factual interactive dynam-

ics. In particular, we combine multi-scaled historical observations

of each sensor with the current one as the prior views of traffic

situations, primarily seeking to fully augment the factual interac-

tion between different flow situations (cf. Fig. 1(c), where each part

describes different graph-aware flow situations and green dashed

lines indicate the factual interactions). To enhance risk-aware com-

patibility, we introduce a Dual-view Bootstrap (DvBoot) mechanism

in Gboot, which includes both risk-free and risk-aware stands. Dv-

Boot attempts to flexibly align these two views in the latent space

to enhance the generalization ability of flow dynamics learning.

Finally, our main contributions can be summarized as follows:

• Our TDL in Gboot primarily contains two blocks, i.e., Temporal-

aware Graph Learning (TGL) and Factual-aware Graph Learning

(FGL). Specifically, TGL attempts to capture temporal interactive

dynamics over spatial connectivity learning, while FGL aims to

expose factual interactive dynamics over spatial connectivity

learning, i.e., current observation vs. (short/long-term) historical

observation. More importantly, in each block, we involve latent
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capture with a multi-scaled gated convolution network to handle

different ranges of temporal dynamics or factual dynamics.

• Motivated by recent exponential moving average (EMA) theory,

our DvBoot treats the TDL handling the raw flow data as a de-

terministic (risk-free) view while using the TDL with different

parameter settings to handle the risk-aware view, motivating a

variety of risk conditions, including missing facts, missing spatial

connectivity, and flow noise. The dual-view design does not need

to involve tremendous negative instances, enhancing the model’s

robustness by directly immigrating the predictive representation

gaps between risk-free and risk-aware views.

• Experiments on several real-world traffic datasets demonstrate

the superiority of our Gboot over representative approaches.

2 Related Work

We now overview recent solutions for addressing the traffic flow

forecasting problem–and we position our results in that context.

Conventional methods for traffic flow forecasting mainly fo-

cus on employing the auto-regressive integrated moving average

model (ARIMA) [20] and its variants, which cannot handle spatial-

temporal dependencies such as sensors’ location and seasonal fac-

tors. During the past decade, by virtue of deep learning, researchers

have developed various methods to combat this limitation. Initially,

many approaches utilize Recurrent Neural Networks (RNNs) and

Convolutional Neural Networks (CNNs) to model temporal correla-

tions [28] and spatial dependencies [43], respectively.

Despite their promising results, they still faced limitations in fully

exploring the complex spatial patterns inherent in unstructured

road networks. Recently, motivated by the successful application

of Graph Neural Networks (GNNs) in addressing non-Euclidean

spatial correlations, researchers have begun to incorporate GNNs

into their model development [18]. DCRNN [24] as the first GNN-

based model for traffic flow prediction, which melds GRU with

graph diffusion convolution networks to simultaneously capture

spatial-temporal dependencies. STGCN [40] uses spatial-graph con-

volution and temporal-gated convolution to capture the spatial and

temporal dependencies, respectively. Following this, to enhance

model performance, certain studies have either integrated atten-

tion mechanisms [34] from the fields of Computer Vision (CV) and

Natural Language Processing (NLP) into spatiotemporal graph mod-

eling [10, 12, 27, 35, 47] or constructed diverse spatial graphs via

considering various types of connections, such as semantic connec-

tion [1, 8], and edge interaction patterns [6]. Moreover, some studies

focus on integrating new paradigms into GNNs to improve model

performance. For instance, STGODE [8] incorporated Ordinary

Differential Equations (ODE) into GCNs, based on the combina-

tion of both semantic and road graphs. And ST-SSL [15] employs

self-supervised learning paradigms to enhance traffic pattern repre-

sentations, ensuring they reflect the inherent spatial and temporal

heterogeneity. However, the spatial dependencies captured by these

models do not adequately reflect the inherent dynamics. To address

this, DSTAGNN [21] designs a spatial-temporal attention module

and a multi-receptive field-gated convolution to effectively learn

the dynamic associations between nodes within the road network.

What separates our work from the existing literature is that: (1)

We take the traffic flow forecasting problem from a dependency

dynamic learning perspective by treating the observed flows at each

sensor as the node feature while exposing both temporal and factual

dynamics over the basis of spatial connectivity; (2) We build a dual-

view (risk-free vs. risk-aware) bootstrap mechanism to handle the

risks that could be raised in the flow data, primarily seeking to

enhance the generalization ability of flow dynamic learning.

3 Methodology

We now provide basic definitions (e.g., road network and traffic

flow observations) and a high-level overview of the Gboot structure,

followed by a detailed discussion of the respective main modules.

3.1 Preliminaries and Architecture Overview

Definition 1 (Road Network). Let traffic graph G = (V, E)
denote a road network in a city/region, where V represents a set of

𝑛 = |V| nodes (e.g., observation stations/sensors) within the road

network, and E is a set of edges that display the spatial connectivity

between different observation sensors. Besides, letA ∈ [0, 1]𝑛×𝑛 refer

to the adjacency matrix exposing spatial connectivity between nodes.

Definition 2 (Traffic Flow Observations). Let three-way

tensor 𝑿𝑡−𝜔+1:𝑡 ∈ R𝑛×𝑐×𝜔 represent traffic flow data with the obser-

vation window 𝜔 , where any 𝑿𝜏 ∈ R𝑛×𝑐 is a graph signal depicting

the traffic observations of 𝑛 sensors with 𝑐 situations at time step 𝜏 .
Herein, 𝑐 refers to the types of traffic situations/conditions, e.g., current

traffic volume, short/long-term historical average traffic volume, etc.

Since traffic flow is characterized by typical periodicity, an exces-

sive focus on long-history dynamics (denoted as extra situations)

can cause modeling complexity problems in addition to additional

unstable training risks. Hence, in addition to the current traffic vol-

ume (that is, 𝑐 = 1), this study considers the average volumes of the

preceding half hour and the preceding hour relative to the current

flow as short- and long-term situations. For instance, we assume

that [𝑥𝑡−𝜔+1, 𝑥𝑡−𝜔+2, · · · , 𝑥𝑡 ] refers to the current situation (traffic

volume) of a sensor. The short-term situation can be defined as:⎡⎢⎢⎢⎢⎣𝛼 [
𝜔
2 −1∑
𝑖=0

(𝑥𝑡−𝜔+1−𝑖 )], 𝛼 [
𝜔
2 −1∑
𝑖=0

(𝑥𝑡−𝜔+2−𝑖 )], · · · , 𝛼 [
𝜔
2 −1∑
𝑖=0

(𝑥𝑡−𝑖 )]
⎤⎥⎥⎥⎥⎦ .
(1)

Herein, 𝛼 refers to the average function. In this way, we can also

obtain a long-term situation (the preceding hour) of this sensor. In

the end, the core problem addressed in this work can be defined as:

Definition 3 (Traffic Flow Forecasting). Given historical

traffic flow records𝑿𝑡−𝜔+1:𝑡 ∈ R𝑛×𝑐×𝜔 , we aim to learn a forecasting

modelM with parameters Θ to predict the traffic observations (i.e.,

traffic volumes) of next 𝜔 time steps 𝒀̂
𝑡+1:𝑡+𝜔 ∈ R𝑛×𝜔 on graph G:

𝒀̂
𝑡+1:𝑡+𝜔

= MΘ (𝑿𝑡−𝜔+1:𝑡 ;G) . (2)

Note that for simplicity, the superscript of𝑿𝑡−𝜔+1:𝑡 will be omit-

ted in the following sections. Fig. 2 illustrates the network skeleton

of Gboot, which contains two modules: Traffic Dependency Learner

(TDL) and Traffic Flow Predictor (TFP). TDL comprises two blocks

where Temporal-aware Graph Learning (TGL) attempts to capture

temporal interactive dynamics over spatial connectivity learning

while Factual-aware Graph Learning (FGL) explores factual inter-

actions in the latent space. In Fig. 2, details of Temporal/Factual
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Figure 2: The network skeleton of our proposed Gboot.

(or T/F) Latent Capture and Attention are shown in the upper and

lower right corners, respectively. Besides, we will employ our Dual-

view Bootstrap (DvBoot) mechanism to produce the Siamese of the

TDL, which can be treated as a risk-aware view (detailed next).

3.2 Traffic Dependency Learner (TDL)

We aim to explore two interactive dependencies over the spatial

connectivity behind the traffic flow records. Specifically, TDL con-

tains two blocks, including Temporal-aware Graph Learning (TGL)

to capture temporal interactive dynamics, Factual-aware Graph

Learning (FGL) to explore factual interactive dynamics.

We note that in our context, when it comes to traffic flow embed-

ding, we treat the historical flow observations of a node at different

time steps as the node feature which would, in a sense, blur the

time attribute of each node. For that, we employ a positional em-

bedding [30] to specify the different time step signals, aiming at

enhancing the ability to model the temporal correlations. We select

the simple embedding method with absolute positions [9] to tackle

the input 𝑿 ∈ R𝑛×𝑐×𝜔 , which can be represented as follows:

X = 𝑿 + broad(𝑿 , 𝑻 ), (3)

where 𝑿 ∈ R𝑛×𝑐×𝜔 , 𝑻 ∈ R𝑐×𝜔 is a trainable temporal embedding

with random initialization, and broad() is the Broadcast operation.
3.2.1 Temporal-aware Graph Learning (TGL). TGL is responsible

for capturing temporal interactive dynamics on the basis of spa-

tial connectivity. Specifically, it is stacked with multiple layers to

conduct different roles of knowledge distillation, as detailed below.

Temporal Attention:We employ the popular self-attention mech-

anism [34] with temporal view to tackle the interactive contribu-

tions behind traffic flow representations X ∈ R𝑛×𝑐×𝜔 . In detail, we

first shift the view to the temporal aspect, i.e., X𝑡 = 𝑟 (X), where
X𝑡 ∈ R𝑐×𝜔×𝑛 and 𝑟 () refers to the Reshape operation. Next, we

operate a standard multi-head self-attention layer to produce the

latent states. For a head ℎ ∈ [1, 2, · · · , 𝐻 ], it can be denoted as:

𝑶𝑡,ℎ = Softmax(𝑸
𝑡,ℎ (𝑲𝑡,ℎ)�√

𝑑𝑡
)𝑽 𝑡,ℎ, (4)

where 𝑸𝑡,ℎ = X𝑡𝑾𝑡,ℎ
𝑄 , 𝑲𝑡,ℎ = X𝑡𝑾𝑡,ℎ

𝐾 , and 𝑽 𝑡,ℎ = X𝑡𝑾𝑡,ℎ
𝑉 refer to

the query, key, and value in ℎ-th head of the self-attention network,

respectively. Any 𝑾𝑡,ℎ
∗ ∈ R𝑛×𝑑𝑡 is a trainable matrix. Then, we

concatenate these head outputs into a unified representation:

𝑶𝑡 = [𝑶𝑡,1;𝑶𝑡,2; · · · ,𝑶𝑡,𝐻 ] . (5)

Now we shift the results of 𝑶𝑡 to the original view and align it to

X ∈ R𝑛×𝑐×𝜔 with a simple fully connected network (denoted as

‘Linear’). To this end, we employ a widely used residual operation

and layer normalization (denoted as ‘LayerNorm’) to obtain the

final output O𝑡 ∈ R𝑛×𝑐×𝜔 , which can be summarized as follows:

O𝑡 = LayerNorm(𝑟 (Linear(𝑶𝑡 )) + X) . (6)

Temporal Aggregation: For observed𝑛 nodes in the road network,

we now turn to aggregate the temporal semantics into these nodes.

Specifically, we operate a convolutional layer with filter 𝑰 𝑡 (the

kernel size is 1 × 𝑐 , the input channel is 𝜔 , and the output channel

is 𝑑𝑆 ) to tackle the output O𝑡 ∈ R𝑛×𝑐×𝜔 , summarized as follows:

𝑺𝑡 = O𝑡 ∗ 𝑰 𝑡 , (7)

where 𝑺𝑡 ∈ R𝑛×𝑑𝑆 and ∗ represents the convolution operation.

Temporal-Spatial Aggregation: To capture the topological (i.e.,

spatial) structure with temporal perception, we naturally select

GNNs to aggregate the node information. We also equip the posi-

tional embedding operation to the input 𝑺𝑡 to specify the spatial

attribute on graph G:

S𝑡 = 𝑺𝑡 + 𝑏𝑟𝑜𝑎𝑑 (𝑺𝑡 , Γ𝑡 ), (8)

where Γ𝑡 ∈ R𝑑𝑆 is a learnable spatial embedding regarding 𝑺𝑡 .
Next, we employ the graph attention network (GAT) [3] to specify

the different contributions between different nodes. For instance,

given a node 𝑖 ∈ V and a node 𝑗 ∈ V , GAT attempts to explore

the attentive correlation between their node representations, i.e.,

𝑠𝑡𝑖 ∈ S𝑡 and 𝑠𝑡𝑗 ∈ S𝑡 , which can be summarized as follows:

𝑒 (𝑠𝑡𝑖 , 𝑠𝑡𝑗 ) = 𝑎𝑡
�
LeakyReLU

(
𝑾𝑒

𝑡 ·
[
𝑠𝑡𝑖 ‖ 𝑠𝑡𝑗

] )
, (9)

𝛽𝑡𝑖 𝑗 = Softmax(𝑒 (𝑠𝑡𝑖 , 𝑠𝑡𝑗 )) =
exp(𝑒 (𝑠𝑡𝑖 , 𝑠𝑡𝑗 ))∑

𝑗 ′ ∈A𝑖
exp(𝑒 (𝑠𝑡𝑖 , 𝑠𝑡𝑗 ′ ))

, (10)

𝑠𝑡𝑠𝑖 = LeakyReLU(
∑
𝑗∈A𝑖

𝛽𝑡𝑖 𝑗 ·𝑾𝑠
𝑡 𝑠
𝑡
𝑗 ), (11)

where 𝑎𝑡 is a learnable vector with random initialization. 𝑾𝑒
𝑡 ∈

R
𝜔×2𝑑𝑆 and𝑾𝑠

𝑡 ∈ R𝜔×𝑑𝑆 are trainable matrices. A𝑖 indicates the

actual spatial neighbors of node 𝑖 according to the adjacent matrix
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A. In practice, we use multi-head GAT to generalize the learning

capability of the model and align the output with the original input

traffic flow tensor scale for the purpose of conducting the following

residual operation, i.e., the head number is 𝑐 . As such, the final

output of this layer can be denoted as S𝑡𝑠 ∈ R𝑛×𝑐×𝜔 .
Temporal Latent Capture:Motivated by [7, 21], we operate the

multi-scaled gated convolution network to tackle the output of the

above layer, primarily seeking to expose the temporal dynamics in

the latent space with different ranges. Specifically, it contains three

gated convolution operators with different scales (i.e., receptive

fields/filters), uncovering different ranges of temporal dynamics.

For instance, each gated convolution operator can be denoted as:

𝒁𝑡 = 𝜓 (𝑟 (S𝑡𝑠 ) ∗ 𝑼 𝑡 ) ⊗ 𝜎 (𝑟 (S𝑡𝑠 ) ∗ 𝑼 𝑡
𝑔), (12)

where ⊗ is the element-wise product, 𝜓 is an activation function

(herein it is a Tanh function for the purpose of retaining the non-

linearity), 𝑟 (S𝑡𝑠 ) ∈ R𝑐×𝑛×𝜔 , and 𝜎 is the gated function, i.e., Sig-

moid. 𝑼 𝑡 with kernel size 1 × 𝑧 and 𝑼 𝑡
𝑔 with kernel size 1 × 𝑧 are

convolution filters. Likewise, we concatenate the outputs of differ-

ent scaled convolutions with residual operation, denoted as:

𝒁𝑡
𝑜𝑢𝑡 = [𝒁𝑡,1;𝒁𝑡,2;𝒁𝑡,3], (13)

Z𝑡 = LayerNorm(𝑟 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝒁𝑡
𝑜𝑢𝑡 )) + S𝑡𝑠 ). (14)

We will employ Z𝑡 ∈ R𝑛×𝑐×𝜔 as the input of the following FGL.

3.2.2 Factual-aware Graph Learning (FGL). Our devised FGL at-

tempts to explore the situational dependencies behind the flow

dynamics in the latent space, uncovering the factual interaction

between different flow situations (flow views) over the basis of

spatial connectivity. Similar to TGL, it also contains multiple layers

for handling different types of interactive knowledge.

Factual Attention: Similar to the Temporal Attention mechanism

in the TGL block, we also employ a multi-head attention network to

explore the interactive contributions between different facts. Hence,

we first shift the sight to the factual view, i.e., Z𝑓 = 𝑟 (Z𝑡 ), where
Z𝑓 ∈ R𝜔×𝑐×𝑛 . Subsequently, we operate a standard multi-head

self-attention neural network to produce the latent representations.

It is worth noting that we do not engage in positional embedding

here, as we treat these latent facts equally as different views of

the traffic situation, which contrasts with the temporal semantic

refinement. For a head ℎ ∈ [1, 2, · · · , 𝐻 ], it can be denoted as:

𝑶 𝑓 ,ℎ = Softmax(𝑸
𝑓 ,ℎ (𝑲 𝑓 ,ℎ)�√

𝑑𝑓

)𝑽 𝑓 ,ℎ, (15)

where 𝑸 𝑓 ,ℎ = Z𝑓𝑾
𝑓 ,ℎ
𝑄 , 𝑲 𝑓 ,ℎ = Z𝑓𝑾

𝑓 ,ℎ
𝐾 , and 𝑽 𝑓 ,ℎ = Z𝑓𝑾

𝑓 ,ℎ
𝑉

refer to the query, key, and value in the ℎ-head of the self-attention

layer, respectively. Any 𝑾
𝑓 ,ℎ
∗ ∈ R𝑛×𝑑𝑓 is a trainable matrix. We

also concatenate these head outputs into a unified representation:

𝑶 𝑓 = [𝑶 𝑓 ,1;𝑶 𝑓 ,2; · · · ;𝑶 𝑓 ,𝐻 ] . (16)

Then, we align it to Z𝑡 with a fully connected network. And we

also employ a residual operator and layer normalization to obtain

the final output O𝑓 ∈ R𝑛×𝑐×𝜔 , summarized as follows:

O𝑓 = LayerNorm(𝑟 (Linear(𝑶 𝑓 )) + Z𝑡 ). (17)

Factual Aggregation: Herein, we operate another convolutional

layer with filter size 1 × 𝑐 , input channel 𝜔 , and output channel 𝑑𝑃
to tackle the above aggregate the factual semantics into different

nodes of graph G, which can be summarized as follows:

𝑷 𝑓 = O𝑓 ∗ 𝑰 𝑓 , (18)

where 𝑷 𝑓 ∈ R𝑛×𝑑𝑃 and 𝑰 𝑓 is the filter in the convolution operator.

Factual-Spatial Aggregation: We select GAT to aggregate the

node information with factual perception. First, we employ posi-

tional embedding with residual connection to tackle 𝑷 𝑓 as:

P𝑓 = 𝑷 𝑓 + 𝑏𝑟𝑜𝑎𝑑 (𝑷 𝑓 , Γ𝑓 ), (19)

where Γ𝑓 ∈ R𝑑𝑃 is another learnable spatial embedding regarding

𝑷 𝑓 . Next, given a node 𝑖 ∈ V and a node 𝑗 ∈ V in graph G, we
attempt to explore the attentive correlation between their node

representations, i.e., 𝑝
𝑓
𝑖 ∈ P𝑓 and 𝑝

𝑓
𝑗 ∈ P𝑓 , expressed as follows:

𝑒 (𝑝 𝑓𝑖 , 𝑝
𝑓
𝑗 ) = 𝑎𝑓

�
LeakyReLU

(
𝑾𝑒

𝑓 ·
[
𝑝
𝑓
𝑖 ‖ 𝑝 𝑓𝑗

] )
, (20)

𝛽
𝑓
𝑖 𝑗 = Softmax(𝑒 (𝑝 𝑓𝑖 , 𝑝

𝑓
𝑗 )) =

exp(𝑒 (𝑝 𝑓𝑖 , 𝑝
𝑓
𝑗 ))∑

𝑗 ′ ∈A𝑖
exp(𝑒 (𝑝 𝑓𝑖 , 𝑝

𝑓
𝑗 ′ ))

, (21)

𝑝
𝑓 𝑠
𝑖 = LeakyReLU(

∑
𝑗∈A𝑖

𝛽
𝑓
𝑖 𝑗 ·𝑾𝑠

𝑓 𝑝
𝑓
𝑗 ), (22)

where 𝑎𝑓 is a learnable vector with random initialization. 𝑾𝑒
𝑓
∈

R
𝜔×2𝑑𝑃 and𝑾𝑠

𝑓
∈ R𝜔×𝑑𝑃 are trainable matrices. We also use the

multi-head GAT to align the output with the original input scale. As

such, the final output of this layer can be denoted as P𝑓 𝑠 ∈ R𝑛×𝑐×𝜔 .
Factual Latent Capture: Similarly, we operate the multi-scaled

gated convolution network to expose the factual correlations in

the latent space. Specifically, it also contains three gated convolu-

tion operators with different receptive fields, uncovering different

ranges of factual dynamics. For instance, each gated convolution

operator can be denoted as follows:

𝒁 𝑓 = 𝜓 (𝑟 (P𝑓 𝑠 ) ∗ 𝑼 𝑓 ) ⊗ 𝜎 (𝑟 (P𝑓 𝑠 ) ∗ 𝑼 𝑓
𝑔 ). (23)

Herein, 𝜓 is an empirical SwiGLU activation [29] and 𝑟 (P𝑓 𝑠 ) ∈
R
𝑐×𝑛×𝜔 . 𝑼 𝑓 with kernel size 1×𝑧 and 𝑼

𝑓
𝑔 with kernel size 1×𝑧 are

convolution filters. We then concatenate the outputs of different

scaled convolutions with a residual operation, denoted as:

𝒁
𝑓
𝑜𝑢𝑡 = [𝒁 𝑓 ,1;𝒁 𝑓 ,2;𝒁 𝑓 ,3], (24)

Z𝑓 = LayerNorm(𝑟 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝒁 𝑓
𝑜𝑢𝑡 )) + P𝑓 𝑠 ) . (25)

Unified Traffic Projector (UTP): It is to formulate the universal

representation by combining the outputs of TGL and FGL. Specifi-

cally, we first concatenate them by:

Z = [Z𝑓 ;Z𝑡 ] ∈ R𝑛×𝑐×2𝜔 . (26)

Then, we employ a convolutional layer with filter 𝑰 (the kernel size
is 1 × c, input channel 2𝜔 , and output channel 𝑑c), summarized as:

C = Z ∗ 𝑰 . (27)

The above output C ∈ R𝑛×𝑑c will be put into the Task Predictor

for future flow forecasting.
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3.3 Traffic Flow Predictor (TFP)

Given a node 𝑖 ∈ V and a node 𝑗 ∈ V in graph G, we attempt to ex-

plore the attentive correlation between their node representations,

i.e., c𝑖 ∈ C and c𝑗 ∈ C, expressed as follows:

𝑒 (c𝑖 , c𝑗 ) = 𝑎c�LeakyReLU
(
𝑾𝑒

c ·
[
c𝑖 ‖ c𝑗

] )
, (28)

𝛽c𝑖 𝑗 = Softmax(𝑒 (c𝑖 , c𝑗 )) =
exp(𝑒 (c𝑖 , c𝑗 ))∑

𝑗 ′ ∈A𝑖
exp(𝑒 (c𝑖 , c𝑗 ′ ))

, (29)

c𝑜𝑢𝑡𝑖 = LeakyReLU(
∑
𝑗∈A𝑖

𝛽c𝑖 𝑗 ·𝑾cc𝑗 ), (30)

where 𝑎c is a learnable vector with random initialization. 𝑾𝑒
c ∈

R
𝑑c×2𝑑c and𝑾𝑠

c ∈ R𝑑c×𝑑c are trainable matrices. Herein, we use

multi-head GAT in the TFP, where the head number is set to 3. As

such, the output can be denoted as C𝑜𝑢𝑡 ∈ R𝑛×3𝑑c . Then we obtain

the final results with the linear projection, denoted as:

𝑿 = Linear(C𝑜𝑢𝑡 ) ∈ R𝑛×𝜔 . (31)
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Figure 3: DvBoot mechanism.

3.4 Dual-view Bootstrap (DvBoot)

Technical Bound Investigation: DvBoot treats the above TDL

handling the raw traffic data as the deterministic (risk-free) view,

denoted as F𝜃 (𝜃 ⊂ Θ), while building a Siamese of TDL which

uses different parameter settings to handle multiple potential risks,

denoted as the risk-aware view F𝜅 . As shown in Fig. 3, we align

these two views by optimizing the mean squared error in the latent

space. For instance, given a real (risk-free) flow observations 𝑿 and

its augmented (risk-aware) version 𝑿 ′, we have:

L𝜃,𝜅 = | |H (F𝜃 (𝑿 )) − F𝜅 (𝑿 ′) | |22, (32)

whereH is a two-layered projection.H should be nonlinear and

contain batch normalization(BN). The BN used inH could implicitly

introduce a negative term [33] which acts as a crucial component

to stabilize training. We denote it as:

H(·) ↦→ Linear(ReLU(BatchNorm(Linear(·)))). (33)

Intuitively, we can begin with the optimization by randomly ini-

tializing the above parameters 𝜃 and 𝜅 , respectively. However, this
straightforward strategy inevitably leads to a collapse of repre-

sentations, even useless ones [4, 11, 13]. Besides, maintaining the

gradients regarding parameters 𝜅 brings additional memory and

computation costs. Fortunately, recent exponential moving average

(EMA) theory [4, 11, 14, 25, 31] successfully applied in computer

vision (CV) suggests that we can establish a conditional gradient

update rule between 𝜃 and 𝜅 (more technical details about EMA are

introduced in Appendix A). That is, the update of 𝜅 in each training

step is stop-gradient, which, instead, can be obtained by:

𝜃 ← 𝜃 − 𝜂∇,L𝜃,𝜅 (34)

𝜅 ← 𝜆𝜅 + (1 − 𝜆)𝜃, (35)

where the optimization of F𝜅 begins with 𝜅 = 𝜃 and 𝜆 ∈ [0, 1] is
a decay rate, 𝜂 is the learning rate. The gradient of dual-view loss

can be obtained by:

∇𝜃E
[‖H∗(𝑧𝜃 ) − 𝑧′𝜅 ‖22

]
= ∇𝜃E

[‖E[𝑧′𝜅 |𝑧𝜃 ] − 𝑧′𝜅 ‖22
]

= ∇𝜃E
[∑

𝑖

Var(𝑧′𝜅,𝑖 |𝑧𝜃 )
]
, (36)

where 𝑧𝜃 = F𝜃 (𝑿 ) and 𝑧′𝜅 = F𝜅 (𝑿 ′). Hence, the optimal objective

can be defined as follows:

H∗ � argmin
H
E
[‖H (𝑧𝜃 ) − 𝑧′𝜅 ‖22

]
. (37)

Because of the stop-gradient, we can ignore the gradient update of

𝜅, and the gradient of 𝜃 can be written in the following form:

𝜕

𝜕𝜃
E = E

[
𝜕𝐿

𝜕H · 𝜕H
∗

𝜕𝜃
+ 𝜕𝐿

𝜕H · 𝜕H
∗

𝜕𝑧𝜃
· 𝜕𝑧𝜃
𝜕𝜃

]
. (38)

It can be hypothesized from the above gradient formula that too

slow updating of the parameters of H during the training will

affect the normal gradient propagation process of the model, which

requires adjusting the learning rate ofH inconsistent with F𝜃 or

adjusting the dimension 𝑑𝑐 to control the complexity ofH [11].

Risk Setting: Now we turn to explain how to produce multiple

risk-aware versions of an actual (risk-free) view. In our context,

we mainly dig into three frequently present risks, including the

missing facts, the missing spatial connectivity, and the flow noise,

which have been widely posed recently [15, 23, 39, 41]. Specifically,

we choose the following strategies: (R1) Situation Mask: As each

𝑋 ∈ R𝑛×𝜔 (𝑋 ∈ 𝑿 ) describes one type of situation records (e.g.,

the current flow volumes) of 𝑛 nodes during the time step 𝑡 −𝜔 + 1

to time step 𝑡 , we thus mask part of the observed situations condi-

tional on a masking threshold. (R2) Edge Mask: we manipulate the

spatial connectivity by edge removing, Given the graph G(V, E),
we obtain an augmented version E′ by randomly removing some

of the edges present. (R3) Flow Noise: To further stimulate the un-

certainty of flow records, we add Gaussian noise to some of the

actual flow observations by setting the noise ratio.

Risk Swapping: Inspired by recent bootstrap learning [4, 11, 42],

we employ a swapping method to enhance the learning ability of

TDL. That is, in the training process, we iteratively swap the risk-

free and risk-aware views to TDL F𝜃 and its Siamese F𝜅 , thus the
goal of Eq. (32) can be rewritten as follows:

L𝑏𝑠 =
1

2
[| |H (F𝜃 (𝑿 )) − F𝜅 (𝑿 ′) | |22 + ||H (F𝜃 (𝑿 ′)) − F𝜅 (𝑿 ) | |22] .

(39)

3.5 Task Learning

In the end, we summarize the task learning details. In each train-

ing epoch, given traffic flow observations 𝑿 and traffic graph G,
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Algorithm 1: The training process of Gboot.

Input: Traffic graph G, the training set of traffic flow D𝑿 .

1 Initialize Θ in Gboot;

2 for sample a batch {𝑿𝑖 }𝐵𝑖=1 ∈ D𝑿 do

3 for 𝑖 ∈ 𝐵 do

// Risk setting for input graph and traffic flow

4 (G′,𝑿 ′
𝑖 )

𝑟𝑖𝑠𝑘𝑠←−−−− (G,𝑿𝑖 ) ;
// Use TDL for each of the two views

5 Z,Z′ = F𝜃 (𝑿𝑖 ), F𝜅 (𝑿 ′
𝑖 ) ;

// Swap the input and extract features again

6 Z𝑠 ,Z′
𝑠 = F𝜃 (𝑿 ′

𝑖 ), F𝜅 (𝑿𝑖 ) ;
// Use TFP module for flow prediction

7 𝒀 = P(Z) ;
8 end

// Calculate Bootstrap loss between two views

9 L𝑏𝑠 = 1
2 [ | |H(Z) − Z′ | |22 + | |H(Z𝑠 ) − Z′

𝑠 | |22 ];
// Calculate Huber loss

10 L𝑡𝑎 = HuberLoss(𝒀 ,𝒀 ) ;
11 L = (1 − 𝛼 )L𝑡𝑎 + 𝛼L𝑏𝑠 ;

12 update F𝜃 ( ·) , H(·) and P(·) to minimize L;

// Updating parameters with EMA

13 𝜅 ← 𝜆𝜅 + (1 − 𝜆)𝜃 ;
14 end

Output: Obtain the optimal Θ∗.

we treat 𝑿 as the deterministic (risk-free) view and generate an

augmented version 𝑿 ′ that contains different risk conditions (i.e.,

the risk-aware view). Then, we employ TDL and its Siamese to

produce the predictive representations regarding these two views,

respectively. After that, the output of TDL will be fed into the TFP

for flow forecasting. We follow previous studies [21, 30] and employ

the Huber loss as the task loss function, which is less sensitive to

outliers than the squared error loss, denoted as follows:

L𝑡𝑎 =

{
1
2 (𝒀 − 𝒀̂ )2 for |𝒀 − 𝒀̂ | ≤ 𝛿,

𝛿 ( |𝒀 − 𝒀̂ | − 1
2𝛿 otherwise.

(40)

Herein, 𝛿 is a threshold used to control the transition point between

square loss and absolute loss. Meanwhile, we produce the bootstrap

objective (cf. Eq. (39)). We treat this objective as a weak signal to

enhance task learning. In sum, our final objective is denoted as:

L = (1 − 𝛼)L𝑡𝑎 + 𝛼L𝑏𝑠 , (41)

where 𝛼 is a hyperparameter for the trade-off between two losses.

Algorithm 1 summarizes the workflow of Gboot. In each epoch,

given traffic flow observations 𝑿 (e.g., 𝑿𝑖 ) and traffic graph G, we

treat 𝑿 as the risk-free view and generate an augmented version

𝑿 ′ that contains the uncertain risks (line 4). Then, we employ TDL

and its Siamese to respectively produce predictive representations

regarding the risk-free view and the risk-aware view (lines 5 and 6)

with a swapping strategy. After that, the TDL output will be fed into

the TFP for flow forecasting (line 7). Meanwhile, we produce the

bootstrap objective (line 9) and the Huber loss (line 10).We treat this

objective as a weak signal to enhance task learning (line 11). After

model convergence, we employ the optimal Gboot for inference.

Notably, TDL employs multiple attention mechanisms (e.g., self-

attention and GAT), which can operate in parallel and contribute

to efficiency. Moreover, even if we build a Siamese version of TDL,

its initial parameters stem from TDL’s. Moreover, its optimization

is totally dependent on TDL. Therefore, we do not need additional

memory to preserve massive gradients relative to this Siamese.

4 Experiments

4.1 Experimental Setup

Datasets:We choose several real-world traffic flow datasets, includ-

ing four graph-based highway datasets PEMS03, PEMS04, PEMS07,

PEMS08 from California [30], and two grid-based datasets, i.e.,

NYCTaxi [26] and NYCBike [43]. For the four highway datasets,

the original traffic flow data has been aggregated into 5-minute

intervals and normalized to zero mean, yielding 12 time steps for

each hour. We use traffic flow data from the past hour to forecast

the flow for the next hour, i.e., 𝜔 = 12 in alignment with previ-

ous studies [21, 23, 30]. For the taxi dataset dataset, the original

traffic flow data has been aggregated into 30-minute intervals and

normalized to zero mean. For the bike dataset dataset, the original

traffic flow data has been aggregated into 60-minute intervals and

normalized to zero mean. We use traffic flow data from the past 12

time steps to forecast the flow for the next 12 time steps. Statistics

of all datasets is summarized in Table 1. In addition, we follow the

standard dataset split manner by dividing the original traffic data

into training, validation and testing sets with ratio 6:2:2.

Table 1: The statistics of used datasets.

Dataset #Node #Edge #Time step Time Span

PEMS03 358 547 26208 9/1/2018–11/30/2018
PEMS04 307 340 16992 1/1/2018–2/28/2018
PEMS07 883 866 28224 5/1/2017–8/31/2017
PEMS08 170 295 17856 7/1/2016–8/31/2016

NYCTaxi 200 / 17520 1/1/2014–12/31/2014
NYCBike 128 / 4392 4/1/2014-9/30/2014

Baselines: We compare with the following 12 representative base-

lines: DCRNN [24] uses diffusion graph convolutional networks

and seq2seq to explore spatial and temporal dynamics, respectively.

ASTGCN (r) [12] is an attention-based spatiotemporal GCN that con-

tains a spatial attention network and a temporal attention network.

STGCN [40] uses spatial-graph convolution and temporal-gated

convolution to capture spatial and temporal dependencies, respec-

tively. STSGCN [30] utilizes local spatial-temporal subgraph mod-

ules to explore spatial and temporal dependencies synchronously.

STFGNN [22] develops a spatial-temporal fusion graph to compen-

sate for existing spatial correlations. AGCRN [2] advances GCNs

with node embeddings to enhance node-specific spatial and tem-

poral correlations in traffic series. STGODE [8] extends multiple

GCNs with a tensor-based ODE and utilizes a convolution layer to

capture temporal dependencies. DSTAGNN [21] operates attention-

based methods to explore spatial and temporal dependencies while

employing gated convolutions to explore different ranges of tem-

poral dependencies. We select its variants DSTAGNN-G relying on

real-world spatial connectivity for fairness. SPGCL [23] involves

contrastive learning with three graph-based augmentations to en-

hance informative relations. FourierGNN [38] introduces the Fourier

Graph Operator to perform matrix multiplications in Fourier space

and make multivariate time series forecasting from a pure graph
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Table 2: Performance comparison of Gboot and baselines on PEMS03, PEMS04, PEMS07, PEMS08.

Model
PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DCRNN 18.18 30.31 18.91% 24.70 38.12 17.12% 25.30 38.58 11.66% 17.86 27.83 11.45%
ASTGCN(r) 17.69 29.66 19.40% 22.93 35.22 16.56% 28.05 42.57 13.92% 18.61 28.16 13.08%
STGCN 17.49 30.12 17.15% 22.70 35.55 14.59% 25.38 38.78 11.08% 18.02 27.83 11.40%
STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%
DSTAGNN-G 15.61 27.23 14.79% 19.41 31.63 12.84% 21.67 35.04 9.06% 15.90 25.24 9.97%
SPGCL 23.31 37.37 21.88% 24.75 40.12 16.34% 31.35 46.34 18.32% 19.92 33.68 15.77%
FourierGNN 17.27 27.20 15.88% 22.98 36.23 15.14% 25.47 39.69 10.76% 18.14 28.39 11.35%
GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
PDFormer 21.82 36.75 21.47% 25.75 42.09 17.55% 23.92 36.76 11.62% 20.30 33.26 12.54%

Gboot 15.43 26.42 14.51% 19.28 31.02 12.58% 21.35 34.43 9.02% 15.54 24.53 9.76%

Table 3: Performance comparison of Gboot and baselines on NYCTaxi, NYCBike.

Model
NYCTaxi Inflow NYCTaxi Outflow NYCBike Inflow NYCBike Outflow

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DCRNN 4.77 6.61 27.17% 9.40 13.36 37.70% 12.53 18.07 39.76% 11.96 16.89 41.54%
ASTGCN(r) 4.67 6.26 28.06% 9.76 13.74 37.35% 6.02 11.15 18.31% 5.72 10.96 16.93%
STGCN 5.48 7.45 31.35% 11.83 16.41 43.25% 7.44 12.13 23.48% 5.53 10.56 17.44%
STSGCN 5.01 6.31 32.83% 9.67 13.24 39.58% 5.63 11.04 16.75% 5.51 10.51 17.39%
STFGNN 4.85 6.29 31.13% 9.65 13.11 42.27% 6.06 10.93 18.29% 6.42 10.97 21.42%
AGCRN 11.14 14.31 62.77% 18.05 22.47 69.82% 7.37 11.92 24.60% 6.19 10.87 20.36%
STGODE 5.89 7.53 40.50% 9.71 13.15 50.41% 5.93 10.99 17.88% 5.44 10.25 17.53%
DSTAGNN-G 5.69 7.94 28.80% 9.60 12.73 44.06% 6.05 10.89 19.09% 7.06 11.86 22.64%
SPGCL 4.76 6.56 26.92% 10.58 14.29 41.59% 11.44 17.12 33.21% 11.02 16.21 34.59%
FourierGNN 6.08 8.33 34.32% 10.85 14.55 44.72% 6.59 11.88 19.97% 6.22 11.94 18.68%
GraphWaveNet 4.69 6.28 29.55% 10.45 14.08 43.26% 7.93 13.63 25.40% 7.05 12.44 22.31%
PDFormer 4.55 6.35 25.39% 9.99 12.88 44.51% 6.42 11.31 20.08% 6.89 11.96 21.58%

Gboot 4.44 6.18 24.84% 9.27 12.63 37.03% 5.33 10.51 15.61% 5.21 10.08 16.50%

perspective. Graph WaveNet [36] develops a novel adaptive depen-

dency matrix and a stacked dilated 1D convolution component

to capture the hidden spatial-temporal dependency in the data.

PDFormer [16] proposes a novel propagation delay-aware dynamic

long-range transformer for accurate traffic flow prediction.

Implementations: Gboot is implemented with PyTorch and uses

one NVIDIA RTX 4090 GPU. In Gboot, the head number𝐻 is set to 3.

The dimensions 𝑑𝑡 and 𝑑𝑓 are set to 32. The filter sizes for Temporal

Latent Capture and Factual Latent Capture are set to {1×3, 1×5, 1×
7}. 𝑑c in TDL is 128, 𝑑𝑆 in Temporal-Spatial Aggregation and 𝑑𝑃
in Factual-Spatial Aggregation are both 256. We optimize with the

Adam optimizer for a maximum of 50 epochs. The batch size is 32

and the initial learning rate is 0.003. For reproducibility, the source

codes are available at https://github.com/wangzz-yyzz/Gboot.

Metrics:We follow existing studies [23, 24, 30] and evaluate per-

formance by three common metrics, including mean absolute error

(MAE), root mean squared error (RMSE), andmean absolute percent-

age error (MAPE). We filter the samples with flow values below 10

when evaluating the NYCTaxi and NYCBike, consistent with [37].

4.2 Main Results

Performance Comparison. Table 2 reports the performance re-

sults of our proposed Gboot and the baselines on four graph-based

datasets. Additionally, Table 3 reports the performance results on

two grid-based datasets.We can observe that our Gboot consistently

outperforms the baselines, demonstrating the effectiveness of the

proposed solution. Among the baselines, solutions such as DCRNN

and STGCN that explore spatial and temporal dependencies, respec-

tively, perform poorly, suggesting that insufficient dependencies

may hinder the capture of implicit patterns behind flow dynamics.

Methods such as STSGCN that take into account spatio-temporal

correlations exhibit better performance, implying that incorporat-

ing spatio-temporal interactions can indeed facilitate the accurate

capture of flow patterns. STGODE and DSTAGNN-G operated tem-

poral convolution to explore long-range temporal dependencies

with promising results, which indicates that using convolutional

operations for temporal dependency learning is a useful alternative

because it can flexibly tackle different ranges of temporal dynamics

with filter settings. SPGCL is a contrastive learning solution for

handling uncertain risks, akin to the risk settings used in our prac-

tice – but, surprisingly, we find that it performs poorly. We consider

the reason for this to be that it crafts massive negative instances

to enhance the disentanglement of graph node representations,

resulting in instability in graph learning. In short, Gboot performs

the best, and we conjecture that the reason is two-fold. First, it

considers both temporal and factual interactive dynamics over spa-

tial dependency learning, providing us with more prior knowledge

about flow trends. Second, it provides a simple dual-view bootstrap

mechanism to boost dependency dynamic learning, enhancing its

robustness by handling different potential uncertain risks.

Efficiency Comparison. Table 4 reports the efficiency compari-

son on PEMS04 and shows that Gboot does not introduce much

computational time in the inference phase as multiple attention

mechanisms can operate in parallel. The main computational over-

head comes from the dual-view design in the training phase.
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Table 4: Efficiency evaluation on PEMS04.

Model Train(s/epoch) Inference(s)

AGCRN 40.9 3.8
DSTAGNN-G 84.9 6.1
FourierGNN 20.1 2.3
GraphWaveNet 231.5 26.5
PDFormer 73.8 9.1

Gboot (ours) 31.8 2.4

4.3 Ablation Study

We conduct two groups of ablation studies, including:

Block Design. To evaluate the effectiveness of the modules de-

sign, we tested multiple variants of Gboot: w/o Proj (removes the

UTP), w/o GAT (removes the GAT in the TFP), w/o DV (removes

the DvBoot), w/o HF (removes the situations regarding historical

flow, i.e., 𝑐 = 1), w/o TGL (removes the TGL block) and w/o FGL

(removes the FGL block). Fig. 4 shows that removing each block

results in performance degradation, indicating the effectiveness

of each designed block. Moreover, we observe that removing the

TGL block that explores temporal dependencies over spatial con-

nectivity learning has the most significant impact on the model

performance, uncovering the fact that most of the studies have

verified that considering temporal dependencies is indeed crucial

for perceiving future flow trends. The results of w/o TGL and w/o

HF demonstrate that considering the factual interaction between

different situations can boost the ability of model forecasting. Fi-

nally, w/o DV performance suggests that considering the uncertain

risks can enhance the generalization of high-accuracy traffic trends.

Figure 4: The impact of module design in Gboot.

Risk Setting.We investigate the impacts of different risks by re-

moving each of the risk settings (i.e., w/o R1, w/o R2, and w/o R3)

and using each of the risk settings (i.e., only R1, only R2 and only

R3). As shown in Fig. 5, among the ‘w/o’ series, we can observe that

removing the Edge Mask shows the worst results (cf. w/o R2), which

indicates that incorporating the uncertainty of graph topology can

enhance the model performance. Urban areas often have road clo-

sures and the like, and it becomes very practical to consider this

risk condition. Among the ‘only’ series, we can observe that only

using one of them does not promote the model’s ability well. We

consider the plausible reason is that inadequate insight into risk

setting would hinder the learning of dual-view bootstrap.

Figure 5: The impact of risk settings.

Figure 6: Performance comparison in per forecasting step.

4.4 Forecasting Investigation

Long-range Forecasting. To show the model performance in long-

range forecasting, we compute the error (i.e., MAE or RMSE) for

each of the predicted 12 time steps individually. Fig. 6 displays the

measurements of MAE and RMSE on PEMS04 and PEMS08. We

can find that as the forecasting step increases, the tendency for

our Gboot to have lower errors on both metrics becomes more

prominent than other recently representative baselines. Moreover,

we present visualizations comparing the longer-term forecasting

results against the ground truth using the testing data from PEMS04

and PEMS08, respectively. Fig. 7 shows a snapshot of the testing

data – we mark representative methods and ours with different

colors. We note that, due to space limits, an enlarged version of

Fig. 7 is provided in Appendix B (cf. Fig. 13). We find that the

ground truth is highly volatile. However, Gboot is remarkably more

proximate to the ground truth (cf. zoomed parts) while the other

baselines deviate more significantly. This suggests that Gboot can

learn better traffic flow regularities to predict longer-term trends.

Noise Immunity Test. As we claimed, Gboot has the comprehen-

sion ability to tackle uncertainty or noise. We conduct a noise immu-

nity test by respectively noising a station’s traffic flow. Specifically,

we make comparative experiments in which one group utilized raw

historical flow observations and the other group utilized violently

noisy observations, i.e., Gaussian noise was introduced into each
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(a) station #122. (b) station #80.

Figure 7: Comparison of forecasting curves.

(a) noised station #9 in PEMS04.

(b) noised station #42 in PEMS08.

Figure 8: A noise Immunity test.

observation. We have this hypothesis: If the model exhibits strong

noise immunity, the disparities between the two groups of comparative

forecasts are expected to converge. To confirm this hypothesis, we

adopt the MAE metric to calculate the difference between the two

groups. As shown in Fig. 8, the x-axis refers to the different stations

while the y-axis shows the MAE gap between the two groups. We

can find that Gboot consistently owns the lowest MAE on each

station, suggesting it has the most robust noise immunity.

Spatial Connectivity Analysis.We investigate station (sensor)-

aspect forecasting errors to uncover the impact of spatial connec-

tivity. In Fig 9, we calculate MAE values for all forecasting time

steps at all stations with the different number of neighbors and plot

the frequency distribution of occurrences, where less refers to the

station only has one neighbor while themore means the station has

more than 5 spatial neighbors. We find that the peaks of Gbootmore

are distributed in the small error region or its peaks are lower than

those of Gbootless, suggesting that exposing the spatial connectivity

do affect the forecasting performance. In fact, aggregating informa-

tive knowledge from the spatial neighbors could bring uncertain

noise. Gboot can tackle this issue well, which shows its robustness

in handling information aggregation behind spatial connectivity.

Figure 9: The investigation on spatial connectivity.

Sensitivity Analysis. We present a case investigation here due to

space limitations. Fig. 10 shows that a large masking ratio in situa-

tion masking (risk setting R1) degrades the model’s performance.

However, if the masking ratio is set too low, it fails to effectively in-

troduce the desired uncertain risks. Notably, a more comprehensive

sensitivity analysis is provided in Appendix B (cf. Fig. 12).

Figure 10: Sensitivity analysis on risk R1.

5 Conclusion

In this study, we identified two challenges that have never been

addressed before, i.e., factual interaction and robustness risk. Corre-

spondingly, we introduced a novel solution called Gboot to handle

traffic flow forecasting by considering the above challenges. Specif-

ically, Gboot containing a TDL module can capture temporal and

factual interactive dynamics on spatial connectivity learning. More-

over, multi-scale gated convolution was applied to each of them

in order to explore different ranges of dynamic dependencies. To

account for multiple uncertainty risks, we propose a dual-view

bootstrap mechanism to improve the generalization of the model,

which does not need to involve huge negative instances for compar-

isons. Finally, our experiments conducted on several representative

traffic datasets demonstrate the superiority of the Gboot against

the baselines. As part of our future work, we plan to investigate

more background context, e.g., point-of-interest distribution, re-

mote sensing semantics, etc., and develop a multimodal solution.
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Appendix

We now present additional details regarding the derivation of EMA

and extended sensitivity analysis.

A The Derivation of EMA

EMA is a widely used practice in recent deep semi-supervised

learning and self-supervised learning by following the teacher-

student manner. For instance, in our context, we have:

L𝜃,𝜅 = | |H (F𝜃 (𝑿 )) − F𝜅 (𝑿 ′) | |22, (42)

where the parameter optimization is followed by the rule:

𝜃 ← 𝜃 − 𝜂∇L𝜃,𝜅 (43)

𝜅 ← 𝜆𝜅 + (1 − 𝜆)𝜃 . (44)

Herein, F𝜃 can be treated as a student network and F𝜅 as a teacher

network with the same network architecture. According [4, 11, 31],

in common sense, we expect to enforce the outputs of C = F𝜃 (𝑿 )

Figure 11: Performance comparison in per forecasting step

on NYCBike dataset.

and C′ = F𝜅 (𝑿 ′) to be closer in the latent space with the goal of:

E

[
− log

exp < C, C′ >∑
𝑗 (exp < C, C′ > + exp < C, C′−

𝑗 >)

]
(45)

⇒ E[− < C, C′ >] + E[log
∑
𝑗

(exp < C, C′−
𝑗 >)] . (46)

The first objective is usually referred to as alignment, which is

actually Eq. (42). For the second term, it is the uniformity objective

to enlarge the latent space distance between C and C′−
𝑗 . Typically,

a group of C′−
𝑗 in self-supervised learning refers to a set of negative

samples regarding C. Without the second term, F𝜃 and F𝜅 will be

homogenized, resulting in collapse of the latent representations.

Hence, in the optimization process, F𝜅 should have a different but

similar representational capacity compared to F𝜃 . Recall Eq. (44),
the EMA theory provides a view that 𝜅 is conditioned on 𝜃 but

using a decayed optimization manner to maintain the ability of

optimization difference, i.e., latency optimization. Hence, recent

studies of the teacher-student framework remove the second term

while using EMA to maintain the disentanglement ability of teacher

network, which does not need to involve unstable negative samples.

B Additional Sensitivity Analysis

In addition to the short version of the sensitivity analysis in the

main text (cf. Sec. 4.4), we provide a more comprehensive analysis

of significant hyperparameters that could be sensitive to the model.

Architecture Sensitivity.We first investigate the hyperparameter

settings of network architecture, which typically affect the model

scale and could affect the model performance. Specifically, we vary

the key hyperparameters in the Gboot architecture on PEMS04

dataset, yielding different groups of results. As shown in Table 5,

we in general find that they are not extremely sensitive to the

model performance, which was also uncovered by previous studies.

Considering the trade-off between model scale and performance,

our default configuration of Gboot in this study is [32,3,256,128].

Environmental Sensitivity. In this part, we investigate the impact

of factor settings, including trade-off factor 𝛼 in the final objective

cf. Eq. (41) and the ratios in risk settings (R1, R2, and R3). The results

are reported in Fig. 11 and Fig. 12. We have following observations:

(1) The impact of 𝛼 . 𝛼 is to adjust the contribution between task

learning and bootstrap learning. We observe that using either a too

large (affecting the model convergence) or a too small (affecting the

distillation about uncertain risks) 𝛼 value will degrade the forecast

performance. Hence, this study empirically set 𝛼 to 0.3.

Table 5: The sensitivity analysis on network architecture.

𝑑𝑡 /𝑑𝑓 , 𝐻 , 𝑑𝑆/𝑑𝑃 , 𝑑c MAE RMSE MAPE

[32,3,256,128] 19.28 31.02 12.58%

[64, 3, 256, 128] 19.49 31.37 12.68%

[16, 3, 256, 128] 19.57 31.38 12.82%

[32, 1, 256, 128] 19.58 31.40 12.82%

[32, 5, 256, 128] 19.38 31.18 12.71%

[32, 3, 128, 128] 19.51 31.30 12.78%

[32, 3, 512, 128] 19.35 31.12 12.69%

[32, 3, 256, 64] 19.45 31.21 12.83%

[32, 3, 256, 256] 19.48 31.19 12.75%
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Figure 12: Sensitivity analysis.

(a) station #122 (b) station #80

Figure 13: Comparison of forecasting curves.

(2) Risk ratio in R1. This ratio will affect the capture of situational dy-

namics behind the traffic flows. We observe that too much masking

generally leads to poor performance and unstable training. Hence,

in this study, we set the mask ratio of R1 to 0.04.

(3) Risk ratio in R2. This ratio will affect the connectivity of the

build graph. Obviously, a small value provides a better trade-off

between node-useful connectivity and relationship redundancy. In

addition, we also find that increasing the proportion of R2 improves

the prediction accuracy of the model over long time steps, which

can be demonstrated by Fig. 11.

(4) Risk ratio in R3. This factor is to control the noise level of actual

flow volumes. We find that adding noise to the actual flows indeed

enhances the forecast performance and model robustness. In prac-

tice, however, using too many noises will affect model convergence.

Note.We re-iterate here that Fig. 13 is an enlarged version of Fig. 7,

as mentioned in the main text.


